1
|
Wu L, Li D, Bi F, Yu C, Zhang Y, Zheng M. Highly efficient enzymatic enrichment of n-3 polyunsaturated fatty acid glycerides via interfacial biocatalysis in Pickering emulsions. Food Chem 2025; 470:142683. [PMID: 39742604 DOI: 10.1016/j.foodchem.2024.142683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/16/2024] [Accepted: 12/25/2024] [Indexed: 01/03/2025]
Abstract
A novel Pickering interfacial biocatalysis (PIB) system has been, for the first time, successfully applied for the enzymatic selective hydrolysis of algae oils and fish oils to enrich n-3 PUFAs glycerides. Lipase AY 400SD was identified and adsorbed on hydrophobic hollow core-shell silica nanoparticles, resulting in the formation of the immobilized enzyme AY 400SD@HMSS-C18. The biocatalyst was employed as an emulsifier to stabilize the water-in-oil Pickering emulsion, resulting in the successful construction of the PIB system. The newly developed PIB system resulted in a notable enhancement of the n-3 PUFAs content of the six oils, with a mean increase ranging from 9.17 % to 23.09 %, and with the recovery rate of n-3 PUFAs exceeded 90 %. The platform demonstrated to be stable and recyclable. The present research illustrated that the PIB has the potential to be a viable alternative for the purpose of enhancing the content of n-3 PUFAs in glycerides.
Collapse
Affiliation(s)
- Liumei Wu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dongming Li
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Fuyang Bi
- Xinjiang Uygur Autonomous Region Saihu Fishery Science and Technology Development Company Limited, Bortala Mongol Autonomous Prefecture, 833500, China
| | - Chao Yu
- CABIO Biotech (Wuhan) Co., Ltd. Wuhan East Lake High-tech Development Zone, Wuhan 430073, China
| | - Yufei Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; Xinjiang Uygur Autonomous Region Saihu Fishery Science and Technology Development Company Limited, Bortala Mongol Autonomous Prefecture, 833500, China.
| | - Mingming Zheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; Xinjiang Uygur Autonomous Region Saihu Fishery Science and Technology Development Company Limited, Bortala Mongol Autonomous Prefecture, 833500, China.
| |
Collapse
|
2
|
Abreu AC, Macías-de la Rosa A, Tristán AI, López-Rosales L, Salmerón ADM, Sánchez-Mirón A, García-Camacho F, Cerón-García MDC, Fernández I. Exploring the NMR Metabolic Landscape of Chrysochromulina rotalis: The Impact of Photobioreactor Configurations and Culture Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40133061 DOI: 10.1021/acs.jafc.5c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
This study utilizes the advanced analytical capabilities of nuclear magnetic resonance metabolomics to perform an untargeted and comprehensive analysis of the metabolic profile ofChrysochromulina rotalis under varying environmental conditions and photobioreactor setups. By identifying key biomolecules, including lipids, pigments, proteins, and carbohydrates, this research highlights the remarkable adaptability ofC. rotalis and its potential as a valuable source of bioactive compounds with industrial application. These findings are supported by experiments conducted at both laboratory and pilot scales. At the laboratory scale, a bubbling bench photobioreactor operated under various LED lights, irradiances, and temperatures. At the pilot scale, 80 L indoor and outdoor tubular and bubble column photobioreactors were used with modified nutrient concentrations and irradiances, along with a 140 L outdoor flat panel photobioreactor. Significant metabolic variations were observed across these setups. Optimal production of carotenoids, chlorophyll c, polyunsaturated fatty acids (PUFA), triacylglycerols (TAG), and 1,2-diacylglycerols occurred at 30 μmol·m-2·s-1. Temperature effects revealed that 25 °C favored carotenoids and PUFA, while 35 °C increased glycerol and dimethyl sulfoniopropionate (DMSP). Red light enhanced fatty acids (FA), whereas white light increased osmolytes and docosahexaenoic acid (DHA). Scaling up cultivation further influenced the metabolic profile. Tubular photobioreactors at 268 μmol·m-2·s-1 had higher PUFA, TAG, and carotenoid levels, while the indoor bubble columns contained more fucoxanthin, choline, and osmolytes. The outdoor bubble column and flat panel photobioreactors exhibited a similar metabolite composition, with the bubble column showing higher levels of sterols and alanine. Finally, metabolite covariation patterns were explored using Spearman rank correlation, providing insights into metabolic regulation under different conditions. These findings contribute to optimizing photobioreactor-based cultivation strategies for maximizing the production of valuable biomolecules fromC. rotalis.
Collapse
Affiliation(s)
- Ana Cristina Abreu
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain
| | - Adrián Macías-de la Rosa
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain
| | - Ana Isabel Tristán
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain
| | - Lorenzo López-Rosales
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain
| | - Ana Del Mar Salmerón
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain
| | - Asterio Sánchez-Mirón
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain
| | - Francisco García-Camacho
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain
| | - María Del Carmen Cerón-García
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain
| | - Ignacio Fernández
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain
| |
Collapse
|
3
|
Coimbra S, Santos-Silva A. New Advances in Chronic Kidney Disease: Biology, Diagnosis and Therapy. Biomedicines 2025; 13:518. [PMID: 40002931 PMCID: PMC11853119 DOI: 10.3390/biomedicines13020518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Chronic kidney disease (CKD) is characterized by a progressive and usually irreversible deterioration of renal function [...].
Collapse
Affiliation(s)
- Susana Coimbra
- UCIBIO i4HB, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- UCIBIO i4HB, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Alice Santos-Silva
- UCIBIO i4HB, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Nađ T, Kolobarić N, Mihaljević Z, Drenjančević I, Šušnjara P, Stupin A, Kardum D, Kralik Z, Kralik G, Košević M, Jukić I. Effect of n-3 Polyunsaturated Fatty Acids Enriched Chicken Meat Consumption in Relation to Oxidative Stress Marker Levels in Young Healthy Individuals: A Randomized Double-Blind Study. Antioxidants (Basel) 2025; 14:204. [PMID: 40002390 PMCID: PMC11852193 DOI: 10.3390/antiox14020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Oxidative stress and inflammation are considered important risk contributors for various diseases. Over the last few decades, increasing attention has been focused on the role of n-3 polyunsaturated fatty acids (n-3 PUFAs) in human health and disease. We aimed to evaluate the effect of n-3 PUFA-enriched chicken meat consumption (~1500 mg of n-3 PUFAs intake per day) for three weeks on oxidative status and antioxidative capacity in young healthy individuals. This was a randomized, double-blinded, controlled trial, in which thirty-nine young healthy people were randomly allocated to eating 500 g/day of regular chicken meat (Control group) or n-3 PUFA-enriched chicken meat (n-3 PUFAs group) over 3 weeks. Subjects' biochemical parameters, including serum lipids level, liver enzymes, serum activities of antioxidant enzymes (glutathione peroxidase (GPx), superoxide dismutase (SOD)), serum oxidative stress markers (thiobarbituric acid reactive substances (TBARS) and ferric-reducing ability (FRAP)), as well as intracellular production of reactive oxygen species (ROS) in peripheral blood mononuclear cells, were assessed before and after completing the three-week dietary protocol. N-3-enriched chicken meat consumption significantly reduced high-sensitivity C reactive protein (hsCRP) serum level and increased the level of the antioxidant defense marker, FRAP. Furthermore, GPx and SOD enzyme activities significantly increased in the n-3 PUFAs group compared to baseline, which was accompanied by significantly decreased ROS production. In healthy young individuals, the 3-week dietary intake of n-3 PUFA-enriched chicken meat significantly increased the serum total antioxidant and anti-inflammatory potential, indicating that n-3 PUFAs may be protective in resting health condition without inflammatory processes.
Collapse
Affiliation(s)
- Tihana Nađ
- Clinic of Pediatrics, University Hospital Centre Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia;
- Department of Pediatrics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia;
| | - Nikolina Kolobarić
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (N.K.); (Z.M.); (I.D.); (A.S.)
- Scientific Centre of Excellence for Personalized Health Care, University of Osijek, Trg Sv. Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (M.K.)
| | - Zrinka Mihaljević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (N.K.); (Z.M.); (I.D.); (A.S.)
- Scientific Centre of Excellence for Personalized Health Care, University of Osijek, Trg Sv. Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (M.K.)
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (N.K.); (Z.M.); (I.D.); (A.S.)
- Scientific Centre of Excellence for Personalized Health Care, University of Osijek, Trg Sv. Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (M.K.)
| | - Petar Šušnjara
- Faculty of Kinesiology, Josip Juraj Strossmayer University of Osijek, Drinska 16a, HR-31000 Osijek, Croatia;
| | - Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (N.K.); (Z.M.); (I.D.); (A.S.)
- Scientific Centre of Excellence for Personalized Health Care, University of Osijek, Trg Sv. Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (M.K.)
| | - Darjan Kardum
- Department of Pediatrics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia;
- Department of Neonatology, Zadar General Hospital, B. Peričića 5, HR-23000 Zadar, Croatia
| | - Zlata Kralik
- Scientific Centre of Excellence for Personalized Health Care, University of Osijek, Trg Sv. Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (M.K.)
- Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia
| | - Gordana Kralik
- Scientific Centre of Excellence for Personalized Health Care, University of Osijek, Trg Sv. Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (M.K.)
- Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia
| | - Manuela Košević
- Scientific Centre of Excellence for Personalized Health Care, University of Osijek, Trg Sv. Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (M.K.)
- Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia
| | - Ivana Jukić
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (N.K.); (Z.M.); (I.D.); (A.S.)
- Scientific Centre of Excellence for Personalized Health Care, University of Osijek, Trg Sv. Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (M.K.)
| |
Collapse
|
5
|
Lenasi H, Drenjančević I. New Insights into Cardiovascular and Exercise Physiology: A Compendium of the Special Issue. Life (Basel) 2025; 15:252. [PMID: 40003661 PMCID: PMC11856775 DOI: 10.3390/life15020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
The capacity of the cardiovascular system to adjust to varying needs is immense [...].
Collapse
Affiliation(s)
- Helena Lenasi
- Institute of Physiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, University Josip Juraj Strossmayer, 31000 Osijek, Croatia
- Scientific Centre of Excellence for Personalized Health Care University Josip Juraj Strossmayer, 31000 Osijek, Croatia
| |
Collapse
|
6
|
Roşian ŞH, Boarescu I, Boarescu PM. Antioxidant and Anti-Inflammatory Effects of Bioactive Compounds in Atherosclerosis. Int J Mol Sci 2025; 26:1379. [PMID: 39941147 PMCID: PMC11818840 DOI: 10.3390/ijms26031379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Atherosclerosis, a chronic inflammatory disease characterized by the accumulation of lipids and immune cells within arterial walls, remains a leading cause of cardiovascular morbidity and mortality worldwide. Oxidative stress and inflammation are central to its pathogenesis, driving endothelial dysfunction, foam cell formation, and plaque instability. Emerging evidence highlights the potential of bioactive compounds with antioxidant and anti-inflammatory properties to mitigate these processes and promote vascular health. This review explores the mechanisms through which bioactive compounds-such as polyphenols, carotenoids, flavonoids, omega-3 fatty acids, coenzyme Q10, and other natural compounds-modulate oxidative stress and inflammation in atherosclerosis. It examines their effects on key molecular pathways, including the inhibition of reactive oxygen species (ROS) production, suppression of nuclear factor-κB (NF-κB), and modulation of inflammatory cytokines. By integrating current knowledge, this review underscores the therapeutic potential of dietary and supplemental bioactive compounds as complementary strategies for managing atherosclerosis, paving the way for future research and clinical applications.
Collapse
Affiliation(s)
- Ştefan Horia Roşian
- “Niculae Stăncioiu” Heart Institute Cluj-Napoca, 400001 Cluj-Napoca, Romania;
- Cardiology Department of Heart Institute, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400001 Cluj-Napoca, Romania
| | - Ioana Boarescu
- Neurology Department of Clinical Emergency County Hospital Saint John the New in Suceava, 720229 Suceava, Romania
- Department of Medical-Surgical and Complementary Sciences, Faculty of Medicine and Biological Sciences, “Ștefan cel Mare” University of Suceava, 720229 Suceava, Romania;
| | - Paul-Mihai Boarescu
- Department of Medical-Surgical and Complementary Sciences, Faculty of Medicine and Biological Sciences, “Ștefan cel Mare” University of Suceava, 720229 Suceava, Romania;
- Cardiology Department of Clinical Emergency County Hospital Saint John the New in Suceava, 720229 Suceava, Romania
| |
Collapse
|
7
|
Sa R, Zhang F, Zhang X, Gao W, Zhang Y, Gan J, Hou S, Gui L. Effects of different Lys/Met ratios on the antioxidant capacity, tissue morphology, and fatty acid composition of subcutaneous fat in Tibetan sheep on low-protein diets: a lipidomic analysis. Front Vet Sci 2025; 11:1528331. [PMID: 39949758 PMCID: PMC11824274 DOI: 10.3389/fvets.2024.1528331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/27/2024] [Indexed: 02/16/2025] Open
Abstract
Introduction This study employed lipidomics to investigate the effects of varying lysine (Lys)- to-methionine (Met) ratios on the antioxidant capacity, tissue morphology, and fatty acid composition of subcutaneous fat in Tibetan sheep fed a low-protein diet. Methods Ninety healthy male Tibetan sheep of similar body weight were randomly allocated into three groups. These sheep were fed a low-protein diet containing Lys/Met ratios of 1:1, 2:1, and 3:1. Ultra-High Performance Liquid Chromatography-tandem Mass Spectrometry (UHPLC-MS/MS) was employed to explore the changes in various lipid subclasses in subcutaneous adipose tissue. The expression of genes associated with adipogenesis, antioxidant capacity, and fatty acid metabolism was also examined. Results The results indicated that the 1:1 Lys/Met group exhibited significantly higher antioxidant capacity (glutathione peroxidase, GSH-Px), with more orderly adipocyte arrangement, uniform cell size, and a general increase in unsaturated fatty acid levels. Additionally, several lipid molecules associated with the phenotype (Antioxidant index and fatty acid content) were identified, namely, DG(38:3e) + Na, PE(17:1_22:2)-H, PI(17:0_20:3)-H, TG(33:0e) + NH4, Cer(d14:0_17:1) + H, and CL(81:13)-2H. Furthermore, the findings showed that the upregulation of PPARγ, FASN, FAD4, CPT1A, and GPX4 can enhance adipocyte differentiation and lipid accumulation, thereby improving metabolic function in subcutaneous adipose tissue via the regulation of lipid metabolism and oxidative defense mechanisms. Discussion In summary, this study provides a theoretical foundation for optimizing precision feeding strategies for Tibetan sheep, offering crucial data to support enhancements in production efficiency and meat quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| |
Collapse
|
8
|
Essawy AE, Jimmiey EM, Abdel-Wahab WM, Ali RG, Eweda SM, Abdou HM. The protective efficacy of omega-3 polyunsaturated fatty acids on oxidative stress, inflammation, neurotransmitter perturbations, and apoptosis induced by monosodium glutamate in the brain of male rats. Metab Brain Dis 2025; 40:114. [PMID: 39878784 PMCID: PMC11779784 DOI: 10.1007/s11011-025-01539-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Exaggerated neuronal excitation by glutamate is a well-known cause of excitotoxicity, a key factor in numerous neurodegenerative disorders. This study examined the neurotoxic effect of monosodium glutamate (MSG) in the brain cortex of rats and focused on assessing the potential neuroprotective effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs). Four groups of adult male rats (n = 10) were assigned as follows; normal control, ω-3 PUFAs (400 mg/kg) alone, MSG (4 mg/g) alone, and MSG plus ω-3 PUFAs (4 mg/g MSG plus 400 mg/kg ω-3 PUFAs). Biochemical analysis, immunohistochemical, and histological examinations were conducted upon completion of the treatment protocol. Results revealed that MSG significantly increased malondialdehyde, nitric oxide, tumor necrosis factor-α, interleukin 1β, acetylcholinesterase, monoamine oxidase, and caspase-3. However, the MSG-treated group showed a decline in reduced glutathione, catalase, superoxide dismutase, dopamine, and serotonin. In addition, MSG caused histopathological changes in the cortical region which support the biochemical and immunohistochemical analysis. Supplementation of ω-3 PUFAs greatly improved the biochemical, immunohistochemical, and histopathological alterations induced by MSG administration in the brain cortex. Together, these findings revealed a neuroprotective effect of ω-3 PUFAs against MSG-induced toxicity in the brain cortex by attenuating oxidative damage, inflammation, neurochemical perturbations, and apoptosis.
Collapse
Affiliation(s)
- Amina E Essawy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21515, Egypt
| | - Eman M Jimmiey
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21515, Egypt
| | - Wessam M Abdel-Wahab
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21515, Egypt.
| | - Rania G Ali
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Saber M Eweda
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21515, Egypt
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taibah University, Madinah, 42353, Kingdom of Saudi Arabia
| | - Heba M Abdou
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21515, Egypt
| |
Collapse
|
9
|
Zheng E, Warchoł I, Mejza M, Możdżan M, Strzemińska M, Bajer A, Madura P, Żak J, Plewka M. Exploring Anti-Inflammatory Treatment as Upstream Therapy in the Management of Atrial Fibrillation. J Clin Med 2025; 14:882. [PMID: 39941553 PMCID: PMC11818443 DOI: 10.3390/jcm14030882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
Inflammation has been widely recognized as one of the major pathophysiological drivers of the development of atrial fibrillation (AF), which works in tandem with other risk factors of AF including obesity, diabetes, hypertension, and heart failure (HF). Our current understanding of the role of inflammation in the natural history of AF remains elusive; however, several key players, including the NLRP3 (NLR family pyrin domain containing 3) inflammasome, have been acknowledged to be heavily influential on chronic inflammation in the atrial myocardium, which leads to fibrosis and eventual degradation of its electrical function. Nevertheless, our current methods of pharmacological modalities with reported immunomodulatory properties, including well-established classes of drugs e.g., drugs targeting the renin-angiotensin-aldosterone system (RAAS), statins, and vitamin D, have proven effective in reducing the overall risk of developing AF, the onset of postoperative atrial fibrillation (POAF), and reducing overall mortality among patients with AF. This might bring hope for further progress in developing new treatment modalities targeting cellular checkpoints of the NLRP3 inflammasome pathway, or revisiting other well-known anti-inflammatory drugs e.g., colchicine, vitamin C, nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticosteroids, and antimalarial drugs. In our review, we aim to find relevant upstream anti-inflammatory treatment methods for the management of AF and present the most current real-world evidence of their clinical utility.
Collapse
|
10
|
Xie B, Wu Y, Liu Z, Huang Y, Lu Q, Bian A, Han B, Yan Y, Lai Y, He B, Li Y, Yan F, Yan L, Chen F. Association of dietary and plasma fatty acids with periodontitis: Results from the 2009-2014 National Health and Nutrition Examination Survey and Mendelian randomization study. J Am Dent Assoc 2025:S0002-8177(24)00696-2. [PMID: 39864010 DOI: 10.1016/j.adaj.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND The authors aimed to explore the association of fatty acids with periodontitis and its severity and to assess causality using Mendelian randomization (MR) analyses. METHODS Data for participants with complete data were extracted from the 2009-2014 National Health and Nutrition Examination Survey. Weighted logistic regression was used to explore the relationship between dietary fatty acids and periodontitis and its severity. Univariable and multivariable MR analyses were performed to explore the causal association between plasma fatty acids and periodontitis. RESULTS Two types of saturated fatty acids (hexadecanoic C16:0, octadecanoic C18:0) and monounsaturated fatty acids (hexadecenoic C16:1, docosenoic C22:1) and 3 types of polyunsaturated fatty acids (eicosatetraenoic C20:4, eicosapentaenoic C20:5, docosahexaenoic C22:6) were positively associated with periodontitis. Conversely, octadecadienoic (C18:2, a type of polyunsaturated fatty acid), total polyunsaturated fatty acids, and omega-6 fatty acids were negatively associated with periodontitis. Similar association patterns were also found between these fatty acids and the severity of periodontitis. Results of MR analyses revealed that no significant association was found between plasma fatty acids and periodontitis. CONCLUSIONS The authors provided evidence of significant associations between certain fatty acids and periodontitis and its severity, highlighting their contributory role, although the evidence does not support a causal role based on the results of MR-based analyses. PRACTICAL IMPLICATIONS The results of this study support a contributory or inhibitory role of fatty acids in the progression of periodontitis, although not as a direct cause, and underscored the importance of maintaining a balanced dietary lipid profile for periodontal health.
Collapse
|
11
|
Rahbari S, Salehi A, Sharifi SD, Honarbakhsh S. Dietary omega-3 fatty acids affect the growth performance of broiler chickens reared at high stocking density. Poult Sci 2025; 104:104468. [PMID: 39603183 PMCID: PMC11635653 DOI: 10.1016/j.psj.2024.104468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
The present study was conducted to investigate the effects of dietary omega-3 fatty acids in broiler chickens exposed to high stocking density (SD) on growth performance, carcass characteristics, breast meat quality, blood biochemical indices, nutrient digestibility and litter quality. A total of 420 one-day-old broilers were used in 2 × 2 factorial arrangements with 2 levels of SD (low: 9 birds/ m2 and high: 17 birds/ m2) and 2 levels of omega-3 fatty acids (low and high omega-3; 0.057 and 0.5% of the diet, respectively) in a completely randomized design with 5 replicates for each treatment. Live body weight (LBW), feed intake (FI), and feed conversion ratio (FCR) were recorded periodically. The apparent metabolizable energy (AME), digestibility of crude protein (CP), organic matter (OM), and lipid of experimental diets, were measured from days 30 to 37 of age. The results showed that body weight gain (BWG) and FCR was improved (P < 0.05) in high SD broilers during the grower phase (days 15-24).The BWG of broilers under high SD and dietary omega-3 fatty acids was higher than others (P < 0.05) during the finisher phase (d 25-40). Carcass and total heart weight were higher in birds fed diets containing omega-3 fatty acids under high SD than in birds fed a diet low in omega-3 fatty acids at low or high SD (P < 0.05). The serum concentration of cholesterol in broilers with high SD fed diets high in omega-3 fatty acids was lower than broilers with high SD fed diets low in omega-3 fatty acids (P < 0.05). High SD decreased AME and CP digestibility (P < 0.05). Dietary omega-3 fatty acids, increased AME and digestibility of OM and lipid (P < 0.05). In broiler chickens raised at low stocking density, feeding a high-omega-3 diet reduced litter nitrogen levels compared to feeding a low omega-3 diet (P < 0.05). In summary, omega-3 fatty acid may have the potential to reduce negative effects of high SD on broiler production by enhancing the nutrient digestibility and litter quality.
Collapse
Affiliation(s)
- Shahgol Rahbari
- Department of Animal and Poultry Science, Faculty of Agricultural Technology, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Abdolreza Salehi
- Department of Animal and Poultry Science, Faculty of Agricultural Technology, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Seyed Davood Sharifi
- Department of Animal and Poultry Science, Faculty of Agricultural Technology, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| | - Shirin Honarbakhsh
- Department of Animal and Poultry Science, Faculty of Agricultural Technology, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| |
Collapse
|
12
|
Jastrzębska J, Frankowska M, Wesołowska J, Filip M, Smaga I. Dietary Intervention with Omega-3 Fatty Acids Mitigates Maternal High-Fat Diet-Induced Behavioral and Myelin-Related Alterations in Adult Offspring. Curr Neuropharmacol 2025; 23:329-348. [PMID: 39492773 PMCID: PMC11808589 DOI: 10.2174/1570159x23666241014164940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/10/2024] [Accepted: 06/01/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Maternal high-fat diet (HFD) during pregnancy and lactation induces depression- like phenotype and provokes myelin-related changes in rat offspring in the prefrontal cortex (PFCTX), which persist even to adulthood. OBJECTIVE Due to the plasticity of the developing brain, it was decided to analyze whether depressionlike phenotype and myelin-related changes in the early lifetime induced by maternal HFD (60% energy from fat) could be reversed by the omega-3 fatty acid-enriched diet (Ω3D) given from the postweaning period until adulthood (63rd day of life) in offspring. METHODS We analyzed the effect of post-weaning Ω3D on the depressive-like phenotype (assessed by the forced swimming test) and myelin-related changes (measured using RT-qPCR, ELISA, and immunofluorescence staining) in the PFCTX of adult offspring. RESULTS Ω3D reversed increased immobility time in adult offspring induced by maternal HFD, without affecting the animals' locomotor activity. Molecularly, Ω3D normalized the reduced expression levels of myelin-oligodendrocyte glycoprotein (MOG), as well as myelin and lymphocyte protein (MAL) in males and MOG in females in the PFCTX, changes initially induced by maternal HFD. Additionally, Ω3D normalized the quantity of oligodendrocyte precursor cells and mature oligodendrocytes in the prelimbic, infralimbic, and cingulate cortex in males, which were reduced following maternal HFD exposure. In females, the Ω3D effect was less pronounced, with normalization of oligodendrocyte precursors occurring only in the infralimbic cortex. CONCLUSION These findings suggest that Ω3D may play a significant role in correcting behavioral and neurobiological changes caused by adverse prenatal conditions.
Collapse
Affiliation(s)
- Joanna Jastrzębska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Małgorzata Frankowska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Julita Wesołowska
- Laboratory of Microscopic Imaging, Maj Institute of Pharmacology Polish Academy of Sciences, CEPHARES, 12 Smętna Street, 31-343 Kraków, Poland
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| |
Collapse
|
13
|
Xu M, Liu L, Fan Z, Niu L, Ning W, Cheng H, Li M, Huo W, Zhou P, Deng H, Chen W, Che L. Effect of different dietary oil sources on the performance, egg quality and antioxidant capacity during the late laying period. Poult Sci 2025; 104:104615. [PMID: 39637658 PMCID: PMC11664395 DOI: 10.1016/j.psj.2024.104615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/25/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024] Open
Abstract
This study investigated the effects of different dietary ratios of linseed and soybean oils on the performance, egg quality, and antioxidant capacity of late-phase laying hens. A total of 360 70-week-old Jinghong laying hens were randomly assigned to four groups of six replicates each, with 15 chickens per replicate. Diets with linseed oil to soybean oil ratios of 3:0 (T1), 2:1 (T2), 1:2 (T3), and 0:3 (T4) were fed for 4 weeks. No significant differences in egg weight, feed intake of laying hens, egg production, or feed-to-egg ratio (P > 0.05) were observed among the groups. Compared with the T4 group, the T2 group had a significantly higher number of 8-10 mm follicles. Moreover, albumen height and Haugh units were significantly higher in the T3 group than in the T4 group (P < 0.05), although significant differences were not observed among the T1, T2, and T3 groups. With an increase in linseed oil addition to the feed, the content of n-3 polyunsaturated fatty acids in chicken eggs significantly increased (P < 0.05). Compared to the T4 group, the addition of linseed oil to the diet significantly reduced the blood malondialdehyde content and increased the blood glutathione peroxidase (GSH-PX) and superoxide dismutase enzyme activity. The GSH-PX activity and total antioxidant capacity in the oviducts of the T3 group were significantly higher than those of the T4 group (P < 0.05). The protein expression levels of Nrf2, HO-1, and NQO-1 in the oviduct tissues were significantly higher in the T3 group than in the T4 group (P < 0.05). This study showed that a linseed oil to soybean oil ratio of 1:2 in the T3 group enhanced egg quality by reducing oxidative stress and improving the oviduct microenvironment.
Collapse
Affiliation(s)
- Mengmeng Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No.6 North Longzihu Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Le Liu
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, China
| | - Zongze Fan
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, China
| | - Lizhu Niu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No.6 North Longzihu Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Wenxi Ning
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No.6 North Longzihu Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - He Cheng
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No.6 North Longzihu Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Mengyun Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No.6 North Longzihu Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Wenying Huo
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No.6 North Longzihu Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Pan Zhou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Hongyu Deng
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No.6 North Longzihu Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Wen Chen
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, China
| | - Long Che
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No.6 North Longzihu Road, Zhengdong New District, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
14
|
Darwish R, Alcibahy Y, Bucheeri S, Albishtawi A, Tama M, Shetty J, Butler AE. The Role of Hypothalamic Microglia in the Onset of Insulin Resistance and Type 2 Diabetes: A Neuro-Immune Perspective. Int J Mol Sci 2024; 25:13169. [PMID: 39684879 DOI: 10.3390/ijms252313169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Historically, microglial activation has been associated with diseases of a neurodegenerative and neuroinflammatory nature. Some, like Alzheimer's disease, Parkinson's disease, and multiple system atrophy, have been explored extensively, while others pertaining to metabolism not so much. However, emerging evidence points to hypothalamic inflammation mediated by microglia as a driver of metabolic dysregulations, particularly insulin resistance and type 2 diabetes mellitus. Here, we explore this connection further and examine pathways that underlie this relationship, including the IKKβ/NF-κβ, IRS-1/PI3K/Akt, mTOR-S6 Kinase, JAK/STAT, and PPAR-γ signaling pathways. We also investigate the role of non-coding RNAs, namely microRNAs and long non-coding RNAs, in insulin resistance related to neuroinflammation and their diagnostic and therapeutic potential. Finally, we explore therapeutics further, searching for both pharmacological and non-pharmacological interventions that can help mitigate microglial activation.
Collapse
Affiliation(s)
- Radwan Darwish
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Yasmine Alcibahy
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Shahd Bucheeri
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Ashraf Albishtawi
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Maya Tama
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Jeevan Shetty
- Department of Biochemistry, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Alexandra E Butler
- School of Postgraduate Studies and Research, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| |
Collapse
|
15
|
Seifishahpar M, Kim JH, Parkman JK, Rhode A, Menikdiwela K, Zu Y, Scoggin S, Freeman L, Kalupahana NS, Moustaid-Moussa N. Mechanisms Mediating Tart Cherry and Fish Oil Metabolic Effects in Diet-Induced (C57BL/6J) and Genetically (TALYHO/Jng) Obese Mice. Nutrients 2024; 16:4179. [PMID: 39683572 DOI: 10.3390/nu16234179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Obesity is a major public health concern that increases the risk of chronic diseases. In obesity, adipose tissue undergoes remodeling, which is associated with chronic low-grade inflammation and disruption of its homeostatic mechanisms including endoplasmic reticulum (ER) function and autophagy. Fish oil (FO) and tart cherry (TC) have known anti-inflammatory properties. We hypothesized that while TC and FO individually decrease inflammation, their combined effects will be greater and will be either synergistic or additive in regulating inflammation and other adipose tissue functions. METHODS Here, we conducted gene expression analyses, using qRT-PCR, on gonadal white adipose tissues from a previous study where male and female C57BL/6J (B6) and TALLYHO/Jng (TH) mice were fed low fat (LF), high fat (HF), or HF diets supplemented with TC, FO, or TC + FO for 14 weeks from weaning. Data was statistically analyzed by one or two-way ANOVA, using GraphPad Prism. RESULTS HF diet increased adiposity and upregulated markers of inflammation, ER stress, and autophagy compared to the LF diet in both mouse models. While both TC and FO supplementation individually reduced the expression of inflammatory, ER stress, and autophagy markers on HF diet, their combination showed no consistent additive or synergistic effects. CONCLUSIONS Overall, our findings suggest that although TC and FO effectively mitigate inflammation in white adipose tissue, their combined use did not result in synergistic or additive effects of the two interventions.
Collapse
Affiliation(s)
- Maryam Seifishahpar
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Jung Han Kim
- Department of Biomedical Sciences, School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Jacaline K Parkman
- Department of Biomedical Sciences, School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Ana Rhode
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Kalhara Menikdiwela
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Yujiao Zu
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Shane Scoggin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Logan Freeman
- Department of Biomedical Sciences, School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Nishan Sudheera Kalupahana
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
- Institute for One Health Innovation, Texas Tech University, Lubbock, TX 79409, USA
- Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
16
|
Albulushi A, De Silva TD, Kashoub M, Tawfek A, Shams A, Al-Riyami A, Al-Kindi F, Bader F. Expanding horizons in pulmonary hypertension management: A systematic review and meta-analysis of non-pharmacological interventions. Curr Probl Cardiol 2024; 49:102825. [PMID: 39222831 DOI: 10.1016/j.cpcardiol.2024.102825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a progressive and life-threatening disorder characterized by elevated pulmonary arterial pressure, leading to right heart failure and reduced exercise capacity. Traditional pharmacological and surgical treatments offer limited efficacy and significant side effects, necessitating the exploration of alternative therapeutic options. OBJECTIVE This systematic review and meta-analysis aimed to evaluate the efficacy and safety of non-pharmacological interventions, including exercise, dietary modifications, and psychosocial therapies, in the management of pulmonary hypertension. METHODS Comprehensive searches were conducted in PubMed, Cochrane Library, and Scopus up to 2024, identifying randomized controlled trials and observational studies examining non-pharmacological interventions for PH. Primary outcomes assessed included pulmonary arterial pressure, right heart function, exercise capacity, and quality of life, with secondary analysis on safety and adverse effects. Data synthesis was performed using random-effects meta-analysis. RESULTS The review included 30 studies, totaling 2000 participants with various forms of PH. Meta-analysis demonstrated significant improvements in exercise capacity as measured by the 6 min walk distance (mean increase of 45 meters, 95 % CI: 30-60, p<0.001), enhanced quality of life scores, and reduction in pulmonary arterial pressure (mean reduction of 5 mmHg, 95 % CI: 3-7, p<0.01). Non-pharmacological therapies also showed a favorable safety profile, with minor adverse effects reported. CONCLUSION Non-pharmacological interventions provide a viable and effective complement to traditional treatments for pulmonary hypertension, significantly improving functional capacity and hemodynamic parameters without severe adverse effects. These findings support the integration of tailored non-pharmacological strategies into the therapeutic regimen for PH patients, emphasizing the need for broader implementation and further research to optimize intervention protocols.
Collapse
Affiliation(s)
- Arif Albulushi
- Department of Adult Cardiology, National Heart Center, The Royal Hospital, Muscat, Oman.
| | - Thihan D De Silva
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Masoud Kashoub
- Division of Cardiology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Ahmed Tawfek
- Department of Adult Cardiology, National Heart Center, The Royal Hospital, Muscat, Oman
| | - Ahmed Shams
- Department of Adult Cardiology, National Heart Center, The Royal Hospital, Muscat, Oman
| | - Adil Al-Riyami
- Division of Chest Medicine, Sultan Qaboos University Hospital, Muscat, Oman
| | - Fahad Al-Kindi
- Division of Chest Medicine, Sultan Qaboos University Hospital, Muscat, Oman
| | - Feras Bader
- Department of Cardiology, Heart, Vascular and Thoracic Institute, Cleveland Clinic Abu Dhabi, UAE
| |
Collapse
|
17
|
Karpęcka-Gałka E, Frączek B. Nutrition, hydration and supplementation considerations for mountaineers in high-altitude conditions: a narrative review. Front Sports Act Living 2024; 6:1435494. [PMID: 39584049 PMCID: PMC11582915 DOI: 10.3389/fspor.2024.1435494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/11/2024] [Indexed: 11/26/2024] Open
Abstract
Staying and climbing in high mountains (>2,500 m) involves changes in diet due to poor access to fresh food, lack of appetite, food poisoning, environmental conditions and physiological changes. The purpose of this review is to summarize the current knowledge on the principles of nutrition, hydration and supplementation in high-altitude conditions and to propose practical recommendations/solutions based on scientific literature data. Databases such as Pubmed, Scopus, ScienceDirect and Google Scholar were searched to find studies published from 2000 to 2023 considering articles that were randomized, double-blind, placebo-controlled trials, narrative review articles, systematic reviews and meta-analyses. The manuscript provides recommendations for energy supply, dietary macronutrients and micronutrients, hydration, as well as supplementation recommendations and practical tips for mountaineers. In view of the difficulties of being in high mountains and practicing alpine climbing, as described in the review, it is important to increase athletes' awareness of nutrition and supplementation in order to improve well-being, physical performance and increase the chance of achieving a mountain goal, and to provide the appropriate dietary care necessary to educate mountaineers and personalize recommendations to the needs of the individual.
Collapse
Affiliation(s)
- Ewa Karpęcka-Gałka
- Doctoral School of Physical Culture Sciences, University of Physical Education in Krakow, Cracow, Poland
| | - Barbara Frączek
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University of Physical Education in Krakow, Cracow, Poland
| |
Collapse
|
18
|
Wang M, Xiang YH, Liu M, Jiang S, Guo JY, Jin XY, Sun HF, Zhang N, Wang ZG, Liu JX. The application prospects of sacha inchi ( Plukenetia volubilis linneo) in rheumatoid arthritis. Front Pharmacol 2024; 15:1481272. [PMID: 39484157 PMCID: PMC11524839 DOI: 10.3389/fphar.2024.1481272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
Sacha Inchi (Plukenetia volubilis L) (SI) is a traditional natural medicine from tropical rainforests of Amazon region in South America. As a raw material for edible oil, it has various pharmacological effects such as antioxidant, anti-inflammatory, hypolipidemia, and blood pressure lowering, which have attracted increasing attentions of pharmacists. This has prompted researchers to explore its pharmacological effects for potential applications in certain diseases. Among these, the study of its anti-inflammatory effects has become a particularly interesting topic, especially in rheumatoid arthritis (RA). RA is a systemic autoimmune disease, and often accompanied by chronic inflammatory reactions. Despite significant progress in its treatment, there is still an urgent need to find effective anti-RA drugs in regard to safety. This review summarizes the potential therapeutic effects of SI on RA by modulating gut microbiota, targeting inflammatory cells and pathways, and mimicking biologic antibody drugs, predicting the application prospects of SI in RA, and providing references for research aimed at using SI to treat RA.
Collapse
Affiliation(s)
- Min Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yin-Hong Xiang
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Mei Liu
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan, China
| | - Shan Jiang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jia-ying Guo
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiao-yan Jin
- School of Pharmaceutical Sciences, Xinjiang medical University, Wulumuqi, Xinjiang, China
| | - Hui-feng Sun
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Ning Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Zhi-Gang Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jian-xin Liu
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan, China
| |
Collapse
|
19
|
Pop RM, Vassilopoulou E, Jianu ME, Roșian ȘH, Taulescu M, Negru M, Bercian C, Boarescu PM, Bocsan IC, Feketea G, Chedea VS, Dulf F, Cruceru J, Pârvu AE, Buzoianu AD. Nigella sativa oil attenuates inflammation and oxidative stress in experimental myocardial infarction. BMC Complement Med Ther 2024; 24:362. [PMID: 39375628 PMCID: PMC11459993 DOI: 10.1186/s12906-024-04648-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND A growing interest in using Nigella sativa oil (NSO) in the prevention or treatment of several cardiovascular diseases has prompted this study. The research aims to investigate the effect of NSO on cardiac damage prevention after long-term administration in induced myocardial infarction (MI) in rats. METHODS NSO was analyzed for its fatty acids composition using gas chromatography-mass spectrometry (GC-MS) analysis and administered in rats before and after isoproterenol (45 mg/kg body weight) induced myocardial infarction. The following parameters were assessed: electrocardiograms, histopathological examination, serum biochemical aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatine kinase-myocardial band (CK-MB), serum and heart inflammation (tumor necrosis factor-alpha (TNF), interleukin 1 beta (IL-1b), and interleukin 6 (IL-6)), and tissue oxidative stress (total antioxidant capacity (TAC), total oxidative stress (TOS), nitric oxide (NO), malondialdehyde (MDA), and the total thiols (THIOL)). RESULTS Linoleic acid (C18:2n-6) and oleic acid (C18:1n-9) were approximately 89% of total fatty acids while palmitic acid (C16:0) was 6.10%. Administration of NSO for 28 days helped in preventing QT and QTc interval prolongation and reduced heart rate (HR), after MI induction. The histological assessment showed improvement in myofibrillary degeneration and necrosis and also better reduced inflammatory process in the groups treated with NSO. In serum, pro-inflammatory cytokines IL-1b and IL-6 were downregulated in chronic conditions (for IL-1b, NSO vs. control was 86.09vs 150.39 pg/mL, and for IL-6 NSO vs. control was 78.00 vs. 184.98 pg/ml). In the heart tissue, the downregulation was observed only for TNF in both acute and chronic conditions (acute NSO vs. control was 132.37 vs. 207.63 pg/mL, and chronic NSO vs. control was 135.83 vs. 183.29 pg/ml). The pro-oxidant parameters TOS, NO, MDA, and OSI, were reduced in the groups treated with NSO only after 14 days of treatment, suggesting that the NSO antioxidant effect is time-dependent. CONCLUSIONS NSO administration might have a favourable impact on the regulation of oxidative stress and inflammation processes after MI induction in rats, and it is worth considering its administration as an adjuvant treatment.
Collapse
Affiliation(s)
- Raluca Maria Pop
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, Cluj-Napoca, 400012, Romania
| | - Emilia Vassilopoulou
- Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Mihaela-Elena Jianu
- Histology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, Cluj-Napoca, 400012, Romania.
| | - Ștefan Horia Roșian
- "Niculae Stăncioiu" Heart Institute Cluj-Napoca, 19-21 Calea Moților Street, Cluj-Napoca, 400001, Romania.
- Department of Cardiology-Heart Institute, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, Calea Moților Street No. 19-21, Cluj-Napoca, 400001, Romania.
| | - Marian Taulescu
- Pathology Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, 400372, Romania
- Synevovet Laboratory, Bucharest, 021408, Romania
| | - Mihai Negru
- Pathology Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, 400372, Romania
- Department of Agriculture, Food and the Marine, Agriculture House, Kildare Street, Dublin, D02 WK12, Ireland
| | - Crina Bercian
- "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, Cluj-Napoca, 400012, Romania
| | - Paul-Mihai Boarescu
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, Cluj-Napoca, 400012, Romania
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, "Stefan cel Mare" University of Suceava, Suceava, 720229, Romania
| | - Ioana Corina Bocsan
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, Cluj-Napoca, 400012, Romania
| | - Gavriela Feketea
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, Cluj-Napoca, 400012, Romania
- Pediatric Allergy Outpatient Clinic, Department of Pediatrics, "Karamandaneio" Children's Hospital of Patra, Patras, 26331, Greece
| | - Veronica Sanda Chedea
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), Blaj, 515400, Romania
| | - Francisc Dulf
- Department of Environmental and Plant Protection, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăştur Street, Cluj-Napoca, 400372, Romania
| | - Jeanine Cruceru
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, Cluj-Napoca, 400012, Romania
| | - Alina Elena Pârvu
- Pathophysiology, Department of Morphofunctional Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, 400012, Romania
| | - Anca Dana Buzoianu
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, Cluj-Napoca, 400012, Romania
| |
Collapse
|
20
|
Banaszak M, Dobrzyńska M, Kawka A, Górna I, Woźniak D, Przysławski J, Drzymała-Czyż S. Role of Omega-3 fatty acids eicosapentaenoic (EPA) and docosahexaenoic (DHA) as modulatory and anti-inflammatory agents in noncommunicable diet-related diseases - Reports from the last 10 years. Clin Nutr ESPEN 2024; 63:240-258. [PMID: 38980796 DOI: 10.1016/j.clnesp.2024.06.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/11/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND & AIMS Fatty acids are a fundamental component of the human diet, particularly polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The importance of omega-3 fatty acids has been studied in the context of many diseases due to their pleiotropic effects, focusing on the anti-inflammatory effects of EPA and DHA. Currently, the results of these acids in noncommunicable diseases are being increasingly assessed in a broader context than just inflammation. However, the mechanisms underlying the modulatory and anti-inflammatory effects of omega-3 fatty acids remain the subject of intensive research. Therefore, we reviewed the literature covering articles from the last decade to assess not only the anti-inflammatory but, above all, the modulatory effect of EPA and DHA acids on noncommunicable diet-related diseases. METHODS The PubMed, Web of Science and Scopus databases were searched for studies regarding the effects of omega-3 fatty acids on diet-related disorders from the last 10 years. RESULTS The available research shows that EPA and DHA supplementation has a beneficial impact on regulating triglycerides, total cholesterol, insulin resistance, blood pressure, liver enzymes, inflammatory markers and oxidative stress. Additionally, there is evidence of their potential benefits in terms of mitochondrial function, regulation of plasma lipoproteins, and reduction of the risk of sudden cardiovascular events associated with atherosclerotic plaque rupture. CONCLUSIONS Omega-3 polyunsaturated fatty acids (EPA, DHA) have many beneficial effects among patients with diet-related disorders. More well-designed randomised controlled trials are needed to fully determine the usefulness of EPA and DHA in treating and preventing noncommunicable diet-related diseases.
Collapse
Affiliation(s)
- Michalina Banaszak
- Poznan University of Medical Sciences, Department of Bromatology, Rokietnicka 3, Poznan, Poland; Poznan University of Medical Sciences Doctoral School, Bukowska 70, Poznan, Poland.
| | - Małgorzata Dobrzyńska
- Poznan University of Medical Sciences, Department of Bromatology, Rokietnicka 3, Poznan, Poland
| | - Anna Kawka
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, Poznan, Poland
| | - Ilona Górna
- Poznan University of Medical Sciences, Department of Bromatology, Rokietnicka 3, Poznan, Poland
| | - Dagmara Woźniak
- Poznan University of Medical Sciences, Department of Bromatology, Rokietnicka 3, Poznan, Poland
| | - Juliusz Przysławski
- Poznan University of Medical Sciences, Department of Bromatology, Rokietnicka 3, Poznan, Poland
| | - Sławomira Drzymała-Czyż
- Poznan University of Medical Sciences, Department of Bromatology, Rokietnicka 3, Poznan, Poland
| |
Collapse
|
21
|
Duailibe JBB, Viau CM, Saffi J, Fernandes SA, Porawski M. Protective effect of long-chain polyunsaturated fatty acids on hepatorenal syndrome in rats. World J Nephrol 2024; 13:95627. [PMID: 39351184 PMCID: PMC11439093 DOI: 10.5527/wjn.v13.i3.95627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/07/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Hepatorenal syndrome (HRS) is the most prevalent form of acute kidney injury in cirrhotic patients. It is characterized by reduced renal blood flow and represents the most severe complication in cirrhotic patients with advanced disease. Previous research has indicated that antioxidants can delay the onset of a hyperdynamic circulatory state in cirrhosis and improve renal function in HRS patients. Regular omega-3 supplementation has significantly reduced the risk of liver disease. This supplementation could represent an additional therapy for individuals with HRS. AIM To evaluated the antioxidant effect of omega-3 polyunsaturated fatty acid supplementation on the kidneys of cirrhotic rats. METHODS Secondary biliary cirrhosis was induced in rats by biliary duct ligation (BDL) for 28 d. We used 24 male Wistar rats divided into the following groups: I (control); II (treated with omega-3, 1 g/kg of body weight); III (BDL treated with omega-3, 1 g/kg of body weight); and IV (BDL without treatment). The animals were killed by overdose of anesthetic; the kidneys were dissected, removed, frozen in liquid nitrogen, and stored in a freezer at -80℃ for later analysis. We evaluated oxidative stress, nitric oxide (NO) metabolites, DNA damage by the comet assay, cell viability test, and apoptosis in the kidneys. Data were analyzed by one-way analysis of variance, and means were compared using the Tukey test, with P ≤ 0.05. RESULTS Omega-3 significantly decreased the production of reactive oxygen species (P < 0.001) and lipoperoxidation in the kidneys of cirrhotic rats treated with omega-3 (P < 0.001). The activity of the antioxidant enzymes superoxide dismutase and catalase increased in the BDL+omega-3 group compared to the BDL group (P < 0.01). NO production, DNA damage, and caspase-9 cleavage decreased significantly in the omega-3-treated BDL group. There was an increase in mitochondrial electrochemical potential (P < 0.001) in BDL treated with omega-3 compared to BDL. No changes in the cell survival index in HRS with omega-3 compared to the control group (P > 0.05) were observed. CONCLUSION The study demonstrates that omega-3 can protect cellular integrity and function by increasing antioxidant enzymes, inhibiting the formation of free radicals, and reducing apoptosis.
Collapse
Affiliation(s)
- João Bruno Beretta Duailibe
- Department of Hepatology, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Cassiana Macagnan Viau
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Jenifer Saffi
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Sabrina Alves Fernandes
- Department of Hepatology, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Marilene Porawski
- Department of Hepatology and Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| |
Collapse
|
22
|
Su D, Wang X, Liu X, Miao J, Zhang Z, Zhang Y, Zhao L, Yu Y, Leng K, Yu Y. A comprehensive study of the colloidal properties, biocompatibility, and synergistic antioxidant actions of Antarctic krill phospholipids. Food Chem 2024; 451:139469. [PMID: 38703727 DOI: 10.1016/j.foodchem.2024.139469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Excipient selection is crucial to address the oxidation and solubility challenges of bioactive substances, impacting their safety and efficacy. AKPL, a novel ω-3 polyunsaturated fatty acids (PUFAs) esterified phospholipid derived from Antarctic krill, demonstrates unique antioxidant capabilities and synergistic effects. It exhibits pronounced surface activity and electronegativity at physiological pH, as evidenced by a critical micelle concentration (CMC) of 0.15 g/L and ζ-potential of -49.9 mV. In aqueous environments, AKPL self-assembles into liposomal structures, offering high biocompatibility and promoting cell proliferation. Its polyunsaturated bond-rich structure provides additional oxidation sites, imparting antioxidant properties superior to other phospholipids like DSPC and DOPC. Additionally, AKPL augments the efficacy of lipophilic antioxidants, such as alpha-tocopherol and curcumin, in aqueous media through both intermolecular and intramolecular interactions. In sum, AKPL emerges as an innovative unsaturated phospholipid, offering new strategies for encapsulating and delivering oxygen-sensitive agents.
Collapse
Affiliation(s)
- Dong Su
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, PR China
| | - Xixi Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, PR China
| | - Xiaofang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, PR China
| | - Junkui Miao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, PR China
| | - Zipeng Zhang
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yating Zhang
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ling Zhao
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuan Yu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, PR China
| | - Kailiang Leng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No.1 Wenhai Road, Qingdao 266200, China.
| | - Yueqin Yu
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
23
|
Reis LG, de Azevedo Ruiz VL, Massami Kitamura SM, Furugen Cesar Andrade A, de Oliveira Bussiman F, Daiana Poleti M, Coelho da Silveira J, Fukumasu H, Faccioli LH, Marzocchi-Machado CM, de Francisco Strefezzi R, Neves Garcia E, Casey T, Netto AS. Feeding sows milk biofortified with n-6 and n-3 modulates immune status of sows and drives positive transgenerational effects. PLoS One 2024; 19:e0306707. [PMID: 39190668 PMCID: PMC11349115 DOI: 10.1371/journal.pone.0306707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/21/2024] [Indexed: 08/29/2024] Open
Abstract
The risk of chronic diseases such as cardiovascular disease, cancer, inflammation, obesity, and autoimmune disease is linked to the quality of dietary fats, with lower intake of saturated and higher intake of n-6 and n-3 polyunsaturated fatty acids (PUFA) considered beneficial to health. This study investigated the effect of supplementing sows' diets with cow's milk biofortified with n-6 or n-3 PUFA, at varying n-6/n-3 ratios (8.26, 7.92, and 2.72) during their growing phase and throughout gestation and lactation on their reproductive performance and immune-inflammatory status. Specifically, we analyzed circulating cholesterol and fatty acid profiles of serum, colostrum and milk, sow body weight, and neonate colostrum intake, Apgar scores, muscle composition, and embryo viability. Analysis of circulating immunoglobulins (Ig), interleukins, and eicosanoids and complement system hemolytic activity were used to evaluate inflammatory and immune responses of sows and piglets. Expression of lipolysis and lipogenic genes in the liver were investigated in sows and piglets, with additional investigation of hypothalamus genes regulating appetite in sows. Feeding sows milk biofortified with n-6 and n-3 PUFA altered serum fatty acid profiles, reduced triglycerides (TG), increased embryo total number, increased early gestation backfat, and reduced colostrum IgG. Piglets of biofortified sow had higher circulating IgA, IgM and TNF-α, and lower IL-10. Sows fed n-3 biofortified milk had higher very low-density lipoproteins (VLDL) and TNF-α in circulation. Offspring from sows fed n-6 versus n-3 biofortified milk had lower IL-10 and expression levels of SREBP-1. N-3 versus n-6 also lowered arachidonic acid (ARA) levels in sow's milk and piglet viability 1. Findings offer insights into the potential health benefits of dietary supplementation with biofortified milk in swine, which serve as good model of diet-nutrition studies of humans, and therefore can potentially be considered in dietary recommendations both human and animal populations.
Collapse
Affiliation(s)
- Leriana Garcia Reis
- Department of Animal Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Vera Letticie de Azevedo Ruiz
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Simone Maria Massami Kitamura
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | - André Furugen Cesar Andrade
- Department of Animal Reproduction, School of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | | | - Mirele Daiana Poleti
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Heidge Fukumasu
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Lúcia Helena Faccioli
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cleni Mara Marzocchi-Machado
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo de Francisco Strefezzi
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Edna Neves Garcia
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | - Theresa Casey
- Department of Animal Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Arlindo Saran Netto
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Seth J, Sharma S, Leong CJ, Rabkin SW. Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) Ameliorate Heart Failure through Reductions in Oxidative Stress: A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2024; 13:955. [PMID: 39199201 PMCID: PMC11351866 DOI: 10.3390/antiox13080955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
The objectives of this study were to explore the role that eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) plays in heart failure (HF), highlighting the potential connection to oxidative stress pathways. Following PRISMA guidelines, we conducted electronic searches of the literature in MEDLINE and EMBASE focusing on serum EPA and/or DHA and EPA and/or DHA supplementation in adult patients with heart failure or who had heart failure as an outcome of this study. We screened 254 studies, encompassing RCTs, observational studies, and cohort studies that examined HF outcomes in relation to either serum concentrations or dietary supplementation of EPA and/or DHA. The exclusion criteria were pediatric patients, non-HF studies, abstracts, editorials, case reports, and reviews. Eleven studies met our criteria. In meta-analyses, high serum concentrations of DHA were associated with a lower rate of heart failure with a hazard ratio of 0.74 (CI = 0.59-0.94). High serum concentrations of EPA also were associated with an overall reduction in major adverse cardiovascular events with a hazard ratio of 0.60 (CI = 0.46-0.77). EPA and DHA, or n3-PUFA administration, were associated with an increased LVEF with a mean difference of 1.55 (CI = 0.07-3.03)%. A potential explanation for these findings is the ability of EPA and DHA to inhibit pathways by which oxidative stress damages the heart or impairs cardiac systolic or diastolic function producing heart failure. Specifically, EPA may lower oxidative stress within the heart by reducing the concentration of reactive oxygen species (ROS) within cardiac tissue by (i) upregulating nuclear factor erythroid 2-related factor 2 (Nrf2), which increases the expression of antioxidant enzyme activity, including heme oxygenase-1, thioredoxin reductase 1, ferritin light chain, ferritin heavy chain, and manganese superoxide dismutase (SOD), (ii) increasing the expression of copper-zinc superoxide dismutase (MnSOD) and glutathione peroxidase, (iii) targeting Free Fatty Acid Receptor 4 (Ffar4), (iv) upregulating expression of heme-oxygenase-1, (v) lowering arachidonic acid levels, and (vi) inhibiting the RhoA/ROCK signaling pathway. DHA may lower oxidative stress within the heart by (i) reducing levels of mitochondrial-fission-related protein DRP-1(ser-63), (ii) promoting the incorporation of cardiolipin within the mitochondrial membrane, (iii) reducing myocardial fibrosis, which leads to diastolic heart failure, (iv) reducing the expression of genes such as Appa, Myh7, and Agtr1α, and (v) reducing inflammatory cytokines such as IL-6, TNF-α. In conclusion, EPA and/or DHA have the potential to improve heart failure, perhaps mediated by their ability to modulate oxidative stress.
Collapse
Affiliation(s)
- Jayant Seth
- Faculty of Medicine, University of British Columbia, 9th Floor 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada; (J.S.); (S.S.); (C.J.L.)
| | - Sohat Sharma
- Faculty of Medicine, University of British Columbia, 9th Floor 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada; (J.S.); (S.S.); (C.J.L.)
| | - Cameron J. Leong
- Faculty of Medicine, University of British Columbia, 9th Floor 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada; (J.S.); (S.S.); (C.J.L.)
| | - Simon W. Rabkin
- Faculty of Medicine, University of British Columbia, 9th Floor 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada; (J.S.); (S.S.); (C.J.L.)
- Department of Medicine, Division of Cardiology, University of British Columbia, 9th Floor 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
25
|
Yang X, Li X, Hu M, Huang J, Yu S, Zeng H, Mao L. EPA and DHA differentially improve insulin resistance by reducing adipose tissue inflammation-targeting GPR120/PPARγ pathway. J Nutr Biochem 2024; 130:109648. [PMID: 38631512 DOI: 10.1016/j.jnutbio.2024.109648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Insulin resistance (IR) is a global health challenge, often initiated by dysfunctional adipose tissue. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may have different effects on IR, but the mechanisms are unknown. This study aims to evaluate the protective effect of EPA and DHA against IR in a high-fat diet (HFD) mice model and investigate whether EPA and DHA alter IR modulate the G-protein-poupled receptor 120/peroxisome proliferator-activated receptor γ (GPR120/PPARγ) pathway in macrophages and adipocytes, which may affect IR in adipocytes. The findings of this study show that 4% DHA had a better effect in improving IR and reducing inflammatory cytokines in adipose tissue of mice. Additionally, in the cell experiment, the use of AH7614 (a GPR120 antagonist) inhibited the glucose consumption increase and the increasable expression of PPARγ and insulin signaling molecules mediated by DHA in adipocytes. Furthermore, GW9662 (a PPARγ antagonist) hindered the upregulation of glucose consumption and insulin signaling molecule expression induced by EPA and DHA in adipocytes. DHA exhibited significant effects in reducing the number of migrated cells and inflammation. The compounds AH7614 and GW9662 hindered the suppressive effects of EPA and DHA on macrophage-induced IR in adipocytes. These findings suggest that DHA has a stronger potential in improving IR in adipocytes through the GPR120/PPARγ pathway in macrophages, when compared to EPA.
Collapse
Affiliation(s)
- Xian Yang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xudong Li
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Manjiang Hu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jie Huang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Siyan Yu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Huanting Zeng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Limei Mao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
26
|
Haidary M, Ahmadi-Soleimani SM, Ghofraninezad M, Azhdari-Zarmehri H, Beheshti F. Omega-3 fatty acids supplementation prevents learning and memory impairment induced by chronic ethanol consumption in adolescent male rats through restoration of inflammatory and oxidative responses. Int J Dev Neurosci 2024; 84:423-433. [PMID: 38803108 DOI: 10.1002/jdn.10336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVE Ethanol (Eth) intake is known to cause numerous detrimental effects on the structure and function of the brain, and it is commonly used as a psychostimulant drug by adolescents. Conversely, omega-3 (O3) can reduce the risk of cognitive decline and promote the maintenance of neurophysiological functions. In this study, we investigated the protective effects of O3 on behavioral alterations, oxidative stress, and interleukin-6 (IL-6) levels induced by chronic Eth intake during adolescence in rats. MATERIALS AND METHODS Adolescent male rats (21 days old) were divided as follows: (1) Vehicle, (2) Eth (Eth in drinking water [20%]), (3-5) Eth + O3 (50/100/150 mg/kg), and (6) O3 (150 mg/kg). After 5 weeks, Morris water maze (MWM) and passive avoidance (PA) tests were performed, and the hippocampal and cortical levels of oxidative stress markers and inflammatory indices were measured. RESULTS Adolescent Eth intake impairs learning and memory function in MWM and PA tests (groups × day, p < 0.05 and p < 0.001, respectively). It was shown that Eth induced oxidative stress and neuroinflammation. O3 improved learning and impairment induced by Eth by reducing the adverse effects of Eth on the oxidant/antioxidant balance in the hippocampi (for malondialdehyde [MDA]/thiol: p < 0.01, p < 0.001, respectively) and for superoxide dismutase (SOD)/catalase (CAT): p < 0.01 and p < 0.05, respectively). Furthermore, we found that O3 prevented the Eth-induced increase of hippocampal IL-6 (p < 0.001). CONCLUSION O3 supplementation acts as an effective approach to prevent learning and memory impairments induced by chronic Eth consumption during adolescence. In this respect, the antioxidant and anti-inflammatory properties of O3 seem to be the main underlying mechanisms of neuroprotection.
Collapse
Affiliation(s)
- Murtaza Haidary
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - S Mohammad Ahmadi-Soleimani
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mina Ghofraninezad
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Hassan Azhdari-Zarmehri
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
27
|
Fernandes CDP, Pott A, Hiane PA, do Nascimento VA, Filiú WFDO, de Oliveira LCS, Sanjinez-Argandoña EJ, Cavalheiro LF, Nazário CED, Caires ARL, Michels FS, Freitas KDC, Asato MA, Donadon JR, Bogo D, Guimarães RDCA. Comparative Analysis of Grape Seed Oil, Linseed Oil, and a Blend: In Vivo Effects of Supplementation. Foods 2024; 13:2283. [PMID: 39063367 PMCID: PMC11276530 DOI: 10.3390/foods13142283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Grape seeds are rich in bioactive substances, including polyphenols, terpenoids, and phytosterols. Linseed (Linum usitatissimum L.) boasts a high concentration of polyunsaturated fatty acids (PUFAs), lignans, phytoestrogens, and soluble fibers, all contributing to its therapeutic potential. In this study, we pioneered the formulation of an oil blend (GL) combining grape seed oil (G) and golden linseed oil (GL) in equal volumes (1:1 (v/v)) and we evaluated in terms of the nutritional, physical, and chemical properties and their influence in an in vivo experimental model. We analyzed the oils by performing physical-chemical analyses, examining the oxidative stability using Rancimat; conducting thermal analyses via thermogravimetry/derivative thermogravimetry (TG/DTG) and differential scanning calorimetry (DSC), performing optical UV-vis absorption analyses; examining the fluorescence emission-excitation matrix, total carotenoids, and color, and conducting metabolic assessments in an in vivo experimental trial. The fatty acid profile presented a higher fraction of linoleic acid (C18:2) in G and GL and alpha-linolenic acid (C18:3) in L. The acidity and peroxide indices were within the recommended ranges. The TG/DTG, DSC, and Rancimat analyses revealed similar behaviors, and the optical analyses revealed color variations caused by carotenoid contents in L and GL. In the in vivo trial, G (G2: 2000 mg/kg/day) promoted lower total consumption, and the blend (GL: 2000 mg/kg/day) group exhibited less weight gain per gram of consumed food. The group with G supplementation (G2: 2000 mg/kg/day) and GL had the highest levels of HDL-c. The group with L supplementation (L2: 2000 mg/kg/day) had the lowest total cholesterol level. The L2, G1 (1000 mg/kg/day), and G2 groups exhibited the lowest MCP-1 and TNF-α values. Additionally, the lowest adipocyte areas occurred in G and GL. Our results suggest that this combination is of high quality for consumption and can influence lipid profiles, markers of inflammation, and antioxidant status.
Collapse
Affiliation(s)
- Carolina Di Pietro Fernandes
- Graduate Program in Health and Development in the Central-West Region of Brazil, Experimental Disease Models Laboratory (LMED-Finep), Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (C.D.P.F.); (P.A.H.); (V.A.d.N.); (K.d.C.F.); (D.B.)
| | - Arnildo Pott
- Laboratory of Botany, Institute of Biosciences, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region of Brazil, Experimental Disease Models Laboratory (LMED-Finep), Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (C.D.P.F.); (P.A.H.); (V.A.d.N.); (K.d.C.F.); (D.B.)
| | - Valter Aragão do Nascimento
- Graduate Program in Health and Development in the Central-West Region of Brazil, Experimental Disease Models Laboratory (LMED-Finep), Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (C.D.P.F.); (P.A.H.); (V.A.d.N.); (K.d.C.F.); (D.B.)
| | - Wander Fernando de Oliveira Filiú
- Pharmaceutical Science, Food and Nutrition Faculty, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (W.F.d.O.F.); (J.R.D.)
| | - Lincoln Carlos Silva de Oliveira
- Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (L.C.S.d.O.); (L.F.C.); (C.E.D.N.)
| | - Eliana Janet Sanjinez-Argandoña
- School of Engineering (FAEN), Federal University of Grande Dourados (UFGD), Cidade Universitária, Dourados-Itahum Road 7 Km 12, Dourados 79804-970, Brazil;
| | - Leandro Fontoura Cavalheiro
- Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (L.C.S.d.O.); (L.F.C.); (C.E.D.N.)
| | - Carlos Eduardo Domingues Nazário
- Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (L.C.S.d.O.); (L.F.C.); (C.E.D.N.)
| | - Anderson Rodrigues Lima Caires
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (A.R.L.C.); (F.S.M.)
| | - Flavio Santana Michels
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (A.R.L.C.); (F.S.M.)
| | - Karine de Cássia Freitas
- Graduate Program in Health and Development in the Central-West Region of Brazil, Experimental Disease Models Laboratory (LMED-Finep), Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (C.D.P.F.); (P.A.H.); (V.A.d.N.); (K.d.C.F.); (D.B.)
| | - Marcel Arakaki Asato
- Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Juliana Rodrigues Donadon
- Pharmaceutical Science, Food and Nutrition Faculty, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (W.F.d.O.F.); (J.R.D.)
| | - Danielle Bogo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Experimental Disease Models Laboratory (LMED-Finep), Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (C.D.P.F.); (P.A.H.); (V.A.d.N.); (K.d.C.F.); (D.B.)
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region of Brazil, Experimental Disease Models Laboratory (LMED-Finep), Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (C.D.P.F.); (P.A.H.); (V.A.d.N.); (K.d.C.F.); (D.B.)
| |
Collapse
|
28
|
Wang W, Xiao Y, Ding Y, Li Y, Zhu Y, Zhou X. Effect of microwave (MW)-subcritical extraction on oil recovery, oxidative stability, and lipid types from Katsuwonus pelamis livers. Food Chem X 2024; 22:101351. [PMID: 38623513 PMCID: PMC11016954 DOI: 10.1016/j.fochx.2024.101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Katsuwonus pelamis is a tuna species mostly sold for canned fillets, its livers were lack of utilization. This study thus investigated an oil production method combining microwave (MW) pretreatment and subcritical dimethyl ether (SDME) in aim to reach improved efficiency and oil quality. The heating characteristics from different MW powers (400, 600, and 800 W) were evaluated, and SEM showed MW having hydrolysis effect on matrix lipoprotein, the fortified recovery rate was also found. Under the MW-SDME condition with 600 W power, 1:5 solid-to-liquid ratio, and 100 min, the recovery reached 93.21% in maximal (SDME ∼50%). To further improve quality, MW powers was noticed affecting lipid types, fatty acid composition, and oxidative stability of produced oils. 1286 lipid types (mostly glyceride and phospholipid-type) were identified, while higher MW lowered the emulsifying phospholipids prompting phase separation. Several oxidation indexes consistently increased with the rising MW power, GC-MS suggested 400 W for higher DHA.
Collapse
Affiliation(s)
- Wenjie Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Yuliang Xiao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Yicheng Ding
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yihong Li
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Yihua Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| |
Collapse
|
29
|
Sha H, Zhu W. Employing Bidirectional Two-Sample Mendelian Randomization Analysis to Verify the Potential of Polyunsaturated Fatty Acid Levels in the Prevention of Pancreatic Cancer. Curr Issues Mol Biol 2024; 46:6041-6051. [PMID: 38921031 PMCID: PMC11202278 DOI: 10.3390/cimb46060360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Polyunsaturated fatty acids (PUFAs), specifically Omega-3 (FAω3) and docosahexaenoic acid (DHA), have been studied for their potential role in modulating pancreatic cancer (PC) risk. Although observational studies suggest a beneficial effect in reducing this risk, their findings are often limited by confounding variables and issues of reverse causation. This study used a two-way two-sample Mendelian randomization (MR) method to test the hypothesized genetic causal relationship between PUFAs and PC risk. Data from an extensive genome-wide association study (GWAS) were analyzed, focusing on FAω3 and FAω6 levels, their ratios, and DHA as variables and PC incidence as outcomes. This relationship was comprehensively evaluated using related MR methods, such as inverse variance weighting (IVW), MR Egger, and weighted median (WM). This study finds a significant negative correlation between FAω3 and DHA levels and PC risk, while FAω6 levels show no significant correlation. Interestingly, the ratio of FAω6 to FAω3 was positively associated with increased risk of PC. Neither the MR Egger nor the MR-PRESSO tests detected significant pleiotropy, nor did the Cochrane's Q test show significant heterogeneity. Leave-one-out analyzes further confirmed the robustness of these results. Using MR analysis of two samples, this study provides genetic causal evidence that FAω3 and DHA levels reduce the risk of PC, whereas the ratio of FAω6 to FAω3 increases the risk of PC. These insights highlight the potential utility of supplementing FAω3 and DHA or altering PUFAs in developing PC prevention strategies.
Collapse
Affiliation(s)
| | - Weifeng Zhu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nangchang 330006, China;
| |
Collapse
|
30
|
Tompkins YH, Choppa VSR, Kim WK. n-3 enriched Fish oil diet enhanced intestinal barrier integrity in broilers after Eimeria infection. Poult Sci 2024; 103:103660. [PMID: 38552568 PMCID: PMC11000185 DOI: 10.1016/j.psj.2024.103660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Coccidiosis caused by Eimeria spp. results in substantial economic losses in the poultry industry. The objective of this study was to investigate the effects of dietary supplementation with n-3 polyunsaturated fatty acids-enriched fish oil on growth performance, intestinal barrier integrity, and intestinal immune response of broilers challenged with Eimeria spp. A total of 576 fourteen-day-old broilers were randomly assigned in a completely randomized design with a 3 × 2 factorial arrangement, comprising 2 diets supplemented with either 5% fish oil or 5% soybean oil, and 3 Eimeria spp. infection levels: a nonchallenge control, a low dose of Eimeria challenge, and a high challenge dose. The results of the study revealed significant interactions between diet and Eimeria challenge to parameters of gut barrier integrity and feed intake. A significant interaction was observed in feed intake between 5 and 8 d postinfection (DPI), where the fish oil groups exhibited a higher amount of feed intake compared to the soybean oil diet groups after coccidiosis infection. The effects of the fish oil diet resulted in enhanced gut barrier integrity, as evidenced by a trend of decreased gastrointestinal leakage and a lower mean of small intestine lesion scores after Eimeria challenge. Additionally, significant interactions were noted between Eimeria spp. challenge and diet regarding jejunal crypt depth. The positive impact of the fish oil diet was particularly noticeable with the high Eimeria challenge dose. Overall, these findings underscore the relationship between the fish oil diet and Eimeria challenge on broiler chicken intestinal health. Dietary supplementation of fish oil has the potential to maintain small intestine barrier integrity with severe Eimeria infection conditions.
Collapse
Affiliation(s)
- Yuguo Hou Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | | | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
31
|
Oppedisano F, Nesci S, Spagnoletta A. Mitochondrial sirtuin 3 and role of natural compounds: the effect of post-translational modifications on cellular metabolism. Crit Rev Biochem Mol Biol 2024; 59:199-220. [PMID: 38993040 DOI: 10.1080/10409238.2024.2377094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Sirtuins (SIRTs) are a family of proteins with enzymatic activity. In particular, they are a family of class III NAD+-dependent histone deacetylases and ADP-ribosyltransferases. NAD+-dependent deac(et)ylase activities catalyzed by sirtuin include ac(et)ylation, propionylation, butyrylation, crotonylation, manylation, and succinylation. Specifically, human SIRT3 is a 399 amino acid protein with two functional domains: a large Rossmann folding motif and NAD+ binding, and a small complex helix and zinc-binding motif. SIRT3 is widely expressed in mitochondria-rich tissues and is involved in maintaining mitochondrial integrity, homeostasis, and function. Moreover, SIRT3 regulates related diseases, such as aging, hepatic, kidney, neurodegenerative and cardiovascular disease, metabolic diseases, and cancer development. In particular, one of the most significant and damaging post-translational modifications is irreversible protein oxidation, i.e. carbonylation. This process is induced explicitly by increased ROS production due to mitochondrial dysfunction. SIRT3 is carbonylated by 4-hydroxynonenal at the level of Cys280. The carbonylation induces conformational changes in the active site, resulting in allosteric inhibition of SIRT3 activity and loss of the ability to deacetylate and regulate antioxidant enzyme activity. Phytochemicals and, in particular, polyphenols, thanks to their strong antioxidant activity, are natural compounds with a positive regulatory action on SIRT3 in various pathologies. Indeed, the enzymatic SIRT3 activity is modulated, for example, by different natural polyphenol classes, including resveratrol and the bergamot polyphenolic fraction. Thus, this review aims to elucidate the mechanisms by which phytochemicals can interact with SIRT3, resulting in post-translational modifications that regulate cellular metabolism.
Collapse
Affiliation(s)
- Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-Università di Bologna, Ozzano Emilia, Italy
| | - Anna Spagnoletta
- Laboratory "Regenerative Circular Bioeconomy", ENEA-Trisaia Research Centre, Rotondella, Italy
| |
Collapse
|
32
|
Obeidnejad E, Kavoosi G, Saharkhiz MJ. Antioxidant, anti-amylase, anti-lipase, and efficiency of Satureja fatty acid on the anti-inflammatory parameters in lipopolysaccharide-stimulated macrophage through Nrf2/NF-kB/NADH oxidase pathway. Sci Rep 2024; 14:12490. [PMID: 38821994 PMCID: PMC11143312 DOI: 10.1038/s41598-024-63205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
Satureja is an aromatic plant that is used for flavoring, perfume, and food manufacturing due to its pleasant essential oil. Modern medicine research revealed several biological activities of Satureja essential oil, including antifungal, antibacterial, antiviral, antioxidant, anticancer, and anti-inflammatory. However, the functional properties of Satureja fatty acid have not been explored. This study examined the fatty acid profile, lipid nutritional quality, antioxidant, anti-amylase, and anti-lipase capacities of Satureja. The efficiency of Satureja fatty acid on the anti-oxidative and anti-inflammatory parameters in LPS-induced macrophage through the Nrf2/NF-kB/NADH oxidase pathway was examined. The whole lipid extract was prepared with chloroform/methanol/water solution. Fatty acids methyl ester from whole lipid extract were prepared with methanol/sulfuric acid reagent. The fatty acid profile was analyzed using gas chromatography-mass spectrometry. Total antioxidant was determined by ABTS decolorization. Lipase and amylase activities were determined by monitoring the decomposition of p-nitrophenyl butyrate and starch. The macrophage cell line was grown in DMEM media in the presence of fatty acid. The hydrogen peroxide production in treated cells was monitored using the FOX reagent. NADH oxidase activity was measured by monitoring NADH breakdown. The expression of NOX, NF-kB, and NRF2, were tested in the treated cells by real-time PCR. The main components of the Satureja fatty acid were linolenic acid (24.67-37.32%), palmitic acid (10.65-20.29%), linoleic acid (8.31-13.39%), oleic acid (4.42-14.35%), stearic acid (2.76-8.77%) and palmitoleic acid (1.77-4.95%). Given the nutritional quality, omega-3 PUFA (23.58-37.32%), SFA (21.53-26.70%), omega-6 PUFA (10.86-16.14%), omega-9 MUFA (4.42-14.35%), and omega-7 MUFA (1.77-4.95%) comprise the majority of fatty acids. Satureja fatty acid has a promising unsaturation index (120.77-164.27), PUFA/MUFA (2.07-6.41), hypocholesterolemic index (2.44-3.47), health-promoting index (2.03-2.42), PUFA/SFA (1.37-1.94), nutritive value index (0.53-1.71), MUFA/SFA (0.30-0.80) omega-6/omega-3 (0.34-0.65), atherogenicity index (0.41-0.49), and thrombogenicity index (0.17-0.27). Satureja fatty acid displayed strong antioxidant capacity (with IC50 ranging from 354 to 428 µg/mL), anti-lipase capacity (with IC50 ranging from 354 to 428 µg/mL), and anti-amylase capacity (with IC50 ranging from 370 to 390 µg/mL). LPS induced the expression of NOX, NRF2, and NF-kB and the synthesis of hydrogen peroxide in macrophage cells. In LPS-stimulated macrophages, Satureja fatty acid reduced NOX expression, hydrogen peroxide, and NF-kB expression and increased NRF2 at 0.04 mg/mL. In conclusion, Satureja fatty acids have potent antioxidant, anti-amylase, anti-lipase, and anti-inflammatory activities. The mechanisms in lowering oxidative stress markers depended on down-regulating superoxide-producing enzymes at gene and protein levels. Satureja polyunsaturated omega-3 fatty acids could be recommended for healthy products combined with dietary therapy to treat obesity, diabetes, and oxidative stress.
Collapse
Affiliation(s)
- Elham Obeidnejad
- Department of Biotechnology, School of Agriculture, Shiraz University, Shiraz, 7144113131, Iran
| | - Gholamreza Kavoosi
- Department of Biotechnology, School of Agriculture, Shiraz University, Shiraz, 7144113131, Iran.
| | | |
Collapse
|
33
|
Rojas-Solé C, Torres-Herrera B, Gelerstein-Claro S, Medina-Pérez D, Gómez-Venegas H, Alzolay-Sepúlveda J, Chichiarelli S, Saso L, Rodrigo R. Cellular Basis of Adjuvant Role of n-3 Polyunsaturated Fatty Acids in Cancer Therapy: Molecular Insights and Therapeutic Potential against Human Melanoma. APPLIED SCIENCES 2024; 14:4548. [DOI: 10.3390/app14114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Human melanoma is a highly aggressive malignant tumor originating from epidermal melanocytes, characterized by intrinsic resistance to apoptosis and the reprogramming of proliferation and survival pathways during progression, leading to high morbidity and mortality rates. This malignancy displays a marked propensity for metastasis and often exhibits poor responsiveness to conventional therapies. Fatty acids, such as n-3 polyunsaturated fatty acids (PUFAs) docosahexaenoic and eicosapentaenoic acids, exert various physiological effects on melanoma, with increasing evidence highlighting the anti-tumorigenic, anti-inflammatory, and immunomodulatory properties. Additionally, n-3 PUFAs have demonstrated their ability to inhibit cancer metastatic dissemination. In the context of cancer treatment, n-3 PUFAs have been investigated in conjunction with chemotherapy as a potential strategy to mitigate severe chemotherapy-induced side effects, enhance treatment efficacy and improve safety profiles, while also enhancing the responsiveness of cancer cells to chemotherapy. Furthermore, dietary intake of n-3 PUFAs has been associated with numerous health benefits, including a decreased risk and improved prognosis in conditions such as heart disease, autoimmune disorders, depression and mood disorders, among others. However, the specific mechanisms underlying their anti-melanoma effects and outcomes remain controversial, particularly when comparing findings from in vivo or in vitro experimental studies to those from human trials. Thus, the objective of this review is to present data supporting the potential role of n-3 PUFA supplementation as a novel complementary approach in the treatment of malignant cancers such as melanoma.
Collapse
Affiliation(s)
- Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Benjamín Torres-Herrera
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Santiago Gelerstein-Claro
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Diego Medina-Pérez
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Haziel Gómez-Venegas
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Javier Alzolay-Sepúlveda
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| |
Collapse
|
34
|
Yan Z, Xu Y, Li K, Zhang W, Liu L. The relationship between dietary intake of ω-3 and ω-6 fatty acids and frailty risk in middle-aged and elderly individuals: a cross-sectional study from NHANES. Front Nutr 2024; 11:1377910. [PMID: 38784137 PMCID: PMC11111862 DOI: 10.3389/fnut.2024.1377910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Background Frailty is a complex clinical syndrome characterized by a decline in the functioning of multiple body systems and reduced adaptability to external stressors. Dietary ω-3 fatty acids are considered beneficial dietary nutrients for preventing frailty due to their anti-inflammatory and immune-regulating properties. However, previous research has yielded conflicting results, and the association between ω-6 fatty acids, the ω-6: ω-3 ratio, and frailty remains unclear. This study aims to explore the relationship between these factors using the National Health and Nutrition Examination Survey (NHANES) database. Materials and methods Specialized weighted complex survey design analysis software was employed to analyze data from the 2005-2014 NHANES, which included 12,315 participants. Multivariate logistic regression models and restricted cubic splines (RCS) were utilized to assess the relationship between omega intake and frailty risk in all participants. Additionally, a nomogram model for predicting frailty risk was developed based on risk factors. The reliability of the clinical model was determined by the area under the receiver operating characteristic (ROC) curve, calibration curves, and decision curve analysis (DCA). Results In dietary ω-3 intake, compared to the T1 group (≤1.175 g/d), the T3 group's intake level (>2.050 g/d) was associated with approximately 17% reduction in frailty risk in model 3, after rigorous covariate adjustments (odds ratio (OR) = 0.83, 95% confidence interval (CI): (0.70, 0.99)). In dietary ω-6 intake, the T2 group's intake level (>11.423, ≤19.160 g/d) was associated with a 14% reduction in frailty risk compared to the T1 group (≤11.423 g/d) (OR: 0.86, 95% CI: 0.75, 1.00, p = 0.044). RCS results indicated a non-linear association between ω-3 and ω-6 intake and frailty risk. Both ROC and DCA curves demonstrated the stability of the constructed model and the effectiveness of an omega-rich diet in reducing frailty risk. However, we did not find a significant association between the ω-6: ω-3 ratio and frailty. Conclusion This study provides support for the notion that a high intake of ω-3 and a moderate intake of ω-6 may contribute to reducing frailty risk in middle-aged and elderly individuals.
Collapse
Affiliation(s)
- Zhaoqi Yan
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yifeng Xu
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Keke Li
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Wenqiang Zhang
- Department of Respiratory and Critical Care Medicine, Jiangxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanchang, China
| | - Liangji Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
35
|
Chamorro F, Cassani L, Garcia-Oliveira P, Barral-Martinez M, Jorge AOS, Pereira AG, Otero P, Fraga-Corral M, P. P. Oliveira MB, Prieto MA. Health benefits of bluefin tuna consumption: ( Thunnus thynnus) as a case study. Front Nutr 2024; 11:1340121. [PMID: 38628271 PMCID: PMC11018964 DOI: 10.3389/fnut.2024.1340121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/21/2024] [Indexed: 04/19/2024] Open
Abstract
Consumers are increasingly interested in food products with high nutritional value and health benefits. For instance, fish consumption is linked with diverse positive health benefits and the prevention of certain widespread disorders, such as obesity, metabolic syndrome, or cardiovascular diseases. These benefits have been attributed to its excellent nutritional value (large amounts of high-quality fatty acids, proteins, vitamins, and minerals) and bioactive compounds, while being relatively low-caloric. Atlantic bluefin tuna (Thunnus tynnus) is one of the most consumed species worldwide, motivated by its good nutritional and organoleptic characteristics. Recently, some organizations have proposed limitations on its consumption due to the presence of contaminants, mainly heavy metals such as mercury. However, several studies have reported that most specimens hold lower levels of contaminants than the established limits and that their richness in selenium effectively limits the contaminants' bioaccessibility in the human body. Considering this situation, this study aims to provide baseline data about the nutritional composition and the latest evidence regarding the beneficial effects of Atlantic bluefin tuna consumption. A review of the risk-benefit ratio was also conducted to evaluate the safety of its consumption, considering the current suggested limitations to this species' consumption.
Collapse
Affiliation(s)
- F. Chamorro
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo, Spain
| | - L. Cassani
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo, Spain
| | - P. Garcia-Oliveira
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo, Spain
| | - M. Barral-Martinez
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo, Spain
| | - A. O. S. Jorge
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo, Spain
- REQUIMTE/Serviço de Bromatologia, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - A. G. Pereira
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo, Spain
| | - Paz Otero
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo, Spain
| | - M. Fraga-Corral
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo, Spain
| | | | - M. A. Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo, Spain
- LAQV@REQUIMTE, Department of Chemical Sciences, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
36
|
Liu Q, Liu Z, Wu D, Wang S. Relationship between Polyunsaturated Fatty Acid Metabolism and Atherosclerosis. Rev Cardiovasc Med 2024; 25:142. [PMID: 39076540 PMCID: PMC11263998 DOI: 10.31083/j.rcm2504142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 07/31/2024] Open
Abstract
Multiple factors cause atherosclerosis, meaning its pathogenesis is complex, and has not been fully elucidated. Polyunsaturated fatty acids are a member of the fatty acid family, which are critical nutrients for mammalian growth and development. The types of polyunsaturated fatty acids ingested, their serum levels, and fatty acid desaturase can influence the atherosclerotic disease progression. The fatty acid desaturase gene cluster can regulate fatty acid desaturase activity and further affect atherosclerosis. This study reviewed the research progress on the effects of polyunsaturated fatty acids on atherosclerosis regulated by fatty acid desaturase and the relationship between genetic variants of the fatty acid desaturase gene cluster and atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Qiulei Liu
- Department of Vascular Surgery, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Zhaoxuan Liu
- Department of Vascular Surgery, Central Hospital Affiliated to Shandong First Medical University, 250013 Jinan, Shandong, China
| | - Ding Wu
- Department of Vascular Surgery, Central Hospital Affiliated to Shandong First Medical University, 250013 Jinan, Shandong, China
| | - Sheng Wang
- Department of Vascular Surgery, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| |
Collapse
|
37
|
Rossi N, Grosso C, Delerue-Matos C. Shrimp Waste Upcycling: Unveiling the Potential of Polysaccharides, Proteins, Carotenoids, and Fatty Acids with Emphasis on Extraction Techniques and Bioactive Properties. Mar Drugs 2024; 22:153. [PMID: 38667770 PMCID: PMC11051396 DOI: 10.3390/md22040153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Shrimp processing generates substantial waste, which is rich in valuable components such as polysaccharides, proteins, carotenoids, and fatty acids. This review provides a comprehensive overview of the valorization of shrimp waste, mainly shrimp shells, focusing on extraction methods, bioactivities, and potential applications of these bioactive compounds. Various extraction techniques, including chemical extraction, microbial fermentation, enzyme-assisted extraction, microwave-assisted extraction, ultrasound-assisted extraction, and pressurized techniques are discussed, highlighting their efficacy in isolating polysaccharides, proteins, carotenoids, and fatty acids from shrimp waste. Additionally, the bioactivities associated with these compounds, such as antioxidant, antimicrobial, anti-inflammatory, and antitumor properties, among others, are elucidated, underscoring their potential in pharmaceutical, nutraceutical, and cosmeceutical applications. Furthermore, the review explores current and potential utilization avenues for these bioactive compounds, emphasizing the importance of sustainable resource management and circular economy principles in maximizing the value of shrimp waste. Overall, this review paper aims to provide insights into the multifaceted aspects of shrimp waste valorization, offering valuable information for researchers, industries, and policymakers interested in sustainable resource utilization and waste-management strategies.
Collapse
Affiliation(s)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (N.R.); (C.D.-M.)
| | | |
Collapse
|
38
|
Zhang DG, Kunz WS, Lei XJ, Zito E, Zhao T, Xu YC, Wei XL, Lv WH, Luo Z. Selenium Ameliorated Oxidized Fish Oil-Induced Lipotoxicity via the Inhibition of Mitochondrial Oxidative Stress, Remodeling of Usp4-Mediated Deubiquitination, and Stabilization of Pparα. Antioxid Redox Signal 2024; 40:433-452. [PMID: 37265154 DOI: 10.1089/ars.2022.0194] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aims: Studies demonstrated that oxidized fish oil (OFO) promoted oxidative stress and induced mitochondrial dysfunction and lipotoxicity, which attenuated beneficial effects of fish oil supplements in the treatment of nonalcoholic fatty liver disease (NAFLD). The current study was performed on yellow catfish, a good model to study NAFLD, and its hepatocytes to explore whether selenium (Se) could alleviate OFO-induced lipotoxicity via the inhibition of oxidative stress and determine its potential mechanism. Results: The analysis of triglycerides content, oxidative stress parameters, and histological and transmission electronic microscopy observation showed that high dietary Se supplementation alleviated OFO-induced lipotoxicity, oxidative stress, and mitochondrial injury and dysfunction. RNA-sequencing and immunoblotting analysis indicated that high dietary Se reduced OFO-induced decline of peroxisome-proliferator-activated receptor alpha (Pparα) and ubiquitin-specific protease 4 (Usp4) protein expression. High Se supplementation also alleviated OFO-induced reduction of thioredoxin reductase 2 (txnrd2) messenger RNA (mRNA) expression level and activity. The txnrd2 knockdown experiments revealed that txnrd2 mediated Se- and oxidized eicosapentaenoic acid (oxEPA)-induced changes of mitochondrial reactive oxygen species (mtROS) and further altered Usp4 mediated-deubiquitination and stabilization of Pparα, which, in turn, modulated mitochondrial fatty acid β-oxidation and metabolism. Mechanistically, Usp4 deubiquitinated Pparα and ubiquitin-proteasome-mediated Pparα degradation contributed to oxidative stress-induced mitochondrial dysfunction. Innovation: These findings uncovered a previously unknown mechanism by which Se and OFO interacted to affect lipid metabolism via the Txnrd2-mtROS-Usp4-Pparα pathway, which provides the new target for NAFLD prevention and treatment. Conclusion: Se ameliorated OFO-induced lipotoxicity via the inhibition of mitochondrial oxidative stress, remodeling of Usp4-mediated deubiquitination, and stabilization of Pparα. Antioxid. Redox Signal. 40, 433-452.
Collapse
Affiliation(s)
- Dian-Guang Zhang
- Shenzhen Institute of Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Wolfram S Kunz
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
- Department of Epileptology, University of Bonn, Bonn, Germany
| | - Xi-Jun Lei
- Shenzhen Institute of Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Ester Zito
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Tao Zhao
- Shenzhen Institute of Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Yi-Chuang Xu
- Shenzhen Institute of Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Lei Wei
- Shenzhen Institute of Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Wu-Hong Lv
- Shenzhen Institute of Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Zhi Luo
- Shenzhen Institute of Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
39
|
Reemst K, Lopizzo N, Abbink MR, Engelenburg HJ, Cattaneo A, Korosi A. Molecular underpinnings of programming by early-life stress and the protective effects of early dietary ω6/ω3 ratio, basally and in response to LPS: Integrated mRNA-miRNAs approach. Brain Behav Immun 2024; 117:283-297. [PMID: 38242369 DOI: 10.1016/j.bbi.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 12/22/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024] Open
Abstract
Early-life stress (ELS) exposure increases the risk for mental disorders, including cognitive impairments later in life. We have previously demonstrated that an early diet with low ω6/ω3 polyunsaturated fatty acid (PUFA) ratio protects against ELS-induced cognitive impairments. Several studies have implicated the neuroimmune system in the ELS and diet mediated effects, but currently the molecular pathways via which ELS and early diet exert their long-term impact are not yet fully understood. Here we study the effects of ELS and dietary PUFA ratio on hippocampal mRNA and miRNA expression in adulthood, both under basal as well as inflammatory conditions. Male mice were exposed to chronic ELS by the limiting bedding and nesting material paradigm from postnatal day(P)2 to P9, and provided with a diet containing a standard (high (15:1.1)) or protective (low (1.1:1)) ω6 linoleic acid to ω3 alpha-linolenic acid ratio from P2 to P42. At P120, memory was assessed using the object location task. Subsequently, a single lipopolysaccharide (LPS) injection was given and 24 h later hippocampal genome-wide mRNA and microRNA (miRNA) expression was measured using microarray. Spatial learning deficits induced by ELS in mice fed the standard (high ω6/ω3) diet were reversed by the early-life protective (low ω6/ω3) diet. An integrated miRNA - mRNA analysis revealed that ELS and early diet induced miRNA driven mRNA expression changes into adulthood. Under basal conditions both ELS and the diet affected molecular pathways related to hippocampal plasticity, with the protective (low ω6/ω3 ratio) diet leading to activation of molecular pathways associated with improved hippocampal plasticity and learning and memory in mice previously exposed to ELS (e.g., CREB signaling and endocannabinoid neuronal synapse pathway). LPS induced miRNA and mRNA expression was strongly dependent on both ELS and early diet. In mice fed the standard (high ω6/ω3) diet, LPS increased miRNA expression leading to activation of inflammatory pathways. In contrast, in mice fed the protective diet, LPS reduced miRNA expression and altered target mRNA expression inhibiting inflammatory signaling pathways and pathways associated with hippocampal plasticity, which was especially apparent in mice previously exposed to ELS. This data provides molecular insights into how the protective (low ω6/ω3) diet during development could exert its long-lasting beneficial effects on hippocampal plasticity and learning and memory especially in a vulnerable population exposed to stress early in life, providing the basis for the development of intervention strategies.
Collapse
Affiliation(s)
- Kitty Reemst
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science park 904, Amsterdam, 1098 XH, the Netherlands
| | - Nicola Lopizzo
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Maralinde R Abbink
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science park 904, Amsterdam, 1098 XH, the Netherlands
| | - Hendrik J Engelenburg
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science park 904, Amsterdam, 1098 XH, the Netherlands
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Aniko Korosi
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science park 904, Amsterdam, 1098 XH, the Netherlands.
| |
Collapse
|
40
|
Ho HY, Chen YH, Lo CJ, Tang HY, Chang SW, Fan CM, Ho YH, Lin G, Chiu CY, Lin CM, Cheng ML. Combined Plasma DHA-Containing Phosphatidylcholine PCaa C38:6 and Tetradecanoyl-Carnitine as an Early Biomarker for Assessing the Mortality Risk among Sarcopenic Patients. Nutrients 2024; 16:611. [PMID: 38474739 DOI: 10.3390/nu16050611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The coming of the hyper-aged society in Taiwan prompts us to investigate the relationship between the metabolic status of sarcopenic patients and their most adverse outcome-death. We studied the association between any plasma metabolites and the risk for mortality among older Taiwanese sarcopenic patients. We applied a targeted metabolomic approach to study the plasma metabolites of adults aged ≥65 years, and identified the metabolic signature predictive of the mortality of sarcopenic patients who died within a 5.5-year follow-up period. Thirty-five sarcopenic patients who died within the follow-up period (Dead cohort) had shown a specific plasma metabolic signature, as compared with 54 patients who were alive (Alive cohort). Only 10 of 116 non-sarcopenic individuals died during the same period. After multivariable adjustment, we found that sex, hypertension, tetradecanoyl-carnitine (C14-carnitine), and docosahexaenoic acid (DHA)-containing phosphatidylcholine diacyl (PCaa) C38:6 and C40:6 were important risk factors for the mortality of sarcopenic patients. Low PCaa C38:6 levels and high C14-carnitine levels correlated with an increased mortality risk; this was even the same for those patients with hypertension (HTN). Our findings suggest that plasma PCaa C38:6 and acylcarnitine C14-carnitine, when combined, can be a better early biomarker for evaluating the mortality risk of sarcopenia patients.
Collapse
Grants
- BMRP819, BMRP564, CMRPD1L0161, CMRPD1L0162, CMRPD1M0351, CMRPD1J0263, CMRPD1M0341 and CLRPG3K0023 Chang Gung Memorial Hospital
- 110-2320-B-182-017-MY3 and 111-2320-B-182-011 National Science and Technology Council (Taiwan region)
- EMRPD1K0441, EMRPD1K0481, and EMRPD1L0421 Ministry of Education (Taiwan region)
- MOST 111-2634-F-182-001 The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE)(Taiwan region) and the National Science and Technology Council (NSTC)(Taiwan region)
- CMRPD1M0352, CMRPD1N0151, CMRPD1M0342, CMRPD1N0071,112-2320-B-182-020-MY3 Chang Gung Memorial Hospital
Collapse
Affiliation(s)
- Hung-Yao Ho
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yuan-Ho Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chi-Jen Lo
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Hsiang-Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Su-Wei Chang
- Department of Artificial Intelligence, College of Intelligent Computing, Chang Gung University, Taoyuan 333, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Chun-Ming Fan
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Yu-Hsuan Ho
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Gigin Lin
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan 333, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 333, Taiwan
| | - Chih-Yung Chiu
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan 333, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital at Keelung and Chang Gung University, Taoyuan 333, Taiwan
| | - Chih-Ming Lin
- Division of Internal Medicine, Chang Gung Memorial Hospital at Taipei, Taipei 105, Taiwan
- Department of Health Management, Chang Gung Health and Culture Village, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
41
|
Pavlidou E, Poulios E, Papadopoulou SK, Fasoulas A, Dakanalis A, Giaginis C. Clinical Evidence on the Potential Beneficial Effects of Diet and Dietary Supplements against COVID-19 Infection Risk and Symptoms' Severity. Med Sci (Basel) 2024; 12:11. [PMID: 38390861 PMCID: PMC10885051 DOI: 10.3390/medsci12010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Diet and dietary supplements aim to add trace elements, vitamins, and minerals to the body to improve human health and boost the immune system. In the previous few years, the new SARS-CoV-2 coronavirus strain has been threatening the health of individuals and public health more broadly, with rates of intensive care unit cases on the rise, while long-term COVID-19 complications are persisting until today. In the peculiar circumstances of the COVID-19 pandemic, in combination with disease prevention techniques, the strengthening of the immune system is considered particularly important to enable it to effectively respond to and eliminate the SARS-CoV-2 viral pathogen in the event of infection. The purpose of the current literature review is to thoroughly summarize and critically analyze the current clinical data concerning the potential beneficial effects of diet and dietary supplements against COVID-19 infection risk and symptoms' severity. The micronutrients/supplements examined in this study in relation to COVID-19 infection are vitamins A, B, C, and D, zinc, selenium, magnesium, iron, omega-3 fatty acids, glutamine, resveratrol, beta-glucans, and probiotics. The potential effects of dietary patterns such as the Mediterranean diet against SARS-CoV-2 infection risk and symptoms' severity were also analyzed. Our literature review suggests that micro- and macronutrient supplementation and a healthy diet and lifestyle may provide support to immune system function, with beneficial effects both before and during SARS-CoV-2 infection. However, additional studies are recommended to draw safe conclusions and formulate dietary recommendations concerning dietary supplements and their possible effects on preventing and co-treating COVID-19 disease.
Collapse
Affiliation(s)
- Eleni Pavlidou
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (E.P.); (E.P.); (A.F.)
| | - Efthymios Poulios
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (E.P.); (E.P.); (A.F.)
| | - Sousana K. Papadopoulou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
| | - Aristeidis Fasoulas
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (E.P.); (E.P.); (A.F.)
| | - Antonios Dakanalis
- Department of Mental Health, Fondazione IRCCS San Gerardo dei Tintori, Via G.B. Pergolesi 33, 20900 Monza, MB, Italy;
- Department of Medicine and Surgery, University of Milan Bicocca, Via Cadore 38, 20900 Monza, MB, Italy
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (E.P.); (E.P.); (A.F.)
| |
Collapse
|
42
|
Gogga P, Mika A, Janczy A, Sztendel A, Sledzinski T, Małgorzewicz S. Profiles of Serum Fatty Acids in Healthy Women on Different Types of Vegetarian Diets. Nutrients 2024; 16:516. [PMID: 38398839 PMCID: PMC10891928 DOI: 10.3390/nu16040516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Plant-based dietary patterns are a source of different amounts and proportions of fatty acids (FAs) from those in traditional diets. Information about the full FAs profile provided by plant-based diets is widely lacking. The aim of this study was to present the exact serum profiles of FAs among people on a plant-based diet compared with omnivorous subjects. METHODS FAs compositions and inflammation statuses (based on serum C-reactive protein (CRP) levels) were studied in serum samples obtained from 102 female volunteers (divided into four groups: vegans, vegetarians, pescatarians, and omnivores). The quality of the volunteers' diets was assessed based on seven-day dietary records. RESULTS Both vegans and vegetarians had lower total n-3 PUFAs, EPA, and DHA serum levels than omnivores. Decreased levels of these FAs presumably did not cause inflammation in vegetarians and vegans, as vegetarians had similar serum levels of CRP compared to omnivores, and vegans had even lower levels. CONCLUSION The analysis of serum FAs and CRP levels in vegetarians and vegans suggests that factors other than diet alone influence inflammation and overall health status. Further research on long-term plant-based diet users is needed to better understand this issue, and supplementation with EPA and DHA is worth considering in vegans and vegetarians.
Collapse
Affiliation(s)
- Patrycja Gogga
- Department of Food Commodity Science, Medical University of Gdansk, ul. Debinki 7, 80-211 Gdansk, Poland;
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, ul. Debinki 1, 80-211 Gdansk, Poland; (A.M.); (A.S.); (T.S.)
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Agata Janczy
- Department of Food Commodity Science, Medical University of Gdansk, ul. Debinki 7, 80-211 Gdansk, Poland;
| | - Alicja Sztendel
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, ul. Debinki 1, 80-211 Gdansk, Poland; (A.M.); (A.S.); (T.S.)
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, ul. Debinki 1, 80-211 Gdansk, Poland; (A.M.); (A.S.); (T.S.)
| | - Sylwia Małgorzewicz
- Department of Clinical Nutrition, Medical University of Gdansk, ul. Debinki 7, 80-211 Gdansk, Poland
| |
Collapse
|
43
|
Shabana S, Hamouda HI, Hamadou AH, Ahmed B, Chi Z, Liu C. Marine phospholipid nanoliposomes: A promising therapeutic approach for inflammatory bowel disease: Preparation, safety, and efficacy evaluation. Colloids Surf B Biointerfaces 2024; 234:113702. [PMID: 38113752 DOI: 10.1016/j.colsurfb.2023.113702] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Promising findings have been emerged from studies utilizing n3 polyunsaturated fatty acids (PUFA) supplementation in animal models of inflammatory bowel disease (IBD). Introduction of marine phospholipids which combine n3 PUFA with phosphatidylcholine in a nanoliposome formulation offers enhanced pharmacological efficacy due to physical stability, improved bioavailability, and specific targeting to inflamed colitis tissues. In the present study, a marine phospholipid-based nanoliposome formulation was developed and optimized, resulting in nanovesicles of approximately 107.7 ± 1.3 nm in size, 0.18 ± 0.01 PDI, and - 32.03 ± 3.16 mV ZP. The nanoliposomes exhibited spherical vesicles with stable properties upon incubation at SGF as shown by the TEM, DLS, and turbidity measurements over 3 h. MPL nanoliposomes were cytocompatible until the concentration of 500 µg/mL as per MTT assay and taken by macrophages through macropinocytosis and caveolae pathways, and demonstrated significant inhibitory activity against reactive oxygen species (ROS) in LPS-stimulated macrophages. They were also shown to be blood-compatible and safe for administration in healthy mice. In a colitis mouse model, the nanoliposomes displayed preferential distribution in the inflamed gut, delaying the onset of colitis when administered prophylactically. These findings highlight the potential of marine phospholipid nanoliposomes as a promising therapeutic approach for managing inflammatory bowel disease.
Collapse
Affiliation(s)
- Samah Shabana
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Egyptian Ministry of Health and Population, Cairo 11516, Egypt
| | - Hamed I Hamouda
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, CAS, Dalian 116023, PR China; Processes Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City 11727, Cairo, Egypt
| | | | - Busati Ahmed
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Zhe Chi
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Chenguang Liu
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
44
|
Li S, Li R, Hu X, Zhang Y, Wang D, Gao Y, Wang J, Wang Q, Song C, Huang S, Zhang E, Zhang J, Xia Z, Wan C. Omega-3 supplementation improves depressive symptoms, cognitive function and niacin skin flushing response in adolescent depression: A randomized controlled clinical trial. J Affect Disord 2024; 345:394-403. [PMID: 38190276 DOI: 10.1016/j.jad.2023.10.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Depressive disorder in adolescents is a major health problem with inadequate treatment. Omega-3 (ω3) polyunsaturated fatty acids are a promising adjuvant therapy in adult depression. The primary objective of this study was to investigate the efficacy of adjuvant ω3 treatment on depressive symptoms in adolescent depression. Secondarily, we explored the effects of ω3 on cognitive function and memory and niacin skin flushing response (NSFR), as their robust associations with adolescent depression. METHODS A total of 71 adolescents with depression (aged 13-24; 59.2 % female) were randomly assigned to receive ω3 plus Paxil (n = 34) or Paxil alone (n = 37) for 12 weeks. Primary outcome was depression severity according to scores on Montgomery-Asberg Depression Rating Scale (MADRS). Secondary outcomes were cognitive function and memory, and NSFR. RESULTS Significant improvements in depressive symptoms over time (p = 0.00027 at week 12) were observed in the ω3 + Paxil group compared with Paxil group. Additionally, in the ω3 + Paxil group, significant improvements in memory over time, and greater cognitive function and NSFR were also observed compared with the Paxil group; the NSFR was negatively correlated with MADRS scores at baseline. LIMITATIONS The trial was open label; thus, the outcome measures should be viewed as preliminary since inherent bias in outcomes due to the potential of a placebo effect. CONCLUSIONS Our results demonstrate that adjuvant ω3 treatment is effective for reducing depressive symptoms as well as improving cognitive function, memory and the NSFR; these results suggest ω3 is a promising adjuvant treatment for adolescent depression.
Collapse
Affiliation(s)
- Shuhui Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Rulan Li
- The First People's Hospital of Zigong, Zigong, China
| | - Xiaowen Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dandan Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Gao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jinfeng Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanfu Song
- The Fourth People's Hospital of Wuhu, Wuhu, China
| | - Shucai Huang
- The Fourth People's Hospital of Wuhu, Wuhu, China
| | - En Zhang
- The Fourth People's Hospital of Wuhu, Wuhu, China
| | - Juan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhong Xia
- The Fourth People's Hospital of Wuhu, Wuhu, China.
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Shanghai Mental Health Center, Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
45
|
Burron S, Richards T, Krebs G, Trevizan L, Rankovic A, Hartwig S, Pearson W, Ma DWL, Shoveller AK. The balance of n-6 and n-3 fatty acids in canine, feline, and equine nutrition: exploring sources and the significance of alpha-linolenic acid. J Anim Sci 2024; 102:skae143. [PMID: 38776363 PMCID: PMC11161904 DOI: 10.1093/jas/skae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/21/2024] [Indexed: 05/24/2024] Open
Abstract
Both n-6 and n-3 fatty acids (FA) have numerous significant physiological roles for mammals. The interplay between these families of FA is of interest in companion animal nutrition due to the influence of the n-6:n-3 FA ratio on the modulation of the inflammatory response in disease management and treatment. As both human and animal diets have shifted to greater consumption of vegetable oils rich in n-6 FA, the supplementation of n-3 FA to canine, feline, and equine diets has been advocated for. Although fish oils are commonly added to supply the long-chain n-3 FA eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), a heavy reliance on this ingredient by the human, pet food, and equine supplement industries is not environmentally sustainable. Instead, sustainable sourcing of plant-based oils rich in n-3 α-linolenic acid (ALA), such as flaxseed and camelina oils, emerges as a viable option to support an optimal n-6:n-3 FA ratio. Moreover, ALA may offer health benefits that extend beyond its role as a precursor for endogenous EPA and DHA production. The following review underlines the metabolism and recommendations of n-6 and n-3 FA for dogs, cats, and horses and the ratio between them in promoting optimal health and inflammation management. Additionally, insights into both marine and plant-based n-3 FA sources will be discussed, along with the commercial practicality of using plant oils rich in ALA for the provision of n-3 FA to companion animals.
Collapse
Affiliation(s)
- Scarlett Burron
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Taylor Richards
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Giovane Krebs
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Rio Grande do Sul, Brazil
| | - Luciano Trevizan
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Rio Grande do Sul, Brazil
| | - Alexandra Rankovic
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Samantha Hartwig
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Wendy Pearson
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Anna K Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| |
Collapse
|
46
|
Pasechnik I, Talyzin P, Skobelev E. Nutritional support for intensive care patients: the role of lipid component. RUSSIAN JOURNAL OF ANESTHESIOLOGY AND REANIMATOLOGY 2024:58. [DOI: 10.17116/anaesthesiology202403158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
47
|
Varzaru I, Oancea AG, Vlaicu PA, Saracila M, Untea AE. Exploring the Antioxidant Potential of Blackberry and Raspberry Leaves: Phytochemical Analysis, Scavenging Activity, and In Vitro Polyphenol Bioaccessibility. Antioxidants (Basel) 2023; 12:2125. [PMID: 38136244 PMCID: PMC10740815 DOI: 10.3390/antiox12122125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The goal of this research was nutritional evaluation through the phytochemical analysis of blackberry and raspberry leaves, the screening of their biological activity (antioxidant capacity and inhibition of lipid peroxidation), and the investigation of the effect of in vitro gastrointestinal digestion (GID) of blackberry and raspberry leaves on the bioaccessibility of polyphenol subclasses. The concentrations of the analyzed liposoluble antioxidants were higher (p < 0.05) in blackberry leaves compared to raspberry leaves, while a significant (p < 0.05) higher content of water-soluble antioxidants was registered in raspberry leaves (with a total polyphenol content of 26.2 mg GAE/g DW of which flavonoids accounted for 10.6 mg/g DW). Blackberry leaves had the highest antioxidant capacity inhibition of the superoxide radicals (O2•-), while raspberry leaves registered the highest inhibition of hydroxyl radicals (•OH), suggesting a high biological potency in scavenging-free radicals under in vitro systems. The maximum inhibition percentage of lipid peroxidation was obtained for blackberry leaves (24.86% compared to 4.37% in raspberry leaves), suggesting its potential to limit oxidative reactions. Simulated in vitro digestion showed that hydroxybenzoic acids registered the highest bioaccessibility index in the intestinal phase of both types of leaves, with gallic acid being one of the most bioaccessible phenolics. The outcomes of this investigation reveal that the most significant release of phenolic compounds from blackberry and raspberry leaves occurs either during or after the gastric phase. Knowledge about the bioaccessibility and stability of polyphenol compounds during digestion can provide significant insights into the bioavailability of these molecules and the possible effectiveness of plant metabolites for human health.
Collapse
Affiliation(s)
- Iulia Varzaru
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No. 1, 077015 Balotesti, Romania; (A.G.O.); (P.A.V.); (M.S.)
| | | | | | | | - Arabela Elena Untea
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No. 1, 077015 Balotesti, Romania; (A.G.O.); (P.A.V.); (M.S.)
| |
Collapse
|
48
|
Nassar M, Jaffery A, Ibrahim B, Baraka B, Abosheaishaa H. The multidimensional benefits of eicosapentaenoic acid: from heart health to inflammatory control. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2023; 35:81. [DOI: 10.1186/s43162-023-00265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
AbstractEicosapentaenoic acid (EPA) is an omega-3 fatty acid found in fatty fish and fish oil supplements. Over the past few decades, research has suggested that EPA has various potential health benefits, particularly for heart health.EPA has been associated with reduced inflammation, improved cholesterol levels, and reduced blood pressure, all of which can contribute to a lower risk of heart disease. Additionally, EPA has been found to reduce the risk of blood clots, which can lead to heart attacks and strokes. This comprehensive review article aims to summarize the current state of knowledge regarding the potential health benefits of EPA. We focus on its effects on cardiovascular health, inflammation, atherosclerotic plaques, blood clots, diabetes, obesity, and cancer. Finally, we provide an overview of the recommended daily dose of EPA for optimal health benefits.This review highlights the importance of EPA in promoting overall health and well-being and provides insights into its potential therapeutic applications.
Collapse
|
49
|
Rodrigues LS, da Silva JAR, Lourenço-Júnior JDB, Maciel e Silva AG, Rodrigues TCGDC, da Silva WC, da Silva TC, de Castro VCG, Alfaia CM, de Almeida AM, Prates JAM. Evaluation of the Composition of the Cholesterol, Tocopherols, β-Carotene and Fatty Acids Profile of the Liver Tissue of Male Water Buffaloes ( Bubalus bubalis) Managed in Different Ecosystems of the Eastern Amazon. Animals (Basel) 2023; 13:3785. [PMID: 38136822 PMCID: PMC10740842 DOI: 10.3390/ani13243785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 12/24/2023] Open
Abstract
The diet offered to animals has a great influence on the composition of tissues and, consequently, the quality. The objective of this study was to evaluate the influence of Amazonian ecosystems, in the dry and rainy periods of the year, on the composition of cholesterol, tocopherols, β-carotene and the fatty acid profile of the livers of water buffaloes (Bubalus bubalis) reared in the Eastern Amazon, in an extensive or intensive system. Total lipid content was influenced by the location and time of year (p < 0.05). Ninety-six male water buffaloes were used (12 per sampling period), aged between 24 and 36 months, with average weights of 432 kg (end of the rainy season) and 409 kg (end of the dry season). Total cholesterol, α-tocopherol and γ-tocopherol influenced the relationship between extensive vs intensive ecosystems, location, periods and the interaction between the location and period of the year (p < 0.05). Animals raised in a pasture ecosystem had the highest values of omega-3, and those raised in confinement, the highest values of omega-6 (p < 0.05). The proportions of n-6/n-3 and hypocholesterolemia (7.14) and hypercholesterolemia (3.08%) (h/H) were found in greater amounts in animals raised in confinement (p < 0.05). The atherogenic index (AI) had a higher value in the rainy season, in animals raised in Santarém (2.37%), with no difference between pasture and feedlot ecosystems, except in animals raised in the rainy season in Nova Timboteua, with a lower AI (1.53%). The thrombogenicity index (TI) was higher in the livers of confined animals (0.32%) and lower (0.18%) in those raised in Nova Timboteua (rainy season). Amazonian ecosystems influence the nutritional values of buffalo liver, with the best nutritional values in animals in the extensive system.
Collapse
Affiliation(s)
- Laurena Silva Rodrigues
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Castanhal 68746-360, Brazil; (L.S.R.); (J.d.B.L.-J.); (A.G.M.e.S.); (T.C.G.d.C.R.)
| | - Jamile Andrea Rodrigues da Silva
- Institute of Animal Health and Production, Federal Rural University of the Amazônia (UFRA), Belem 66077-830, Brazil; (J.A.R.d.S.); (T.C.d.S.)
| | - José de Brito Lourenço-Júnior
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Castanhal 68746-360, Brazil; (L.S.R.); (J.d.B.L.-J.); (A.G.M.e.S.); (T.C.G.d.C.R.)
| | - André Guimarães Maciel e Silva
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Castanhal 68746-360, Brazil; (L.S.R.); (J.d.B.L.-J.); (A.G.M.e.S.); (T.C.G.d.C.R.)
| | - Thomaz Cyro Guimarães de Carvalho Rodrigues
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Castanhal 68746-360, Brazil; (L.S.R.); (J.d.B.L.-J.); (A.G.M.e.S.); (T.C.G.d.C.R.)
| | - Welligton Conceição da Silva
- Institute of Animal Health and Production, Federal Rural University of the Amazônia (UFRA), Belem 66077-830, Brazil; (J.A.R.d.S.); (T.C.d.S.)
| | - Thiago Carvalho da Silva
- Institute of Animal Health and Production, Federal Rural University of the Amazônia (UFRA), Belem 66077-830, Brazil; (J.A.R.d.S.); (T.C.d.S.)
| | - Vinicius Costa Gomes de Castro
- Postgraduate Program in Animal Health and Production in the Amazon (PPGSPAA), Federal Rural University of the Amazon (UFRA), Belem 66077-830, Brazil;
| | - Cristina Mateus Alfaia
- Center for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (C.M.A.); (J.A.M.P.)
| | - André Martinho de Almeida
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| | - José António Mestre Prates
- Center for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (C.M.A.); (J.A.M.P.)
- Associate Laboratory for Animal and Veterinary Science (AL4Animals), 1300-477 Lisboa, Portugal
| |
Collapse
|
50
|
Lazzarin T, Martins D, Ballarin RS, Monte MG, Minicucci MF, Polegato BF, Zornoff L. The Role of Omega-3 in Attenuating Cardiac Remodeling and Heart Failure through the Oxidative Stress and Inflammation Pathways. Antioxidants (Basel) 2023; 12:2067. [PMID: 38136187 PMCID: PMC10741242 DOI: 10.3390/antiox12122067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Cardiac remodeling is defined as molecular, cellular, and interstitial changes that manifest clinically as alterations in the size, shape, and function of the heart. Despite the pharmacological approaches, cardiac remodeling-related mortality rates remain high. Therefore, other therapeutic options are being increasingly studied. This review highlights the role of omega-3 as an adjunctive therapy to attenuate cardiac remodeling, with an emphasis on its antioxidant and anti-inflammatory actions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leonardo Zornoff
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18600-000, Brazil; (T.L.); (D.M.); (R.S.B.); (M.G.M.); (M.F.M.); (B.F.P.)
| |
Collapse
|