1
|
Xia X, Hu M, Zhou W, Jin Y, Yao X. Engineering cardiology with miniature hearts. Mater Today Bio 2025; 31:101505. [PMID: 39911371 PMCID: PMC11795835 DOI: 10.1016/j.mtbio.2025.101505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/28/2024] [Accepted: 01/18/2025] [Indexed: 02/07/2025] Open
Abstract
Cardiac organoids offer sophisticated 3D structures that emulate key aspects of human heart development and function. This review traces the evolution of cardiac organoid technology, from early stem cell differentiation protocols to advanced bioengineering approaches. We discuss the methodologies for creating cardiac organoids, including self-organization techniques, biomaterial-based scaffolds, 3D bioprinting, and organ-on-chip platforms, which have significantly enhanced the structural complexity and physiological relevance of in vitro cardiac models. We examine their applications in fundamental research and medical innovations, highlighting their potential to transform our understanding of cardiac biology and pathology. The integration of multiple cell types, vascularization strategies, and maturation protocols has led to more faithful representations of the adult human heart. However, challenges remain in achieving full functional maturity and scalability. We critically assess the current limitations and outline future directions for advancing cardiac organoid technology. By providing a comprehensive analysis of the field, this review aims to catalyze further innovation in cardiac tissue engineering and facilitate its translation to clinical applications.
Collapse
Affiliation(s)
- Xiaojun Xia
- Department of Cardiology, Center of Regenerative and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Miner Hu
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310000, China
| | - Wenyan Zhou
- School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Yunpeng Jin
- Department of Cardiology, Center of Regenerative and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xudong Yao
- Department of Cardiology, Center of Regenerative and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
2
|
Mil J, Soto JA, Matulionis N, Krall A, Day F, Stiles L, Montales KP, Azizad DJ, Gonzalez CE, Nano PR, Martija AA, Perez-Ramirez CA, Nguyen CV, Kan RL, Andrews MG, Christofk HR, Bhaduri A. Metabolic Atlas of Early Human Cortex Identifies Regulators of Cell Fate Transitions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642470. [PMID: 40161647 PMCID: PMC11952424 DOI: 10.1101/2025.03.10.642470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Characterization of cell type emergence during human cortical development, which enables unique human cognition, has focused primarily on anatomical and transcriptional characterizations. Metabolic processes in the human brain that allow for rapid expansion, but contribute to vulnerability to neurodevelopmental disorders, remain largely unexplored. We performed a variety of metabolic assays in primary tissue and stem cell derived cortical organoids and observed dynamic changes in core metabolic functions, including an unexpected increase in glycolysis during late neurogenesis. By depleting glucose levels in cortical organoids, we increased outer radial glia, astrocytes, and inhibitory neurons. We found the pentose phosphate pathway (PPP) was impacted in these experiments and leveraged pharmacological and genetic manipulations to recapitulate these radial glia cell fate changes. These data identify a new role for the PPP in modulating radial glia cell fate specification and generate a resource for future exploration of additional metabolic pathways in human cortical development.
Collapse
Affiliation(s)
- Jessenya Mil
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jose A. Soto
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nedas Matulionis
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Abigail Krall
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Francesca Day
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Linsey Stiles
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA
| | - Katrina P. Montales
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daria J. Azizad
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Carlos E. Gonzalez
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Patricia R. Nano
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Antoni A. Martija
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cesar A. Perez-Ramirez
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Claudia V. Nguyen
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ryan L. Kan
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Madeline G. Andrews
- School of Biological and Health Systems Engineering, Arizona State University, Phoenix, AZ, United States
| | - Heather R. Christofk
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aparna Bhaduri
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
3
|
Saito Y, Sugiura Y, Sakaguchi A, Sada T, Nishiyama C, Maeda R, Kaneko M, Kiyonari H, Kimura W. Redox-dependent purine degradation triggers postnatal loss of cardiac regeneration potential. Redox Biol 2025; 79:103442. [PMID: 39637598 PMCID: PMC11664147 DOI: 10.1016/j.redox.2024.103442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/13/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024] Open
Abstract
Postnatal cardiomyocyte cell cycle withdrawal is a critical step wherein the mammalian heart loses regenerative potential after birth. Here, we conducted interspecies multi-omic comparisons between the mouse heart and that of the opossum, which have different postnatal time-windows for cardiomyocyte cell cycle withdrawal. Xanthine metabolism was activated in both postnatal hearts in parallel with cardiomyocyte cell cycle arrest. The pentose phosphate pathway (PPP) which produces NADPH was found to decrease simultaneously. Postnatal myocardial tissues became oxidized accordingly, and administration of antioxidants to neonatal mice altered the PPP and suppressed the postnatal activation of cardiac xanthine metabolism. These results suggest a redox-driven postnatal switch from purine synthesis to degradation in the heart. Importantly, inhibition of xanthine metabolism in the postnatal heart extended postnatal duration of cardiomyocyte proliferation and maintained postnatal heart regeneration potential in mice. These findings highlight a novel role of xanthine metabolism as a redox-dependent metabolic regulator of cardiac regeneration potential.
Collapse
Affiliation(s)
- Yuichi Saito
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Yuki Sugiura
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan; Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio University School of Medicine, Tokyo, Japan
| | - Akane Sakaguchi
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Tai Sada
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Chihiro Nishiyama
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Rae Maeda
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Wataru Kimura
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
4
|
Shewale B, Ebrahim T, Samal A, Dubois N. Molecular Regulation of Cardiomyocyte Maturation. Curr Cardiol Rep 2025; 27:32. [PMID: 39836238 DOI: 10.1007/s11886-024-02189-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 01/22/2025]
Abstract
PURPOSE OF THE REVIEW This review aims to discuss the process of cardiomyocyte maturation, with a focus on the underlying molecular mechanisms required to form a fully functional heart. We examine both long-standing concepts associated with cardiac maturation and recent developments, and the overall complexity of molecularly integrating all the processes that lead to a mature heart. RECENT FINDINGS Cardiac maturation, defined here as the sequential changes that occurring before the heart reaches full maturity, has been a subject of investigation for decades. Recently, there has been a renewed, highly focused interest in this process, driven by clinically motivated research areas where enhancing maturation may lead to improved therapeutic opportunities. These include using pluripotent stem cell models for cell therapy and disease modeling, as well as recent advancements in adult cardiac regeneration approaches. We highlight key processes underlying maturation of the heart, including cellular and organ growth, and electrophysiological, metabolic, and contractile maturation. We further discuss how these processes integrate and interact to contribute to the overall complexity of the developing heart. Finally, we emphasize the transformative potential for translating relevant maturation concepts to emerging models of heart disease and regeneration.
Collapse
Grants
- R01HL175488 National Institutes of Health, NHLBI, USA
- R01HL175488 National Institutes of Health, NHLBI, USA
- R01HL175488 National Institutes of Health, NHLBI, USA
- pre-doctoral fellowship to Bhavana Shewale American Heart Association
- pre-doctoral fellowship to Bhavana Shewale American Heart Association
- R01HL173318 National Institutes of Health, NHLBI, USA,
- R01HL173318 National Institutes of Health, NHLBI, USA,
- Single Ventricle Research Fund Additional Ventures
- Single Ventricle Research Fund Additional Ventures
Collapse
Affiliation(s)
- Bhavana Shewale
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Graduate School at the Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tasneem Ebrahim
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Graduate School at the Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Arushi Samal
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Graduate School at the Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nicole Dubois
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
5
|
Hu B, Liu X, Xiong S, Gong Q, Yang J, Shi H, Zhang M, Liang F, Zhang Z. Increased cardiac macrophages in Sorbs2-deficient hearts: revealing a potential role for macrophage in responding to embryonic myocardial abnormalities. Front Genet 2025; 15:1525931. [PMID: 39882075 PMCID: PMC11774933 DOI: 10.3389/fgene.2024.1525931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Macrophages are known to support cardiac development and homeostasis, contributing to tissue remodeling and repair in the adult heart. However, it remains unclear whether embryonic macrophages also respond to abnormalities in the developing heart. Previously, we reported that the structural protein Sorbs2 promotes the development of the second heart field, with its deficiency resulting in atrial septal defects (ASD). In analyzing RNA-seq data, we noted an upregulation of macrophage-related genes in Sorbs2 -/- hearts. Immunostaining and lineage-tracing confirmed an increase in macrophage numbers, underscoring a macrophage response to myocardial abnormalities. Partial depletion of macrophages led to downregulation of genes involved in lipid metabolism, muscle development and organ regeneration, alongside upregulation of genes associated with DNA damage-induced senescence and cardiomyopathy. Additionally, a non-significant increase in septal defects in macrophage-depleted Sorbs2 -/- hearts suggests a potential reparative function for macrophages in maintaining structural integrity. Valve formation, however, remained unaffected. Our findings suggest that embryonic macrophages might sense abnormalities in embryonic cardiomyocytes and could adaptively support cardiac structure and function development in response to myocardial abnormalities.
Collapse
Affiliation(s)
- Beibei Hu
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyang Liu
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shanshan Xiong
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Gong
- Shanghai United International School (Gubei Campus), Shanghai, China
| | - Junjie Yang
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjun Shi
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Min Zhang
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Liang
- Neonatal Intensive Care Unit, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Zhang
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Collaborative Innovative Center of Intelligent Medical Device and Active Health, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
6
|
DeLuca S, Strash N, Chen Y, Patsy M, Myers A, Tejeda L, Broders S, Miranda A, Jiang X, Bursac N. Engineered Cardiac Tissues as a Platform for CRISPR-Based Mitogen Discovery. Adv Healthc Mater 2025; 14:e2402201. [PMID: 39508305 PMCID: PMC11695184 DOI: 10.1002/adhm.202402201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/23/2024] [Indexed: 11/15/2024]
Abstract
Improved understanding of cardiomyocyte (CM) cell cycle regulation may allow researchers to stimulate pro-regenerative effects in injured hearts or promote maturation of human stem cell-derived CMs. Gene therapies, in particular, hold promise to induce controlled proliferation of endogenous or transplanted CMs via transient activation of mitogenic processes. Methods to identify and characterize candidate cardiac mitogens in vitro can accelerate translational efforts and contribute to the understanding of the complex regulatory landscape of CM proliferation and postnatal maturation. In this study, A CRISPR knockout-based screening strategy using in vitro neonatal rat ventricular myocyte (NRVM) monolayers is established, followed by candidate mitogen validation in mature 3-D engineered cardiac tissues (ECTs). This screen identified knockout of the purine metabolism enzyme adenosine deaminase (ADA-KO) as an effective pro-mitogenic stimulus. RNA-sequencing of ECTs further reveals increased pentose phosphate pathway (PPP) activity as the primary driver of ADA-KO-induced CM cycling. Inhibition of the pathway's rate limiting enzyme, glucose-6-phosphate dehydrogenase (G6PD), prevented ADA-KO induced CM cycling, while increasing PPP activity via G6PD overexpression increased CM cycling. Together, this study demonstrates the development and application of a genetic/tissue engineering platform for in vitro discovery and validation of new candidate mitogens affecting regenerative or maturation states of cardiomyocytes.
Collapse
Affiliation(s)
- Sophia DeLuca
- Department of Biomedical Engineering
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| | - Nicholas Strash
- Department of Biomedical Engineering
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| | | | | | | | | | | | | | | | - Nenad Bursac
- Department of Biomedical Engineering
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
7
|
Li Y, Du J, Deng S, Liu B, Jing X, Yan Y, Liu Y, Wang J, Zhou X, She Q. The molecular mechanisms of cardiac development and related diseases. Signal Transduct Target Ther 2024; 9:368. [PMID: 39715759 DOI: 10.1038/s41392-024-02069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
Cardiac development is a complex and intricate process involving numerous molecular signals and pathways. Researchers have explored cardiac development through a long journey, starting with early studies observing morphological changes and progressing to the exploration of molecular mechanisms using various molecular biology methods. Currently, advancements in stem cell technology and sequencing technology, such as the generation of human pluripotent stem cells and cardiac organoids, multi-omics sequencing, and artificial intelligence (AI) technology, have enabled researchers to understand the molecular mechanisms of cardiac development better. Many molecular signals regulate cardiac development, including various growth and transcription factors and signaling pathways, such as WNT signaling, retinoic acid signaling, and Notch signaling pathways. In addition, cilia, the extracellular matrix, epigenetic modifications, and hypoxia conditions also play important roles in cardiac development. These factors play crucial roles at one or even multiple stages of cardiac development. Recent studies have also identified roles for autophagy, metabolic transition, and macrophages in cardiac development. Deficiencies or abnormal expression of these factors can lead to various types of cardiac development abnormalities. Nowadays, congenital heart disease (CHD) management requires lifelong care, primarily involving surgical and pharmacological treatments. Advances in surgical techniques and the development of clinical genetic testing have enabled earlier diagnosis and treatment of CHD. However, these technologies still have significant limitations. The development of new technologies, such as sequencing and AI technologies, will help us better understand the molecular mechanisms of cardiac development and promote earlier prevention and treatment of CHD in the future.
Collapse
Affiliation(s)
- Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Songbai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Jing
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuling Yan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Etezadi F, Ito S, Yasui K, Kado Abdalkader R, Minami I, Uesugi M, Ganesh Pandian N, Nakano H, Nakano A, Packwood DM. Molecular Design for Cardiac Cell Differentiation Using a Small Data Set and Decorated Shape Features. J Chem Inf Model 2024; 64:8824-8837. [PMID: 39586080 DOI: 10.1021/acs.jcim.4c01353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The discovery of small organic compounds for inducing stem cell differentiation is a time- and resource-intensive process. While data science could, in principle, streamline the discovery of these compounds, novel approaches are required due to the difficulty of acquiring training data from large numbers of example compounds. In this paper, we present the design of a new compound for inducing cardiomyocyte differentiation using simple regression models trained with a data set containing only 80 examples. We introduce decorated shape descriptors, an information-rich molecular feature representation that integrates both molecular shape and hydrophilicity information. These models demonstrate improved performance compared to ones using standard molecular descriptors based on shape alone. Model overtraining is diagnosed using a new type of sensitivity analysis. Our new compound is designed using a conservative molecular design strategy, and its effectiveness is confirmed through expression profiles of cardiomyocyte-related marker genes using real-time polymerase chain reaction experiments on human iPS cell lines. This work demonstrates a viable data-driven strategy for designing new compounds for stem cell differentiation protocols and will be useful in situations where training data is limited.
Collapse
Affiliation(s)
- Fatemeh Etezadi
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Shunichi Ito
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501, Japan
- Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kosuke Yasui
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Rodi Kado Abdalkader
- Ritsumeikan Global Innovation Research Organization (R-GIRO), Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | | | - Motonari Uesugi
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501, Japan
- Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | | | - Haruko Nakano
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles ,California90095, United States
| | - Atsushi Nakano
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles ,California90095, United States
- Division of Cardiology, Department of Medicine, University of California Los Angeles, Los Angeles , California90095, United States
- Eli and Edyth Broad Center for Stem Cell and Regenerative Medicine, University of California Los Angeles, Los Angeles, California90095, United States
- Department of Cell Physiology, School of Medicine, Jikei University, Tokyo 105-8461, Japan
| | - Daniel M Packwood
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
van Doorn ECH, Amesz JH, Manintveld OC, de Groot NMS, Essers J, Shin SR, Taverne YJHJ. Advancing 3D Engineered In Vitro Models for Heart Failure Research: Key Features and Considerations. Bioengineering (Basel) 2024; 11:1220. [PMID: 39768038 PMCID: PMC11673263 DOI: 10.3390/bioengineering11121220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/06/2025] Open
Abstract
Heart failure is characterized by intricate myocardial remodeling that impairs the heart's pumping and/or relaxation capacity, ultimately reducing cardiac output. It represents a major public health burden, given its high prevalence and associated morbidity and mortality rates, which continue to challenge healthcare systems worldwide. Despite advancements in medical science, there are no treatments that address the disease at its core. The development of three-dimensional engineered in vitro models that closely mimic the (patho)physiology and drug responses of the myocardium has the potential to revolutionize our insights and uncover new therapeutic avenues. Key aspects of these models include the precise replication of the extracellular matrix structure, cell composition, micro-architecture, mechanical and electrical properties, and relevant physiological and pathological stimuli, such as fluid flow, mechanical load, electrical signal propagation, and biochemical cues. Additionally, to fully capture heart failure and its diversity in vivo, it is crucial to consider factors such as age, gender, interactions with other organ systems and external influences-thereby recapitulating unique patient and disease phenotypes. This review details these model features and their significance in heart failure research, with the aim of enhancing future platforms that will deepen our understanding of the disease and facilitate the development of novel, effective therapies.
Collapse
Affiliation(s)
- Elisa C. H. van Doorn
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (E.C.H.v.D.); (J.H.A.)
- Department of Cardiology, Cardiovascular Institute, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (O.C.M.); (N.M.S.d.G.)
| | - Jorik H. Amesz
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (E.C.H.v.D.); (J.H.A.)
- Department of Cardiology, Cardiovascular Institute, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (O.C.M.); (N.M.S.d.G.)
| | - Olivier C. Manintveld
- Department of Cardiology, Cardiovascular Institute, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (O.C.M.); (N.M.S.d.G.)
| | - Natasja M. S. de Groot
- Department of Cardiology, Cardiovascular Institute, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (O.C.M.); (N.M.S.d.G.)
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands;
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA;
| | - Yannick J. H. J. Taverne
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (E.C.H.v.D.); (J.H.A.)
| |
Collapse
|
10
|
Tang YB, Wang LS, Wu YH, Zhang LX, Hu LY, Wu Q, Zhou ML, Liang ZX. Effect of exercise during pregnancy on offspring development through ameliorating high glucose and hypoxia in gestational diabetes mellitus. World J Diabetes 2024; 15:2203-2219. [PMID: 39582571 PMCID: PMC11580567 DOI: 10.4239/wjd.v15.i11.2203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 10/16/2024] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) women require prenatal care to minimize short- and long-term complications. The mechanism by which exercise during pregnancy affects organ development and whether glucose transporter (GLUT) 1 plays a role in GDM offspring organ development remains unknown. AIM To determine the effect of exercise during pregnancy on the cardiac, hepatic and renal development of GDM mother's offspring. METHODS Placenta samples were collected from humans and mice. GDM mouse models were created using streptozotocin along with a GDM with exercise group. The hearts, livers and kidneys of 3- and 8-week-old offspring were collected for body composition analysis and staining. The effects of high glucose levels and hypoxia were investigated using HTR8/SVneo. Transwell and wound-healing assays were performed to assess cell migration. Immunofluorescence accompanied with TUNEL and Ki67 staining was used to explore apoptosis and proliferation. RESULTS Exercise during pregnancy downregulated the GLUT1 and hypoxia inducible factor-1α expression in placenta from individuals with GDM. Cobalt chloride-induced hypoxia and high glucose levels also significantly decreased migration and apoptosis of HTR8/SVneo cells. In addition, exercise reduced inflammatory cell infiltration in the liver and decreased the tubular vacuolar area in the kidneys of offspring. CONCLUSION GDM affects the growth and development of organs in offspring. Exercise during pregnancy can reverse adverse effects of GDM on the development of the heart, liver, and kidney in offspring.
Collapse
Affiliation(s)
- Yi-Bo Tang
- Department of Obstetrics, Women's Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Le-Sha Wang
- Department of Obstetrics, Shaoxing People’s Hospital, Shaoxing 312000, Zhejiang Province, China
| | - Yi-Hui Wu
- Department of Obstetrics, Women's Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Li-Xia Zhang
- Department of Obstetrics, Women's Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Lu-Yao Hu
- Department of Obstetrics, Women's Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Qi Wu
- Department of Obstetrics, Women's Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Meng-Lin Zhou
- Department of Obstetrics, Women's Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Zhao-Xia Liang
- Department of Obstetrics, Women's Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
11
|
Huang H, Park S, Ross I, Moreno J, Khyeam S, Simmons J, Huang GN, Payumo AY. Quantitative label-free digital holographic imaging of cardiomyocyte optical volume, nucleation, and cell division. J Mol Cell Cardiol 2024; 196:94-104. [PMID: 39251060 PMCID: PMC11801258 DOI: 10.1016/j.yjmcc.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/18/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Cardiac regeneration in newborn rodents depends on the ability of pre-existing cardiomyocytes to proliferate and divide. This capacity is lost within the first week of postnatal development when these cells rapidly switch from hyperplasia to hypertrophy, withdraw from the cell cycle, become binucleated, and increase in size. How these dynamic changes in cell size and nucleation impact cardiomyocyte proliferative potential is not well understood. In this study, we innovate the application of a commercially available digital holographic imaging microscope, the Holomonitor M4, to evaluate the proliferative responses of mononucleated and binucleated cardiomyocytes after CHIR99021 treatment, a model proliferative stimulus. This system enables long-term label-free quantitative tracking of primary cardiomyocyte dynamics in real-time with single-cell resolution. Our results confirm that chemical inhibition of glycogen synthase kinase 3 with CHIR99021 promotes complete cell division of both mononucleated and binucleated cardiomyocytes with high frequency. Quantitative tracking of cardiomyocyte volume dynamics during these proliferative events revealed that both mononucleated and binucleated cardiomyocytes reach a similar size-increase threshold prior to attempted cell division. Binucleated cardiomyocytes attempt to divide with lower frequency than mononucleated cardiomyocytes, which may be associated with inadequate increases in cell size. By defining the interrelationship between cardiomyocyte size, nucleation, and cell cycle control, we may better understand the cellular mechanisms that drive the loss of mammalian cardiac regenerative capacity after birth.
Collapse
Affiliation(s)
- Herman Huang
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | - Sangsoon Park
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; BAKAR Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ines Ross
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | - Joseph Moreno
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; BAKAR Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sheamin Khyeam
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; BAKAR Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jacquelyn Simmons
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | - Guo N Huang
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; BAKAR Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Alexander Y Payumo
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA.
| |
Collapse
|
12
|
Valencia DA, Koeberlein AN, Nakano H, Rudas A, Harui A, Spencer C, Nakano A, Quinlan ME. Human formin FHOD3-mediated actin elongation is required for sarcomere integrity in cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618125. [PMID: 39464085 PMCID: PMC11507729 DOI: 10.1101/2024.10.13.618125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Contractility and cell motility depend on accurately controlled assembly of the actin cytoskeleton. Formins are a large group of actin assembly proteins that nucleate new actin filaments and act as elongation factors. Some formins may cap filaments, instead of elongating them, and others are known to sever or bundle filaments. The Formin HOmology Domain-containing protein (FHOD)-family of formins is critical to the formation of the fundamental contractile unit in muscle, the sarcomere. Specifically, mammalian FHOD3L plays an essential role in cardiomyocytes. Despite our knowledge of FHOD3L's importance in cardiomyocytes, its biochemical and cellular activities remain poorly understood. It has been proposed that FHOD-family formins act by capping and bundling, as opposed to assembling new filaments. Here, we demonstrate that FHOD3L nucleates actin and rapidly but briefly elongates filaments after temporarily pausing elongation, in vitro. We designed function-separating mutants that enabled us to distinguish which biochemical roles are reqùired in the cell. We found that human FHOD3L's elongation activity, but not its nucleation, capping, or bundling activity, is necessary for proper sarcomere formation and contractile function in neonatal rat ventricular myocytes. The results of this work provide new insight into the mechanisms by which formins build specific structures and will contribute to knowledge regarding how cardiomyopathies arise from defects in sarcomere formation and maintenance.
Collapse
Affiliation(s)
- Dylan A. Valencia
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, 90095
| | - Angela N. Koeberlein
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, 90095
| | - Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California Los Angeles, Los Angeles, California, 90095
| | - Akos Rudas
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, California, 90095
| | - Airi Harui
- Divison of Pulmonary & Critical Care Medicine, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, 90095
| | - Cassandra Spencer
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California Los Angeles, Los Angeles, California, 90095
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, 90095
| | - Margot E. Quinlan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, 90095
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, 90095
| |
Collapse
|
13
|
Kobayashi H, Tohyama S, Ichimura H, Ohashi N, Chino S, Soma Y, Tani H, Tanaka Y, Yang X, Shiba N, Kadota S, Haga K, Moriwaki T, Morita-Umei Y, Umei TC, Sekine O, Kishino Y, Kanazawa H, Kawagishi H, Yamada M, Narita K, Naito T, Seto T, Kuwahara K, Shiba Y, Fukuda K. Regeneration of Nonhuman Primate Hearts With Human Induced Pluripotent Stem Cell-Derived Cardiac Spheroids. Circulation 2024; 150:611-621. [PMID: 38666382 DOI: 10.1161/circulationaha.123.064876] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/21/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND The clinical application of human induced pluripotent stem cell-derived cardiomyocytes (CMs) for cardiac repair commenced with the epicardial delivery of engineered cardiac tissue; however, the feasibility of the direct delivery of human induced pluripotent stem cell-derived CMs into the cardiac muscle layer, which has reportedly induced electrical integration, is unclear because of concerns about poor engraftment of CMs and posttransplant arrhythmias. Thus, in this study, we prepared purified human induced pluripotent stem cell-derived cardiac spheroids (hiPSC-CSs) and investigated whether their direct injection could regenerate infarcted nonhuman primate hearts. METHODS We performed 2 separate experiments to explore the appropriate number of human induced pluripotent stem cell-derived CMs. In the first experiment, 10 cynomolgus monkeys were subjected to myocardial infarction 2 weeks before transplantation and were designated as recipients of hiPSC-CSs containing 2×107 CMs or the vehicle. The animals were euthanized 12 weeks after transplantation for histological analysis, and cardiac function and arrhythmia were monitored during the observational period. In the second study, we repeated the equivalent transplantation study using more CMs (6×107 CMs). RESULTS Recipients of hiPSC-CSs containing 2×107 CMs showed limited CM grafts and transient increases in fractional shortening compared with those of the vehicle (fractional shortening at 4 weeks after transplantation [mean ± SD]: 26.2±2.1%; 19.3±1.8%; P<0.05), with a low incidence of posttransplant arrhythmia. Transplantation of increased dose of CMs resulted in significantly greater engraftment and long-term contractile benefits (fractional shortening at 12 weeks after transplantation: 22.5±1.0%; 16.6±1.1%; P<0.01, left ventricular ejection fraction at 12 weeks after transplantation: 49.0±1.4%; 36.3±2.9%; P<0.01). The incidence of posttransplant arrhythmia slightly increased in recipients of hiPSC-CSs containing 6×107 CMs. CONCLUSIONS We demonstrated that direct injection of hiPSC-CSs restores the contractile functions of injured primate hearts with an acceptable risk of posttransplant arrhythmia. Although the mechanism for the functional benefits is not fully elucidated, these findings provide a strong rationale for conducting clinical trials using the equivalent CM products.
Collapse
Affiliation(s)
- Hideki Kobayashi
- Department of Cardiovascular Medicine (H. Kobayashi, K.K.), Shinshu University, Matsumoto, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Hajime Ichimura
- Division of Cardiovascular Surgery, Department of Surgery (H.I., N.O., S.C., Y.T., T.S.), Shinshu University, Matsumoto, Japan
- School of Medicine, Department of Regenerative Science and Medicine (H.I., Y.T., X.Y., N.S., S.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Noburo Ohashi
- Division of Cardiovascular Surgery, Department of Surgery (H.I., N.O., S.C., Y.T., T.S.), Shinshu University, Matsumoto, Japan
| | - Shuji Chino
- Division of Cardiovascular Surgery, Department of Surgery (H.I., N.O., S.C., Y.T., T.S.), Shinshu University, Matsumoto, Japan
| | - Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Yuki Tanaka
- Division of Cardiovascular Surgery, Department of Surgery (H.I., N.O., S.C., Y.T., T.S.), Shinshu University, Matsumoto, Japan
- School of Medicine, Department of Regenerative Science and Medicine (H.I., Y.T., X.Y., N.S., S.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Xiao Yang
- School of Medicine, Department of Regenerative Science and Medicine (H.I., Y.T., X.Y., N.S., S.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Naoko Shiba
- School of Medicine, Department of Regenerative Science and Medicine (H.I., Y.T., X.Y., N.S., S.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Shin Kadota
- School of Medicine, Department of Regenerative Science and Medicine (H.I., Y.T., X.Y., N.S., S.K., Y. Shiba), Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences (S.K., H. Kawagishi, K.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Kotaro Haga
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Taijun Moriwaki
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Yuika Morita-Umei
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
- Kanagawa Institute of Industrial Science and Technology, Japan (Y.M.-U.)
| | - Tomohiko C Umei
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Otoya Sekine
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Hiroyuki Kawagishi
- Department of Molecular Pharmacology (H. Kawagishi, M.Y.), Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences (S.K., H. Kawagishi, K.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Mitsuhiko Yamada
- Department of Molecular Pharmacology (H. Kawagishi, M.Y.), Shinshu University, Matsumoto, Japan
| | - Kazumasa Narita
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Medicine (K.N., T.N.), Shinshu University, Matsumoto, Japan
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan (K.N., T.N.)
| | - Takafumi Naito
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Medicine (K.N., T.N.), Shinshu University, Matsumoto, Japan
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan (K.N., T.N.)
| | - Tatsuichiro Seto
- Division of Cardiovascular Surgery, Department of Surgery (H.I., N.O., S.C., Y.T., T.S.), Shinshu University, Matsumoto, Japan
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine (H. Kobayashi, K.K.), Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences (S.K., H. Kawagishi, K.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Yuji Shiba
- School of Medicine, Department of Regenerative Science and Medicine (H.I., Y.T., X.Y., N.S., S.K., Y. Shiba), Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences (S.K., H. Kawagishi, K.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| |
Collapse
|
14
|
Do BT, Hsu PP, Vermeulen SY, Wang Z, Hirz T, Abbott KL, Aziz N, Replogle JM, Bjelosevic S, Paolino J, Nelson SA, Block S, Darnell AM, Ferreira R, Zhang H, Milosevic J, Schmidt DR, Chidley C, Harris IS, Weissman JS, Pikman Y, Stegmaier K, Cheloufi S, Su XA, Sykes DB, Vander Heiden MG. Nucleotide depletion promotes cell fate transitions by inducing DNA replication stress. Dev Cell 2024; 59:2203-2221.e15. [PMID: 38823395 PMCID: PMC11444020 DOI: 10.1016/j.devcel.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Control of cellular identity requires coordination of developmental programs with environmental factors such as nutrient availability, suggesting that perturbing metabolism can alter cell state. Here, we find that nucleotide depletion and DNA replication stress drive differentiation in human and murine normal and transformed hematopoietic systems, including patient-derived acute myeloid leukemia (AML) xenografts. These cell state transitions begin during S phase and are independent of ATR/ATM checkpoint signaling, double-stranded DNA break formation, and changes in cell cycle length. In systems where differentiation is blocked by oncogenic transcription factor expression, replication stress activates primed regulatory loci and induces lineage-appropriate maturation genes despite the persistence of progenitor programs. Altering the baseline cell state by manipulating transcription factor expression causes replication stress to induce genes specific for alternative lineages. The ability of replication stress to selectively activate primed maturation programs across different contexts suggests a general mechanism by which changes in metabolism can promote lineage-appropriate cell state transitions.
Collapse
Affiliation(s)
- Brian T Do
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Health Sciences and Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peggy P Hsu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02113, USA; Rogel Cancer Center and Division of Hematology and Oncology, Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Sidney Y Vermeulen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhishan Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Taghreed Hirz
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02113, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Keene L Abbott
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Najihah Aziz
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02113, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Joseph M Replogle
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stefan Bjelosevic
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan Paolino
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Samantha A Nelson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Samuel Block
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alicia M Darnell
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Raphael Ferreira
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Hanyu Zhang
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02113, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Jelena Milosevic
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02113, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Daniel R Schmidt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Christopher Chidley
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac S Harris
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jonathan S Weissman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Cambridge, MA 02139, USA
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kimberly Stegmaier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sihem Cheloufi
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA; Stem Cell Center, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, Riverside, CA 92521, USA
| | - Xiaofeng A Su
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02113, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
15
|
Velayutham N, Garbern JC, Elwell HLT, Zhuo Z, Rüland L, Elcure Alvarez F, Frontini S, Rodriguez Carreras Y, Eichholtz M, Ricci‐Blair E, Shaw JY, Bouffard AH, Sokol M, Mancheño Juncosa E, Rhoades S, van den Berg D, Kreymerman A, Aoyama J, Höfflin J, Ryan H, Ho Sui S, Lee RT. P53 Activation Promotes Maturational Characteristics of Pluripotent Stem Cell-Derived Cardiomyocytes in 3-Dimensional Suspension Culture Via FOXO-FOXM1 Regulation. J Am Heart Assoc 2024; 13:e033155. [PMID: 38934864 PMCID: PMC11255683 DOI: 10.1161/jaha.123.033155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/02/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Current protocols generate highly pure human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in vitro that recapitulate characteristics of mature in vivo cardiomyocytes. Yet, a risk of arrhythmias exists when hiPSC-CMs are injected into large animal models. Thus, understanding hiPSC-CM maturational mechanisms is crucial for clinical translation. Forkhead box (FOX) transcription factors regulate postnatal cardiomyocyte maturation through a balance between FOXO and FOXM1. We also previously demonstrated that p53 activation enhances hiPSC-CM maturation. Here, we investigate whether p53 activation modulates the FOXO/FOXM1 balance to promote hiPSC-CM maturation in 3-dimensional suspension culture. METHODS AND RESULTS Three-dimensional cultures of hiPSC-CMs were treated with Nutlin-3a (p53 activator, 10 μM), LOM612 (FOXO relocator, 5 μM), AS1842856 (FOXO inhibitor, 1 μM), or RCM-1 (FOXM1 inhibitor, 1 μM), starting 2 days after onset of beating, with dimethyl sulfoxide (0.2% vehicle) as control. P53 activation promoted hiPSC-CM metabolic and electrophysiological maturation alongside FOXO upregulation and FOXM1 downregulation, in n=3 to 6 per group for all assays. FOXO inhibition significantly decreased expression of cardiac-specific markers such as TNNT2. In contrast, FOXO activation or FOXM1 inhibition promoted maturational characteristics such as increased contractility, oxygen consumption, and voltage peak maximum upstroke velocity, in n=3 to 6 per group for all assays. Further, by single-cell RNA sequencing of n=2 LOM612-treated cells compared with dimethyl sulfoxide, LOM612-mediated FOXO activation promoted expression of cardiac maturational pathways. CONCLUSIONS We show that p53 activation promotes FOXO and suppresses FOXM1 during 3-dimensional hiPSC-CM maturation. These results expand our understanding of hiPSC-CM maturational mechanisms in a clinically-relevant 3-dimensional culture system.
Collapse
Affiliation(s)
- Nivedhitha Velayutham
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Jessica C. Garbern
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
- Department of CardiologyBoston Children’s HospitalBostonMAUSA
| | - Hannah L. T. Elwell
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Zhu Zhuo
- Bioinformatics Core, Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Laura Rüland
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Farid Elcure Alvarez
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Sara Frontini
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Yago Rodriguez Carreras
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Marie Eichholtz
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Elisabeth Ricci‐Blair
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Jeanna Y. Shaw
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Aldric H. Bouffard
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Morgan Sokol
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Estela Mancheño Juncosa
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | | | - Daphne van den Berg
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Alexander Kreymerman
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Junya Aoyama
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | | | | | - Shannan Ho Sui
- Bioinformatics Core, Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
16
|
Zhu S, Liu Y, Xia G, Wang X, Du A, Wu J, Wang Y, Wang Y, Shen C, Wei P, Xu C. Modulation of cardiac resident macrophages immunometabolism upon high-fat-diet feeding in mice. Front Immunol 2024; 15:1371477. [PMID: 39007149 PMCID: PMC11239335 DOI: 10.3389/fimmu.2024.1371477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024] Open
Abstract
Background A high-fat diet (HFD) contributes to various metabolic disorders and obesity, which are major contributors to cardiovascular disease. As an essential regulator for heart homeostasis, cardiac resident macrophages may go awry and contribute to cardiac pathophysiology upon HFD. Thus, to better understand how HFD induced cardiac dysfunction, this study intends to explore the transcriptional and functional changes in cardiac resident macrophages of HFD mice. Methods C57BL/6J female mice that were 6 weeks old were fed with HFD or normal chow diet (NCD) for 16 weeks. After an evaluation of cardiac functions by echocardiography, mouse hearts were harvested and cardiac resident CCR2- macrophages were sorted, followed by Smart sequencing. Bioinformatics analysis including GO, KEGG, and GSEA analyses were employed to elucidate transcriptional and functional changes. Results Hyperlipidemia and obesity were observed easily upon HFD. The mouse hearts also displayed more severe fibrosis and diastolic dysfunction in HFD mice. Smart sequencing and functional analysis revealed metabolic dysfunctions, especially lipid-related genes and pathways. Besides this, antigen-presentation-related gene such as Ctsf and inflammation, particularly for NF-κB signaling and complement cascades, underwent drastic changes in cardiac resident macrophages. GO cellular compartment analysis was also performed and showed specific organelle enrichment trends of the involved genes. Conclusion Dysregulated metabolism intertwines with inflammation in cardiac resident macrophages upon HFD feeding in mice, and further research on crosstalk among organelles could shed more light on potential mechanisms.
Collapse
Affiliation(s)
- Simeng Zhu
- Department of Cardiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yujia Liu
- Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guofang Xia
- Department of Cardiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoqing Wang
- Department of Cardiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ailian Du
- Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jin Wu
- Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanpeng Wang
- Department of Cardiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuanlong Wang
- Department of Cardiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chengxing Shen
- Department of Cardiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peng Wei
- Department of Cardiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Congfeng Xu
- Department of Cardiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Li G, Yao Q, Liu P, Zhang H, Liu Y, Li S, Shi Y, Li Z, Zhu W. Critical roles and clinical perspectives of RNA methylation in cancer. MedComm (Beijing) 2024; 5:e559. [PMID: 38721006 PMCID: PMC11077291 DOI: 10.1002/mco2.559] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 01/06/2025] Open
Abstract
RNA modification, especially RNA methylation, is a critical posttranscriptional process influencing cellular functions and disease progression, accounting for over 60% of all RNA modifications. It plays a significant role in RNA metabolism, affecting RNA processing, stability, and translation, thereby modulating gene expression and cell functions essential for proliferation, survival, and metastasis. Increasing studies have revealed the disruption in RNA metabolism mediated by RNA methylation has been implicated in various aspects of cancer progression, particularly in metabolic reprogramming and immunity. This disruption of RNA methylation has profound implications for tumor growth, metastasis, and therapy response. Herein, we elucidate the fundamental characteristics of RNA methylation and their impact on RNA metabolism and gene expression. We highlight the intricate relationship between RNA methylation, cancer metabolic reprogramming, and immunity, using the well-characterized phenomenon of cancer metabolic reprogramming as a framework to discuss RNA methylation's specific roles and mechanisms in cancer progression. Furthermore, we explore the potential of targeting RNA methylation regulators as a novel approach for cancer therapy. By underscoring the complex mechanisms by which RNA methylation contributes to cancer progression, this review provides a foundation for developing new prognostic markers and therapeutic strategies aimed at modulating RNA methylation in cancer treatment.
Collapse
Affiliation(s)
- Ganglei Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Qinfan Yao
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Peixi Liu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Hongfei Zhang
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Yingjun Liu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Sichen Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Yuan Shi
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Zongze Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Wei Zhu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| |
Collapse
|
18
|
Akter W, Huang H, Simmons J, Payumo AY. Application of Digital Holographic Imaging to Monitor Real-Time Cardiomyocyte Hypertrophy Dynamics in Response to Norepinephrine Stimulation. APPLIED SCIENCES (BASEL, SWITZERLAND) 2024; 14:3819. [PMID: 38818302 PMCID: PMC11138140 DOI: 10.3390/app14093819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Cardiomyocyte hypertrophy, characterized by an increase in cell size, is associated with various cardiovascular diseases driven by factors including hypertension, myocardial infarction, and valve dysfunction. In vitro primary cardiomyocyte culture models have yielded numerous insights into the intrinsic and extrinsic mechanisms driving hypertrophic growth. However, due to limitations in current approaches, the dynamics of cardiomyocyte hypertrophic responses remain poorly characterized. In this study, we evaluate the application of the Holomonitor M4 digital holographic imaging microscope to track dynamic changes in cardiomyocyte surface area and volume in response to norepinephrine treatment, a model hypertrophic stimulus. The Holomonitor M4 permits non-invasive, label-free imaging of three-dimensional changes in cell morphology with minimal phototoxicity, thus enabling long-term imaging studies. Untreated and norepinephrine-stimulated primary neonatal rat cardiomyocytes were live-imaged on the Holomonitor M4, which was followed by image segmentation and single-cell tracking using the HOLOMONITOR App Suite software version 4.0.1.546. The 24 h treatment of cultured cardiomyocytes with norepinephrine increased cardiomyocyte spreading and optical volume as expected, validating the reliability of the approach. Single-cell tracking of both cardiomyocyte surface area and three-dimensional optical volume revealed dynamic increases in these parameters throughout the 24 h imaging period, demonstrating the potential of this technology to explore cardiomyocyte hypertrophic responses with greater temporal resolution; however, technological limitations were also observed and should be considered in the experimental design and interpretation of results. Overall, leveraging the unique advantages of the Holomonitor M4 digital holographic imaging system has the potential to empower future work towards understanding the molecular and cellular mechanisms underlying cardiomyocyte hypertrophy with enhanced temporal clarity.
Collapse
Affiliation(s)
- Wahida Akter
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | - Herman Huang
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | - Jacquelyn Simmons
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | - Alexander Y. Payumo
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| |
Collapse
|
19
|
Kopecky BJ, Lavine KJ. Cardiac macrophage metabolism in health and disease. Trends Endocrinol Metab 2024; 35:249-262. [PMID: 37993313 PMCID: PMC10949041 DOI: 10.1016/j.tem.2023.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Cardiac macrophages are essential mediators of cardiac development, tissue homeostasis, and response to injury. Cell-intrinsic shifts in metabolism and availability of metabolites regulate macrophage function. The human and mouse heart contain a heterogeneous compilation of cardiac macrophages that are derived from at least two distinct lineages. In this review, we detail the unique functional roles and metabolic profiles of tissue-resident and monocyte-derived cardiac macrophages during embryonic development and adult tissue homeostasis and in response to pathologic and physiologic stressors. We discuss the metabolic preferences of each macrophage lineage and how metabolism influences monocyte fate specification. Finally, we highlight the contribution of cardiac macrophages and derived metabolites on cell-cell communication, metabolic health, and disease pathogenesis.
Collapse
Affiliation(s)
- Benjamin J Kopecky
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kory J Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
20
|
Romero-Becera R, Santamans AM, Arcones AC, Sabio G. From Beats to Metabolism: the Heart at the Core of Interorgan Metabolic Cross Talk. Physiology (Bethesda) 2024; 39:98-125. [PMID: 38051123 DOI: 10.1152/physiol.00018.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023] Open
Abstract
The heart, once considered a mere blood pump, is now recognized as a multifunctional metabolic and endocrine organ. Its function is tightly regulated by various metabolic processes, at the same time it serves as an endocrine organ, secreting bioactive molecules that impact systemic metabolism. In recent years, research has shed light on the intricate interplay between the heart and other metabolic organs, such as adipose tissue, liver, and skeletal muscle. The metabolic flexibility of the heart and its ability to switch between different energy substrates play a crucial role in maintaining cardiac function and overall metabolic homeostasis. Gaining a comprehensive understanding of how metabolic disorders disrupt cardiac metabolism is crucial, as it plays a pivotal role in the development and progression of cardiac diseases. The emerging understanding of the heart as a metabolic and endocrine organ highlights its essential contribution to whole body metabolic regulation and offers new insights into the pathogenesis of metabolic diseases, such as obesity, diabetes, and cardiovascular disorders. In this review, we provide an in-depth exploration of the heart's metabolic and endocrine functions, emphasizing its role in systemic metabolism and the interplay between the heart and other metabolic organs. Furthermore, emerging evidence suggests a correlation between heart disease and other conditions such as aging and cancer, indicating that the metabolic dysfunction observed in these conditions may share common underlying mechanisms. By unraveling the complex mechanisms underlying cardiac metabolism, we aim to contribute to the development of novel therapeutic strategies for metabolic diseases and improve overall cardiovascular health.
Collapse
Affiliation(s)
| | | | - Alba C Arcones
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| |
Collapse
|
21
|
Karbassi E, Padgett R, Bertero A, Reinecke H, Klaiman JM, Yang X, Hauschka SD, Murry CE. Targeted CRISPR activation is functional in engineered human pluripotent stem cells but undergoes silencing after differentiation into cardiomyocytes and endothelium. Cell Mol Life Sci 2024; 81:95. [PMID: 38372898 PMCID: PMC10876724 DOI: 10.1007/s00018-023-05101-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 02/20/2024]
Abstract
Human induced pluripotent stem cells (hiPSCs) offer opportunities to study human biology where primary cell types are limited. CRISPR technology allows forward genetic screens using engineered Cas9-expressing cells. Here, we sought to generate a CRISPR activation (CRISPRa) hiPSC line to activate endogenous genes during pluripotency and differentiation. We first targeted catalytically inactive Cas9 fused to VP64, p65 and Rta activators (dCas9-VPR) regulated by the constitutive CAG promoter to the AAVS1 safe harbor site. These CRISPRa hiPSC lines effectively activate target genes in pluripotency, however the dCas9-VPR transgene expression is silenced after differentiation into cardiomyocytes and endothelial cells. To understand this silencing, we systematically tested different safe harbor sites and different promoters. Targeting to safe harbor sites hROSA26 and CLYBL loci also yielded hiPSCs that expressed dCas9-VPR in pluripotency but silenced during differentiation. Muscle-specific regulatory cassettes, derived from cardiac troponin T or muscle creatine kinase promoters, were also silent after differentiation when dCas9-VPR was introduced. In contrast, in cell lines where the dCas9-VPR sequence was replaced with cDNAs encoding fluorescent proteins, expression persisted during differentiation in all loci and with all promoters. Promoter DNA was hypermethylated in CRISPRa-engineered lines, and demethylation with 5-azacytidine enhanced dCas9-VPR gene expression. In summary, the dCas9-VPR cDNA is readily expressed from multiple loci during pluripotency but induces silencing in a locus- and promoter-independent manner during differentiation to mesoderm derivatives. Researchers intending to use this CRISPRa strategy during stem cell differentiation should pilot their system to ensure it remains active in their population of interest.
Collapse
Affiliation(s)
- Elaheh Karbassi
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Ruby Padgett
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Alessandro Bertero
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Molecular Biotechnology Center "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, 10126, Italy
| | - Hans Reinecke
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Jordan M Klaiman
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Xiulan Yang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Stephen D Hauschka
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Center for Translational Muscle Research, University of Washington, Seattle, WA, 98109, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98109, USA
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98195, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
22
|
Sakamoto T, Kelly DP. Cardiac maturation. J Mol Cell Cardiol 2024; 187:38-50. [PMID: 38160640 PMCID: PMC10923079 DOI: 10.1016/j.yjmcc.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The heart undergoes a dynamic maturation process following birth, in response to a wide range of stimuli, including both physiological and pathological cues. This process entails substantial re-programming of mitochondrial energy metabolism coincident with the emergence of specialized structural and contractile machinery to meet the demands of the adult heart. Many components of this program revert to a more "fetal" format during development of pathological cardiac hypertrophy and heart failure. In this review, emphasis is placed on recent progress in our understanding of the transcriptional control of cardiac maturation, encompassing the results of studies spanning from in vivo models to cardiomyocytes derived from human stem cells. The potential applications of this current state of knowledge to new translational avenues aimed at the treatment of heart failure is also addressed.
Collapse
Affiliation(s)
- Tomoya Sakamoto
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel P Kelly
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Babini H, Jiménez-Sábado V, Stogova E, Arslanova A, Butt M, Dababneh S, Asghari P, Moore EDW, Claydon TW, Chiamvimonvat N, Hove-Madsen L, Tibbits GF. hiPSC-derived cardiomyocytes as a model to study the role of small-conductance Ca 2+-activated K + (SK) ion channel variants associated with atrial fibrillation. Front Cell Dev Biol 2024; 12:1298007. [PMID: 38304423 PMCID: PMC10830749 DOI: 10.3389/fcell.2024.1298007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Atrial fibrillation (AF), the most common arrhythmia, has been associated with different electrophysiological, molecular, and structural alterations in atrial cardiomyocytes. Therefore, more studies are required to elucidate the genetic and molecular basis of AF. Various genome-wide association studies (GWAS) have strongly associated different single nucleotide polymorphisms (SNPs) with AF. One of these GWAS identified the rs13376333 risk SNP as the most significant one from the 1q21 chromosomal region. The rs13376333 risk SNP is intronic to the KCNN3 gene that encodes for small conductance calcium-activated potassium channels type 3 (SK3). However, the functional electrophysiological effects of this variant are not known. SK channels represent a unique family of K+ channels, primarily regulated by cytosolic Ca2+ concentration, and different studies support their critical role in the regulation of atrial excitability and consequently in the development of arrhythmias like AF. Since different studies have shown that both upregulation and downregulation of SK3 channels can lead to arrhythmias by different mechanisms, an important goal is to elucidate whether the rs13376333 risk SNP is a gain-of-function (GoF) or a loss-of-function (LoF) variant. A better understanding of the functional consequences associated with these SNPs could influence clinical practice guidelines by improving genotype-based risk stratification and personalized treatment. Although research using native human atrial cardiomyocytes and animal models has provided useful insights, each model has its limitations. Therefore, there is a critical need to develop a human-derived model that represents human physiology more accurately than existing animal models. In this context, research with human induced pluripotent stem cells (hiPSC) and subsequent generation of cardiomyocytes derived from hiPSC (hiPSC-CMs) has revealed the underlying causes of various cardiovascular diseases and identified treatment opportunities that were not possible using in vitro or in vivo studies with animal models. Thus, the ability to generate atrial cardiomyocytes and atrial tissue derived from hiPSCs from human/patients with specific genetic diseases, incorporating novel genetic editing tools to generate isogenic controls and organelle-specific reporters, and 3D bioprinting of atrial tissue could be essential to study AF pathophysiological mechanisms. In this review, we will first give an overview of SK-channel function, its role in atrial fibrillation and outline pathophysiological mechanisms of KCNN3 risk SNPs. We will then highlight the advantages of using the hiPSC-CM model to investigate SNPs associated with AF, while addressing limitations and best practices for rigorous hiPSC studies.
Collapse
Affiliation(s)
- Hosna Babini
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Verónica Jiménez-Sábado
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- IIB SANT PAU, and CIBERCV, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ekaterina Stogova
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Alia Arslanova
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Mariam Butt
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Saif Dababneh
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Parisa Asghari
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Edwin D. W. Moore
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Thomas W. Claydon
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | | | - Leif Hove-Madsen
- IIB SANT PAU, and CIBERCV, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Glen F. Tibbits
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Perez-Ramirez CA, Nakano H, Law RC, Matulionis N, Thompson J, Pfeiffer A, Park JO, Nakano A, Christofk HR. Atlas of fetal metabolism during mid-to-late gestation and diabetic pregnancy. Cell 2024; 187:204-215.e14. [PMID: 38070508 PMCID: PMC10843853 DOI: 10.1016/j.cell.2023.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/27/2023] [Accepted: 11/08/2023] [Indexed: 01/07/2024]
Abstract
Mounting evidence suggests metabolism instructs stem cell fate decisions. However, how fetal metabolism changes during development and how altered maternal metabolism shapes fetal metabolism remain unexplored. We present a descriptive atlas of in vivo fetal murine metabolism during mid-to-late gestation in normal and diabetic pregnancy. Using 13C-glucose and liquid chromatography-mass spectrometry (LC-MS), we profiled the metabolism of fetal brains, hearts, livers, and placentas harvested from pregnant dams between embryonic days (E)10.5 and 18.5. Our analysis revealed metabolic features specific to a hyperglycemic environment and signatures that may denote developmental transitions during euglycemic development. We observed sorbitol accumulation in fetal tissues and altered neurotransmitter levels in fetal brains isolated from hyperglycemic dams. Tracing 13C-glucose revealed disparate fetal nutrient sourcing depending on maternal glycemic states. Regardless of glycemic state, histidine-derived metabolites accumulated in late-stage fetal tissues. Our rich dataset presents a comprehensive overview of in vivo fetal tissue metabolism and alterations due to maternal hyperglycemia.
Collapse
Affiliation(s)
- Cesar A Perez-Ramirez
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA
| | - Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Richard C Law
- Department of Chemical and Biomolecular Engineering, UCLA, Los Angeles, CA 90095, USA
| | - Nedas Matulionis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Jennifer Thompson
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Andrew Pfeiffer
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Junyoung O Park
- Department of Chemical and Biomolecular Engineering, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA; Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.
| | - Heather R Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
25
|
Martin-Puig S, Menendez-Montes I. Cardiac Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:365-396. [PMID: 38884721 DOI: 10.1007/978-3-031-44087-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The heart is composed of a heterogeneous mixture of cellular components perfectly intermingled and able to integrate common environmental signals to ensure proper cardiac function and performance. Metabolism defines a cell context-dependent signature that plays a critical role in survival, proliferation, or differentiation, being a recognized master piece of organ biology, modulating homeostasis, disease progression, and adaptation to tissue damage. The heart is a highly demanding organ, and adult cardiomyocytes require large amount of energy to fulfill adequate contractility. However, functioning under oxidative mitochondrial metabolism is accompanied with a concomitant elevation of harmful reactive oxygen species that indeed contributes to the progression of several cardiovascular pathologies and hampers the regenerative capacity of the mammalian heart. Cardiac metabolism is dynamic along embryonic development and substantially changes as cardiomyocytes mature and differentiate within the first days after birth. During early stages of cardiogenesis, anaerobic glycolysis is the main energetic program, while a progressive switch toward oxidative phosphorylation is a hallmark of myocardium differentiation. In response to cardiac injury, different signaling pathways participate in a metabolic rewiring to reactivate embryonic bioenergetic programs or the utilization of alternative substrates, reflecting the flexibility of heart metabolism and its central role in organ adaptation to external factors. Despite the well-established metabolic pattern of fetal, neonatal, and adult cardiomyocytes, our knowledge about the bioenergetics of other cardiac populations like endothelial cells, cardiac fibroblasts, or immune cells is limited. Considering the close intercellular communication and the influence of nonautonomous cues during heart development and after cardiac damage, it will be fundamental to better understand the metabolic programs in different cardiac cells in order to develop novel interventional opportunities based on metabolic rewiring to prevent heart failure and improve the limited regenerative capacity of the mammalian heart.
Collapse
Affiliation(s)
- Silvia Martin-Puig
- Department of Metabolic and Immune Diseases, Institute for Biomedical Research "Sols-Morreale", National Spanish Research Council, CSIC, Madrid, Spain.
- Cardiac Regeneration Program, National Center for Cardiovascular Research, CNIC, Madrid, Spain.
| | - Ivan Menendez-Montes
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
26
|
Beisaw A, Wu CC. Cardiomyocyte maturation and its reversal during cardiac regeneration. Dev Dyn 2024; 253:8-27. [PMID: 36502296 DOI: 10.1002/dvdy.557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/03/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease is a leading cause of death worldwide. Due to the limited proliferative and regenerative capacity of adult cardiomyocytes, the lost myocardium is not replenished efficiently and is replaced by a fibrotic scar, which eventually leads to heart failure. Current therapies to cure or delay the progression of heart failure are limited; hence, there is a pressing need for regenerative approaches to support the failing heart. Cardiomyocytes undergo a series of transcriptional, structural, and metabolic changes after birth (collectively termed maturation), which is critical for their contractile function but limits the regenerative capacity of the heart. In regenerative organisms, cardiomyocytes revert from their terminally differentiated state into a less mature state (ie, dedifferentiation) to allow for proliferation and regeneration to occur. Importantly, stimulating adult cardiomyocyte dedifferentiation has been shown to promote morphological and functional improvement after myocardial infarction, further highlighting the importance of cardiomyocyte dedifferentiation in heart regeneration. Here, we review several hallmarks of cardiomyocyte maturation, and summarize how their reversal facilitates cardiomyocyte proliferation and heart regeneration. A detailed understanding of how cardiomyocyte dedifferentiation is regulated will provide insights into therapeutic options to promote cardiomyocyte de-maturation and proliferation, and ultimately heart regeneration in mammals.
Collapse
Affiliation(s)
- Arica Beisaw
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
| | - Chi-Chung Wu
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
27
|
Wei J, Duan X, Chen J, Zhang D, Xu J, Zhuang J, Wang S. Metabolic adaptations in pressure overload hypertrophic heart. Heart Fail Rev 2024; 29:95-111. [PMID: 37768435 DOI: 10.1007/s10741-023-10353-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
This review article offers a detailed examination of metabolic adaptations in pressure overload hypertrophic hearts, a condition that plays a pivotal role in the progression of heart failure with preserved ejection fraction (HFpEF) to heart failure with reduced ejection fraction (HFrEF). The paper delves into the complex interplay between various metabolic pathways, including glucose metabolism, fatty acid metabolism, branched-chain amino acid metabolism, and ketone body metabolism. In-depth insights into the shifts in substrate utilization, the role of different transporter proteins, and the potential impact of hypoxia-induced injuries are discussed. Furthermore, potential therapeutic targets and strategies that could minimize myocardial injury and promote cardiac recovery in the context of pressure overload hypertrophy (POH) are examined. This work aims to contribute to a better understanding of metabolic adaptations in POH, highlighting the need for further research on potential therapeutic applications.
Collapse
Affiliation(s)
- Jinfeng Wei
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xuefei Duan
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jiaying Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Dengwen Zhang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jindong Xu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| | - Sheng Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Linzhi People's Hospital, Linzhi, Tibet, China.
| |
Collapse
|
28
|
Ibrahim S, Gaborit B, Lenoir M, Collod-Beroud G, Stefanovic S. Maternal Pre-Existing Diabetes: A Non-Inherited Risk Factor for Congenital Cardiopathies. Int J Mol Sci 2023; 24:16258. [PMID: 38003449 PMCID: PMC10671602 DOI: 10.3390/ijms242216258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Congenital heart defects (CHDs) are the most common form of birth defects in humans. They occur in 9 out of 1000 live births and are defined as structural abnormalities of the heart. Understanding CHDs is difficult due to the heterogeneity of the disease and its multifactorial etiology. Advances in genomic sequencing have made it possible to identify the genetic factors involved in CHDs. However, genetic origins have only been found in a minority of CHD cases, suggesting the contribution of non-inherited (environmental) risk factors to the etiology of CHDs. Maternal pregestational diabetes is associated with a three- to five-fold increased risk of congenital cardiopathies, but the underlying molecular mechanisms are incompletely understood. According to current hypotheses, hyperglycemia is the main teratogenic agent in diabetic pregnancies. It is thought to induce cell damage, directly through genetic and epigenetic dysregulations and/or indirectly through production of reactive oxygen species (ROS). The purpose of this review is to summarize key findings on the molecular mechanisms altered in cardiac development during exposure to hyperglycemic conditions in utero. It also presents the various in vivo and in vitro techniques used to experimentally model pregestational diabetes. Finally, new approaches are suggested to broaden our understanding of the subject and develop new prevention strategies.
Collapse
Affiliation(s)
- Stéphanie Ibrahim
- Aix Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France;
| | - Bénédicte Gaborit
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, 13005 Marseille, France
| | - Marien Lenoir
- Department of Congenital Heart Surgery, La Timone Children Hospital, APHM, Aix Marseille University, 13005 Marseille, France
| | | | - Sonia Stefanovic
- Aix Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France;
| |
Collapse
|
29
|
Park S, Huang H, Ross I, Moreno J, Khyeam S, Simmons J, Huang GN, Payumo AY. Quantitative Three-dimensional Label-free Digital Holographic Imaging of Cardiomyocyte Size, Ploidy, and Cell Division. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565407. [PMID: 37961676 PMCID: PMC10635088 DOI: 10.1101/2023.11.02.565407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cardiac regeneration in newborn rodents depends on the ability of pre-existing cardiomyocytes to proliferate and divide. This capacity is lost within the first week of postnatal development when these cells rapidly switch from hyperplasia to hypertrophy, withdraw from the cell cycle, become binucleated, and increase in size. How these dynamic changes in size and ploidy impact cardiomyocyte proliferative potential is not well understood. In this study, we innovate the application of a commercially available digital holographic imaging microscope, the Holomonitor M4, to evaluate the proliferative responses of mononucleated diploid and binucleated tetraploid cardiomyocytes. This instrument coupled with the powerful Holomonitor App Suite software enables long-term label-free quantitative three-dimensional tracking of primary cardiomyocyte dynamics in real-time with single-cell resolution. Our digital holographic imaging results provide direct evidence that mononucleated cardiomyocytes retain significant proliferative potential as most can successfully divide with high frequency. In contrast, binucleated cardiomyocytes exhibit a blunted response to a proliferative stimulus with the majority not attempting to divide at all. Nevertheless, some binucleated cardiomyocytes were capable of complete division, suggesting that these cells still do retain limited proliferative capacity. By quantitatively tracking cardiomyocyte volume dynamics during these proliferative responses, we reveal that both mononucleated and binucleated cells reach a unique size threshold prior to attempted cell division. The absolute threshold is increased by binucleation, which may limit the ability of binucleated cardiomyocytes to divide. By defining the interrelationship between cardiomyocyte size, ploidy, and cell cycle control, we will better understand the cellular mechanisms that drive the loss of mammalian cardiac regenerative capacity after birth.
Collapse
|
30
|
John S, Calmettes G, Xu S, Ribalet B. Real-time resolution studies of the regulation of pyruvate-dependent lactate metabolism by hexokinases in single cells. PLoS One 2023; 18:e0286660. [PMID: 37917627 PMCID: PMC10621844 DOI: 10.1371/journal.pone.0286660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 05/21/2023] [Indexed: 11/04/2023] Open
Abstract
Lactate is a mitochondrial substrate for many tissues including neuron, muscle, skeletal and cardiac, as well as many cancer cells, however little is known about the processes that regulate its utilization in mitochondria. Based on the close association of Hexokinases (HK) with mitochondria, and the known cardio-protective role of HK in cardiac muscle, we have investigated the regulation of lactate and pyruvate metabolism by hexokinases (HKs), utilizing wild-type HEK293 cells and HEK293 cells in which the endogenous HKI and/or HKII have been knocked down to enable overexpression of wild type and mutant HKs. To assess the real-time changes in intracellular lactate levels the cells were transfected with a lactate specific FRET probe. In the HKI/HKII double knockdown cells, addition of extracellular pyruvate caused a large and sustained decrease in lactate. This decrease was rapidly reversed upon inhibition of the malate aspartate shuttle by aminooxyacetate, or inhibition of mitochondrial oxidative respiration by NaCN. These results suggest that in the absence of HKs, pyruvate-dependent activation of the TCA cycle together with the malate aspartate shuttle facilitates lactate transformation into pyruvate and its utilization by mitochondria. With replacement by overexpression of HKI or HKII the cellular response to pyruvate and NaCN was modified. With either hexokinase present, both the decrease in lactate due to the addition of pyruvate and the increase following addition of NaCN were either transient or suppressed altogether. Blockage of the pentose phosphate pathway with the inhibitor 6-aminonicotinamide (6-AN), abolished the effects of HK replacement. These results suggest that blocking of the malate aspartate shuttle by HK may involve activation of the pentose phosphate pathway and increased NADPH production.
Collapse
Affiliation(s)
- Scott John
- Department of Medicine (Division of Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Guillaume Calmettes
- Department of Medicine (Division of Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Shili Xu
- California NanoSystems Institute (CNSI) 2151, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Bernard Ribalet
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| |
Collapse
|
31
|
Tu WB, Christofk HR, Plath K. Nutrient regulation of development and cell fate decisions. Development 2023; 150:dev199961. [PMID: 37260407 PMCID: PMC10281554 DOI: 10.1242/dev.199961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Diet contributes to health at all stages of life, from embryonic development to old age. Nutrients, including vitamins, amino acids, lipids and sugars, have instructive roles in directing cell fate and function, maintaining stem cell populations, tissue homeostasis and alleviating the consequences of aging. This Review highlights recent findings that illuminate how common diets and specific nutrients impact cell fate decisions in healthy and disease contexts. We also draw attention to new models, technologies and resources that help to address outstanding questions in this emerging field and may lead to dietary approaches that promote healthy development and improve disease treatments.
Collapse
Affiliation(s)
- William B. Tu
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Heather R. Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kathrin Plath
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
32
|
Velichkova G, Dobreva G. Human pluripotent stem cell-based models of heart development and disease. Cells Dev 2023; 175:203857. [PMID: 37257755 DOI: 10.1016/j.cdev.2023.203857] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/16/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
The heart is a complex organ composed of distinct cell types, such as cardiomyocytes, cardiac fibroblasts, endothelial cells, smooth muscle cells, neuronal cells and immune cells. All these cell types contribute to the structural, electrical and mechanical properties of the heart. Genetic manipulation and lineage tracing studies in mice have been instrumental in gaining critical insights into the networks regulating cardiac cell lineage specification, cell fate and plasticity. Such knowledge has been of fundamental importance for the development of efficient protocols for the directed differentiation of pluripotent stem cells (PSCs) in highly specialized cardiac cell types. In this review, we summarize the evolution and current advances in protocols for cardiac subtype specification, maturation, and assembly in cardiac microtissues and organoids.
Collapse
Affiliation(s)
- Gabriel Velichkova
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gergana Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; German Centre for Cardiovascular Research (DZHK), Germany.
| |
Collapse
|
33
|
Yao S, Yang T, Kong X, Dang Y, Chen P, Lyu M. The Influence of Maternal Condition on Fetal Cardiac Function during the Second Trimester. Diagnostics (Basel) 2023; 13:2755. [PMID: 37685293 PMCID: PMC10486346 DOI: 10.3390/diagnostics13172755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
OBJECTIVE Maternal health has a direct, profound and lasting effect on the formation and development of the fetal cardiovascular system. The aim of this research was to find whether maternal age, BMI hypertension (GH) or gestational diabetic mellitus (GDM) would affect fetal cardiac function in the second trimester. METHOD 329 mothers who had a fetal echocardiogram examination at the International Peace Maternity & Child Health Hospital of China Welfare Institute, Shanghai, China, from 1 January 2020 to 30 April 2020 were enrolled at the gestational age of 21 to 26 weeks (mean 22.78 ± 1.13 weeks). Single-factor analysis and multi-factor line regression analysis were used to find the contribution values of each factor to fetal cardiac function. RESULTS at the second trimester, maternal age had a minor influence on the fetal left ventricle diastolic function. Higher maternal BMI could cause a decrease in the fetal diastolic function of both the left and right ventricle and the systolic function of the left ventricle. Maternal hypertension and gestational diabetic mellitus had a profound influence on both the left and right fetal heart ventricles of both systolic and diastolic function. CONCLUSION maternal condition will have a profound influence on fetal cardiac function as early as the second trimester.
Collapse
Affiliation(s)
- Shifa Yao
- Ultrasound Department, The International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (S.Y.); (T.Y.); (X.K.); (Y.D.); (P.C.)
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Tian Yang
- Ultrasound Department, The International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (S.Y.); (T.Y.); (X.K.); (Y.D.); (P.C.)
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Xiaoxiao Kong
- Ultrasound Department, The International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (S.Y.); (T.Y.); (X.K.); (Y.D.); (P.C.)
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Yuanyuan Dang
- Ultrasound Department, The International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (S.Y.); (T.Y.); (X.K.); (Y.D.); (P.C.)
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Ping Chen
- Ultrasound Department, The International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (S.Y.); (T.Y.); (X.K.); (Y.D.); (P.C.)
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Mingli Lyu
- Ultrasound Department, The International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (S.Y.); (T.Y.); (X.K.); (Y.D.); (P.C.)
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| |
Collapse
|
34
|
Castillo-Casas JM, Caño-Carrillo S, Sánchez-Fernández C, Franco D, Lozano-Velasco E. Comparative Analysis of Heart Regeneration: Searching for the Key to Heal the Heart-Part II: Molecular Mechanisms of Cardiac Regeneration. J Cardiovasc Dev Dis 2023; 10:357. [PMID: 37754786 PMCID: PMC10531542 DOI: 10.3390/jcdd10090357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, among which ischemic heart disease is the most representative. Myocardial infarction results from occlusion of a coronary artery, which leads to an insufficient blood supply to the myocardium. As it is well known, the massive loss of cardiomyocytes cannot be solved due the limited regenerative ability of the adult mammalian hearts. In contrast, some lower vertebrate species can regenerate the heart after an injury; their study has disclosed some of the involved cell types, molecular mechanisms and signaling pathways during the regenerative process. In this 'two parts' review, we discuss the current state-of-the-art of the main response to achieve heart regeneration, where several processes are involved and essential for cardiac regeneration.
Collapse
Affiliation(s)
- Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
| | - Cristina Sánchez-Fernández
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| | - Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| |
Collapse
|
35
|
Galow AM, Brenmoehl J, Hoeflich A. Synergistic effects of hormones on structural and functional maturation of cardiomyocytes and implications for heart regeneration. Cell Mol Life Sci 2023; 80:240. [PMID: 37541969 PMCID: PMC10403476 DOI: 10.1007/s00018-023-04894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
The limited endogenous regenerative capacity of the human heart renders cardiovascular diseases a major health threat, thus motivating intense research on in vitro heart cell generation and cell replacement therapies. However, so far, in vitro-generated cardiomyocytes share a rather fetal phenotype, limiting their utility for drug testing and cell-based heart repair. Various strategies to foster cellular maturation provide some success, but fully matured cardiomyocytes are still to be achieved. Today, several hormones are recognized for their effects on cardiomyocyte proliferation, differentiation, and function. Here, we will discuss how the endocrine system impacts cardiomyocyte maturation. After detailing which features characterize a mature phenotype, we will contemplate hormones most promising to induce such a phenotype, the routes of their action, and experimental evidence for their significance in this process. Due to their pleiotropic effects, hormones might be not only valuable to improve in vitro heart cell generation but also beneficial for in vivo heart regeneration. Accordingly, we will also contemplate how the presented hormones might be exploited for hormone-based regenerative therapies.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
| | - Julia Brenmoehl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Andreas Hoeflich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| |
Collapse
|
36
|
Packer M. Foetal recapitulation of nutrient surplus signalling by O-GlcNAcylation and the failing heart. Eur J Heart Fail 2023; 25:1199-1212. [PMID: 37434410 DOI: 10.1002/ejhf.2972] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/02/2023] [Accepted: 07/09/2023] [Indexed: 07/13/2023] Open
Abstract
The development of the foetal heart is driven by increased glucose uptake and activation of mammalian target of rapamycin (mTOR) and hypoxia-inducible factor-1α (HIF-1α), which drives glycolysis. In contrast, the healthy adult heart is governed by sirtuin-1 (SIRT1) and adenosine monophosphate-activated protein kinase (AMPK), which promote fatty-acid oxidation and the substantial mitochondrial ATP production required for survival in a high-workload normoxic environment. During cardiac injury, the heart recapitulates the foetal signalling programme, which (although adaptive in the short term) is highly deleterious if sustained for long periods of time. Prolonged increases in glucose uptake in cardiomyocytes under stress leads to increased flux through the hexosamine biosynthesis pathway; its endproduct - uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) - functions as a critical nutrient surplus sensor. UDP-GlcNAc drives the post-translational protein modification known as O-GlcNAcylation, which rapidly and reversibly modifies thousands of intracellular proteins. Both O-GlcNAcylation and phosphorylation act at serine/threonine residues, but whereas phosphorylation is regulated by hundreds of specific kinases and phosphatases, O-GlcNAcylation is regulated by only two enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which adds or removes GlcNAc (N-acetylglucosamine), respectively, from target proteins. Recapitulation of foetal programming in heart failure (regardless of diabetes) is accompanied by marked increases in O-GlcNAcylation, both experimentally and clinically. Heightened O-GlcNAcylation in the heart leads to impaired calcium kinetics and contractile derangements, arrhythmias related to activation of voltage-gated sodium channels and Ca2+ /calmodulin-dependent protein kinase II, mitochondrial dysfunction, and maladaptive hypertrophy, microvascular dysfunction, fibrosis and cardiomyopathy. These deleterious effects can be prevented by suppression of O-GlcNAcylation, which can be achieved experimentally by upregulation of AMPK and SIRT1 or by pharmacological inhibition of OGT or stimulation of OGA. The effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors on the heart are accompanied by reduced O-GlcNAcylation, and their cytoprotective effects are reportedly abrogated if their action to suppress O-GlcNAcylation is blocked. Such an action may represent one of the many mechanisms by which enhanced AMPK and SIRT1 signalling following SGLT2 inhibition leads to cardiovascular benefits. These observations, taken collectively, suggest that UDP-GlcNAc functions as a critical nutrient surplus sensor (which acting in concert with mTOR and HIF-1α) can promote the development of cardiomyopathy.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX, USA
- Imperial College, London, UK
| |
Collapse
|
37
|
Moparthi KP, Al Rushaidi MT, Muddam MR, Obajeun OA, Abaza A, Jaramillo AP, Sid Idris F, Anis Shaikh H, Vahora I, Nath TS. Efficacy and Safety of Sodium-Glucose Cotransporter 2 Inhibitors to Decrease the Risk of Cardiovascular Diseases: A Systematic Review. Cureus 2023; 15:e44054. [PMID: 37638274 PMCID: PMC10457136 DOI: 10.7759/cureus.44054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023] Open
Abstract
Cardiovascular disorders are one of the most frequent causes of death in people throughout the world. These disorders can account for the deaths of 31% of people worldwide. This systematic review examines the effectiveness of sodium-glucose cotransporter 2 (SGLT2) inhibitors in lowering the likelihood of cardiovascular diseases. The study aimed to evaluate various types of research, including randomized controlled trials and observational studies, to analyze how SGLT2 inhibitors impact cardiovascular disorders and establish evidence-based recommendations for clinical practice. The data in this research study were collected from 19 relevant published research articles. The key findings emphasized the potential advantages of SGLT2 inhibitors in reducing major cardiovascular disorders, such as myocardial infarction and stroke. Nonetheless, the study had certain limitations, including reliance on existing literature, exclusion of articles published prior to 2018, and restriction to English-language studies. Despite these limitations, this study contributed significantly to understanding the role of SGLT2 inhibitors in decreasing cardiovascular risk.
Collapse
Affiliation(s)
- Kiran Prasad Moparthi
- General Practice, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Majdah T Al Rushaidi
- Psychology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Meghana Reddy Muddam
- General Practice, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Omobolanle A Obajeun
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Abdelrahman Abaza
- Pathology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Arturo P Jaramillo
- General Practice, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Faten Sid Idris
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Humna Anis Shaikh
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ilma Vahora
- General Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | |
Collapse
|
38
|
Zhu W, Zheng Y, Liu J, Zhao C, Sun N, Qu X, Yang H. Analysis of Fatty Acid Metabolism in Fetal and Failing Hearts by Single-Cell RNA Sequencing Revealed SLC27A6 as a Critical Gene in Heart Maturation. ACTA CARDIOLOGICA SINICA 2023; 39:580-598. [PMID: 37456940 PMCID: PMC10346055 DOI: 10.6515/acs.202307_39(4).20221219b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 12/19/2022] [Indexed: 07/18/2023]
Abstract
BACKGROUND Heart failure is associated with shifts in substrate preferences and energy insufficiency. Although cardiac metabolism has been explored at the organ level, the metabolic changes at the individual cell level remain unclear. This study employed single-cell ribonucleic acid (RNA) sequencing to investigate the cell-type-specific characteristics of gene expression related to fatty acid metabolism. METHODS Single-cell RNA sequencing data from fetal hearts were processed to analyze gene expression patterns related to fatty acid metabolism. Immunofluorescence staining and Western blotting techniques were employed to validate the expression of specific proteins. Additionally, calcium recording and contractility measurements were performed to assess the functional implications of fatty acid metabolism in cardiomyocytes. RESULTS Based on single-cell RNA sequencing data analysis, we found that a decrease in overall energy requirements underlies the downregulation of fatty acid oxidation-related genes in the later period of heart maturation and the compensatory increase of fatty acid metabolism in individual cardiomyocytes during heart failure. Furthermore, we found that solute carrier family 27 member 6 (SLC27A6), a fatty acid transport protein, is involved in cardiac maturation. SLC27A6 knockdown in human induced pluripotent stem cell-derived cardiomyocytes resulted in an immature cardiomyocyte transcriptional profile, abnormal morphology, impaired Ca2+ handling activity, and contractility. CONCLUSIONS Overall, our study offers a novel perspective for exploring cardiac fatty acid metabolism in fetal and failing hearts along with new insights into the cellular mechanism underlying fatty acid metabolic alterations in individual cardiac cells. It thus facilitates further exploration of cardiac physiology and pathology.
Collapse
Affiliation(s)
- Wenjia Zhu
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai
| | - Yufan Zheng
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai
| | - Jiaying Liu
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai
| | - Chao Zhao
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai
| | - Ning Sun
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai
- Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| | - Xiuxia Qu
- Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| | - Hui Yang
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai
- Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| |
Collapse
|
39
|
Lei YQ, Ye ZJ, Wei YL, Zhu LP, Zhuang XD, Wang XR, Cao H. Nono deficiency impedes the proliferation and adhesion of H9c2 cardiomyocytes through Pi3k/Akt signaling pathway. Sci Rep 2023; 13:7134. [PMID: 37130848 PMCID: PMC10154399 DOI: 10.1038/s41598-023-32572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/29/2023] [Indexed: 05/04/2023] Open
Abstract
Congenital heart disease (CHD) is the most common type of birth defect and the main noninfectious cause of death during the neonatal stage. The non-POU domain containing, octamer-binding gene, NONO, performs a variety of roles involved in DNA repair, RNA synthesis, transcriptional and post-transcriptional regulation. Currently, hemizygous loss-of-function mutation of NONO have been described as the genetic origin of CHD. However, essential effects of NONO during cardiac development have not been fully elucidated. In this study, we aim to understand role of Nono in cardiomyocytes during development by utilizing the CRISPR/Cas9 gene editing system to deplete Nono in the rat cardiomyocytes H9c2. Functional comparison of H9c2 control and knockout cells showed that Nono deficiency suppressed cell proliferation and adhesion. Furthermore, Nono depletion significantly affected the mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis, resulting in H9c2 overall metabolic deficits. Mechanistically we demonstrated that the Nono knockout impeded the cardiomyocyte function by attenuating phosphatidyl inositol 3 kinase-serine/threonine kinase (Pi3k/Akt) signaling via the assay for transposase-accessible chromatin using sequencing in combination with RNA sequencing. From these results we propose a novel molecular mechanism of Nono to influence cardiomyocytes differentiation and proliferation during the development of embryonic heart. We conclude that NONO may represent an emerging possible biomarkers and targets for the diagnosis and treatment of human cardiac development defects.
Collapse
Affiliation(s)
- Yu-Qing Lei
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, 350000, China
- Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350011, China
| | - Zhou-Jie Ye
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, 350000, China
| | - Ya-Lan Wei
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, 350000, China
| | - Li-Ping Zhu
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, 350000, China
| | - Xu-Dong Zhuang
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, 350000, China
| | - Xin-Rui Wang
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China.
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, 350000, China.
| | - Hua Cao
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China.
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, 350000, China.
- Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350011, China.
| |
Collapse
|
40
|
Yagi H, Cui C, Saydmohammed M, Gabriel G, Baker C, Devine W, Wu Y, Lin JH, Malek M, Bais A, Murray S, Aronow B, Tsang M, Kostka D, Lo CW. Spatial transcriptome profiling uncovers metabolic regulation of left-right patterning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537827. [PMID: 37131609 PMCID: PMC10153223 DOI: 10.1101/2023.04.21.537827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Left-right patterning disturbance can cause severe birth defects, but it remains least understood of the three body axes. We uncovered an unexpected role for metabolic regulation in left-right patterning. Analysis of the first spatial transcriptome profile of left-right patterning revealed global activation of glycolysis, accompanied by right-sided expression of Bmp7 and genes regulating insulin growth factor signaling. Cardiomyocyte differentiation was left-biased, which may underlie the specification of heart looping orientation. This is consistent with known Bmp7 stimulation of glycolysis and glycolysis suppression of cardiomyocyte differentiation. Liver/lung laterality may be specified via similar metabolic regulation of endoderm differentiation. Myo1d , found to be left-sided, was shown to regulate gut looping in mice, zebrafish, and human. Together these findings indicate metabolic regulation of left-right patterning. This could underlie high incidence of heterotaxy-related birth defects in maternal diabetes, and the association of PFKP, allosteric enzyme regulating glycolysis, with heterotaxy. This transcriptome dataset will be invaluable for interrogating birth defects involving laterality disturbance.
Collapse
|
41
|
Fang Y, Zhang Z, Zhao Y, Sun G, Peng M, Liu C, Yi G, Zhao K, Yang H. The value of lipid metabolites 9,10-DOA and 11,12-EET in prenatal diagnosis of fetal heart defects. Clin Chim Acta 2023; 544:117330. [PMID: 37037297 DOI: 10.1016/j.cca.2023.117330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 03/15/2023] [Accepted: 04/02/2023] [Indexed: 04/12/2023]
Abstract
AIMS To explore the maternal metabolic changes of fetal congenital heart disease (FCHD), and screen metabolic markers to establish a practical diagnostic model. METHODS Maternal peripheral serum from 17 FCHD and 63 non-FCHD pregnant were analyzed by Ultra High-performance Liquid Chromatography-Mass/Mass (UPLC-MS/MS). RESULTS In the FCHD and the non-FCHD, 132 metabolites were identified, including 35 differential metabolites enriched in the purine, caffeine, primary bile acid, and arachidonic acid metabolism pathway. Finally, the screened (+/-)9,10-dihydroxy-12Z-octadecenoic acid (AUC = 0.888) and 11,12-epoxy-(5Z,8Z,11Z)-icosatrienoic acid (AUC = 0.995) were incorporated into the logistic regression model. The AUC value of the two-metabolite model was 1.0, superior to proline (AUC = 0.867), uric acid (AUC = 0.789), glutamine (AUC = 0.705), and taurine (AUC = 0.923) previously reported. The clinical decision curve analysis (DCA) showed the highest clinical net benefit of the model, and internal validation by bootstrap shows the robustness of the model (Brier Score = 0.005). CONCLUSION For the prenatal diagnosis of CHD, our findings are of great clinical significance. As an additional screening procedure, the identification model might be used to detect.
Collapse
Affiliation(s)
- Yiwei Fang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zheng Zhang
- College of Life Sciences, Central China Normal University, Wuhan, 430079, China; Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, 430015, China
| | - Yun Zhao
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Guoqiang Sun
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Meilin Peng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guilin Yi
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, 430015, China.
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hui Yang
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China.
| |
Collapse
|
42
|
Dimasi CG, Darby JRT, Morrison JL. A change of heart: understanding the mechanisms regulating cardiac proliferation and metabolism before and after birth. J Physiol 2023; 601:1319-1341. [PMID: 36872609 PMCID: PMC10952280 DOI: 10.1113/jp284137] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/17/2023] [Indexed: 03/07/2023] Open
Abstract
Mammalian cardiomyocytes undergo major maturational changes in preparation for birth and postnatal life. Immature cardiomyocytes contribute to cardiac growth via proliferation and thus the heart has the capacity to regenerate. To prepare for postnatal life, structural and metabolic changes associated with increased cardiac output and function must occur. This includes exit from the cell cycle, hypertrophic growth, mitochondrial maturation and sarcomeric protein isoform switching. However, these changes come at a price: the loss of cardiac regenerative capacity such that damage to the heart in postnatal life is permanent. This is a significant barrier to the development of new treatments for cardiac repair and contributes to heart failure. The transitional period of cardiomyocyte growth is a complex and multifaceted event. In this review, we focus on studies that have investigated this critical transition period as well as novel factors that may regulate and drive this process. We also discuss the potential use of new biomarkers for the detection of myocardial infarction and, in the broader sense, cardiovascular disease.
Collapse
Affiliation(s)
- Catherine G. Dimasi
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| |
Collapse
|
43
|
Kishino Y, Fukuda K. Unlocking the Pragmatic Potential of Regenerative Therapies in Heart Failure with Next-Generation Treatments. Biomedicines 2023; 11:biomedicines11030915. [PMID: 36979894 PMCID: PMC10046277 DOI: 10.3390/biomedicines11030915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Patients with chronic heart failure (HF) have a poor prognosis due to irreversible impairment of left ventricular function, with 5-year survival rates <60%. Despite advances in conventional medicines for HF, prognosis remains poor, and there is a need to improve treatment further. Cell-based therapies to restore the myocardium offer a pragmatic approach that provides hope for the treatment of HF. Although first-generation cell-based therapies using multipotent cells (bone marrow-derived mononuclear cells, mesenchymal stem cells, adipose-derived regenerative cells, and c-kit-positive cardiac cells) demonstrated safety in preclinical models of HF, poor engraftment rates, and a limited ability to form mature cardiomyocytes (CMs) and to couple electrically with existing CMs, meant that improvements in cardiac function in double-blind clinical trials were limited and largely attributable to paracrine effects. The next generation of stem cell therapies uses CMs derived from human embryonic stem cells or, increasingly, from human-induced pluripotent stem cells (hiPSCs). These cell therapies have shown the ability to engraft more successfully and improve electromechanical function of the heart in preclinical studies, including in non-human primates. Advances in cell culture and delivery techniques promise to further improve the engraftment and integration of hiPSC-derived CMs (hiPSC-CMs), while the use of metabolic selection to eliminate undifferentiated cells will help minimize the risk of teratomas. Clinical trials of allogeneic hiPSC-CMs in HF are now ongoing, providing hope for vast numbers of patients with few other options available.
Collapse
Affiliation(s)
| | - Keiichi Fukuda
- Correspondence: ; Tel.: +81-3-5363-3874; Fax: +81-3-5363-3875
| |
Collapse
|
44
|
Metabolism-based cardiomyocytes production for regenerative therapy. J Mol Cell Cardiol 2023; 176:11-20. [PMID: 36681267 DOI: 10.1016/j.yjmcc.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/17/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
Human pluripotent stem cells (hPSCs) are currently used in clinical applications such as cardiac regenerative therapy, studying disease models, and drug screening for heart failure. Transplantation of hPSC-derived cardiomyocytes (hPSC-CMs) can be used as an alternative therapy for heart transplantation. In contrast to differentiated somatic cells, hPSCs possess unique metabolic programs to maintain pluripotency, and understanding their metabolic features can contribute to the development of technologies that can be useful for their clinical applications. The production of hPSC-CMs requires stepwise specification during embryonic development and metabolic regulation is crucial for proper embryonic development. These metabolic features have been applied to hPSC-CM production methods, such as mesoderm induction, specifications for cardiac progenitors, and their maturation. This review describes the metabolic programs in hPSCs and the metabolic regulation in hPSC-CM production for cardiac regenerative therapy.
Collapse
|
45
|
Balatskyi VV, Sowka A, Dobrzyn P, Piven OO. WNT/β-catenin pathway is a key regulator of cardiac function and energetic metabolism. Acta Physiol (Oxf) 2023; 237:e13912. [PMID: 36599355 DOI: 10.1111/apha.13912] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/24/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
The WNT/β-catenin pathway is a master regulator of cardiac development and growth, and its activity is low in healthy adult hearts. However, even this low activity is essential for maintaining normal heart function. Acute activation of the WNT/β-catenin signaling cascade is considered to be cardioprotective after infarction through the upregulation of prosurvival genes and reprogramming of metabolism. Chronically high WNT/β-catenin pathway activity causes profibrotic and hypertrophic effects in the adult heart. New data suggest more complex functions of β-catenin in metabolic maturation of the perinatal heart, establishing an adult pattern of glucose and fatty acid utilization. Additionally, low basal activity of the WNT/β-catenin cascade maintains oxidative metabolism in the adult heart, and this pathway is reactivated by physiological or pathological stimuli to meet the higher energy needs of the heart. This review summarizes the current state of knowledge of the organization of canonical WNT signaling and its function in cardiogenesis, heart maturation, adult heart function, and remodeling. We also discuss the role of the WNT/β-catenin pathway in cardiac glucose, lipid metabolism, and mitochondrial physiology.
Collapse
Affiliation(s)
- Volodymyr V Balatskyi
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Adrian Sowka
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Oksana O Piven
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
46
|
Wu P, Sai X, Li Z, Ye X, Jin L, Liu G, Li G, Yang P, Zhao M, Zhu S, Liu N, Zhu P. Maturation of induced pluripotent stem cell-derived cardiomyocytes and its therapeutic effect on myocardial infarction in mouse. Bioact Mater 2023; 20:286-305. [PMID: 35702609 PMCID: PMC9167678 DOI: 10.1016/j.bioactmat.2022.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have an irreplaceable role in the treatment of myocardial infarction (MI), which can be injected into the transplanted area with new cardiomyocytes (Cardiomyocytes, CMs), and improve myocardial function. However, the immaturity of the structure and function of iPSC-CMs is the main bottleneck at present. Since collagen participates in the formation of extracellular matrix (ECM), we synthesized nano colloidal gelatin (Gel) with collagen as the main component, and confirmed that the biomaterial has good biocompatibility and is suitable for cellular in vitro growth. Subsequently, we combined the PI3K/AKT/mTOR pathway inhibitor BEZ-235 with Gel and found that the two combined increased the sarcomere length and action potential amplitude (APA) of iPSC-CMs, and improved the Ca2+ processing ability, the maturation of mitochondrial morphological structure and metabolic function. Not only that, Gel can also prolong the retention rate of iPSC-CMs in the myocardium and increase the expression of Cx43 and angiogenesis in the transplanted area of mature iPSC-CMs, which also provides a reliable basis for the subsequent treatment of mature iPSC-CMs.
BEZ-235 + Gel promotes the maturation of sarcomere structure in iPSC-CMs. BEZ-235 + Gel promotes electrophysiological maturation of iPSC-CMs. BEZ-235 + Gel increases mitochondrial respiration in iPSC-CMs. Gel loaded with mature iPSC-CMs enhanced angiogenesis and gap junction formation at the injection site.
Collapse
|
47
|
Chen R, Zhang S, Liu F, Xia L, Wang C, Sandoghchian Shotorbani S, Xu H, Chakrabarti S, Peng T, Su Z. Renewal of embryonic and neonatal-derived cardiac-resident macrophages in response to environmental cues abrogated their potential to promote cardiomyocyte proliferation via Jagged-1-Notch1. Acta Pharm Sin B 2023; 13:128-141. [PMID: 36815032 PMCID: PMC9939321 DOI: 10.1016/j.apsb.2022.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/07/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022] Open
Abstract
Cardiac-resident macrophages (CRMs) play important roles in homeostasis, cardiac function, and remodeling. Although CRMs play critical roles in cardiac regeneration of neonatal mice, their roles are yet to be fully elucidated. Therefore, this study aimed to investigate the dynamic changes of CRMs during cardiac ontogeny and analyze the phenotypic and functional properties of CRMs in the promotion of cardiac regeneration. During mouse cardiac ontogeny, four CRM subsets exist successively: CX3CR1+CCR2-Ly6C-MHCII- (MP1), CX3CR1lowCCR2lowLy6C-MHCII- (MP2), CX3CR1-CCR2+Ly6C+MHCII- (MP3), and CX3CR1+CCR2-Ly6C-MHCII+ (MP4). MP1 cluster has different derivations (yolk sac, fetal liver, and bone marrow) and multiple functions population. Embryonic and neonatal-derived-MP1 directly promoted cardiomyocyte proliferation through Jagged-1-Notch1 axis and significantly ameliorated cardiac injury following myocardial infarction. MP2/3 subsets could survive throughout adulthood. MP4, the main population in adult mouse hearts, contributed to inflammation. During ontogeny, MP1 can convert into MP4 triggered by changes in the cellular redox state. These findings delineate the evolutionary dynamics of CRMs under physiological conditions and found direct evidence that embryonic and neonatal-derived CRMs regulate cardiomyocyte proliferation. Our findings also shed light on cardiac repair following injury.
Collapse
Affiliation(s)
- Rong Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
- Institute for Medical Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Shiqing Zhang
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
- Institute for Medical Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Fang Liu
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Lin Xia
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Chong Wang
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
- Institute for Medical Immunology, Jiangsu University, Zhenjiang 212013, China
| | | | - Huaxi Xu
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Subrata Chakrabarti
- Lawson Health Research Institute, London Health Sciences Centre, London, Ontario N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 5C1, Canada
| | - Tianqing Peng
- Lawson Health Research Institute, London Health Sciences Centre, London, Ontario N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 5C1, Canada
- Corresponding authors. Tel.: +86 511 88780266.
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
- Institute for Medical Immunology, Jiangsu University, Zhenjiang 212013, China
- Corresponding authors. Tel.: +86 511 88780266.
| |
Collapse
|
48
|
Hong Y, Zhao Y, Li H, Yang Y, Chen M, Wang X, Luo M, Wang K. Engineering the maturation of stem cell-derived cardiomyocytes. Front Bioeng Biotechnol 2023; 11:1155052. [PMID: 37034258 PMCID: PMC10073467 DOI: 10.3389/fbioe.2023.1155052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The maturation of human stem cell-derived cardiomyocytes (hSC-CMs) has been a major challenge to further expand the scope of their application. Over the past years, several strategies have been proven to facilitate the structural and functional maturation of hSC-CMs, which include but are not limited to engineering the geometry or stiffness of substrates, providing favorable extracellular matrices, applying mechanical stretch, fluidic or electrical stimulation, co-culturing with niche cells, regulating biochemical cues such as hormones and transcription factors, engineering and redirecting metabolic patterns, developing 3D cardiac constructs such as cardiac organoid or engineered heart tissue, or culturing under in vivo implantation. In this review, we summarize these maturation strategies, especially the recent advancements, and discussed their advantages as well as the pressing problems that need to be addressed in future studies.
Collapse
Affiliation(s)
- Yi Hong
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Yun Zhao
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Hao Li
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Yunshu Yang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Meining Chen
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Xi Wang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
- *Correspondence: Kai Wang, ; Mingyao Luo, ; Xi Wang,
| | - Mingyao Luo
- Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China
- *Correspondence: Kai Wang, ; Mingyao Luo, ; Xi Wang,
| | - Kai Wang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China
- *Correspondence: Kai Wang, ; Mingyao Luo, ; Xi Wang,
| |
Collapse
|
49
|
Martyniak A, Jeż M, Dulak J, Stępniewski J. Adaptation of cardiomyogenesis to the generation and maturation of cardiomyocytes from human pluripotent stem cells. IUBMB Life 2023; 75:8-29. [PMID: 36263833 DOI: 10.1002/iub.2685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/05/2022] [Indexed: 12/29/2022]
Abstract
The advent of methods for efficient generation and cardiac differentiation of pluripotent stem cells opened new avenues for disease modelling, drug testing, and cell therapies of the heart. However, cardiomyocytes (CM) obtained from such cells demonstrate an immature, foetal-like phenotype that involves spontaneous contractions, irregular morphology, expression of embryonic isoforms of sarcomere components, and low level of ion channels. These and other features may affect cellular response to putative therapeutic compounds and the efficient integration into the host myocardium after in vivo delivery. Therefore, novel strategies to increase the maturity of pluripotent stem cell-derived CM are of utmost importance. Several approaches have already been developed relying on molecular changes that occur during foetal and postnatal maturation of the heart, its electromechanical activity, and the cellular composition. As a better understanding of these determinants may facilitate the generation of efficient protocols for in vitro acquisition of an adult-like phenotype by immature CM, this review summarizes the most important molecular factors that govern CM during embryonic development, postnatal changes that trigger heart maturation, as well as protocols that are currently used to generate mature pluripotent stem cell-derived cardiomyocytes.
Collapse
Affiliation(s)
- Alicja Martyniak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mateusz Jeż
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jacek Stępniewski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
50
|
Mesquita FCP, Morrissey J, Monnerat G, Domont GB, Nogueira FCS, Hochman-Mendez C. Decellularized Extracellular Matrix Powder Accelerates Metabolic Maturation at Early Stages of Cardiac Differentiation in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Cells Tissues Organs 2023; 212:32-44. [PMID: 34933302 DOI: 10.1159/000521580] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022] Open
Abstract
During fetal development, cardiomyocytes switch from glycolysis to oxidative metabolism to sustain the energy requirements of functional cells. State-of-the-art cardiac differentiation protocols yield phenotypically immature cardiomyocytes, and common methods to improve metabolic maturation require multistep protocols to induce maturation only after cardiac specification is completed. Here, we describe a maturation method using ventricle-derived decellularized extracellular matrix (dECM) that promoted early-stage metabolic maturation of cardiomyocytes differentiated from human induced pluripotent stem cells (hiPSCs). Chemically and architecturally preserved particles (45-500 μm) of pig ventricular dECM were added to hiPSCs at the start of differentiation. At the end of our maturation protocol (day 15 of cardiac differentiation), we observed an intimate interaction between cardiomyocytes and dECM particles without impairment of cardiac differentiation efficiency (approx. 70% of cTNT+). Compared with control cells (those cultured without pig dECM), 15-day-old dECM-treated cardiomyocytes demonstrated increased expression of markers related to cardiac metabolic maturation, MAPK1, FOXO1, and FOXO3, and a switch from ITGA6 (the immature integrin isoform) to ITGA3 and ITGA7 (those present in adult cardiomyocytes). Electrical parameters and responsiveness to dobutamine also improved in pig ventricular dECM-treated cells. Extending the culture time to 30 days, we observed a switch from glucose to fatty acid metabolism, indicated by decreased glucose uptake and increased fatty acid consumption in cells cultured with dECM. Together, these data suggest that dECM contains endogenous cues that enable metabolic maturation of hiPSC-CMs at early stages of cardiac differentiation.
Collapse
Affiliation(s)
| | | | - Gustavo Monnerat
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto B Domont
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C S Nogueira
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|