1
|
Han M, Wang J, Wu Y, Liao J, Guo J, Tang Z. CEBPA as a potential hub gene for cutaneous inflammation in type 2 diabetes mellitus. Int J Biol Macromol 2025; 298:140080. [PMID: 39837449 DOI: 10.1016/j.ijbiomac.2025.140080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/29/2024] [Accepted: 01/17/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND The role of inflammation in the development of type 2 diabetes mellitus (T2DM) related skin complications necessitates further investigation. This study aims to explore the correlation between inflammation and cutaneous alterations in T2DM, enhancing comprehension of underlying mechanism involved. METHODS Utilizing bioinformatics, the GSE38396 and GSE92724 datasets were employed to identify differentially expressed genes (DEGs) and potential hub genes in T2DM-related skin inflammation. Subsequently, gene functional enrichment analysis was employed for functional annotation. Finally, we validated the regulatory impact of hub gene on inflammation during high glucose incubation using the in vitro model. RESULTS A comprehensive analysis identified 742 DEGs, including 9 hub genes and 4 potential biomarkers. Compared to the CON group, the expression of M2 macrophages was significantly upregulated in the T2DM group, while resting dendritic cells and eosinophils showed notable decreases, indicating a significant correlation with CEBPA. Furthermore, functional enrichment analysis revealed significant enrichment of DEGs in pathways linked to immunity and diabetes pathogenesis. Interestingly, overexpression of CEBPA demonstrated anti-inflammatory effects under hyperglycemic conditions, while silencing CEBPA expression appeared to worsen inflammation. CONCLUSION CEBPA emerges as a potential hub gene for skin inflammation in T2DM, shedding light on the underlying mechanisms of this condition.
Collapse
Affiliation(s)
- Mingzheng Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jingchun Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yijin Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Singh A, Shadangi S, Gupta PK, Rana S. Type 2 Diabetes Mellitus: A Comprehensive Review of Pathophysiology, Comorbidities, and Emerging Therapies. Compr Physiol 2025; 15:e70003. [PMID: 39980164 DOI: 10.1002/cph4.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Humans are perhaps evolutionarily engineered to get deeply addicted to sugar, as it not only provides energy but also helps in storing fats, which helps in survival during starvation. Additionally, sugars (glucose and fructose) stimulate the feel-good factor, as they trigger the secretion of serotonin and dopamine in the brain, associated with the reward sensation, uplifting the mood in general. However, when consumed in excess, it contributes to energy imbalance, weight gain, and obesity, leading to the onset of a complex metabolic disorder, generally referred to as diabetes. Type 2 diabetes mellitus (T2DM) is one of the most prevalent forms of diabetes, nearly affecting all age groups. T2DM is clinically diagnosed with a cardinal sign of chronic hyperglycemia (excessive sugar in the blood). Chronic hyperglycemia, coupled with dysfunctions of pancreatic β-cells, insulin resistance, and immune inflammation, further exacerbate the pathology of T2DM. Uncontrolled T2DM, a major public health concern, also contributes significantly toward the onset and progression of several micro- and macrovascular diseases, such as diabetic retinopathy, nephropathy, neuropathy, atherosclerosis, and cardiovascular diseases, including cancer. The current review discusses the epidemiology, causative factors, pathophysiology, and associated comorbidities, including the existing and emerging therapies related to T2DM. It also provides a future roadmap for alternative drug discovery for the management of T2DM.
Collapse
Affiliation(s)
- Aditi Singh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Sucharita Shadangi
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Pulkit Kr Gupta
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| |
Collapse
|
3
|
Hayat C, Yaseen M, Ahmad S, Khalid K, Alamri MA, Khalid A, Shah SQ, Ejiohuo O, Wadood A, Maigoro AY, Kwon HW. Elucidating the interactions of advanced glycation end products with RAGE, employing molecular docking and MD simulation approaches: Implications of potent therapeutic for diabetes and its related complications. J Mol Liq 2024; 416:126467. [DOI: 10.1016/j.molliq.2024.126467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Ghemiș L, Goriuc A, Minea B, Botnariu GE, Mârțu MA, Ențuc M, Cioloca D, Foia LG. Myeloid-Derived Suppressor Cells (MDSCs) and Obesity-Induced Inflammation in Type 2 Diabetes. Diagnostics (Basel) 2024; 14:2453. [PMID: 39518420 PMCID: PMC11544947 DOI: 10.3390/diagnostics14212453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Type 2 diabetes mellitus is a complex metabolic disorder characterized by insulin resistance and, subsequently, decreased insulin secretion. This condition is closely linked to obesity, a major risk factor that boosts the development of chronic systemic inflammation, which, in turn, is recognized for its crucial role in the onset of insulin resistance. Under conditions of obesity, adipose tissue, particularly visceral fat, becomes an active endocrine organ that releases a wide range of pro-inflammatory mediators, including cytokines, chemokines, and adipokines. These mediators, along with cluster of differentiation (CD) markers, contribute to the maintenance of systemic low-grade inflammation, promote cellular signaling and facilitate the infiltration of inflammatory cells into tissues. Emerging studies have indicated the accumulation of a new cell population in the adipose tissue in these conditions, known as myeloid-derived suppressor cells (MDSCs). These cells possess the ability to suppress the immune system, impacting obesity-related chronic inflammation. Given the limited literature addressing the role of MDSCs in the context of type 2 diabetes, this article aims to explore the complex interaction between inflammation, obesity, and MDSC activity. Identifying and understanding the role of these immature cells is essential not only for improving the management of type 2 diabetes but also for the potential development of targeted therapeutic strategies aimed at both glycemic control and the reduction in associated inflammation.
Collapse
Affiliation(s)
- Larisa Ghemiș
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (L.G.); (A.G.); (B.M.); (L.G.F.)
| | - Ancuța Goriuc
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (L.G.); (A.G.); (B.M.); (L.G.F.)
| | - Bogdan Minea
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (L.G.); (A.G.); (B.M.); (L.G.F.)
| | - Gina Eosefina Botnariu
- Department of Internal Medicine II, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Maria-Alexandra Mârțu
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania;
| | - Melissa Ențuc
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania;
| | - Daniel Cioloca
- Department of Oro-Dental Prevention, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania;
| | - Liliana Georgeta Foia
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (L.G.); (A.G.); (B.M.); (L.G.F.)
| |
Collapse
|
5
|
Chaponda MM, Lam HYP. Schistosoma antigens: A future clinical magic bullet for autoimmune diseases? Parasite 2024; 31:68. [PMID: 39481080 PMCID: PMC11527426 DOI: 10.1051/parasite/2024067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Autoimmune diseases are characterized by dysregulated immunity against self-antigens. Current treatment of autoimmune diseases largely relies on suppressing host immunity to prevent excessive inflammation. Other immunotherapy options, such as cytokine or cell-targeted therapies, have also been used. However, most patients do not benefit from these therapies as recurrence of the disease usually occurs. Therefore, more effort is needed to find alternative immune therapeutics. Schistosoma infection has been a significant public health problem in most developing countries. Schistosoma parasites produce eggs that continuously secrete soluble egg antigen (SEA), which is a known modulator of host immune responses by enhancing Th2 immunity and alleviating outcomes of Th1 and Th17 responses. Recently, SEA has shown promise in treating autoimmune disorders due to their substantial immune-regulatory effects. Despite this interest, how these antigens modulate human immunity demonstrates only limited pieces of evidence, and whether there is potential for Schistosoma antigens in other diseases in the future remains an unsolved question. This review discusses how SEA modulates human immune responses and its potential for development as a novel immunotherapeutic for autoimmune diseases. We also discuss the immune modulatory effects of other non-SEA schistosome antigens at different stages of the parasite's life cycle.
Collapse
Affiliation(s)
- Mphatso Mayuni Chaponda
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University Hualien Taiwan
| | - Ho Yin Pekkle Lam
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University Hualien Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University Hualien Taiwan
- Institute of Medical Science, Tzu Chi University Hualien Taiwan
| |
Collapse
|
6
|
Aydogan T, Karsiyaka Hendek M, Unsal B, Çifci A, Varol H, Kisa U, Olgun E. Effects of D 3K 2 With Periodontal Therapy in Diabetes Mellitus and Stage I-II Periodontitis Patients. Oral Dis 2024. [PMID: 39370735 DOI: 10.1111/odi.15147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND The aim of this study is to look into the clinical and biochemical outcomes of D3K2 supplementation in addition to nonsurgical periodontal treatment (NSPT) for patients suffering from diabetes mellitus (DM) and periodontitis. METHODS Thirty-eight participants with DM and periodontitis were randomized into two different groups. The test group provided NSPT with D3K2 whereas the control group received NSPT with placebo. Clinical periodontal parameters were recorded and serum and gingival crevicular fluid (GCF) were sampled at baseline and at the third and the sixth months after treatment. Glycated hemoglobin A1c (HbA1c), fasting blood glucose (FBG), 25(OH)D3, parathyroid hormone (PTH), calcium (Ca) and magnesium (Mg) values were determined in blood samples. GCF and serum interleukin (IL)-1β and IL-10 levels were analyzed using enzyme-linked immunosorbent assay. RESULTS All clinical periodontal parameters were importantly decreased at the third and sixth months after treatment compared to baseline in both groups. At the sixth month, 25(OH)D3 levels in the test group were observed to be statistically significantly higher than in the control group (p = 0.02). Serum IL-1β showed a statistically significant decrease at the sixth month compared to baseline and the third month in control group. CONCLUSION According to this study, there is limited additional benefit of D3K2 given with NSPT in individuals with DM and periodontitis.
Collapse
Affiliation(s)
- Tolga Aydogan
- Department of Periodontology, Faculty of Dentistry, Kirikkale University, Kirikkale, Turkey
| | | | - Berrin Unsal
- Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - Aydın Çifci
- Department of Internal Medicine, Faculty of Medicine, Kirikkale University, Kirikkale, Turkey
| | | | - Uçler Kisa
- Department of Biochemistry, Faculty of Medicine, Kirikkale University, Kirikkale, Turkey
| | - Ebru Olgun
- Department of Periodontology, Faculty of Dentistry, Kirikkale University, Kirikkale, Turkey
| |
Collapse
|
7
|
Sergi D, Melloni M, Passaro A, Neri LM. Influence of Type 2 Diabetes and Adipose Tissue Dysfunction on Breast Cancer and Potential Benefits from Nutraceuticals Inducible in Microalgae. Nutrients 2024; 16:3243. [PMID: 39408212 PMCID: PMC11478231 DOI: 10.3390/nu16193243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Breast cancer (BC) represents the most prevalent cancer in women at any age after puberty. From a pathogenetic prospective, despite a wide array of risk factors being identified thus far, poor metabolic health is emerging as a putative risk factor for BC. In particular, type 2 diabetes mellitus (T2DM) provides a perfect example bridging the gap between poor metabolic health and BC risk. Indeed, T2DM is preceded by a status of hyperinsulinemia and is characterised by hyperglycaemia, with both factors representing potential contributors to BC onset and progression. Additionally, the aberrant secretome of the dysfunctional, hypertrophic adipocytes, typical of obesity, characterised by pro-inflammatory mediators, is a shared pathogenetic factor between T2DM and BC. In this review, we provide an overview on the effects of hyperglycaemia and hyperinsulinemia, hallmarks of type 2 diabetes mellitus, on breast cancer risk, progression, treatment and prognosis. Furthermore, we dissect the role of the adipose-tissue-secreted adipokines as additional players in the pathogenesis of BC. Finally, we focus on microalgae as a novel superfood and a source of nutraceuticals able to mitigate BC risk by improving metabolic health and targeting cellular pathways, which are disrupted in the context of T2DM and obesity.
Collapse
Affiliation(s)
- Domenico Sergi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Mattia Melloni
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
8
|
Das AC, Nichols JM, Crelli CV, Liu L, Vichare R, Pham HV, Gaffney CM, Cherry FR, Grace PM, Shepherd AJ, Janjic JM. Injectable, reversibly thermoresponsive captopril-laden hydrogel for the local treatment of sensory loss in diabetic neuropathy. Sci Rep 2024; 14:18978. [PMID: 39152212 PMCID: PMC11329637 DOI: 10.1038/s41598-024-69437-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
A major and irreversible complication of diabetes is diabetic peripheral neuropathy (DPN), which can lead to significant disability and decreased quality of life. Prior work demonstrates the peptide hormone Angiotensin II (Ang II) is released locally in neuropathy and drives inflammation and impaired endoneurial blood flow. Therefore, we proposed that by utilizing a local thermoresponsive hydrogel injection, we could deliver inhibitors of angiotensin-converting enzyme (ACE) to suppress Ang II production and reduce nerve dysfunction in DPN through local drug release. The ACE inhibitor captopril was encapsulated into a micelle, which was then embedded into a reversibly thermoresponsive pluronics-based hydrogel matrix. Drug-free and captopril-loaded hydrogels demonstrated excellent product stability and sterility. Rheology testing confirmed sol properties with low viscosity at ambient temperature and increased viscosity and gelation at 37 °C. Captopril-loaded hydrogels significantly inhibited Ang II production in comparison to drug-free hydrogels. DPN mice treated with captopril-loaded hydrogels displayed normalized mechanical sensitivity and reduced inflammation, without side-effects associated with systemic exposure. Our data demonstrate the feasibility of repurposing ACE inhibitors as locally delivered anti-inflammatories for the treatment of sensory deficits in DPN. To the best of our knowledge, this is the first example of a locally delivered ACE inhibitor for the treatment of DPN.
Collapse
Affiliation(s)
- Amit Chandra Das
- School of Pharmacy and Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA
| | - James M Nichols
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX, 77030, USA
| | - Caitlin V Crelli
- School of Pharmacy and Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA
| | - Lu Liu
- School of Pharmacy and Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA
| | - Riddhi Vichare
- School of Pharmacy and Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA
| | - Hoang Vu Pham
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX, 77030, USA
| | - Caitlyn M Gaffney
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX, 77030, USA
| | - Fisher R Cherry
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX, 77030, USA
| | - Peter M Grace
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX, 77030, USA
| | - Andrew J Shepherd
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX, 77030, USA.
| | - Jelena M Janjic
- School of Pharmacy and Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA.
| |
Collapse
|
9
|
Guan J, Abudouaini H, Lin K, Yang K. Emerging insights into the role of IL-1 inhibitors and colchicine for inflammation control in type 2 diabetes. Diabetol Metab Syndr 2024; 16:140. [PMID: 38918878 PMCID: PMC11197348 DOI: 10.1186/s13098-024-01369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM), a prevalent chronic metabolic disorder, is closely linked to persistent low-grade inflammation, significantly contributing to its development and progression. This review provides a comprehensive examination of the inflammatory mechanisms underlying T2DM, focusing on the role of the NLRP3 inflammasome and interleukin-1β (IL-1β) in mediating inflammatory responses. We discuss the therapeutic potential of IL-1 inhibitors and colchicine, highlighting their mechanisms in inhibiting the NLRP3 inflammasome and reducing IL-1β production. Recent studies indicate that these agents could effectively mitigate inflammation, offering promising avenues for the prevention and management of T2DM. By exploring the intricate connections between metabolic disturbances and chronic inflammation, this review underscores the need for novel anti-inflammatory strategies to address T2DM and its complications.
Collapse
Affiliation(s)
- Jianbin Guan
- Honghui-Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Haimiti Abudouaini
- Honghui-Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Kaiyuan Lin
- Honghui-Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| | - Kaitan Yang
- Honghui-Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
- Truma Rehabilitation Department, Honghui-Hospital,Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
10
|
Rasakanya TL, Osuch E. Effects of metformin on arterial elasticity and pro-inflammatory markers in black diabetes patients. Health SA 2024; 29:2419. [PMID: 38962295 PMCID: PMC11220136 DOI: 10.4102/hsag.v29i0.2419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 02/07/2024] [Indexed: 07/05/2024] Open
Abstract
Background Pro-inflammatory markers are linked with the development and progression of type 2 diabetes mellitus and arterial stiffening. Pulse Wave Velocity (PWV) and Augmentation Index (Aix) are non-invasive standard markers of arterial elasticity and predictors of cardiovascular mortality and morbidity. Aim To investigate the effects of metformin alone and in combination with glimepiride on arterial elasticity, pro-inflammatory cytokines in black type 2 diabetes mellitus patients. Settings Participants were enrolled from Sefako Makgatho Health Sciences University community, Gauteng, South Africa. Methods PWV and Aix were measured using the AtCor SphygmoCor® system (AtCor Medical, Inc., Sydney, Australia). Cytokines levels were measured using Multiplexing with Bio-Plex Pro™ human inflammation panel I assay. Treatment naïve type 2 diabetes participants were divided into two groups: metformin (M) (n = 10) and metformin glimepiride (MS) (n = 14). The study participants were followed up at 4 and 8 months after treatment initiation. Results In the M and MS, IL-1β increased significantly at four months (58.19 ± 0.03 pg/ml, 58.35 ± 0.30 pg/ml) when compared to baseline (33.05 ± 18.56 pg/ml, 34.79 ± 18.77 pg/ml) then decreased significantly at eight months (29.25 ± 11.64 pg/ml, 32.54 ± 14.26 pg/ml) when compared to four months (58.19 ± 0.03 pg/ml, 58.35 ± 0.3 pg/ml) (p < 0.05). There were no significant changes in PWV, Aix, IL-1ra, IL-2, IL-6, IL-8, TNF-α and hs-CRP levels at both treatment intervals. Conclusion Metformin alone or in combination with glimepiride did not improve arterial elasticity and did not reduce pro-inflammatory cytokines levels in T2DM black South African patients. Contribution The context-based knowledge generated by the current study is expected to enhance the continuum of care for T2DM patients.
Collapse
Affiliation(s)
- Tsakani L Rasakanya
- Department of Pharmacology and Therapeutics, School of Medicine, Sefako Makgatho Health Science University, Pretoria, South Africa
| | - Elzbieta Osuch
- Department of Pharmacology and Therapeutics, School of Medicine, Sefako Makgatho Health Science University, Pretoria, South Africa
| |
Collapse
|
11
|
Nikooyeh B, Zargaraan A, Ebrahimof S, Kalayi A, Zahedirad M, Yazdani H, Rismanchi M, Karami T, Khazraei M, Jafarpour A, Neyestani TR. Added γ-oryzanol boosted anti-inflammatory effects of canola oil in adult subjects with type 2 diabetes: a randomized controlled clinical trial. Eur J Nutr 2024; 63:425-433. [PMID: 37971692 DOI: 10.1007/s00394-023-03275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE This study was conducted to examine the effects of daily intake of γ-oryzanol (ORZ)-fortified canola oil, as compared with plain canola and sunflower oils, on certain inflammatory and oxidative stress biomarkers in adult subjects with Type 2 Diabetes (T2D). METHODS We randomly allocated 92 adult subjects with T2D from both sexes to one of the following groups to receive: (a) ORZ-fortified canola oil (ORZO; n1 = 30); (b) unfortified canola oil (CANO; n2 = 32); or (c) sunflower oil (SUFO; n3 = 30) for 12 weeks. Dietary and laboratory evaluations were performed initially and finally. RESULTS Serum hs-CRP concentrations significantly decreased in ORZO group (from 3.1 ± 0.2 to 1.2 ± 0.2 mg/L), as compared with CANO (p = 0.003) and SUFO (p < 0.001) groups. Serum IL-6 significantly decreased just in ORZO (- 22.8%, p = 0.042) and CANO groups (- 19.8%, p = 0.038). However, the between-group differences were not significant. Serum IL-1β slightly decreased in ORZO (- 28.1%, p = 0.11) and increased in SUFO (+ 20.6%, p = 0.079) but between-group difference was statistically significant (p = 0.017). Serum IFN-γ concentrations decreased significantly only in ORZO (from 3.3 ± 0.08 to 2.9 ± 0.21 IU/mL, p = 0.044). Salivary IgA concentrations increased significantly in all three intervention groups. Notwithstanding, only the difference between ORZO and CANO groups was statistically significant (p = 0.042). Similarly, circulating malondialdehyde concentrations significantly decreased in all three groups but with no between-group significant difference. CONCLUSIONS Daily consumption of ORZ-fortified canola oil, compared with unfortified canola and sunflower oils, for 12 weeks resulted in boosting of certain anti-inflammatory effects of canola oil. These findings may have preventive implications for both clinicians and policy makers. This clinical trial was registered at clinicaltrials.gov (03.08.2022; NCT05271045).
Collapse
Affiliation(s)
- Bahareh Nikooyeh
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azizollaah Zargaraan
- Department of Food and Nutrition Policy and Planning Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition and Food Science, Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran
| | - Samira Ebrahimof
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Kalayi
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maliheh Zahedirad
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hootan Yazdani
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Rismanchi
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Taher Karami
- Department of Research and Development, Kourosh Food Industry, Tehran, Iran
| | | | - Ali Jafarpour
- Quality Assurance Unit, Kourosh Food Industry, Tehran, Iran
| | - Tirang R Neyestani
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Hoyeck MP, Angela Ching ME, Basu L, van Allen K, Palaniyandi J, Perera I, Poleo-Giordani E, Hanson AA, Ghorbani P, Fullerton MD, Bruin JE. The aryl hydrocarbon receptor in β-cells mediates the effects of TCDD on glucose homeostasis in mice. Mol Metab 2024; 81:101893. [PMID: 38309623 PMCID: PMC10867573 DOI: 10.1016/j.molmet.2024.101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
OBJECTIVE Chronic exposure to persistent organic pollutants (POPs) is associated with increased incidence of type 2 diabetes, hyperglycemia, and poor insulin secretion in humans. Dioxins and dioxin-like compounds are a broad class of POPs that exert cellular toxicity through activation of the aryl hydrocarbon receptor (AhR). We previously showed that a single high-dose injection of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, aka dioxin; 20 μg/kg) in vivo reduced fasted and glucose-stimulated plasma insulin levels for up to 6 weeks in male and female mice. TCDD-exposed male mice were also modestly hypoglycemic and had increased insulin sensitivity, whereas TCDD-exposed females were transiently glucose intolerant. Whether these effects are driven by AhR activation in β-cells requires investigation. METHODS We exposed female and male β-cell specific Ahr knockout (βAhrKO) mice and littermate Ins1-Cre genotype controls (βAhrWT) to a single high dose of 20 μg/kg TCDD and tracked the mice for 6 weeks. RESULTS Under baseline conditions, deleting AhR from β-cells caused hypoglycemia in female mice, increased insulin secretion ex vivo in female mouse islets, and promoted modest weight gain in male mice. Importantly, high-dose TCDD exposure impaired glucose homeostasis and β-cell function in βAhrWT mice, but these phenotypes were largely abolished in TCDD-exposed βAhrKO mice. CONCLUSION Our study demonstrates that AhR signaling in β-cells is important for regulating baseline β-cell function in female mice and energy homeostasis in male mice. We also show that β-cell AhR signaling largely mediates the effects of TCDD on glucose homeostasis in both sexes, suggesting that the effects of TCDD on β-cell function and health are driving metabolic phenotypes in peripheral tissues.
Collapse
Affiliation(s)
- Myriam P Hoyeck
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Ma Enrica Angela Ching
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Lahari Basu
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Kyle van Allen
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Jana Palaniyandi
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Ineli Perera
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Emilia Poleo-Giordani
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Antonio A Hanson
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Peyman Ghorbani
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Centre for Infection, Immunity and Inflammation, Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Morgan D Fullerton
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Centre for Infection, Immunity and Inflammation, Ottawa Institute of Systems Biology, Ottawa, ON, Canada; Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON, Canada
| | - Jennifer E Bruin
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
13
|
Toljic M, Nikolic N, Joksic I, Carkic J, Munjas J, Karadzov Orlic N, Milasin J. Expression of miRNAs and proinflammatory cytokines in pregnant women with gestational diabetes mellitus. J Reprod Immunol 2024; 162:104211. [PMID: 38342070 DOI: 10.1016/j.jri.2024.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/22/2023] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Altered microRNAs (miRNAs1) and cytokines expression levels are associated with several pregnancy-induced complications. We evaluated the profile of circulating miRNAs (miR-17, miR-29a and miR-181a) and proinflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-17) in women with gestational diabetes mellitus (GDM2), as well as their potential use as GDM biomarkers. The case-control study included 65 pregnant women divided into 2 groups - GDM and control. Expression levels of miRNAs in plasma samples and cytokines mRNA isolated from peripheral blood buffy coat were analyzed by quantitative real-time PCR (qPCR3). Significant miR-29a downregulation was found in GDM compared to the control group, and was even more significant after adjustments for covariates. miR-17 and miR-181a expression levels did not differ between the examined groups. Expression levels of IL-1β were significantly higher in GDM group compared to controls, while TNF-α, IL-6 and IL-17 did not show significant changes in expression between the two groups. As jugded from the ROC curve analysis, miR-29a and IL-1β had a significant capacity to discriminate between CG and GDM. Additionally, a positive correlation was established between IL-1β and TNF-α in the GDM group. GDM appeared to be associated with altered levels of miR-29a and IL-1β making them markers of this condition.
Collapse
Affiliation(s)
- Mina Toljic
- Genetic Laboratory Department, Obstetrics and Gynecology Clinic "Narodni Front", Kraljice Natalije Street 62, 11000 Belgrade, Serbia
| | - Nadja Nikolic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Street Dr Subotica 8, 11000 Belgrade, Serbia
| | - Ivana Joksic
- Genetic Laboratory Department, Obstetrics and Gynecology Clinic "Narodni Front", Kraljice Natalije Street 62, 11000 Belgrade, Serbia.
| | - Jelena Carkic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Street Dr Subotica 8, 11000 Belgrade, Serbia
| | - Jelena Munjas
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Street Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Natasa Karadzov Orlic
- High-Risk Pregnancy Department, Obstetrics and Gynecology Clinic "Narodni Front", School of Medicine, University of Belgrade, Kraljice Natalije Street 62, 11000 Belgrade, Serbia
| | - Jelena Milasin
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Street Dr Subotica 8, 11000 Belgrade, Serbia
| |
Collapse
|
14
|
Yakout SM, Alfadul H, Ansari MGA, Khattak MNK, Al-Daghri NM. Vitamin D Status Modestly Regulates NOD-Like Receptor Family with a Pyrin Domain 3 Inflammasome and Interleukin Profiles among Arab Adults. Int J Mol Sci 2023; 24:16377. [PMID: 38003567 PMCID: PMC10670975 DOI: 10.3390/ijms242216377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Vitamin D (VD) deficiency has been associated with inflammation and dysregulation of the immune system. The NLRP3 inflammasome, a critical immune response component, plays a pivotal role in developing inflammatory diseases. VD hinders NLRP3 inflammasome activation and thus exerts anti-inflammatory effects. This study aimed to analyze the effect of VD deficiency on circulating levels of NLRP3 inflammasomes (NLRP3 and caspase-1) and associated interleukins (IL-1α, IL-1β, IL-18, IL-33 and IL-37) in Saudi adults. Methods: A total of 338 Saudi adults (128 males and 210 females) (mean age = 41.2 ± 9.1 years and mean BMI 31.2 ± 6.5 kg/m2) were included. Overnight-fasting serum samples were collected. Participants were stratified according to their VD status. Serum levels of NLRP3 inflammasomes and interleukins of interest were assessed using commercially available immuno-assays. Individuals with VD deficiency had significantly lower mean 25(OH)D levels than those with a normal VD status (29.3 nmol/L vs. 74.2 nmol/L, p < 0.001). The NLRP3 levels were higher in the VD-deficient group than their VD-sufficient counterparts (0.18 vs. 0.16, p = 0.01). Significant inverse associations were observed between NLRP3 levels with age (r = -0.20, p = 0.003) and BMI (r = -0.17, p = 0.01). Stepwise regression analysis identified insulin (β = 0.38, p = 0.005) and NLRP3 (β = -1.33, p = 0.03) as significant predictors of VD status, explaining 18.3% of the variance. The findings suggest that the VD status modestly regulates NLRP3 inflammasome and interleukin activities. This may provide novel insights into the pathogenesis and management of inflammatory disorders.
Collapse
Affiliation(s)
| | | | | | | | - Nasser M. Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (M.N.K.K.)
| |
Collapse
|
15
|
Suvakov S, Kattah AG, Gojkovic T, Enninga EAL, Pruett J, Jayachandran M, Sousa C, Santos J, Abou Hassan C, Gonzales-Suarez M, Garovic VD. Impact of Aging and Cellular Senescence in the Pathophysiology of Preeclampsia. Compr Physiol 2023; 13:5077-5114. [PMID: 37770190 DOI: 10.1002/cphy.c230003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The incidence of hypertensive disorders of pregnancy is increasing, which may be due to several factors, including an increased age at pregnancy and more comorbid health conditions during reproductive years. Preeclampsia, the most severe hypertensive disorder of pregnancy, has been associated with an increased risk of future disease, including cardiovascular and kidney diseases. Cellular senescence, the process of cell cycle arrest in response to many physiologic and maladaptive stimuli, may play an important role in the pathogenesis of preeclampsia and provide a mechanistic link to future disease. In this article, we will discuss the pathophysiology of preeclampsia, the many mechanisms of cellular senescence, evidence for the involvement of senescence in the development of preeclampsia, as well as evidence that cellular senescence may link preeclampsia to the risk of future disease. Lastly, we will explore how a better understanding of the role of cellular senescence in preeclampsia may lead to therapeutic trials. © 2023 American Physiological Society. Compr Physiol 13:5077-5114, 2023.
Collapse
Affiliation(s)
- Sonja Suvakov
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea G Kattah
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamara Gojkovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth A L Enninga
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Jacob Pruett
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ciria Sousa
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Janelle Santos
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Coline Abou Hassan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Nemecz M, Stefan DS, Comarița IK, Constantin A, Tanko G, Guja C, Georgescu A. Microvesicle-associated and circulating microRNAs in diabetic dyslipidemia: miR-218, miR-132, miR-143, and miR-21, miR-122, miR-155 have biomarker potential. Cardiovasc Diabetol 2023; 22:260. [PMID: 37749569 PMCID: PMC10521428 DOI: 10.1186/s12933-023-01988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Circulating MicroRNAs (miRNAs) carried by microvesicles (MVs) have various physiological and pathological functions by post-transcriptional regulation of gene expression being considered markers for many diseases including diabetes and dyslipidemia. We aimed to identify new common miRNAs both in MVs and plasma that could be predictive biomarkers for diabetic dyslipidemia evolution. METHODS For this purpose, plasma from 63 participants in the study (17 type 2 diabetic patients, 17 patients with type 2 diabetes and dyslipidemia, 14 patients with dyslipidemia alone and 15 clinically healthy persons without diabetes or dyslipidemia) was used for the analysis of circulating cytokines, MVs, miRNAs and MV-associated miRNAs. RESULTS The results uncovered three miRNAs, miR-218, miR-132 and miR-143, whose expression was found to be significantly up-regulated in both circulating MVs and plasma from diabetic patients with dyslipidemia. These miRNAs showed significant correlations with important plasma markers, representative of this pathology. Thus, MV/plasma miR-218 was negatively correlated with the levels of erythrocyte MVs, plasma miR-132 was positively connected with MV miR-132 and negatively with uric acid and erythrocyte plasma levels, and plasma miR-143 was negatively related with creatinine levels and diastolic blood pressure. Also, three miRNAs common to MV and plasma, namely miR-21, miR-122, and miR-155, were identified to be down-regulated and up-regulated, respectively, in diabetic dyslipidemia. In addition, MV miR-21 was positively linked with cholesterol plasma levels and plasma miR-21 with TNFα plasma levels, MV miR-122 was negatively correlated with LDL-c levels and plasma miR-122 with creatinine and diastolic blood pressure and positively with MV miR-126 levels, MV miR-155 was positively associated with cholesterol and total MV levels and negatively with HDL-c levels, whereas plasma miR-155 was positively correlated with Il-1β plasma levels and total MV levels and negatively with MV miR-223 levels. CONCLUSIONS In conclusion, miR-218, miR-132, miR-143, and miR-21, miR-122, miR-155 show potential as biomarkers for diabetic dyslipidemia, but there is a need for more in-depth studies. These findings bring new information regarding the molecular biomarkers specific to diabetic dyslipidemia and could have important implications for the treatment of patients affected by this pathology.
Collapse
Affiliation(s)
- Miruna Nemecz
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania.
| | - Diana Simona Stefan
- National Institute of Diabetes, Nutrition and Metabolic Disease 'Prof. Dr. Nicolae Constantin Paulescu', Bucharest, Romania
| | - Ioana Karla Comarița
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Alina Constantin
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Gabriela Tanko
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Cristian Guja
- National Institute of Diabetes, Nutrition and Metabolic Disease 'Prof. Dr. Nicolae Constantin Paulescu', Bucharest, Romania
| | - Adriana Georgescu
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania.
| |
Collapse
|
17
|
Ménégaut L, Laubriet A, Crespy V, Leleu D, Pilot T, Van Dongen K, de Barros JPP, Gautier T, Petit JM, Thomas C, Nguyen M, Steinmetz E, Masson D. Inflammation and oxidative stress markers in type 2 diabetes patients with Advanced Carotid atherosclerosis. Cardiovasc Diabetol 2023; 22:248. [PMID: 37710315 PMCID: PMC10503074 DOI: 10.1186/s12933-023-01979-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/03/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a major global health issue and a significant risk factor for atherosclerosis. Atherosclerosis in T2DM patients has been associated with inflammation, insulin resistance, hyperglycemia, dyslipidemia, and oxidative stress. Identifying molecular features of atherosclerotic plaques in T2DM patients could provide valuable insights into the pathogenesis of the disease. METHODS The MASCADI (Arachidonic Acid Metabolism in Carotid Stenosis Plaque in Diabetic Patients) study aimed to investigate the increase of 2-arachidonoyl-lysophatidylcholine (2-AA-LPC) in carotid plaques from T2DM and control patients and to explore its association with plaque vulnerability as well as with blood and intra-plaque biomarkers altered during diabetes. RESULTS In a population of elderly, polymedicated patients with advanced stage of atherosclerosis, we found that T2DM patients had higher systemic inflammation markers, such as high-sensitivity C-reactive protein (hsCRP) and IL-1β, higher levels of oxysterols, increased triglyceride levels, and decreased HDL levels as compared to control patients. Furthermore, 2-AA-LPC was significantly enriched in plaques from diabetic patients, suggesting its potential role in diabetic atherosclerosis. Interestingly, 2-AA-LPC was not associated with systemic markers related to diabetes, such as hsCRP, triglycerides, or HDL cholesterol. However, it was significantly correlated with the levels of inflammatory markers within the plaques such as lysophospholipids and 25-hydroxycholesterol, strengthening the link between local inflammation, arachidonic acid metabolism and diabetes. CONCLUSION Our study is in line with a key role for inflammation in the pathogenesis of diabetic atherosclerosis and highlights the involvement of 2-AA-LPC. Further research is needed to better understand the local processes involved in the alteration of plaque composition in T2DM and to identify potential therapeutic targets. TRIAL REGISTRATION The MASCADI was registered on ClinicalTrials.gov (clinical registration number: NCT03202823).
Collapse
Affiliation(s)
- Louise Ménégaut
- Université Bourgogne, LNC UMR1231, Dijon, France
- INSERM, UMR1231, Dijon, France
- Université Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
- CHU Dijon, Laboratory of Clinical Chemistry, Dijon, France
| | - Aline Laubriet
- Department of Cardiovascular and Thoracic Surgery, CHU Dijon, Dijon, France
| | - Valentin Crespy
- Department of Cardiovascular and Thoracic Surgery, CHU Dijon, Dijon, France
| | - Damien Leleu
- Université Bourgogne, LNC UMR1231, Dijon, France
- INSERM, UMR1231, Dijon, France
- Université Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
- CHU Dijon, Laboratory of Clinical Chemistry, Dijon, France
| | - Thomas Pilot
- Université Bourgogne, LNC UMR1231, Dijon, France
- INSERM, UMR1231, Dijon, France
- Université Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Kevin Van Dongen
- Université Bourgogne, LNC UMR1231, Dijon, France
- INSERM, UMR1231, Dijon, France
- Université Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Jean-Paul Pais de Barros
- Université Bourgogne, LNC UMR1231, Dijon, France
- INSERM, UMR1231, Dijon, France
- Université Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
- Lipidomic Analytic Platform, Université Bourgogne Franche-Comté, Dijon, France
| | - Thomas Gautier
- Université Bourgogne, LNC UMR1231, Dijon, France
- INSERM, UMR1231, Dijon, France
- Université Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Jean-Michel Petit
- Université Bourgogne, LNC UMR1231, Dijon, France
- INSERM, UMR1231, Dijon, France
- Université Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
- Department of Endocrinology and metabolic diseases, CHU Dijon, Dijon, France
| | - Charles Thomas
- Université Bourgogne, LNC UMR1231, Dijon, France
- INSERM, UMR1231, Dijon, France
- Université Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Maxime Nguyen
- Université Bourgogne, LNC UMR1231, Dijon, France
- INSERM, UMR1231, Dijon, France
- Université Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
- CHU Dijon Department of Anesthesiology and Intensive Care, Dijon, France
| | - Eric Steinmetz
- Department of Cardiovascular and Thoracic Surgery, CHU Dijon, Dijon, France
| | - David Masson
- Université Bourgogne, LNC UMR1231, Dijon, France.
- INSERM, UMR1231, Dijon, France.
- Université Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France.
- CHU Dijon, Laboratory of Clinical Chemistry, Dijon, France.
- UFR des sciences de santé, Bvd Jeanne d'Arc, Dijon, 21000, France.
| |
Collapse
|
18
|
Alfadul H, Sabico S, Alnaami AM, Amer OE, Hussain SD, Wani K, Clerici M, Al-Daghri NM. Acute Glycemic Control in Prediabetes Individuals Favorably Alters Serum NLRP3 Inflammasome and Related Interleukins. Int J Mol Sci 2023; 24:13837. [PMID: 37762140 PMCID: PMC10530894 DOI: 10.3390/ijms241813837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Hyperglycemia associated with prediabetes (PD) alters NLRP3 inflammasome activity and related interleukins, yet no study has evaluated the expression of the NLRP3 inflammasome complex and related interleukins in individuals with a PD condition that did or did not develop type 2 diabetes mellitus (T2DM). This study investigated the effect of 6 months of lifestyle modification on the expression of the NLRP3 inflammasome and related interleukins (1α, 1β, 18, 33 and 37) in the sera of individuals with a PD condition that did or did not develop T2DM. This interventional study included 67 Saudi adults (mean age = 41.9 ± 8.0 years, mean BMI = 33.2 ± 5.5 kg/m2). Overnight-fasting serum samples were collected at baseline and at the 6-month follow-up. Serum levels of NLRP3, capsase-1 and related ILs were analyzed at both visits using commercially available immunoassay kits. Results showed that IL-1α increased in the PD group that developed T2DM (p = 0.046), IL-33 decreased in the PD group that reverted to normal (p < 0.001) and NLRP3 decreased in the PD group that remained PD (p = 0.01). Results also showed a positive over-time correlation between NLRP3 and both IL-1α and IL-33 (p < 0.001 and p = 0.028, respectively). In conclusion, glycemic control favorably altered NLRP3 inflammasome complex activity, and lifestyle modification in PD individuals is crucial in reversing harmful metabolic and inflammatory phenotypes.
Collapse
Affiliation(s)
- Hend Alfadul
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shaun Sabico
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M. Alnaami
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Osama E. Amer
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed D. Hussain
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kaiser Wani
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mario Clerici
- Department of Medical-Surgery Physiopathology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Nasser M. Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
19
|
David L, Morosan V, Moldovan B, Filip GA, Baldea I. Goji-Berry-Mediated Green Synthesis of Gold Nanoparticles and Their Promising Effect on Reducing Oxidative Stress and Inflammation in Experimental Hyperglycemia. Antioxidants (Basel) 2023; 12:1489. [PMID: 37627484 PMCID: PMC10451488 DOI: 10.3390/antiox12081489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 08/27/2023] Open
Abstract
The present report focuses on a rapid and convenient method applicable in the green synthesis of gold nanoparticles (AuNPs) using goji berry (Lycium barbarum-LB) extracts rich in antioxidant compounds, as well as on the structural analysis and evaluation of the induced antioxidant protection and anti-inflammatory effects of the synthesized gold nanoparticles upon endothelial cells (HUVECs) exposed to hyperglycemia. The synthesized AuNPs were characterized using ultraviolet-visible (UV-Vis) spectroscopy and transmission electron microscopy (TEM), whereas the presence of bioactive compounds from the L. barbarum fruit extract on the surface of the nanoparticles was confirmed using Fourier transform infrared spectroscopy (FTIR). The antioxidant activity of the biosynthesized gold nanoparticles was evaluated on the HUVEC cell line. The results reveal that AuNPs with a predominantly spherical shape and an average size of 30 nm were obtained. The UV-Vis spectrum showed a characteristic absorption band at λmax = 536 nm of AuNPs. FTIR analysis revealed the presence of phenolic acids, flavonoids and carotenoids acting as capping and stabilizing agents of AuNPs. Both the L. barbarum extract and AuNPs were well tolerated by HUVECs, increased the antioxidant defense and decreased the production of inflammatory cytokines induced via hyperglycemia-mediated oxidative damage.
Collapse
Affiliation(s)
- Luminita David
- Faculty of Chemistry and Chemical Engineering, “Babeş-Bolyai” University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania; (L.D.); (V.M.)
| | - Valentina Morosan
- Faculty of Chemistry and Chemical Engineering, “Babeş-Bolyai” University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania; (L.D.); (V.M.)
| | - Bianca Moldovan
- Faculty of Chemistry and Chemical Engineering, “Babeş-Bolyai” University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania; (L.D.); (V.M.)
| | - Gabriela Adriana Filip
- Department of Physiology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (G.A.F.); (I.B.)
| | - Ioana Baldea
- Department of Physiology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (G.A.F.); (I.B.)
| |
Collapse
|
20
|
Farrag EAE, Hammad MO, Safwat SM, Hamed S, Hellal D. Artemisinin attenuates type 2 diabetic cardiomyopathy in rats through modulation of AGE-RAGE/HMGB-1 signaling pathway. Sci Rep 2023; 13:11043. [PMID: 37422477 PMCID: PMC10329689 DOI: 10.1038/s41598-023-37678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/26/2023] [Indexed: 07/10/2023] Open
Abstract
Diabetes mellitus is a common metabolic disorder. About two-thirds of diabetic patients develop diabetic cardiomyopathy (DCM), which becomes a challenging issue as it severely threatens the patient's life. Hyperglycemia and the resulting advanced glycated end products (AGE) and their receptor (RAGE)/High Mobility Group Box-1 (HMGB-1) molecular pathway are thought to be key players. Recently, artemisinin (ART) has gained more attention owing to its potent biological activities beyond its antimalarial effect. Herein, we aim to evaluate the effect of ART on DCM and the possible underlying mechanisms. Twenty-four male Sprague-Dawley rats were divided into: control, ART, type 2 diabetic and type 2 diabetic treated with ART groups. At the end of the research, the ECG was recorded, then the heart weight to body weight (HW/BW) ratio, fasting blood glucose, serum insulin and HOMA-IR were evaluated. Cardiac biomarkers (CK-MB and LDH), oxidative stress markers, IL-1β, AGE, RAGE and HMGB-1 expression were also measured. The heart specimens were stained for H&E as well as Masson's trichrome. DCM induced disturbances in all studied parameters; contrary to this, ART improved these insults. Our study concluded that ART could improve DCM through modulation of the AGE-RAGE/HMGB-1 signaling pathway, with subsequent impacts on oxidative stress, inflammation and fibrosis. ART could therefore be a promising therapy for the management of DCM.
Collapse
Affiliation(s)
- Eman A E Farrag
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Maha O Hammad
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sally M Safwat
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Shereen Hamed
- Department of Medical Histology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Doaa Hellal
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
21
|
Guzzi PH, Cortese F, Mannino GC, Pedace E, Succurro E, Andreozzi F, Veltri P. Analysis of age-dependent gene-expression in human tissues for studying diabetes comorbidities. Sci Rep 2023; 13:10372. [PMID: 37365269 DOI: 10.1038/s41598-023-37550-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023] Open
Abstract
The study of the relationship between type 2 diabetes mellitus (T2DM) disease and other pathologies (comorbidities), together with patient age variation, poses a challenge for medical research. There is evidence that patients affected by T2DM are more likely to develop comorbidities as they grow older. Variation of gene expression can be correlated to changes in T2DM comorbidities insurgence and progression. Understanding gene expression changes requires the analysis of large heterogeneous data at different scales as well as the integration of different data sources into network medicine models. Hence, we designed a framework to shed light on uncertainties related to age effects and comorbidity by integrating existing data sources with novel algorithms. The framework is based on integrating and analysing existing data sources under the hypothesis that changes in the basal expression of genes may be responsible for the higher prevalence of comorbidities in older patients. Using the proposed framework, we selected genes related to comorbidities from existing databases, and then analysed their expression with age at the tissues level. We found a set of genes that changes significantly in certain specific tissues over time. We also reconstructed the associated protein interaction networks and the related pathways for each tissue. Using this mechanistic framework, we detected interesting pathways related to T2DM whose genes change their expression with age. We also found many pathways related to insulin regulation and brain activities, which can be used to develop specific therapies. To the best of our knowledge, this is the first study that analyses such genes at the tissue level together with age variations.
Collapse
Affiliation(s)
- Pietro Hiram Guzzi
- Department of Surgical and Medical Sciences, Magna Graecia University, 88100, Catanzaro, Italy.
| | - Francesca Cortese
- Department of Surgical and Medical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Gaia Chiara Mannino
- Department of Surgical and Medical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Elisabetta Pedace
- Internal Medicine Unit, ASP Catanzaro, Soverato Hospital, Soverato, Italy
| | - Elena Succurro
- Department of Surgical and Medical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
- Internal Medicine Unit, R. Dulbecco Hospital, 88100, Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Surgical and Medical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
- Internal Medicine Unit, R. Dulbecco Hospital, 88100, Catanzaro, Italy
| | | |
Collapse
|
22
|
Yousef H, Khandoker AH, Feng SF, Helf C, Jelinek HF. Inflammation, oxidative stress and mitochondrial dysfunction in the progression of type II diabetes mellitus with coexisting hypertension. Front Endocrinol (Lausanne) 2023; 14:1173402. [PMID: 37383391 PMCID: PMC10296202 DOI: 10.3389/fendo.2023.1173402] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Type II diabetes mellitus (T2DM) is a metabolic disorder that poses a serious health concern worldwide due to its rising prevalence. Hypertension (HT) is a frequent comorbidity of T2DM, with the co-occurrence of both conditions increasing the risk of diabetes-associated complications. Inflammation and oxidative stress (OS) have been identified as leading factors in the development and progression of both T2DM and HT. However, OS and inflammation processes associated with these two comorbidities are not fully understood. This study aimed to explore changes in the levels of plasma and urinary inflammatory and OS biomarkers, along with mitochondrial OS biomarkers connected to mitochondrial dysfunction (MitD). These markers may provide a more comprehensive perspective associated with disease progression from no diabetes, and prediabetes, to T2DM coexisting with HT in a cohort of patients attending a diabetes health clinic in Australia. Methods Three-hundred and eighty-four participants were divided into four groups according to disease status: 210 healthy controls, 55 prediabetic patients, 32 T2DM, and 87 patients with T2DM and HT (T2DM+HT). Kruskal-Wallis and χ2 tests were conducted between the four groups to detect significant differences for numerical and categorical variables, respectively. Results and discussion For the transition from prediabetes to T2DM, interleukin-10 (IL-10), C-reactive protein (CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG), humanin (HN), and p66Shc were the most discriminatory biomarkers, generally displaying elevated levels of inflammation and OS in T2DM, in addition to disrupted mitochondrial function as revealed by p66Shc and HN. Disease progression from T2DM to T2DM+HT indicated lower levels of inflammation and OS as revealed through IL-10, interleukin-6 (IL-6), interleukin-1β (IL-1β), 8-OHdG and oxidized glutathione (GSSG) levels, most likely due to antihypertensive medication use in the T2DM +HT patient group. The results also indicated better mitochondrial function in this group as shown through higher HN and lower p66Shc levels, which can also be attributed to medication use. However, monocyte chemoattractant protein-1 (MCP-1) levels appeared to be independent of medication, providing an effective biomarker even in the presence of medication use. The results of this study suggest that a more comprehensive review of inflammation and OS biomarkers is more effective in discriminating between the stages of T2DM progression in the presence or absence of HT. Our results further indicate the usefulness of medication use, especially with respect to the known involvement of inflammation and OS in disease progression, highlighting specific biomarkers during disease progression and therefore allowing a more targeted individualized treatment plan.
Collapse
Affiliation(s)
- Hibba Yousef
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Ahsan H. Khandoker
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Samuel F. Feng
- Department of Science and Engineering, Sorbonne University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Charlotte Helf
- Dermatology, Venereology and Allergology, University Hospital Schleswig-Holstein, Schleswig-Holstein, Germany
| | - Herbert F. Jelinek
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Biotechnology Center, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
23
|
Alfadul H, Sabico S, Ansari MGA, Alnaami AM, Amer OE, Hussain SD, Wani K, Khattak MNK, Clerici M, Al-Daghri NM. Differences and Associations of NLRP3 Inflammasome Levels with Interleukins 1α, 1β, 33 and 37 in Adults with Prediabetes and Type 2 Diabetes Mellitus. Biomedicines 2023; 11:biomedicines11051315. [PMID: 37238986 DOI: 10.3390/biomedicines11051315] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Inflammasome activation of the nucleotide-binding domain, leucine-rich-containing family, and pyrin domain-containing-3 (NLRP3) has been observed to be involved in the pathogenesis of numerous inflammatory diseases, including prediabetes (PD) and type 2 diabetes mellitus (T2DM). Varying levels of glycemia can trigger inflammasome activation; yet, limited studies have reported the associations between NLRP3 levels or other circulating interleukins (ILs) and glycemic status. This study investigated the differences and associations between serum levels of NLRP3 and IL-1α, IL-1β, IL-33 and IL-37 in Arab adults with PD and T2DM. A total of 407 Saudi adults (151 males and 256 females) (mean age = 41.4 ± 9.1 years and mean BMI = 30.7 ± 6.4 kg/m2) were included. Overnight-fasting serum samples were collected. The participants were stratified according to T2DM status. Serum levels of NLRP3 and ILs of interest were assessed using commercially available assays. In all participants, age- and BMI-adjusted circulating levels of IL-37 were significantly higher in the T2DM group (p = 0.02) than in healthy controls (HC) and the PD group. A general linear model analysis revealed that NLRP3 levels were significantly influenced by T2DM status; age; and ILs 18, 1α and 33 (p-values 0.03, 0.04, 0.005, 0.004 and 0.007, respectively). IL-1α and triglycerides significantly predicted NLRP3 levels by as much as 46% of the variance perceived (p < 0.01). In conclusion, T2DM status significantly influenced NLRP3 expression and other IL levels in varying degrees. Whether these altered levels of inflammasome markers can be favorably reversed through lifestyle interventions needs to be investigated prospectively in the same population.
Collapse
Affiliation(s)
- Hend Alfadul
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Biochemistry Department, College of Science, King Saud University, Riyadh 13579, Saudi Arabia
| | - Shaun Sabico
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Biochemistry Department, College of Science, King Saud University, Riyadh 13579, Saudi Arabia
| | - Mohammed G A Ansari
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M Alnaami
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Osama E Amer
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed D Hussain
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kaiser Wani
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Malak N K Khattak
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mario Clerici
- Department of Medical-Surgery Physiopathology and Transplantation, University of Milan, 20122 Milan, Italy
- Don C. Gnocchi Foundation ONLUS, IRCCS, 20122 Milan, Italy
| | - Nasser M Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Biochemistry Department, College of Science, King Saud University, Riyadh 13579, Saudi Arabia
| |
Collapse
|
24
|
Dludla PV, Mabhida SE, Ziqubu K, Nkambule BB, Mazibuko-Mbeje SE, Hanser S, Basson AK, Pheiffer C, Kengne AP. Pancreatic β-cell dysfunction in type 2 diabetes: Implications of inflammation and oxidative stress. World J Diabetes 2023; 14:130-146. [PMID: 37035220 PMCID: PMC10075035 DOI: 10.4239/wjd.v14.i3.130] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
Abstract
Insulin resistance and pancreatic β-cell dysfunction are major pathological mechanisms implicated in the development and progression of type 2 diabetes (T2D). Beyond the detrimental effects of insulin resistance, inflammation and oxidative stress have emerged as critical features of T2D that define β-cell dysfunction. Predominant markers of inflammation such as C-reactive protein, tumor necrosis factor alpha, and interleukin-1β are consistently associated with β-cell failure in preclinical models and in people with T2D. Similarly, important markers of oxidative stress, such as increased reactive oxygen species and depleted intracellular antioxidants, are consistent with pancreatic β-cell damage in conditions of T2D. Such effects illustrate a pathological relationship between an abnormal inflammatory response and generation of oxidative stress during the progression of T2D. The current review explores preclinical and clinical research on the patho-logical implications of inflammation and oxidative stress during the development of β-cell dysfunction in T2D. Moreover, important molecular mechanisms and relevant biomarkers involved in this process are discussed to divulge a pathological link between inflammation and oxidative stress during β-cell failure in T2D. Underpinning the clinical relevance of the review, a systematic analysis of evidence from randomized controlled trials is covered, on the potential therapeutic effects of some commonly used antidiabetic agents in modulating inflammatory makers to improve β-cell function.
Collapse
Affiliation(s)
- Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Sihle E Mabhida
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | | | - Sidney Hanser
- Department of Physiology and Environmental Health, University of Limpopo, Sovenga 0727, South Africa
| | - Albert Kotze Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa
| | - Andre Pascal Kengne
- Department of Medicine, University of Cape Town, Cape Town 7500, South Africa
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg 7505, South Africa
| |
Collapse
|
25
|
Dual Role of Mitogen-Activated Protein Kinase 8 Interacting Protein-1 in Inflammasome and Pancreatic β-Cell Function. Int J Mol Sci 2023; 24:ijms24054990. [PMID: 36902422 PMCID: PMC10002854 DOI: 10.3390/ijms24054990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Inflammasomes have been implicated in the pathogenesis of type 2 diabetes (T2D). However, their expression and functional importance in pancreatic β-cells remain largely unknown. Mitogen-activated protein kinase 8 interacting protein-1 (MAPK8IP1) is a scaffold protein that regulates JNK signaling and is involved in various cellular processes. The precise role of MAPK8IP1 in inflammasome activation in β-cells has not been defined. To address this gap in knowledge, we performed a set of bioinformatics, molecular, and functional experiments in human islets and INS-1 (832/13) cells. Using RNA-seq expression data, we mapped the expression pattern of proinflammatory and inflammasome-related genes (IRGs) in human pancreatic islets. Expression of MAPK8IP1 in human islets was found to correlate positively with key IRGs, including the NOD-like receptor (NLR) family pyrin domain containing 3 (NLRP3), Gasdermin D (GSDMD) and Apoptosis-associated speck-like protein containing a CARD (ASC), but correlate inversely with Nuclear factor kappa β1 (NF-κβ1), Caspase-1 (CASP-1), Interleukin-18 (IL-18), Interleukin-1β (IL-1β) and Interleukin 6 (IL-6). Ablation of Mapk8ip1 by siRNA in INS-1 cells down-regulated the basal expression levels of Nlrp3, NLR family CARD domain containing 4 (Nlrc4), NLR family CARD domain containing 1 (Nlrp1), Casp1, Gsdmd, Il-1β, Il-18, Il-6, Asc, and Nf-κβ1 at the mRNA and/or protein level and decreased palmitic acid (PA)-induced inflammasome activation. Furthermore, Mapk8ip1-silened cells substantially reduced reactive oxygen species (ROS) generation and apoptosis in palmitic acid-stressed INS-1 cells. Nonetheless, silencing of Mapk8ip1 failed to preserve β-cell function against inflammasome response. Taken together, these findings suggest that MAPK8IP1 is involved in regulating β-cells by multiple pathways.
Collapse
|