Published online Dec 15, 2021. doi: 10.4239/wjd.v12.i12.2073
Peer-review started: April 21, 2021
First decision: July 15, 2021
Revised: August 3, 2021
Accepted: November 3, 2021
Article in press: October 31, 2021
Published online: December 15, 2021
Processing time: 238 Days and 14.1 Hours
Type 1 diabetes (T1D) is a severe and prevalent metabolic disease. Due to its high heredity, an increasing number of genome-wide association studies have been performed, most of which were from hospital-based case-control studies with a relatively small sample size. The association of single nucleotide polymorphisms (SNPs) and T1D has been less studied and is less understood in natural cohorts.
To investigate the significant variants of T1D, which could be potential biomarkers for T1D prediction or even therapy.
A genome-wide association study (GWAS) of adult T1D was performed in a nested case-control study (785 cases vs 804 controls) from a larger 5-year cohort study in Suzhou, China. Potential harmful or protective SNPs were evaluated for T1D. Subsequent expression and splicing quantitative trait loci (eQTL and sQTL) analyses were carried out to identify target genes modulated by these SNPs.
A harmful SNP for T1D, rs3117017 [odds ratio (OR) = 3.202, 95% confidence interval (CI): 2.296-4.466, P = 9.33 × 10-4] and three protective SNPs rs55846421 (0.113, 0.081-0.156, 1.76 × 10-9), rs75836320 (0.283, 0.205-0.392, 1.07 × 10-4), rs362071 (0.568, 0.495-0.651, 1.66 × 10-4) were identified. Twenty-two genes were further identified as potential candidates for T1D onset.
We identified a potential genetic basis of T1D, both protective and harmful, using a GWAS in a larger nested case-control study of a Chinese population.
Core Tip: Type 1 diabetes (T1D) is a severe and prevalent metabolic disease. Due to its high heredity, an increasing number of genome-wide association studies have been performed, most of which were from hospital-based case-control studies with a relatively small sample size. The aim of this study was to investigate the significant variants of T1D, which could be potential biomarkers for T1D prediction or even therapy. The effects of different polymorphisms in Chinese T1D patients were determined in a healthy population cohort study. The results showed 4 novel variants highly associated with the onset of T1D, namely rs3117017, rs55846421, rs75836320, and rs362071.