1
|
Wu J, Tang J, Huang D, Wang Y, Zhou E, Ru Q, Xu G, Chen L, Wu Y. Study on the comorbid mechanisms of sarcopenia and late-life depression. Behav Brain Res 2025; 485:115538. [PMID: 40122287 DOI: 10.1016/j.bbr.2025.115538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
The increasing global aging population has brought greater focus to age-related diseases, particularly muscle-brain comorbidities such as sarcopenia and late-life depression. Sarcopenia, defined by the gradual loss of muscle mass and function, is notably prevalent among older individuals, while late-life depression profoundly affects their mental health and overall well-being. Epidemiological evidence suggests a high co-occurrence of these two conditions, although the precise biological mechanisms linking them remain inadequately understood. This review synthesizes the existing body of literature on sarcopenia and late-life depression, examining their definitions, prevalence, clinical presentations, and available treatments. The goal is to clarify the potential connections between these comorbidities and offer a theoretical framework for the development of future preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Jiale Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Jun Tang
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Di Huang
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Yu Wang
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Enyuan Zhou
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Guodong Xu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
2
|
Preobrazenski N, Mladen SP, Causer E, Menezes E, Islam H, Drouin PJ, Tschakovsky ME, Gurd BJ. Mitochondrial and cardiovascular responses to aerobic exercise training in supine and upright positions in healthy young adults: a randomized parallel arm trial. TRANSLATIONAL EXERCISE BIOMEDICINE 2025; 2:9-20. [PMID: 40224168 PMCID: PMC11987498 DOI: 10.1515/teb-2025-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/07/2025] [Indexed: 04/15/2025]
Abstract
Objectives Aerobic exercise training can increase skeletal muscle mitochondrial content. Supine exercise training with legs above the heart potentially augments these increases. However, the impact of supine exercise training on mitochondrial biogenesis and cardiovascular adaptations remains unclear. Methods In this single-centred, randomized, parallel arm trial, 19 recreationally active individuals underwent seven sessions of either supine with legs up (SUP; n=9, 6 females) or upright with legs down (UP; n=10, 7 females) aerobic training on a recumbent bike at 71 ± 7 % and 71 ± 2 % of peak work rate (WRpeak), respectively. The study aimed to test the effects of training with decreased muscle oxygenation on indices of muscle mitochondrial remodelling. Secondary outcomes included exercise performance, muscle oxygenation, and cardiovascular responses. Results Secondary outcomes revealed significant interaction effects for time to fatigue (TTF) and WRpeak in the SUP group during supine testing, suggesting enhanced exercise tolerance and performance. No between group interaction effects were observed for upright testing. No clear effects on mitochondrial biogenesis were observed based on expression of mitochondrial protein subunits and transcriptional regulators. Acutely, HRpeak was lower during the SUP Test compared to the UP Test. No central cardiovascular adaptations were observed following training. Conclusions Our exploratory analyses showed that supine aerobic training more effectively improves supine exercise tolerance and performance compared with upright training, despite no differences in measured proteins related to mitochondrial biogenesis. Further research is needed to elucidate the mechanisms underlying these postural-specific training effects. Registration clinicaltrials.gov: NCT04151095.
Collapse
Affiliation(s)
- Nicholas Preobrazenski
- School of Kinesiology and Health Studies, Queen’s University, Kingston, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Stuart P.S. Mladen
- School of Kinesiology and Health Studies, Queen’s University, Kingston, ON, Canada
| | - Ejaz Causer
- School of Kinesiology and Health Studies, Queen’s University, Kingston, ON, Canada
| | - Eveline Menezes
- School of Kinesiology and Health Studies, Queen’s University, Kingston, ON, Canada
| | - Hashim Islam
- School of Kinesiology and Health Studies, Queen’s University, Kingston, ON, Canada
- School of Health and Exercise Sciences, University of British Columbia – Okanagan, Kelowna, BC, Canada
| | - Patrick J. Drouin
- School of Kinesiology and Health Studies, Queen’s University, Kingston, ON, Canada
| | | | - Brendon J. Gurd
- School of Kinesiology and Health Studies, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
3
|
Tang Y, Liu X, Ye W, Wang X, Wei X, Du Y, Zhang Y, Gong Y. METTL3, an Independent Adverse Prognostic Factor for AML, Promotes the Development of AML by Modulating the PGC-1α-MAPK Pathway and PGC-1α-Antioxidant System Axis. Cancer Med 2025; 14:e70771. [PMID: 40171845 PMCID: PMC11962650 DOI: 10.1002/cam4.70771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND m6A represents a prevalent epigenetic modification of mammalian mRNAs. Studies have demonstrated that m6A RNA methylation-modifying enzymes play crucial roles in the onset and progression of AML. However, their clinical relevance remains undefined, and the mechanisms underlying their modulation of AML have yet to be elucidated. RESULTS The expression levels of the m6A RNA-modifying enzymes METTL3, METTL14, WTAP, FTO and ALKBH5 were elevated in AML patients. METTL3-positive AML is often accompanied by DNMT3A mutations and is also an independent poor prognostic factor for AML patients. Following METTL3 knockdown, we observed a decrease in the m6A level of the mitochondrial oxidative stress gene PGC-1α in K562 and MV4-11 cells. We analyzed the expression levels of PGC-1α and METTL3 mRNA in 105 patients with primary AML. The expression levels of PGC-1α and METTL3 mRNA were positively correlated. Similar to METTL3 knockdown, PGC-1α gene knockdown resulted in increased phosphorylation of the key signaling molecules P38, c-Jun and ERK1/2 in the MAPK signaling pathway, and decreased mRNA levels of SOD1, GPX1, catalase and UCP2 in the antioxidant system of K562 cells. Analysis of the TCGA and GSE13159 datasets, along with samples from West China Hospital, revealed that patients exhibiting high PGC-1α expression had a poor prognosis. CONCLUSION The m6A methylation-modifying enzyme METTL3 is an independent prognostic factor for poor prognosis in AML patients. PGC-1α is a downstream signaling molecule of METTL3, and METTL3 affects its expression by regulating the m6A level of PGC-1α. PGC-1α acts as an oncogene in AML by affecting the MAPK pathway and antioxidant system.
Collapse
Affiliation(s)
- Yuqian Tang
- Department of HematologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xiaoyan Liu
- Department of HematologyWest China Hospital, Sichuan UniversityChengduSichuanChina
- Department of HematologyFirst Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Wu Ye
- Department of HematologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xiaojia Wang
- Department of HematologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xiaoyu Wei
- Department of HematologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Yiwen Du
- Department of HematologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ying Zhang
- Department of HematologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Yuping Gong
- Department of HematologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| |
Collapse
|
4
|
Gu T, Liu J, Zeng T, Chen L, Tian Y, Xu W, Lu L. New insights into ovarian regression-related mitochondrial dysfunction in the late-laying period. Poult Sci 2025; 104:104938. [PMID: 40014974 PMCID: PMC11910091 DOI: 10.1016/j.psj.2025.104938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/31/2024] [Accepted: 02/21/2025] [Indexed: 03/01/2025] Open
Abstract
Duck egg production sharply decreases during the late-laying period, which likely stems from an ovarian mechanism. However, the molecular mechanisms underlying ovarian regression during the late-laying period remain unclear. In this study, egg-laying (LLP) and ceased-laying (CLP) ducks at 72 weeks of age were selected to explore the potential mechanism of ovarian regression. Proteomic analysis demonstrated the importance of mitochondrial function in ovarian regression. Notably, metabolomic analysis showed that CLP ducks disturbed TCA cycle, as exhibited by the lower fumarate content. The ovarian expression of protein markers for mitochondrial biogenesis (PGC-1α and TFAM) and function (SIRT1 and SIRT3) were suppressed in CLP ducks. CLP ducks had significantly increased MDA levels and reduced SOD, CAT, GSH-Px, and T-AOC activities, inducing excessive oxidative stress. Interestingly, ACSL4, a key regulator of ferroptosis, was associated with the mitochondrial envelope and membrane function during ovarian regression. CLP ducks showed significantly reduced GSH levels and increased Fe2+ content, as well as decreased the expression of ferroptosis-related proteins (GPX4 and SLC7A11) and antioxidant-related proteins (COX2, CAT, SOD1, and SOD2). Collectively, our findings suggest that ovarian regression-mediated mitochondrial dysfunction contributes to oxidative stress-induced ferroptosis in ducks that have ceased laying.
Collapse
Affiliation(s)
- Tiantian Gu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jinyu Liu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Zeng
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Li Chen
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yong Tian
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenwu Xu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lizhi Lu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
5
|
Jalil AT, Al-Kazzaz HH, Hassan FA, Mohammed SH, Merza MS, Aslandook T, Elewadi A, Fadhil A, Alsalamy A. Metabolic Reprogramming of Anti-cancer T Cells: Targeting AMPK and PPAR to Optimize Cancer Immunotherapy. Indian J Clin Biochem 2025; 40:165-175. [PMID: 40123631 PMCID: PMC11928344 DOI: 10.1007/s12291-023-01166-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/17/2023] [Indexed: 03/25/2025]
Abstract
Cancer treatment era has been revolutionized by the novel therapeutic methods such as immunotherapy in recent years. Immunotherapy-based approaches are considered effective and reliable methods that has brought hope to eradicate certain cancers. Nonetheless, there are some issues, considered as critical obstacles in successful cancer immunotherapy. Such issues are attributed to the ability of the tumor cells in providing a tolerant microenvironment that impairs the immune responses, and help the cancer cells evade the immunogenic cell death. It has been suggested that the re-activation and maintenance of effector immune cells may become possible by metabolic reprogramming. Several signaling pathways have been noticed with the possibility of metabolic reprogramming of tumor-specific T cells, to overcome the metabolic restrictions in the tumor microenvironment; and among them, AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptors (PPAR) have been investigated the most as the main energy sensors and regulators of mitochondrial biogenesis. The synergic effects of AMPK activators and/or PPAR agonists in cancer immunotherapy have been reported. In this review, we compare the roles of AMPK activators and PPAR agonists, and the efficacy of their combination in metabolic reprogramming of cytotoxic T cells in favoring cancer immunotherapy.
Collapse
Affiliation(s)
| | - Hassan Hadi Al-Kazzaz
- College of Medical and Health Technology, Al-Zahraa University for Women, Karbala, Iraq
| | - Firas A. Hassan
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | | | - Muna S. Merza
- Department of Prosthetic Dental Techniques, Al-Mustaqbal University College, Hillah, Iraq
| | - Tahani Aslandook
- Department of Dentistry, Al-Turath University College, Baghdad, Iraq
| | - Ahmed Elewadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
| | - Ali Fadhil
- College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja’afar Al-Sadiq University, Al-Muthanna, 66002 Iraq
| |
Collapse
|
6
|
Zhao C, Xu R, Xin S, Jiang B, Feng S, Wang X, Xia C. AMPKα alleviates the inhibitory effect of NEFA on the function of bovine follicular granulosa cells cultured in vitro. Anim Reprod Sci 2025; 276:107831. [PMID: 40164035 DOI: 10.1016/j.anireprosci.2025.107831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/16/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
High levels of non-esterified fatty acids (NEFA) in cows with subclinical ketosis (SCK) impair postpartum follicular development and disrupt estrus. The precise mechanism through which NEFA impacts the functionality of bovine follicular cells remains elusive. An in vivo experiment was conducted to compare SCK cows without estrus (SCK-E, n = 6) with healthy cows in estrus (C-E, n = 6). In the vitro test, bovine granulosa cells (GCs) were exposed to 0.4 mM NEFA. Notably, the SCK-E group exhibited an elevated ratio of phosphorylated adenosine 5'-monophosphate-activated protein kinase α (AMPKα) to total AMPKα in both liver and ovarian tissues, compared to the C-E group. NEFA treatment of GCs adversely affected steroid hormone synthesis, suppressed the expression of cyclin and proteins crucial for steroid synthesis, and triggered cell apoptosis, thereby inhibiting cell proliferation. Furthermore, it led to a decline in cell mitochondrial membrane potential and an increase in reactive oxygen species production, ultimately causing cellular damage. Subsequently, GCs were co-cultured with adenovirus (ad-AMPKα-siRNA) and NEFA (0.4 mM). Inhibiting AMPKα further exacerbated the detrimental effects of NEFA on steroid hormone synthesis, cell apoptosis, cell proliferation, and mitochondrial function in GCs. Furthermore, upon inhibiting AMPKα, a reduction was observed in both mRNA and protein levels of acetyl-CoA carboxylase 1, accompanied by an elevation in the levels of carnitine palmitoyltransferase-1. These findings suggest that AMPKα becomes activated in SCK cows experiencing elevated NEFA levels, and that AMPKα has the potential to mitigate the detrimental effects of NEFA on GCs function in vitro.
Collapse
Affiliation(s)
- Chang Zhao
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, China.
| | - Ruru Xu
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, China
| | - Shuzhen Xin
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, China
| | - Benzheng Jiang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, China
| | - Shibin Feng
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, China
| | - Xichun Wang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, China.
| | - Cheng Xia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China.
| |
Collapse
|
7
|
Ghirotto B, Gonçalves LE, Ruder V, James C, Gerasimova E, Rizo T, Wend H, Farrell M, Gerez JA, Prymaczok NC, Kuijs M, Shulman M, Hartebrodt A, Prots I, Gessner A, Zunke F, Winkler J, Blumenthal DB, Theis FJ, Riek R, Günther C, Neurath M, Gupta P, Winner B. TNF-α disrupts the malate-aspartate shuttle, driving metabolic rewiring in iPSC-derived enteric neural lineages from Parkinson's Disease patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.644826. [PMID: 40196623 PMCID: PMC11974853 DOI: 10.1101/2025.03.25.644826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Gastrointestinal (GI) dysfunction emerges years before motor symptoms in Parkinson's disease (PD), implicating the enteric nervous system (ENS) in early disease progression. However, the mechanisms linking the PD hallmark protein, α-synuclein (α-syn), to ENS dysfunction - and whether these mechanisms are influenced by inflammation - remains elusive. Using iPSC-derived enteric neural lineages from patients with α-syn triplications, we reveal that TNF-α increases mitochondrial-α-syn interactions, disrupts the malate-aspartate shuttle, and forces a metabolic shift toward glutamine oxidation. These alterations drive mitochondrial dysfunction, characterizing metabolic impairment under cytokine stress. Interestingly, targeting glutamate metabolism with Chicago Sky Blue 6B restores mitochondrial function, reversing TNF-α-driven metabolic disruption. Our findings position the ENS as a central player in PD pathogenesis, establishing a direct link between cytokines, α-syn accumulation, metabolic stress and mitochondrial dysfunction. By uncovering a previously unrecognized metabolic vulnerability in the ENS, we highlight its potential as a therapeutic target for early PD intervention.
Collapse
Affiliation(s)
- Bruno Ghirotto
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- International Max Planck Research School in Physics and Medicine, Erlangen, Germany
| | - Luís Eduardo Gonçalves
- Department of Medicine 1, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Vivien Ruder
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Christina James
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Elizaveta Gerasimova
- Dental Clinic 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tania Rizo
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Present address: Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, USA
| | - Holger Wend
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Michaela Farrell
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Juan Atilio Gerez
- Institute of Molecular Physical Sciences, ETH Zürich, Zürich, Switzerland
| | | | - Merel Kuijs
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
- TUM, School of Computation, Information and Technology, Technical University of Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Germany
| | - Maiia Shulman
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
- TUM, School of Computation, Information and Technology, Technical University of Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Germany
| | - Anne Hartebrodt
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering , Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iryna Prots
- Dental Clinic 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - David B Blumenthal
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering , Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
- TUM, School of Computation, Information and Technology, Technical University of Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Germany
| | - Roland Riek
- Institute of Molecular Physical Sciences, ETH Zürich, Zürich, Switzerland
| | - Claudia Günther
- Department of Medicine 1, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Neurath
- Department of Medicine 1, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Pooja Gupta
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Center of Rare Diseases Erlangen, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Akasha R, Enrera JA, Fatima SB, Hegazy AM, Hussein W, Nawaz M, Alshammari MD, Almuntashiri S, Albadari N, Break MKB, Syed RU. Oxidative phosphorylation and breast cancer progression: insights into PGC-1α's role in mitochondrial function. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04018-w. [PMID: 40095051 DOI: 10.1007/s00210-025-04018-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Breast cancer still ranks high as a leading cause of mortality in women due to its complex relationship with metabolic reprogramming and tumor progression. The peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), a key transcriptional coactivator regulating mitochondrial biogenesis and oxidative phosphorylation (OXPHOS), plays a dual role in breast cancer metabolism. On the one hand, PGC-1α enhances mitochondrial function and energy production, facilitating tumor survival and metastasis, particularly in hypoxic environments. On the other hand, its suppression can limit tumor aggressiveness and energy metabolism. This dual functionality underscores its context-dependent role in cancer progression, where its activation or inhibition varies across tumor subtypes and microenvironmental conditions. The purpose of this review is to provide a comprehensive understanding of PGC-1α's dual roles in breast cancer, elucidating its regulation of mitochondrial function, its contribution to tumor progression, and the therapeutic implications of targeting this key metabolic regulator.
Collapse
Affiliation(s)
- Rihab Akasha
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 2440, Hail, Saudi Arabia
| | - Jerlyn Apatan Enrera
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 2440, Hail, Saudi Arabia
| | - Syeda Bushra Fatima
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Kingdom of Saudi Arabia
| | - A M Hegazy
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 2440, Hail, Saudi Arabia
| | - Weiam Hussein
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Maali D Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Sultan Almuntashiri
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Najah Albadari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia.
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia.
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, 81442, Hail, Saudi Arabia.
| |
Collapse
|
9
|
Chua WY, Lim LKE, Wang JJD, Mai AS, Chan LL, Tan EK. Sildenafil and risk of Alzheimer disease: a systematic review and meta-analysis. Aging (Albany NY) 2025; 17:726-739. [PMID: 40096550 PMCID: PMC11984433 DOI: 10.18632/aging.206222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/09/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Alzheimer Disease (AD) affects more than 50 million people worldwide, with 10 million new diagnosis each year. The link between Sildenafil, a Phosphodiesterase-5 (PDE5) inhibitor, and risk of AD has been debated. We conducted the first meta-analysis on the association between Sildenafil use and risk of AD. METHODS We searched MEDLINE and Embase from inception to March 11, 2024 to identify cohort, case-control studies comparing the frequency of AD in patients taking Sildenafil with those without. We computed risk ratios (RR) and hazard ratios (HR) with accompanying 95% Confidence Intervals (CIs) for each study, and pooled the results using a random-effects meta-analysis. RESULTS Out of 415 studies that were screened initially, 5 studies comprising 885,380 patients were included for analysis. Sildenafil use was associated with a reduced risk of developing AD by two-fold compared to non-use (HR: 0.47, 95% CI: 0.27-0.82, p<0.001). There was a similar association in risk reduction of AD in patients on PDE5 inhibitors compared to non-use (RR: 0.55, 95% CI: 0.38-0.80, p=0.002). CONCLUSIONS Our meta-analysis showed that the use of Sildenafil is associated with a reduced risk of developing AD by two-fold. Further randomized control trials to ascertain the effect of Sildenafil on AD pathology would be useful.
Collapse
Affiliation(s)
- Wei Yu Chua
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lincoln Kai En Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - James Jia Dong Wang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Aaron Shengting Mai
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ling-Ling Chan
- Department of Diagnostic Radiology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
10
|
Dumesic PA, Wilensky SE, Bose S, Van Vranken JG, Gygi SP, Spiegelman BM. RBM43 controls PGC1α translation and a PGC1α-STING signaling axis. Cell Metab 2025; 37:742-757.e8. [PMID: 39965564 PMCID: PMC11885043 DOI: 10.1016/j.cmet.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/17/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025]
Abstract
Obesity is associated with systemic inflammation that impairs mitochondrial function. This disruption curtails oxidative metabolism, limiting adipocyte lipid metabolism and thermogenesis, a metabolically beneficial program that dissipates chemical energy as heat. Here, we show that PGC1α, a key governor of mitochondrial biogenesis, is negatively regulated at the level of its mRNA translation by the RNA-binding protein RBM43. RBM43 is induced by inflammatory cytokines and suppresses mitochondrial biogenesis in a PGC1α-dependent manner. In mice, adipocyte-selective Rbm43 disruption elevates PGC1α translation and oxidative metabolism. In obesity, Rbm43 loss improves glucose tolerance, reduces adipose inflammation, and suppresses activation of the innate immune sensor cGAS-STING in adipocytes. We further identify a role for PGC1α in safeguarding against cytoplasmic accumulation of mitochondrial DNA, a cGAS ligand. The action of RBM43 defines a translational regulatory axis by which inflammatory signals dictate cellular energy metabolism and contribute to metabolic disease pathogenesis.
Collapse
Affiliation(s)
- Phillip A Dumesic
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah E Wilensky
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Symanthika Bose
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Kim JH, Yang S, Kim H, Vo DK, Maeng HJ, Jo A, Shin JH, Shin JH, Baek HM, Lee GH, Kim SH, Lim KH, Dawson VL, Dawson TM, Joo JY, Lee Y. Preclinical studies and transcriptome analysis in a model of Parkinson's disease with dopaminergic ZNF746 expression. Mol Neurodegener 2025; 20:24. [PMID: 40022229 PMCID: PMC11871723 DOI: 10.1186/s13024-025-00814-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 02/17/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND The parkin-interacting substrate (PARIS, also known as ZNF746) is a transcriptional repressor, whose accumulation and phosphorylation play central pathological roles in Parkinson's disease (PD). PARIS-induced transcriptional repression of PGC-1α or MDM4 contributes to mitochondrial dysfunction and p53-dependent neuron loss in PD. Despite the important role of PARIS in PD pathogenesis, unbiased transcriptomic profiles influenced by PARIS accumulation in dopaminergic neurons remain unexplored. METHODS We engineered Tet-Off conditional transgenic mice expressing PARIS in dopaminergic neurons, driven by DAT-PF-tTA driver mice. The conditional PARIS transgenic mice were characterized by PD-associated pathologies, including progressive dopamine cell loss, neuroinflammation, PGC-1α repression, and mitochondrial proteome alteration. Motor impairment was assessed using pole and rotarod tests. L-DOPA and c-Abl inhibitors were administered to PARIS transgenic mice to evaluate their therapeutic efficacy. The transcriptomic profiles and gene ontology clusters were analyzed by bulk and single-nucleus RNA-seq for the ventral midbrains from PARIS transgenic and age-matched controls. RESULTS Conditional dopaminergic PARIS expression in mice led to the robust and selective dopaminergic neuron degeneration, neuroinflammation, and striatal dopamine deficits, resulting in L-DOPA-responsive motor impairments. Consistent with the results of previous reports, PARIS suppressed dopaminergic PGC-1α expression, disturbed mitochondrial marker protein expression, and reduced COXIV-labeled mitochondria in dopamine neurons. Pharmacological inhibition of c-Abl activity in PARIS transgenic mice largely prevents PD-associated pathological features. Unbiased transcriptomic analysis revealed PARIS-regulated differentially expressed genes (DEGs), both collectively and in a cell-type-specific manner, along with enriched biological pathways linked to PD pathogenesis. Single-cell resolution transcriptomic analysis confirmed repression of PGC-1α and several mitochondria-related target genes in dopaminergic cells. Additionally, we identified distinct glial cell subpopulations and DEGs associated with PD pathogenesis. CONCLUSIONS Conditional PARIS transgenic mice recapitulate robust and dopaminergic neuron-selective pathological features of PD, allowing the preclinical evaluation of antisymptomatic and disease-modifying therapeutic strategies within a couple of months. Based on this new PD mouse model, we provide unbiased bulk and single-nucleus transcriptomic profiles that are regulated by PARIS and potentially contribute to PD pathogenesis. A PD mouse model with flexible pathology induction capacity and a whole transcriptome could serve as a useful resource for translational PD research.
Collapse
Affiliation(s)
- Ji Hun Kim
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon, 16419, Republic of Korea
| | - Sumin Yang
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, 15588, Republic of Korea
| | - Hyojung Kim
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon, 16419, Republic of Korea
| | - Dang-Khoa Vo
- College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea
| | - Areum Jo
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon, 16419, Republic of Korea
| | - Joo-Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Joo-Ho Shin
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon, 16419, Republic of Korea
| | - Hyeon-Man Baek
- Department of Health Sciences & Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, 21999, Republic of Korea
| | - Gum Hwa Lee
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Sung-Hyun Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, 15588, Republic of Korea
| | - Key-Hwan Lim
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju-Si, 28160, Republic of Korea
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jae-Yeol Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Yunjong Lee
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon, 16419, Republic of Korea.
| |
Collapse
|
12
|
Zhang J, Li S, Cheng X, Tan X, Shi Y, Su G, Huang Y, Zhang Y, Xue R, Li J, Fan Q, Dong H, Deng Y, Zhang Y. Graphene-Based Far-Infrared Therapy Promotes Adipose Tissue Thermogenesis and UCP1 Activation to Combat Obesity in Mice. Int J Mol Sci 2025; 26:2225. [PMID: 40076847 PMCID: PMC11900916 DOI: 10.3390/ijms26052225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Hyperthermia (HT) has broad potential for disease treatment and health maintenance. Previous studies have shown that far-infrared rays (FIRs) at 8-10 μm can potentially reduce inflammation, oxidative stress, and gut microbiota imbalance. However, the effects of FIR HT on energy metabolism require further investigation. To investigate the effects of graphene-FIR HT therapy on diet-induced obesity and their regulatory mechanisms in energy metabolism disorders. After 8 weeks of hyperthermia, mice fed standard chow or a high-fat diet (HFD) underwent body composition analysis. Energy expenditure was measured using metabolic cages. The protein changes in adipose tissue were detected by molecular technology. Graphene-FIR therapy effectively mitigated body fat accumulation, improved dyslipidemia, and impaired liver function while enhancing insulin sensitivity. Furthermore, graphene-FIR therapy increased VO2, VCO2, and EE levels in HFD mice to exhibit enhanced metabolic activity. The therapy activated the AMPK/PGC-1α/SIRT1 pathway in adipose tissue, increasing the expression of uncoupling protein 1 (UCP1) and glucose transporter protein four (GLUT4), activating the thermogenic program in adipose tissue, and improving energy metabolism disorder in HFD mice. In short, graphene-FIR therapy represents a comprehensive approach to improving the metabolic health of HFD mice.
Collapse
Affiliation(s)
- Jinshui Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Shuo Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Xin Cheng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Xiaocui Tan
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Yingxian Shi
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Guixin Su
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Yulong Huang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Yang Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Rui Xue
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Jingcao Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Qiongyin Fan
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Huajin Dong
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| | - Yun Deng
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Youzhi Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (J.Z.); (S.L.); (X.C.); (X.T.); (Y.S.); (G.S.); (Y.H.); (Y.Z.); (R.X.); (J.L.); (Q.F.); (H.D.)
| |
Collapse
|
13
|
Fonseka O, Gare SR, Chen X, Zhang J, Alatawi NH, Ross C, Liu W. Molecular Mechanisms Underlying Heart Failure and Their Therapeutic Potential. Cells 2025; 14:324. [PMID: 40072053 PMCID: PMC11899429 DOI: 10.3390/cells14050324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 03/15/2025] Open
Abstract
Heart failure (HF) is a prominent fatal cardiovascular disorder afflicting 3.4% of the adult population despite the advancement of treatment options. Therefore, a better understanding of the pathogenesis of HF is essential for exploring novel therapeutic strategies. Hypertrophy and fibrosis are significant characteristics of pathological cardiac remodeling, contributing to HF. The mechanisms involved in the development of cardiac remodeling and consequent HF are multifactorial, and in this review, the key underlying mechanisms are discussed. These have been divided into the following categories thusly: (i) mitochondrial dysfunction, including defective dynamics, energy production, and oxidative stress; (ii) cardiac lipotoxicity; (iii) maladaptive endoplasmic reticulum (ER) stress; (iv) impaired autophagy; (v) cardiac inflammatory responses; (vi) programmed cell death, including apoptosis, pyroptosis, and ferroptosis; (vii) endothelial dysfunction; and (viii) defective cardiac contractility. Preclinical data suggest that there is merit in targeting the identified pathways; however, their clinical implications and outcomes regarding treating HF need further investigation in the future. Herein, we introduce the molecular mechanisms pivotal in the onset and progression of HF, as well as compounds targeting the related mechanisms and their therapeutic potential in preventing or rescuing HF. This, therefore, offers an avenue for the design and discovery of novel therapies for the treatment of HF.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Liu
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (O.F.); (S.R.G.); (X.C.); (J.Z.); (N.H.A.)
| |
Collapse
|
14
|
Liu H, Wang S, Wang J, Guo X, Song Y, Fu K, Gao Z, Liu D, He W, Yang LL. Energy metabolism in health and diseases. Signal Transduct Target Ther 2025; 10:69. [PMID: 39966374 PMCID: PMC11836267 DOI: 10.1038/s41392-025-02141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025] Open
Abstract
Energy metabolism is indispensable for sustaining physiological functions in living organisms and assumes a pivotal role across physiological and pathological conditions. This review provides an extensive overview of advancements in energy metabolism research, elucidating critical pathways such as glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism, along with their intricate regulatory mechanisms. The homeostatic balance of these processes is crucial; however, in pathological states such as neurodegenerative diseases, autoimmune disorders, and cancer, extensive metabolic reprogramming occurs, resulting in impaired glucose metabolism and mitochondrial dysfunction, which accelerate disease progression. Recent investigations into key regulatory pathways, including mechanistic target of rapamycin, sirtuins, and adenosine monophosphate-activated protein kinase, have considerably deepened our understanding of metabolic dysregulation and opened new avenues for therapeutic innovation. Emerging technologies, such as fluorescent probes, nano-biomaterials, and metabolomic analyses, promise substantial improvements in diagnostic precision. This review critically examines recent advancements and ongoing challenges in metabolism research, emphasizing its potential for precision diagnostics and personalized therapeutic interventions. Future studies should prioritize unraveling the regulatory mechanisms of energy metabolism and the dynamics of intercellular energy interactions. Integrating cutting-edge gene-editing technologies and multi-omics approaches, the development of multi-target pharmaceuticals in synergy with existing therapies such as immunotherapy and dietary interventions could enhance therapeutic efficacy. Personalized metabolic analysis is indispensable for crafting tailored treatment protocols, ultimately providing more accurate medical solutions for patients. This review aims to deepen the understanding and improve the application of energy metabolism to drive innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Hui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuo Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Guo
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujing Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenjie Gao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
15
|
Cocksedge SP, Mantecón L, Castaño E, Infante C, Bailey SJ. The Potential of Superoxide Dismutase-Rich Tetraselmis chuii as a Promoter of Cellular Health. Int J Mol Sci 2025; 26:1693. [PMID: 40004157 PMCID: PMC11855123 DOI: 10.3390/ijms26041693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Tetraselmis chuii (T. chuii) is a green, marine, eukaryotic, microalgae that was authorized in the European Union (EU) as a novel food for human consumption in 2014, and as a food supplement in 2017. This narrative review will provide an overview of preclinical and clinical trials assessing the efficacy of a T. chuii-derived ingredient, characterized by a high superoxide dismutase (SOD) activity (SOD-rich T. chuii), to improve various aspects of cellular health. Collectively, results from in vitro, and more importantly in vivo research, support SOD-rich T. chuii as a potential promoter of cellular health. Principally, the ingredient appears to function as an indirect antioxidant by boosting intracellular antioxidant systems. Moreover, it can positively modulate inflammatory status by up-regulating anti-inflammatory and down-regulating pro-inflammatory cytokines and factors. In addition, SOD-rich T. chuii appears to promote cellular health though protecting from DNA damage, boosting immune function, strengthening cell structure and integrity, and positively modulating cell signaling pathways. There is also some evidence to suggest that SOD-rich T. chuii may improve aspects of mitochondrial function through the up-regulation of genes linked to mitochondrial biogenesis and ATP synthesis. From the trials conducted to date, transcriptional activation of nuclear factor erythroid 2-related factor 2 (NRF2) and sirtuin 1 (SIRT1) appear to be important in mediating the effects of SOD-rich T. chuii on cellular health. These exciting preliminary observations suggest that SOD-rich T. chuii may represent a natural blue food supplement with the potential to enhance various aspects of cellular health.
Collapse
Affiliation(s)
- Stuart P. Cocksedge
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK;
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Lalia Mantecón
- Fitoplancton Marino, S.L., Dársena Comercial s/n, 11500 El Puerto de Santa María, Cádiz, Spain; (L.M.); (E.C.); (C.I.)
| | - Enrique Castaño
- Fitoplancton Marino, S.L., Dársena Comercial s/n, 11500 El Puerto de Santa María, Cádiz, Spain; (L.M.); (E.C.); (C.I.)
| | - Carlos Infante
- Fitoplancton Marino, S.L., Dársena Comercial s/n, 11500 El Puerto de Santa María, Cádiz, Spain; (L.M.); (E.C.); (C.I.)
| | - Stephen J. Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK;
| |
Collapse
|
16
|
Song M, Bai Y, Song F. High-fat diet and neuroinflammation: The role of mitochondria. Pharmacol Res 2025; 212:107615. [PMID: 39842474 DOI: 10.1016/j.phrs.2025.107615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/28/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
In recent years, increasing evidence has supported that high-fat diet (HFD) can induce the chronic, low-grade neuroinflammation in the brain, which is closely associated with the impairment of cognitive function. As the key organelles responsible for energy metabolism in the cell, mitochondria are believed to involved in the pathogenesis of a variety of neurological disorders. This review summarizes the current progress in the field of the relationship between HFD exposure and neurodegenerative diseases, and outline the major routines of HFD induced neuroinflammation and its pathological significance in the pathogenesis of neurodegenerative diseases. Furthermore, the article highlights the pivotal role of mitochondrial dysfunction in driving the neuroinflammation in the setting of HFD. Danger-associated molecular patterns (DAMPs) from damaged mitochondria can activate innate immune signaling pathways, while mitochondrial dysfunction itself can lead to metabolic remodeling of inflammatory cells, thus inducing neuroinflammation. More importantly, mitochondrial damage, neuroinflammation, and insulin resistance caused by HFD form a mutually reinforcing vicious cycle, ultimately leading to the death of neurons and promoting the progression of neurodegenerative diseases. Thus, in-depth elucidation of the role and underlying mechanisms of mitochondrial dysfunction in HFD-induced metabolic disorders may not only expand our understanding of the mechanistic linkages between HFD and etiology of neurodegenerative diseases, but also help develop the specific strategies for the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mingxue Song
- Department of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China.
| | - Yao Bai
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Fuyong Song
- Department of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China.
| |
Collapse
|
17
|
Bao H, Wang C, Jin Y, Meng Q, Wu J, Liu Q, Sun H. The contributory role of GSK3β in hypertension exacerbating atherosclerosis by regulating the OMA1/PGC1α pathway. Apoptosis 2025; 30:117-130. [PMID: 39427090 DOI: 10.1007/s10495-024-02029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
Atherosclerosis is closely related to endothelial dysfunction and hypertension. GSK3β is a critical regulator in atherosclerosis. This study was carried out to investigate the effects of GSK3β on hypertension exacerbating atherosclerosis in vitro and in vivo. L-NAME + HFD-ApoE-/- mice were used for this study for 12 weeks, and their endothelial dysfunction and inflammation were analyzed. Oil red O and H&E staining revealed that treatment with LiCl, an inhibitor of GSK3β, reduced atherosclerotic lesions and lipid accumulation. The levels of lipid homeostasis and oxidation stress were attenuated following LiCl administration. LiCl-treated ApoE-/- mice showed lowered blood pressure. LiCl also suppressed the expressions of Drp1, Bax, ICAM1, VCAM1 and TNF-α compared to HFD + L-NAME induced mice and oxLDL + L-NAME-treated Human aorta endothelial cell line(HAECs). LiCl treatment increased the expressions of MFN2 and Bcl2. Mitotracker-red, MitoSOX and JC-1 staining indicated that LiCl treatment reduced mitochondrial division and ROS production, increased mitochondrial ΔΨm compared to oxLDL + L-NAME-treated HAECs. The expression of OMA1 was decreased by LiCl treatment, while PGC1α expression was increased. In HAECs, we found that OMA1 knockdown increased mitochondrial function and the expression of PGC1α. We also demonstrated LiCl increased OMA1 ubiquitination compared with the Control group, thus decreased OMA1 expression. Furthermore, siOMA1 antagonized the increased protein expressions of ICAM1, VCAM1, TNF-α, Bax and Drp1, decreased the protein expressions of Bcl2 and MFN2 by siPGC1α. Taken together, we demonstrated that GSK3β could play a contributory role in hypertension exacerbating atherosclerosis by regulating the OMA1/PGC1α pathway and inhibiting mitochondrial function.
Collapse
Affiliation(s)
- Hongjia Bao
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Yue Jin
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Qi Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China.
| |
Collapse
|
18
|
Takada M, Kawarasaki S, Kwon J, Ni Z, Takahashi H, Inoue K, Goto T. Lipid metabolism and food ingredients from the perspective of thermogenic adipocytes. Biosci Biotechnol Biochem 2025; 89:193-200. [PMID: 39521946 DOI: 10.1093/bbb/zbae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
The high heat-producing capacity of brown and beige adipocytes, collectively known as thermogenic adipocytes, contributes to whole-body energy expenditure and is an attractive target for the management of obesity. It has been revealed that the functions of thermogenic adipocytes are important for the regulation of whole-body carbohydrate and lipid metabolism, and the activation of thermogenic adipocytes seems to have beneficial effects for the management of obesity-related metabolic disorders, such as dyslipidemia. Recent studies have showed that specific food ingredients have the potential to activate thermogenic adipocytes via various mechanisms. Some of these are effective not only in rodents, but also in humans, and effective prevention of obesity using these food ingredients is expected. In this review, we introduce the recent findings on the regulatory mechanisms of lipid metabolism by thermogenic adipocytes and food ingredients, demonstrating the potential to activate thermogenic adipocytes and their underlying mechanisms.
Collapse
Affiliation(s)
- Mai Takada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Satoko Kawarasaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Jungin Kwon
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Zheng Ni
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Haruya Takahashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Ribeiro RT, Marcuzzo MB, Carvalho AVS, Palavro R, Castro ET, Pinheiro CV, Bobermin LD, Amaral AU, Leipnitz G, Netto CA, Wajner M. Protective effects of the PPAR agonist bezafibrate against disruption of redox and energy homeostasis, neuronal death, astroglial reactivity, and neuroinflammation induced in vivo by D-2-hydroxyglutaric acid in rat brain. Eur J Pharmacol 2025; 987:177186. [PMID: 39647572 DOI: 10.1016/j.ejphar.2024.177186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
The biochemical hallmark of D-2-hydroxyglutaric aciduria is brain accumulation of D-2-hydroxyglutaric acid (D2HG). Patients present predominantly neurological manifestations, whose pathogenesis is still unknown. Thus, we examined the impact of elevated brain levels of D2HG, induced by intracerebral injection of this metabolite in juvenile rats, on redox and mitochondrial homeostasis and histochemical landmarks in the cerebral cortex. D2HG administration disrupted redox homeostasis by increasing the levels of reactive oxygen species and lipid peroxidation and the activities of superoxide dismutase, glutathione peroxidase, and glutathione reductase and decreasing reduced glutathione levels. Furthermore, the complex IV and mitochondrial creatine kinase activities, as well as the protein contents of voltage-dependent anion channel 1, translocase of outer mitochondrial membrane 20, and peroxisome proliferator-activated receptor-γ coactivator 1-α, were diminished by D2HG, indicating bioenergetics dysfunction and disrupted mitochondrial biogenesis. D2HG also reduced neuronal nuclear protein content and augmented cleaved caspase-3, S100 calcium-binding protein B, glial fibrillary acidic protein, and ionized calcium-binding adaptor molecule 1, indicating neuronal loss, apoptosis, astrogliosis, and microglial activation, respectively. The tumor necrosis factor alpha expression was also significantly augmented, reflecting an increased inflammatory response. We also evaluated whether bezafibrate (BEZ) pretreatment could prevent the alterations induced by D2HG. BEZ normalized most of the D2HG-induced deleterious effects. Therefore, bioenergetics and redox status disruption caused by D2HG, associated with neuronal death, glial reactivity, and increased inflammatory response, may potentially represent pathomechanisms of brain damage in D-2-HGA. Finally, it is proposed that BEZ may be potentially used as therapy for D-2-HGA.
Collapse
Affiliation(s)
- Rafael Teixeira Ribeiro
- Postgraduation Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Manuela Bianchin Marcuzzo
- Postgraduation Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Andrey Vinícios Soares Carvalho
- Postgraduation Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Palavro
- Postgraduation Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ediandra Tissot Castro
- Postgraduation Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Camila Vieira Pinheiro
- Postgraduation Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Postgraduation Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Postgraduation Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Biological Sciences, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, 99709-910, Brazil
| | - Guilhian Leipnitz
- Postgraduation Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Alexandre Netto
- Postgraduation Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Postgraduation Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil.
| |
Collapse
|
20
|
Li X, Li D, Zhang R. Single-Cell RNA sequencing reveals mitochondrial dysfunction in microtia chondrocytes. Sci Rep 2025; 15:1021. [PMID: 39762337 PMCID: PMC11704343 DOI: 10.1038/s41598-025-85169-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
Microtia is a congenital malformation characterized by underdevelopment of the external ear. While chondrocyte dysfunction has been implicated in microtia, the specific cellular abnormalities remain poorly understood. This study aimed to investigate mitochondrial dysfunction in microtia chondrocytes using single-cell RNA sequencing. Cartilage samples were obtained from patients with unilateral, non-syndromic microtia and healthy controls. Single-cell RNA sequencing was performed using the 10 × Genomics platform. Bioinformatic analyses including cell type identification, trajectory analysis, and gene co-expression network analysis were conducted. Mitochondrial function was assessed through ROS levels, membrane potential, and transmission electron microscopy. Chondrocytes from microtia samples showed lower mitochondrial function scores compared to normal samples. Trajectory analysis revealed more disorganized differentiation patterns in microtia chondrocytes. Mitochondrial dysfunction in microtia chondrocytes was confirmed by increased ROS production, decreased membrane potential, and altered mitochondrial structure. Gene co-expression network analysis identified hub genes associated with mitochondrial function, including SDHA, SIRT1, and PGC1A, which showed reduced expression in microtia chondrocytes. This study provides evidence of mitochondrial dysfunction in microtia chondrocytes and identifies potential key genes involved in this process. These findings offer new insights into the pathogenesis of microtia and may guide future therapeutic strategies.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Datao Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ruhong Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
21
|
Yang C, Chen L, Guo X, Sun H, Miao D. The Vitamin D-Sirt1/PGC1α Axis Regulates Bone Metabolism and Counteracts Osteoporosis. J Orthop Translat 2025; 50:211-222. [PMID: 39895866 PMCID: PMC11787469 DOI: 10.1016/j.jot.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/16/2024] [Accepted: 10/31/2024] [Indexed: 02/04/2025] Open
Abstract
Background Objective: Vitamin D insufficiency is a major contributor to osteoporosis. This study aimed to elucidate the mechanisms by which the vitamin D-Sirt1/PGC1α axis regulates bone metabolism and counteracts osteoporosis induced by active vitamin D insufficiency. Methods Mouse models including Sirt1 transgenic (Sirt1Tg), Cyp27b1+/- (active vitamin D deficient), and compound Sirt1TgCyp27b1+/- mice were utilized. Bone parameters were assessed by radiography, micro-CT, histology, and immunohistochemistry. In vitro studies used bone marrow-derived mesenchymal stem cells (BM-MSCs). Gene and protein expression were analyzed by RT-PCR and Western blotting. Chromatin immunoprecipitation and luciferase assays investigated transcriptional regulation. Effects of resveratrol supplementation were examined. Results 1,25-dihydroxyvitamin D (1,25(OH)2D) insufficiency caused downregulation of Sirt1 expression, leading to accelerated bone loss. Overexpression of Sirt1 in mesenchymal stem cells corrected bone loss by inhibiting oxidative stress, DNA damage, osteocyte senescence and senescence-associated secretory phenotype, promoting osteoblastic bone formation, and reducing osteoclastic bone resorption. 1,25(OH)2D3 transcriptionally upregulated Sirt1 expression in BM-MSCs through vitamin D receptor binding to the Sirt1 gene promoter. Resveratrol, a Sirt1 agonist, attenuated osteoporosis induced by 1,25(OH)2D insufficiency by modulating the Sirt1/PGC1α axis. Sirt1 interacted with and deacetylated PGC1α, a transcriptional coactivator involved in mitochondrial biogenesis and energy metabolism. Deacetylated PGC1α mediated the effects of Sirt1 on osteogenesis, oxidative stress, and cellular senescence in BM-MSCs. Conclusion This study elucidated the critical role of the vitamin D-Sirt1/PGC1α axis in regulating bone metabolism and counteracting osteoporosis induced by active vitamin D insufficiency. The findings highlight the potential of this axis as a therapeutic target for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Cuicui Yang
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Lulu Chen
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xiaoli Guo
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Haijian Sun
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
- Department of Orthopedics, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Dengshun Miao
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Lee JE, Kim BG, Won JC. Molecular Pathways in Diabetic Cardiomyopathy and the Role of Anti-hyperglycemic Drugs Beyond Their Glucose Lowering Effect. J Lipid Atheroscler 2025; 14:54-76. [PMID: 39911956 PMCID: PMC11791414 DOI: 10.12997/jla.2025.14.1.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/02/2024] [Accepted: 09/27/2024] [Indexed: 02/07/2025] Open
Abstract
Epidemiological evidence has shown that diabetes is associated with overt heart failure (HF) and worse clinical outcomes. However, the presence of a distinct primary diabetic cardiomyopathy (DCM) has not been easy to prove because the association between diabetes and HF is confounded by hypertension, obesity, microvascular dysfunction, and autonomic neuropathy. In addition, the molecular mechanisms underlying DCM are not yet fully understood, DCM usually remains asymptomatic in the early stage, and no specific biomarkers have been identified. Nonetheless, several mechanistic associations at the systemic, cardiac, and cellular/molecular levels explain different aspects of myocardial dysfunction, including impaired cardiac relaxation, compliance, and contractility. In this review, we focus on recent clinical and preclinical advances in our understanding of the molecular mechanisms of DCM and the role of anti-hyperglycemic agents in preventing DCM beyond their glucose lowering effect.
Collapse
Affiliation(s)
- Jie-Eun Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Byung Gyu Kim
- Division of Cardiology, Department of Internal Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Jong Chul Won
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Li J, Lv M, Yuan Z, Ge J, Geng T, Gong D, Zhao M. PGC-1α Promotes mitochondrial biosynthesis and energy metabolism of goose fatty liver. Poult Sci 2025; 104:104617. [PMID: 39644719 PMCID: PMC11667692 DOI: 10.1016/j.psj.2024.104617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/15/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024] Open
Abstract
To investigate the functions of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in the goose fatty liver, a total of 30 healthy 63-day-old male Landes geese were selected and randomly assigned to control group and overfeeding group. The overexpression or RNA interference assay of PGC-1α was performed in goose primary hepatocytes. Our data showed that the PGC-1α expression was increased in fatty liver. The abundance of mitochondrial biosynthesis-related and energy metabolism-related genes, including mitochondrial transcription factor A (TFAM), mitochondrial transcription factor B1 (TFB1M), mitochondrial transcription factor B2 (TFB2M), nuclear respiratory factor 1 (NRF1), DNA topoisomerase I mitochondrial (TOP1MT), peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC-1β), sirtuin 3 (SIRT3), mitochondrially encoded cytochrome B (CYTB), and AMP-activated protein kinase alpha (AMPKα) were significantly increased in fatty liver. The abundance of TFAM, TFB1M, TFB2M, NRF1, and TOP1MT transcript was induced by PGC-1α overexpression, but inhibited by PGC-1α interference in primary hepatocytes. The mRNA expression levels of PGC-1β, SIRT3, SIRT5, CYTB, and AMPKα were significantly enhanced after PGC-1α overexpression. However, the mRNA expression levels of PGC-1β, SIRT5 and AMPKα were decreased after PGC-1α interference. Furthermore, we observed a significant increase in the mitochondrial DNA (mtDNA) copy number, the activity of mitochondrial respiratory chain complex Ⅳ (MRCC Ⅳ), succinate dehydrogenase (SDH), malate dehydrogenase (MDH), and the NAD+/NADH ratio in fatty liver. But the activity of MRCC Ⅴ, as well as the levels of ADP and ATP in fatty liver were reduced. Additionally, the mtDNA copy number, the activity of MRCC Ⅰ, MRCC Ⅲ-Ⅴ, SDH, and MDH, and NAD+/NADH ratio were enhanced by PGC-1α overexpression; Whereas the mtDNA copy number, the activity of MRCC Ⅰ, SDH, and MDH, and the ratio of NAD+/NADH were inhibited by PGC-1α interference. In conclusion, these findings suggest that PGC-1α improves mitochondrial biosynthesis and energy metabolism in goose fatty liver, which may be an adaptive mechanism for goose fatty liver to cope with steatosis.
Collapse
Affiliation(s)
- Jiahui Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Mengqing Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Zijin Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Jing Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China.
| |
Collapse
|
24
|
Shah IA, Ishaq S, Lee SD, Wu BT. Effects of Exercise Training on Cardiac Mitochondrial Functions in Diabetic Heart: A Systematic Review. Int J Mol Sci 2024; 26:8. [PMID: 39795867 PMCID: PMC11719559 DOI: 10.3390/ijms26010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 01/13/2025] Open
Abstract
A diabetic heart is characterized by fibrosis, autophagy, oxidative stress, and altered mitochondrial functions. For this review, three databases (PubMed, EMBASE, and Web of Science) were searched for articles written in English from September 2023 to April 2024. Studies that used exercise training for at least 3 weeks and which reported positive, negative, or no effects were included. The CAMARADES checklist was used to assess the quality of the included studies, and ten studies (CAMARADES scores 4-7/10) were included. Nine studies showed that exercise training improved cardiac mitochondrial oxidative phosphorylation by decreasing ROS, increasing electron transport chain activity, and enhancing the production of ATP. Eight studies indicated that exercise training ameliorated mitochondrial biogenesis by increasing the levels of AMPK, PGC-1α, Akt, Irisin, and Sirtuin-III. Moreover, four studies focused on mitochondrial dynamics and concluded that exercise training helped decrease the levels of mitochondrial fission factor and dynamin-related protein- 1. Finally, six studies revealed improvements in mitochondrial physiological characteristics such as size, potential, and permeability. Our findings demonstrate the beneficial effects of exercise training on cardiac mitochondrial function in diabetic hearts. Exercise training improves cardiac mitochondrial physiological characteristics, oxidative phosphorylation, biogenesis, and dynamics.
Collapse
Affiliation(s)
- Iqbal Ali Shah
- PhD Program in Healthcare Science, China Medical University, Taichung 40402, Taiwan; (I.A.S.); (S.I.)
| | - Shahid Ishaq
- PhD Program in Healthcare Science, China Medical University, Taichung 40402, Taiwan; (I.A.S.); (S.I.)
| | - Shin-Da Lee
- PhD Program in Healthcare Science, China Medical University, Taichung 40402, Taiwan; (I.A.S.); (S.I.)
- Department of Physical Therapy, China Medical University, Taichung 40402, Taiwan
| | - Bor-Tsang Wu
- Department of Senior Citizen Service Management, National Taichung University of Science and Technology, Taichung 40343, Taiwan;
| |
Collapse
|
25
|
Papakonstantinou I, Tsioufis K, Katsi V. Spotlight on the Mechanism of Action of Semaglutide. Curr Issues Mol Biol 2024; 46:14514-14541. [PMID: 39728000 DOI: 10.3390/cimb46120872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024] Open
Abstract
Initially intended to control blood glucose levels in patients with type 2 diabetes, semaglutide, a potent glucagon-like peptide 1 analogue, has been established as an effective weight loss treatment by controlling appetite. Integrating the latest clinical trials, semaglutide in patients with or without diabetes presents significant therapeutic efficacy in ameliorating cardiometabolic risk factors and physical functioning, independent of body weight reduction. Semaglutide may modulate adipose tissue browning, which enhances human metabolism and exhibits possible benefits in skeletal muscle degeneration, accelerated by obesity and ageing. This may be attributed to anti-inflammatory, mitochondrial biogenesis, antioxidant and autophagy-regulating effects. However, most of the supporting evidence on the mechanistic actions of semaglutide is preclinical, demonstrated in rodents and not actually confirmed in humans, therefore warranting caution in the interpretation. This article aims to explore potential innovative molecular mechanisms of semaglutide action in restoring the balance of several interlinking aspects of metabolism, pointing to distinct functions in inflammation and oxidative stress in insulin-sensitive musculoskeletal and adipose tissues. Moreover, possible applications in protection from infections and anti-aging properties are discussed. Semaglutide enhancement of the core molecular mechanisms involved in the progress of obesity and diabetes, although mostly preclinical, may provide a framework for future research applications in human diseases overall.
Collapse
Affiliation(s)
- Ilias Papakonstantinou
- 4th Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Vasiliki Katsi
- 1st Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| |
Collapse
|
26
|
Bigman G, Rusu ME, Kleckner AS, Sorkin JD, Jin Y, Talegawkar SA, Tanaka T, Ferrucci L, Ryan AS. Plant-Based Diets and Their Associations with Physical Performance in the Baltimore Longitudinal Study of Aging. Nutrients 2024; 16:4249. [PMID: 39683645 PMCID: PMC11644655 DOI: 10.3390/nu16234249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Plant-based diets are associated with various health benefits; however, their impact on physical performance in aging populations remains unclear. OBJECTIVES To investigate the associations between adherence to plant-based diets and physical performance, focusing on their potential protective effects against age-related declines in function. METHODS Data were obtained from men and women aged 40 years or older in the Baltimore Longitudinal Study of Aging (BLSA) (mean ± SD age: 68 ± 13 years at the first dietary visit; n = 1389). Dietary intake was assessed using a food frequency questionnaire (FFQ). Plant-based diets, calculated from 18 food groups, were categorized as overall (PDI), healthful (hPDI), or unhealthful (uPDI), and their tertiles across visits were analyzed. Multivariable linear mixed-effects models were used to examine the association between repeated measurements of three physical performance outcomes-Short Physical Performance Battery (SPPB), grip strength (kg), and gait speed (m/s)-and adherence to each plant-based diet. RESULTS In fully adjusted models, SPPB and grip strength were significantly associated with both hPDI and uPDI, but not with PDI. For hPDI, the intermediate tertile showed the greatest benefit, with SPPB scores 0.5 points higher (βT2vs.T1 = 0.50, 95% CI: 0.30-0.70, p < 0.001) over the follow-up period. In contrast, for uPDI, a 0.27-point lower SPPB score was seen (βT3vs.T1 = -0.27, 95% CI: -0.48 to -0.07, p = 0.009). Longitudinally, grip strength was positively associated with hPDI (βT3vs.T1 = 1.14, 95% CI: 0.24-2.05, p = 0.0013). Similar results were observed in older adults aged ≥65 years. CONCLUSIONS Adherence to hPDI may benefit lower body function and muscle strength, while uPDI appears to have adverse effects. This suggests that the quality of plant-based foods is essential for maintaining functional well-being in older adults. Further research is needed to confirm these findings, explore underlying mechanisms, and identify strategies to optimize plant-based dietary patterns for aging populations.
Collapse
Affiliation(s)
- Galya Bigman
- Division of Gerontology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Amber S. Kleckner
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD 21201, USA;
| | - John D. Sorkin
- Baltimore Veterans Affairs Medical Center, Division of Gerontology, Geriatrics and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.D.S.); (A.S.R.)
- Baltimore Geriatric Research, Education and Clinical Center, Veterans Affairs Maryland Health Care System, Baltimore, MD 21201, USA
| | - Yichen Jin
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC 20037, USA; (Y.J.); (S.A.T.)
| | - Sameera A. Talegawkar
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC 20037, USA; (Y.J.); (S.A.T.)
| | - Toshiko Tanaka
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA; (T.T.); (L.F.)
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA; (T.T.); (L.F.)
| | - Alice S. Ryan
- Baltimore Veterans Affairs Medical Center, Division of Gerontology, Geriatrics and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.D.S.); (A.S.R.)
- Baltimore Geriatric Research, Education and Clinical Center, Veterans Affairs Maryland Health Care System, Baltimore, MD 21201, USA
| |
Collapse
|
27
|
Bonato A, Raparelli G, Caruso M. Molecular pathways involved in the control of contractile and metabolic properties of skeletal muscle fibers as potential therapeutic targets for Duchenne muscular dystrophy. Front Physiol 2024; 15:1496870. [PMID: 39717824 PMCID: PMC11663947 DOI: 10.3389/fphys.2024.1496870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the gene encoding dystrophin, a subsarcolemmal protein whose absence results in increased susceptibility of the muscle fiber membrane to contraction-induced injury. This results in increased calcium influx, oxidative stress, and mitochondrial dysfunction, leading to chronic inflammation, myofiber degeneration, and reduced muscle regenerative capacity. Fast glycolytic muscle fibers have been shown to be more vulnerable to mechanical stress than slow oxidative fibers in both DMD patients and DMD mouse models. Therefore, remodeling skeletal muscle toward a slower, more oxidative phenotype may represent a relevant therapeutic approach to protect dystrophic muscles from deterioration and improve the effectiveness of gene and cell-based therapies. The resistance of slow, oxidative myofibers to DMD pathology is attributed, in part, to their higher expression of Utrophin; there are, however, other characteristics of slow, oxidative fibers that might contribute to their enhanced resistance to injury, including reduced contractile speed, resistance to fatigue, increased capillary density, higher mitochondrial activity, decreased cellular energy requirements. This review focuses on signaling pathways and regulatory factors whose genetic or pharmacologic modulation has been shown to ameliorate the dystrophic pathology in preclinical models of DMD while promoting skeletal muscle fiber transition towards a slower more oxidative phenotype.
Collapse
Affiliation(s)
| | | | - Maurizia Caruso
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Monterotondo (RM), Italy
| |
Collapse
|
28
|
Gray V, Chen W, Tan RJY, Teo JMN, Huang Z, Fong CHY, Law TWH, Ye ZW, Yuan S, Bao X, Hung IFN, Tan KCB, Lee CH, Ling GS. Hyperglycemia-triggered lipid peroxidation destabilizes STAT4 and impairs anti-viral Th1 responses in type 2 diabetes. Cell Metab 2024; 36:2511-2527.e7. [PMID: 39488214 DOI: 10.1016/j.cmet.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/08/2024] [Accepted: 10/04/2024] [Indexed: 11/04/2024]
Abstract
Patients with type 2 diabetes (T2D) are more susceptible to severe respiratory viral infections, but the underlying mechanisms remain elusive. Here, we show that patients with T2D and coronavirus disease 2019 (COVID-19) infections, and influenza-infected T2D mice, exhibit defective T helper 1 (Th1) responses, which are an essential component of anti-viral immunity. This defect stems from intrinsic metabolic perturbations in CD4+ T cells driven by hyperglycemia. Mechanistically, hyperglycemia triggers mitochondrial dysfunction and excessive fatty acid synthesis, leading to elevated oxidative stress and aberrant lipid accumulation within CD4+ T cells. These abnormalities promote lipid peroxidation (LPO), which drives carbonylation of signal transducer and activator of transcription 4 (STAT4), a crucial Th1-lineage-determining factor. Carbonylated STAT4 undergoes rapid degradation, causing reduced T-bet induction and diminished Th1 differentiation. LPO scavenger ameliorates Th1 defects in patients with T2D who have poor glycemic control and restores viral control in T2D mice. Thus, this hyperglycemia-LPO-STAT4 axis underpins reduced Th1 activity in T2D hosts, with important implications for managing T2D-related viral complications.
Collapse
Affiliation(s)
- Victor Gray
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Weixin Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Rachael Julia Yuenyinn Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jia Ming Nickolas Teo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zhihao Huang
- Department of Chemistry, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| | - Carol Ho-Yi Fong
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Tommy Wing Hang Law
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Zi-Wei Ye
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Shuofeng Yuan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China; State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xiucong Bao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Kathryn Choon-Beng Tan
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.
| | - Chi-Ho Lee
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.
| | - Guang Sheng Ling
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China; The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
29
|
Cheng IS, Tsao JP, Bernard JR, Tsai TW, Chang CC, Liao SF. Oral post-exercise garlic extract supplementation enhances glycogen replenishment but does not up-regulate mitochondria biogenesis mRNA expression in human-exercised skeletal muscle. J Int Soc Sports Nutr 2024; 21:2336095. [PMID: 38576169 PMCID: PMC11000618 DOI: 10.1080/15502783.2024.2336095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/10/2024] [Indexed: 04/06/2024] Open
Abstract
PURPOSE Garlic extract (GA) is purported to enhance antioxidant and anti-inflammatory activity and glucose regulation in humans. The present study investigated the effects of post-exercise GA supplementation on GLUT4 expression, glycogen replenishment, and the transcript factors involved with mitochondrial biosynthesis in exercised human skeletal muscle. METHODS The single-blinded crossover counterbalanced study was completed by 12 participants. Participants were randomly divided into either GA (2000 mg of GA) or placebo trials immediately after completing a single bout of cycling exercise at 75% Maximal oxygen uptake (VO2max) for 60 minutes. Participants consumed either GA (2000 mg) or placebo capsules with a high glycemic index carbohydrate meal (2 g carb/body weight) immediately after exercise. Muscle samples were collected at 0-h and 3-h post-exercise. Muscle samples were used to measure glycogen levels, GLUT4 protein expression, as well as transcription factors for glucose uptake, and mitochondria biogenesis. Plasma glucose, insulin, glycerol, non-esterified fatty acid (NEFA) concentrations, and respiratory exchange ratio (RER) were also analyzed during the post-exercise recovery periods. RESULTS Skeletal muscle glycogen replenishment was significantly elevated during the 3-h recovery period for GA concurrent with no difference in GLUT4 protein expression between the garlic and placebo trials. PGC1-α gene expression was up-regulated for both GA and placebo after exercise (p < 0.05). Transcript factors corresponding to muscle mitochondrial biosynthesis were significantly enhanced under acute garlic supplementation as demonstrated by TFAM and FIS1. However, the gene expression of SIRT1, ERRα, NFR1, NFR2, MFN1, MFN2, OPA1, Beclin-1, DRP1 were not enhanced, nor were there any improvements in GLUT4 expression, following post-exercise garlic supplementation. CONCLUSION Acute post-exercise garlic supplementation may improve the replenishment of muscle glycogen, but this appears to be unrelated to the gene expression for glucose uptake and mitochondrial biosynthesis in exercised human skeletal muscle.
Collapse
Affiliation(s)
- I-Shiung Cheng
- National Taichung University of Education, Department of Physical Education, Taichung City, Taiwan
| | - Jung-Piao Tsao
- Department of Sports Medicine, China Medical University, Taichung City, Taiwan
| | - Jeffrey R. Bernard
- Department of Kinesiology and Public Health Promotion,California State University, Stanislaus, Turlock, USA
| | - Tsen-Wei Tsai
- Department of Nursing, Taichung, China Medical University Hospital, Taiwan
| | - Chia-Chen Chang
- College of HuilanNational Dong Hwa University, Physical Education Center, Hualien, Taiwan
| | - Su-Fen Liao
- Department of Physical Medicine and Rehabilitation, Changhua Christian Hospital, Changhua, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
30
|
Safreena N, Nair IC, Chandra G. Therapeutic potential of Parkin and its regulation in Parkinson's disease. Biochem Pharmacol 2024; 230:116600. [PMID: 39500382 DOI: 10.1016/j.bcp.2024.116600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/05/2024] [Accepted: 10/28/2024] [Indexed: 11/14/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the midbrain substantia nigra, resulting in motor and non-motor symptoms. While the exact etiology of PD remains elusive, a growing body of evidence suggests that dysfunction in the parkin protein plays a pivotal role in the pathogenesis of the disease. Parkin is an E3 ubiquitin ligase that ubiquitinates substrate proteins to control a number of crucial cellular processes including protein catabolism, immune response, and cellular apoptosis.While autosomal recessive mutations in the PARK2 gene, which codes for parkin, are linked to an inherited form of early-onset PD, heterozygous mutations in PARK2 have also been reported in the more commonly occurring sporadic PD cases. Impairment of parkin's E3 ligase activity is believed to play a pathogenic role in both familial and sporadic forms of PD.This article provides an overview of the current understanding of the mechanistic basis of parkin's E3 ligase activity, its major physiological role in controlling cellular functions, and how these are disrupted in familial and sporadic PD. The second half of the manuscript explores the currently available and potential therapeutic strategies targeting parkin structure and/or function in order to slow down or mitigate the progressive neurodegeneration in PD.
Collapse
Affiliation(s)
- Narukkottil Safreena
- Cell Biology Laboratory, Center for Development and Aging Research, Inter University Center for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam 686009, Kerala, India
| | - Indu C Nair
- SAS SNDP Yogam College, Konni, Pathanamthitta 689691, Kerala, India
| | - Goutam Chandra
- Cell Biology Laboratory, Center for Development and Aging Research, Inter University Center for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam 686009, Kerala, India.
| |
Collapse
|
31
|
Mooers EA, Johnson HM, Michalkiewicz T, Rana U, Joshi C, Afolayan AJ, Teng RJ, Konduri GG. Aberrant PGC-1α signaling in a lamb model of persistent pulmonary hypertension of the newborn. Pediatr Res 2024; 96:1636-1644. [PMID: 38844539 DOI: 10.1038/s41390-024-03223-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/26/2024] [Accepted: 03/24/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND Persistent Pulmonary Hypertension of the Newborn (PPHN) is characterized by elevated pulmonary vascular resistance (PVR), resulting in hypoxemia. Impaired angiogenesis contributes to high PVR. Pulmonary artery endothelial cells (PAECs) in PPHN exhibit decreased mitochondrial respiration and angiogenesis. We hypothesize that Peroxisome Proliferator-Activated Receptor Gamma Co-Activator-1α (PGC-1α) downregulation leads to reduced mitochondrial function and angiogenesis in PPHN. METHODS Studies were performed in PAECs isolated from fetal lambs with PPHN induced by ductus arteriosus constriction, with gestation-matched controls and in normal human umbilical vein endothelial cells (HUVECs). PGC-1α was knocked downed in control lamb PAECs and HUVECs and overexpressed in PPHN PAECs to investigate the effects on mitochondrial function and angiogenesis. RESULTS PPHN PAECs had decreased PGC-1α expression compared to controls. PGC-1α knockdown in HUVECs led to reduced Nuclear Respiratory Factor-1 (NRF-1), Transcription Factor-A of Mitochondria (TFAM), and mitochondrial electron transport chain (ETC) complexes expression. PGC-1α knockdown in control PAECs led to decreased in vitro capillary tube formation, cell migration, and proliferation. PGC-1α upregulation in PPHN PAECs led to increased ETC complexes expression and improved tube formation, cell migration, and proliferation. CONCLUSION PGC-1α downregulation contributes to reduced mitochondrial oxidative phosphorylation through control of the ETC complexes, thereby affecting angiogenesis in PPHN. IMPACT Reveals a novel mechanism for angiogenesis dysfunction in persistent pulmonary hypertension of the newborn (PPHN). Identifies a key mitochondrial transcription factor, Peroxisome Proliferator-Activated Receptor Gamma Co-Activator-1α (PGC-1α), as contributing to the altered adaptation and impaired angiogenesis function that characterizes PPHN through its regulation of mitochondrial function and oxidative phosphorylation. May provide translational significance as this mechanism offers a new therapeutic target in PPHN, and efforts to restore PGC-1α expression may improve postnatal transition in PPHN.
Collapse
Affiliation(s)
- Emily A Mooers
- Institutional Affiliation (of all authors): Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.
| | - Hollis M Johnson
- Institutional Affiliation (of all authors): Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA
| | - Teresa Michalkiewicz
- Institutional Affiliation (of all authors): Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA
| | - Ujala Rana
- Institutional Affiliation (of all authors): Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA
| | - Chintamani Joshi
- Institutional Affiliation (of all authors): Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA
| | - Adeleye J Afolayan
- Institutional Affiliation (of all authors): Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA
| | - Ru-Jeng Teng
- Institutional Affiliation (of all authors): Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA
| | - Girija G Konduri
- Institutional Affiliation (of all authors): Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA
| |
Collapse
|
32
|
Zhao Y, Yang M, Liang X. The role of mitochondria in iron overload-induced damage. J Transl Med 2024; 22:1057. [PMID: 39587666 PMCID: PMC11587765 DOI: 10.1186/s12967-024-05740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/06/2024] [Indexed: 11/27/2024] Open
Abstract
Iron overload is a pathological condition characterized by the abnormal accumulation of iron within the body, which may result from excessive iron intake, disorders of iron metabolism, or specific disease states. This condition can lead to significant health complications and may pose life-threatening risks. The excessive accumulation of iron can induce cellular stress, adversely affecting the structure and function of mitochondria, thereby compromising overall organ function. Given the critical role of mitochondria in cellular metabolism and homeostasis, it is imperative to investigate how mitochondrial dysfunction induced by iron overload contributes to disease progression, as well as to explore mitochondrial-related pathways as potential therapeutic targets for various iron overload disorders. This review examines the mechanisms by which mitochondria are implicated in iron overload-induced damage, including increased oxidative stress, mitochondrial DNA damage, and disruptions in energy metabolism. Additionally, it addresses the relationship between these processes and various forms of programmed cell death, as well as alterations in mitochondrial dynamics. Furthermore, the review discusses strategies aimed at alleviating and mitigating the complications associated with iron overload in patients by targeting mitochondrial pathways.
Collapse
Affiliation(s)
- Yangyang Zhao
- Department of Transfusion, Affiliated Hospital of North Sichuan Medical college, Nanchong, Sichuan, P.R. China
| | - Mengjiao Yang
- Department of Cardiovascular Surgery, Affiliated Hospital of North Sichuan Medical college, Nanchong, Sichuan, P.R. China
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Xiaoxue Liang
- Chengdu Qingbaijiang District People's Hospital, Chengdu, 610300, Sichuan, P.R. China.
| |
Collapse
|
33
|
Huang T, Lam XJ, Lim CT, Jusoh N, Fakurazi S, Cheah PS, Ling KH. Understanding perspectives and research trends in Down syndrome neuropathogenesis: A bibliometric analysis. JOURNAL OF INTELLECTUAL DISABILITIES : JOID 2024:17446295241299160. [PMID: 39533897 DOI: 10.1177/17446295241299160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Down syndrome (DS), characterised by compromised brain development and intellectual challenges, often manifests Alzheimer's disease (AD) -like symptoms. Utilising the Web of Science Core Collection (WOSCC) database from January 1, 2000, to July 31, 2023, we conducted a comprehensive bibliometric analysis using VOSviewer, CiteSpace, and the R package "bibliometrix." Analyses included co-authorship, co-citation, co-occurrence, cooperative network, reference, and keyword burst citation. Analysing 5,082 papers, the U.S. demonstrated prominence with the highest number of research organisations and citations. Keyword analysis revealed promising research areas, including "Alzheimer's disease," "development," "inflammation," and "neurogenesis". This 22-year survey of the brain with trisomy 21 research unveils key trends, contributors, and focal areas in DS neuropathogenesis. Notably, Alzheimer 's-related genes and proteins play a pervasive role in DS neuropathological processes across patients' lifespans. The study contributes foundational knowledge for advancing research and care in the DS neuropathogenesis domain.
Collapse
Affiliation(s)
- Tan Huang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Xin-Jieh Lam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Chong-Teik Lim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Norhazlin Jusoh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
- Malaysian Research Institute on Ageing (MyAgeing®), Universiti Putra Malaysia, Malaysia
| |
Collapse
|
34
|
Paraskevaidis I, Kourek C, Farmakis D, Tsougos E. Heart Failure: A Deficiency of Energy-A Path Yet to Discover and Walk. Biomedicines 2024; 12:2589. [PMID: 39595155 PMCID: PMC11592498 DOI: 10.3390/biomedicines12112589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Heart failure is a complex syndrome and our understanding and therapeutic approach relies mostly on its phenotypic presentation. Notably, the heart is characterized as the most energy-consuming organ, being both a producer and consumer, in order to satisfy multiple cardiac functions: ion exchange, electromechanical coordination, excitation-contraction coupling, etc. By obtaining further knowledge of the cardiac energy field, we can probably better characterize the basic pathophysiological events occurring in heart disease patients and understand the metabolic substance changes, the relationship between the alteration of energy production/consumption, and hence energetic deficiency not only in the heart as a whole but in every single cardiac territory, which will hopefully provide us with the opportunity to uncover the beginning of the heart failure process. In this respect, using (a) newer imaging techniques, (b) biomedicine, (c) nanotechnology, and (d) artificial intelligence, we can gain a deeper understanding of this complex syndrome. This, in turn, can lead to earlier and more effective therapeutic approaches, ultimately improving human health. To date, the scientific community has not given sufficient attention to the energetic starvation model. In our view, this review aims to encourage scientists and the medical community to conduct studies for a better understanding and treatment of this syndrome.
Collapse
Affiliation(s)
- Ioannis Paraskevaidis
- 6th Department of Cardiology, Hygeia Hospital, 151 23 Athens, Greece; (I.P.); (E.T.)
| | - Christos Kourek
- Department of Cardiology, 417 Army Share Fund Hospital of Athens (NIMTS), 115 21 Athens, Greece;
| | - Dimitrios Farmakis
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital, Medical School, National and Kapodistiran University of Athens, 124 62 Athens, Greece
| | - Elias Tsougos
- 6th Department of Cardiology, Hygeia Hospital, 151 23 Athens, Greece; (I.P.); (E.T.)
| |
Collapse
|
35
|
Wu Y, Liu R, Wei C, Wang X, Wu X, Li Y, Xu M. Exogenous Nucleotides Mitigate Cardiac Aging in SAMP8 Mice by Modulating Energy Metabolism Through AMPK Pathway. Nutrients 2024; 16:3851. [PMID: 39599637 PMCID: PMC11597617 DOI: 10.3390/nu16223851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is the predominant cause of mortality, with aging being a significant risk factor. Nucleotides (NTs), essential for numerous biological functions, are particularly vital under conditions like aging, starvation, and nutrient deficiency. Although the antiaging benefits of exogenous NTs have been recognized in various systems, their cardiac-specific effects are not well understood. This study, therefore, investigated the impact of exogenous NTs on cardiac aging and delved into the potential mechanisms. METHODS Senescence-accelerated mouse prone-8 (SAMP8) mice were utilized, randomly assigned to one of three groups: a control group (Control), a low-dose NTs group (NTs_L), and a high-dose NTs group (NTs_H). Meanwhile, senescence-accelerated mouse resistant 1 (SAMR1) mice were set up as the SAMR1 group. Following a 9-month intervention, cardiac tissues were subjected to analysis. RESULTS The results showed that NTs improved the morphological structure of the cardiac tissue, enhanced the antioxidant capacity, and mitigated inflammation. Metabolomics analysis revealed that the high-dose NT intervention improved cardiac tissue energy metabolism, potentially through activating the AMPK pathway, enhanced mitochondrial biogenesis, and increased TFAM protein expression. CONCLUSIONS Together, these results indicate that exogenous NTs exert beneficial effects on the cardiac tissues of SAMP8 mice, potentially mitigating the cardiac aging process.
Collapse
Affiliation(s)
- Yuxiao Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Rui Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Chan Wei
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Xiujuan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Xin Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| |
Collapse
|
36
|
Oyovwi MO, Ugwuishi EW, Udi OA, Uchechukwu GJ. Mitophagy Unveiled: Exploring the Nexus of Mitochondrial Health and Neuroendocrinopathy. J Mol Neurosci 2024; 74:107. [PMID: 39514132 DOI: 10.1007/s12031-024-02280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Mitochondria play a pivotal role in cellular metabolism, energy production, and apoptotic signaling, making mitophagy, the selective degradation of damaged mitochondria, crucial for mitochondrial health. Dysregulation of mitophagy has been implicated in various neuroendocrinopathies, yet the mechanisms linking these processes remain poorly understood. This review aims to explore the intersection between mitophagy and neuroendocrinopathy, addressing the critical gaps in knowledge regarding how mitochondrial dysfunction may contribute to the pathophysiology of neuroendocrine disorders. We conducted a comprehensive literature review of studies published on mitophagy and neuroendocrinopathies, focusing on data that elucidate the pathways involved and the clinical implications of mitochondrial health in neuroendocrine contexts. Our findings indicate that altered mitophagy may lead to the accumulation of dysfunctional mitochondria, contributing to neuroendocrine dysregulation. We present evidence linking impaired mitochondrial clearance to disease models of conditions such as metabolic syndrome, depression, and stress-related disorders, highlighting the potential for therapeutic interventions targeting mitophagy. While significant advances have been made in understanding mitochondrial biology, the direct interplay between mitophagy and neuroendocrinopathies remains underexplored. This review underscores the necessity for further research to elucidate these connections, which may offer novel insights into disease mechanisms and therapeutic strategies for treating maladaptive neuroendocrine responses.
Collapse
Affiliation(s)
- Mega Obukohwo Oyovwi
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria.
| | | | - Onoriode Andrew Udi
- Department of Human Anatomy, Federal University Otuoke, Otuoke, Bayelsa State, Nigeria
| | - Gregory Joseph Uchechukwu
- Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| |
Collapse
|
37
|
Milutinović M, Ćujić Nikolić N, Cvetković T, Šavikin K, Djordjević I, Janković Veličković L, Randjelović M, Miladinović B, Branković S, Kitić D. Chokeberry Products and By-Products as the Potential Pharmaceuticals for Kidney Protection-An Experimental Study in Rats. PLANTS (BASEL, SWITZERLAND) 2024; 13:3136. [PMID: 39599345 PMCID: PMC11597244 DOI: 10.3390/plants13223136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
The study aimed to investigate the protective effects of chokeberry fruit products and by-products against cisplatin-induced acute nephrotoxicity in rats. Potential mechanisms involving oxidative stress and inflammatory responses were examined through biochemical and histopathological analyses of kidney tissue. Chokeberry waste, along with the whole fruit extract and juice, was evaluated as a potential raw material for pharmaceutical use. The chemical composition of chokeberry juice and extracts was analyzed using spectrophotometry and HPLC. Rats were treated with chokeberry preparations via intragastric tube for ten days, with a single intraperitoneal dose of cisplatin (8 mg/kg BW) administered on the third day. Post-sacrifice, plasma samples were analyzed for biochemical nephrotoxicity markers, oxidative stress, and inflammatory markers. Kidneys were removed for histopathological and biochemical analysis. Cisplatin-induced acute nephrotoxicity was confirmed by elevated plasma creatinine and blood urea nitrogen levels. Additionally, lipid peroxidation was significantly elevated, while reduced glutathione and catalase activity were significantly reduced. Pro-inflammatory mediators IL-1β, TNF-α, and IL-6 levels were significantly increased in the cisplatin group. Treatment with chokeberry extracts and juice significantly mitigated these nephrotoxic effects, as confirmed by histopathological examination and biochemical marker analysis. Notably, the waste extract demonstrated greater efficacy than the whole fruit extract, likely due to its higher concentration of polyphenolic compounds, especially anthocyanins. These results highlight the potential of chokeberry as a therapeutic and preventive agent for kidney protection, emphasizing the value of by-products rich in biologically active compounds.
Collapse
Affiliation(s)
- Milica Milutinović
- Department of Pharmacy, Faculty of Medicine, University of Niš, Bul. Dr Zorana Đinđića 81, 18000 Niš, Serbia; (M.R.); (B.M.)
| | - Nada Ćujić Nikolić
- Institute of Medicinal Plants Research, Dr Josif Pančić, Tadeuša Koščuška 1, 11000 Beograd, Serbia; (N.Ć.N.); (K.Š.)
| | - Tatjana Cvetković
- Institute of Biochemistry, Faculty of Medicine, University of Niš, Bul. Dr Zorana Đinđića 81, 18000 Niš, Serbia;
- Centre of Medical and Clinical Biochemistry, University Clinical Centre, Bul. Dr Zorana Đinđića 48, 18000 Niš, Serbia
| | - Katarina Šavikin
- Institute of Medicinal Plants Research, Dr Josif Pančić, Tadeuša Koščuška 1, 11000 Beograd, Serbia; (N.Ć.N.); (K.Š.)
| | - Ivana Djordjević
- Pathology and Pathological Anatomy Center, University Clinical Centre, Bul. Dr Zorana Đinđića 48, 18000 Niš, Serbia; (I.D.); (L.J.V.)
| | - Ljubinka Janković Veličković
- Pathology and Pathological Anatomy Center, University Clinical Centre, Bul. Dr Zorana Đinđića 48, 18000 Niš, Serbia; (I.D.); (L.J.V.)
| | - Milica Randjelović
- Department of Pharmacy, Faculty of Medicine, University of Niš, Bul. Dr Zorana Đinđića 81, 18000 Niš, Serbia; (M.R.); (B.M.)
| | - Bojana Miladinović
- Department of Pharmacy, Faculty of Medicine, University of Niš, Bul. Dr Zorana Đinđića 81, 18000 Niš, Serbia; (M.R.); (B.M.)
| | - Suzana Branković
- Department of Physiology, Faculty of Medicine, University of Niš, Bul. Dr Zorana Đinđića 81, 18000 Niš, Serbia;
| | - Dušanka Kitić
- Department of Pharmacy, Faculty of Medicine, University of Niš, Bul. Dr Zorana Đinđića 81, 18000 Niš, Serbia; (M.R.); (B.M.)
| |
Collapse
|
38
|
Zhang IW, Sánchez-Rodríguez MB, López-Vicario C, Casulleras M, Duran-Güell M, Flores-Costa R, Aguilar F, Rothe M, Segalés P, García-Ruiz C, Fernández-Checa JC, Trebicka J, Arroyo V, Clària J. Palmitoylcarnitine impairs immunity in decompensated cirrhosis. JHEP Rep 2024; 6:101187. [PMID: 39524205 PMCID: PMC11544064 DOI: 10.1016/j.jhepr.2024.101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 11/16/2024] Open
Abstract
Background & Aims In patients with cirrhosis, acute decompensation (AD) correlates with a hyperinflammatory state driven by mitochondrial dysfunction, which is a significant factor in the progression toward acute-on-chronic liver failure (ACLF). Elevated circulating levels of acylcarnitine, indicative of mitochondrial dysfunction, are predictors of mortality in ACLF patients. Our hypothesis posits that acylcarnitines not only act as biomarkers, but also actively exert detrimental effects on circulating immune cells. Methods Plasma acylcarnitine levels were measured in 20 patients with AD cirrhosis and 10 healthy individuals. The effects of selected medium- and long-chain acylcarnitines on mitochondrial function were investigated in peripheral leucocytes from healthy donors by determining mitochondrial membrane potential (Δψm) and mitochondrial respiration using the JC-1 dye and Agilent Seahorse XF technology. Changes regarding mitochondrial ultrastructure and redox systems were assessed by transmission electron microscopy and gene and protein expression analysis. Results Plasma levels of several acylcarnitine species were significantly elevated in patients with AD cirrhosis compared with healthy individuals, alongside increased levels of inflammatory mediators (cytokines and chemokines). Notably, the long-chain acylcarnitine palmitoylcarnitine (C16:0-carnitine, 1.51-fold higher, p = 0.0059) impaired Δψm and reduced the spare respiratory capacity of peripheral mononuclear leucocytes. Additionally, C16:0-carnitine induced mitochondrial oxidative stress, suppressed the expression of the antioxidant gene HMOX1, and increased CXCL8 expression and IL-8 release. Etomoxir, which blocks acylcarnitine entry into the mitochondria, reversed the suppression of HMOX1. Similarly, trimetazidine, a fatty acid beta-oxidation inhibitor, prevented C16:0-carnitine-induced CXCL8 expression. Importantly, oxidative stress and Δψm impairment caused by C16:0-carnitine were less severe in the presence of albumin, a standard therapy for AD cirrhosis. Conclusions Our findings suggest that long-chain acylcarnitines induce mitochondrial injury in immune cells, thereby contributing to the development of immune dysfunction associated with cirrhosis. Impact and implications Patients with acute decompensation of cirrhosis and acute-on-chronic liver failure (ACLF) display a systemic hyperinflammatory state and leukocyte mitochondrial dysfunction. We discovered that apart from being increased in the circulation of these patients, the long-chain palmitoylcarnitine is able to elicit cytokine secretion paired with mitochondrial dysfunction in leukocytes from healthy donors. In particular, we show that inhibiting the metabolism of palmitoylcarnitine could reverse these detrimental effects. Our findings underline the importance of immunometabolism as a treatment target in patients with acute decompensation of cirrhosis and ACLF.
Collapse
Affiliation(s)
- Ingrid Wei Zhang
- Biochemistry and Molecular Genetics Service, Hospital Clínic, IDIBAPS, Barcelona, Spain
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols Chair, Barcelona, Spain
| | | | - Cristina López-Vicario
- Biochemistry and Molecular Genetics Service, Hospital Clínic, IDIBAPS, Barcelona, Spain
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols Chair, Barcelona, Spain
- Biomedical Research Network on Hepatic and Digestive Diseases (CIBERehd), Spain
| | - Mireia Casulleras
- Biochemistry and Molecular Genetics Service, Hospital Clínic, IDIBAPS, Barcelona, Spain
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols Chair, Barcelona, Spain
| | - Marta Duran-Güell
- Biochemistry and Molecular Genetics Service, Hospital Clínic, IDIBAPS, Barcelona, Spain
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols Chair, Barcelona, Spain
| | - Roger Flores-Costa
- Biochemistry and Molecular Genetics Service, Hospital Clínic, IDIBAPS, Barcelona, Spain
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols Chair, Barcelona, Spain
| | - Ferran Aguilar
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols Chair, Barcelona, Spain
| | | | - Paula Segalés
- Biomedical Research Network on Hepatic and Digestive Diseases (CIBERehd), Spain
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, IDIBAPS, Barcelona, Spain
| | - Carmen García-Ruiz
- Biomedical Research Network on Hepatic and Digestive Diseases (CIBERehd), Spain
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, IDIBAPS, Barcelona, Spain
- Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - José C. Fernández-Checa
- Biomedical Research Network on Hepatic and Digestive Diseases (CIBERehd), Spain
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, IDIBAPS, Barcelona, Spain
- Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jonel Trebicka
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols Chair, Barcelona, Spain
- Department of Internal Medicine B, University of Münster, Münster, Germany
| | - Vicente Arroyo
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols Chair, Barcelona, Spain
| | - Joan Clària
- Biochemistry and Molecular Genetics Service, Hospital Clínic, IDIBAPS, Barcelona, Spain
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols Chair, Barcelona, Spain
- Biomedical Research Network on Hepatic and Digestive Diseases (CIBERehd), Spain
- Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
39
|
Sauer B, Kueckelhaus J, Lorenz NI, Bozkurt S, Schulte D, Weinem J, Benzarti M, Meiser J, Urban H, Villa G, Harter PN, Münch C, Rieger J, Steinbach JP, Heiland DH, Ronellenfitsch MW. An AMP-activated protein kinase-PGC-1α axis mediates metabolic plasticity in glioblastoma. Clin Transl Med 2024; 14:e70030. [PMID: 39552019 PMCID: PMC11570551 DOI: 10.1002/ctm2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 11/19/2024] Open
Abstract
Glioblastoma, the most frequent primary malignant brain tumour in adults, is characterised by profound yet dynamic hypoxia and nutrient depletion. To sustain survival and proliferation, tumour cells are compelled to acquire metabolic plasticity with the induction of adaptive metabolic programs. Here, we interrogated the pathways necessary to enable processing of nutrients other than glucose. We employed genetic approaches (stable/inducible overexpression, CRISPR/Cas9 knockout), pharmacological interventions with a novel inhibitor of AMP-activated protein kinase (AMPK) in glioblastoma cell culture systems and a proteomic approach to investigate mechanisms of metabolic plasticity. Moreover, a spatially resolved multiomic analysis was employed to correlate the gene expression pattern of PGC-1α with the local metabolic and genetic architecture in human glioblastoma tissue sections. A switch from glucose to alternative nutrients triggered an activation of AMPK, which in turn activated PGC-1α-dependent adaptive programs promoting mitochondrial metabolism. This sensor-effector mechanism was essential for metabolic plasticity with both functional AMPK and PGC-1α necessary for survival and growth of cells under nonglucose nutrient sources. In human glioblastoma tissue specimens, PGC-1α-expression correlated with nonhypoxic tumour niches defining a specific metabolic compartment. Our findings reveal a cell-intrinsic nutrient sensing and switching mechanism. The exposure to alternative fuels triggers a starvation signal that subsequently is passed on via AMPK and PGC-1α to induce adaptive programs necessary for broader spectrum nutrient metabolism. The integration of spatially resolved transcriptomic data confirms the relevance of PGC-1α especially in nonhypoxic tumour regions. Thus, the AMPK-PGC-1α axis is a candidate for therapeutic inhibition in glioblastoma. KEY POINTS/HIGHLIGHTS: AMPK activation induces PGC-1α expression in glioblastoma during nutrient scarcity. PGC-1α enables metabolic plasticity by facilitating metabolism of alternative nutrients in glioblastoma. PGC-1α expression is inversely correlated with hypoxic tumour regions in human glioblastomas.
Collapse
Affiliation(s)
- Benedikt Sauer
- Dr. Senckenberg Institute of NeurooncologyUniversity HospitalGoethe University FrankfurtFrankfurt am MainGermany
- University Cancer Center Frankfurt (UCT), University HospitalGoethe University FrankfurtFrankfurt am MainGermany
- German Cancer Consortium (DKTK), partner site Frankfurt, a partnership between DKFZ and University Hospital FrankfurtGoethe University FrankfurtFrankfurt am MainGermany
- Frankfurt Cancer Institute (FCI)University HospitalGoethe University FrankfurtFrankfurt am MainGermany
| | - Jan Kueckelhaus
- Microenvironment and Immunology Research LaboratoryMedical CenterUniversity of FreiburgFreiburgGermany
- Department of NeurosurgeryMedical CenterUniversity of FreiburgFreiburgGermany
- Faculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of Medicine and Medical CenterComprehensive Cancer Center Freiburg (CCCF)University of FreiburgFreiburgGermany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center FreiburgFreiburgGermany
| | - Nadja I. Lorenz
- Dr. Senckenberg Institute of NeurooncologyUniversity HospitalGoethe University FrankfurtFrankfurt am MainGermany
- University Cancer Center Frankfurt (UCT), University HospitalGoethe University FrankfurtFrankfurt am MainGermany
- German Cancer Consortium (DKTK), partner site Frankfurt, a partnership between DKFZ and University Hospital FrankfurtGoethe University FrankfurtFrankfurt am MainGermany
- Frankfurt Cancer Institute (FCI)University HospitalGoethe University FrankfurtFrankfurt am MainGermany
| | - Süleyman Bozkurt
- Institute of Molecular Systems Medicine, Faculty of MedicineGoethe University FrankfurtFrankfurt am MainGermany
| | - Dorothea Schulte
- Institute of Neurology (Edinger Institute)University Hospital, Goethe University FrankfurtFrankfurtGermany
| | - Jan‐Béla Weinem
- Dr. Senckenberg Institute of NeurooncologyUniversity HospitalGoethe University FrankfurtFrankfurt am MainGermany
- University Cancer Center Frankfurt (UCT), University HospitalGoethe University FrankfurtFrankfurt am MainGermany
- German Cancer Consortium (DKTK), partner site Frankfurt, a partnership between DKFZ and University Hospital FrankfurtGoethe University FrankfurtFrankfurt am MainGermany
- Frankfurt Cancer Institute (FCI)University HospitalGoethe University FrankfurtFrankfurt am MainGermany
| | - Mohaned Benzarti
- Cancer Metabolism GroupDepartment of Cancer ResearchLuxembourg Institute of HealthLuxembourgLuxembourg
- Faculty of ScienceTechnology and MedicineUniversity of Luxembourg, 2 avenue de UniversitéEsch‐sur‐AlzetteLuxembourg
| | - Johannes Meiser
- Cancer Metabolism GroupDepartment of Cancer ResearchLuxembourg Institute of HealthLuxembourgLuxembourg
- Faculty of ScienceTechnology and MedicineUniversity of Luxembourg, 2 avenue de UniversitéEsch‐sur‐AlzetteLuxembourg
| | - Hans Urban
- Dr. Senckenberg Institute of NeurooncologyUniversity HospitalGoethe University FrankfurtFrankfurt am MainGermany
- University Cancer Center Frankfurt (UCT), University HospitalGoethe University FrankfurtFrankfurt am MainGermany
- German Cancer Consortium (DKTK), partner site Frankfurt, a partnership between DKFZ and University Hospital FrankfurtGoethe University FrankfurtFrankfurt am MainGermany
- Frankfurt Cancer Institute (FCI)University HospitalGoethe University FrankfurtFrankfurt am MainGermany
| | - Giulia Villa
- Microenvironment and Immunology Research LaboratoryMedical CenterUniversity of FreiburgFreiburgGermany
- Department of NeurosurgeryMedical CenterUniversity of FreiburgFreiburgGermany
- Faculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of Medicine and Medical CenterComprehensive Cancer Center Freiburg (CCCF)University of FreiburgFreiburgGermany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center FreiburgFreiburgGermany
| | - Patrick N. Harter
- Institute of Neurology (Edinger Institute)University Hospital, Goethe University FrankfurtFrankfurtGermany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and Ludwig‐Maximilians‐Universität (LMU)MunichGermany
- Center for Neuropathology and Prion Research, Faculty of MedicineLudwig‐Maximilians‐Universität (LMU)MunichGermany
| | - Christian Münch
- Frankfurt Cancer Institute (FCI)University HospitalGoethe University FrankfurtFrankfurt am MainGermany
- Institute of Molecular Systems Medicine, Faculty of MedicineGoethe University FrankfurtFrankfurt am MainGermany
- Cardio‐Pulmonary InstituteGoethe University FrankfurtFrankfurt am MainGermany
| | - Johannes Rieger
- Dr. Senckenberg Institute of NeurooncologyUniversity HospitalGoethe University FrankfurtFrankfurt am MainGermany
- Division of Neuro‐OncologyHertie Institute of Clinical Brain ResearchUniversity Hospital TübingenTübingenGermany
| | - Joachim P. Steinbach
- Dr. Senckenberg Institute of NeurooncologyUniversity HospitalGoethe University FrankfurtFrankfurt am MainGermany
- University Cancer Center Frankfurt (UCT), University HospitalGoethe University FrankfurtFrankfurt am MainGermany
- German Cancer Consortium (DKTK), partner site Frankfurt, a partnership between DKFZ and University Hospital FrankfurtGoethe University FrankfurtFrankfurt am MainGermany
- Frankfurt Cancer Institute (FCI)University HospitalGoethe University FrankfurtFrankfurt am MainGermany
| | - Dieter Henrik Heiland
- Microenvironment and Immunology Research LaboratoryMedical CenterUniversity of FreiburgFreiburgGermany
- Department of NeurosurgeryMedical CenterUniversity of FreiburgFreiburgGermany
- Faculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of Medicine and Medical CenterComprehensive Cancer Center Freiburg (CCCF)University of FreiburgFreiburgGermany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center FreiburgFreiburgGermany
| | - Michael W. Ronellenfitsch
- Dr. Senckenberg Institute of NeurooncologyUniversity HospitalGoethe University FrankfurtFrankfurt am MainGermany
- University Cancer Center Frankfurt (UCT), University HospitalGoethe University FrankfurtFrankfurt am MainGermany
- German Cancer Consortium (DKTK), partner site Frankfurt, a partnership between DKFZ and University Hospital FrankfurtGoethe University FrankfurtFrankfurt am MainGermany
- Frankfurt Cancer Institute (FCI)University HospitalGoethe University FrankfurtFrankfurt am MainGermany
| |
Collapse
|
40
|
Zuo Y, Wang J, Gong Z, Wang Y, Wang Q, Yang X, Liu F, Liu T. Hydrogen Protects Mitochondrial Function by Increasing the Expression of PGC-1α and Ameliorating Myocardial Ischaemia-Reperfusion Injury. J Cell Mol Med 2024; 28:e70236. [PMID: 39601332 PMCID: PMC11600203 DOI: 10.1111/jcmm.70236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
To investigate the application of H2 to alleviate cardiac ischaemia-reperfusion (I/R) injury in a PGC-1α-dependent manner. A rat in vitro myocardial I/R injury model was used, Western blot was used to detect the expression levels of apoptosis markers (Bax, cleaved caspase-3, Bcl2), inflammatory factors (IL-1β, TNF-α), mitochondrial fission (DRP1, MFF) and mitochondrial fusion (MFN1, MFN2, OPA1). HE staining was used to observe the effect of H2 on the myocardial tissue structure injured by I/R. Transmission electron microscopy (TEM) was used to observe the changes in the mitochondrial structure of myocardial tissue after I/R injury. Real-time quantitative PCR (qPCR) was used to detect the expression of PGC-1α in the myocardial tissue of rats after I/R injury and H2 treatment. H2 increases the expression level of PGC-1α, while the deletion of PGC-1α inhibited the therapeutic effect of H2. H2 can improve the changes of the myocardial tissue and mitochondrial structure caused by I/R injury. H2 treatment effectively inhibited the inflammatory response, and the loss of PGC-1α could inhibit the therapeutic effect of H2. The application of H2 can alleviate myocardial I/R injury, and the loss of PGC-1α weakens the protective effect of H2 on the I/R heart.
Collapse
Affiliation(s)
- Yue Zuo
- Heart CenterThe First Hospital of Tsinghua UniversityBeijingChina
- School of Clinical MedicineHebei UniversityBaodingChina
| | - Jiawei Wang
- School of Clinical MedicineHebei UniversityBaodingChina
| | - Zhexuan Gong
- School of Clinical MedicineHebei UniversityBaodingChina
| | - Yulong Wang
- School of Clinical MedicineHebei UniversityBaodingChina
| | - Qiang Wang
- Affiliated Hospital of Hebei UniversityBaodingChina
| | - Xueyang Yang
- School of Clinical MedicineHebei UniversityBaodingChina
| | - Fulin Liu
- Affiliated Hospital of Hebei UniversityBaodingChina
| | - Tongtong Liu
- Affiliated Hospital of Hebei UniversityBaodingChina
| |
Collapse
|
41
|
Aragón-Vela J, Casuso RA, Aparisi AS, Plaza-Díaz J, Rueda-Robles A, Hidalgo-Gutiérrez A, López LC, Rodríguez-Carrillo A, Enriquez JA, Cogliati S, Huertas JR. Early heart and skeletal muscle mitochondrial response to a moderate hypobaric hypoxia environment. J Physiol 2024; 602:5631-5641. [PMID: 38630964 DOI: 10.1113/jp285516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
In eukaryotic cells, aerobic energy is produced by mitochondria through oxygen uptake. However, little is known about the early mitochondrial responses to moderate hypobaric hypoxia (MHH) in highly metabolic active tissues. Here, we describe the mitochondrial responses to acute MHH in the heart and skeletal muscle. Rats were randomly allocated into a normoxia control group (n = 10) and a hypoxia group (n = 30), divided into three groups (0, 6, and 24 h post-MHH). The normoxia situation was recapitulated at the University of Granada, at 662 m above sea level. The MHH situation was performed at the High-Performance Altitude Training Centre of Sierra Nevada located in Granada at 2320 m above sea level. We found a significant increase in mitochondrial supercomplex assembly in the heart as soon as the animals reached 2320 m above sea level and their levels are maintained 24 h post-exposure, but not in skeletal muscle. Furthermore, in skeletal muscle, at 0 and 6 h, there was increased dynamin-related protein 1 (Drp1) expression and a significant reduction in Mitofusin 2. In conclusion, mitochondria from the muscle and heart respond differently to MHH: mitochondrial supercomplexes increase in the heart, whereas, in skeletal muscle, the mitochondrial pro-fission response is trigged. Considering that skeletal muscle was not actively involved in the ascent when the heart was beating faster to compensate for the hypobaric, hypoxic conditions, we speculate that the different responses to MHH are a result of the different energetic requirements of the tissues upon MHH. KEY POINTS: The heart and the skeletal muscle showed different mitochondrial responses to moderate hypobaric hypoxia. Moderate hypobaric hypoxia increases the assembly of the electron transport chain complexes into supercomplexes in the heart. Skeletal muscle shows an early mitochondrial pro-fission response following exposure to moderate hypobaric hypoxia.
Collapse
Affiliation(s)
- Jerónimo Aragón-Vela
- Department of Health Sciences, Area of Physiology, University of Jaen, Jaen, Spain
| | - Rafael A Casuso
- Department of Health Sciences, Universidad Loyola Andalucía, Sevilla, Spain
| | - Ana Sagrera Aparisi
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Madrid, Spain
- Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid), Madrid, Spain
| | - Julio Plaza-Díaz
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada., Ottawa, ON, Canada
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Complejo Hospitalario Universitario de Granada, Granada, Spain
| | - Ascensión Rueda-Robles
- Institute of Nutrition and Food Technology 'José Mataix,' Biomedical Research Centre, Department of Physiology, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Agustín Hidalgo-Gutiérrez
- Institute of Biotechnology, Biomedical Research Centre and Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Luis Carlos López
- Institute of Biotechnology, Biomedical Research Centre and Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Andrea Rodríguez-Carrillo
- Center for Biomedical Research (CIBM), University of Granada, Spain
- Department of Radiology and Physical Medicine, School of Medicine, University of Granada, Granada, Spain
| | - José Antonio Enriquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES)., Madrid, Spain
| | - Sara Cogliati
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Madrid, Spain
- Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid), Madrid, Spain
| | - Jesús R Huertas
- Institute of Nutrition and Food Technology 'José Mataix,' Biomedical Research Centre, Department of Physiology, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
42
|
Vaiasicca S, Balietti M, Bevilacqua L, Giorgetti B, Casoli T. Convergence between brain aging and Alzheimer's disease: Focus on mitochondria. Mech Ageing Dev 2024; 222:112001. [PMID: 39490933 DOI: 10.1016/j.mad.2024.112001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Alzheimer's disease (AD) accounts for the majority of dementia cases, with aging being the primary risk factor for developing this neurodegenerative condition. Aging and AD share several characteristics, including the formation of amyloid plaques and neurofibrillary tangles, synaptic loss, and neuroinflammation. This overlap suggests that mechanisms driving the aging process might also promote AD; however, the underlying processes are not yet fully understood. In this narrative review, we will focus on the role of mitochondria, not only as the "powerhouse of the cell", but also in programmed cell death, immune response, macromolecular synthesis, and calcium regulation. We will explore both the common changes between aging and AD and the differences between them. Additionally, we will provide an overview of interventions aimed at maintaining mitochondrial function in an attempt to slow the progression of AD. This will include a discussion of antioxidant molecules, factors that trigger mitochondrial biogenesis, compounds capable of restoring the fission/fusion balance, and a particular focus on recent techniques for mitochondrial DNA gene therapy.
Collapse
Affiliation(s)
| | - Marta Balietti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona 60121, Italy.
| | - Lisa Bevilacqua
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona 60121, Italy
| | | | - Tiziana Casoli
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona 60121, Italy
| |
Collapse
|
43
|
Meng X, Wu W, Tang Y, Peng M, Yang J, Yuan S, Hu Z, Liu W. Lactate/Hydroxycarboxylic Acid Receptor 1 in Alzheimer's Disease: Mechanisms and Therapeutic Implications-Exercise Perspective. Mol Neurobiol 2024; 61:7717-7731. [PMID: 38427215 DOI: 10.1007/s12035-024-04067-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Lactate has a novel function different from previously known functions despite its traditional association with hypoxia in skeletal muscle. It plays various direct and indirect physiological functions. It is a vital energy source within the central nervous system (CNS) and a signal transmitter regulating crucial processes, such as angiogenesis and inflammation. Activating lactate and its associated receptors elicits effects like synaptic plasticity and angiogenesis alterations. These effects can significantly influence the astrocyte-neuron lactate shuttle, potentially impacting cognitive performance. Decreased cognitive function relates to different neurodegenerative conditions, including Alzheimer's disease (AD), ischemic brain injury, and frontotemporal dementia. Therefore, lactic acid has significant potential for treating neurodegenerative disorders. Exercise is a method that induces the production of lactic acid, which is similar to the effect of lactate injections. It is a harmless and natural way to achieve comparable results. Animal experiments demonstrate that high-intensity intermittent exercise can increase vascular endothelial growth factor (VEGF) levels, thus promoting angiogenesis. In vivo, lactate receptor-hydroxycarboxylic acid receptor 1 (HCAR1) activation can occur by various stimuli, including variations in ion concentrations, cyclic adenosine monophosphate (cAMP) level elevations, and fluctuations in the availability of energy substrates. While several articles have been published on the benefits of physical activity on developing Alzheimer's disease in the CNS, could lactic acid act as a bridge? Understanding how HCAR1 responds to these signals and initiates associated pathways remains incomplete. This review comprehensively analyzes lactate-induced signaling pathways, investigating their influence on neuroinflammation, neurodegeneration, and cognitive decline. Consequently, this study describes the unique role of lactate in the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Xiangyuan Meng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Weijia Wu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Yingzhe Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Mei Peng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Jialun Yang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Shunling Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Zelin Hu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China.
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
44
|
Zhang W, Wang Y, Chen L, Chen H, Qi H, Zheng Y, Du Y, Zhang L, Wang T, Li Q. Dihydroartemisinin suppresses glioma growth by repressing ERRα-mediated mitochondrial biogenesis. Mol Cell Biochem 2024; 479:2809-2825. [PMID: 38072894 DOI: 10.1007/s11010-023-04892-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/31/2023] [Indexed: 10/06/2024]
Abstract
Malignant gliomas are an exceptionally lethal form of cancer with limited treatment options. Dihydroartemisinin (DHA), a sesquiterpene lactone antimalarial compound, has demonstrated therapeutic effects in various solid tumors. In our study, we aimed to investigate the mechanisms underlying the anticancer effects of DHA in gliomas. To explore the therapeutic and molecular mechanisms of DHA, we employed various assays, including cell viability, flow cytometry, mitochondrial membrane potential, glucose uptake and glioma xenograft models. Our data demonstrated that DHA significantly inhibited glioma cell proliferation in both temozolomide-resistant cells and glioma stem-like cells. We found that DHA-induced apoptosis occurred via the mitochondria-mediated pathway by initiating mitochondrial dysfunction before promoting apoptosis. Moreover, we discovered that DHA treatment substantially reduced the expression of the mitochondrial biogenesis-related gene, ERRα, in glioma cells. And the ERRα pathway is a critical target in treating glioma with DHA. Our results also demonstrated that the combination of DHA and temozolomide synergistically inhibited the proliferation of glioma cells. In vivo, DHA treatment remarkably extended survival time in mice bearing orthotopic glioblastoma xenografts. Thus, our findings suggest that DHA has a novel role in modulating cancer cell metabolism and suppressing glioma progression by activating the ERRα-regulated mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Wenxin Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, No. 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China
| | - Yan Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, No. 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China
| | - Lu Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, No. 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China
| | - Haifei Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, No. 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China
| | - Huijie Qi
- Department of Pharmacy, Huashan Hospital, Fudan University, No. 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China
| | - Yong Zheng
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Yongli Du
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Liudi Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, No. 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China.
| | - Tianxiao Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, No. 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China.
| | - Qunyi Li
- Department of Pharmacy, Huashan Hospital, Fudan University, No. 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
45
|
Kalykaki M, Rubio-Tomás T, Tavernarakis N. The role of mitochondria in cytokine and chemokine signalling during ageing. Mech Ageing Dev 2024; 222:111993. [PMID: 39307464 DOI: 10.1016/j.mad.2024.111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Ageing is accompanied by a persistent, low-level inflammation, termed "inflammageing", which contributes to the pathogenesis of age-related diseases. Mitochondria fulfil multiple roles in host immune responses, while mitochondrial dysfunction, a hallmark of ageing, has been shown to promote chronic inflammatory states by regulating the production of cytokines and chemokines. In this review, we aim to disentangle the molecular mechanisms underlying this process. We describe the role of mitochondrial signalling components such as mitochondrial DNA, mitochondrial RNA, N-formylated peptides, ROS, cardiolipin, cytochrome c, mitochondrial metabolites, potassium efflux and mitochondrial calcium in the age-related immune system activation. Furthermore, we discuss the effect of age-related decline in mitochondrial quality control mechanisms, including mitochondrial biogenesis, dynamics, mitophagy and UPRmt, in inflammatory states upon ageing. In addition, we focus on the dynamic relationship between mitochondrial dysfunction and cellular senescence and its role in regulating the secretion of pro-inflammatory molecules by senescent cells. Finally, we review the existing literature regarding mitochondrial dysfunction and inflammation in specific age-related pathological conditions, including neurodegenerative diseases (Alzheimer's and Parkinson's disease, and amyotrophic lateral sclerosis), osteoarthritis and sarcopenia.
Collapse
Affiliation(s)
- Maria Kalykaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece
| | - Teresa Rubio-Tomás
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Crete GR-71003, Greece.
| |
Collapse
|
46
|
Kandy AT, Chand J, Baba MZ, Subramanian G. Is SIRT3 and Mitochondria a Reliable Target for Parkinson's Disease and Aging? A Narrative Review. Mol Neurobiol 2024:10.1007/s12035-024-04486-w. [PMID: 39287746 DOI: 10.1007/s12035-024-04486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Aging is a complicated degenerative process that has been thoroughly researched in a variety of taxa, including mammals, worms, yeast, and flies. One important controller of organismal lifetime is the conserved deacetylase protein known as silencing information regulator 2 (SIR2). It has been demonstrated that overexpressing SIR2 lengthens the life span in worms, flies, and yeast, demonstrating its function in enhancing longevity. SIRT3 is a member of the sirtuin protein family, identified as a major regulator of longevity and aging. Sirtuin 3 (SIRT3), a possible mitochondrial tumor suppressor, has been explicitly linked to the control of cellular reactive oxygen species (ROS) levels, the Warburg effect, and carcinogenesis. SIRT3 plays a significant part in neurodegenerative illnesses such as Parkinson's and Alzheimer's disease by decreasing the oxidative stress in mitochondria and reducing the ROS levels. Furthermore, SIRT3 has been linked to metabolic and cardiovascular disorders, indicating its wider role in the pathophysiology of disease and possible therapeutic applications.
Collapse
Affiliation(s)
- Amarjith Thiyyar Kandy
- Department of Pharmaceutical Chemistry, JSS College Of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu-643001, India
| | - Jagdish Chand
- Department of Pharmaceutical Chemistry, JSS College Of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu-643001, India
| | - Mohammad Zubair Baba
- Department of Pharmaceutical Chemistry, JSS College Of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu-643001, India
| | - Gomathy Subramanian
- Department of Pharmaceutical Chemistry, JSS College Of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu-643001, India.
| |
Collapse
|
47
|
Li J, Jiang C, Wu L, Tian J, Zhang B. Dietary selenium intake and sarcopenia in American adults. Front Nutr 2024; 11:1449980. [PMID: 39328467 PMCID: PMC11426168 DOI: 10.3389/fnut.2024.1449980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024] Open
Abstract
Background The relationship between dietary selenium intake and sarcopenia remains poorly understood. Therefore, this study investigates the associations between dietary selenium intake and sarcopenia among American adults. Methods This cross-sectional study analyzed data from 19,696 participants in the National Health and Nutrition Examination Survey (NHANES) for the periods 1999-2006 and 2011-2018. Appendicular muscle mass, assessed using dual-energy x-ray absorptiometry and adjusted for body mass index, was used as a marker for sarcopenia. Dietary selenium intake was evaluated using the 24-h dietary recall system, and the study accounted for the complex sampling methodology and incorporated dietary sample weights in the analysis. Results Among the 19,696 participants, the prevalence of sarcopenia was found to be 8.46%. When compared to the lowest quintile of dietary selenium intake (Q1, < 80.10 μg/day), the odds ratios for sarcopenia in the second quintile (Q2, 80.10-124.61 μg/day) and the third quintile (Q3, >124.61 μg/day) were 0.80 [95% confidence interval (CI): 0.70-0.92, p = 0.002] and 0.61 (95% CI: 0.51-0.73, p < 0.001), respectively. A negative relationship was observed between dietary selenium intake and sarcopenia (non-linear: p = 0.285). Furthermore, sensitivity analyses revealed a robust association between selenium intake and the prevalence of sarcopenia after further adjusting for blood selenium levels. Conclusion The results suggest an inverse association between dietary selenium intake and the prevalence of sarcopenia among American adults.
Collapse
Affiliation(s)
- Jianfen Li
- Department of General Practice, Jiangmen Central Hospital, Jiangmen, China
| | - Chaohui Jiang
- Department of Hematopathology, Jiangmen Central Hospital, Jiangmen, China
| | - Lingfeng Wu
- Department of General Practice, Jiangmen Central Hospital, Jiangmen, China
| | - Jiangyan Tian
- Department of General Practice, Jiangmen Central Hospital, Jiangmen, China
| | - Bin Zhang
- Department of Cardiovascular Disease and Clinical Experimental Center, Jiangmen Central Hospital, Jiangmen, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
48
|
Khatoon S, Das N, Chattopadhyay S, Joharapurkar A, Singh A, Patel V, Nirwan A, Kumar A, Mugale MN, Mishra DP, Kumaravelu J, Guha R, Jain MR, Chattopadhyay N, Sanyal S. Apigenin-6-C-glucoside ameliorates MASLD in rodent models via selective agonism of adiponectin receptor 2. Eur J Pharmacol 2024; 978:176800. [PMID: 38950835 DOI: 10.1016/j.ejphar.2024.176800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Adiponectin plays key roles in energy metabolism and ameliorates inflammation, oxidative stress, and mitochondrial dysfunction via its primary receptors, adiponectin receptors -1 and 2 (AdipoR1 and AdipoR2). Systemic depletion of adiponectin causes various metabolic disorders, including MASLD; however adiponectin supplementation is not yet achievable owing to its large size and oligomerization-associated complexities. Small-molecule AdipoR agonists, thus, may provide viable therapeutic options against metabolic disorders. Using a novel luciferase reporter-based assay here, we have identified Apigenin-6-C-glucoside (ACG), but not apigenin, as a specific agonist for the liver-rich AdipoR isoform, AdipoR2 (EC50: 384 pM) with >10000X preference over AdipoR1. Immunoblot analysis in HEK-293 overexpressing AdipoR2 or HepG2 and PLC/PRF/5 liver cell lines revealed rapid AMPK, p38 activation and induction of typical AdipoR targets PGC-1α and PPARα by ACG at a pharmacologically relevant concentration of 100 nM (reported cMax in mouse; 297 nM). ACG-mediated AdipoR2 activation culminated in a favorable modulation of key metabolic events, including decreased inflammation, oxidative stress, mitochondrial dysfunction, de novo lipogenesis, and increased fatty acid β-oxidation as determined by immunoblotting, QRT-PCR and extracellular flux analysis. AdipoR2 depletion or AMPK/p38 inhibition dampened these effects. The in vitro results were recapitulated in two different murine models of MASLD, where ACG at 10 mg/kg body weight robustly reduced hepatic steatosis, fibrosis, proinflammatory macrophage numbers, and increased hepatic glycogen content. Together, using in vitro experiments and rodent models, we demonstrate a proof-of-concept for AdipoR2 as a therapeutic target for MASLD and provide novel chemicobiological insights for the generation of translation-worthy pharmacological agents.
Collapse
Affiliation(s)
- Shamima Khatoon
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Nabanita Das
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sourav Chattopadhyay
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | | | - Abhinav Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Vishal Patel
- Zydus Research Center, Moraiya, Ahmedabad, 382213, Gujarat, India
| | - Abhishek Nirwan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Akhilesh Kumar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Madhav Nilakanth Mugale
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Durga Prasad Mishra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Jagavelu Kumaravelu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Rajdeep Guha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Laboratory Animal Facility, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | | | - Naibedya Chattopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sabyasachi Sanyal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
49
|
Dong W, Lu J, Li Y, Zeng J, Du X, Yu A, Zhao X, Chi F, Xi Z, Cao S. SIRT1: a novel regulator in colorectal cancer. Biomed Pharmacother 2024; 178:117176. [PMID: 39059350 DOI: 10.1016/j.biopha.2024.117176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
The class-III histone deacetylase SIRT1 is the most extensively investigated sirtuin deacetylase. It is resistant to the broad deacetylase inhibitor trichostatin A and depends on oxidized nicotinamide adenine nucleotide (NAD+). SIRT1 plays a crucial role in the tumorigenesis of numerous types of cancers, including colorectal cancer (CRC). Accumulating evidence indicates that SIRT1 is a therapeutic target for CRC; however, the function and underlying mechanism of SIRT1 in CRC still need to be elucidated. Herein, we provide a detailed and updated review to illustrate that SIRT1 regulates many processes that go awry in CRC cells, such as apoptosis, autophagy, proliferation, migration, invasion, metastasis, oxidative stress, resistance to chemo-radio therapy, immune evasion, and metabolic reprogramming. Moreover, we closely link our review to the clinical practice of CRC treatment, summarizing the mechanisms and prospects of SIRT1 inhibitors in CRC therapy. SIRT1 inhibitors as monotherapy in CRC or in combination with chemotherapy, radiotherapy, and immune therapies are comprehensively discussed. From epigenetic regulation to its potential therapeutic effect, we hope to offer novel insights and a comprehensive understanding of SIRT1's role in CRC.
Collapse
Affiliation(s)
- Weiwei Dong
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Jinjing Lu
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - You Li
- Nursing Department, Liaoning Jinqiu Hospital, Shenyang, Liaoning Province 110016, China
| | - Juan Zeng
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Xiaoyun Du
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Ao Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Xuechan Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Feng Chi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| | - Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| | - Shuo Cao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| |
Collapse
|
50
|
Jun L, Tao YX, Geetha T, Babu JR. Mitochondrial Adaptation in Skeletal Muscle: Impact of Obesity, Caloric Restriction, and Dietary Compounds. Curr Nutr Rep 2024; 13:500-515. [PMID: 38976215 PMCID: PMC11327216 DOI: 10.1007/s13668-024-00555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2024] [Indexed: 07/09/2024]
Abstract
PURPOSE OF REVIEW: The global obesity epidemic has become a major public health concern, necessitating comprehensive research into its adverse effects on various tissues within the human body. Among these tissues, skeletal muscle has gained attention due to its susceptibility to obesity-related alterations. Mitochondria are primary source of energy production in the skeletal muscle. Healthy skeletal muscle maintains constant mitochondrial content through continuous cycle of synthesis and degradation. However, obesity has been shown to disrupt this intricate balance. This review summarizes recent findings on the impact of obesity on skeletal muscle mitochondria structure and function. In addition, we summarize the molecular mechanism of mitochondrial quality control systems and how obesity impacts these systems. RECENT FINDINGS: Recent findings show various interventions aimed at mitigating mitochondrial dysfunction in obese model, encompassing strategies including caloric restriction and various dietary compounds. Obesity has deleterious effect on skeletal muscle mitochondria by disrupting mitochondrial biogenesis and dynamics. Caloric restriction, omega-3 fatty acids, resveratrol, and other dietary compounds enhance mitochondrial function and present promising therapeutic opportunities.
Collapse
Affiliation(s)
- Lauren Jun
- Department of Nutritional Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ya-Xiong Tao
- Department of Anatomy Physiology and Pharmacology, Auburn University, Auburn, AL, 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL, 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL, 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL, 36849, USA
| | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL, 36849, USA.
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|