1
|
Abavisani M, Tafti P, Khoshroo N, Ebadpour N, Khoshrou A, Kesharwani P, Sahebkar A. The heart of the matter: How gut microbiota-targeted interventions influence cardiovascular diseases. Pathol Res Pract 2025; 269:155931. [PMID: 40174272 DOI: 10.1016/j.prp.2025.155931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/10/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
The human body is habitat to a wide spectrum of microbial populations known as microbiota, which play an important role in overall health. The considerable research has mostly focused on the gut microbiota due to its potential to impact numerous physiological functions and its correlation with a variety of disorders, such as cardiovascular diseases (CVDs). Imbalances in the gut microbiota, known as dysbiosis, have been linked to the development and progression of CVDs through various processes, including the generation of metabolites like trimethylamine-N-oxide and short-chain fatty acids. Studies have also looked at the idea of using therapeutic interventions, like changing your diet, taking probiotics or prebiotics, or even fecal microbiota transplantation (FMT), to change the gut microbiota's make-up and how it works in order to prevent or treat CVDs. Exploring the cause-and-effect connection between the gut microbiota and CVDs offers a hopeful path for creating innovative microbiome-centered strategies to prevent and cure CVDs. This review presents an in-depth review of the correlation between the gut microbiota and CVDs, as well as potential therapeutic approaches for manipulating the gut microbiota to enhance cardiovascular health.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pourya Tafti
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Khoshroo
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Khoshrou
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pardesh, India; University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Shukla A, Sharma C, Malik MZ, Singh AK, Aditya AK, Mago P, Shalimar, Ray AK. Deciphering the tripartite interaction of urbanized environment, gut microbiome and cardio-metabolic disease. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124693. [PMID: 40022791 DOI: 10.1016/j.jenvman.2025.124693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
The world is experiencing a sudden surge in urban population, especially in developing Asian and African countries. Consequently, the global burden of cardio-metabolic disease (CMD) is also rising owing to gut microbiome dysbiosis due to urbanization factors such as mode of birth, breastfeeding, diet, environmental pollutants, and soil exposure. Dysbiotic gut microbiome indicated by altered Firmicutes to Bacteroides ratio and loss of beneficial short-chain fatty acids-producing bacteria such as Prevotella, and Ruminococcus may disrupt host-intestinal homeostasis by altering host immune response, gut barrier integrity, and microbial metabolism through altered T-regulatory cells/T-helper cells balance, activation of pattern recognition receptors and toll-like receptors, decreased mucus production, elevated level of trimethylamine-oxide and primary bile acids. This leads to a pro-inflammatory gut characterized by increased pro-inflammatory cytokines such as tumour necrosis factor-α, interleukin-2, Interferon-ϒ and elevated levels of metabolites or metabolic endotoxemia due to leaky gut formation. These pathophysiological characteristics are associated with an increased risk of cardio-metabolic disease. This review aims to comprehensively elucidate the effect of urbanization on gut microbiome-driven cardio-metabolic disease. Additionally, it discusses targeting the gut microbiome and its associated pathways via strategies such as diet and lifestyle modulation, probiotics, prebiotics intake, etc., for the prevention and treatment of disease which can potentially be integrated into clinical and professional healthcare settings.
Collapse
Affiliation(s)
- Avaneesh Shukla
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Chanchal Sharma
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Md Zubbair Malik
- Department of Translational Medicine, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Alok Kumar Singh
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, India
| | - Abhishek Kumar Aditya
- Department of Medicine, K.D. Medical College, Hospital and Research Center, Mathura, India
| | - Payal Mago
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India; Campus of Open Learning, University of Delhi, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashwini Kumar Ray
- Department of Environmental Studies, University of Delhi, New Delhi, India.
| |
Collapse
|
3
|
Shayista H, Prasad MN, Raj SN, Ranjini H, Manju K, Baker S. Mechanistic overview of gut microbiota and mucosal pathogens with respect to cardiovascular diseases. THE MICROBE 2024; 5:100160. [DOI: 10.1016/j.microb.2024.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Munteanu C, Onose G, Poștaru M, Turnea M, Rotariu M, Galaction AI. Hydrogen Sulfide and Gut Microbiota: Their Synergistic Role in Modulating Sirtuin Activity and Potential Therapeutic Implications for Neurodegenerative Diseases. Pharmaceuticals (Basel) 2024; 17:1480. [PMID: 39598392 PMCID: PMC11597776 DOI: 10.3390/ph17111480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
The intricate relationship between hydrogen sulfide (H2S), gut microbiota, and sirtuins (SIRTs) can be seen as a paradigm axis in maintaining cellular homeostasis, modulating oxidative stress, and promoting mitochondrial health, which together play a pivotal role in aging and neurodegenerative diseases. H2S, a gasotransmitter synthesized endogenously and by specific gut microbiota, acts as a potent modulator of mitochondrial function and oxidative stress, protecting against cellular damage. Through sulfate-reducing bacteria, gut microbiota influences systemic H2S levels, creating a link between gut health and metabolic processes. Dysbiosis, or an imbalance in microbial populations, can alter H2S production, impair mitochondrial function, increase oxidative stress, and heighten inflammation, all contributing factors in neurodegenerative diseases such as Alzheimer's and Parkinson's. Sirtuins, particularly SIRT1 and SIRT3, are NAD+-dependent deacetylases that regulate mitochondrial biogenesis, antioxidant defense, and inflammation. H2S enhances sirtuin activity through post-translational modifications, such as sulfhydration, which activate sirtuin pathways essential for mitigating oxidative damage, reducing inflammation, and promoting cellular longevity. SIRT1, for example, deacetylates NF-κB, reducing pro-inflammatory cytokine expression, while SIRT3 modulates key mitochondrial enzymes to improve energy metabolism and detoxify reactive oxygen species (ROS). This synergy between H2S and sirtuins is profoundly influenced by the gut microbiota, which modulates systemic H2S levels and, in turn, impacts sirtuin activation. The gut microbiota-H2S-sirtuin axis is also essential in regulating neuroinflammation, which plays a central role in the pathogenesis of neurodegenerative diseases. Pharmacological interventions, including H2S donors and sirtuin-activating compounds (STACs), promise to improve these pathways synergistically, providing a novel therapeutic approach for neurodegenerative conditions. This suggests that maintaining gut microbiota diversity and promoting optimal H2S levels can have far-reaching effects on brain health.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (M.P.); (M.T.); (A.I.G.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Gelu Onose
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Mădălina Poștaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (M.P.); (M.T.); (A.I.G.)
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (M.P.); (M.T.); (A.I.G.)
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (M.P.); (M.T.); (A.I.G.)
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (M.P.); (M.T.); (A.I.G.)
| |
Collapse
|
5
|
Qureshi W, Dar MA, Rather MY. New therapy for metabolic syndrome: Gut microbiome supplementation. World J Diabetes 2024; 15:1833-1836. [PMID: 39280175 PMCID: PMC11372646 DOI: 10.4239/wjd.v15.i9.1833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 08/27/2024] Open
Abstract
The gut microbiota is important in the development and progression of metabolic illnesses such type 2 diabetes, cardiovascular disease (CVD), and obesity. This diverse community of microorganisms controls a variety of physiological functions, including metabolism, inflammation, and immune response. Understanding these interactions has resulted in novel therapeutic options, including microbiome supplementation. The gut microbiome is extremely susceptible to dietary changes, which can alter its makeup and function, influencing metabolite synthesis that affects host health. Certain metabolites, such as butyrate and propionate, have been proven to protect against metabolic illnesses, whereas trimethylamine has been linked to CVD. Prebiotics, probiotics, synbiotics, and postbiotics are being investigated by researchers as ways to change the gut microbiome and boost metabolic health. Despite advances in therapy and lifestyle adjustments, the prevalence of metabolic syndrome is increasing, emphasizing the need for new medicines.
Collapse
Affiliation(s)
- Waseem Qureshi
- Hospital Administration, Government Medical College, University of Kashmir, Jammu and Kashmir, Srinagar 190010, India
| | - Maqsood Ahmad Dar
- Department of Medicine, Government Medical College, University of Kashmir, Jammu and Kashmir, Srinagar 190010, India
| | - Mohd Younis Rather
- Multidisciplinary Research Unit, Government Medical College, University of Kashmir, Jammu and Kashmir, Srinagar 190010, India
| |
Collapse
|
6
|
Kumar T, Maitra S, Rai R, Priyanka, Maitra S, Tirkey NN, Kumari R. The dichotomy between probiotic lactic acid bacteria and Plasmodium: A promising therapeutic avenue. Acta Trop 2024; 257:107284. [PMID: 38857820 DOI: 10.1016/j.actatropica.2024.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Our understanding of gut microbial populations and their immense influence on host immunity, health, and diseases has increased deeply in recent years. Numerous reports have identified the role of mosquito and mammalian gut microbiota in the modulation of host susceptibility to Plasmodium infection. Artemisinin resistance in malaria-endemic regions necessitates the development of new, safer, and more affordable treatments to supplement existing therapies. In this review, we compiled a colossal amount of data from numerous studies that have assessed the roles played by gut microbial communities in Plasmodium infection, progression, transmission, and severity. Most interestingly, our study points to the overwhelming evidence from experimental studies in mural malaria to human trials, suggesting that the presence of lactic acid bacteria in the gut microbiota of mammalian hosts provides a great degree of protection against malaria. Therefore, our study provides a compelling narrative for probiotic administration as an adjunct therapy for combatting malaria.
Collapse
Affiliation(s)
- Tarkeshwar Kumar
- Department of Zoology, Panch Pargana Kisan College, Ranchi University, Ranchi, Jharkhand, 835204, India.
| | - Satarupa Maitra
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Richa Rai
- Department of Zoology, Allahabad University, Prayagraj, Uttar Pradesh, India
| | - Priyanka
- Department of Zoology, Allahabad University, Prayagraj, Uttar Pradesh, India
| | - Satwat Maitra
- Noida International Institute of Medical Sciences, Greater Noida, Uttar Pradesh, India
| | | | - Rajesh Kumari
- Department of Zoology, Allahabad University, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
7
|
Saha B, A T R, Adhikary S, Banerjee A, Radhakrishnan AK, Duttaroy AK, Pathak S. Exploring the Relationship Between Diet, Lifestyle and Gut Microbiome in Colorectal Cancer Development: A Recent Update. Nutr Cancer 2024; 76:789-814. [PMID: 39207359 DOI: 10.1080/01635581.2024.2367266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer (CRC) is one of the major causes of cancer-related mortality worldwide. Despite advances in treatment modalities, its prevalence continues to rise, notably among younger populations. Unhealthy dietary habits, sedentary routines, and obesity have been identified as one of the key contributors to the development of colorectal cancer, apart from genetic and epigenetic modifications. Recognizing the profound impact of diet and lifestyle on the intricate gut microbiota ecosystem offers a promising avenue for understanding CRC development and its treatment. Gut dysbiosis, characterized by imbalances favoring harmful microbes over beneficial ones, has emerged as a defining feature of CRC. Changes in diet and lifestyle can profoundly alter the composition of gut microbes and the metabolites they produce, potentially contributing to CRC onset. Focusing on recent evidence, this review discussed various dietary factors, such as high consumption of red and processed meats and low fiber intake, and lifestyle factors, including obesity, lack of physical activity, smoking, and excessive alcohol consumption, that influence the gut microbiome composition and elevate CRC risk.
Collapse
Affiliation(s)
- Biki Saha
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Rithi A T
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Subhamay Adhikary
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Arun Kumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| |
Collapse
|
8
|
Sati P, Dhyani P, Sharma E, Attri DC, Jantwal A, Devi R, Calina D, Sharifi-Rad J. Gut Microbiota Targeted Approach by Natural Products in Diabetes Management: An Overview. Curr Nutr Rep 2024; 13:166-185. [PMID: 38498287 DOI: 10.1007/s13668-024-00523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE OF REVIEW This review delves into the complex interplay between obesity-induced gut microbiota dysbiosis and the progression of type 2 diabetes mellitus (T2DM), highlighting the potential of natural products in mitigating these effects. By integrating recent epidemiological data, we aim to provide a nuanced understanding of how obesity exacerbates T2DM through gut flora alterations. RECENT FINDINGS Advances in research have underscored the significance of bioactive ingredients in natural foods, capable of restoring gut microbiota balance, thus offering a promising approach to manage diabetes in the context of obesity. These findings build upon the traditional use of medicinal plants in diabetes treatment, suggesting a deeper exploration of their mechanisms of action. This comprehensive manuscript underscores the critical role of targeting gut microbiota dysbiosis in obesity-related T2DM management and by bridging traditional knowledge with current scientific evidence; we highlighted the need for continued research into natural products as a complementary strategy for comprehensive diabetes care.
Collapse
Affiliation(s)
- Priyanka Sati
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Praveen Dhyani
- Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany
| | - Eshita Sharma
- Department of Biochemistry and Molecular Biology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Dharam Chand Attri
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Arvind Jantwal
- Department of Pharmaceutical Sciences, Kumaun University, Bhimtal, Uttarakhand, India
| | - Rajni Devi
- Department of Microbiology, Punjab Agricultural University, Ludhiana-141004, Punjab, India
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | |
Collapse
|
9
|
Al-Mhanna SB, Batrakoulis A, Norhayati MN, Mohamed M, Drenowatz C, Irekeola AA, Afolabi HA, Gülü M, Alkhamees NH, Wan Ghazali WS. Combined Aerobic and Resistance Training Improves Body Composition, Alters Cardiometabolic Risk, and Ameliorates Cancer-Related Indicators in Breast Cancer Patients and Survivors with Overweight/Obesity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Sports Sci Med 2024; 23:366-395. [PMID: 38841642 PMCID: PMC11149074 DOI: 10.52082/jssm.2024.366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/11/2024] [Indexed: 06/07/2024]
Abstract
Breast cancer survivors with obesity are at a high risk of cancer recurrence, comorbidity, and mortality. This review aims to systematically evaluate the effects of combined aerobic and resistance training (CART) on body composition, lipid homeostasis, inflammation, adipokines, cancer-related fatigue, sleep, and quality of life in breast cancer patients and survivors with overweight/obesity. An electronic search was conducted in PubMed, Web of Science, Scopus, Science Direct, Cochrane, and Google Scholar databases from inception up to January 8, 2024. Randomized controlled trials (RCTs) meeting the inclusion criteria were selected for the analysis. The Cochrane risk of bias tool was used to assess eligible studies, and the GRADE method to evaluate the quality of evidence. A random-effects model was used, and data were analyzed using mean (MD) and standardized mean differences (SMD) for continuous variables with 95% confidence intervals (CI). We assessed the data for risk of bias, heterogeneity, sensitivity, reporting bias, and quality of evidence. A total of 17 randomized controlled trials were included in the systematic review involving 1,148 female patients and survivors (mean age: 54.0 ± 3.4 years). The primary outcomes showed significant improvements in body mass index (SMD -0.57 kg/m2, p = 0.04), body fat (SMD -0.50%, p = 0.02), fat mass (SMD -0.63 kg, p = 0.04), hip circumference (MD -3.14 cm, p = 0.02), and fat-free mass (SMD 1.03 kg, p < 0.001). The secondary outcomes indicated significant increases in high-density lipoprotein cholesterol (MD -0.05 mmol/L, p = 0.008), natural killer cells (SMD 0.42%, p = 0.04), reductions in triglycerides (MD -81.90 mg/dL, p < 0.01), total cholesterol (SMD -0.95 mmol/L, p < 0.01), tumor necrosis factor α (SMD -0.89 pg/mL, p = 0.03), and leptin (SMD -0.63 ng/mL, p = 0.03). Also, beneficial alterations were found in cancer-related fatigue (SMD -0.98, p = 0.03), sleep (SMD -1.17, p < 0.001), and quality of life (SMD 2.94, p = 0.02) scores. There was very low to low confidence in the estimated effect of most of the outcomes. The present findings reveal that CART could be considered an adjunct therapy in supporting the conventional clinical approach observed following exercise. However, further high-quality research is needed to evaluate whether CART would be a valuable intervention to lower aggressive pharmacologic use in breast cancer patients with overweight/obesity.
Collapse
Affiliation(s)
- Sameer Badri Al-Mhanna
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Department of Physiology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Alexios Batrakoulis
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science and Dietetics, University of Thessaly, Karies, Trikala, Greece
- Department of Physical Education and Sport Science, School of Physical Education and Sport Science, Democritus University of Thrace, Komotini, Greece
| | - Mohd Noor Norhayati
- Department of Family Medicine, School of Medical Sciences, Kubang Keria, Malaysia
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Clemens Drenowatz
- Division of Sport, Physical Activity and Health, University of Teacher Education Upper Austria, Linz, Austria
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Hafeez Abiola Afolabi
- Department of General Surgery, School of Medical Sciences, Hospital University Sains Malaysia, University Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Mehmet Gülü
- Department of Sports Management, Faculty of Sport Sciences, Kirikkale University, Kirikkale, Turkey
| | - Nouf H Alkhamees
- Department of Rehabilitation, College of Health and Rehabilitation Sciences Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wan Syaheedah Wan Ghazali
- Department of Physiology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
10
|
Sahle Z, Engidaye G, Shenkute Gebreyes D, Adenew B, Abebe TA. Fecal microbiota transplantation and next-generation therapies: A review on targeting dysbiosis in metabolic disorders and beyond. SAGE Open Med 2024; 12:20503121241257486. [PMID: 38826830 PMCID: PMC11143861 DOI: 10.1177/20503121241257486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/09/2024] [Indexed: 06/04/2024] Open
Abstract
The human microbiome, particularly the gut microbiome, has emerged as a central determinant of health and disease. Dysbiosis, an imbalance in the microbial composition of the gut, is associated with a variety of metabolic and other diseases, highlighting the potential for microbiota-targeted treatments. Fecal microbiota transplantation has received considerable attention as a promising therapy to modulate the gut microbiome and restore microbial homeostasis. However, challenges remain, including standardization, safety, and long-term efficacy. This review summarizes current knowledge on fecal microbiota transplantation and describes the next generation therapies targeting microbiome. This review looked at the mechanistic understanding of fecal microbiota transplantation and alternative strategies, elucidating their potential role in improving dysbiosis-associated metabolic disorders, such as obesity, and type 2 diabetes and others. Additionally, this review discussed the growing application of therapies targeting the gut microbiome. Insights from clinical trials, preclinical studies, and emerging technologies provide a comprehensive overview of the evolving landscape of microbiome-based interventions. Through a critical assessment of current advances and prospects, this review aims to highlight the therapeutic potential of targeting gut microbiome and pave the way for innovative approaches in precision medicine and personalized treatments.
Collapse
Affiliation(s)
- Zenawork Sahle
- Department of Medical Laboratory Science, Asrat Weldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| | - Getabalew Engidaye
- Department of Medical Laboratory Science, Asrat Weldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| | - Demissew Shenkute Gebreyes
- Department of Medical Laboratory Science, Asrat Weldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| | - Behailu Adenew
- Department of Medical Laboratory Science, Debre Berhan Compressive Specialized Hospital, Debre Berhan, Ethiopia
| | - Tsegahun Asfaw Abebe
- Department of Medical Laboratory Science, Asrat Weldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| |
Collapse
|
11
|
Ugwu OPC, Alum EU, Okon MB, Obeagu EI. Mechanisms of microbiota modulation: Implications for health, disease, and therapeutic interventions. Medicine (Baltimore) 2024; 103:e38088. [PMID: 38728472 PMCID: PMC11081615 DOI: 10.1097/md.0000000000038088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Microbiota modulation, the intentional change in the structure and function of the microbial community, is an emerging trajectory that holds the promise to mitigate an infinite number of health issues. The present review illustrates the underlying principles of microbiota modulation and the various applications of this fundamental process to human health, healthcare management, and pharmacologic interventions. Different strategies, directing on dietary interventions, fecal microbiota transplantation, treatment with antibiotics, bacteriophages, microbiome engineering, and modulation of the immune system, are described in detail. This therapeutic implication is reflected in clinical applications to gastrointestinal disorders and immune-mediated diseases for microbiota-modulating agents. In addition to this, the review outlines the challenges of translating researched outcomes into clinical practice to consider safety and provides insights into future research directions of this rapidly developing area.
Collapse
Affiliation(s)
| | - Esther Ugo Alum
- Department of Publication and Extension, Kampala International University, Kampala, Uganda
| | - Michael Ben Okon
- Department of Publication and Extension, Kampala International University, Kampala, Uganda
| | - Emmanuel I. Obeagu
- Department of Publication and Extension, Kampala International University, Kampala, Uganda
| |
Collapse
|
12
|
Guo Z, Zhong Y, Zhou L, Xu P, Gao N, Lu J, Yan X, Cao H. Unveiling the microbiota-metabolite-myocardium axis: a novel perspective on cardiovascular health. Front Microbiol 2024; 15:1389311. [PMID: 38784809 PMCID: PMC11112089 DOI: 10.3389/fmicb.2024.1389311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Cardiovascular diseases, including myocardial infarction, remain a leading cause of death globally. Emerging evidence suggests the gut microbiota plays a crucial role in cardiovascular health. This study aims to explore the impact of gut microbiota on myocardial infarction using a mouse model. Methods The research utilizes a multi-omics approach, including 16S rDNA sequencing and LC-MS-based metabolomics to analyze fecal and serum samples from mice modeled to mimic myocardial infarction. This methodology allows for a comprehensive analysis of microbial populations and their metabolic output. Results The findings reveal a significant reduction in gut microbiota α-diversity in mice with induced myocardial infarction compared to healthy controls. Notably, there is an increase in populations of Fusobacteria and Clostridia. Metabolomic analysis indicates disruptions in amino acid and energy metabolism, suggesting a metabolic dysregulation linked to myocardial health. Discussion The study proposes a novel microbiota-metabolite-myocardium axis, where specific microbial metabolites may directly affect heart health. This connection points to the gut microbiota as a potential player in the pathogenesis of myocardial infarction and may open new therapeutic avenues targeting the gut microbiome to combat cardiovascular diseases.
Collapse
Affiliation(s)
- Zhenhua Guo
- Department of Cardiology, Shibei Hospital, Shanghai, China
| | - Yangfang Zhong
- Shanghai Jing’an District Pengpu Town Second Community Health Service Center, Shanghai, China
| | - Le Zhou
- Department of Cardiology, Shibei Hospital, Shanghai, China
| | - Peier Xu
- Department of Cardiology, Shibei Hospital, Shanghai, China
| | - Naijing Gao
- Department of Cardiology, Shibei Hospital, Shanghai, China
| | - Jinyue Lu
- Department of Cardiology, Shibei Hospital, Shanghai, China
| | - Xueyun Yan
- Department of Cardiology, Shibei Hospital, Shanghai, China
| | - Huaming Cao
- Department of Cardiology, Shibei Hospital, Shanghai, China
| |
Collapse
|
13
|
Zhang Y, Tang N, Zhou H, Zhu Y. The role of microbial metabolites in endocrine tumorigenesis: From the mechanistic insights to potential therapeutic biomarkers. Biomed Pharmacother 2024; 172:116218. [PMID: 38308969 DOI: 10.1016/j.biopha.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
Microbial metabolites have been indicated to communicate with the host's endocrine system, regulating hormone production, immune-endocrine communications, and interactions along the gut-brain axis, eventually affecting the occurrence of endocrine cancer. Furthermore, microbiota metabolites such as short-chain fatty acids (SCFAs) have been found to affect the tumor microenvironment and boost immunity against tumors. SCFAs, including butyrate and acetate, have been demonstrated to exert anti-proliferative and anti-protective activity on pancreatic cancer cells. The employing of microbial metabolic products in conjunction with radiation and chemotherapy has shown promising outcomes in terms of reducing treatment side effects and boosting effectiveness. Certain metabolites, such as valerate and butyrate, have been made known to improve the efficiency of CAR T-cell treatment, whilst others, such as indole-derived tryptophan metabolites, have been shown to inhibit tumor immunity. This review explores the intricate interplay between microbial metabolites and endocrine tumorigenesis, spanning mechanistic insights to the discovery of potential therapeutic biomarkers.
Collapse
Affiliation(s)
- Yiyi Zhang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Nie Tang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Hui Zhou
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| | - Ying Zhu
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
14
|
Rinninella E, Costantini L. The Prebiotic Diet: Other Dietary Molecules Implicated in Gut Microbiota Health. Foods 2024; 13:490. [PMID: 38338625 PMCID: PMC10855273 DOI: 10.3390/foods13030490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
In 2016, the International Scientific Association for Probiotics and Prebiotics (ISAPP) provided a new definition of a prebiotic as "a substrate that is selectively utilized by host microorganisms conferring a health benefit" [...].
Collapse
Affiliation(s)
- Emanuele Rinninella
- UOC di Nutrizione Clinica, Dipartimento di Scienze Mediche e Chirurgiche Endocrino-Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lara Costantini
- Department of Ecological and Biological Sciences (DEB), Tuscia University, 01100 Viterbo, Italy
| |
Collapse
|
15
|
Bell V, Varzakas T, Psaltopoulou T, Fernandes T. Sickle Cell Disease Update: New Treatments and Challenging Nutritional Interventions. Nutrients 2024; 16:258. [PMID: 38257151 PMCID: PMC10820494 DOI: 10.3390/nu16020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Sickle cell disease (SCD), a distinctive and often overlooked illness in the 21st century, is a congenital blood disorder characterized by considerable phenotypic diversity. It comprises a group of disorders, with sickle cell anemia (SCA) being the most prevalent and serious genotype. Although there have been some systematic reviews of global data, worldwide statistics regarding SCD prevalence, morbidity, and mortality remain scarce. In developed countries with a lower number of sickle cell patients, cutting-edge technologies have led to the development of new treatments. However, in developing settings where sickle cell disease (SCD) is more prevalent, medical management, rather than a cure, still relies on the use of hydroxyurea, blood transfusions, and analgesics. This is a disease that affects red blood cells, consequently affecting most organs in diverse manners. We discuss its etiology and the advent of new technologies, but the aim of this study is to understand the various types of nutrition-related studies involving individuals suffering from SCD, particularly in Africa. The interplay of the environment, food, gut microbiota, along with their respective genomes collectively known as the gut microbiome, and host metabolism is responsible for mediating host metabolic phenotypes and modulating gut microbiota. In addition, it serves the purpose of providing essential nutrients. Moreover, it engages in direct interactions with host homeostasis and the immune system, as well as indirect interactions via metabolites. Nutrition interventions and nutritional care are mechanisms for addressing increased nutrient expenditures and are important aspects of supportive management for patients with SCD. Underprivileged areas in Sub-Saharan Africa should be accompanied by efforts to define and promote of the nutritional aspects of SCD. Their importance is key to maintaining well-being and quality of life, especially because new technologies and products remain limited, while the use of native medicinal plant resources is acknowledged.
Collapse
Affiliation(s)
- Victoria Bell
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece
| | - Theodora Psaltopoulou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Tito Fernandes
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal
| |
Collapse
|
16
|
Jaroszewski J, Mamun N, Czaja K. Bidirectional Interaction between Tetracyclines and Gut Microbiome. Antibiotics (Basel) 2023; 12:1438. [PMID: 37760733 PMCID: PMC10525114 DOI: 10.3390/antibiotics12091438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
The escalating misuse of antibiotics, particularly broad-spectrum antibiotics, has emerged as a pivotal driver of drug resistance. Among these agents, tetracyclines are widely prescribed for bacterial infections, but their indiscriminate use can profoundly alter the gut microbiome, potentially compromising both their effectiveness and safety. This review delves into the intricate and dynamic interplay between tetracyclines and the gut microbiome, shedding light on their reciprocal influence. By exploring the effects of tetracyclines on the gut microbiome and the impact of gut microbiota on tetracycline therapy, we seek to gain deeper insights into this complex relationship, ultimately guiding strategies for preserving antibiotic efficacy and mitigating resistance development.
Collapse
Affiliation(s)
- Jerzy Jaroszewski
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland;
| | - Niles Mamun
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Krzysztof Czaja
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
17
|
Romero M, Duarte J. Probiotics and Prebiotics in Cardiovascular Diseases. Nutrients 2023; 15:3686. [PMID: 37686718 PMCID: PMC10489656 DOI: 10.3390/nu15173686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023] Open
Abstract
This Special Issue, titled "Probiotics and Prebiotics in Cardiovascular Diseases", encompasses two comprehensive review articles examining the potential of gut-microbiota-targeted reprogramming interventions designed to prevent the onset and progression of cardiovascular diseases [...].
Collapse
Affiliation(s)
- Miguel Romero
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
18
|
Nabizadeh E, Sadeghi J, Rezaee MA, Hamishehkar H, Hasani A, Kafil HS, Sharifi Y, Asnaashari S, Kadkhoda H, Ghotaslou R. The profile of key gut microbiota members and short-chain fatty acids in patients with sepsis. Heliyon 2023; 9:e17880. [PMID: 37539246 PMCID: PMC10395291 DOI: 10.1016/j.heliyon.2023.e17880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023] Open
Abstract
Sepsis is a complex clinical disorder with heterogeneous etiological factors. Given its high mortality rate, it is considered a global health issue. Recently, the link between gut microbiota and their metabolites, especially short-chain fatty acids, in the pathophysiology of sepsis has been reported. However, there are few findings to confirm this relationship. This study aimed to evaluate some key gut microbiota members, pathogenic bacteria, and short-chain fatty acids in non-ICU patients with sepsis caused by bacteremia compared to a control group. In this case-control study, 45 stool samples from patients with sepsis and 15 healthy persons were collected from October 2021 to August 2022 in Tabriz, Iran. The position of some gut microbiota members and the main short-chain fatty acids concentration were assessed in the two groups by the Q-PCR and the high-performance liquid chromatography system. Faecalibacterium prausnitzii and Bifidobacterium sp. As bacterial with protective features in non-ICU patients with sepsis decreased significantly. Moreover, the concentrations of acetic acid and propionic acid significantly decreased in this group compared to the healthy volunteers. In contrast, the pathogenic bacteria members such as Enterobacteriaceae and Bacteroides sp. Increased significantly in the patients compared to the healthy individuals. The concentration of butyric acid decreased in the patients, but this change was not significant in the two groups. Protective and immune functions of F. prausnitzii and Bifidobacterium sp., as well as acetate and propionate, are evident. In this investigation, this profile was significantly reduced in non-ICU patients with sepsis compared to the control group.
Collapse
Affiliation(s)
- Edris Nabizadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadeghi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences and Department of Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yaghoob Sharifi
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, West Azerbaijan, Iran
| | - Solmaz Asnaashari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hiva Kadkhoda
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Qiu S, Cai Y, Yao H, Lin C, Xie Y, Tang S, Zhang A. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduct Target Ther 2023; 8:132. [PMID: 36941259 PMCID: PMC10026263 DOI: 10.1038/s41392-023-01399-3] [Citation(s) in RCA: 231] [Impact Index Per Article: 115.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
Metabolic abnormalities lead to the dysfunction of metabolic pathways and metabolite accumulation or deficiency which is well-recognized hallmarks of diseases. Metabolite signatures that have close proximity to subject's phenotypic informative dimension, are useful for predicting diagnosis and prognosis of diseases as well as monitoring treatments. The lack of early biomarkers could lead to poor diagnosis and serious outcomes. Therefore, noninvasive diagnosis and monitoring methods with high specificity and selectivity are desperately needed. Small molecule metabolites-based metabolomics has become a specialized tool for metabolic biomarker and pathway analysis, for revealing possible mechanisms of human various diseases and deciphering therapeutic potentials. It could help identify functional biomarkers related to phenotypic variation and delineate biochemical pathways changes as early indicators of pathological dysfunction and damage prior to disease development. Recently, scientists have established a large number of metabolic profiles to reveal the underlying mechanisms and metabolic networks for therapeutic target exploration in biomedicine. This review summarized the metabolic analysis on the potential value of small-molecule candidate metabolites as biomarkers with clinical events, which may lead to better diagnosis, prognosis, drug screening and treatment. We also discuss challenges that need to be addressed to fuel the next wave of breakthroughs.
Collapse
Affiliation(s)
- Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China
| | - Ying Cai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Hong Yao
- First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Chunsheng Lin
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
20
|
Asai T, Yoshikawa S, Ikeda Y, Taniguchi K, Sawamura H, Tsuji A, Matsuda S. Encouraging Tactics with Genetically Modified Probiotics to Improve Immunity for the Prevention of Immune-Related Diseases including Cardio-Metabolic Disorders. Biomolecules 2022; 13:biom13010010. [PMID: 36671395 PMCID: PMC9855998 DOI: 10.3390/biom13010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The PI3K/AKT/mTOR signaling pathway may play crucial roles in the pathogenesis of obesity and diabetes mellitus, as well as metabolic syndromes, which could also be risk factors for cardio-metabolic disorders. Consistently, it has been shown that beneficial effects may be convoyed by the modulation of the PI3K/AKT/mTOR pathway against the development of these diseases. Importantly, the PI3K/AKT/mTOR signaling pathway can be modulated by probiotics. Probiotics have a variety of beneficial properties, with the potential of treating specific diseases such as immune-related diseases, which are valuable to human health. In addition, an increasing body of work in the literature emphasized the contribution of genetically modified probiotics. There now seems to be a turning point in the research of probiotics. A better understanding of the interactions between microbiota, lifestyle, and host factors such as genetics and/or epigenetics might lead to a novel therapeutic approach with probiotics for these diseases. This study might provide a theoretical reference for the development of genetically modified probiotics in health products and/or in functional foods for the treatment of cardio-metabolic disorders.
Collapse
|