1
|
Rodacki M, Silva KR, Araujo DB, Dantas JR, Ramos MEN, Zajdenverg L, Baptista LS. Immunomodulatory agents and cell therapy for patients with type 1 diabetes. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2025; 68:e240233. [PMID: 40215356 PMCID: PMC11967186 DOI: 10.20945/2359-4292-2024-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/17/2024] [Indexed: 04/15/2025]
Abstract
Type 1 diabetes (TID) is a chronic disease caused by autoimmune destruction of pancreatic β-cells, that progresses in three stages: 1) stage 1: β-cell autoimmunity + normoglycemia; 2) stage 2: β-cell autoimmunity + mild dysglycemia; 3) stage 3: symptomatic disease + hyperglycemia. Interventions to prevent or cure T1D in the various stages of the disease have been pursued and may target the prevention of the destruction of β cells, regression of insulitis, preservation or recovery of β cells residual mass. Some therapies show promising results that might change the natural history and the approach to patients with T1D in the next few years. Teplizumab, a humanized monoclonal antibody that binds to CD3, was recently approved in the USA to delay Stage 3 T1D in individuals ≥ 8 years of age. Other non-cellular immunomodulatory therapies, both antigen-specific and non-specific, have shown interesting results either in patients with stage 2 or recent onset stage 3 T1D. Cell therapies such as non-myeloablative transplantation of autologous hematopoietic stem cells, mesenchymal stem cells, and tolerogenic dendritic cells have been also studied in these individuals, aiming immunomodulation. Stem cell-derived islet replacement therapy is promising for patients with long- standing T1D, especially with asymptomatic hypoglycemia not resolved by technology. This review aimed to provide updated information on the main immunomodulatory agents and cell therapy options for type 1 diabetes.
Collapse
Affiliation(s)
- Melanie Rodacki
- Departamento de Medicina Interna, Universidade Federal do Rio de Janeiro,
Rio de Janeiro, RJ, Brasil
| | - Karina Ribeiro Silva
- Laboratório de Pesquisa com Células-Tronco, Departamento de
Histologia e Embriologia, Instituto de Biologia, Universidade do Estado do Rio de Janeiro,
Rio de Janeiro, RJ, Brasil
| | | | - Joana R. Dantas
- Departamento de Medicina Interna, Universidade Federal do Rio de Janeiro,
Rio de Janeiro, RJ, Brasil
| | | | - Lenita Zajdenverg
- Departamento de Medicina Interna, Universidade Federal do Rio de Janeiro,
Rio de Janeiro, RJ, Brasil
| | - Leandra Santos Baptista
- NUMPEX-BIO, Campus Duque de Caxias Professor Geraldo Cidade, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
2
|
Foster TP, Bruggeman BS, Haller MJ. Emerging Immunotherapies for Disease Modification of Type 1 Diabetes. Drugs 2025; 85:457-473. [PMID: 39873914 PMCID: PMC11949705 DOI: 10.1007/s40265-025-02150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by the progressive, autoimmune-mediated destruction of β cells. As such, restoring immunoregulation early in the disease course is sought to retain endogenous insulin production. Nevertheless, in the more than 100 years since the discovery of insulin, treatment of T1DM has focused primarily on hormone replacement and glucose monitoring. That said, immunotherapies are widely used to interdict autoimmune and autoinflammatory diseases and are emerging as potential therapeutics seeking the preservation of β-cell function among those with T1DM. In the past 4 decades of diabetes research, several immunomodulatory therapies have been explored, culminating with the US Food and Drug Administration approval of teplizumab to delay stage 3 (clinical) onset of T1DM. Clinical trials seeking to prevent or reverse T1DM by repurposing immunotherapies approved for other autoimmune conditions and by exploring new therapeutics are ongoing. Collectively, these efforts have the potential to transform the future of diabetes care. We encapsulate the past 40 years of immunotherapy trials, take stock of our successes and failures, and chart paths forward in this new age of clinically available immune therapies for T1DM.
Collapse
Affiliation(s)
- Timothy P Foster
- Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1699 SW 16th Ave, Building A, Gainesville, FL, 32608, USA.
| | - Brittany S Bruggeman
- Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1699 SW 16th Ave, Building A, Gainesville, FL, 32608, USA
| | - Michael J Haller
- Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1699 SW 16th Ave, Building A, Gainesville, FL, 32608, USA
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Rendell M. Pharmacotherapy of type 1 diabetes - part 3: tomorrow. Expert Opin Pharmacother 2025; 26:535-550. [PMID: 40056035 DOI: 10.1080/14656566.2025.2468906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/02/2025] [Accepted: 02/14/2025] [Indexed: 03/27/2025]
Abstract
INTRODUCTION The last 100 years have seen type 1 diabetes, a previously fatal disease, transformed by the administration of exogenous insulin. AREAS COVERED A standard literature search using the Google and Microsoft search engines and PubMed was performed. The development of synthetic insulins with varying onsets and duration of action improved glucose control, essential to mitigate the microvascular and macrovascular consequences of diabetes. Today insulin pumps guided by continuous glucose monitors are approaching the objective of normalized glucose levels. The area of greatest development is now in attempting to suppress the immune process which results in progressive destruction of the beta cell. It is possible to identify family members of patients with type 1 diabetes who may eventually develop the disease by measuring several beta cell antibodies. Very recently teplizumab, a CD3 inhibitor, has been approved to delay the onset of hyperglycemia in these individuals. EXPERT OPINION The future will see progress in immunosuppression, possibly using specific CAR-Treg cells directed at the beta cell antigens which trigger the immune process. In parallel, stem cell-derived beta cells may eventually make it possible to replace lost beta cells, resulting in a true cure for type 1 diabetes.
Collapse
Affiliation(s)
- Marc Rendell
- The Association of Diabetes Investigators, Omaha, NE, USA
- The Rose Salter Medical Research Foundation, Newport Coast, CA, USA
| |
Collapse
|
4
|
Ajmal N, Bogart MC, Khan P, Max-Harry IM, Healy AM, Nunemaker CS. Identifying Promising Immunomodulators for Type 1 Diabetes (T1D) and Islet Transplantation. J Diabetes Res 2024; 2024:5151171. [PMID: 39735417 PMCID: PMC11679277 DOI: 10.1155/jdr/5151171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/04/2024] [Indexed: 12/31/2024] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune chronic disorder that damages beta cells in the pancreatic islets of Langerhans and results in hyperglycemia due to the loss of insulin. Exogenous insulin therapy can save lives but does not stop disease progression. Thus, an effective therapy may require beta cell restoration and suppression of the autoimmune response. However, currently, there are no treatment options available that can reverse T1D. Within the National Clinical Trial (NCT) database, a majority of over 3000 trials to treat T1D are devoted to insulin therapy. This review focuses on noninsulin pharmacological therapies, specifically immunomodulators. Many investigational new drugs fall under this category, such as the recently FDA-approved CD3 monoclonal antibody teplizumab to delay the onset of T1D. In total, we identified 39 different immunomodulatory investigational drugs. FDA-approved teplizumab for Stage 2 T1D is discussed along with other immunomodulators that have been tested in Phase 3 clinical trials or higher, including otelixizumab (another anti-CD3 monoclonal antibody), daclizumab (an anti-CD25 monoclonal antibody), ladarixin (CXCR1/2 inhibitor), and antithymocyte globulin (ATG). Immunomodulators also play roles in islet transplantation and cellular therapies like FDA-approved Lantidra. Several immunomodulators involved in Phase 3 clinical studies of islet transplantation are also discussed, including alemtuzumab, basiliximab, etanercept, and reparixin, some already FDA-approved for other uses. These include alemtuzumab, basiliximab, etanercept, and reparixin, some of which have been FDA-approved for other uses. This review provides background, mechanism of action, results of completed trials, and adverse effects as well as details regarding ongoing clinical trials for each of these immunomodulators. Trial Registration: ClinicalTrials.gov identifier: NCT03875729, NCT01030861, NCT00129259, NCT00385697, NCT01280682; NCT03929601, NCT04598893, NCT05757713, NCT00678886, NCT01123083, NCT00064714, NCT00468117, NCT04628481, NCT01106157, NCT02215200, NCT00331162, NCT00679042, NCT01220856, NCT01817959.
Collapse
Affiliation(s)
- Nida Ajmal
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
- Translational Biomedical Sciences Graduate Program, Ohio University, Athens, Ohio, USA
| | | | - Palwasha Khan
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
- Translational Biomedical Sciences Graduate Program, Ohio University, Athens, Ohio, USA
| | - Ibiagbani M. Max-Harry
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
- Molecular and Cellular Biology Graduate Program, Ohio University, Athens, Ohio, USA
| | - Amber M. Healy
- Department of Specialty Medicine, Ohio University, Athens, Ohio, USA
| | - Craig S. Nunemaker
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
- Translational Biomedical Sciences Graduate Program, Ohio University, Athens, Ohio, USA
- Molecular and Cellular Biology Graduate Program, Ohio University, Athens, Ohio, USA
| |
Collapse
|
5
|
Jacobsen LM, Cuthbertson D, Bundy BN, Atkinson MA, Moore W, Haller MJ, Russell WE, Gitelman SE, Herold KC, Redondo MJ, Sims EK, Wherrett DK, Moran A, Pugliese A, Gottlieb PA, Sosenko JM, Ismail HM. Early Metabolic Endpoints Identify Persistent Treatment Efficacy in Recent-Onset Type 1 Diabetes Immunotherapy Trials. Diabetes Care 2024; 47:1048-1055. [PMID: 38621411 PMCID: PMC11294635 DOI: 10.2337/dc24-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/18/2024] [Indexed: 04/17/2024]
Abstract
OBJECTIVE Mixed-meal tolerance test-stimulated area under the curve (AUC) C-peptide at 12-24 months represents the primary end point for nearly all intervention trials seeking to preserve β-cell function in recent-onset type 1 diabetes. We hypothesized that participant benefit might be detected earlier and predict outcomes at 12 months posttherapy. Such findings would support shorter trials to establish initial efficacy. RESEARCH DESIGN AND METHODS We examined data from six Type 1 Diabetes TrialNet immunotherapy randomized controlled trials in a post hoc analysis and included additional stimulated metabolic indices beyond C-peptide AUC. We partitioned the analysis into successful and unsuccessful trials and analyzed the data both in the aggregate as well as individually for each trial. RESULTS Among trials meeting their primary end point, we identified a treatment effect at 3 and 6 months when using C-peptide AUC (P = 0.030 and P < 0.001, respectively) as a dynamic measure (i.e., change from baseline). Importantly, no such difference was seen in the unsuccessful trials. The use of C-peptide AUC as a 6-month dynamic measure not only detected treatment efficacy but also suggested long-term C-peptide preservation (R2 for 12-month C-peptide AUC adjusted for age and baseline value was 0.80, P < 0.001), and this finding supported the concept of smaller trial sizes down to 54 participants. CONCLUSIONS Early dynamic measures can identify a treatment effect among successful immune therapies in type 1 diabetes trials with good long-term prediction and practical sample size over a 6-month period. While external validation of these findings is required, strong rationale and data exist in support of shortening early-phase clinical trials.
Collapse
Affiliation(s)
- Laura M. Jacobsen
- Department of Pediatrics, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
| | - David Cuthbertson
- Health Informatics Institute, University of South Florida, Tampa, FL
| | - Brian N. Bundy
- Health Informatics Institute, University of South Florida, Tampa, FL
| | - Mark A. Atkinson
- Department of Pediatrics, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
| | - Wayne Moore
- Pediatric Endocrinology, Children’s Mercy Hospital/University of Missouri-Kansas City Mercy, Kansas City, MO
| | - Michael J. Haller
- Department of Pediatrics, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
| | | | | | | | - Maria J. Redondo
- Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Emily K. Sims
- Department of Pediatrics, Indiana University, Indianapolis, IN
| | - Diane K. Wherrett
- Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Antoinette Moran
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Alberto Pugliese
- Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
| | - Peter A. Gottlieb
- Barbara Davis Center, University of Colorado School of Medicine, Aurora, CO
| | - Jay M. Sosenko
- Division of Endocrinology, University of Miami, Miami, FL
| | - Heba M. Ismail
- Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | | |
Collapse
|
6
|
Zou Y, Zhang J, Sun F, Xu Q, Chen L, Luo X, Wang T, Zhou Q, Zhang S, Xiong F, Kong W, Yang P, Yu Q, Liu S, Wang CY. Fluvoxamine inhibits Th1 and Th17 polarization and function by repressing glycolysis to attenuate autoimmune progression in type 1 diabetes. Mol Med 2024; 30:23. [PMID: 38317106 PMCID: PMC10845844 DOI: 10.1186/s10020-024-00791-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Fluvoxamine is one of the selective serotonin reuptake inhibitors (SSRIs) that are regarded as the first-line drugs to manage mental disorders. It has been also recognized with the potential to treat inflammatory diseases and viral infection. However, the effect of fluvoxamine on autoimmune diseases, particularly type 1 diabetes (T1D) and the related cellular and molecular mechanisms, are yet to be addressed. METHOD Herein in this report, we treated NOD mice with fluvoxamine for 2 weeks starting from 10-week of age to dissect the impact of fluvoxamine on the prevention of type 1 diabetes. We compared the differences of immune cells between 12-week-old control and fluvoxamine-treated mice by flow cytometry analysis. To study the mechanism involved, we extensively examined the characteristics of CD4+ T cells with fluvoxamine stimulation using RNA-seq analysis, real-time PCR, Western blot, and seahorse assay. Furthermore, we investigated the relevance of our data to human autoimmune diabetes. RESULT Fluvoxamine not only delayed T1D onset, but also decreased T1D incidence. Moreover, fluvoxamine-treated NOD mice showed significantly attenuated insulitis coupled with well-preserved β cell function, and decreased Th1 and Th17 cells in the peripheral blood, pancreatic lymph nodes (PLNs), and spleen. Mechanistic studies revealed that fluvoxamine downregulated glycolytic process by inhibiting phosphatidylinositol 3-kinase (PI3K)-AKT signaling, by which it restrained effector T (Teff) cell differentiation and production of proinflammatory cytokines. CONCLUSION Collectively, our study supports that fluvoxamine could be a viable therapeutic drug against autoimmunity in T1D setting.
Collapse
Affiliation(s)
- Yuan Zou
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Jing Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Fei Sun
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Qianqian Xu
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Longmin Chen
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
- Department of Rheumatology and Immunology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xi Luo
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Ting Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Qing Zhou
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Shu Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Fei Xiong
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Wen Kong
- Department of Endocrinology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Ping Yang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Qilin Yu
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China.
| | - Shiwei Liu
- Department of Endocrinology, Shanxi Bethune Hospital, Shanxi Academy of Medical ScienceTongji Shanxi Hospital, The Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Third Hospital of Shanxi Medical University, Taiyuan, China.
| | - Cong-Yi Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China.
- Department of Endocrinology, Shanxi Bethune Hospital, Shanxi Academy of Medical ScienceTongji Shanxi Hospital, The Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Third Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
7
|
Fanaropoulou NM, Tsatsani GC, Koufakis T, Kotsa K. Teplizumab: promises and challenges of a recently approved monoclonal antibody for the prevention of type 1 diabetes or preservation of residual beta cell function. Expert Rev Clin Immunol 2024; 20:185-196. [PMID: 37937833 DOI: 10.1080/1744666x.2023.2281990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/07/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION Type 1 diabetes (T1D) is a chronic autoimmune endocrinopathy with increasing incidence that results in the depletion of pancreatic beta cells and exogenous insulin dependence. Despite technological advances in insulin delivery, disease control remains suboptimal, while previous immunotherapy options have failed to prevent T1D. Recently, teplizumab, an immunomodulating monoclonal antibody, was approved to delay or prevent T1D. AREAS COVERED Five randomized controlled trials have tested different regimens of administration, mostly 14-day schemes with dose escalation. In participants with new-onset T1D, teplizumab delayed C-peptide decline, improved glycemic control, and reduced insulin demand for a median of 1 or 2 years. Studies in at-risk relatives of patients showed a decrease in T1D incidence during 2 years of follow-up. Subgroups of responders with unique metabolic and immunological characteristics were identified. Mild to moderate adverse effects were reported, including transient rash, cytopenia, nausea, vomiting, and infections. EXPERT OPINION Teplizumab marks a turning point in T1D therapy. Areas of future research include the ideal population for screening, cost-effectiveness, and challenges in treatment accessibility. More studies are essential to evaluate the ideal duration of the regimen, the potential benefit of combinations with other drugs, and to identify endophenotypes with a high probability of response.
Collapse
Affiliation(s)
- Nina Maria Fanaropoulou
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia C Tsatsani
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theocharis Koufakis
- Second Propaedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
8
|
Taylor PN, Collins KS, Lam A, Karpen SR, Greeno B, Walker F, Lozano A, Atabakhsh E, Ahmed ST, Marinac M, Latres E, Senior PA, Rigby M, Gottlieb PA, Dayan CM. C-peptide and metabolic outcomes in trials of disease modifying therapy in new-onset type 1 diabetes: an individual participant meta-analysis. Lancet Diabetes Endocrinol 2023; 11:915-925. [PMID: 37931637 DOI: 10.1016/s2213-8587(23)00267-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Metabolic outcomes in type 1 diabetes remain suboptimal. Disease modifying therapy to prevent β-cell loss presents an alternative treatment framework but the effect on metabolic outcomes is unclear. We, therefore, aimed to define the relationship between insulin C-peptide as a marker of β-cell function and metabolic outcomes in new-onset type 1 diabetes. METHODS 21 trials of disease-modifying interventions within 100 days of type 1 diabetes diagnosis comprising 1315 adults (ie, those 18 years and older) and 1396 children (ie, those younger than 18 years) were combined. Endpoints assessed were stimulated area under the curve C-peptide, HbA1c, insulin use, hypoglycaemic events, and composite scores (such as insulin dose adjusted A1c, total daily insulin, U/kg per day, and BETA-2 score). Positive studies were defined as those meeting their primary endpoint. Differences in outcomes between active and control groups were assessed using the Wilcoxon rank test. FINDINGS 6 months after treatment, a 24·8% greater C-peptide preservation in positive studies was associated with a 0·55% lower HbA1c (p<0·0001), with differences being detectable as early as 3 months. Cross-sectional analysis, combining positive and negative studies, was consistent with this proportionality: a 55% improvement in C-peptide preservation was associated with 0·64% lower HbA1c (p<0·0001). Higher initial C-peptide levels and greater preservation were associated with greater improvement in HbA1c. For HbA1c, IDAAC, and BETA-2 score, sample size predictions indicated that 2-3 times as many participants per group would be required to show a difference at 6 months as compared with C-peptide. Detecting a reduction in hypoglycaemia was affected by reporting methods. INTERPRETATION Interventions that preserve β-cell function are effective at improving metabolic outcomes in new-onset type 1 diabetes, confirming their potential as adjuncts to insulin. We have shown that improvements in HbA1c are directly proportional to the degree of C-peptide preservation, quantifying this relationship, and supporting the use of C-peptides as a surrogate endpoint in clinical trials. FUNDING JDRF and Diabetes UK.
Collapse
Affiliation(s)
- Peter N Taylor
- Department of Infection and Immunity, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| | | | - Anna Lam
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | - Simi T Ahmed
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | | | | | - Peter A Senior
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Mark Rigby
- Critical Path Institute, Tucson, AZ, USA
| | | | - Colin M Dayan
- Department of Infection and Immunity, Cardiff University School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
9
|
Simmons KM, Sims EK. Screening and Prevention of Type 1 Diabetes: Where Are We? J Clin Endocrinol Metab 2023; 108:3067-3079. [PMID: 37290044 PMCID: PMC11491628 DOI: 10.1210/clinem/dgad328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/10/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
A diagnosis of type 1 diabetes (T1D) and the subsequent requirement for exogenous insulin treatment is associated with considerable acute and chronic morbidity and a substantial effect on patient quality of life. Importantly, a large body of work suggests that early identification of presymptomatic T1D can accurately predict clinical disease, and when paired with education and monitoring, can yield improved health outcomes. Furthermore, a growing cadre of effective disease-modifying therapies provides the potential to alter the natural history of early stages of T1D. In this mini review, we highlight prior work that has led to the current landscape of T1D screening and prevention, as well as challenges and next steps moving into the future of these rapidly evolving areas of patient care.
Collapse
Affiliation(s)
- Kimber M Simmons
- Barbara Davis Center for Diabetes, Division of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Emily K Sims
- Division of Pediatric Endocrinology and Diabetology, Herman B Wells Center for Pediatric Research; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
10
|
Ylescupidez A, Bahnson HT, O'Rourke C, Lord S, Speake C, Greenbaum CJ. A standardized metric to enhance clinical trial design and outcome interpretation in type 1 diabetes. Nat Commun 2023; 14:7214. [PMID: 37940642 PMCID: PMC10632453 DOI: 10.1038/s41467-023-42581-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 10/13/2023] [Indexed: 11/10/2023] Open
Abstract
The use of a standardized outcome metric enhances clinical trial interpretation and cross-trial comparison. If a disease course is predictable, comparing modeled predictions with outcome data affords the precision and confidence needed to accelerate precision medicine. We demonstrate this approach in type 1 diabetes (T1D) trials aiming to preserve endogenous insulin secretion measured by C-peptide. C-peptide is predictable given an individual's age and baseline value; quantitative response (QR) adjusts for these variables and represents the difference between the observed and predicted outcome. Validated across 13 trials, the QR metric reduces each trial's variance and increases statistical power. As smaller studies are especially subject to random sampling variability, using QR as the outcome introduces alternative interpretations of previous clinical trial results. QR can provide model-based estimates that quantify whether individuals or groups did better or worse than expected. QR also provides a purer metric to associate with biomarker measurements. Using data from more than 1300 participants, we demonstrate the value of QR in advancing disease-modifying therapy in T1D. QR applies to any disease where outcome is predictable by pre-specified baseline covariates, rendering it useful for defining responders to therapy, comparing therapeutic efficacy, and understanding causal pathways in disease.
Collapse
Affiliation(s)
- Alyssa Ylescupidez
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Henry T Bahnson
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Colin O'Rourke
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Sandra Lord
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
| | - Carla J Greenbaum
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
| |
Collapse
|
11
|
Thakkar S, Chopra A, Nagendra L, Kalra S, Bhattacharya S. Teplizumab in Type 1 Diabetes Mellitus: An Updated Review. TOUCHREVIEWS IN ENDOCRINOLOGY 2023; 19:22-30. [PMID: 38187075 PMCID: PMC10769466 DOI: 10.17925/ee.2023.19.2.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/01/2023] [Indexed: 01/09/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune condition characterized by the irreversible destruction of the β cells of the pancreas, which leads to a lifelong dependency on exogenous insulin. Despite the advancements in insulin delivery methods, the suboptimal outcomes of these methods have triggered the search for therapies that may prevent or reverse the disease. Given the autoimmune aetiology of T1DM, therapies counteracting the immune-mediated destruction of the β-cells are the obvious target. Although several treatment strategies have been attempted to target cellular, humoral and innate immunity, very few have had a clinically meaningful impact. Of all the available immunomodulatory agents, cluster of differentiation (CD) 3 antibodies have exhibited the most promising preclinical and clinical results. Muromonab-CD3, which also happened to be a murine CD3 antibody, was the first monoclonal antibody approved for clinical use and was primarily indicated for graft rejection. The adverse effects associated with muromonab-CD3 led to its withdrawal. Teplizumab, a newer CD3 antibody, has a better side-effect profile because of its humanized nature and non-Fc-receptor-binding domain. In November 2022, teplizumab became the first immunomodulatory agent to be licensed by the US Food and Drug Administration for delaying the onset of T1DM in high-risk adults and children over 8 years old. The mechanism seems to be enhancing regulatory T-cell activity and promoting immune tolerance. This article reviews the mechanism of action and the clinical trials of teplizumab in individuals with T1DM or at risk of developing the disease.
Collapse
Affiliation(s)
- Simran Thakkar
- Department of Endocrinology, Indraprastha Apollo Hospitals, New Delhi, India
| | - Aditi Chopra
- Department of Endocrinology, Manipal Hospital, Bengaluru, India
| | | | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, Haryana, India
| | | |
Collapse
|
12
|
Felton JL, Griffin KJ, Oram RA, Speake C, Long SA, Onengut-Gumuscu S, Rich SS, Monaco GSF, Evans-Molina C, DiMeglio LA, Ismail HM, Steck AK, Dabelea D, Johnson RK, Urazbayeva M, Gitelman S, Wentworth JM, Redondo MJ, Sims EK. Disease-modifying therapies and features linked to treatment response in type 1 diabetes prevention: a systematic review. COMMUNICATIONS MEDICINE 2023; 3:130. [PMID: 37794169 PMCID: PMC10550983 DOI: 10.1038/s43856-023-00357-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) results from immune-mediated destruction of insulin-producing beta cells. Prevention efforts have focused on immune modulation and supporting beta cell health before or around diagnosis; however, heterogeneity in disease progression and therapy response has limited translation to clinical practice, highlighting the need for precision medicine approaches to T1D disease modification. METHODS To understand the state of knowledge in this area, we performed a systematic review of randomized-controlled trials with ≥50 participants cataloged in PubMed or Embase from the past 25 years testing T1D disease-modifying therapies and/or identifying features linked to treatment response, analyzing bias using a Cochrane-risk-of-bias instrument. RESULTS We identify and summarize 75 manuscripts, 15 describing 11 prevention trials for individuals with increased risk for T1D, and 60 describing treatments aimed at preventing beta cell loss at disease onset. Seventeen interventions, mostly immunotherapies, show benefit compared to placebo (only two prior to T1D onset). Fifty-seven studies employ precision analyses to assess features linked to treatment response. Age, beta cell function measures, and immune phenotypes are most frequently tested. However, analyses are typically not prespecified, with inconsistent methods of reporting, and tend to report positive findings. CONCLUSIONS While the quality of prevention and intervention trials is overall high, the low quality of precision analyses makes it difficult to draw meaningful conclusions that inform clinical practice. To facilitate precision medicine approaches to T1D prevention, considerations for future precision studies include the incorporation of uniform outcome measures, reproducible biomarkers, and prespecified, fully powered precision analyses into future trial design.
Collapse
Affiliation(s)
- Jamie L Felton
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kurt J Griffin
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
- Sanford Research, Sioux Falls, SD, USA
| | - Richard A Oram
- NIHR Exeter Biomedical Research Centre (BRC), Academic Kidney Unit, University of Exeter, Devon, UK
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, Devon, UK
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, Devon, UK
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Gabriela S F Monaco
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Richard L. Roudebush VAMC, Indianapolis, IN, USA
| | - Linda A DiMeglio
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heba M Ismail
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
| | | | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO, USA
| | - Randi K Johnson
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | | | - Stephen Gitelman
- Department of Pediatrics, Diabetes Center; University of California at San Francisco, San Francisco, CA, USA
| | - John M Wentworth
- Royal Melbourne Hospital Department of Diabetes and Endocrinology, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne Department of Medicine, Parkville, VIC, Australia
| | - Maria J Redondo
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Division of Pediatric Diabetes and Endocrinology, Texas Children's Hospital, Houston, TX, USA
| | - Emily K Sims
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA.
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
13
|
Siddiqui K, Nawaz SS. Exploration of Immune Targets for Type 1 Diabetes and Latent Autoimmune Disease Immunotherapy. Immunotargets Ther 2023; 12:91-103. [PMID: 37795196 PMCID: PMC10546931 DOI: 10.2147/itt.s417917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/09/2023] [Indexed: 10/06/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that destroys pancreatic beta cells, which produce insulin in the islets of Langerhans. The risk of developing T1D is influenced by environmental factors, genetics, and autoantibodies. Latent autoimmune diabetes in adults (LADA) is a type of T1D that is genetically and phenotypically distinct from classic T1D. This review summarizes the accumulated information on the risk factors for T1D and LADA, and immunotherapy trials that offer insights into potential future combined therapeutic interventions for both T1D and LADA to slow the rate of islet cell loss and preserve beta cell function. Future research should also focus on improving intervention doses, conducting more thorough examinations of intervention responders, and/or combining minimally effective single-target immunotherapies to slow the rate of islet cell loss and preserve beta cell function.
Collapse
Affiliation(s)
- Khalid Siddiqui
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Shaik Sarfaraz Nawaz
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Gitelman SE, Evans-Molina C, Guolo A, Mari A, Ferrannini E. β-Cell Glucose Sensitivity to Assess Changes in β-Cell Function in Recent-Onset Stage 3 Type 1 Diabetes. Diabetes 2023; 72:1289-1296. [PMID: 37368990 PMCID: PMC10450822 DOI: 10.2337/db23-0196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
Following a diagnosis of type 1 diabetes (T1D), persisting C-peptide secretion leads to improved glycemic control and outcomes. Residual β-cell function is often assessed with serial mixed-meal tolerance tests, but these tests do not correlate well with clinical outcomes. Herein, we instead use β-cell glucose sensitivity (βGS) to assess changes in β-cell function, incorporating insulin secretion for a given serum glucose into the assessment of β-cell function. We evaluated changes in βGS in individuals enrolled in the placebo arm of 10 T1D trials performed at diabetes onset. We found that βGS showed a more rapid decline in children, as compared with adolescents and adults. Individuals in the top quartile of βGS baseline distribution had a slower rate in loss of glycemic control time over time. Notably, half of this group were children and adolescents. Finally, to identify predictors of glycemic control throughout follow-up, we ran multivariate Cox models and found that incorporating βGS significantly improved the overall model. Taken together, these data suggest that βGS may be of great utility in predicting those more likely to have a more robust clinical remission and may be of use in design of new-onset diabetes clinical trials and in evaluating response to therapies. ARTICLE HIGHLIGHTS We undertook this study to better predict β-cell loss following type 1 diabetes diagnosis. We set out to answer whether β-cell glucose sensitivity (βGS) improves means to evaluate β-cell function postdiagnosis and whether βGS correlates with clinical outcomes. We found that βGS declines faster in children, subjects in the top baseline quartile of βGS exhibit slower β-cell decline (half are children), and incorporating βGS into multivariate Cox models for glycemic improves the model. The implications of our findings are that βGS predicts those likely to have robust clinical remissions and may help with clinical trials design.
Collapse
Affiliation(s)
- Stephen E. Gitelman
- Department of Pediatrics and Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, and Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN
| | - Annamaria Guolo
- Department of Statistical Sciences, University of Padua, Padua, Italy
| | | | | |
Collapse
|
15
|
Felton JL, Griffin KJ, Oram RA, Speake C, Long SA, Onengut-Gumuscu S, Rich SS, Monaco GS, Evans-Molina C, DiMeglio LA, Ismail HM, Steck AK, Dabelea D, Johnson RK, Urazbayeva M, Gitelman S, Wentworth JM, Redondo MJ, Sims EK. Type 1 Diabetes Prevention: a systematic review of studies testing disease-modifying therapies and features linked to treatment response. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.12.23288421. [PMID: 37131690 PMCID: PMC10153317 DOI: 10.1101/2023.04.12.23288421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background Type 1 diabetes (T1D) results from immune-mediated destruction of insulin-producing beta cells. Efforts to prevent T1D have focused on modulating immune responses and supporting beta cell health; however, heterogeneity in disease progression and responses to therapies have made these efforts difficult to translate to clinical practice, highlighting the need for precision medicine approaches to T1D prevention. Methods To understand the current state of knowledge regarding precision approaches to T1D prevention, we performed a systematic review of randomized-controlled trials from the past 25 years testing disease-modifying therapies in T1D and/or identifying features linked to treatment response, analyzing bias using a Cochrane-risk-of-bias instrument. Results We identified 75 manuscripts, 15 describing 11 prevention trials for individuals with increased risk for T1D, and 60 describing treatments aimed at preventing beta cell loss in individuals at disease onset. Seventeen agents tested, mostly immunotherapies, showed benefit compared to placebo (only two prior to T1D onset). Fifty-seven studies employed precision analyses to assess features linked to treatment response. Age, measures of beta cell function and immune phenotypes were most frequently tested. However, analyses were typically not prespecified, with inconsistent methods reporting, and tended to report positive findings. Conclusions While the quality of prevention and intervention trials was overall high, low quality of precision analyses made it difficult to draw meaningful conclusions that inform clinical practice. Thus, prespecified precision analyses should be incorporated into the design of future studies and reported in full to facilitate precision medicine approaches to T1D prevention. Plain Language Summary Type 1 diabetes (T1D) results from the destruction of insulin-producing cells in the pancreas, necessitating lifelong insulin dependence. T1D prevention remains an elusive goal, largely due to immense variability in disease progression. Agents tested to date in clinical trials work in a subset of individuals, highlighting the need for precision medicine approaches to prevention. We systematically reviewed clinical trials of disease-modifying therapy in T1D. While age, measures of beta cell function, and immune phenotypes were most commonly identified as factors that influenced treatment response, the overall quality of these studies was low. This review reveals an important need to proactively design clinical trials with well-defined analyses to ensure that results can be interpreted and applied to clinical practice.
Collapse
|
16
|
Nikoonezhad M, Lasemi MV, Alamdari S, Mohammadian M, Tabarraee M, Ghadyani M, Hamidpour M, Roshandel E. Treatment of insulin-dependent diabetes by hematopoietic stem cell transplantation. Transpl Immunol 2022; 75:101682. [PMID: 35926800 DOI: 10.1016/j.trim.2022.101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 10/16/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease resulting from the demolition of β-cells that are responsible for producing insulin in the pancreas. Treatment with insulin (lifelong applying) and islet transplantation (in rare cases and severe diseases), are standards of care for T1D. Pancreas or islet transplantation have some limitations, such as lack of sufficient donors and longtime immune suppression for preventing allograft rejection. Recent studies demonstrate that autologous hematopoietic stem cells (HSC) can regenerate immune tolerance against auto-antigens. Taking advantage of this feature, autologous HSC transplantation (auto-HSCT) is likely the only treatment for T1D that is associated with lasting and complete remission. None of the other evaluated immunotherapies worldwide had the clinical efficacy of auto-HSCT. Therapy with auto-HSCT is insulin-independent rather than reducing insulin needs or delaying loss of insulin production. This review provided the latest findings in auto-HSCT for treatment of T1D.
Collapse
Affiliation(s)
- Maryam Nikoonezhad
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Vahdat Lasemi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Alamdari
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhdeh Mohammadian
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Tabarraee
- Department of Hematology and Medical Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Ghadyani
- Department of Hematology and Medical Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Hamidpour
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Ben Nasr M, Robbins D, Parone P, Usuelli V, Tacke R, Seelam AJ, Driver E, Le T, Sabouri-Ghomi M, Guerrettaz L, Shoemaker D, Fiorina P. Pharmacologically Enhanced Regulatory Hematopoietic Stem Cells Revert Experimental Autoimmune Diabetes and Mitigate Other Autoimmune Disorders. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1554-1565. [PMID: 35321879 DOI: 10.4049/jimmunol.2100949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/14/2022] [Indexed: 12/19/2022]
Abstract
Type 1 diabetes (T1D) is characterized by the loss of immune self-tolerance, resulting in an aberrant immune responses against self-tissue. A few therapeutics have been partially successful in reverting or slowing down T1D progression in patients, and the infusion of autologous hematopoietic stem cells (HSCs) is emerging as an option to be explored. In this study, we proposed to pharmacologically enhance by ex vivo modulation with small molecules the immunoregulatory and trafficking properties of HSCs to provide a safer and more efficacious treatment option for patients with T1D and other autoimmune disorders. A high-throughput targeted RNA sequencing screening strategy was used to identify a combination of small molecules (16,16-dimethyl PGE2 and dexamethasone), which significantly upregulate key genes involved in trafficking (e.g., CXCR4) and immunoregulation (e.g., programmed death ligand 1). The pharmacologically enhanced, ex vivo-modulated HSCs (regulatory HSCs [HSC.Regs]) have strong trafficking properties to sites of inflammation in a mouse model of T1D, reverted autoimmune diabetes in NOD mice, and delayed experimental multiple sclerosis and rheumatoid arthritis in preclinical models. Mechanistically, HSC.Regs reduced lymphocytic infiltration of pancreatic β cells and inhibited the activity of autoreactive T cells. Moreover, when tested in clinically relevant in vitro autoimmune assays, HSC.Regs abrogated the autoimmune response. Ex vivo pharmacological modulation enhances the immunoregulatory and trafficking properties of HSCs, thus generating HSC.Regs, which mitigated autoimmune diabetes and other autoimmune disorders.
Collapse
Affiliation(s)
- Moufida Ben Nasr
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA.,International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, DIBIC L. Sacco, University of Milan, Milan, Italy
| | | | | | - Vera Usuelli
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, DIBIC L. Sacco, University of Milan, Milan, Italy
| | | | - Andy-Joe Seelam
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, DIBIC L. Sacco, University of Milan, Milan, Italy
| | | | - Thuy Le
- Fate Therapeutics, San Diego, CA; and
| | | | | | | | - Paolo Fiorina
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA; .,International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, DIBIC L. Sacco, University of Milan, Milan, Italy.,Division of Endocrinology, Fatebenefratelli-Sacco Hospital, Milan, Italy
| |
Collapse
|
18
|
Wake AD. Protective effects of physical activity against health risks associated with type 1 diabetes: "Health benefits outweigh the risks". World J Diabetes 2022; 13:161-184. [PMID: 35432757 PMCID: PMC8984568 DOI: 10.4239/wjd.v13.i3.161] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/08/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
The magnitude of diabetes mellitus (DM) has increased in recent decades, where the number of cases and the proportion of the disease have been gradually increasing over the past few decades. The chronic complications of DM affect many organ systems and account for the majority of morbidity and mortality associated with the disease. The prevalence of type 1 DM (T1DM) is increasing globally, and it has a very significant burden on countries and at an individual level. T1DM is a chronic illness that requires ongoing medical care and patient self-management to prevent complications. This study aims to discuss the health benefits of physical activity (PA) in T1DM patients. The present review article was performed following a comprehensive literature search. The search was conducted using the following electronic databases: "Cochrane Library", Web of Science, PubMed, HINARI, EMBASE, Google for grey literature, Scopus, African journals Online, and Google Scholar for articles published up to June 21, 2021. The present review focused on the effects of PA on many outcomes such as blood glucose (BG) control, physical fitness, endothelial function, insulin sensitivity, well-being, the body defense system, blood lipid profile, insulin resistance, cardiovascular diseases (CVDs), insulin requirements, blood pressure (BP), and mortality. It was found that many studies recommended the use of PA for the effective management of T1DM. PA is a component of comprehensive lifestyle modifications, which is a significant approach for the management of T1DM. It provides several health benefits, such as improving BG control, physical fitness, endothelial function, insulin sensitivity, well-being, and the body defense system. Besides this, it reduces the blood lipid profile, insulin resistance, CVDs, insulin requirements, BP, and mortality. Overall, PA has significant and essential protective effects against the health risks associated with T1DM. Even though PA has several health benefits for patients with T1DM, these patients are not well engaged in PA due to barriers such as a fear of exercise-induced hypoglycemia in particular. However, several effective strategies have been identified to control exercise-induced hypoglycemia in these patients. Finally, the present review concludes that PA should be recommended for the management of patients with T1DM due to its significant health benefits and protective effects against associated health risks. It also provides suggestions for the future direction of research in this field.
Collapse
Affiliation(s)
- Addisu Dabi Wake
- Department of Nursing, College of Health Sciences, Arsi University, Asella 193/4, Ethiopia
| |
Collapse
|
19
|
Yang Y, Luan Y, Feng Q, Chen X, Qin B, Ren KD, Luan Y. Epigenetics and Beyond: Targeting Histone Methylation to Treat Type 2 Diabetes Mellitus. Front Pharmacol 2022; 12:807413. [PMID: 35087408 PMCID: PMC8788853 DOI: 10.3389/fphar.2021.807413] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/24/2021] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus is a global public health challenge with high morbidity. Type 2 diabetes mellitus (T2DM) accounts for 90% of the global prevalence of diabetes. T2DM is featured by a combination of defective insulin secretion by pancreatic β-cells and the inability of insulin-sensitive tissues to respond appropriately to insulin. However, the pathogenesis of this disease is complicated by genetic and environmental factors, which needs further study. Numerous studies have demonstrated an epigenetic influence on the course of this disease via altering the expression of downstream diabetes-related proteins. Further studies in the field of epigenetics can help to elucidate the mechanisms and identify appropriate treatments. Histone methylation is defined as a common histone mark by adding a methyl group (-CH3) onto a lysine or arginine residue, which can alter the expression of downstream proteins and affect cellular processes. Thus, in tthis study will discuss types and functions of histone methylation and its role in T2DM wilsed. We will review the involvement of histone methyltransferases and histone demethylases in the progression of T2DM and analyze epigenetic-based therapies. We will also discuss the potential application of histone methylation modification as targets for the treatment of T2DM.
Collapse
Affiliation(s)
- Yang Yang
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Luan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
| | - Xing Chen
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Qin
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai-Di Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Yi Luan
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Ramzy A, Thompson DM, Ward-Hartstonge KA, Ivison S, Cook L, Garcia RV, Loyal J, Kim PTW, Warnock GL, Levings MK, Kieffer TJ. Implanted pluripotent stem-cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in patients with type 1 diabetes. Cell Stem Cell 2021; 28:2047-2061.e5. [PMID: 34861146 DOI: 10.1016/j.stem.2021.10.003] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/29/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022]
Abstract
An open-label, first-in-human phase 1/2 study is being conducted to evaluate the safety and efficacy of pancreatic endoderm cells (PECs) implanted in non-immunoprotective macroencapsulation devices for the treatment of type 1 diabetes. We report an analysis on 1 year of data from the first cohort of 15 patients from a single trial site that received subcutaneous implantation of cell products combined with an immunosuppressive regimen. Implants were well tolerated with no teratoma formation or severe graft-related adverse events. After implantation, patients had increased fasting C-peptide levels and increased glucose-responsive C-peptide levels and developed mixed meal-stimulated C-peptide secretion. There were immunosuppression-related transient increases in circulating regulatory T cells, PD1high T cells, and IL17A+CD4+ T cells. Explanted grafts contained cells with a mature β cell phenotype that were immunoreactive for insulin, islet amyloid polypeptide, and MAFA. These data, and associated findings (Shapiro et al., 2021), are the first reported evidence of meal-regulated insulin secretion by differentiated stem cells in patients.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - David M Thompson
- Division of Endocrinology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kirsten A Ward-Hartstonge
- Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; BC Children's Hospital Research Institute (BCCHRI), Vancouver, BC V5Z 4H4, Canada
| | - Sabine Ivison
- Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; BC Children's Hospital Research Institute (BCCHRI), Vancouver, BC V5Z 4H4, Canada
| | - Laura Cook
- Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; BC Children's Hospital Research Institute (BCCHRI), Vancouver, BC V5Z 4H4, Canada
| | - Rosa V Garcia
- Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; BC Children's Hospital Research Institute (BCCHRI), Vancouver, BC V5Z 4H4, Canada
| | - Jackson Loyal
- Division of Endocrinology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Peter T W Kim
- Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Garth L Warnock
- Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; BC Children's Hospital Research Institute (BCCHRI), Vancouver, BC V5Z 4H4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
21
|
Vallianou NG, Stratigou T, Geladari E, Tessier CM, Mantzoros CS, Dalamaga M. Diabetes type 1: Can it be treated as an autoimmune disorder? Rev Endocr Metab Disord 2021; 22:859-876. [PMID: 33730229 DOI: 10.1007/s11154-021-09642-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Type 1 Diabetes Mellitus (T1DM) is characterized by progressive autoimmune-mediated destruction of the pancreatic beta-cells leading to insulin deficiency and hyperglycemia. It is associated with significant treatment burden and necessitates life-long insulin therapy. The role of immunotherapy in the prevention and management of T1DM is an evolving area of interest which has the potential to alter the natural history of this disease.In this review, we give insight into recent clinical trials related to the use of immunotherapeutic approaches for T1DM, such as proinflammatory cytokine inhibition, cell-depletion and cell-therapy approaches, autoantigen-specific treatments and stem cell therapies. We highlight the timing of intervention, aspects of therapy including adverse effects and the emergence of a novel lymphocyte crucial in T1DM autoimmunity. We also discuss the role of cardiac autoimmunity and its link to excess CVD risk in T1DM.We conclude that significant advances have been made in development of immunotherapeutic targets and agents for the treatment and prevention of T1DM. These immune-based therapies promise preservation of beta-cells and decreasing insulin dependency. In their current state, immunotherapeutic approaches cannot yet halt the progression from a preclinical state to overt T1DM nor can they replace standard insulin therapy in existing T1DM. It remains to be seen whether immunotherapy will ultimately play a key role in the prevention of progression to overt T1DM and whether it may find a place in our therapeutic armamentarium to improve clinical outcomes and quality of life in established T1DM.
Collapse
Affiliation(s)
- Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Theodora Stratigou
- Department of Endocrinology, Diabetes and Metabolic Diseases, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527, Athens, Goudi, Greece
| | - Eleni Geladari
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Christopher M Tessier
- Endocrinology Section, VA Boston Healthcare System, 1400 VFW Parkway West Roxbury, Boston, MA, 02132, USA.
| | - Christos S Mantzoros
- Endocrinology Section, VA Boston Healthcare System, 1400 VFW Parkway West Roxbury, Boston, MA, 02132, USA
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527, Athens, Goudi, Greece
| |
Collapse
|
22
|
Greenbaum CJ, Serti E, Lambert K, Weiner LJ, Kanaparthi S, Lord S, Gitelman SE, Wilson DM, Gaglia JL, Griffin KJ, Russell WE, Raskin P, Moran A, Willi SM, Tsalikian E, DiMeglio LA, Herold KC, Moore WV, Goland R, Harris M, Craig ME, Schatz DA, Baidal DA, Rodriguez H, Utzschneider KM, Nel HJ, Soppe CL, Boyle KD, Cerosaletti K, Keyes-Elstein L, Long SA, Thomas R, McNamara JG, Buckner JH, Sanda S. IL-6 receptor blockade does not slow β cell loss in new-onset type 1 diabetes. JCI Insight 2021; 6:150074. [PMID: 34747368 PMCID: PMC8663550 DOI: 10.1172/jci.insight.150074] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/22/2021] [Indexed: 12/30/2022] Open
Abstract
BackgroundIL-6 receptor (IL-6R) signaling drives development of T cell populations important to type 1 diabetes pathogenesis. We evaluated whether blockade of IL-6R with monoclonal antibody tocilizumab would slow loss of residual β cell function in newly diagnosed type 1 diabetes patients.MethodsWe conducted a multicenter, randomized, placebo-controlled, double-blind trial with tocilizumab in new-onset type 1 diabetes. Participants were screened within 100 days of diagnosis. Eligible participants were randomized 2:1 to receive 7 monthly doses of tocilizumab or placebo. The primary outcome was the change from screening in the mean AUC of C-peptide collected during the first 2 hours of a mixed meal tolerance test at week 52 in pediatric participants (ages 6-17 years).ResultsThere was no statistical difference in the primary outcome between tocilizumab and placebo. Immunophenotyping showed reductions in downstream signaling of the IL-6R in T cells but no changes in CD4 memory subsets, Th17 cells, Tregs, or CD4+ T effector cell resistance to Treg suppression. A DC subset decreased during therapy but regressed to baseline once therapy stopped. Tocilizumab was well tolerated.ConclusionTocilizumab reduced T cell IL-6R signaling but did not modulate CD4+ T cell phenotypes or slow loss of residual β cell function in newly diagnosed individuals with type 1 diabetes.Trial RegistrationClinicalTrials.gov NCT02293837.FundingNIH National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) and National Institute of Allergy and Infectious Diseases (NIAID) UM1AI109565, UL1TR000004 from NIH/National Center for Research Resources (NCRR) Clinical and Translational Science Award (CTSA), NIH/NIDDK P30DK036836, NIH/NIDDK U01DK103266, NIH/NIDDK U01DK103266, 1UL1TR000064 from NIH/NCRR CTSA, NIH/National Center for Advancing Translational Sciences (NCATS) UL1TR001878, UL1TR002537 from NIH/CTSA; National Health and Medical Research Council Practitioner Fellowship (APP1136735), NIH/NIDDK U01-DK085476, NIH/CTSA UL1-TR002494, Indiana Clinical and Translational Science Institute Award UL1TR002529, Vanderbilt Institute for Clinical and Translational Research UL1TR000445. NIH/NCATS UL1TR003142, NIH/CTSA program UL1-TR002494, Veteran Affairs Administration, and 1R01AI132774.
Collapse
Affiliation(s)
- Carla J Greenbaum
- Center for Interventional Immunology and Diabetes Program, Benaroya Research Institute, Seattle, Washington, USA
| | | | - Katharina Lambert
- Center for Interventional Immunology and Diabetes Program, Benaroya Research Institute, Seattle, Washington, USA
| | | | | | - Sandra Lord
- Center for Interventional Immunology and Diabetes Program, Benaroya Research Institute, Seattle, Washington, USA
| | | | | | - Jason L Gaglia
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Philip Raskin
- University of Texas, Southwestern, Dallas, Texas, USA
| | | | - Steven M Willi
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Linda A DiMeglio
- Riley Children's Hospital, Indiana University, Indianapolis, Indiana, USA
| | | | - Wayne V Moore
- University of Missouri, Kansas City, Kansas City, Missouri, USA
| | | | - Mark Harris
- Children's Health Queensland Hospital, South Brisbane, Australia.,University of Queensland, Queensland, Brisbane, Australia
| | - Maria E Craig
- University of Sydney, Sydney New South Wales, Australia
| | | | | | | | | | - Hendrik J Nel
- University of Queensland, Queensland, Brisbane, Australia
| | | | | | - Karen Cerosaletti
- Center for Interventional Immunology and Diabetes Program, Benaroya Research Institute, Seattle, Washington, USA
| | | | - S Alice Long
- Center for Interventional Immunology and Diabetes Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Ranjeny Thomas
- University of Queensland, Queensland, Brisbane, Australia
| | - James G McNamara
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Jane H Buckner
- Center for Interventional Immunology and Diabetes Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Srinath Sanda
- Immune Tolerance Network, Seattle, Washington, USA.,University of California, San Francisco, San Francisco, California, USA
| | | |
Collapse
|
23
|
Beam CA, Beli E, Wasserfall CH, Woerner SE, Legge MT, Evans-Molina C, McGrail KM, Silk R, Grant MB, Atkinson MA, DiMeglio LA. Peripheral immune circadian variation, synchronisation and possible dysrhythmia in established type 1 diabetes. Diabetologia 2021; 64:1822-1833. [PMID: 34003304 PMCID: PMC8245361 DOI: 10.1007/s00125-021-05468-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/10/2021] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS The circadian clock influences both diabetes and immunity. Our goal in this study was to characterise more thoroughly the circadian patterns of immune cell populations and cytokines that are particularly relevant to the immune pathology of type 1 diabetes and thus fill in a current gap in our understanding of this disease. METHODS Ten individuals with established type 1 diabetes (mean disease duration 11 years, age 18-40 years, six female) participated in a circadian sampling protocol, each providing six blood samples over a 24 h period. RESULTS Daily ranges of population frequencies were sometimes large and possibly clinically significant. Several immune populations, such as dendritic cells, CD4 and CD8 T cells and their effector memory subpopulations, CD4 regulatory T cells, B cells and cytokine IL-6, exhibited statistically significant circadian rhythmicity. In a comparison with historical healthy control individuals, but using shipped samples, we observed that participants with type 1 diabetes had statistically significant phase shifts occurring in the time of peak occurrence of B cells (+4.8 h), CD4 and CD8 T cells (~ +5 h) and their naive and effector memory subsets (~ +3.3 to +4.5 h), and regulatory T cells (+4.1 h). An independent streptozotocin murine experiment confirmed the phase shifting of CD8 T cells and suggests that circadian dysrhythmia in type 1 diabetes might be an effect and not a cause of the disease. CONCLUSIONS/INTERPRETATION Future efforts investigating this newly described aspect of type 1 diabetes in human participants are warranted. Peripheral immune populations should be measured near the same time of day in order to reduce circadian-related variation.
Collapse
Affiliation(s)
- Craig A Beam
- Department of Biomedical Sciences, Homer Stryker MD School of Medicine, Western Michigan University, Kalamazoo, MI, USA.
| | - Eleni Beli
- Wellcome Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, NI, UK.
- Indiana University Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA.
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Clive H Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Stephanie E Woerner
- Indiana University Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Megan T Legge
- Indiana University Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carmella Evans-Molina
- Indiana University Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Kieran M McGrail
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Ryan Silk
- Wellcome Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, NI, UK
| | - Maria B Grant
- Department of Ophthalmology, University of Alabama, Birmingham, AL, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Linda A DiMeglio
- Indiana University Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
24
|
Marfil-Garza BA, Hefler J, Bermudez De Leon M, Pawlick R, Dadheech N, Shapiro AMJ. Progress in Translational Regulatory T Cell Therapies for Type 1 Diabetes and Islet Transplantation. Endocr Rev 2021; 42:198-218. [PMID: 33247733 DOI: 10.1210/endrev/bnaa028] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Regulatory T cells (Tregs) have become highly relevant in the pathophysiology and treatment of autoimmune diseases, such as type 1 diabetes (T1D). As these cells are known to be defective in T1D, recent efforts have explored ex vivo and in vivo Treg expansion and enhancement as a means for restoring self-tolerance in this disease. Given their capacity to also modulate alloimmune responses, studies using Treg-based therapies have recently been undertaken in transplantation. Islet transplantation provides a unique opportunity to study the critical immunological crossroads between auto- and alloimmunity. This procedure has advanced greatly in recent years, and reports of complete abrogation of severe hypoglycemia and long-term insulin independence have become increasingly reported. It is clear that cellular transplantation has the potential to be a true cure in T1D, provided the remaining barriers of cell supply and abrogated need for immune suppression can be overcome. However, the role that Tregs play in islet transplantation remains to be defined. Herein, we synthesize the progress and current state of Treg-based therapies in T1D and islet transplantation. We provide an extensive, but concise, background to understand the physiology and function of these cells and discuss the clinical evidence supporting potency and potential Treg-based therapies in the context of T1D and islet transplantation. Finally, we discuss some areas of opportunity and potential research avenues to guide effective future clinical application. This review provides a basic framework of knowledge for clinicians and researchers involved in the care of patients with T1D and islet transplantation.
Collapse
Affiliation(s)
| | - Joshua Hefler
- Department of Surgery, University of Alberta, Edmonton, Canada
| | - Mario Bermudez De Leon
- Department of Molecular Biology, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Nuevo Leon, Mexico
| | - Rena Pawlick
- Department of Surgery, University of Alberta, Edmonton, Canada
| | | | - A M James Shapiro
- Department of Surgery, University of Alberta, Edmonton, Canada.,Clinical Islet Transplant Program, University of Alberta, Edmonton, Canada
| |
Collapse
|
25
|
Chevallier E, Jouve T, Rostaing L, Malvezzi P, Noble J. pre-existing diabetes and PTDM in kidney transplant recipients: how to handle immunosuppression. Expert Rev Clin Pharmacol 2020; 14:55-66. [PMID: 33196346 DOI: 10.1080/17512433.2021.1851596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Preexisting diabetes (PD) and post-transplant diabetes mellitus (PTDM) are common and severe comorbidities posttransplantation. The immunosuppressive regimens are modifiable risk factors. AREAS COVERED We reviewed Pubmed and Cochrane database and we summarize the mechanisms and impacts of available immunosuppressive treatments on the risk of PD and PTDM. We also assess the possible management of these drugs to improve glycemic parameters while considering risks inherent in transplantation. EXPERT OPINION PD i) increases the risk of sepsis, ii) is an independent risk factor for infection-related mortality, and iii) increases acute rejection risk. Regarding PTDM development i) immunosuppressive strategies without corticosteroids significantly reduce the risk but the price may be a higher incidence of rejection; ii) minimization or rapid withdrawal of steroids are two valuable approaches; iii) the diabetogenic role of calcineurin inhibitors(CNIs) is also well-described and is more important for tacrolimus than for cyclosporine. Reducing tacrolimus-exposure may improve glycemic parameters but also has a higher risk of rejection. PTDM risk is higher in patients that receive sirolimus compared to mycophenolate mofetil. Finally, conversion from CNIs to belatacept may offer the best benefits to PTDM-recipients in terms of glycemic parameters, graft and patient-outcomes.
Collapse
Affiliation(s)
- Eloi Chevallier
- Service De Néphrologie, Hémodialyse, Aphérèses Et Transplantation Rénale, CHU Grenoble-Alpes , Grenoble, France
| | - Thomas Jouve
- Service De Néphrologie, Hémodialyse, Aphérèses Et Transplantation Rénale, CHU Grenoble-Alpes , Grenoble, France.,Université Grenoble Alpes , Grenoble, France
| | - Lionel Rostaing
- Service De Néphrologie, Hémodialyse, Aphérèses Et Transplantation Rénale, CHU Grenoble-Alpes , Grenoble, France.,Université Grenoble Alpes , Grenoble, France
| | - Paolo Malvezzi
- Service De Néphrologie, Hémodialyse, Aphérèses Et Transplantation Rénale, CHU Grenoble-Alpes , Grenoble, France
| | - Johan Noble
- Service De Néphrologie, Hémodialyse, Aphérèses Et Transplantation Rénale, CHU Grenoble-Alpes , Grenoble, France
| |
Collapse
|
26
|
The Effect of Ethnicity in the Rate of Beta-Cell Functional Loss in the First 3 Years After Type 1 Diabetes Diagnosis. J Clin Endocrinol Metab 2020. [PMID: 32502242 DOI: 10.1210/clinem/dgaa348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE We set forth to compare ethnicities for metabolic and immunological characteristics at the clinical diagnosis of type 1 diabetes (T1D) and assess the effect of ethnicity on beta-cell functional loss within 3 years after clinical diagnosis. RESEARCH METHODS AND DESIGN We studied participants in TrialNet New Onset Intervention Trials (n = 624, median age = 14.4 years, 58% male, 8.7% Hispanic) and followed them prospectively for 3 years. Mixed meal tolerance tests (MMTT) were performed within 6 months following clinical diagnosis and repeated semiannually. Unless otherwise indicated, analyses were adjusted for age, sex, BMI Z-score, and diabetes duration. RESULTS At T1D clinical diagnosis, Hispanics, compared with non-Hispanic whites (NHW), had a higher frequency of diabetic ketoacidosis (DKA) (44.7% vs 25.3%, OR = 2.36, P = 0.01), lower fasting glucose (97 vs 109 mg/dL, P = 0.02) and higher fasting C-peptide (1.23 vs 0.94 ng/mL, P = 0.02) on the first MMTT, and higher frequency of ZnT8 autoantibody positivity (n = 201, 94.1% vs 64%, OR = 7.98, P = 0.05). After exclusion of participants in experimental arms of positive clinical trials, C-peptide area under the curve (AUC) trajectories during the first 3 years after clinical diagnosis were not significantly different between Hispanics and NHW after adjusting for age, sex, BMI-z score, and DKA (n = 413, P = 0.14). CONCLUSION Despite differences in the metabolic and immunological characteristics at clinical diagnosis of T1D between Hispanics and NHW, C-peptide trajectories did not differ significantly in the first 3 years following clinical diagnosis after adjustment for body mass index and other confounders. These findings may inform the design of observational studies and intervention trials in T1D.
Collapse
|
27
|
Orrù V, Steri M, Sidore C, Marongiu M, Serra V, Olla S, Sole G, Lai S, Dei M, Mulas A, Virdis F, Piras MG, Lobina M, Marongiu M, Pitzalis M, Deidda F, Loizedda A, Onano S, Zoledziewska M, Sawcer S, Devoto M, Gorospe M, Abecasis GR, Floris M, Pala M, Schlessinger D, Fiorillo E, Cucca F. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy. Nat Genet 2020; 52:1036-1045. [PMID: 32929287 DOI: 10.1038/s41588-020-0684-4] [Citation(s) in RCA: 514] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/27/2020] [Indexed: 01/28/2023]
Abstract
We report on the influence of ~22 million variants on 731 immune cell traits in a cohort of 3,757 Sardinians. We detected 122 significant (P < 1.28 × 10-11) independent association signals for 459 cell traits at 70 loci (53 of them novel) identifying several molecules and mechanisms involved in cell regulation. Furthermore, 53 signals at 36 loci overlapped with previously reported disease-associated signals, predominantly for autoimmune disorders, highlighting intermediate phenotypes in pathogenesis. Collectively, our findings illustrate complex genetic regulation of immune cells with highly selective effects on autoimmune disease risk at the cell-subtype level. These results identify drug-targetable pathways informing the design of more specific treatments for autoimmune diseases.
Collapse
Affiliation(s)
- Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Maristella Steri
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Carlo Sidore
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Michele Marongiu
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Valentina Serra
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Stefania Olla
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Gabriella Sole
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Sandra Lai
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Mariano Dei
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Antonella Mulas
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Francesca Virdis
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Maria Grazia Piras
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Monia Lobina
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Mara Marongiu
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Maristella Pitzalis
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Francesca Deidda
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Annalisa Loizedda
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Stefano Onano
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy.,Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Magdalena Zoledziewska
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Stephen Sawcer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Marcella Devoto
- Division of Genetics, The Children's Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA.,Dipartimento di Medicina Traslazionale e di Precisione, Sapienza Università di Roma, Rome, Italy
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Gonçalo R Abecasis
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Matteo Floris
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy.,Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Mauro Pala
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - David Schlessinger
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy. .,Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy.
| |
Collapse
|
28
|
Beik P, Ciesielska M, Kucza M, Kurczewska A, Kuźmińska J, Maćkowiak B, Niechciał E. Prevention of Type 1 Diabetes: Past Experiences and Future Opportunities. J Clin Med 2020; 9:E2805. [PMID: 32872668 PMCID: PMC7563637 DOI: 10.3390/jcm9092805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/14/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes (T1D) results from autoimmune destruction of insulin-producing beta-cells in the pancreas, caused by the interplay of genetic and environmental factors. Despite the introduction of advanced technologies for diabetes management, most patients fail to achieve target glycemic control, and T1D still has a high burden of long-term end-organ complications. Over several decades, multiple clinical trials have attempted to find prevention for T1D in at-risk individuals or to stabilize, ultimately reverse, the disease in those with T1D. To date, T1D remains yet incurable condition; however, recently improved understanding of the natural history of the disease may lead to new strategies to preserve or improve beta-cell function in those at increased risk and T1D patients. This publication aims to provide an overview of past experiences and recent findings in the prevention of T1D.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elżbieta Niechciał
- Department of Pediatric Diabetes and Obesity, Poznan University of Medical Sciences, Szpitalna Street 27/33, 60-572 Poznan, Poland; (P.B.); (M.C.); (M.K.); (A.K.); (J.K.); (B.M.)
| |
Collapse
|
29
|
Oftedal BE, Wolff ASB. New era of therapy for endocrine autoimmune disorders. Scand J Immunol 2020; 92:e12961. [PMID: 32853446 DOI: 10.1111/sji.12961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022]
Abstract
The new era of immune and reconstitution therapy of autoimmune disorders is ongoing. However, endocrine autoimmune diseases comprise a group of elaborating pathologies where the development of new treatment strategies remains slow. Substitution of the missing hormones is still standard practice, taking care of the devastating symptoms but not the cause of disease. As our knowledge of the genetic contribution to the aetiology of endocrine disorders increases and early diagnostic tools are available, it is now possible to identify persons at risk before they acquire full-blown disease. This review summarizes current knowledge and treatment of endocrine autoimmune disorders, focusing on type 1 diabetes, Addison's disease, autoimmune thyroid diseases and primary ovarian insufficiency. We explore which new therapies might be used in the different stages of the disease, focus on legalized therapy and elaborate on the ongoing clinical studies for these diseases and the research front, before hypothesizing on the way ahead.
Collapse
Affiliation(s)
- Bergithe E Oftedal
- Department of Clinical Science, University of Bergen, Bergen, Norway.,KG Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
| | - Anette S B Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway.,KG Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
30
|
Bundy BN, Krischer JP. A quantitative measure of treatment response in recent-onset type 1 diabetes. Endocrinol Diabetes Metab 2020; 3:e00143. [PMID: 32704564 PMCID: PMC7375065 DOI: 10.1002/edm2.143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 02/26/2020] [Accepted: 04/04/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION This paper develops a methodology and defines a measure that can be used to separate subjects that received an experimental therapy into those that benefitted from those that did not in recent-onset type 1 diabetes. Benefit means a slowing (or arresting) the decline in beta-cell function over time. The measure can be applied to comparing treatment arms from a clinical trial or to response at the individual level. METHODS An analysis of covariance model was fitted to the 12-month area under the curve C-peptide following a 2-hour mixed meal tolerance test from 492 individuals enrolled on five TrialNet studies of recent-onset type 1 diabetes. Significant predictors in the model were age and C-peptide at study entry. The observed minus the model-based expected C-peptide value (quantitative response, QR) is defined to reflect the effect of the therapy. RESULTS A comparison of the primary hypothesis test for each study included and a t test of the QR value by treatment group were comparable. The results were also confirmed for a new TrialNet study, independent of the set of studies used to derive the model. With our proposed analytical method and using QR as the end-point, we conducted simulation studies, to estimate statistical power in detecting a biomarker that expresses differential treatment effect. The QR in its continuous form provided the greatest statistical power when compared to several ways of defining responder/non-responder using various QR thresholds. CONCLUSIONS This paper illustrates the use of the QR, as a measure of the magnitude of treatment effect at the aggregate and subject-level. We show that the QR distribution by treatment group provides a better sense of the treatment effect than simply giving the mean estimates. Using the QR in its continuous form is shown to have higher statistical power in comparison with dichotomized categorization.
Collapse
Affiliation(s)
- Brian N. Bundy
- Health Informatics InstituteUniversity of South FloridaTampaFLUSA
| | | | | |
Collapse
|
31
|
Tang C, Li Q, Deng X, Wu W, Liao L, Liang K, Huo R, Li C, Han J, Tang W, Jiang N. Discovery of lixisenatide analogues as long-acting hypoglycemic agents using novel peptide half-life extension technology based on mycophenolic acid. RSC Adv 2020; 10:12089-12104. [PMID: 35496622 PMCID: PMC9050719 DOI: 10.1039/d0ra01002b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
Noncovalent binding of peptides to human serum albumin protects against renal clearance and enzymatic degradation. Herein, we investigated the effect of mycophenolic acid (MPA) albumin binders for improving the stability of peptides. For proof-of-principle, the short acting glucagon-like peptide-1 (GLP-1) receptor agonist lixisenatide was selected and functionalized with different MPA albumin binders. In vitro, all lixisenatide analogues showed well preserved GLP-1 receptor activation potency. High performance affinity chromatography (HPAC) and ultrafiltration analyses indicated that DiMPA was able to confer high albumin affinity to lixisenatide and revealed that affinity is increased for DiMPA modified lixisenatide analogues containing OEG spacers. In db/db mice, the selected peptide 2c showed comparable efficacies to lixisenatide with respect to glucose-lowering and insulinotropic activities. Furthermore, the duration of action of glucose homeostasis of 2c was comparable to semaglutide in db/db mice. Importantly, DiMPA albumin binder did not bring significant toxicity of lixisenatide, as reflected by the comparable toxicity indexes in 2c and semaglutide groups after 2 weeks dosing in normal Kunming mice. Short-term study (21 days) conducted on db/db mice showed the better therapeutic efficacies of 2c than semaglutide on pancreas islets protection. Importantly, in chronic studies (84 days) on db/db mice, 2c exhibited a sustained improvement in glycaemic control, to a greater extent than that of semaglutide. Thus, we propose DiMPA modification as a novel and general method for development of long-acting GLP-1 receptor agonists for type 2 diabetes treatments, and 2c as a promising antidiabetic candidate. DiMPA albumin binders were effectively applied to lixisenatide to make 2c as a long-acting antidiabetic agent.![]()
Collapse
Affiliation(s)
- Chunli Tang
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China .,Editorial Department, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China
| | - Qing Li
- Pharmaceutical College, Guangxi Medical University Nanning 530021 China
| | - Xiaoyan Deng
- Pharmaceutical College, Guangxi Medical University Nanning 530021 China
| | - Weiwei Wu
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China
| | - Liufeng Liao
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China
| | - Kai Liang
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China
| | - Rongrui Huo
- Editorial Department, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China
| | - Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University Xuzhou China
| | - Jing Han
- School of Chemistry & Materials Science, Jiangsu Normal University Xuzhou 221116 PR China
| | - Weizhong Tang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China
| | - Neng Jiang
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China
| |
Collapse
|
32
|
Xin GLL, Khee YP, Ying TY, Chellian J, Gupta G, Kunnath AP, Nammi S, Collet T, Hansbro PM, Dua K, Chellappan DK. Current Status on Immunological Therapies for Type 1 Diabetes Mellitus. Curr Diab Rep 2019; 19:22. [PMID: 30905013 DOI: 10.1007/s11892-019-1144-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Type 1 diabetes (T1D) occurs when there is destruction of beta cells within the islets of Langerhans in the pancreas due to autoimmunity. It is considered a complex disease, and different complications can surface and worsen the condition if T1D is not managed well. Since it is an incurable disease, numerous treatments and therapies have been postulated in order to control T1D by balancing hyperglycemia control while minimizing hypoglycemic episodes. The purpose of this review is to primarily look into the current state of the available immunological therapies and their advantages for the treatment of T1D. RECENT FINDINGS Over the years, immunological therapy has become the center of attraction to treat T1D. Immunomodulatory approaches on non-antigens involving agents such as cyclosporine A, mycophenolate mofetil, anti-CD20, cytotoxic T cells, anti-TNF, anti-CD3, and anti-thymocyte globulin as well as immunomodulative approaches on antigens such as insulin, glutamic acid decarboxylase, and heat shock protein 60 have been studied. Aside from these two approaches, studies and trials have also been conducted on regulatory T cells, dendritic cells, interleukin 2, interleukin 4, M2 macrophages, and rapamycin/interleukin 2 combination therapy to test their effects on patients with T1D. Many of these agents have successfully suppressed T1D in non-obese diabetic (NOD) mice and in human trials. However, some have shown negative results. To date, the insights into the management of the immune system have been increasing rapidly to search for potential therapies and treatments for T1D. Nevertheless, some of the challenges are still inevitable. A lot of work and effort need to be put into the investigation on T1D through immunological therapy, particularly to reduce complications to improve and enhance clinical outcomes.
Collapse
Affiliation(s)
- Griselda Lim Loo Xin
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Yap Pui Khee
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Tan Yoke Ying
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, 302017, India
| | - Anil Philip Kunnath
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Srinivas Nammi
- School of Science and Health, Western Sydney University, Sydney, NSW, 2751, Australia
- NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2751, Australia
| | - Trudi Collet
- Innovative Medicines Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Philip Michael Hansbro
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney (UTS), Ultimo, NSW, 2007, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, The University of Newcastle (UoN), Callaghan, Newcastle, NSW, 2308, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney (UTS), Ultimo, NSW, 2007, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, The University of Newcastle (UoN), Callaghan, Newcastle, NSW, 2308, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
33
|
Dufort MJ, Greenbaum CJ, Speake C, Linsley PS. Cell type-specific immune phenotypes predict loss of insulin secretion in new-onset type 1 diabetes. JCI Insight 2019; 4:125556. [PMID: 30830868 DOI: 10.1172/jci.insight.125556] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
The rate of decline in insulin secretion after diagnosis with type 1 diabetes (T1D) varies substantially among individuals and with age at diagnosis, but the mechanism(s) behind this heterogeneity are not well understood. We investigated the loss of pancreatic β cell function in new-onset T1D subjects using unbiased whole blood RNA-seq and verified key findings by targeted cell count measurements. We found that patients who lost insulin secretion more rapidly had immune phenotypes ("immunotypes") characterized by higher levels of B cells and lower levels of neutrophils, especially neutrophils expressing primary granule genes. The B cell and neutrophil immunotypes showed strong age dependence, with B cell levels in particular predicting rate of progression in young subjects only. This age relationship suggested that therapy targeting B cells in T1D would be most effective in young subjects with high pretreatment B cell levels, a prediction which was supported by data from a clinical trial of rituximab in new-onset subjects. These findings demonstrate a link between age-related immunotypes and disease outcome in new-onset T1D. Furthermore, our data suggest that greater success could be achieved by targeted use of immunomodulatory therapy in specific T1D populations defined by age and immune characteristics.
Collapse
Affiliation(s)
| | - Carla J Greenbaum
- Diabetes Clinical Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Cate Speake
- Diabetes Clinical Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | | |
Collapse
|
34
|
Atkinson MA, Roep BO, Posgai A, Wheeler DCS, Peakman M. The challenge of modulating β-cell autoimmunity in type 1 diabetes. Lancet Diabetes Endocrinol 2019; 7:52-64. [PMID: 30528099 PMCID: PMC7322790 DOI: 10.1016/s2213-8587(18)30112-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 02/08/2023]
Abstract
With the conceptual advance about four decades ago that type 1 diabetes represents an autoimmune disease, hope arose that immune-based therapies would soon emerge to prevent and reverse the disorder. However, despite dozens of clinical trials seeking to achieve these goals, the promise remains unfulfilled, at least in a pragmatic form. With the benefit of hindsight, several important reasons are likely to account for this disappointing outcome, including failure to appreciate disease heterogeneity, inappropriate use of rodent models of disease, inadequacies in addressing the immunological and metabolic contributions to the disease, suboptimal trial designs, and lack of a clear understanding of the pathogenesis of type 1 diabetes. In this Series paper, we convey how recent knowledge gains in these areas, combined with efforts related to disease staging and emerging mechanistic data from clinical trials, provide cautious optimism that immune-based approaches to prevent the loss of β cells in type 1 diabetes will emerge into clinical practice.
Collapse
Affiliation(s)
- Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA.
| | - Bart O Roep
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA; Department of Immunohaematology & Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Amanda Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | | | - Mark Peakman
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, London, UK; King's Health Partners Institute of Diabetes, Obesity and Endocrinology, London, UK
| |
Collapse
|
35
|
Wentworth JM, Bediaga NG, Giles LC, Ehlers M, Gitelman SE, Geyer S, Evans-Molina C, Harrison LC. Beta cell function in type 1 diabetes determined from clinical and fasting biochemical variables. Diabetologia 2019; 62:33-40. [PMID: 30167735 PMCID: PMC6518395 DOI: 10.1007/s00125-018-4722-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Beta cell function in type 1 diabetes is commonly assessed as the average plasma C-peptide concentration over 2 h following a mixed-meal test (CPAVE). Monitoring of disease progression and response to disease-modifying therapy would benefit from a simpler, more convenient and less costly measure. Therefore, we determined whether CPAVE could be reliably estimated from routine clinical variables. METHODS Clinical and fasting biochemical data from eight randomised therapy trials involving participants with recently diagnosed type 1 diabetes were used to develop and validate linear models to estimate CPAVE and to test their accuracy in estimating loss of beta cell function and response to immune therapy. RESULTS A model based on disease duration, BMI, insulin dose, HbA1c, fasting plasma C-peptide and fasting plasma glucose most accurately estimated loss of beta cell function (area under the receiver operating characteristic curve [AUROC] 0.89 [95% CI 0.87, 0.92]) and was superior to the commonly used insulin-dose-adjusted HbA1c (IDAA1c) measure (AUROC 0.72 [95% CI 0.68, 0.76]). Model-estimated CPAVE (CPEST) reliably identified treatment effects in randomised trials. CPEST, compared with CPAVE, required only a modest (up to 17%) increase in sample size for equivalent statistical power. CONCLUSIONS/INTERPRETATION CPEST, approximated from six variables at a single time point, accurately identifies loss of beta cell function in type 1 diabetes and is comparable to CPAVE for identifying treatment effects. CPEST could serve as a convenient and economical measure of beta cell function in the clinic and as a primary outcome measure in trials of disease-modifying therapy in type 1 diabetes.
Collapse
Affiliation(s)
- John M Wentworth
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia.
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia.
| | - Naiara G Bediaga
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Lynne C Giles
- School of Public Health, The University of Adelaide, Adelaide, SA, Australia
| | - Mario Ehlers
- Clinical Trials Group, Immune Tolerance Network, San Francisco, CA, USA
- Eli Lilly and Company, San Diego, CA, USA
| | | | | | | | - Leonard C Harrison
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
36
|
Coppieters K, von Herrath M. The Development of Immunotherapy Strategies for the Treatment of Type 1 Diabetes. Front Med (Lausanne) 2018; 5:283. [PMID: 30356664 PMCID: PMC6189286 DOI: 10.3389/fmed.2018.00283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023] Open
Abstract
Optimized insulin therapies, increased use of continuous glucose monitoring/insulin pumps and most importantly the arrival of reliable closed loop systems will undeniably lead to a reduction in the burden of complications that arise from type 1 diabetes. However, insulin therapy will only ever treat the symptoms of the disease and will not alter the underlying pathology. The aim of immunotherapy treatment is to modulate the immune system, a strategy that has been successful in autoimmune conditions such as multiple sclerosis, rheumatoid arthritis and lupus. However, the success rate of immunotherapy treatment in type 1 diabetes has been low. There are several distinct stages of T1D development. In this review, we summarize the most important immunotherapeutic approaches tested thus far and focus on the characteristic features and unmet need within the different stages of the disease.
Collapse
|
37
|
Couper JJ, Haller MJ, Greenbaum CJ, Ziegler AG, Wherrett DK, Knip M, Craig ME. ISPAD Clinical Practice Consensus Guidelines 2018: Stages of type 1 diabetes in children and adolescents. Pediatr Diabetes 2018; 19 Suppl 27:20-27. [PMID: 30051639 DOI: 10.1111/pedi.12734] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Jennifer J Couper
- Department of Diabetes and Endocrinology, Womens and Childrens Hospital, North Adelaide, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Michael J Haller
- Department of Pediatrics, Division of Endocrinology, University of Florida, Gainesville, Florida
| | | | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Diane K Wherrett
- Division of Endocrinology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Mikael Knip
- Children's Hospital, University of Helsinki, Helsinki, Finland
| | - Maria E Craig
- Department of Diabetes and Endocrinology, The Children's Hospital at Westmead, Sydney, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, Australia
| |
Collapse
|
38
|
White PC, Adhikari S, Grishman EK, Sumpter KM. A phase I study of anti-inflammatory therapy with rilonacept in adolescents and adults with type 1 diabetes mellitus. Pediatr Diabetes 2018; 19:788-793. [PMID: 29504185 DOI: 10.1111/pedi.12634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/02/2017] [Accepted: 12/08/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The innate immune system may be activated around the time of diagnosis of type 1 diabetes (T1D). Components of this system, including cytokines such as interleukin-1β (IL-1β) represent potential therapeutic targets for disease modifying therapy. OBJECTIVE We conducted a phase 1 trial of rilonacept, an IL-1 cytokine trap, in patients with T1D. SUBJECTS AND METHODS Thirteen T1D patients (10 males) with median age (interquartile range, IQR) of 17 years (16-18), a median (IQR) of 5 months (5-7) since diagnosis. Rilonacept was administered subcutaneously for 26 weeks. Incidence of infections was the primary end-point. RESULTS There were 85 adverse events; 13 were Grade 2, of which 9 (8 infectious) were judged "possibly related" to the drug. The mean (SD) C-peptide on 2-hour mixed meal tolerance tests decreased from 0.87 (0.42) to 0.59 (0.29) ng/mL (P = .01 by paired t test) during 6 months on treatment. Hemoglobin A1c (HbA1c) increased from 6.8 (1.1) to 7.3 (1.1) (P = .05), but there was not a significant change in daily insulin dose (0.41 ± 0.23 to 0.47 ± 0.18), or in insulin dose-adjusted HbA1c (IDAA1c, 8.4 ± 1.8 to 9.0 ± 1.5). Subjects in "remission," defined as HbA1c <6.5 and a total daily insulin dose <0.5 units/kg/24 h, decreased from 5 to 4. There were no significantly differentially expressed genes in peripheral blood leukocytes before and after rilonacept. CONCLUSIONS Rilonacept treatment for 6 months is well-tolerated in individuals with T1D of recent onset, but is unlikely to be efficacious as a single agent in preserving beta cell function.
Collapse
Affiliation(s)
- Perrin C White
- Division of Pediatric Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Soumya Adhikari
- Division of Pediatric Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ellen K Grishman
- Division of Pediatric Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kathryn M Sumpter
- Division of Pediatric Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
39
|
Sosenko JM, Geyer S, Skyler JS, Rafkin LE, Ismail HM, Libman IM, Liu YF, DiMeglio LA, Evans-Molina C, Palmer JP. The influence of body mass index and age on C-peptide at the diagnosis of type 1 diabetes in children who participated in the diabetes prevention trial-type 1. Pediatr Diabetes 2018; 19:403-409. [PMID: 29171129 PMCID: PMC5918232 DOI: 10.1111/pedi.12609] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/07/2017] [Accepted: 10/17/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND/OBJECTIVE The extent of influence of BMI and age on C-peptide at the diagnosis of type 1 diabetes (T1D) is unknown. We thus studied the impact of body mass index Z-scores (BMIZ) and age on C-peptide measures at and soon after the diagnosis of T1D. METHODS Data from Diabetes Prevention Trial-Type 1 (DPT-1) participants <18.0 years at diagnosis was analyzed. Analyses examined associations of C-peptide measures with BMIZ and age in 2 cohorts: oral glucose tolerance tests (OGTTs) at diagnosis (n = 99) and mixed meal tolerance tests (MMTTs) <6 months after diagnosis (n = 80). Multivariable linear regression was utilized. RESULTS Fasting and area under the curve (AUC) C-peptide from OGTTs (n = 99) at diagnosis and MMTTs (n = 80) after diagnosis were positively associated with BMIZ and age (P < .001 for all). Associations persisted when BMIZ and age were included as independent variables in regression models (P < .001 for all). BMIZ and age explained 31%-47% of the variance of C-peptide measures. In an example, 2 individuals with identical AUC C-peptide values had an approximate 5-fold difference in values after adjustments for BMIZ and age. The association between fasting glucose and C-peptide decreased markedly when fasting C-peptide values were adjusted (r = 0.30, P < .01 to r = 0.07, n.s.). CONCLUSIONS C-peptide measures are strongly and independently related to BMIZ and age at and soon after the diagnosis of T1D. Adjustments for BMIZ and age cause substantial changes in C-peptide values, and impact the association between glycemia and C-peptide. Such adjustments can improve assessments of β-cell impairment at diagnosis.
Collapse
Affiliation(s)
- Jay M. Sosenko
- Division of Endocrinology; University of Miami; Miami, FL 33101
| | - Susan Geyer
- Health Informatics Institute; University of South Florida; Tampa, Florida 33612
| | - Jay S. Skyler
- Division of Endocrinology; University of Miami; Miami, Florida 33101
| | - Lisa E. Rafkin
- Division of Endocrinology; University of Miami; Miami, Florida 33101
| | - Heba M. Ismail
- Division of Endocrinology, Diabetes and Metabolism, University of Pittsburgh and Children’s Hospital of Pittsburgh of UPMC; Pittsburgh, PA 15224
| | - Ingrid M. Libman
- Division of Endocrinology, Diabetes and Metabolism, University of Pittsburgh and Children’s Hospital of Pittsburgh of UPMC; Pittsburgh, PA 15224
| | | | - Linda A. DiMeglio
- Section of Pediatric Endocrinology/Diabetology, Indiana University; Indianapolis, Indiana 46202
| | | | - Jerry P. Palmer
- VA Puget Sound Health Care System; Division of Endocrinology, Metabolism, and Nutrition; University of Washington; Seattle, Washington 98108
| |
Collapse
|
40
|
van Megen KM, van ’t Wout EJT, Forman SJ, Roep BO. A Future for Autologous Hematopoietic Stem Cell Transplantation in Type 1 Diabetes. Front Immunol 2018; 9:690. [PMID: 29696017 PMCID: PMC5904498 DOI: 10.3389/fimmu.2018.00690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/20/2018] [Indexed: 12/29/2022] Open
Affiliation(s)
- Kayleigh M. van Megen
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute at the City of Hope, Duarte, CA, United States
| | - Ernst-Jan T. van ’t Wout
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute at the City of Hope, Duarte, CA, United States
| | - Stephen J. Forman
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA, United States
| | - Bart O. Roep
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute at the City of Hope, Duarte, CA, United States
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
41
|
Bingley PJ, Wherrett DK, Shultz A, Rafkin LE, Atkinson MA, Greenbaum CJ. Type 1 Diabetes TrialNet: A Multifaceted Approach to Bringing Disease-Modifying Therapy to Clinical Use in Type 1 Diabetes. Diabetes Care 2018; 41:653-661. [PMID: 29559451 PMCID: PMC5860837 DOI: 10.2337/dc17-0806] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 12/13/2017] [Indexed: 02/03/2023]
Abstract
What will it take to bring disease-modifying therapy to clinical use in type 1 diabetes? Coordinated efforts of investigators involved in discovery, translational, and clinical research operating in partnership with funders and industry and in sync with regulatory agencies are needed. This Perspective describes one such effort, Type 1 Diabetes TrialNet, a National Institutes of Health-funded and JDRF-supported international clinical trials network that emerged from the Diabetes Prevention Trial-Type 1 (DPT-1). Through longitudinal natural history studies, as well as trials before and after clinical onset of disease combined with mechanistic and ancillary investigations to enhance scientific understanding and translation to clinical use, TrialNet is working to bring disease-modifying therapies to individuals with type 1 diabetes. Moreover, TrialNet uses its expertise and experience in clinical studies to increase efficiencies in the conduct of trials and to reduce the burden of participation on individuals and families. Herein, we highlight key contributions made by TrialNet toward a revised understanding of the natural history of disease and approaches to alter disease course and outline the consortium's plans for the future.
Collapse
Affiliation(s)
- Polly J Bingley
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, U.K
| | - Diane K Wherrett
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Ann Shultz
- Diabetes Research Program, Benaroya Research Institute, Seattle, WA
| | - Lisa E Rafkin
- University of Miami Diabetes Research Institute, Miami, FL
| | - Mark A Atkinson
- Departments of Pathology and Pediatrics, University of Florida College of Medicine,Gainesville, FL
| | | |
Collapse
|
42
|
T Lymphocytes and Autoimmunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:125-168. [DOI: 10.1016/bs.ircmb.2018.05.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Abstract
PURPOSE OF REVIEW The genetic susceptibility and dominant protection for type 1 diabetes (T1D) associated with human leukocyte antigen (HLA) haplotypes, along with minor risk variants, have long been thought to shape the T cell receptor (TCR) repertoire and eventual phenotype of autoreactive T cells that mediate β-cell destruction. While autoantibodies provide robust markers of disease progression, early studies tracking autoreactive T cells largely failed to achieve clinical utility. RECENT FINDINGS Advances in acquisition of pancreata and islets from T1D organ donors have facilitated studies of T cells isolated from the target tissues. Immunosequencing of TCR α/β-chain complementarity determining regions, along with transcriptional profiling, offers the potential to transform biomarker discovery. Herein, we review recent studies characterizing the autoreactive TCR signature in T1D, emerging technologies, and the challenges and opportunities associated with tracking TCR molecular profiles during the natural history of T1D.
Collapse
Affiliation(s)
- Laura M Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Amanda Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Howard R Seay
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Michael J Haller
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA.
| |
Collapse
|
44
|
Frumento D, Ben Nasr M, El Essawy B, D'Addio F, Zuccotti GV, Fiorina P. Immunotherapy for type 1 diabetes. J Endocrinol Invest 2017; 40:803-814. [PMID: 28260183 DOI: 10.1007/s40618-017-0641-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/13/2017] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Although many approaches have been tested to overcome the insulin dependence caused by the pancreatic β-cells destruction observed in individuals affected by type 1 diabetes (T1D), medical research has largely failed to halt the onset or to reverse T1D. METHODS In this work, the state of the art of immunotherapy will be examined, and the most important achievement in the field will be critically discussed. Particularly, we will focus on the clinical aspect, thus avoiding the tedious preclinical work done in NOD mice, which has been so poorly translated to the bedside. CONCLUSIONS Stem cell therapies achieved thus this far the most promising results, while immune ablation and standard immunosuppressants did not maintain the premises of preclinical results. The next step will be to generate a feasible and safe clinical approach in order to cure the thousands of patients affected by T1D.
Collapse
Affiliation(s)
| | - Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo e Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Enders Building 5th floor Room EN511, 300 Longwood Ave, Boston, MA, USA
| | | | - Francesca D'Addio
- DITID, San Raffaele Hospital, Milan, Italy
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo e Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Gian Vincenzo Zuccotti
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Paolo Fiorina
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo e Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy.
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Enders Building 5th floor Room EN511, 300 Longwood Ave, Boston, MA, USA.
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Type 1 diabetes (T1D) is an autoimmune disease marked by β-cell destruction. Immunotherapies for T1D have been investigated since the 1980s and have focused on restoration of tolerance, T cell or B cell inhibition, regulatory T cell (Treg) induction, suppression of innate immunity and inflammation, immune system reset, and islet transplantation. The purpose of this review is to provide an overview and lessons learned from single immunotherapy trials, describe recent and ongoing combination immunotherapy trials, and provide perspectives on strategies for future combination clinical interventions aimed at preserving insulin secretion in T1D. RECENT FINDINGS Combination immunotherapies have had mixed results in improving short-term glycemic control and insulin secretion in recent-onset T1D. A handful of studies have successfully reached their primary end-point of improved insulin secretion in recent-onset T1D. However, long-term improvements glycemic control and the restoration of insulin independence remain elusive. Future interventions should focus on strategies that combine immunomodulation with efforts to alleviate β-cell stress and address the formation of antigens that activate autoimmunity.
Collapse
Affiliation(s)
- Robert N Bone
- Department of Medicine, Indiana School of Medicine, 635 Barnhill Dr, MS 2031A, Indianapolis, IN, 46202, USA
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Carmella Evans-Molina
- Department of Medicine, Indiana School of Medicine, 635 Barnhill Dr, MS 2031A, Indianapolis, IN, 46202, USA.
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Roudebush VA Medical Center, Indianapolis, IN, 46202, USA.
| |
Collapse
|
46
|
Affiliation(s)
- Johnny Ludvigsson
- Divsion of Pediatrics, Department of Clinical and Experimental Medicine, Linköping University, Linköping,Sweden
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW An increasing body of evidence indicates that bio-energetic metabolism of activated T cells is a potential target to control the autoimmune response in type 1 diabetes (T1D). RECENT FINDINGS T-cell activation and proliferation is linked to the cell capacity to provide sufficient energy and biosynthesis molecules to support T-cell growth and division. This makes T cells susceptible to metabolic inhibition for the control of the T-cell response. There is a wide therapeutic arsenal of metabolic inhibitors, including novel classes of drugs that have become recently available. With the current knowledge and availability of metabolic inhibitors, we are now in the position to design a metabolic inhibition strategy to determine whether targeting of autoreactive T cells is an effective strategy to control the process of β-cell destruction in T1D.
Collapse
Affiliation(s)
- Carlotta Bordignon
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, 20131, Milan, Italy
| | - Adriana Canu
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, 20131, Milan, Italy
| | - Aleksandra Dyczko
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, 20131, Milan, Italy
| | - Serena Leone
- San Raffaele Vita-Salute University, Via Olgettina 58, 20131, Milan, Italy
| | - Paolo Monti
- San Raffaele Vita-Salute University, Via Olgettina 58, 20131, Milan, Italy.
| |
Collapse
|
48
|
Abstract
Type 1 diabetes mellitus (T1DM), also known as autoimmune diabetes, is a chronic disease characterized by insulin deficiency due to pancreatic β-cell loss and leads to hyperglycaemia. Although the age of symptomatic onset is usually during childhood or adolescence, symptoms can sometimes develop much later. Although the aetiology of T1DM is not completely understood, the pathogenesis of the disease is thought to involve T cell-mediated destruction of β-cells. Islet-targeting autoantibodies that target insulin, 65 kDa glutamic acid decarboxylase, insulinoma-associated protein 2 and zinc transporter 8 - all of which are proteins associated with secretory granules in β-cells - are biomarkers of T1DM-associated autoimmunity that are found months to years before symptom onset, and can be used to identify and study individuals who are at risk of developing T1DM. The type of autoantibody that appears first depends on the environmental trigger and on genetic factors. The pathogenesis of T1DM can be divided into three stages depending on the absence or presence of hyperglycaemia and hyperglycaemia-associated symptoms (such as polyuria and thirst). A cure is not available, and patients depend on lifelong insulin injections; novel approaches to insulin treatment, such as insulin pumps, continuous glucose monitoring and hybrid closed-loop systems, are in development. Although intensive glycaemic control has reduced the incidence of microvascular and macrovascular complications, the majority of patients with T1DM are still developing these complications. Major research efforts are needed to achieve early diagnosis, prevent β-cell loss and develop better treatment options to improve the quality of life and prognosis of those affected.
Collapse
|
49
|
Malmegrim KCR, de Azevedo JTC, Arruda LCM, Abreu JRF, Couri CEB, de Oliveira GLV, Palma PVB, Scortegagna GT, Stracieri ABPL, Moraes DA, Dias JBE, Pieroni F, Cunha R, Guilherme L, Santos NM, Foss MC, Covas DT, Burt RK, Simões BP, Voltarelli JC, Roep BO, Oliveira MC. Immunological Balance Is Associated with Clinical Outcome after Autologous Hematopoietic Stem Cell Transplantation in Type 1 Diabetes. Front Immunol 2017; 8:167. [PMID: 28275376 PMCID: PMC5319960 DOI: 10.3389/fimmu.2017.00167] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/02/2017] [Indexed: 12/29/2022] Open
Abstract
Autologous hematopoietic stem cell transplantation (AHSCT) increases C-peptide levels and induces insulin independence in patients with type 1 diabetes. This study aimed to investigate how clinical outcomes may associate with the immunological status, especially concerning the balance between immunoregulation and autoreactivity. Twenty-one type 1 diabetes patients were monitored after AHSCT and assessed every 6 months for duration of insulin independence, C-peptide levels, frequencies of islet-specific autoreactive CD8+ T cells (CTL), regulatory lymphocyte subsets, thymic function, and T-cell repertoire diversity. In median follow-up of 78 (range 15–106) months, all patients became insulin-independent, resuming insulin after median of 43 (range 6–100) months. Patients were retrospectively divided into short- or prolonged-remission groups, according to duration of insulin independence. For the entire follow-up, CD3+CD4+ T-cell numbers remained lower than baseline in both groups, whereas CD3+CD8+ T-cell levels did not change, resulting in a CD4/CD8 ratio inversion. Memory CTL comprehended most of T cells detected on long-term follow-up of patients after AHSCT. B cells reconstituted to baseline levels at 2–3 months post-AHSCT in both patient groups. In the prolonged-remission-group, baseline islet-specific T-cell autoreactivity persisted after transplantation, but regulatory T cell counts increased. Patients with lower frequencies of autoreactive islet-specific T cells remained insulin-free longer and presented greater C-peptide levels than those with lower frequencies of these cells. Therefore, immune monitoring identified a subgroup of patients with superior clinical outcome of AHSCT. Our study shows that improved immunoregulation may balance autoreactivity endorsing better metabolic outcomes in patients with lower frequencies of islet-specific T cells. Development of new strategies of AHSCT is necessary to increase frequency and function of T and B regulatory cells and decrease efficiently autoreactive islet-specific T and B memory cells in type 1 diabetes patients undergoing transplantation.
Collapse
Affiliation(s)
- Kelen C R Malmegrim
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Júlia T C de Azevedo
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Lucas C M Arruda
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Joana R F Abreu
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center , Leiden , Netherlands
| | - Carlos E B Couri
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gislane L V de Oliveira
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Patricia V B Palma
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| | - Gabriela T Scortegagna
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| | - Ana B P L Stracieri
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| | - Daniela A Moraes
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| | - Juliana B E Dias
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| | - Fabiano Pieroni
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| | - Renato Cunha
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| | - Luiza Guilherme
- Heart Institute (InCor), School of Medicine, University of São Paulo , São Paulo , Brazil
| | - Nathália M Santos
- Heart Institute (InCor), School of Medicine, University of São Paulo , São Paulo , Brazil
| | - Milton C Foss
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| | - Dimas T Covas
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Richard K Burt
- Division of Immunotherapy, Northwestern University Feinberg School of Medicine , Chicago, IL , USA
| | - Belinda P Simões
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Júlio C Voltarelli
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| | - Bart O Roep
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands; Department of Diabetes Immunology, Diabetes & Metabolism Research Institute at City of Hope, Duarte, CA, USA
| | - Maria C Oliveira
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
50
|
Bundy BN, Krischer JP. A model-based approach to sample size estimation in recent onset type 1 diabetes. Diabetes Metab Res Rev 2016; 32:827-834. [PMID: 26991448 PMCID: PMC5117187 DOI: 10.1002/dmrr.2800] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 02/09/2016] [Accepted: 03/02/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND The area under the curve C-peptide following a 2-h mixed meal tolerance test from 498 individuals enrolled on five prior TrialNet studies of recent onset type 1 diabetes from baseline to 12 months after enrolment were modelled to produce estimates of its rate of loss and variance. RESULTS Age at diagnosis and baseline C-peptide were found to be significant predictors, and adjusting for these in an ANCOVA resulted in estimates with lower variance. CONCLUSIONS Using these results as planning parameters for new studies results in a nearly 50% reduction in the target sample size. The modelling also produces an expected C-peptide that can be used in observed versus expected calculations to estimate the presumption of benefit in ongoing trials. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Brian N Bundy
- Health Informatics Institute, University of South Florida, Tampa, FL, USA
| | - Jeffrey P Krischer
- Health Informatics Institute, University of South Florida, Tampa, FL, USA.
| |
Collapse
|