1
|
Boshuizen B, De Maré L, Oosterlinck M, Van Immerseel F, Eeckhaut V, De Meeus C, Devisscher L, Vidal Moreno de Vega C, Willems M, De Oliveira JE, Hosotani G, Gansemans Y, Meese T, Van Nieuwerburgh F, Deforce D, Vanderperren K, Verdegaal EL, Delesalle C. Aleurone supplementation enhances the metabolic benefits of training in Standardbred mares: impacts on glucose-insulin dynamics and gut microbiome composition. Front Physiol 2025; 16:1565005. [PMID: 40276369 PMCID: PMC12018385 DOI: 10.3389/fphys.2025.1565005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Introduction Aleurone, derived from the bran layer of grains like wheat and barley, has demonstrated positive effects on energy metabolism in pigs, mice, and untrained horses, influencing glucose-insulin dynamics and gut microbiome composition. Training itself enhances insulin sensitivity in horses, similar to the improvements in performance capacity observed in human athletes. This study aimed to investigate whether aleurone supplementation provides additional benefits to training by modulating insulin metabolism and gut microbiota in Standardbred mares. Methods Sixteen Standardbred mares (aged 3-5 years) participated in a cross-over study with two 8-week training periods separated by 8 weeks of detraining. Each horse received either 200 g/day aleurone supplementation or a control diet. Insulin metabolism was evaluated using oral (OGTT) and intravenous (FSIGTT) glucose tolerance tests, measuring parameters such as Maximumglucose, AUCglucose, Maximuminsulin, AUCinsulin, Time to peakinsulin (OGTT), Acute Insulin Response to Glucose (AIRg), glucose effectiveness (Sg), and disposition index (DI) (FSIGTT). Fecal samples underwent metagenomic analysis to assess alpha and beta diversity and microbial composition. Results Training alone: Training significantly improved OGTT parameters by decreasing Maximuminsulin (P = 0.005) and AUCinsulin (P = 0.001), while increasing Time to peakinsulin (P = 0.03), indicating enhanced insulin sensitivity. FSIGTT results also showed a decrease in logAIRg (P = 0.044). Training with Aleurone: Aleurone supplementation further reduced FSIGTT AIRg (P = 0.030), logAIRg (P = 0.021) while increasing glucose effectiveness (Sg; P = 0.031). These findings suggest aleurone improves insulin sensitivity, glucose disposal, and fasting glucose regulation beyond training. Microbiome analysis revealed training decreased Pseudomonas, associated with dysbiosis, while aleurone reduced inflammation-associated Desulfovibrio. Beta diversity metrics showed no significant changes. Conclusion Aleurone supplementation enhances training-induced improvements in glucose metabolism and fecal microbiota composition, which could offer potential benefits for equine athletes by optimizing metabolic flexibility. It also supports improvements in glucose and insulin dynamics, particularly by further enhancing insulin sensitivity and glucose-mediated disposal. Future studies should investigate the mechanisms of aleurone at the muscle and gut level and explore its potential applications for metabolic disorders such as Equine Metabolic Syndrome.
Collapse
Affiliation(s)
- Berit Boshuizen
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Equine Hospital Wolvega, Oldeholtpade, Netherlands
| | - Lorie De Maré
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Maarten Oosterlinck
- Department of Large Animal Surgery, Anaesthesia and Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Filip Van Immerseel
- Department of Pathobiology, Pharmacology and Special Animals Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Venessa Eeckhaut
- Department of Pathobiology, Pharmacology and Special Animals Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Constance De Meeus
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lindsey Devisscher
- Gut-Liver ImmunoPharmacology Unit, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Carmen Vidal Moreno de Vega
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Maarten Willems
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | - Yannick Gansemans
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Tim Meese
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Katrien Vanderperren
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Elisabeth-Lidwien Verdegaal
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Equine Health and Performance Centre, School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Adelaide, SA, Australia
| | - Cathérine Delesalle
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Equine Health and Performance Centre, School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
2
|
Arani G, Arora A, Yang S, Wu J, Kraszewski JN, Martins A, Miller A, Zeba Z, Jafri A, Hu C, Farland LV, Bea JW, Coletta DK, Aslan DH, Sayre MK, Bharadwaj PK, Ally M, Maltagliati S, Lai MHC, Wilcox R, de Geus E, Alexander GE, Raichlen DA, Klimentidis YC. Plasma Proteomic Signatures of Physical Activity Provide Insights into Biological Impacts of Physical Activity and its Protective Role Against Dementia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.16.25320290. [PMID: 39867359 PMCID: PMC11759254 DOI: 10.1101/2025.01.16.25320290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Physical activity (PA), including sedentary behavior, is associated with many diseases, including Alzheimer's disease and all-cause dementia. However, the specific biological mechanisms through which PA protects against disease are not entirely understood. To address this knowledge gap, we first assessed the conventional observational associations of three self-reported and three device-based PA measures with circulating levels of 2,911 plasma proteins measured in the UK Biobank (nmax=39,160) and assessed functional enrichment of identified proteins. We then used bi-directional Mendelian randomization (MR) to further evaluate the evidence for causal relationships of PA with protein levels. Finally, we performed mediation analyses to identify proteins that may mediate the relationship of PA with incident all-cause dementia. Our findings revealed 41 proteins consistently associated with all PA measures and 1,027 proteins associated with at least one PA measure. Both conventional observational and MR study designs converged on proteins that appear to increase as a result of PA, including integrin proteins such as ITGAV and ITGAM, as well as MXRA8, CLEC4A, CLEC4M, GFRA1, and ADGRG2; and on proteins that appear to decrease as a result of PA such as LEP, LPL, INHBC, CLMP, PTGDS, ADM, OGN, and PI3. Functional enrichment analyses revealed several relevant processes, including cell-matrix adhesion, integrin-mediated signaling, and collagen binding. Finally, several proteins, including GDF15, ITGAV, HPGDS, BCAN, and MENT, were found to mediate the relationship of PA with all-cause dementia, implicating processes such as synaptic plasticity, neurogenesis and inflammation, through which PA protects against dementia. Our results provide insights into how PA may affect biological processes and protect from all-cause dementia, and provide avenues for future research into the health-promoting effects of PA.
Collapse
Affiliation(s)
- Gayatri Arani
- Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Amit Arora
- Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA
- Department of Biomedical Informatics, College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Shuai Yang
- Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Jingyue Wu
- Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Jennifer N. Kraszewski
- Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Amy Martins
- Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Alexandra Miller
- Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA
- College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Zebunnesa Zeba
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Ayan Jafri
- Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Chengcheng Hu
- Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Leslie V. Farland
- Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Jennifer W. Bea
- Department of Health Promotion Sciences, University of Arizona, Tucson, AZ, USA
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Dawn K. Coletta
- Department of Physiology, University of Arizona, Tucson, AZ, USA
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ, USA
- Department of Clinical and Translational Genomics, University of Arizona, Tucson, AZ, USA
- Center for Disparities in Diabetes, Obesity and Metabolism, University of Arizona, Tucson, AZ, USA
| | - Daniel H. Aslan
- Department of Anthropology, University of Southern California, Los Angeles, CA, USA
| | - M Katherine Sayre
- Department of Anthropology, University of Southern California, Los Angeles, CA, USA
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
| | | | - Madeline Ally
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Silvio Maltagliati
- Department of Anthropology, University of Southern California, Los Angeles, CA, USA
- University of Grenoble Alpes, SENS, Grenoble 38000, France
| | - Mark H C Lai
- Department of Anthropology, University of Southern California, Los Angeles, CA, USA
- Department of Psychology, University of Southern California, Los Angeles, CA, United States
| | - Rand Wilcox
- Department of Psychology, University of Southern California, Los Angeles, CA, United States
| | - Eco de Geus
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Gene E. Alexander
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Department of Psychiatry, University of Arizona, Tucson, AZ, USA
- Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ, USA
| | - David A. Raichlen
- Department of Anthropology, University of Southern California, Los Angeles, CA, USA
- Department of Psychology, University of Southern California, Los Angeles, CA, United States
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yann C. Klimentidis
- Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
3
|
Zhang S, Wang N, Gao Z, Gao J, Wang X, Xie H, Wang CY, Zhang S. Reductive stress: The key pathway in metabolic disorders induced by overnutrition. J Adv Res 2025:S2090-1232(25)00031-1. [PMID: 39805424 DOI: 10.1016/j.jare.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/04/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The balance of redox states is crucial for maintaining physiological homeostasis. For decades, the focus has been mainly on the concept of oxidative stress, which is involved in the mechanism of almost all diseases. However, robust evidence has highlighted that reductive stress, the other side of the redox spectrum, plays a pivotal role in the development of various diseases, particularly those related to metabolism and cardiovascular health. AIM OF REVIEW In this review, we present an extensive array of evidence for the occurrence of reductive stress and its significant implications mainly in metabolic and cardiovascular diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW Reductive stress is defined as a shift in the cellular redox balance towards a more reduced state, characterized by an excess of endogenous reductants (such as NADH, NADPH, and GSH) over their oxidized counterparts (NAD+, NADP+, and GSSG). While oxidative stress has been the predominant mechanism studied in obesity, metabolic disorders, and cardiovascular diseases, growing evidence underscores the critical role of reductive stress. This review discusses how reductive stress contributes to metabolic and cardiovascular pathologies, emphasizing its effects on key cellular processes. For example, excessive NADH accumulation can disrupt mitochondrial function by impairing the electron transport chain, leading to decreased ATP production and increased production of reactive oxygen species. In the endoplasmic reticulum (ER), an excess of reductive equivalents hampers protein folding, triggering ER stress and activating the unfolded protein response, which can lead to insulin resistance and compromised cellular homeostasis. Furthermore, we explore how excessive antioxidant supplementation can exacerbate reductive stress by further shifting the redox balance, potentially undermining the beneficial effects of exercise, impairing cardiovascular health, and aggravating metabolic disorders, particularly in obese individuals. This growing body of evidence calls for a reevaluation of the role of reductive stress in disease pathogenesis and therapeutic interventions.
Collapse
Affiliation(s)
- Shiyi Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhichao Gao
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Gao
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohui Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Xie
- Institute of Translational Medicine, Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Cong-Yi Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shu Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Fodor Duric L, Belčić V, Oberiter Korbar A, Ćurković S, Vujicic B, Gulin T, Muslim J, Gulin M, Grgurević M, Catic Cuti E. The Role of SHBG as a Marker in Male Patients with Metabolic-Associated Fatty Liver Disease: Insights into Metabolic and Hormonal Status. J Clin Med 2024; 13:7717. [PMID: 39768643 PMCID: PMC11677371 DOI: 10.3390/jcm13247717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/03/2025] Open
Abstract
Background: Metabolic-associated fatty liver disease (MAFLD) is a spectrum of liver diseases linked to insulin resistance (IR), type 2 diabetes, and metabolic disorders. IR accelerates fat accumulation in the liver, worsening MAFLD. Regular physical activity and weight loss can improve liver function, reduce fat, and lower cardiovascular risk. This study examines the role of sex hormone-binding globulin (SHBG) in MAFLD, focusing on its potential as a biomarker and its relationship with insulin resistance. Methods: The study included 98 male patients (ages 30-55) with MAFLD, identified through systematic examinations, and 74 healthy male controls. All participants underwent abdominal ultrasound and blood tests after fasting, assessing markers such as glucose, liver enzymes (AST, ALT, γGT), lipids (cholesterol, triglycerides), insulin, SHBG, estradiol, and testosterone. SHBG levels were analyzed in relation to body mass index (BMI) and age. Results: A significant association was found between low SHBG levels and the presence of fatty liver. Individuals with MAFLD had lower SHBG levels compared to controls. BMI and age were key factors influencing SHBG, with higher BMI linked to lower SHBG in younger men, while SHBG remained stable in older individuals regardless of BMI. Conclusion: SHBG may serve as a valuable biomarker for early detection and risk assessment of MAFLD. The complex relationship between SHBG, BMI, and age highlights the importance of considering both hormonal and metabolic factors when assessing fatty liver risk. Our findings support the need for comprehensive metabolic evaluations in clinical practice.
Collapse
Affiliation(s)
- Ljiljana Fodor Duric
- School of Medicine, University of Catholica Croatica, 10000 Zagreb, Croatia
- Department of Nephrology and Arterial Hypertension, Medikol Polyclinic, 10000 Zagreb, Croatia
| | - Velimir Belčić
- Medikol Polyclinic, 10000 Zagreb, Croatia; (V.B.); (J.M.)
| | | | - Sanja Ćurković
- Faculty of Kinesiology, University of Zagreb, 10000 Zagreb, Croatia;
- Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Bozidar Vujicic
- School of Medicine, University of Rijeka, 10000 Rijeka, Croatia;
- Department of Nephrology, Dialysis and Transplantation, University Hospital Center Rijeka, 10000 Rijeka, Croatia
| | - Tonko Gulin
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Nephrology and Arterial Hypertension, University Hospital Center “Sestre Milosrdnice”, 10000 Zagreb, Croatia
| | - Jelena Muslim
- Medikol Polyclinic, 10000 Zagreb, Croatia; (V.B.); (J.M.)
| | - Matko Gulin
- Department of Radiology, University Hospital Center “Sestre Milosrdnice”, 10000 Zagreb, Croatia;
| | - Mladen Grgurević
- Department of Diabetes, Endocrinology and Metabolic Diseases Vuk Vrhovac, Merkur University Hospital, 10000 Zagreb, Croatia;
| | | |
Collapse
|
5
|
Park J, Jung JH, Park H, Song YS, Kim SK, Cho YW, Han K, Kim KS. Association between exercise habits and incident type 2 diabetes mellitus in patients with thyroid cancer: nationwide population-based study. BMC Med 2024; 22:251. [PMID: 38886720 PMCID: PMC11184752 DOI: 10.1186/s12916-024-03472-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND We investigated the association between exercise habits before or after thyroidectomy and incident type 2 diabetes mellitus (T2DM) in patients with thyroid cancer. METHODS An observational cohort study of 69,526 thyroid cancer patients who underwent thyroidectomy for the treatment of thyroid cancer between 2010 and 2016 was performed using the Korean National Health Information Database. Regular exercise was defined as mid-term or vigorous exercise at least 1 day in a week based on a self-reported questionnaire. Patients were divided into four groups according to exercise habits before and after thyroidectomy: persistent non-exercisers, new exercisers, exercise dropouts, and exercise maintainers. RESULTS During a median follow-up of 4.5 years, 2,720 (3.91%) patients developed T2DM. The incidence of T2DM per 1,000 person years was lower in patients who performed regular exercise before or after thyroidectomy than in persistent non-exercisers (10.77 in persistent non-exerciser group, 8.28 in new exerciser group, 8.59 in exercise dropout group, and 7.61 in exercise maintainer group). Compared with the persistent non-exerciser group, the new exerciser group (hazard ratio [HR] 0.87, 95% confidence interval [CI] 0.78-0.97), the exercise dropout group (HR 0.81, 95% CI 0.72-0.91), and the exercise maintainer group (HR 0.84, 95% CI 0.76-0.93) had lower risks of incident T2DM. Exercising < 1,500 MET-minutes/week in the exercise maintainer group was associated with a lower risk of incident T2DM compared with persistent non-exercisers (< 500: HR 0.80, 95% CI 0.67-0.96, P = 0.002; 500 to < 1,000: HR 0.81, 95% CI 0.71-0.93, P < 0.001; 1,000 to < 1,500: HR 0.81, 95% CI 0.69-0.94, P < 0.001). CONCLUSIONS Regular exercise before or after thyroidectomy was associated with a lower risk of incident T2DM in patients with thyroid cancer.
Collapse
Affiliation(s)
- Jiyun Park
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam, 13496, Republic of Korea
| | - Jin-Hyung Jung
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hyunju Park
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam, 13496, Republic of Korea
| | - Young Shin Song
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soo-Kyung Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam, 13496, Republic of Korea
| | - Yong-Wook Cho
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam, 13496, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Kyung-Soo Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam, 13496, Republic of Korea.
| |
Collapse
|
6
|
Annicchiarico A, Barile B, Buccoliero C, Nicchia GP, Brunetti G. Alternative therapeutic strategies in diabetes management. World J Diabetes 2024; 15:1142-1161. [PMID: 38983831 PMCID: PMC11229975 DOI: 10.4239/wjd.v15.i6.1142] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/17/2024] [Accepted: 04/12/2024] [Indexed: 06/11/2024] Open
Abstract
Diabetes is a heterogeneous metabolic disease characterized by elevated blood glucose levels resulting from the destruction or malfunction of pancreatic β cells, insulin resistance in peripheral tissues, or both, and results in a non-sufficient production of insulin. To adjust blood glucose levels, diabetic patients need exogenous insulin administration together with medical nutrition therapy and physical activity. With the aim of improving insulin availability in diabetic patients as well as ameliorating diabetes comorbidities, different strategies have been investigated. The first approaches included enhancing endogenous β cell activity or transplanting new islets. The protocol for this kind of intervention has recently been optimized, leading to standardized procedures. It is indicated for diabetic patients with severe hypoglycemia, complicated by impaired hypoglycemia awareness or exacerbated glycemic lability. Transplantation has been associated with improvement in all comorbidities associated with diabetes, quality of life, and survival. However, different trials are ongoing to further improve the beneficial effects of transplantation. Furthermore, to overcome some limitations associated with the availability of islets/pancreas, alternative therapeutic strategies are under evaluation, such as the use of mesenchymal stem cells (MSCs) or induced pluripotent stem cells for transplantation. The cotransplantation of MSCs with islets has been successful, thus providing protection against proinflammatory cytokines and hypoxia through different mechanisms, including exosome release. The use of induced pluripotent stem cells is recent and requires further investigation. The advantages of MSC implantation have also included the improvement of diabetes-related comorbidities, such as wound healing. Despite the number of advantages of the direct injection of MSCs, new strategies involving biomaterials and scaffolds have been developed to improve the efficacy of mesenchymal cell delivery with promising results. In conclusion, this paper offered an overview of new alternative strategies for diabetes management while highlighting some limitations that will need to be overcome by future approaches.
Collapse
Affiliation(s)
- Alessia Annicchiarico
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Cinzia Buccoliero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| |
Collapse
|
7
|
Al-Mhanna SB, Batrakoulis A, Mohamed M, Alkhamees NH, Sheeha BB, Ibrahim ZM, Aldayel A, Muhamad AS, Rahman SA, Afolabi HA, Zulkifli MM, Hafiz Bin Hanafi M, Abubakar BD, Rojas-Valverde D, Ghazali WSW. Home-based circuit training improves blood lipid profile, liver function, musculoskeletal fitness, and health-related quality of life in overweight/obese older adult patients with knee osteoarthritis and type 2 diabetes: a randomized controlled trial during the COVID-19 pandemic. BMC Sports Sci Med Rehabil 2024; 16:125. [PMID: 38831437 PMCID: PMC11145895 DOI: 10.1186/s13102-024-00915-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND There is strong evidence showing the association between obesity, type 2 diabetes mellitus (T2DM), and knee pain resulting from osteoarthritis. Regular exercise has been reported as a foundational piece of the preventive therapy puzzle for knee osteoarthritis (KOA) patients. Nonetheless, evidence-based exercise protocols for people with comorbidities, such as obesity, T2DM, and KOA are limited. Therefore, the present trial aimed to assess the effectiveness of a 12-week home-based circuit training (HBCT) protocol on various indices related to cardiometabolic health, musculoskeletal fitness, and health-related quality of life (HRQoL) among overweight/obese older adult patients with KOA and T2DM during the COVID-19 lockdown. METHODS This is a randomized controlled trial study registered at the National Medical Research Register (ID: RSCH ID-21-01180-KGTNMRR ID-21-02367-FUM) and obtained approval on December 9, 2021. Seventy overweight or obese patients with KOA and T2DM (62.2 ± 6.1 years; 56% female) were randomly assigned to the intervention group (n = 35, HBCT) or the no-exercise control group (n = 35, CON). HBCT performed a 12-week progressive protocol (seven exercises; 15-30 repetitions per exercise, 1 min passive rest between exercises; 2-4 rounds per session; 20-60 min total session duration). Blood samples were collected, and assays were performed to assess the lipid profile, liver function, and fasting blood glucose (FBG). In addition, the 30-s Chair Stand Test (30CST) was used to evaluate lower body muscular strength and endurance while the Timed Up and Go (TUG) test was used to evaluate lower limb function, mobility, and the risk of falls for all the participants. HRQoL was assessed using the Osteoarthritis Knee and Hip Quality of Life (OAKHQoL). All the assessments were conducted at pre-, mid-, and post-training stages during the application or practice of the exercise protocol, rather than during the training sessions themselves. RESULTS HBCT significantly reduced total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), aminotransferase, alanine aminotransferase, FBG and knee pain (p < 0.05). Furthermore, HBCT induced meaningful increases in high-density lipoprotein (HDL-C), lower body muscular strength, endurance, function, mobility, and HRQoL in overweight/obese older adults with T2DM and KOA (p < 0.05). CONCLUSION The present outcomes recommend that an injury-free HBCT program may improve various indicators related to cardiometabolic health, musculoskeletal fitness, and HRQoL in elderly with overweight/obesity, T2DM and KOA. These findings offer valuable insights for clinicians and practitioners seeking evidence-based exercise interventions tailored for patients managing substantial metabolic and musculoskeletal health challenges in clinical practice.
Collapse
Affiliation(s)
- Sameer Badri Al-Mhanna
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India.
| | - Alexios Batrakoulis
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science and Dietetics, University of Thessaly, Trikala, Greece
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Nouf H Alkhamees
- Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Bodor Bin Sheeha
- Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Zizi M Ibrahim
- Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
- Department of Physical Therapy for Surgery, Faculty of Physical Therapy, Cairo University, Cairo, Egypt
| | - Abdulaziz Aldayel
- Department of Exercise Physiology, King Saud University, Riyadh, Saudi Arabia
| | - Ayu Suzailiana Muhamad
- Exercise and Sports Science Program, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Shaifuzain Ab Rahman
- Department of Orthopaedic, Hospital University Sains Malaysia, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Hafeez Abiola Afolabi
- Department of General Surgery, School of Medical Sciences, Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Maryam Mohd Zulkifli
- Department of Family Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Muhammad Hafiz Bin Hanafi
- Rehabilitation Medicine Unit, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Bishir Daku Abubakar
- Department of Human Physiology, Federal University Dutse, Dutse, Jigawa State, Nigeria
| | - Daniel Rojas-Valverde
- Centro de Investigación y Diagnóstico en Salud y Deporte, Escuela Ciencias del Movimiento Humano y Calidad de Vida Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Wan Syaheedah Wan Ghazali
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
8
|
Pratt-Phillips S. Effect of Exercise Conditioning on Countering the Effects of Obesity and Insulin Resistance in Horses-A Review. Animals (Basel) 2024; 14:727. [PMID: 38473112 DOI: 10.3390/ani14050727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Obesity is an important health concern in horses, along with humans and companion animals. Adipose tissue is an inflammatory organ that alters the insulin-signaling cascade, ultimately causing insulin dysregulation and impaired glucose metabolism. These disruptions can increase the risk of metabolic disease and laminitis in horses and may also impact energy metabolism during exercise. A single bout of exercise, along with chronic exercise conditioning, increases insulin sensitivity and glucose disposal via both contraction- and insulin-mediated glucose uptake pathways. Regular exercise also increases calorie expenditure, which can facilitate weight (as body fat) loss. This paper explores the metabolic pathways affected by adiposity, as well as discusses the impact of exercise on insulin metabolism in horses.
Collapse
|
9
|
ElSayed NA, Aleppo G, Bannuru RR, Beverly EA, Bruemmer D, Collins BS, Darville A, Ekhlaspour L, Hassanein M, Hilliard ME, Johnson EL, Khunti K, Lingvay I, Matfin G, McCoy RG, Perry ML, Pilla SJ, Polsky S, Prahalad P, Pratley RE, Segal AR, Seley JJ, Stanton RC, Gabbay RA. 5. Facilitating Positive Health Behaviors and Well-being to Improve Health Outcomes: Standards of Care in Diabetes-2024. Diabetes Care 2024; 47:S77-S110. [PMID: 38078584 PMCID: PMC10725816 DOI: 10.2337/dc24-s005] [Citation(s) in RCA: 103] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, an interprofessional expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
10
|
Tomaç H, Malkoç M, Angın E. A pilot study of the effects of supervised exercise training on body composition, cardiometabolic risk factors, muscle strength and functional capacity in individuals with bariatric surgery. Heliyon 2023; 9:e19032. [PMID: 37649847 PMCID: PMC10462818 DOI: 10.1016/j.heliyon.2023.e19032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
The main objective of this pilot study was to evaluate the effects of functional exercise training (FET) and home exercise training (HET) on body composition, cardiometabolic risk factors, muscle strength, and functional capacity in individuals with bariatric surgery. The sample of the study included 30 individuals who underwent bariatric surgery. The FET group had functional exercise training consisting of stretching, aerobic, strengthening, and balance exercises assigned by a physiotherapist (n = 15), and the HET group had the same exercises under supervision (n = 15). The training sessions were planned as × 3 per week for a period of 8 weeks. Body composition, cardiometabolic risk factors, cardiometabolic risk status, muscle strength, and functional capacity of all individuals were evaluated before and after training. According to the measurements, body weight (BW), body mass index (BMI), body fat mass (BFM), C-reactive protein, glycated hemoglobin, insulin resistance, cardiovascular risk total score, and ten-year cardiovascular percentage risk decreased significantly (p < 0.05), while HDL-C, leg, back, and hand grip strength (right-left), and walking distance increased significantly (p < 0.05) in the FET group. In the HET group, there were significant increases in body fat percentage (BFM %), BFM, and body muscle mass percentage (BMM %) (p < 0.05), while body muscle mass (BMM), right hand grip strength, leg and back muscle strength, and walking distance scores significantly decreased (p < 0.05). It was concluded that personalized and supervised FET has a positive effect on body composition, cardiometabolic risk factors, muscle strength, and functional capacity, and it can be recommended as a safe exercise model for bariatric surgery patients.
Collapse
Affiliation(s)
- Hayriye Tomaç
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Eastern Mediterranean University, Famagusta, Northern Cyprus, Mersin 10, Turkey
| | - Mehtap Malkoç
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Eastern Mediterranean University, Famagusta, Northern Cyprus, Mersin 10, Turkey
| | - Ender Angın
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Eastern Mediterranean University, Famagusta, Northern Cyprus, Mersin 10, Turkey
| |
Collapse
|
11
|
Lohkamp KJ, van den Hoek AM, Solé-Guardia G, Lisovets M, Alves Hoffmann T, Velanaki K, Geenen B, Verweij V, Morrison MC, Kleemann R, Wiesmann M, Kiliaan AJ. The Preventive Effect of Exercise and Oral Branched-Chain Amino Acid Supplementation on Obesity-Induced Brain Changes in Ldlr−/−.Leiden Mice. Nutrients 2023; 15:nu15071716. [PMID: 37049556 PMCID: PMC10097391 DOI: 10.3390/nu15071716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Exercise and dietary interventions are promising approaches to tackle obesity and its obesogenic effects on the brain. We investigated the impact of exercise and possible synergistic effects of exercise and branched-chain amino acids (BCAA) supplementation on the brain and behavior in high-fat-diet (HFD)-induced obese Ldlr−/−.Leiden mice. Baseline measurements were performed in chow-fed Ldlr−/−.Leiden mice to assess metabolic risk factors, cognition, and brain structure using magnetic resonance imaging. Thereafter, a subgroup was sacrificed, serving as a healthy reference. The remaining mice were fed an HFD and divided into three groups: (i) no exercise, (ii) exercise, or (iii) exercise and dietary BCAA. Mice were followed for 6 months and aforementioned tests were repeated. We found that exercise alone changed cerebral blood flow, attenuated white matter loss, and reduced neuroinflammation compared to non-exercising HFD-fed mice. Contrarily, no favorable effects of exercise on the brain were found in combination with BCAA, and neuroinflammation was increased. However, cognition was slightly improved in exercising mice on BCAA. Moreover, BCAA and exercise increased the percentage of epididymal white adipose tissue and muscle weight, decreased body weight and fasting insulin levels, improved the circadian rhythm, and transiently improved grip strength. In conclusion, BCAA should be supplemented with caution, although beneficial effects on metabolism, behavior, and cognition were observed.
Collapse
Affiliation(s)
- Klara J. Lohkamp
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Anita M. van den Hoek
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands; (A.M.v.d.H.); (M.C.M.); (R.K.)
| | - Gemma Solé-Guardia
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Maria Lisovets
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Talissa Alves Hoffmann
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Konstantina Velanaki
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Bram Geenen
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Vivienne Verweij
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Martine C. Morrison
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands; (A.M.v.d.H.); (M.C.M.); (R.K.)
| | - Robert Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands; (A.M.v.d.H.); (M.C.M.); (R.K.)
| | - Maximilian Wiesmann
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Amanda J. Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
- Correspondence:
| |
Collapse
|
12
|
Zhang Y, Han H, Lv J, Chu L. Association of mobile phone usage time with incidence of diabetic retinopathy in type 2 diabetes: a prospective cohort study. Endocr J 2023; 70:305-313. [PMID: 36477377 DOI: 10.1507/endocrj.ej22-0431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We prospectively analyzed the association between mobile phone usage time and the incidence of diabetic retinopathy (DR) in type 2 diabetes (T2D) among participants.We included a total of 4,371 patients with T2D among the participants. Mobile phone usage time was quantified at baseline by summing up the hours spent on mobile phone use. The types of mobile phone usage time in our study include game time, TikTok time, WeChat time, watching movies or reading time, and online shopping time. We categorized patients into four groups according to different mobile phone usage time: ≤1.5 h/day (n = 1,101), 1.6-3.5 h/day (n = 1,098), 3.6-7.5 h/day (n = 1,095), and >7.6 h/day (n = 1,077). Fundus photography was performed every year from January 2012 to January 2020. During a follow-up of 8 years, 1,119 were affected by DR, resulting in an overall incidence of 25.6%. The incidences of mild nonproliferative DR (NPDR), moderate NPDR, severe NPDR, and proliferative DR (PDR) were 10.1%, 5.1%, 5.1%, and 5.2%, respectively. In comparisons with participants in the lowest category (≤1.5 h/day), the hazard ratios (HRs) of DR were 1.19 (95% confidence interval [CI] 1.07, 1.31, p = 0.040) for 1.6-3.5 h/day, 1.60 (95% CI 1.40, 1.81, p < 0.001) for 3.6-7.5 h/day, and 1.85 (95% CI 1.61, 2.09, p < 0.001) for >7.6 h/day, respectively. Our results provide the general population with a feasible and practical alternative for the reduction of mobile phone use behavior time and new measures to prevent the occurrence of DR.
Collapse
Affiliation(s)
- Yongwen Zhang
- Department of Endocrinology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing 210014, China
| | - Huanhuan Han
- Department of Endocrinology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing 210014, China
| | - Jie Lv
- Department of Ophthalmology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing 210014, China
| | - Lanfang Chu
- Department of Integrated Traditional Chinese and Western Medicine, General Hospital of Eastern Theater Command, PLA, Nanjing 210012, China
| |
Collapse
|
13
|
Kaikkonen KM, Korpelainen R, Vanhala ML, Keinänen-Kiukaanniemi SM, Korpelainen JT. Long-term effects on weight loss and maintenance by intensive start with diet and exercise. Scand J Med Sci Sports 2023; 33:246-256. [PMID: 36371700 DOI: 10.1111/sms.14269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/16/2022] [Accepted: 10/13/2022] [Indexed: 11/14/2022]
Abstract
This 36-month study aimed to determine whether exercise intervention added to weight loss treatment in the beginning or at 6 months is effective for weight loss and long-term weight maintenance. A total of 120 obese adults (body mass index >30) were randomly assigned to intensified behavioral modification (iBM), iBM+ additional exercise from 0 to 3 months (CWT1), iBM+ additional exercise from 6 to 9 months (CWT2), and a control group (CON). Questionnaires and measurements were collected at baseline, 3, 9, 24, and 36 months. The intervention consisted of an 12 months intensified weight-loss period followed by a 24 months weight-maintenance period. Eighty (67%) subjects (mean age 46.0 years, BMI 36.2) completed the trial. Compared with the control group, all three intervention groups had significant weight loss during the 36-month intervention period (p < 0.001). The achieved weight loss remained significant at 36 months in the iBM (-6.8%, p < 0.001), the CWT1 (-5.8%, p < 0.001), and the CWT2 group (-3.9%, p < 0.001). The CWT1 group showed significant reduction in waist circumference at 9 months (-11.3 cm, p < 0.001), at 24 months (-8.8 cm, p < 0.001), and at 36 months (-8.7 cm, p < 0.001). Intensified behavioral modification alone and with exercise resulted in clinically significant weight loss and long-term weight maintenance. The addition of exercise at the onset promoted greater reductions in waist circumference. In the treatment of obesity, including severe obesity, more intensive lifestyle interventions with exercise should be incorporated.
Collapse
Affiliation(s)
- Kaisu M Kaikkonen
- Department of Sports and Exercise Medicine, Oulu Deaconess Institute Foundation sr., Oulu, Finland.,Research Unit of Population Health, University of Oulu, Faculty of Medicine, Oulu, Finland.,Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Raija Korpelainen
- Department of Sports and Exercise Medicine, Oulu Deaconess Institute Foundation sr., Oulu, Finland.,Research Unit of Population Health, University of Oulu, Faculty of Medicine, Oulu, Finland.,Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Marja L Vanhala
- Department of Sports and Exercise Medicine, Oulu Deaconess Institute Foundation sr., Oulu, Finland
| | - Sirkka M Keinänen-Kiukaanniemi
- Research Unit of Population Health, University of Oulu, Faculty of Medicine, Oulu, Finland.,Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.,Unit of Primary Health Care, Oulu University Hospital, Oulu, Finland
| | - Juha T Korpelainen
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
14
|
Chrysant SG, Chrysant GS. Association of physical activity and trajectories of physical activity with cardiovascular disease. Expert Rev Cardiovasc Ther 2023; 21:87-96. [PMID: 36706273 DOI: 10.1080/14779072.2023.2174102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Prolonged sedentary life existence is associated with increased incidence of cardiovascular disease (CVD), coronary heart disease (CHD), obesity, type 2 diabetes mellitus (T2DM), hypertension, heart failure (HF), and all-cause mortality. On the contrary, regular exercise is known from antiquity to be associated with beneficial cardiovascular (CV) effects and decreased mortality. AREAS COVERED The cardiovascular (CV) benefits of exercise have been confirmed by many studies, but the trajectories of the different modes of PA are not well recognized. In order to examine the different modalities of exercise and its long-term trajectories, a Medline search of the English literature was conducted between 2015 and 2022 and 60 pertinent papers were selected for review. EXPERT OPINION Careful review of the selected papers showed that the beneficial CV effects of PA are mediated through several favorable modifications of molecular and clinical factors. Also, any type of physical activity in conjunction with lifestyle adjustments is associated with decreased incidence of CVD, CHD, obesity, T2DM, hypertension, HF, and all-cause mortality. In addition, the long-term trajectories regarding the duration and the level of exercise are associated with greater beneficial CV effects, with even the resumption of discontinued exercise can lead to beneficial CV effects.
Collapse
Affiliation(s)
- Steven G Chrysant
- Department of Cardiology, University of Oklahoma Health Sciences Center and INTEGRIS Baptist Medical Center, Oklahoma City, OK, USA
| | - George S Chrysant
- Department of Cardiology, University of Oklahoma Health Sciences Center and INTEGRIS Baptist Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
15
|
Hejazi K, Wong A. Effects of exercise training on inflammatory and cardiometabolic health markers in overweight and obese adults: a systematic review and meta-analysis of randomized controlled trials. J Sports Med Phys Fitness 2023; 63:345-359. [PMID: 35816146 DOI: 10.23736/s0022-4707.22.14103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The improvements in inflammation and cardiometabolic health play an important role in the prevention and treatment of obesity. However, the interactions between different exercise training (ET) modalities with inflammatory and cardiometabolic biomarkers are not completely understood. This systematic review and meta-analysis investigated the effects of ET on inflammatory and cardiometabolic health markers in overweight and obese adults. EVIDENCE ACQUISITION A systematic search was conducted in PubMed, CINAHL, MEDLINE, Cochrane, Google Scholar, Scopus and Web of Science up to December 15, 2021. Thirty-five studies including 2752 participants were included and analyzed using a random-effects model to estimate weighted mean differences (MD) with 95% confidence intervals (CI). EVIDENCE SYNTHESIS The meta-analysis found that ET significantly (P<0.05) increased adiponectin (WMD: 0.72 µg/mL; 95% CI: 0.60 to 0.84; SMD=0.65) and maximal oxygen consumption levels (WMD: 5.26 mL.kg.min; 95% CI: 3.84, 6.69; SMD=1.21). Moreover, ET significantly (P<0.05) reduced fasting insulin (WMD: -2.40 μIU/mL; 95% CI: -3.43 to -1.37; SMD=-0.87), fasting blood glucose (WMD: -5.41 mg/dL; 95% CI: -7.91, -2.91; SMD=-0.66), insulin resistance (WMD: -0.66; 95% CI: -1.08, -0.24; SMD=-0.66) and triglyceride levels (WMD: -10.88 mg/dL; 95% CI: -17.61, -4.15; SMD=-0.91). No significant changes were observed in interleukin-6, tumor necrosis factor-α, leptin, C-reactive protein and cholesterol concentrations. Subgroup analysis by type of training indicated that aerobic and resistance exercise had the most consistent beneficial effects as compared to other modalities. CONCLUSIONS Our findings suggest that ET may improve inflammation and cardiometabolic health in overweight and obese adults. Aerobic and resistance training appear to be more beneficial for improving adiponectin, fasting insulin, fasting blood glucose, insulin resistance index and triglyceride levels as compared to other exercise modalities. Further long-term studies are required to confirm and expand on these findings.
Collapse
Affiliation(s)
- Keyvan Hejazi
- Department of Physical Education and Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran -
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA, USA
| |
Collapse
|
16
|
ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, Collins BS, Hilliard ME, Isaacs D, Johnson EL, Kahan S, Khunti K, Leon J, Lyons SK, Perry ML, Prahalad P, Pratley RE, Seley JJ, Stanton RC, Young-Hyman D, Gabbay RA, on behalf of the American Diabetes Association. 5. Facilitating Positive Health Behaviors and Well-being to Improve Health Outcomes: Standards of Care in Diabetes-2023. Diabetes Care 2023; 46:S68-S96. [PMID: 36507648 PMCID: PMC9810478 DOI: 10.2337/dc23-s005] [Citation(s) in RCA: 190] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
17
|
Elliott AD, Verdicchio CV, Mahajan R, Middeldorp ME, Gallagher C, Mishima RS, Hendriks JML, Pathak RK, Thomas G, Lau DH, Sanders P. An Exercise and Physical Activity Program in Patients With Atrial Fibrillation: The ACTIVE-AF Randomized Controlled Trial. JACC Clin Electrophysiol 2022; 9:455-465. [PMID: 36752479 DOI: 10.1016/j.jacep.2022.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND There are limited data on the effect of exercise interventions on atrial fibrillation (AF) recurrence and symptoms. OBJECTIVES The aim of this study was to determine the efficacy of an exercise and physical activity intervention on AF burden and symptoms among patients with symptomatic AF. METHODS This prospective, randomized controlled trial included 120 patients with paroxysmal or persistent, symptomatic AF, randomized 1:1 to receive an exercise intervention, combining home and supervised aerobic exercise over 6 months, or to receive usual care. The coprimary outcomes were: 1) AF recurrence, off antiarrhythmic medications and without catheter ablation; and 2) symptom severity assessed by using a validated questionnaire. RESULTS By 12 months, freedom from AF was achieved in 24 (40%) of 60 patients in the exercise group and 12 (20%) of 60 patients in the control group (HR: 0.50: 95% CI: 0.33 to 0.78). At 6 months, AF symptom severity was lower in the exercise group compared with the control group (mean difference -2.3; 95% CI: -4.3 to -0.2; P = 0.033). This difference persisted at 12 months (-2.3; 95% CI: -4.5 to -0.1; P = 0.041). Total symptom burden was lower at 6 months in the exercise group but not at 12 months. Peak oxygen consumption was increased in the exercise group at both 6 and 12 months. There were no between-group differences in cardiac structure or function, body mass index, or blood pressure. CONCLUSIONS Participation in an exercise-based intervention over 6 months reduced arrhythmia recurrence and improved symptom severity among patients with AF. (A Lifestyle-based, PhysiCal AcTIVity IntErvention for Patients With Symptomatic Atrial Fibrillation [the ACTIVE-AF Study]; ACTRN12615000734561).
Collapse
Affiliation(s)
- Adrian D Elliott
- Centre for Heart Rhythm Disorders, University of Adelaide and South Australian Health & Medical Research Institute, Adelaide, Australia; Department of Cardiology, Royal Adelaide Hospital, Adelaide, Australia. https://twitter.com/Elliott_AD
| | - Christian V Verdicchio
- Centre for Heart Rhythm Disorders, University of Adelaide and South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Rajiv Mahajan
- Centre for Heart Rhythm Disorders, University of Adelaide and South Australian Health & Medical Research Institute, Adelaide, Australia; Department of Cardiology, Lyell McEwin Health Service, Adelaide, Australia
| | - Melissa E Middeldorp
- Centre for Heart Rhythm Disorders, University of Adelaide and South Australian Health & Medical Research Institute, Adelaide, Australia; Department of Cardiology, Royal Adelaide Hospital, Adelaide, Australia
| | - Celine Gallagher
- Centre for Heart Rhythm Disorders, University of Adelaide and South Australian Health & Medical Research Institute, Adelaide, Australia; Department of Cardiology, Royal Adelaide Hospital, Adelaide, Australia
| | - Ricardo S Mishima
- Centre for Heart Rhythm Disorders, University of Adelaide and South Australian Health & Medical Research Institute, Adelaide, Australia; Department of Cardiology, Royal Adelaide Hospital, Adelaide, Australia
| | - Jeroen M L Hendriks
- Centre for Heart Rhythm Disorders, University of Adelaide and South Australian Health & Medical Research Institute, Adelaide, Australia; Department of Cardiology, Royal Adelaide Hospital, Adelaide, Australia; Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, Australia
| | - Rajeev K Pathak
- Centre for Heart Rhythm Disorders, University of Adelaide and South Australian Health & Medical Research Institute, Adelaide, Australia; Canberra Heart Rhythm, Canberra Hospital, Canberra, Australia
| | - Gijo Thomas
- Centre for Heart Rhythm Disorders, University of Adelaide and South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Dennis H Lau
- Centre for Heart Rhythm Disorders, University of Adelaide and South Australian Health & Medical Research Institute, Adelaide, Australia; Department of Cardiology, Royal Adelaide Hospital, Adelaide, Australia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and South Australian Health & Medical Research Institute, Adelaide, Australia; Department of Cardiology, Royal Adelaide Hospital, Adelaide, Australia.
| |
Collapse
|
18
|
Lightbourne M, Startzell M, Bruce KD, Brite B, Muniyappa R, Skarulis M, Shamburek R, Gharib AM, Ouwerkerk R, Walter M, Eckel RH, Brown RJ. Volanesorsen, an antisense oligonucleotide to apolipoprotein C-III, increases lipoprotein lipase activity and lowers triglycerides in partial lipodystrophy. J Clin Lipidol 2022; 16:850-862. [PMID: 36195542 PMCID: PMC9771980 DOI: 10.1016/j.jacl.2022.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Partial lipodystrophy (PL) syndromes involve deficiency of adipose tissue, causing severe insulin resistance and hypertriglyceridemia. Apolipoprotein C-III (apoC-III) is elevated in PL and is thought to contribute to hypertriglyceridemia by inhibiting lipoprotein lipase (LPL). OBJECTIVE We hypothesized that volanesorsen, an antisense oligonucleotide to apoC-III, would decrease apoC-III, increase LPL activity, and lower triglycerides in PL. METHODS Five adults with PL enrolled in a 16-week placebo-controlled, randomized, double blind study of volanesorsen, 300 mg weekly, followed by 1-year open label extension. RESULTS Within-subject effects of volanesorsen before and after 16 weeks of active drug are reported due to small sample size. From week 0 to 16, apoC-III decreased from median (25th, 75th %ile) 380 (246, 600) to 75 (26, 232) ng/mL, and triglycerides decreased from 503 (330, 1040) to 116 (86, 355) mg/dL while activation of LPL by subjects' serum increased from 21 (20, 25) to 36 (29, 42) nEq/mL*min. Although, A1c did not change, peripheral and hepatic insulin sensitivity (glucose disposal and suppression of glucose production during hyperinsulinemic clamp) increased and palmitate turnover decreased. After 32-52 weeks of volanesorsen, liver fat decreased. Common adverse events included injection site reactions and decreased platelets. CONCLUSIONS In PL, volanesorsen decreased apoC-III and triglycerides, in part through an LPL dependent mechanism, and may improve insulin resistance and hepatic steatosis.
Collapse
Affiliation(s)
- Marissa Lightbourne
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Megan Startzell
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kimberley D Bruce
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brianna Brite
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ranganath Muniyappa
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Monica Skarulis
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert Shamburek
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ahmed M Gharib
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ronald Ouwerkerk
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mary Walter
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert H Eckel
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rebecca J Brown
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
19
|
Abedelmalek S, Aloui K, Boussetta N, Alahmadi B, Zouch M, Chtourou H, Souissi N. Does Opuntia ficus-indica Juice Supplementation Improve Biochemical and Cardiovascular Response to a 6-Minute Walk Test in Type 2 Diabetic Patients? MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1561. [PMID: 36363518 PMCID: PMC9696711 DOI: 10.3390/medicina58111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/11/2022]
Abstract
Background and objectives: The purpose of this study was to evaluate the effect of Opuntia ficus-indica juice (OFIJ) on performance and biochemical and physiological responses to a 6 min walking test (6MWT) in diabetic patients. Materials and Methods: Twenty diabetic patients performed a 6MWT at 07:00 h. During each test session, they were asked to drink 70 mL/day of natural OFIJ or placebo (PLA) for 4 days. Results: the results showed that cardiovascular parameters increased significantly after the 6MWT under both conditions. While, cortisol, HbA1c, cholesterol total (CT), triglycerides (TG), as well as low-density lipoprotein (LDL) were not modified between without and with supplementation. Likewise, no significant variation in performance was observed for PLA and OFIJ (p > 0.05). The cardiovascular parameters (heart rate max (HRmax), diastolic blood pressure (DBP), and systolic blood pressure (SBP)), lipid profile (CT, TG, LDL, and high-density lipoprotein HDL), hormonal parameters (insulin and glucagon), HbA1c and lactate ([La]) did not present any significant modification either between PLA or OFIJ (p > 0.05). Muscle-damage markers (creatine kinase (CK) and lactate dehydrogenase (LDH)], cortisol, and liver parameters (i.e., oxidative stress marker, γGT, and total bilirubin) as well as glucose (GLC) were affected by supplementation (p < 0.05) before and after the 6MWT, but this change was significant only for OFIJ (p < 0.05). Conclusion: OFIJ had an antioxidant capacity, improved performance of the 6MWT, and reduced muscle-damage markers and glucose level in type 2 diabetic patients.
Collapse
Affiliation(s)
- Salma Abedelmalek
- Laboratory of Physiology and Functional Exploration, Faculty of Medicine, Sousse 4002, Tunisia
- Department of Sport Science and Physical Activity, College of Education, University of Ha’il, Hail 55255, Saudi Arabia
| | - Khouloud Aloui
- Physical Activity, Sport, and Health, UR18JS01, National Observatory of Sport, Tunis 1003, Tunisia
| | - Nesrine Boussetta
- Physical Activity, Sport, and Health, UR18JS01, National Observatory of Sport, Tunis 1003, Tunisia
| | - Bayan Alahmadi
- Department of Sport Science and Physical Activity, College of Education, University of Ha’il, Hail 55255, Saudi Arabia
| | - Mohamed Zouch
- Laboratory of Physiology and Functional Exploration, Faculty of Medicine, Sousse 4002, Tunisia
- Department of Sport Science and Physical Activity, College of Education, University of Ha’il, Hail 55255, Saudi Arabia
| | - Hamdi Chtourou
- Physical Activity, Sport, and Health, UR18JS01, National Observatory of Sport, Tunis 1003, Tunisia
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia
| | - Nizar Souissi
- Physical Activity, Sport, and Health, UR18JS01, National Observatory of Sport, Tunis 1003, Tunisia
| |
Collapse
|
20
|
Schubert-Olesen O, Kröger J, Siegmund T, Thurm U, Halle M. Continuous Glucose Monitoring and Physical Activity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12296. [PMID: 36231598 PMCID: PMC9564842 DOI: 10.3390/ijerph191912296] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Continuous glucose monitoring (CGM) use has several potential positive effects on diabetes management. These benefits are, e.g., increased time in range (TIR), optimized therapy, and developed documentation. Physical activity is a recommended intervention tool in diabetes management, especially for people with type 2 diabetes (T2D). The benefits of physical activity for people with diabetes can be seen as an improvement of glycemic control, glycemic variability, and the reduction of insulin resistance. In relation to the physical activity of people with T2D, the benefits of CGM use can even be increased, and CGM can be a helpful tool to prevent adverse events due to physical activity of people with diabetes, such as hypoglycemic events and nocturnal hypoglycemia after sports. This narrative review aims to provide solid recommendations for the use of CGM in everyday life physical activities based on the noted benefits and to give a general overview of the guidelines on physical activity and CGM use for people with diabetes.
Collapse
Affiliation(s)
| | - Jens Kröger
- Center of Digital Diabetology Hamburg, 21029 Hamburg, Germany
| | - Thorsten Siegmund
- Diabetes, Hormones and Metabolism Center, Private Practice at the Isar Clinic, 80331 Munich, Germany
| | - Ulrike Thurm
- IDAA, Diabetic Athletes Association, 12621 Berlin, Germany
| | - Martin Halle
- Department of Preventive Sports Medicine and Sports Cardiology, University Hospital Klinikum Rechts der Isar, Technical University of Munich, 80992 Munich, Germany
| |
Collapse
|
21
|
Si K, Hu Y, Wang M, Apovian CM, Chavarro JE, Sun Q. Weight loss strategies, weight change, and type 2 diabetes in US health professionals: A cohort study. PLoS Med 2022; 19:e1004094. [PMID: 36166473 PMCID: PMC9514663 DOI: 10.1371/journal.pmed.1004094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/17/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Weight loss is crucial for disease prevention among individuals with overweight or obesity. This study aimed to examine associations of weight loss strategies (WLSs) with weight change and type 2 diabetes (T2D) risk among US health professionals. METHODS AND FINDINGS This study included 93,110 participants (24 to 60 years old; 11.6% male) from the Nurses' Health Study (NHS), NHSII, and Health Professionals Follow-Up Study (HPFS) cohorts who were free of T2D, cardiovascular disease, and cancer at baseline (1988 for NHS/HPFS and 1989 for NHSII) for analyses of weight change and 104,180 (24 to 78 years old; 14.2% male) for T2D risk assessment. WLSs used to achieve an intentional weight loss of 4.5+ kg were collected in 1992 (NHS/HPFS)/1993 (NHSII) and grouped into 7 mutually exclusive categories, including low-calorie diet, exercise, low-calorie diet and exercise, fasting, commercial weight loss program (CWLP), diet pills, and FCP (selected at least 2 methods from fasting, CWLP, and pill). The reference group was participants who did not attempt to lose weight. Generalized estimating equations and Cox regression were applied to estimate up to 10-year weight change trajectory and incident T2D risk through 2016 (NHS/HPFS)/2017 (NHSII), respectively. The associations of WLSs with weight change and T2D risk were differential by baseline body weight (Pinteraction < 0.01). Among individuals with obesity, all WLSs tended to associate with less weight gain [ranging from -4.2% (95% confidence interval (CI), -5.1% to -3.2%; P < 0.001) for exercise to -0.3% (-1.2% to 0.7%; P > 0.99) for FCP] and a lower T2D risk [hazard ratios (HRs) ranging from 0.79 (0.66 to 0.95; P = 0.04) for exercise to 0.87 (0.66 to 1.13; P = 0.30) for pill]. Such a pattern was less clear among overweight individuals: the difference of weight change varied from -2.5% (-3.0% to -2.1%; P < 0.001) for exercise to 2.0% (1.3% to 2.7%; P < 0.001) for FCP, and HRs of T2D varied from 0.91 (0.77 to 1.07; P = 0.29) for exercise to 1.42 (1.11 to 1.81; P = 0.02) for pill. The pattern was further inverted among lean individuals in that weight change ranged from -0.4% (-0.6% to -0.1%; P = 0.02) for exercise to 3.7% (3.1% to 4.3%; P < 0.001) for FCP, and the HRs of T2D ranged from 1.09 (0.91 to 1.30; P = 0.33) for exercise to 1.54 (1.13 to 2.10; P = 0.008) for pill. Approximately 15.6% to 46.8% of the association between WLSs and the T2D risk was attributed to weight changes. This study was limited by a single assessment of WLSs, heterogeneity within each WLS, and potential misclassification of the timing of weight loss and weight regain. CONCLUSIONS The current study showed that individuals with obesity who attempted to lose weight, regardless of the WLSs used, tended to gain less body weight and have a lower diabetes risk. In contrast, lean individuals who intentionally lost weight tended to gain more weight and have a higher diabetes risk. These data support the notion that intentional weight loss may not be beneficial for lean individuals and the use of WLSs for achieving weight loss shall be guided by medical indications only.
Collapse
Affiliation(s)
- Keyi Si
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Yang Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Caroline M. Apovian
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jorge E. Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
22
|
Promoting Physical Activity and Reducing Sedentary Behavior to Prevent Chronic Diseases during the COVID Pandemic and Beyond. J Clin Med 2022; 11:jcm11164666. [PMID: 36012905 PMCID: PMC9410464 DOI: 10.3390/jcm11164666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
|
23
|
Oldham D, Wang H, Mullen J, Lietzke E, Sprenger K, Reigan P, Eckel RH, Bruce KD. Using Synthetic ApoC-II Peptides and nAngptl4 Fragments to Measure Lipoprotein Lipase Activity in Radiometric and Fluorescent Assays. Front Cardiovasc Med 2022; 9:926631. [PMID: 35911520 PMCID: PMC9329559 DOI: 10.3389/fcvm.2022.926631] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Lipoprotein lipase (LPL) plays a crucial role in preventing dyslipidemia by hydrolyzing triglycerides (TGs) in packaged lipoproteins. Since hypertriglyceridemia (HTG) is a major risk factor for cardiovascular disease (CVD), the leading cause of death worldwide, methods that accurately quantify the hydrolytic activity of LPL in clinical and pre-clinical samples are much needed. To date, the methods used to determine LPL activity vary considerably in their approach, in the LPL substrates used, and in the source of LPL activators and inhibitors used to quantify LPL-specific activity, rather than other lipases, e.g., hepatic lipase (HL) or endothelial lipase (EL) activity. Here, we describe methods recently optimized in our laboratory, using a synthetic ApoC-II peptide to activate LPL, and an n-terminal Angiopoietin-Like 4 fragment (nAngptl4) to inhibit LPL, presenting a cost-effective and reproducible method to measure LPL activity in human post-heparin plasma (PHP) and in LPL-enriched heparin released (HR) fractions from LPL secreting cells. We also describe a modified version of the triolein-based assay using human serum as a source of endogenous activators and inhibitors and to determine the relative abundance of circulating factors that regulate LPL activity. Finally, we describe how an ApoC-II peptide and nAngptl4 can be applied to high-throughput measurements of LPL activity using the EnzChek™ fluorescent TG analog substrate with PHP, bovine LPL, and HR LPL enriched fractions. In summary, this manuscript assesses the current methods of measuring LPL activity and makes new recommendations for measuring LPL-mediated hydrolysis in pre-clinical and clinical samples.
Collapse
Affiliation(s)
- Dean Oldham
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Hong Wang
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Juliet Mullen
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Emma Lietzke
- Department of Chemical Engineering, University of Colorado Boulder, Boulder, CO, United States
| | - Kayla Sprenger
- Department of Chemical Engineering, University of Colorado Boulder, Boulder, CO, United States
| | - Philip Reigan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Robert H. Eckel
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kimberley D. Bruce
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: Kimberley D. Bruce,
| |
Collapse
|
24
|
Darmian MA, Hoseini R, Amiri E, Golshani S. Downregulated hs-CRP and MAD, upregulated GSH and TAC, and improved metabolic status following combined exercise and turmeric supplementation: a clinical trial in middle-aged women with hyperlipidemic type 2 diabetes. J Diabetes Metab Disord 2022; 21:275-283. [PMID: 35106289 PMCID: PMC8795726 DOI: 10.1007/s40200-022-00970-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/31/2021] [Indexed: 12/30/2022]
Abstract
Background Aerobic training (AT) and Turmeric Supplementation (TS) are known to exert multiple beneficial effects including metabolic status and Oxidative Stress. To our knowledge, data on the effects of AT and TS on metabolic status and oxidative stress biomarkers related to inflammation in subjects with Hyperlipidemic Type 2 Diabetes Mellitus (HT2DM) are scarce. Objectives This study was conducted to evaluate the effects of AT and TS on metabolic status and oxidative stress biomarkers related to inflammation in subjects with HT2DM. Methods This randomized single-blinded, placebo-controlled trial was conducted among 42 subjects with HT2DM, aged 45-60 years old. Participants were randomly assigned to four groups; AT+TS (n = 11), AT+placebo (AT; n = 10), TS (n = 11), and Control+placebo (C; n = 10). The AT program consisted of 60-75% of Maximum heart rate (HRmax), 20-40 min/day, three days/week for eight weeks. The participants in the TS group consumed three 700 mg capsules/day containing turmeric powder for eight weeks. Metabolic status and oxidative stress biomarkers were assessed at baseline and end of treatment. The data were analyzed through paired t-test and one-way analysis of variance (ANOVA) and Bonferroni post hoc test at the signification level of P < 0.05. Results After eight weeks, significant improvements were observed in metabolic status, oxidative stress biomarkers and high-sensitivity C-reactive protein (hs-CRP) in the AT+TS, TS, and AT compared to C. Additionally, a significant decrease of Metabolic Syndrome (MetS) Z scores (p = 0.001; p = 0.011), hs-CRP (p = 0.028; p = 0.041), Malondialdehyde (MAD) (p = 0.023; p = 0.001), and significantly higher Glutathione (GSH) (p = 0.003; p = 0.001), and Total Antioxidant Capacity (TAC) (p = 0.001; p = 0.001) compared to the AT and TS groups. The results also revealed a significant difference in terms of MetS Z scores (p = 0.001), hs-CRP (p = 0.018), MAD (p = 0.011), GSH (p = 0.001) and TAC (p = 0.025) between the AT and TS. Conclusions The findings suggest that AT+TS improves metabolic status, oxidative stress biomarkers, and hs-CRP more effectively compared to TS or AT in middle-aged females with T2DM and hyperlipidemia.
Collapse
Affiliation(s)
- Mahsa Ahmadi Darmian
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, No. 9, Taq Bostan, Kermanshah, Iran
| | - Rastegar Hoseini
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, No. 9, Taq Bostan, Kermanshah, Iran
| | - Ehsan Amiri
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, No. 9, Taq Bostan, Kermanshah, Iran
| | - Sanam Golshani
- Kermanshah University of Medical Sciences, Army Hospital No. 520, Kermanshah, Iran
| |
Collapse
|
25
|
Abstract
Physical activity and its sustained and purposeful performance-exercise-promote a broad and diverse set of metabolic and cardiovascular health benefits. Regular exercise is the most effective way to improve cardiorespiratory fitness, a measure of one's global cardiovascular, pulmonary and metabolic health, and one of the strongest predictors of future health risk. Here, we describe how exercise affects individual organ systems related to cardiometabolic health, including the promotion of insulin and glucose homeostasis through improved efficiency in skeletal muscle glucose utilization and enhanced insulin sensitivity; beneficial changes in body composition and adiposity; and improved cardiac mechanics and vascular health. We subsequently identify knowledge gaps that remain in exercise science, including heterogeneity in exercise responsiveness. While the application of molecular profiling technologies in exercise science has begun to illuminate the biochemical pathways that govern exercise-induced health promotion, much of this work has focused on individual organ systems and applied single platforms. New insights into exercise-induced secreted small molecules and proteins that impart their effects in distant organs ("exerkines") highlight the need for an integrated approach towards the study of exercise and its global effects; efforts that are ongoing.
Collapse
Affiliation(s)
| | - Prashant Rao
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
- Cardiovascular Research Center, Beth Israel Deaconess Medical Center, Boston, MA
| | - Jeremy M. Robbins
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
- Cardiovascular Research Center, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
26
|
Choi HK, McCormick N, Yokose C. Excess comorbidities in gout: the causal paradigm and pleiotropic approaches to care. Nat Rev Rheumatol 2022; 18:97-111. [PMID: 34921301 DOI: 10.1038/s41584-021-00725-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 02/07/2023]
Abstract
Gout is a common hyperuricaemic metabolic condition that leads to painful inflammatory arthritis and a high comorbidity burden, especially cardiometabolic-renal (CMR) conditions, including hypertension, myocardial infarction, stroke, obesity, hyperlipidaemia, type 2 diabetes mellitus and chronic kidney disease. Substantial advances have been made in our understanding of the excess CMR burden in gout, ranging from pathogenesis underlying excess CMR comorbidities, inferring causal relationships from Mendelian randomization studies, and potentially discovering urate crystals in coronary arteries using advanced imaging, to clinical trials and observational studies. Despite many studies finding an independent association between blood urate levels and risk of incident CMR events, Mendelian randomization studies have largely found that serum urate is not causal for CMR end points or intermediate risk factors or outcomes (such as kidney function, adiposity, metabolic syndrome, glycaemic traits or blood lipid concentrations). Although limited, randomized controlled trials to date in adults without gout support this conclusion. If imaging studies suggesting that monosodium urate crystals are deposited in coronary plaques in patients with gout are confirmed, it is possible that these crystals might have a role in the inflammatory pathogenesis of increased cardiovascular risk in patients with gout; removing monosodium urate crystals or blocking the inflammatory pathway could reduce this excess risk. Accordingly, data for CMR outcomes with these urate-lowering or anti-inflammatory therapies in patients with gout are needed. In the meantime, highly pleiotropic CMR and urate-lowering benefits of sodium-glucose cotransporter 2 (SGLT2) inhibitors and key lifestyle measures could play an important role in comorbidity care, in conjunction with effective gout care based on target serum urate concentrations according to the latest guidelines.
Collapse
Affiliation(s)
- Hyon K Choi
- Clinical Epidemiology Program, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA.
- Mongan Institute, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Arthritis Research Canada, Vancouver, British Columbia, Canada.
| | - Natalie McCormick
- Clinical Epidemiology Program, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA
- Mongan Institute, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Arthritis Research Canada, Vancouver, British Columbia, Canada
| | - Chio Yokose
- Clinical Epidemiology Program, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA
- Mongan Institute, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
5. Facilitating Behavior Change and Well-being to Improve Health Outcomes: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022; 45:S60-S82. [PMID: 34964866 DOI: 10.2337/dc22-s005] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee (https://doi.org/10.2337/dc22-SPPC), are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction (https://doi.org/10.2337/dc22-SINT). Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
28
|
Ghanemi A, Yoshioka M, St-Amand J. Impact of Adiposity and Fat Distribution, Rather Than Obesity, on Antibodies as an Illustration of Weight-Loss-Independent Exercise Benefits. MEDICINES 2021; 8:medicines8100057. [PMID: 34677486 PMCID: PMC8537631 DOI: 10.3390/medicines8100057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022]
Abstract
Obesity represents a risk factor for a variety of diseases because of its inflammatory component, among other biological patterns. Recently, with the ongoing COVID-19 crisis, a special focus has been put on obesity as a status in which antibody production, among other immune functions, is impaired, which would impact both disease pathogenesis and vaccine efficacy. Within this piece of writing, we illustrate that such patterns would be due to the increased adiposity and fat distribution pattern rather than obesity (as defined by the body mass index) itself. Within this context, we also highlight the importance of the weight-loss-independent effects of exercise.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
| | - Jonny St-Amand
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
29
|
Heiston EM, Liu Z, Ballantyne A, Kranz S, Malin SK. A single bout of exercise improves vascular insulin sensitivity in adults with obesity. Obesity (Silver Spring) 2021; 29:1487-1496. [PMID: 34339111 PMCID: PMC8387339 DOI: 10.1002/oby.23229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This crossover study explored the impact of a single bout of exercise on insulin-stimulated responses in conduit arteries and capillaries. METHODS Twelve sedentary adults (49.5 [7.8] years; maximal oxygen consumption [VO2 max]: 23.7 [5.4] mL/kg/min) with obesity (BMI 34.5 [4.3] kg/m2 ) completed a control and exercise bout (70% VO2 max to expend 400 kcal). Sixteen hours later, participants underwent a 2-hour euglycemic-hyperinsulinemic clamp (90 mg/dL; 40 mU/m2 /min) to determine vascular and metabolic insulin sensitivity. Endothelial and capillary functions were assessed by brachial artery flow-mediated dilation and contrast-enhanced ultrasound, respectively. Metabolized glucose infusion rate, substrate oxidation (indirect calorimetry), nonoxidative glucose disposal (NOGD), and inflammation were also determined. RESULTS Exercise increased insulin-stimulated preocclusion diameter (p = 0.01) and microvascular blood flow (condition effect: p = 0.04) compared with control. Furthermore, exercise improved metabolic insulin sensitivity by 21%, which paralleled rises in NOGD (p = 0.05) and decreases in soluble receptors for advanced glycation end products (condition effect: p = 0.01). Interestingly, changes in NOGD were related to increased insulin-stimulated microvascular blood flow (r = 0.57, p = 0.05). CONCLUSIONS A single bout of exercise increases vascular insulin sensitivity in adults with obesity. Additional work is needed to determine vascular responses following different doses of exercise in order to design lifestyle prescriptions for reducing chronic disease risk.
Collapse
Affiliation(s)
- Emily M. Heiston
- Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA
- Department of Kinesiology, University of Virginia, VA
| | - Zhenqi Liu
- Dision of Endocrinology & Metabolism, Department of Medicine, University of Virginia, VA
| | | | - Sibylle Kranz
- Department of Kinesiology, University of Virginia, VA
| | - Steven K. Malin
- Department of Kinesiology, University of Virginia, VA
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, New Brunswick, NJ
- The New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ
- Institute of Translational Medicine and Science, Rutgers University, New Brunswick, NJ
| |
Collapse
|
30
|
Schwarzer M, Molis A, Schenkl C, Schrepper A, Britton SL, Koch LG, Doenst T. Genetically determined exercise capacity affects systemic glucose response to insulin in rats. Physiol Genomics 2021; 53:395-405. [PMID: 34297615 DOI: 10.1152/physiolgenomics.00014.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Aerobic exercise capacity is inversely related to morbidity and mortality as well as to insulin resistance. However, exercising in patients has led to conflicting results, presumably because aerobic exercise capacity consists of intrinsic (genetically determined) and extrinsic (environmentally determined) parts. The contribution of both parts to insulin sensitivity is also not clear. We investigated sedentary and exercised (aerobic interval training) high (HCR) and low capacity runners (LCR) differing in their genetically determined aerobic exercise capacity to determine the contribution of both parts to insulin sensitivity. METHODS AND RESULTS LCR and HCR differed in their untrained exercise capacity and body weight. Sedentary LCR displayed a diabetic phenotype with higher random glucose, lower glucose infusion rate during hyperinsulinemic euglycemic clamping than HCR. Echocardiography showed equal morphological and functional parameters and no change with exercise. Four weeks of exercise caused significant improvements in aerobic exercise capacity, which was more pronounced in LCR. However, with respect to glucose use, exercise affected HCR only. In these animals, exercise increased 2-deoxyglucose uptake in gastrocnemius (+58.5 %, p= 0.1) and in epididymal fat (+106 %; p<0.05). Citrate synthase activity also increased in these tissues (gastrocnemius 69 % epididymal fat 63 %). CONCLUSION In our model of HCR and LCR, genetic predisposition for low exercise capacity is associated with impaired insulin sensitivity and impedes exercise-induced improvements in insulin response. Our results suggest that genetic predisposition for low aerobic exercise capacity impairs insulin response, which may not be overcome by exercise.
Collapse
Affiliation(s)
- Michael Schwarzer
- Department of Cardiothoracic Surgery, Jena University Hospital, Jena, Germany
| | - Annika Molis
- Department of Cardiothoracic Surgery, Jena University Hospital, Jena, Germany
| | - Christina Schenkl
- Department of Cardiothoracic Surgery, Jena University Hospital, Jena, Germany
| | - Andrea Schrepper
- Department of Cardiothoracic Surgery, Jena University Hospital, Jena, Germany
| | - Steven L Britton
- Department of Anesthesiology, Department of Molecular and Integrative Physiology, University of Michigan-Ann Arbor, Ann Arbor, Michigan, United States
| | - Lauren Gerard Koch
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States
| | - Torsten Doenst
- Department of Cardiothoracic Surgery, Jena University Hospital, Jena, Germany
| |
Collapse
|
31
|
Li X, Zhou T, Ma H, Liang Z, Fonseca VA, Qi L. Replacement of Sedentary Behavior by Various Daily-Life Physical Activities and Structured Exercises: Genetic Risk and Incident Type 2 Diabetes. Diabetes Care 2021; 44:2403-2410. [PMID: 34183430 PMCID: PMC8929188 DOI: 10.2337/dc21-0455] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/12/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To prospectively analyze the association of sedentary behavior time with type 2 diabetes (T2D) risk and perform the isotemporal substitution analyses to estimate the effect of substitution of sedentary behaviors by equal time of different types of daily-life physical activities and structured exercise. We also examined modifications by the genetic predisposition to T2D. RESEARCH DESIGN AND METHODS We included 475,502 participants free of T2D in the UK Biobank. Sedentary time was quantified by summing up the time spent on television watching, computer use, and driving. RESULTS During a median follow-up of 11 years, we documented 18,169 incident T2D cases. In comparison of the extreme categories (≥6 vs. <2 h/day), the hazard ratio for T2D was 1.58 (95% CI 1.47, 1.71) after adjustment for age, race, sex, lifestyle factors, and other covariates. Replacing 30 min of sedentary behavior per day with an equal amount of time of different types of daily-life activities and structured exercise was significantly associated with a 6-31% risk reduction of T2D, with strenuous sports showing the strongest (31%, 95% CI 24, 37) benefit. Moreover, we found a significant interaction between sedentary behavior and genetic predisposition for the risk of T2D (P interaction = 0.0008). The association was more profound among participants with a lower genetic risk of T2D. CONCLUSIONS Our study indicates that sedentary behavior time is associated with an increased risk of T2D; replacing sedentary behavior with a short duration (30 min/day) of daily-life physical activities or structured exercise is related to a significant reduction in T2D risk. Furthermore, such association was stronger among those with a lower genetic risk of T2D.
Collapse
Affiliation(s)
- Xiang Li
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, LA
| | - Tao Zhou
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, LA
- Department of Epidemiology and Biostatistics, School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hao Ma
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, LA
| | - Zhaoxia Liang
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Vivian A Fonseca
- Section of Endocrinology, Department of Medicine, School of Medicine, Tulane University, LA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, LA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
32
|
Gillen JB, Estafanos S, Govette A. Exercise-nutrient interactions for improved postprandial glycemic control and insulin sensitivity. Appl Physiol Nutr Metab 2021; 46:856-865. [PMID: 34081875 DOI: 10.1139/apnm-2021-0168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Type 2 diabetes (T2D) is a rapidly growing yet largely preventable chronic disease. Exaggerated increases in blood glucose concentration following meals is a primary contributor to many long-term complications of the disease that decrease quality of life and reduce lifespan. Adverse health consequences also manifest years prior to the development of T2D due to underlying insulin resistance and exaggerated postprandial concentrations of the glucose-lowering hormone insulin. Postprandial hyperglycemic and hyperinsulinemic excursions can be improved by exercise, which contributes to the well-established benefits of physical activity for the prevention and treatment of T2D. The aim of this review is to describe the postprandial dysmetabolism that occurs in individuals at risk for and with T2D, and highlight how acute and chronic exercise can lower postprandial glucose and insulin excursions. In addition to describing the effects of traditional moderate-intensity continuous exercise on glycemic control, we highlight other forms of activity including low-intensity walking, high-intensity interval exercise, and resistance training. In an effort to improve knowledge translation and implementation of exercise for maximal glycemic benefits, we also describe how timing of exercise around meals and post-exercise nutrition can modify acute and chronic effects of exercise on glycemic control and insulin sensitivity. Novelty: Exaggerated postprandial blood glucose and insulin excursions are associated with disease risk. Both a single session and repeated sessions of exercise improve postprandial glycemic control in individuals with and without T2D. The glycemic benefits of exercise can be enhanced by considering the timing and macronutrient composition of meals around exercise.
Collapse
Affiliation(s)
- Jenna B Gillen
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada
| | - Stephanie Estafanos
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada
| | - Alexa Govette
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada
| |
Collapse
|
33
|
Ren G, Bowers RL, Kim T, Mahurin AJ, Grandjean PW, Mathews ST. Serum fetuin-A and Ser312 phosphorylated fetuin-A responses and markers of insulin sensitivity after a single bout of moderate intensity exercise. Physiol Rep 2021; 9:e14773. [PMID: 33650781 PMCID: PMC7923554 DOI: 10.14814/phy2.14773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/28/2022] Open
Abstract
Fetuin‐A (Fet‐A), secreted by the liver and adipose tissue, inhibits insulin receptor tyrosine kinase activity and modulates insulin action. Numerous studies have shown association of elevated serum Fet‐A concentrations with obesity, non‐alcoholic fatty liver disease, and type 2 diabetes. Both moderate body weight loss (5%–10%) and significant body weight loss have been shown to decrease serum Fet‐A and improve insulin sensitivity. Currently, there are no studies examining the effects of a single bout of exercise on serum Fet‐A or Ser312‐pFet‐A (pFet‐A) responses. We hypothesized that a single bout of moderate‐intensity exercise will lower serum Fet‐A and that these changes will be associated with an improvement in insulin sensitivity. Thirty‐one individuals with obesity and 11 individuals with normal body weight were recruited. Participants underwent a single bout of treadmill walking, expending 500 kcal at 60%–70% VO2max. Oral glucose tolerance tests (OGTT) were administered before the single bout of exercise (Pre Ex) and 24 h after exercise (24h Post Ex). In individuals with obesity, we observed a transient elevation of serum Fet‐A concentrations, but not pFet‐A, immediately after exercise (Post Ex). Further, a single bout of exercise decreased glucoseAUC, insulinAUC, and insulin resistance index in individuals with obesity. Consistent with this improvement in insulin sensitivity, we observed that Fet‐AAUC, pFet‐AAUC, 2 h pFet‐A, and 2 h pFet‐A/Fet‐A were significantly lower following a single bout of exercise. Further, reductions in serum Fet‐AAUC 24h Post Ex were correlated with a reduction in insulin resistance index. Together, this suggests that alterations in serum Fet‐A following a single bout of moderate‐intensity endurance exercise may play a role in the improvement of insulin sensitivity. Clinical Trial Registration NCT03478046; https://clinicaltrials.gov/ct2/show/NCT03478046.
Collapse
Affiliation(s)
- Guang Ren
- Department of Nutrition and Dietetics, Auburn University, Auburn, AL, USA
| | | | - Teayoun Kim
- Department of Nutrition and Dietetics, Auburn University, Auburn, AL, USA
| | | | | | - Suresh T Mathews
- Department of Nutrition and Dietetics, Samford University, Birmingham, AL, USA
| |
Collapse
|
34
|
Hannoun Z, Harraqui K, Ali RAB, Tahiri K, Smail OB, Arabi FE, Bour A. [Study of the metabolic syndrome and physical activity in a population from Marrakesh, in Morocco]. Pan Afr Med J 2021; 38:21. [PMID: 33777289 PMCID: PMC7955608 DOI: 10.11604/pamj.2021.38.21.20219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 05/27/2020] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION the aim of this study was to correlate the metabolic syndrome with the level of the physical activity in a population from Marrakech, Morocco. METHODS the study was conducted at Ibn Zohr Regional Hospital in Marrakech. The body mass index (BMI) was calculated to assess the degree of obesity of each subject. To determine the level of physical activity, we used the short version of the IPAQ (International Physical Activity Questionnaire); Blood parameters were measured by a Biochemistry Automaton. All statistical analyzes were performed using SPSS software. RESULTS a total of 300 subjects participated in the study, which 57.3% were female and 42.7% were male with a sex ratio of 0.74. The average age of our population was 51.6± 13.42 years old. Seventy-nine of the participants (26.3%) had a metabolic syndrome, with a predominance of female: 60 women (34.9%) and 19 men (14.8%). There is a significant relationship between level of physical activity and the presence of metabolic syndrome (P = 0.002), between physical activity level and BMI and waist circumference (p < 0.001) and (p = 0.003) respectively. CONCLUSION the result shows a significant association between obesity, metabolic syndrome and the level of the physical activity, which would encourage us to encourage the application of lifestyle rules, including physical activity, which remains one of the best preventive actions against this pathology.
Collapse
Affiliation(s)
- Zineb Hannoun
- Laboratoire des Essais Biologiques, Equipe de Transition Alimentaire et Nutritionnelle (ETAN), Faculté des Sciences, Université Ibn Tofail, BP 133, Kenitra 14000, Maroc
| | - Khouloud Harraqui
- Laboratoire des Essais Biologiques, Equipe de Transition Alimentaire et Nutritionnelle (ETAN), Faculté des Sciences, Université Ibn Tofail, BP 133, Kenitra 14000, Maroc
| | - Rachmat Attoumane Ben Ali
- Laboratoire des Essais Biologiques, Equipe de Transition Alimentaire et Nutritionnelle (ETAN), Faculté des Sciences, Université Ibn Tofail, BP 133, Kenitra 14000, Maroc
| | - Kamar Tahiri
- Laboratoire des Essais Biologiques, Equipe de Transition Alimentaire et Nutritionnelle (ETAN), Faculté des Sciences, Université Ibn Tofail, BP 133, Kenitra 14000, Maroc
| | - Omar Ben Smail
- Laboratoire des Essais Biologiques, Equipe de Transition Alimentaire et Nutritionnelle (ETAN), Faculté des Sciences, Université Ibn Tofail, BP 133, Kenitra 14000, Maroc
| | - Fatine El Arabi
- Laboratoire des Essais Biologiques, Equipe de Transition Alimentaire et Nutritionnelle (ETAN), Faculté des Sciences, Université Ibn Tofail, BP 133, Kenitra 14000, Maroc
| | - Abdellatif Bour
- Laboratoire des Essais Biologiques, Equipe de Transition Alimentaire et Nutritionnelle (ETAN), Faculté des Sciences, Université Ibn Tofail, BP 133, Kenitra 14000, Maroc
| |
Collapse
|
35
|
Effect of Tai Chi and Resistance Training on Cancer-Related Fatigue and Quality of Life in Middle-Aged and Elderly Cancer Patients. Chin J Integr Med 2021; 27:265-272. [PMID: 33420583 DOI: 10.1007/s11655-021-3278-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To study the effect of Tai Chi (TC) and resistance training (RT) with different intensity on the cancer-related fatigue (CRF) and quality of life (QoL) of middle-aged and elderly cancer patients. METHODS Totally 120 cancer patients were enrolled and randomly assigned to 4 groups by a random number table, including TC group, high-intensity 60% one repetition maximum (1-RM) RT group (HIRT), low-intensity (30% 1-RM) RT group (LIRT) and control group, 30 patients in each group. Participants in the TC group received 24-form simplified Yang-style TC training at a frequency of 40 min per day, 3 days per week for 12 weeks. Patients in the two RT groups received 10 sessions, 6 designated movements per day, 3 days per week for 12 weeks. The 1-RM of 6 muscle groups, fat mass (FM), lean body mass (LBM), along with the scores of Brief Fatigue Inventory (BFI), QoL questionnaire for Chinese cancer patients receiving chemobiotherapy (QLQ-CCC), Generalized Anxiety Disorder-7 (GAD-7), Patient Health Questionnaire-9 (PHQ-9) and Pittsburgh Sleep Quality Index (PSQI) were measured before and after training. The adverse effect was also observed. RESULTS After 12-week intervention, patients in both TC and RT groups showed significant improvements in CRF and QLQ-CCC compared to pre-treatment (P<0.05). Compared with the LIRT and TC groups, patients in the HIRT group improved more significantly in increasing muscle strength and LBM, and reducing in FM (P<0.05). Patients in the TC group significantly increased in lower limb muscle strength compared with the LIRT group (P<0.05). In addition, patients in the TC group showed more significant improvements in scores of GAD-7, PHQ-9 and PSQI than 2 RT groups (P<0.05). CONCLUSIONS TC and RT, both low- and high-intensity training, can significantly increase muscle strength, reduce CRF and improve QoL in the middle-aged and elderly cancer patients. TC has a better effect than RT in terms of sleep quality and mental health. The long-term application is needed to substantiate the effect of TC as an alternative exercise in cancer patients.
Collapse
|
36
|
5. Facilitating Behavior Change and Well-being to Improve Health Outcomes: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021; 44:S53-S72. [PMID: 33298416 DOI: 10.2337/dc21-s005] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee (https://doi.org/10.2337/dc21-SPPC), are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction (https://doi.org/10.2337/dc21-SINT). Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
37
|
Gil-Iturbe E, Félix-Soriano E, Sáinz N, Idoate-Bayón A, Castilla-Madrigal R, Moreno-Aliaga MJ, Lostao MP. Effect of aging and obesity on GLUT12 expression in small intestine, adipose tissue, muscle, and kidney and its regulation by docosahexaenoic acid and exercise in mice. Appl Physiol Nutr Metab 2020; 45:957-967. [PMID: 32176854 DOI: 10.1139/apnm-2019-0721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2023]
Abstract
Obesity is characterized by excessive fat accumulation and inflammation. Aging has also been characterized as an inflammatory condition, frequently accompanied by accumulation of visceral fat. Beneficial effects of exercise and n-3 long-chain polyunsaturated fatty acids in metabolic disorders have been described. Glucose transporter 12 (GLUT12) is one of the less investigated members of the GLUT family. Glucose, insulin, and tumor necrosis factor alpha (TNF-α) induce GLUT12 translocation to the membrane in muscle, adipose tissue, and intestine. We aimed to investigate GLUT12 expression in obesity and aging, and under diet supplementation with docosahexaenoic acid (DHA) alone or in combination with physical exercise in mice. Aging increased GLUT12 expression in intestine, kidney, and adipose tissue, whereas obesity reduced it. No changes on the transporter occurred in skeletal muscle. In obese 18-month-old mice, DHA further decreased GLUT12 in the 4 organs. Aerobic exercise alone did not modify GLUT12, but the changes triggered by exercise were able to prevent the DHA-diminishing effect, and almost restored GLUT12 basal levels. In conclusion, the downregulation of metabolism in aging would be a stimulus to upregulate GLUT12 expression. Contrary, obesity, an excessive energy condition, would induce GLUT12 downregulation. The combination of exercise and DHA would contribute to restore basal function of GLUT12. Novelty In small intestine, kidney and adipose tissue aging increases GLUT12 protein expression whereas obesity reduces it. Dietary DHA decreases GLUT12 in small intestine, kidney, adipose tissue and skeletal muscle. Exercise alone does not modify GLUT12 expression, nevertheless exercise prevents the DHA-diminishing effect on GLUT12.
Collapse
Affiliation(s)
- Eva Gil-Iturbe
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Navarra, Spain
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Navarra, Spain
| | - Elisa Félix-Soriano
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Navarra, Spain
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Navarra, Spain
| | - Neira Sáinz
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Navarra, Spain
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Navarra, Spain
| | - Adrián Idoate-Bayón
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Navarra, Spain
| | | | - María J Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Navarra, Spain
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Navarra, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Navarra, Spain
- Institute of Health Carlos III (ISCIII), Biomedical Research Networking Center in Physiopathology of Obesity and Nutrition (CIBERobn), 28029 Madrid, Spain
| | - María Pilar Lostao
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Navarra, Spain
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Navarra, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Navarra, Spain
| |
Collapse
|
38
|
Ryan BJ, Schleh MW, Ahn C, Ludzki AC, Gillen JB, Varshney P, Van Pelt DW, Pitchford LM, Chenevert TL, Gioscia-Ryan RA, Howton SM, Rode T, Hummel SL, Burant CF, Little JP, Horowitz JF. Moderate-Intensity Exercise and High-Intensity Interval Training Affect Insulin Sensitivity Similarly in Obese Adults. J Clin Endocrinol Metab 2020; 105:5850995. [PMID: 32492705 PMCID: PMC7347288 DOI: 10.1210/clinem/dgaa345] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/28/2020] [Indexed: 01/25/2023]
Abstract
OBJECTIVE We compared the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on insulin sensitivity and other important metabolic adaptations in adults with obesity. METHODS Thirty-one inactive adults with obesity (age: 31 ± 6 years; body mass index: 33 ± 3 kg/m2) completed 12 weeks (4 sessions/week) of either HIIT (10 × 1-minute at 90%HRmax, 1-minute active recovery; n = 16) or MICT (45 minutes at 70%HRmax; n = 15). To assess the direct effects of exercise independent of weight/fat loss, participants were required to maintain body mass. RESULTS Training increased peak oxygen uptake by ~10% in both HIIT and MICT (P < 0.0001), and body weight/fat mass were unchanged. Peripheral insulin sensitivity (hyperinsulinemic-euglycemic clamp) was ~20% greater the day after the final exercise session compared to pretraining (P < 0.01), with no difference between HIIT and MICT. When trained participants abstained from exercise for 4 days, insulin sensitivity returned to pretraining levels in both groups. HIIT and MICT also induced similar increases in abundance of many skeletal muscle proteins involved in mitochondrial respiration and lipid and carbohydrate metabolism. Training-induced alterations in muscle lipid profile were also similar between groups. CONCLUSION Despite large differences in training intensity and exercise time, 12 weeks of HIIT and MICT induce similar acute improvements in peripheral insulin sensitivity the day after exercise, and similar longer term metabolic adaptations in skeletal muscle in adults with obesity. These findings support the notion that the insulin-sensitizing effects of both HIIT and MICT are mediated by factors stemming from the most recent exercise session(s) rather than adaptations that accrue with training.
Collapse
Affiliation(s)
- Benjamin J Ryan
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Michael W Schleh
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Cheehoon Ahn
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Alison C Ludzki
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Jenna B Gillen
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Pallavi Varshney
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Douglas W Van Pelt
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Lisa M Pitchford
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | | | - Rachel A Gioscia-Ryan
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Suzette M Howton
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Thomas Rode
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Scott L Hummel
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Ann Arbor Veterans Affairs Health System, Ann Arbor, Michigan
| | - Charles F Burant
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Jeffrey F Horowitz
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
- Correspondence and Reprint Requests: Jeffrey F. Horowitz, PhD, School of Kinesiology, University of Michigan, 401 Washtenaw Ave., Ann Arbor, MI, USA 48109-2214.
| |
Collapse
|
39
|
Moradi Kelardeh B, Rahmati-Ahmadabad S, Farzanegi P, Helalizadeh M, Azarbayjani MA. Effects of non-linear resistance training and curcumin supplementation on the liver biochemical markers levels and structure in older women with non-alcoholic fatty liver disease. J Bodyw Mov Ther 2020; 24:154-160. [PMID: 32825982 DOI: 10.1016/j.jbmt.2020.02.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 01/30/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND With increasing age, non-alcoholic fatty liver disease is very common among women with low levels of physical activity. Nonlinear resistance training is one of the new methods to help patients who have low levels of physical activity. Curcumin is an herbal supplement that has anti-inflammatory effects. The present study aimed to examine the effects of nonlinear resistance training and curcumin supplementation on the liver structure and biochemical markers in obese older women with non-alcoholic fatty liver disease. METHODS Forty-five obese women with non-alcoholic fatty liver disease were randomly assigned into resistance training (RT), curcumin supplement (C), resistance training with curcumin supplement (RTC), and placebo (P) groups. The RT and RTC groups received 12-weeks of nonlinear resistance training while the C and P groups had a normal sedentary lifestyle. Daily, the C and RTC groups received a curcumin capsule while the P and RT groups were given a placebo capsule. Blood sampling and ultrasonography were taken before and after the protocol. RESULTS Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels significantly decreased in the RT and RTC groups (P ≤ 0.05) but not in the C and P groups (P > 0.05). Alkaline phosphatase (ALP), total bilirubin (TB) levels, platelet counts (PLT), and liver structure did not significantly change in all groups (P > 0.05). Resistance training alone and with curcumin supplementation could significantly improve liver function while taking curcumin alone did not have any significant effect on it. CONCLUSION 12-week non-linear resistance training has beneficial effects on non-alcoholic fatty liver disease in older obese women.
Collapse
Affiliation(s)
- Baharak Moradi Kelardeh
- Phd Exercise Physiology, Sama Technical and Vocational Training College, Islamic Azad University, Esfahan (Khorasgan) Branch, Esfahan, Iran
| | | | - Parvin Farzanegi
- Department of Exercise Physiology, Sari Branch, Islamic Azad University, Sari, Iran
| | - Masoumeh Helalizadeh
- Department of Exercise Physiology, Sport Medicine Research Center, Sport Sciences Research Institute, Tehran, Iran
| | - Mohammad-Ali Azarbayjani
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
40
|
Arfianti A, Pok S, Barn V, Haigh WG, Yeh MM, Ioannou GN, Teoh NCH, Farrell GC. Exercise retards hepatocarcinogenesis in obese mice independently of weight control. J Hepatol 2020; 73:140-148. [PMID: 32302728 DOI: 10.1016/j.jhep.2020.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Obesity and type 2 diabetes increase hepatocellular carcinoma (HCC) incidence in humans and accelerate diethylnitrosamine (DEN)-induced hepatocarcinogenesis in mice. We investigated whether exercise reduces HCC development in obese/diabetic Alms1 mutant (foz/foz) mice and studied protective mechanisms. METHODS We measured HCC development in DEN-injected male foz/foz and wild-type (WT) littermates housed with or without an exercise wheel from week 4 until 12 or 24 weeks, and in foz/foz mice pair-fed to WT littermates. We also studied HCC development in DEN-injected Jnk1-/-.foz/foz mice generated by cross breeding, as well as their genetic controls. Dysplastic hepatocytes were identified by glutathione-S-transferase pi form (GST-pi) immunohistochemistry, liver nodules were counted, and HCC was analysed by histopathology. RESULTS Exercising foz/foz mice maintained similar weight as WT mice up to 10 weeks, but then gained weight and were obese by 24 weeks; a similar body weight profile was obtained by pair-feeding foz/foz mice to WT. At 12 weeks, livers of exercising foz/foz mice exhibited fewer GST-pi positive hepatocytes than sedentary counterparts; by 24 weeks, fewer exercising foz/foz mice developed HCC (15% vs. 64%, p <0.05). Conversely, pair-feeding foz/foz mice failed to reduce HCC incidence. In these insulin-resistant foz/foz mice, exercise failed to activate hepatic AMPK or Akt/mTORC1. Instead, it improved insulin sensitivity, ameliorated steatosis and liver injury, activated p53 to increase p27 expression, and prevented JNK activation. This was associated with suppression of hepatocellular proliferation. DEN-injected Jnk1-/-.foz/foz mice failed to develop liver tumours or HCC at 24 weeks. CONCLUSIONS Direct effects of exercise dampen proliferation of dysplastic hepatocytes to reduce 3-month dysplastic foci and 6-month incidence of DEN-induced HCC in obese, insulin-resistant mice. The effects of exercise that potentially slow hepatocarcinogenesis include p53-mediated induction of p27 and prevention of JNK activation. LAY SUMMARY Fatty liver disease commonly occurs alongside obesity and diabetes, contributing to rapidly increasing rates of liver cancer throughout the world. Herein, we show that exercise reduces the incidence and progression of hepatocellular carcinoma in mouse models. The effect of exercise on cancer risk was shown to be independent of changes in weight. Exercise could be a protective mechanism against liver cancer in at-risk individuals.
Collapse
Affiliation(s)
- Arfianti Arfianti
- Liver Research Group, ANU Medical School, Australian National University at The Canberra Hospital, Garran, ACT, Australia; Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | - Sharon Pok
- Liver Research Group, ANU Medical School, Australian National University at The Canberra Hospital, Garran, ACT, Australia
| | - Vanessa Barn
- Liver Research Group, ANU Medical School, Australian National University at The Canberra Hospital, Garran, ACT, Australia
| | - W Geoffrey Haigh
- Division of Gastroenterology and Hepatology, Veterans Affairs Puget Sound Health Care System and University of Washington, Seattle, WA
| | - Matthew M Yeh
- Department of Pathology, University of Washington, Seattle, WA
| | - George N Ioannou
- Division of Gastroenterology and Hepatology, Veterans Affairs Puget Sound Health Care System and University of Washington, Seattle, WA
| | - Narci C-H Teoh
- Liver Research Group, ANU Medical School, Australian National University at The Canberra Hospital, Garran, ACT, Australia
| | - Geoffrey C Farrell
- Liver Research Group, ANU Medical School, Australian National University at The Canberra Hospital, Garran, ACT, Australia.
| |
Collapse
|
41
|
Tanimura-Inagaki K, Nagao M, Harada T, Sugihara H, Moritani S, Sasaki J, Kono S, Oikawa S. Sitagliptin improves plasma apolipoprotein profile in type 2 diabetes: A randomized clinical trial of sitagliptin effect on lipid and glucose metabolism (SLIM) study. Diabetes Res Clin Pract 2020; 162:108119. [PMID: 32194219 DOI: 10.1016/j.diabres.2020.108119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 02/02/2020] [Accepted: 03/10/2020] [Indexed: 12/26/2022]
Abstract
AIM This study aims to evaluate the effect of dipeptidyl peptidase-4 inhibitors on lipid metabolism in patients with type 2 diabetes mellitus (T2D). METHODS This is a multicenter, open-labeled, randomized controlled study. T2D patients with HbA1c 6.9-8.9% (52-74 mmol/mol) who were under treatment with sulfonylurea were randomly allocated to either the sitagliptin group or the non-sitagliptin group. Glucose and lipid metabolism parameters including apolipoproteins (apo), sterols, and urinary albumin were assessed at baseline, 3, and 6 months of the treatment. RESULTS A total of 164 patients completed the 6-month observation (n = 81 for sitagliptin and n = 83 for non-sitagliptin). HbA1c decreased in the sitagliptin group but not in the non-sitagliptin group. Serum TG and total, LDL and HDL cholesterol levels did not change in either group. Apo B-48, apo CII, and apo CIII levels decreased in the sitagliptin group, but not in the non-sitagliptin group. The change in urinary albumin was significantly different between the groups with a preferable change in the sitagliptin group. There were no changes in serum sterols levels in the two groups. CONCLUSIONS The treatment of sitagliptin for 6 months improves the metabolism of glucose and chylomicron and reduces plasma levels of atherogenic lipoproteins in patients with T2D.
Collapse
Affiliation(s)
- Kyoko Tanimura-Inagaki
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Mototsugu Nagao
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Taro Harada
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hitoshi Sugihara
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | | | - Jun Sasaki
- International University of Health and Welfare, Fukuoka, Japan
| | | | - Shinichi Oikawa
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan; Fukujuji Hospital, Tokyo, Japan.
| |
Collapse
|
42
|
Hand GA, Shook RP, O'Connor DP, Kindred MM, Schumacher S, Drenowatz C, Paluch AE, Burgess S, Blundell JE, Blair SN. The Effect of Exercise Training on Total Daily Energy Expenditure and Body Composition in Weight-Stable Adults: A Randomized, Controlled Trial. J Phys Act Health 2020; 17:456-463. [PMID: 32176862 DOI: 10.1123/jpah.2019-0415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND The present study examined, among weight-stable overweight or obese adults, the effect of increasing doses of exercise energy expenditure (EEex) on changes in total daily energy expenditure (TDEE), total body energy stores, and body composition. METHODS Healthy, sedentary overweight/obese young adults were randomized to one of 3 groups for a period of 26 weeks: moderate-exercise (EEex goal of 17.5 kcal/kg/wk), high-exercise (EEex goal of 35 kcal/kg/wk), or observation group. Individuals maintained body weight within 3% of baseline. Pre/postphysical activity between-group measurements included body composition, calculated energy intake, TDEE, energy stores, and resting metabolic rate. RESULTS Sixty weight-stable individuals completed the protocols. Exercise groups increased EEex in a stepwise manner compared with the observation group (P < .001). There was no group effect on changes in TDEE, energy intake, fat-free mass, or resting metabolic rate. Fat mass and energy stores decreased among the females in the high-exercise group (P = .007). CONCLUSIONS The increase in EEex did not result in an equivalent increase in TDEE. There was a sex difference in the relationship among energy balance components. These results suggest a weight-independent compensatory response to exercise training with potentially a sex-specific adjustment in body composition.
Collapse
|
43
|
Park Y, Jang I, Park HY, Kim J, Lim K. Hypoxic exposure can improve blood glycemic control in high-fat diet-induced obese mice. Phys Act Nutr 2020; 24:19-23. [PMID: 32408410 PMCID: PMC7451840 DOI: 10.20463/pan.2020.0004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Blood glucose and insulin resistance were lower following hypoxic exposure in previous studies. However, the effect of hypoxia as therapy in obese model has not been unknown. METHODS Six-week-old mice were randomly divided into chow diet (n=10) and high-fat diet (HFD) groups (n=20). The chow diet group received a non-purified commercial diet (65 % carbohydrate, 21 % protein, and 14 % fat) and water ad libitum. The HFD group was fed an HFD (Research Diet, #D12492; 60% kcal from fat, 5.24 kcal/g). Both groups consumed their respective diet for 7 weeks. Subsequently, HFD-induced mice (12-weeks-old) were randomly divided into two treatment groups : HFD-Normoxia (HFD; n=10) and HFD-Hypoxia (HYP; n=10, fraction of inspired=14.6%). After treatment for 4 weeks, serum glucose, insulin and oral glucose tolerance tests (OGTT) were performed. RESULTS Homeostatic model assessment values for insulin resistance (HOMA-IR) of the HYP group tended to be lower than the HFD group. Regarding the OGTT, the area under the curve was 13% lower for the HYP group than the HFD group. CONCLUSION Insulin resistance tended to be lower and glucose uptake capacity was significantly augmented under hypoxia. From a clinical perspective, exposure to hypoxia may be a practical method of treating obesity.
Collapse
Affiliation(s)
- Yeram Park
- Department of Physical Education in Graduated school, Konkuk University, SeoulRepublic of Korea
| | - Inkwon Jang
- Department of Sports Medicine and Science in Graduated School, Konkuk University, SeoulRepublic of Korea
| | - Hun-Young Park
- Department of Sports Medicine and Science in Graduated School, Konkuk University, SeoulRepublic of Korea
| | - Jisu Kim
- Department of Sports Medicine and Science in Graduated School, Konkuk University, SeoulRepublic of Korea
| | - Kiwon Lim
- Department of Physical Education in Graduated school, Konkuk University, SeoulRepublic of Korea
- Department of Sports Medicine and Science in Graduated School, Konkuk University, SeoulRepublic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, SeoulRepublic of Korea
| |
Collapse
|
44
|
Co-treatment with Vitamin D Supplementation and Aerobic Training in Elderly Women with Vit D Deficiency and NAFLD: A Single-blind Controlled Trial. HEPATITIS MONTHLY 2020. [DOI: 10.5812/hepatmon.96437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
45
|
5. Facilitating Behavior Change and Well-being to Improve Health Outcomes: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020; 43:S48-S65. [PMID: 31862748 DOI: 10.2337/dc20-s005] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee (https://doi.org/10.2337/dc20-SPPC), are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction (https://doi.org/10.2337/dc20-SINT). Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
46
|
Abstract
In insulin resistance, alterations occur in the signalling pathways that modulate glucose uptake into cells, especially skeletal muscle cells, resulting in impaired glucose homeostasis. Glucose uptake into cells is controlled by a number of pathways, some of which are insulin-dependent. During exercise glucose uptake can occur independently of insulin regulation, and hence research into the effects of exercise on insulin resistance must be clearly defined to reflect whether glucose uptake has been enhanced as a result of the utilisation of these insulin-independent pathways, or whether exercise directly affects insulin resistance in cells. Research into the benefits of exercise for insulin resistance is also problematic in the need to clarify whether it is the exercise itself, or the visceral fat/weight loss that has resulted from the exercise, that has led to improved insulin sensitivity. The research presents a promising picture for the benefits of exercise in insulin resistance.
Collapse
Affiliation(s)
- Stephney Whillier
- Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
47
|
Khatlani K, Njike V, Costales VC. Effect of Lifestyle Intervention on Cardiometabolic Risk Factors in Overweight and Obese Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Metab Syndr Relat Disord 2019; 17:473-485. [DOI: 10.1089/met.2019.0049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Khaula Khatlani
- Department of Preventive Medicine, Griffin Hospital-Yale University, Derby, Connecticut
- Department of Internal Medicine, Occupational and Environmental Medicine Program, Yale School of Medicine, New Haven, Connecticut
| | | | - Victoria C. Costales
- Department of Internal Medicine/Preventive Medicine, Griffin Hospital-Yale University, Derby, Connecticut
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
48
|
Merry TL, MacRae C, Pham T, Hedges CP, Ristow M. Deficiency in ROS-sensing nuclear factor erythroid 2-like 2 causes altered glucose and lipid homeostasis following exercise training. Am J Physiol Cell Physiol 2019; 318:C337-C345. [PMID: 31774701 DOI: 10.1152/ajpcell.00426.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidative stress induced by acute exercise may regulate exercise training-induced adaptations that improve metabolic health. One of the central transcription regulatory targets of reactive oxygen species (ROS) is Nrf2 (nuclear factor erythroid-derived 2-like 2, or NFE2L2). Here, we investigated whether global deficiency of Nrf2 in mice would impact exercise training-induced changes in glucose and lipid homeostasis. We report that following 6 wk of treadmill exercise training, Nrf2-deficient mice have elevated fasting plasma triglycerides and free fatty acids and higher blood glucose levels following a meal despite having a similar fat mass to wild-type controls. This impaired glucose homeostasis appears to be related to reduced insulin sensitivity primarily in adipose and liver tissue, and although a clear mechanism was not evident, Nrf2-deficient mice had increased markers of hepatic oxidative stress and stress-related kinase activation in white adipose tissue (WAT) without overt inflammation alteration in WAT or modulation of hepatic and WAT fibroblast growth factor 21 gene expression. Our results suggest that Nrf2 facilitates exercise training-induced improvements in glucose homeostasis; however, further research is required to determine whether this occurs through direct regulation of exercise adaptations or via the maintenance of redox balance during training.
Collapse
Affiliation(s)
- Troy L Merry
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Energy Metabolism Laboratory, Institute for Translational Medicines, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, Schwerzenbach, Switzerland
| | - Caitlin MacRae
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Toan Pham
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Christopher P Hedges
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute for Translational Medicines, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
49
|
Pacholko AG, Wotton CA, Bekar LK. Poor Diet, Stress, and Inactivity Converge to Form a "Perfect Storm" That Drives Alzheimer's Disease Pathogenesis. NEURODEGENER DIS 2019; 19:60-77. [PMID: 31600762 DOI: 10.1159/000503451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/17/2019] [Indexed: 11/19/2022] Open
Abstract
North American incidence of Alzheimer's disease (AD) is expected to more than double over the coming generation. Although genetic factors surrounding the production and clearance of amyloid-β and phosphorylated tau proteins are known to be responsible for a subset of early-onset AD cases, they do not explain the pathogenesis of the far more prevalent sporadic late-onset variant of the disease. It is thus likely that lifestyle and environmental factors contribute to neurodegenerative processes implicated in the pathogenesis of AD. Herein, we review evidence that (1) excess sucrose consumption induces AD-associated liver pathologies and brain insulin resistance, (2) chronic stress overdrives activity of locus coeruleus neurons, leading to loss of function (a common event in neurodegeneration), (3) high-sugar diets and stress promote the loss of neuroprotective sex hormones in men and women, and (4) Western dietary trends set the stage for a lithium-deficient state. We propose that these factors may intersect as part of a "perfect storm" to contribute to the widespread prevalence of neurodegeneration and AD. In addition, we put forth the argument that exercise and supplementation with trace lithium can counteract many of the deleterious consequences associated with excessive caloric intake and perpetual stress. We conclude that lifestyle and environmental factors likely contribute to AD pathogenesis and that simple lifestyle and dietary changes can help counteract their effects.
Collapse
Affiliation(s)
- Anthony G Pacholko
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Caitlin A Wotton
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lane K Bekar
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada,
| |
Collapse
|
50
|
Graham LC, Grabowska WA, Chun Y, Risacher SL, Philip VM, Saykin AJ, Sukoff Rizzo SJ, Howell GR. Exercise prevents obesity-induced cognitive decline and white matter damage in mice. Neurobiol Aging 2019; 80:154-172. [PMID: 31170535 PMCID: PMC7846054 DOI: 10.1016/j.neurobiolaging.2019.03.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/12/2023]
Abstract
Obesity in the western world has reached epidemic proportions, and yet the long-term effects on brain health are not well understood. To address this, we performed transcriptional profiling of brain regions from a mouse model of western diet (WD)-induced obesity. Both the cortex and hippocampus from C57BL/6J (B6) mice fed either a WD or a control diet from 2 months of age to 12 months of age (equivalent to midlife in a human population) were profiled. Gene set enrichment analyses predicted that genes involved in myelin generation, inflammation, and cerebrovascular health were differentially expressed in brains from WD-fed compared to control diet-fed mice. White matter damage and cerebrovascular decline were evident in brains from WD-fed mice using immunofluorescence and electron microscopy. At the cellular level, the WD caused an increase in the numbers of oligodendrocytes and myeloid cells suggesting that a WD is perturbing myelin turnover. Encouragingly, cerebrovascular damage and white matter damage were prevented by exercising WD-fed mice despite mice still gaining a significant amount of weight. Collectively, these data show that chronic consumption of a WD in B6 mice causes obesity, neuroinflammation, and cerebrovascular and white matter damage, but these potentially damaging effects can be prevented by modifiable risk factors such as exercise.
Collapse
Affiliation(s)
- Leah C Graham
- The Jackson Laboratory, Bar Harbor, ME, USA; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Weronika A Grabowska
- The Jackson Laboratory, Bar Harbor, ME, USA; College of the Atlantic, Bar Harbor, ME, USA
| | - Yoona Chun
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, USA; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|