1
|
Silva DNA, Monajemzadeh S, Casarin M, Chalmers J, Lubben J, Magyar CE, Tetradis S, Pirih FQ. Diabetes mellitus exacerbates inflammation in a murine model of ligature-induced peri-implantitis: A histological and microtomographic study. J Clin Periodontol 2024; 51:1511-1523. [PMID: 39135333 PMCID: PMC11487626 DOI: 10.1111/jcpe.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 10/19/2024]
Abstract
AIM To investigate the influence of diabetes mellitus (DM) in a murine model of peri-implantitis (PI). MATERIALS AND METHODS Twenty-seven 4-week-old C57BL/6J male mice had their first and second maxillary left molars extracted. Eight weeks later, one machined implant was placed in each mouse. Four weeks after osseointegration, the mice were divided into three groups: (a) control (C), (b) PI and (c) DM + PI. DM was induced by streptozotocin (STZ) administration. After DM induction, PI was induced using ligatures for 2 weeks. The hemimaxillae were collected for micro-CT and histological analyses. The primary outcomes consisted of linear (mm) and volumetric (mm3) bone loss. Secondary outcomes were based on histological analysis and included inflammatory infiltrate, osteoclastic activity, matrix organization, composition and remodelling. Data are presented as means ± SEM. Statistical analyses were performed using one-way ANOVA, followed by Tukey's test. RESULTS Gingival tissue oedema was detected in the PI and DM + PI groups. Micro-CT showed significantly increased linear and volumetric bone loss in the DM + PI group compared to the C and PI groups. H&E staining showed greater inflammatory response and bone resorption in the PI and DM + PI groups than in the C group. The DM + PI group had significantly higher osteoclast numbers than the C and PI groups. Picrosirius red stained less for types I and III collagen in the PI and DM + PI groups than in the C group. There was a significant increase in monocyte/macrophage (CD-11b) counts and matrix metalloproteinases (MMP-2 and MMP-8) marker levels and a significant decrease in the matrix metalloproteinases inhibition marker (TIMP-2) levels in the DM + PI group compared to the C and PI groups. CONCLUSIONS DM exacerbates PI-induced soft-tissue inflammation, matrix degradation and bone loss.
Collapse
Affiliation(s)
- Davi N. A. Silva
- Section of Periodontics, School of Dentistry, University of
California, Los Angeles, CA, USA
| | - Sepehr Monajemzadeh
- Section of Periodontics, School of Dentistry, University of
California, Los Angeles, CA, USA
| | - Maísa Casarin
- School of Dentistry, Federal University of Pelotas,
Pelotas, Brazil
| | - Jaclyn Chalmers
- Section of Periodontics, School of Dentistry, University of
California, Los Angeles, CA, USA
| | - Jacob Lubben
- Section of Periodontics, School of Dentistry, University of
California, Los Angeles, CA, USA
| | - Clara E. Magyar
- Department of Pathology and Laboratory Medicine, David
Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA,
USA
| | - Sotirios Tetradis
- Section of Oral and Maxillofacial Radiology, University of
California, Los Angeles, CA, USA
| | - Flavia Q. Pirih
- Section of Periodontics, School of Dentistry, University of
California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Gündüz G, Beler M, Ünal İ, Cansız D, Emekli-Alturfan E, Kose KN. Endotoxin of Porphyromonas gingivalis amplifies the inflammatory response in hyperglycemia-induced zebrafish through a mechanism involving chitinase-like protein YKL-40 analogs. Toxicol Res 2023; 39:625-636. [PMID: 37779592 PMCID: PMC10541394 DOI: 10.1007/s43188-023-00190-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 10/03/2023] Open
Abstract
Porphyromonas gingivalis (P. gingivalis), a key pathogen in periodontal diseases, is also associated with hyperglycemia-associated systemic diseases, including diabetes mellitus (DM). Gingipains are the most important endotoxins of P. gingivalis, and in vivo studies using gingipains are scarce. Zebrafish (Danio rerio) is a vertebrate with high physiological and genetic homology with humans that has multiple co-orthologs for human genes, including inflammation-related proteins. The aim of our study was to determine the effects of gingipain in a hyperglycemia-induced zebrafish model by evaluating inflammation, oxidant-antioxidant status, and the cholinergic system. Adult zebrafish were grouped into the control group (C), hyperglycemia-induced group subjected to 15 days of overfeeding (OF), gingipain-injected group (GP), and gingipain-injected hyperglycemic group (OF + GP). At the end of 15 days, an oral glucose tolerance test (OGTT) was performed, and fasting blood glucose (FBG) levels were measured. Lipid peroxidation (LPO), nitric oxide (NO), glutathione (GSH), glutathione S-transferase, catalase, acetylcholinesterase (AChE), alkaline phosphatase (ALP), and sialic acid (SA) levels were determined spectrophotometrically in the hepatopancreas. The expression levels of tnf-⍺, il-1β, ins, crp, and the acute phase protein YKL-40 analogs chia.5 and chia.6 were evaluated by RT‒PCR. After two weeks of overfeeding, significantly increased weight gain, FBG, and OGTT confirmed that the zebrafish were hyperglycemic. Increased oxidative stress, inflammation, and AChE and ALP activities were observed in both the overfeeding and GP groups. Amplification of inflammation and oxidative stress was evident in the OF + GP group through increased expression of crp, il-1β, chia.5, and chia.6 and increased LPO and NO levels. Our results support the role of gingipains in the increased inflammatory response in hyperglycemia-associated diseases.
Collapse
Affiliation(s)
- Gizem Gündüz
- Department of Periodontology, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Merih Beler
- Department of Biochemistry, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - İsmail Ünal
- Department of Biochemistry, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Derya Cansız
- Department of Biochemistry, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Department of Biochemistry, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Kemal Naci Kose
- Department of Periodontology, Faculty of Dentistry, Marmara University, Marmara University Basibuyuk Medical Campus, Basibuyuk, Maltepe, 34854 Istanbul, Turkey
| |
Collapse
|
3
|
Xie H, Lin Y, Fang F. AR-A014418, a glycogen synthase kinase-3β inhibitor, mitigates lipopolysaccharide-induced inflammation in rat dental pulp stem cells via NLR family pyrin domain containing 3 inflammasome impairment. J Dent Sci 2023; 18:1534-1543. [PMID: 37799857 PMCID: PMC10548004 DOI: 10.1016/j.jds.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/09/2023] [Indexed: 10/07/2023] Open
Abstract
Background/purpose Cell pyroptosis and gingival inflammation have been implicated in periodontitis progression. Our previous study revealed that AR-A014418, a pharmacological inhibitor of glycogen synthase kinase-3β (GSK-3β), can enhance the migratory and osteogenic differentiation abilities of rat dental pulp stem cells (rDPSCs). The present study aimed to explore the effect of AR on the inflammation of rDPSCs. Materials and methods The primary rDPSCs were isolated and identified by flow cytometry, as well as Oil red O and Alizarin Red S staining. The rDPSCs were cultured and exposed to lipopolysaccharide (LPS) before treating them with different concentrations of AR-A014418. The cell viability was detected using the CCK-8 assay. The generation and secretion of pro-inflammatory cytokines (IL-18, TNF-α, L-1β, and IL-6) were examined by qPCR and ELISA, respectively. To investigate the activation of the NLRP3 inflammasome, the expression levels of pro-caspase 1, cleaved caspase 1, as well as NLRP3 were analyzed by western blotting and immunofluorescence, respectively. Results In the rDPSCs, LPS prohibited cell viability and enhanced the generation and secretion of pro-inflammatory cytokines. LPS upregulated NLRP3 and cleaved caspase-1 protein levels and promoted ASC speck formation in the rDPSCs. AR-A014418 administration effectively blocked the LPS-induced inflammation of the rDPSCs in a dose-dependent way. Mechanistically, AR-A014418 significantly restrained the up-regulation of NLRP3 and cleaved caspase-1 in LPS-treated rDPSCs. Conclusion Collectively, our findings suggest that AR-A014418 significantly mitigates LPS-induced inflammation of rDPSCs by blocking the activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Huilan Xie
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Stomatology, Fujian Provincial Hospital, Fuzhou, China
| | - Yi Lin
- Department of Stomatology, Fujian Provincial Hospital, Fuzhou, China
| | - Fang Fang
- Department of Stomatology, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
4
|
Okur S, Okumuş Z. Effects of low-level laser therapy and therapeutic ultrasound on Freund's complete adjuvant-induced knee arthritis model in rats. Arch Rheumatol 2023; 38:32-43. [PMID: 37235114 PMCID: PMC10208612 DOI: 10.46497/archrheumatol.2022.9409] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/05/2022] [Indexed: 08/08/2023] Open
Abstract
OBJECTIVES The aim of this study was to evaluate and monitor the effect of low-level laser therapy (LLLT) and therapeutic ultrasound (TU) alone, or combined with intra-articular prednisolone (P) in Freund's complete adjuvant (FCA)-induced knee arthritis model in rats. MATERIALS AND METHODS A total of 56 adult male Wistar rats were divided into seven groups: control (C), disease control (RA), P, TU, LLLT (L), P + TU (P+TU), P + LLLT (P+L) groups. The skin temperature, radiography, joint volume, serum rheumatoid factor (RF), interleukin (IL)-1β, serum tumor necrosis factor-alpha (TNF-α), and histopathological evaluation of joint were performed. RESULTS Thermal imaging and radiographic examination provided results consistent with the severity of the disease. The mean joint temperature (°C) was the highest in the RA (36.2±1.6) group on Day 28. The P+TU and P+L groups significantly decreased radiological scores at the end of the study. The rat serum TNF-α, IL-1β, and RF levels in all groups were significantly higher compared to the C group (p<0.05). Compared to the RA group, serum TNF-α, IL-1β, and RF levels were significantly lower in the treatment groups (p<0.05). The P+TU and P+L group was showed minimal chondrocyte degeneration and cartilage erosion and mild cartilage fibrillation and mononuclear cell infiltration of synovial membrane compared to the P, TU, and L group. CONCLUSION The LLLT and TU effectively reduced inflammation. In addition, a more effective result was obtained from the use of LLLT and TU combined with intra-articular P. This result may be due to insufficient dose of LLLT and TU, thus further studies should be focus on at higher dose ranges on FCA arthritis model in rats.
Collapse
Affiliation(s)
- Sıtkıcan Okur
- Department of Veterinary Surgery, Atatürk University Faculty of Veterinary Medicine, Erzurum, Türkiye
| | - Zafer Okumuş
- Department of Veterinary Surgery, Atatürk University Faculty of Veterinary Medicine, Erzurum, Türkiye
| |
Collapse
|
5
|
Treatment of Periodontal Inflammation in Diabetic Rats with IL-1ra Thermosensitive Hydrogel. Int J Mol Sci 2022; 23:ijms232213939. [PMID: 36430410 PMCID: PMC9693501 DOI: 10.3390/ijms232213939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease that is considered to be the main cause of adult tooth loss. Diabetes mellitus (DM) has a bidirectional relationship with periodontitis. Interleukin-1β (IL-1β) is an important pre-inflammatory factor, which participates in the pathophysiological process of periodontitis and diabetes. The interleukin-1 receptor antagonist (IL-1ra) is a natural inhibitor of IL-1, and the balance between IL-1ra and IL-1β is one of the main factors affecting chronic periodontitis (CP) and diabetes. The purpose of this study is to develop a drug carrier that is safe and nontoxic and can effectively release IL-1ra, which can effectively slow down the inflammation of periodontal tissues with diabetes, and explore the possibility of lowering the blood sugar of this drug carrier. Therefore, in this experiment, a temperature-sensitive hydrogel loaded with IL-1ra was prepared and characterized, and its anti-inflammatory effect in high-sugar environments in vivo and in vitro was evaluated. The results showed that the hydrogel could gel after 5 min at 37 °C, the pore size was 5-70 μm, and the cumulative release of IL-1ra reached 83.23% on the 21st day. Real-time polymerase chain reaction (qRT-PCR) showed that the expression of IL-1β, Interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α) inflammatory factors decreased after the treatment with IL-1ra-loaded thermosensitive hydrogel. Histological evaluation and micro-computed tomography (Micro-CT) showed that IL-1ra-loaded thermosensitive hydrogel could effectively inhibit periodontal inflammation and reduce alveolar bone absorption in rats with diabetic periodontitis. It is worth mentioning that this hydrogel also plays a role in relieving hyperglycemia. Therefore, the temperature-sensitive hydrogel loaded with IL-1ra may be an effective method to treat periodontitis with diabetes.
Collapse
|
6
|
Pirih FQ, Monajemzadeh S, Singh N, Sinacola RS, Shin JM, Chen T, Fenno JC, Kamarajan P, Rickard AH, Travan S, Paster BJ, Kapila Y. Association between metabolic syndrome and periodontitis: The role of lipids, inflammatory cytokines, altered host response, and the microbiome. Periodontol 2000 2021; 87:50-75. [PMID: 34463996 PMCID: PMC8457155 DOI: 10.1111/prd.12379] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Periodontitis has been associated with many systemic diseases and conditions, including metabolic syndrome. Metabolic syndrome is a cluster of conditions that occur concomitantly and together they increase the risk of cardiovascular disease and double the risk of type 2 diabetes. In this review, we focus on the association between metabolic syndrome and periodontitis; however, we also include information on diabetes mellitus and cardiovascular disease, since these two conditions are significantly intertwined with metabolic syndrome. With regard to periodontitis and metabolic syndrome, to date, the vast majority of studies point to an association between these two conditions and also demonstrate that periodontitis can contribute to the development of, or can worsen, metabolic syndrome. Evaluating the effect of metabolic syndrome on the salivary microbiome, data presented herein support the hypothesis that the salivary bacterial profile is altered in metabolic syndrome patients compared with healthy patients. Considering periodontitis and these three conditions, the vast majority of human and animal studies point to an association between periodontitis and metabolic syndrome, diabetes, and cardiovascular disease. Moreover, there is evidence to suggest that metabolic syndrome and diabetes can alter the oral microbiome. However, more studies are needed to fully understand the influence these conditions have on each other.
Collapse
Affiliation(s)
- Flavia Q Pirih
- Section of Periodontics, UCLA School of Dentistry, Los Angeles, California
| | | | - Neelima Singh
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California
| | | | - Jae Min Shin
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Tsute Chen
- The Forsyth Institute, Cambridge, Massachusetts
- Department of Oral Medicine, Infection & Immunity, Harvard School of Dental Medicine, Boston, Massachusetts
| | - J Christopher Fenno
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California
| | - Alexander H Rickard
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Suncica Travan
- Department of Periodontics & Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Bruce J Paster
- The Forsyth Institute, Cambridge, Massachusetts
- Department of Oral Medicine, Infection & Immunity, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Yvonne Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California
| |
Collapse
|
7
|
Bhardwaj RG, Ellepolla A, Drobiova H, Karched M. Biofilm growth and IL-8 & TNF-α-inducing properties of Candida albicans in the presence of oral gram-positive and gram-negative bacteria. BMC Microbiol 2020; 20:156. [PMID: 32527216 PMCID: PMC7291589 DOI: 10.1186/s12866-020-01834-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
Background Interaction of C. albicans with oral bacteria is crucial for its persistence, but also plays a potential role in the infection process. In the oral cavity, it grows as part of dental plaque biofilms. Even though growth and interaction of C. albicans with certain bacterial species has been studied, little is known about its biofilm growth in vitro in the simultaneous presence of Gram-negative and Gram-positive bacteria. The aim was to evaluate the growth of C. albicans in polymicrobial biofilms comprising oral Gram-negative and Gram-positive bacteria. Further, we also aimed to assess the potential of C. albicans in the Candida-bacteria polymicrobial biofilm to elicit cytokine gene expression and cytokine production from human blood cells. Results C. albicans cell counts increased significantly up to 48 h in polymicrobial biofilms (p < 0.05), while the bacterial counts in the same biofilms increased only marginally as revealed by qPCR absolute quantification. However, the presence of bacteria in the biofilm did not seem to affect the growth of C. albicans. Expression of IL-8 gene was significantly (p < 0.05) higher upon stimulation from biofilm-supernatants than from biofilms in polymicrobial setting. On the contrary, TNF-α expression was significantly higher in biofilms than in supernatants but was very low (1–4 folds) in the monospecies biofilm of C. albicans. ELISA cytokine quantification data was in agreement with mRNA expression results. Conclusion Persistence and enhanced growth of C. albicans in polymicrobial biofilms may imply that previously reported antagonistic effect of A. actinomycetemcomitans was negated. Increased cytokine gene expression and cytokine production induced by Candida-bacteria polymicrobial biofilms and biofilm supernatants suggest that together they possibly exert an enhanced stimulatory effect on IL-8 and TNF-α production from the host.
Collapse
Affiliation(s)
- Radhika G Bhardwaj
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, PO Box 24923, 13110, Safat, Kuwait
| | - Arjuna Ellepolla
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, PO Box 24923, 13110, Safat, Kuwait
| | - Hana Drobiova
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, PO Box 24923, 13110, Safat, Kuwait
| | - Maribasappa Karched
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, PO Box 24923, 13110, Safat, Kuwait.
| |
Collapse
|
8
|
Sasso GRDS, Florencio-Silva R, da Fonseca CCN, Cezar LC, Carbonel AAF, Gil CD, Simões MDJ, Girão MJBC. Effects of estrogen deficiency followed by streptozotocin-induced diabetes on periodontal tissues of female rats. J Mol Histol 2020; 51:353-365. [PMID: 32488735 DOI: 10.1007/s10735-020-09885-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/29/2020] [Indexed: 01/18/2023]
Abstract
Although both estrogen deficiency and diabetes contribute to periodontal tissue deterioration, the combined effects of these conditions on periodontium is unknown. Thus, we analyzed the combined effects of ovariectomy followed by streptozotocin (STZ)-induced diabetes on periodontal tissues of rats. Twenty adult rats were ovariectomized (OVX) or SHAM-operated (SHAM). After 3 weeks, the rats received an intraperitoneal injection of STZ (60 mg/kg/body weight) to induce diabetes or vehicle (blank) solution. The groups were assigned as follows (n = 5): SHAM-vehicle (SHAM), OVX-vehicle (OVX), SHAM + STZ (SHAM-Di), and OVX + STZ (OVX-Di). Seven weeks post-diabetes induction, the rats were euthanized. Blood samples were collected for glucose measurements and maxillae were processed for paraffin embedding. Sections stained with hematoxylin/eosin, Masson's trichrome, and picrosirius-red were used for alveolar bone loss and collagen fiber analysis in the lamina propria. Immunohistochemistry was performed for runt-related transcription factor 2 (Runx2), matrix metalloproteinase 9 (MMP-9), and tryptase detection. Alveolar bone loss and fewer collagen fibers were observed in the OVX-Di group, collagen fibers with irregular organization, and MMP-9 immunoreactivity were more evident in diabetic groups, and MMP-9-positive osteoclasts on alveolar bone surface were noticed in all groups. The OVX-Di group showed lower Runx2 immunoreactivity (osteoblast formation marker), and more tryptase-positive cells (mast cell marker) in the alveolar bone marrow. Our results indicate that estrogen depletion, followed by STZ-induced diabetes, promotes periodontal tissue deterioration that is more evident than both interventions applied alone. Furthermore, our results points to a possible participation of bone-derived mast cells in this process.
Collapse
Affiliation(s)
- Gisela Rodrigues da Silva Sasso
- Departamento de Ginecologia, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, Brazil.
- Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, Brazil.
| | - Rinaldo Florencio-Silva
- Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, Brazil
| | - Caio Cesar Navarrete da Fonseca
- Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, Brazil
| | - Luana Carvalho Cezar
- Faculdade de Medicina Veterinária e Zootecnia, Patologia Experimental e Comparada, Universidade de São Paulo, São Paulo, Brazil
| | - Adriana Aparecida Ferraz Carbonel
- Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, Brazil
| | - Cristiane Damas Gil
- Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, Brazil
| | - Manuel de Jesus Simões
- Departamento de Ginecologia, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, Brazil
- Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, Brazil
| | | |
Collapse
|
9
|
Periodontal Treatment Experience Associated with Oral Health-Related Quality of Life in Patients with Poor Glycemic Control in Type 2 Diabetes: A Case-Control Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16204011. [PMID: 31635118 PMCID: PMC6843950 DOI: 10.3390/ijerph16204011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
Abstract
Severe periodontitis is a risk factor for poor glycemic control. The appropriate medical treatment and plaque control of periodontitis positively affects blood-sugar control in diabetes patients. We aimed to identify the factors associated with glycemic control and examine the periodontal treatment (PT) experience and oral health-related quality of life (OHQoL) for patients with poor glycemic control in type 2 diabetes mellitus (T2DM). This multicenter case–control study recruited 242 patients with poor glycemic control and 198 patients with good glycemic control. We collected patients’ information through face-to-face interviews using a structured questionnaire. The Oral Health Impact Profile-14 (OHIP-14) was used to measure OHQoL. Based on PT status, the patients were classified into three groups: a non-periodontal disease group, a PT group, and a non-PT (NPT) group. Regression models were used to analyze the data. No interdental cleaning (adjusted odds ratio (aOR) = 1.78) and positive attitudes toward periodontal health (aOR = 1.11) were significantly more likely to be associated with poor glycemic control in patients with T2DM. The PT group had a significantly lower OHIP-14 score than the NPT group (6.05 vs. 9.02, p < 0.001), indicating a better OHQoL among patients with poorly controlled T2DM. However, the OHQoL did not differ significantly in patients with well-controlled T2DM between the PT and NPT groups. This suggested that diabetic patients with poor glycemic control must improve periodontal care practices and receive proper PT, if necessary, to improve their OHQoL.
Collapse
|
10
|
Salivary interleukin 6, interleukin 8, interleukin 17A, and tumour necrosis factor α levels in patients with periodontitis and rheumatoid arthritis. Cent Eur J Immunol 2019; 44:269-276. [PMID: 31933536 PMCID: PMC6953371 DOI: 10.5114/ceji.2019.89601] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 03/30/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction Rheumatoid arthritis (RA) and periodontitis share risk factors and inflammatory pathways that could be related to cytokines, such as interleukin (IL)-6, IL-8, IL-17A, and tumour necrosis factor-α (TNF-α). The aim of this study was to compare periodontal status and salivary levels of selected cytokines between patients diagnosed with RA and periodontitis. RA patients were assessed for the potential influence of anti-rheumatic therapy. Material and methods One hundred and six patients were enrolled in a cross-sectional study. Medical assessment and periodontal examination were performed in 35 patients with chronic periodontitis, in 35 patients with RA and chronic periodontitis, and in 36 controls. Unstimulated whole saliva samples were analysed for IL-6, IL-8, IL-17A, and TNF-α. Results Significant differences in biomarkers and periodontal parameters were found among groups. Study groups exhibited higher mean pocket depth (PD), number of PD > 4 mm, and mean clinical attachment loss, when compared with controls. The RA group had lower bleeding on probing index and PD, but higher values of plaque indices than the periodontitis group. Concentration of evaluated cytokines were higher in the RA and periodontitis groups, compared with controls. The periodontitis group showed also higher levels of IL-6, IL-17A, and TNF-α in comparison to RA. RA patients were treated with disease-modifying anti-rheumatic drugs (DMARDs) and glucocorticosteroids. Conclusions Salivary levels of IL-6, IL-8, IL-17A, and TNF-α can be affected by periodontitis, RA, and presumably DMARDs. DMARD therapy appears to reduce destructive and inflammatory processes in periodontal tissues because lower values of PD, BOP, and salivary levels of IL-6, IL-17A, and TNF-α were found in RA.
Collapse
|
11
|
Jiang ZL, Jin H, Liu ZS, Liu MY, Cao XF, Jiang YY, Bai HD, Zhang B, Li Y. Lentiviral‑mediated Shh reverses the adverse effects of high glucose on osteoblast function and promotes bone formation via Sonic hedgehog signaling. Mol Med Rep 2019; 20:3265-3275. [PMID: 31432117 PMCID: PMC6755203 DOI: 10.3892/mmr.2019.10540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 07/11/2019] [Indexed: 12/25/2022] Open
Abstract
Patients with diabetes tend to have an increased incidence of osteoporosis, which may be associated with hyperglycemia; however, the pathogenic mechanisms governing this interaction remain unknown. The present study sought to investigate whether elevated extracellular glucose levels of bone mesenchymal stem cells (BMSCs) could influence osteoblastic differentiation and whether the intracellular Sonic hedgehog (Shh) pathway could adjust the effects. Furthermore, to verify the results in vivo, a rat tooth extraction model was constructed. BMSCs were incubated in eight types of culture medium, including low glucose (LG), LG + lentivirus (Lenti), LG + Lenti-small interfering RNA (Lenti-siRNA), LG + Lenti-Shh, high glucose (HG), HG + Lenti, HG + Lenti-siRNA and HG + Lenti-Shh. The lentiviral transfection efficiency was observed using a fluorescence microscope; protein and mRNA expression was detected by western blotting and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The matrix mineralization and alkaline phosphatase (ALP) activity of BMSCs were examined by Alizarin red staining and ALP activity assays, respectively. The expression of osteogenesis-related genes in BMSCs were quantified by RT-qPCR. The alveolar ridge reduction was measured and histological sections were used to evaluate new bone formation in the tooth socket. With high concentrations of glucose, Shh expression, matrix mineralization nodules formation, ALP activity and the levels of bone morphogenic protein 4 (BMP4), bone sialoprotein (BSP) and osteopontin (OPN) expression were greatly reduced compared with LG and corresponding control groups. Whereas activated Shh signaling via Lenti-Shh could increase the number of matrix mineralization nodules, ALP activity, and the expression levels of BMP4, BSP and OPN in BMSCs. Additionally, in vivo assays demonstrated that Lenti-Shh induced additional bone formation. Collectively, the results of the present study indicated that HG inhibited the Shh pathway in osteoblasts and resulted in patterning defects during osteoblastic differentiation and bone formation, while the activation of Shh signaling could suppress these deleterious effects.
Collapse
Affiliation(s)
- Zhu-Ling Jiang
- Department of Implantology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Han Jin
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhong-Shuang Liu
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ming-Yue Liu
- Department of Dentistry, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiao-Fang Cao
- Department of Dentistry, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yang-Yang Jiang
- Department of Dentistry, The Affiliated Hospital, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P.R. China
| | - Hong-Dan Bai
- Feiyang Dental Clinic, Heihe, Heilongjiang 164300, P.R. China
| | - Bin Zhang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ying Li
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
12
|
de Souza DM, Rodrigues VA, Silva ADA, Gonsalves VS, Pereira KA, Nishioka RS, de Carvalho C. Influence of different alcohol intake frequencies on alveolar bone loss in adult rats: A sem study. J Clin Exp Dent 2018; 10:e852-e857. [PMID: 30386516 PMCID: PMC6203929 DOI: 10.4317/jced.54647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 07/18/2018] [Indexed: 11/05/2022] Open
Abstract
Background Alcohol intake is associated with oral diseases and bone changes including alveolar bone loss in humans and in experimental animals. The main aim of the present study is to assess the effect of long-term alcohol intake, at different frequencies, on periodontal bone loss (PBL) in adult rats. Material and Methods Thirty-six (36) rats were divided into 3 groups: Control (daily water intake, n=12), daily alcohol intake (20% ethanol, n=12), and social alcohol intake (20% ethanol twice a week, n=12). The rats were sacrificed after 90 days and their right maxillae were removed. Initially, a random portion from each group was analyzed through SEM (scanning electron microscope) to assess surface topography. Next, all pieces were dissected and stained with methylene blue 1% and photographed in stereomicroscope at 10x magnification. The PBL was assessed by measuring the distance between cement-enamel junction and alveolar bone crest. Results Results showed higher (p=0.0368) alcohol solution amount in the daily intake group than in the twice week intake one. The SEM showed qualitatively flat bone surface in the control group, the social intake group presented surface with few minor hollows, and the daily intake group evidenced increased number and diameter of wells. The comparison between groups showed higher bone loss (p<0.05) in both frequencies than in the control, but the bone loss was lower (p<0.05) in the social alcohol intake group than in the daily intake one. Conclusions Alcohol intake may cause alveolar bone loss in periodontitis-free rats depending on the frequency. Key words:Alcohol intake, alveolar bone loss, alcohol-induced periodontitis, alcoholic rats.
Collapse
Affiliation(s)
- Daniela-Martins de Souza
- DDs, MSc, PhD, Professor, College of Pindamonhangaba, Christian Life University Foundation-FUNVIC. Addres: Rua Marechal Deodoro da Fonseca, 316 - Centro, Pindamonhangaba, São Paulo, Brazil
| | - Vinicius-Anéas Rodrigues
- DDs, MSc, PhD, Professor, College of Pindamonhangaba, Christian Life University Foundation-FUNVIC. Addres: Rua Marechal Deodoro da Fonseca, 316 - Centro, Pindamonhangaba, São Paulo, Brazil
| | - Alan-de Aquino Silva
- DDs, College of Pindamonhangaba, Christian Life University Foundation-FUNVIC. Addres: Rua Marechal Deodoro da Fonseca, 316 - Centro, Pindamonhangaba, São Paulo, Brazil
| | - Vitor-Sulz Gonsalves
- DDs, College of Pindamonhangaba, Christian Life University Foundation-FUNVIC. Addres: Rua Marechal Deodoro da Fonseca, 316 - Centro, Pindamonhangaba, São Paulo, Brazil
| | - Kauê-Alberto Pereira
- DDs, College of Pindamonhangaba, Christian Life University Foundation-FUNVIC. Addres: Rua Marechal Deodoro da Fonseca, 316 - Centro, Pindamonhangaba, São Paulo, Brazil
| | - Renato-Sussumu Nishioka
- DDs, MSc, PhD, Adjunct Professor, Department of Dental Materials and Proshodontics, São Paulo State University (Unesp), Institute of Science and Technology, Institute of Science and Technology, São José dos Campos / SP, Brazil. Address: Av Engenheiro Francisco José Longo, 777, Jardim São Dimas, São José dos Campos, São Paulo, Brazil
| | - Claudemir de Carvalho
- MSc, PhD, Professor, College of Pindamonhangaba, Christian Life University Foundation-FUNVIC. Addres: Rua Marechal Deodoro da Fonseca, 316 - Centro, Pindamonhangaba, São Paulo, Brazil
| |
Collapse
|
13
|
Xiao CJ, Yu XJ, Xie JL, Liu S, Li S. Protective effect and related mechanisms of curcumin in rat experimental periodontitis. Head Face Med 2018; 14:12. [PMID: 30115081 PMCID: PMC6097422 DOI: 10.1186/s13005-018-0169-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 08/03/2018] [Indexed: 01/16/2023] Open
Abstract
Background Curcumin exhibits anti-inflammatory effects and has been suggested as a treatment for inflammatory diseases. The aim of this study was to investigate the effects of curcumin on the lipopolysaccharide induced inflammatory response in rat gingival fibroblasts in vitro and ligation-induced experimental periodontitis in vivo, and to speculate the possible anti-inflammatory mechanism of curcumin. Methods The gingival fibroblasts were incubated with different concentrations of curcumin in the absence or presence of lipopolysaccharide (LPS). Concentrations of interleukin-1β(IL-1β), tumor necrosis factor-α (TNF-α), osteoprotegerin (OPG) and soluble receptor activator of nuclear factor kappa-B ligand (RANKL) culture supernatants of rat gingival fibroblasts were determined by enzyme linked immunosorbent assay. The nuclear fraction of rat gingival fibroblasts was extracted and nuclear factor kappa-B (NF-κB) activation was assessed by western blotting to elucidate related mechanisms. Curcumin was given every two days by oral gavage. The gingival inflammation and alveolar bone loss between the first and second molars were observed by hematoxylin and eosin staining. Collagen fibers were observed by picro-sirius red staining. Alveolar bone loss was assessed by micro-CT analysis. Results Curcumin attenuated the production of IL-1β and TNF-α in rat gingival fibroblasts stimulated by LPS, and inhibited the LPS-induced decrease in OPG/sRANKL ratio and NF-κB activation. Curcumin significantly reduced gingival inflammation and modulated collagen fiber and alveolar bone loss in vivo. Conclusions curcumin modulates inflammatory activity in rat periodontitis by inhibiting NF-κB activation and decreasing the OPG/sRANKL ratio induced by LPS.
Collapse
Affiliation(s)
- Chang-Jie Xiao
- Shandong Provincial Key Laboratory of Oral tissue regeneration, Department of Periodontology, School and Hospital of Stomatology, Shandong University, 44-1# West Wenhua Road, Jinan, Shandong, China.,Department of Endodontics, Jinan Stomatological Hospital, 101# Jingliu Road, Jinan, Shandong, China
| | - Xi-Jiao Yu
- Department of Endodontics, Jinan Stomatological Hospital, 101# Jingliu Road, Jinan, Shandong, China
| | - Jian-Li Xie
- Department of Endodontics, Jinan Stomatological Hospital, 101# Jingliu Road, Jinan, Shandong, China
| | - Shuang Liu
- Shandong Provincial Key Laboratory of Oral tissue regeneration, Department of Periodontology, School and Hospital of Stomatology, Shandong University, 44-1# West Wenhua Road, Jinan, Shandong, China
| | - Shu Li
- Shandong Provincial Key Laboratory of Oral tissue regeneration, Department of Periodontology, School and Hospital of Stomatology, Shandong University, 44-1# West Wenhua Road, Jinan, Shandong, China.
| |
Collapse
|
14
|
Kim JH, Kim AR, Choi YH, Jang S, Woo GH, Cha JH, Bak EJ, Yoo YJ. Tumor necrosis factor-α antagonist diminishes osteocytic RANKL and sclerostin expression in diabetes rats with periodontitis. PLoS One 2017; 12:e0189702. [PMID: 29240821 PMCID: PMC5730195 DOI: 10.1371/journal.pone.0189702] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/30/2017] [Indexed: 11/21/2022] Open
Abstract
Type 1 diabetes with periodontitis shows elevated TNF-α expression. Tumor necrosis factor (TNF)-α stimulates the expression of receptor activator of nuclear factor-κB ligand (RANKL) and sclerostin. The objective of this study was to determine the effect of TNF-α expression of osteocytic RANKL and sclerostin in type 1 diabetes rats with periodontitis using infliximab (IFX), a TNF-α antagonist. Rats were divided into two timepoint groups: day 3 and day 20. Each timepoint group was then divided into four subgroups: 1) control (C, n = 6 for each time point); 2) periodontitis (P, n = 6 for each time point); 3) diabetes with periodontitis (DP, n = 8 for each time point); and 4) diabetes with periodontitis treated with IFX (DP+IFX, n = 8 for each time point). To induce type 1 diabetes, rats were injected with streptozotocin (50 mg/kg dissolved in 0.1 M citrate buffer). Periodontitis was then induced by ligature of the mandibular first molars at day 7 after STZ injection (day 0). IFX was administered once for the 3 day group (on day 0) and twice for the 20 day group (on days 7 and 14). The DP group showed greater alveolar bone loss than the P group on day 20 (P = 0.020). On day 3, higher osteoclast formation and RANKL-positive osteocytes in P group (P = 0.000 and P = 0.011, respectively) and DP group (P = 0.006 and P = 0.017, respectively) than those in C group were observed. However, there was no significant difference in osteoclast formation or RANKL-positive osteocytes between P and DP groups. The DP+IFX group exhibited lower alveolar bone loss (P = 0.041), osteoclast formation (P = 0.019), and RANKL-positive osteocytes (P = 0.009) than that of the DP group. On day 20, DP group showed a lower osteoid area (P = 0.001) and more sclerostin-positive osteocytes (P = 0.000) than P group. On days 3 and 20, the DP+IFX group showed more osteoid area (P = 0.048 and 0.040, respectively) but lower sclerostin-positive osteocytes (both P = 0.000) than DP group. Taken together, these results suggest that TNF-α antagonist can diminish osteocytic RANKL/sclerostin expression and osteoclast formation, eventually recovering osteoid formation. Therefore, TNF-α might mediate alveolar bone loss via inducing expression of osteocytic RANKL and sclerostin in type 1 diabetes rats with periodontitis.
Collapse
Affiliation(s)
- Ji-Hye Kim
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Ae Ri Kim
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, Republic of Korea
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Yun Hui Choi
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Sungil Jang
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Gye-Hyeong Woo
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Republic of Korea
| | - Jeong-Heon Cha
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, Republic of Korea
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Eun-Jung Bak
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- * E-mail: (YJY); (EJB)
| | - Yun-Jung Yoo
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, Republic of Korea
- * E-mail: (YJY); (EJB)
| |
Collapse
|
15
|
Iwamatsu‐Kobayashi Y, Abe S, Fujieda Y, Orimoto A, Kanehira M, Handa K, Venkataiah VS, Zou W, Ishikawa M, Saito M. Metal ions from S-PRG filler have the potential to prevent periodontal disease. Clin Exp Dent Res 2017; 3:126-133. [PMID: 29744190 PMCID: PMC5839258 DOI: 10.1002/cre2.70] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/25/2017] [Accepted: 05/01/2017] [Indexed: 12/21/2022] Open
Abstract
The surface pre-reacted glass ionomer (S-PRG) filler, a component of composite resin, is capable of releasing metal ions that possess antibacterial activity against caries and periodontal pathogens. Although S-PRG has been suggested to be involved in oral disease prevention, no reports have been published regarding its preventive effect on periodontal disease in vivo. The present study investigated whether the eluate from S-PRG (S-PRG eluate) has a suppressive effect on tissue destruction induced in a mouse model of ligature-induced periodontal disease. Twenty-seven C57BL/6 mice were divided into three groups of nine animals each, no ligature group (Lig(-)), ligature group (Lig(+)S-PRG(-)) and ligature with S-PRG eluate group (Lig(+)S-PRG(+)). Alveolar bone loss was evaluated using micro-computed tomography scanning. Histologic changes were detected by hematoxylin and eosin staining. The infiltration of inflammatory cells was assessed by Ly6G and F4/80 staining immunohistochemically. The distribution of metal ions was detected by time-of-flight secondary ion mass spectrometry. S-PRG eluate clearly inhibited alveolar bone loss and bone density. The histological analysis revealed that S-PRG eluate reduced destruction of the collagen bundle in the periodontal ligament and the infiltration of inflammatory cells. Immunohistochemical analysis showed that the S-PRG eluate significantly suppressed the number of infiltrating neutrophils and macrophages. Time-of-flight secondary ion mass spectrometry analysis revealed that more boron ions were present in the Lig(+)S-PRG(+) group than in the Lig(+)S-PRG(-) group. Our results suggest that the S-PRG eluate has a preventive effect against tissue destruction in periodontal disease through its anti-inflammatory effects in vivo.
Collapse
Affiliation(s)
- Yoko Iwamatsu‐Kobayashi
- Division of Operative Dentistry, Department of Restorative DentistryTohoku University Graduate School of DentistrySendaiMiyagiJapan
| | - Syouta Abe
- Faculty of Industrial Science and TechnologyTokyo University of ScienceKatsushikaJapan
| | - Yoshiyasu Fujieda
- Faculty of Industrial Science and TechnologyTokyo University of ScienceKatsushikaJapan
| | - Ai Orimoto
- Division of Operative Dentistry, Department of Restorative DentistryTohoku University Graduate School of DentistrySendaiMiyagiJapan
| | - Masafumi Kanehira
- Division of Operative Dentistry, Department of Restorative DentistryTohoku University Graduate School of DentistrySendaiMiyagiJapan
| | - Keisuke Handa
- Division of Operative Dentistry, Department of Restorative DentistryTohoku University Graduate School of DentistrySendaiMiyagiJapan
| | - Venkata Suresh Venkataiah
- Division of Operative Dentistry, Department of Restorative DentistryTohoku University Graduate School of DentistrySendaiMiyagiJapan
| | - Wei Zou
- Division of Operative Dentistry, Department of Restorative DentistryTohoku University Graduate School of DentistrySendaiMiyagiJapan
| | - Masaki Ishikawa
- Division of Operative Dentistry, Department of Restorative DentistryTohoku University Graduate School of DentistrySendaiMiyagiJapan
| | - Masahiro Saito
- Division of Operative Dentistry, Department of Restorative DentistryTohoku University Graduate School of DentistrySendaiMiyagiJapan
- Center for Advanced Stem Cell and Regenerative ResearchTohoku University Graduate School of DentistrySendaiMiyagiJapan
| |
Collapse
|
16
|
Ubiquitination in Periodontal Disease: A Review. Int J Mol Sci 2017; 18:ijms18071476. [PMID: 28698506 PMCID: PMC5535967 DOI: 10.3390/ijms18071476] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/30/2022] Open
Abstract
Periodontal disease (periodontitis) is a chronic inflammatory condition initiated by microbial infection that leads to gingival tissue destruction and alveolar bone resorption. The periodontal tissue's response to dental plaque is characterized by the accumulation of polymorphonuclear leukocytes, macrophages, and lymphocytes, all of which release inflammatory mediators and cytokines to orchestrate the immunopathogenesis of periodontal disease. Ubiquitination is achieved by a mechanism that involves a number of factors, including an ubiquitin-activating enzyme, ubiquitin-conjugating enzyme, and ubiquitin-protein ligase. Ubiquitination is a post-translational modification restricted to eukaryotes that are involved in essential host processes. The ubiquitin system has been implicated in the immune response, development, and programmed cell death. Increasing numbers of recent reports have provided evidence that many approaches are delivering promising reports for discovering the relationship between ubiquitination and periodontal disease. The scope of this review was to investigate recent progress in the discovery of ubiquitinated protein in diseased periodontium and to discuss the ubiquitination process in periodontal diseases.
Collapse
|
17
|
Li M, Zhang C, Jin L, Matsuo K, Yang Y. Porphyromonas gingivalis lipopolysaccharide regulates ephrin/Eph signalling in human periodontal ligament fibroblasts. J Periodontal Res 2017; 52:913-921. [PMID: 28590061 PMCID: PMC5600103 DOI: 10.1111/jre.12463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2017] [Indexed: 12/29/2022]
Abstract
Objective EphrinA2‐EphA2 and ephrinB2‐EphB4 critically engage in bidirectional signalling to modulate alveolar bone remodelling. The present study aimed to investigate the effects of lipopolysaccharides (LPS) derived from Porphyromonas gingivalis on ephrin/Eph signalling in periodontal ligament fibroblasts (PDLFs). Material and Methods The primary cultured PDLFs were incubated in the absence (as a control) or presence of P. gingivalisLPS at 0.001‐10 μg/mL for 24 hours. The PDLFs were then stimulated with P. gingivalisLPS at the optimal concentration (0.1 μg/mL) for different periods (6‐48 hours). The expression of ephrinA2, ephrinB2, EphA2 and EphB4 was assessed by quantitative reverse‐transcription real‐time polymerase chain reaction and western blotting. The osteoblastic markers alkaline phosphatase, osteocalcin and Runt‐related transcription factor 2 (Runx2), and the osteoclastogenesis‐related factors receptor activator of nuclear factor kappa‐B ligand (RANKL) and osteoprotegerin were also evaluated. Results The ephrinA2 and EphA2 expression was upregulated and EphB4 expression was downregulated by stimulation of P. gingivalisLPS. EphrinA2 mRNA expression in the PDLFs was significantly upregulated from 12 to 48 hours (P<.05), whereas EphA2 exhibited no change for the first 24 hours, after which there was a significant increase at 48 hours (P<.05). EphB4 exhibited lower mRNA expression at 12 and 24 hours than did the control (P<.05), but the change was insignificant at 48 hours. In contrast, the expression of ephrinB2 remained unchanged. The expressions of ephrinA2, EphA2, ephrinB2 and EphB4 at the protein level showed a similar pattern to that at the mRNA level. The expression of Runx2 and osteocalcin significantly decreased, whereas that of RANKL/osteoprotegerin increased. Conclusion The present study suggest that P. gingivalisLPS would contribute to a dysregulation of bone remodelling, whereby ephrinA2/EphA2 expression is stimulated and EphB4 expression is inhibited.
Collapse
Affiliation(s)
- M Li
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| | - C Zhang
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| | - L Jin
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| | - K Matsuo
- Keio University School of Medicine, Tokyo, Japan
| | - Y Yang
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| |
Collapse
|
18
|
Liu Z, Chen T, Sun W, Yuan Z, Yu M, Chen G, Guo W, Xiao J, Tian W. DNA Demethylation Rescues the Impaired Osteogenic Differentiation Ability of Human Periodontal Ligament Stem Cells in High Glucose. Sci Rep 2016; 6:27447. [PMID: 27273319 PMCID: PMC4897703 DOI: 10.1038/srep27447] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/16/2016] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus, characterized by abnormally high blood glucose levels, gives rise to impaired bone remodeling. In response to high glucose (HG), the attenuated osteogenic differentiation capacity of human periodontal ligament stem cells (hPDLSCs) is associated with the loss of alveolar bone. Recently, DNA methylation was reported to affect osteogenic differentiation of stem cells in pathological states. However, the intrinsic mechanism linking DNA methylation to osteogenic differentiation ability in the presence of HG is still unclear. In this study, we found that diabetic rats with increased DNA methylation levels in periodontal ligaments exhibited reduced bone mass and density. In vitro application of 5-aza-2′-deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor, to decrease DNA methylation levels in hPDLSCs, rescued the osteogenic differentiation capacity of hPDLSCs under HG conditions. Moreover, we demonstrated that the canonical Wnt signaling pathway was activated during this process and, under HG circumstances, the 5-aza-dC-rescued osteogenic differentiation capacity was blocked by Dickkopf-1, an effective antagonist of the canonical Wnt signaling pathway. Taken together, these results demonstrate for the first time that suppression of DNA methylation is able to facilitate the osteogenic differentiation capacity of hPDLSCs exposed to HG, through activation of the canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Southwest Medical University, Luzhou 646000, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Tian Chen
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China.,Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Wenhua Sun
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Zongyi Yuan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Southwest Medical University, Luzhou 646000, P.R. China
| | - Mei Yu
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Guoqing Chen
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Weihua Guo
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Jingang Xiao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Southwest Medical University, Luzhou 646000, P.R. China.,Orofacial Reconstruction and Regeneration Laboratory, Hospital of Stomatology, Southwest Medical University, Luzhou 646000, P.R. China
| | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China School of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
19
|
Gurav AN. Management of diabolical diabetes mellitus and periodontitis nexus: Are we doing enough? World J Diabetes 2016; 7:50-66. [PMID: 26962409 PMCID: PMC4766246 DOI: 10.4239/wjd.v7.i4.50] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/16/2015] [Accepted: 01/19/2016] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is the commonest oral disease affecting population worldwide. This disease is notorious for the devastation of tooth supporting structures, ensuing in the loss of dentition. The etiology for this disease is bacterial biofilm, which accumulates on the teeth as dental plaque. In addition to the biofilm microorganisms, other factors such as environmental, systemic and genetic are also responsible in progression of periodontitis. Diabetes mellitus (DM) is metabolic disorder which has an impact on the global health. DM plays a crucial role in the pathogenesis of periodontitis. Periodontitis is declared as the “sixth” major complication of DM. Evidence based literature has depicted an enhanced incidence and severity of periodontitis in subjects with DM. A “two way” relationship has been purported between periodontitis and DM. Mutual management of both conditions is necessary. Periodontal therapy (PT) may assist to diminish the progression of DM and improve glycemic control. Various advanced technological facilities may be utilized for the purpose of patient education and disease management. The present paper clarifies the etio-pathogenesis of periodontitis, establishing it as a complication of DM and elaborating the various mechanisms involved in the pathogenesis. The role of PT in amelioration of DM and application of digital communication will be discussed. Overall, it is judicious to create an increased patient cognizance of the periodontitis-DM relationship. Conjunctive efforts must be undertaken by the medical and oral health care professionals for the management of periodontitis affected DM patients.
Collapse
|
20
|
Yu Y, Yang D, Qiu L, Okamura H, Guo J, Haneji T. Tumor necrosis factor-α induces interleukin-34 expression through nuclear factor‑κB activation in MC3T3-E1 osteoblastic cells. Mol Med Rep 2014; 10:1371-6. [PMID: 24970360 PMCID: PMC4121411 DOI: 10.3892/mmr.2014.2353] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 04/24/2014] [Indexed: 01/27/2023] Open
Abstract
Osteoblasts produce various types of cytokines under pathological conditions and control osteoclast differentiation. Tumor necrosis factor-α (TNF-α) has been demonstrated to exert complex effects in osteoblasts under local inflammatory conditions, including in periodontal and periapical diseases. Interleukin-34 (IL-34) has been recently identified as a novel regulatory factor for the differentiation and function of osteoclasts. The present study provides the first evidence, to the best of our knowledge, that the expression of IL-34 is induced by TNF-α through nuclear factor-κB (NF-κB) activation in MC3T3-E1 osteoblastic cells. TNF-α induced IL-34 expression in a dose- and time-dependent manner. Immunocytochemistry with an NF-κB antibody demonstrated that NF-κB was mainly localized in the cytoplasm of the untreated MC3T3-E1 cells. Rapid translocation of NF-κB from the cytoplasm to the nucleus was observed in the cells treated with TNF-α for 15 min. Translocation and transcriptional activity of NF-κB were also determined by western blotting and a luciferase reporter assay, respectively. Pretreatment with 100 μM CAPE, an inhibitor of NF-κB, significantly inhibited TNF-α-induced IL-34 expression. These results indicate that TNF-α induces IL-34 expression via NF-κB in osteoblasts.
Collapse
Affiliation(s)
- Yaqiong Yu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Di Yang
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Lihong Qiu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Hirohiko Okamura
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Jiajie Guo
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Tatsuji Haneji
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima 770-8504, Japan
| |
Collapse
|
21
|
Kayal RA. The role of osteoimmunology in periodontal disease. BIOMED RESEARCH INTERNATIONAL 2013; 2013:639368. [PMID: 24151615 PMCID: PMC3789307 DOI: 10.1155/2013/639368] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/15/2013] [Accepted: 08/17/2013] [Indexed: 12/26/2022]
Abstract
Periodontal disease is a pathological condition that involves inflammation of the tooth supporting structures. It occurs in response to the presence of bacterial plaque on the tooth structure. The host defense system, including innate and adaptive immunity, is responsible for combating the pathologic bacteria invading the periodontal tissue. Failure to eradicate the invading pathogens will result in a continuous state of inflammation where inflammatory cells such as lymphocytes, PMNs, and macrophages will continue to produce inflammatory mediators in an effort to destroy the invaders. Unfortunately, these inflammatory mediators have a deleterious effect on the host tissue as well as foreign microbes. One of the effects of these mediators on the host is the induction of matrix degradation and bone resorption through activation of proteases and other inflammatory mediators that activate osteoclasts.
Collapse
Affiliation(s)
- Rayyan A. Kayal
- Department of Oral Basic and Clinical Science, King Abdulaziz University Faculty of Dentistry, P.O. Box 3738, Jeddah 21481, Saudi Arabia
| |
Collapse
|