Published online Jul 15, 2020. doi: 10.4239/wjd.v11.i7.293
Peer-review started: February 29, 2020
First decision: April 7, 2020
Revised: May 21, 2020
Accepted: June 10, 2020
Article in press: June 10, 2020
Published online: July 15, 2020
Processing time: 135 Days and 17.3 Hours
In this review, we summarize the recent microbiome studies related to diabetes disease and discuss the key findings that show the early emerging potential causal roles for diabetes. On a global scale, diabetes causes a significant negative impact to the health status of human populations. This review covers type 1 diabetes and type 2 diabetes. We examine promising studies which lead to a better understanding of the potential mechanism of microbiota in diabetes diseases. It appears that the human oral and gut microbiota are deeply interdigitated with diabetes. It is that simple. Recent studies of the human microbiome are capturing the attention of scientists and healthcare practitioners worldwide by focusing on the interplay of gut microbiome and diabetes. These studies focus on the role and the potential impact of intestinal microflora in diabetes. We paint a clear picture of how strongly microbes are linked and associated, both positively and negatively, with the fundamental and essential parts of diabetes in humans. The microflora seems to have an endless capacity to impact and transform diabetes. We conclude that there is clear and growing evidence of a close relationship between the microbiota and diabetes and this is worthy of future investments and research efforts.
Core tip: Current research continues to uncover associations between microbiota and diabetes [type 1 diabetes (T1D) and type 2 diabetes (T2D)], and these appear to involve metabolic effects and immune response processes. Understanding the consequences of balance in human gut microbiota and diabetes may prove very useful in developing future therapeutic interventions. This review summarizes recent studies in both mouse models and human cases that support a potential cause-effect relationship, and discusses the role of gut microbial metabolites on T1D and T2D.