Published online Apr 15, 2021. doi: 10.4239/wjd.v12.i4.420
Peer-review started: January 12, 2021
First decision: February 12, 2021
Revised: February 22, 2021
Accepted: March 29, 2021
Article in press: March 29, 2021
Published online: April 15, 2021
Processing time: 86 Days and 10 Hours
The growing obesity epidemic is becoming a major public health concern, and the associated costs represent a considerable burden on societies. Among the most common complications of severe obesity are the development of hypertension, dyslipidemia, type 2 diabetes, cardiovascular disease, and various types of cancer. Interestingly, some obese individuals have a favorable metabolic profile and appear to be somehow protected from the detrimental effects of excessive adipose tissue accumulation. These individuals remain normoglycemic, insulin sensitive, and hypotensive with proper blood lipid levels, despite their high body mass index and/or waist circumference. Multiple independent observations have led to the concept of the metabolically healthy obese (MHO) phenotype, yet no consensus has been reached to date regarding a universal definition or the main mechanism behind this phenomenon. Recent technological advances and the use of high-throughput analysis techniques have revolutionized different areas of biomedical research. A multi-omics approach, which is used to investigate changes at different molecular levels in an organism or tissue, may provide valuable insights into the interplay between the molecules or pathways and the roles of different factors involved in the mechanisms underlying metabolic health deterioration. The aim of this review is to present the current status regarding the use of omics technologies to investigate the MHO phenotype, as well as the results of targeted analyses conducted in MHO individuals.
Core Tip: Multiple independent observations have led to the concept of the metabolically healthy obese (MHO) phenotype, in which individuals, despite a high body mass index, remain normoglycemic, insulin sensitive, and hypotensive with proper blood lipid levels. Even though this issue is of great interest to the scientific community, no consensus has been reached to date regarding the main mechanism behind this phenomenon. The aim of this review is to present the current status regarding the use of omics technologies to investigate the MHO phenotype at different molecular levels, as well as the results of targeted analyses conducted in MHO individuals.