1
|
Alkhouri N, Charlton M, Gray M, Noureddin M. The pleiotropic effects of glucagon-like peptide-1 receptor agonists in patients with metabolic dysfunction-associated steatohepatitis: a review for gastroenterologists. Expert Opin Investig Drugs 2025. [PMID: 40016997 DOI: 10.1080/13543784.2025.2473062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
INTRODUCTION Glucagon-like peptide-1 receptor agonists (GLP-1RAs), and dual GLP-1/glucose-dependent insulinotropic peptide (GIP) or glucagon receptor agonists have emerged as promising agents to treat metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH). Although the beneficial effects of GLP-1RAs on glycemic control and weight are well-established, clinicians may be unfamiliar with other potential benefits of this class. AREAS COVERED We examined the pleiotropic effects of GLP-1RAs and how they relate to gastroenterologists for MASLD/MASH treatment. Our narrative review of English articles included four GLP-1RAs (subcutaneous semaglutide, liraglutide, dulaglutide, and efpeglenatide), a dual GLP-1/GIP agonist (tirzepatide), a dual GLP-1/glucagon receptor agonist (survodutide), MASLD/MASH, related disorders, clinical management, treatment outcomes and landscape. EXPERT OPINION In Phase I - III trials, GLP-1RAs are associated with clinically relevant hepatic improvements including MASH resolution, liver fat reduction, and preventing worsening fibrosis. Effects on cardiometabolic parameters align with type 2 diabetes/obesity Phase III data, comprising substantial improvements in glycemic, weight, and cardiovascular outcomes. Promising data also suggest benefits in common comorbidities, including obstructive sleep apnea, polycystic ovary syndrome, chronic kidney disease, and heart failure with preserved ejection fraction.GLP-1RAs represent a valuable pharmacotherapeutic option for gastroenterologists managing individuals with MASLD/MASH and cardiometabolic comorbid conditions.
Collapse
Affiliation(s)
| | - Michael Charlton
- Transplant Institute, Center for Liver Diseases, University of Chicago Biological Sciences, Chicago, IL, USA
| | - Meagan Gray
- Division of Gastroenterology and Hepatology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mazen Noureddin
- Houston Methodist Hospital, Houston Research Institute, Houston, TX, USA
| |
Collapse
|
2
|
Bredum SK, Jacobsen J, Cirera S, Christoffersen BØ. Measuring energy expenditure in Göttingen Minipigs using indirect calorimetry: validation and methodological considerations. Lab Anim Res 2025; 41:9. [PMID: 39985093 PMCID: PMC11843975 DOI: 10.1186/s42826-024-00233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Obesity affects nearly a billion people globally and is associated with various health consequences. Current anti-obesity medications primarily target appetite, but drug candidates that modulate energy expenditure (EE) and substrate utilization based on respiratory exchange ratio (RER) are also essential to continuously improve the treatment modalities for people living with obesity. Selecting appropriate animal models and methods is crucial to improving translational value in preclinical research. While pig obesity models provide a relevant alternative to rodent models due to their similarities to humans, little is known about the assessment and translatability of EE in pigs. The aim of this study was to evaluate the translatability of minipigs for assessing the effect of EE-modulating drugs using indirect calorimetry and three positive control compounds that have known effects on EE and/or RER in humans. The study consisted of five sub-studies: Sub-study 1 assessed EE and RER based on sex (male/female) and diet (chow/high-fat diet) with and without correction for body composition; Sub-studies 2-4 evaluated changes in EE and RER after treatment with three positive control compounds: 2,4-dinitrophenol, DNP; a glucagon receptor agonist, GCG-RA; and a melanocortin receptor 4 agonist, MC4-RA; and sub-study 5 established three predictive equations for resting metabolic rate. RESULTS Sub-study 1 resulted in detectable differences in EE and RER based on diet/body sizes (P-value < 0.0001), while EE adjusted for body composition resulted in differences based on sex (P-value < 0.0001). Sub-studies 2-4 revealed that the three pharmacological interventions known to affect EE in humans, DNP, GCG-RA, and MC4-RA, showed similar effects in the Göttingen Minipigs by significantly increasing EE by 26.1% (P-value: 0.0014), 21.3% (P-value: 0.0491), and 25.4% (P-value: 0.0013), respectively, emphasizing the translational value of the model. In sub-study 5, three predictive equations were established for RMR based on body composition, demographic and anthropometric measurements, and the most accurate equation based on all variables. All three equations demonstrated acceptable accuracy (adjusted R2: 0.73-0.85). CONCLUSIONS The present study qualifies the use of Göttingen Minipigs for investigating EE in preclinical research and provides a framework for conducting such research.
Collapse
Affiliation(s)
- Simon K Bredum
- Integrated Physiology Research, Novo Nordisk A/S, Måløv, Denmark.
- Department of Animal Welfare and Disease Control, University of Copenhagen, Frederiksberg, Denmark.
| | - Julie Jacobsen
- Integrated Physiology Research, Novo Nordisk A/S, Måløv, Denmark
| | - Susanna Cirera
- Department of Animal Welfare and Disease Control, University of Copenhagen, Frederiksberg, Denmark
| | | |
Collapse
|
3
|
Movahednasab M, Dianat-Moghadam H, Khodadad S, Nedaeinia R, Safabakhsh S, Ferns G, Salehi R. GLP-1-based therapies for type 2 diabetes: from single, dual and triple agonists to endogenous GLP-1 production and L-cell differentiation. Diabetol Metab Syndr 2025; 17:60. [PMID: 39962520 PMCID: PMC11834518 DOI: 10.1186/s13098-025-01623-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/02/2025] [Indexed: 02/20/2025] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin peptide hormone mainly secreted by enteroendocrine intestinal L-cells. GLP-1 is also secreted by α-cells of the pancreas and the central nervous system (CNS). GLP-1 secretion is stimulated by nutrient intake and exerts its effects on glucose homeostasis by stimulating insulin secretion, gastric emptying confiding the food intake, and β-cell proliferation. The insulinotropic effects of GLP-1, and the reduction of its effects in type 2 diabetes mellitus (T2DM), have made GLP-1 an attractive option for the treatment of T2DM. Furthermore, GLP-1-based medications such as GLP-1 receptor agonists and dipeptidyl peptidase-4 inhibitors, have been shown to improve diabetes control in preclinical and clinical trials with human subjects. Importantly, increasing the endogenous production of GLP-1 by different mechanisms or by increasing the number of intestinal L-cells that tend to produce this hormone may be another effective therapeutic approach to managing T2DM. Herein, we briefly describe therapeutic agents/compounds that enhance GLP-1 function. Then, we will discuss the approaches that can increase the endogenous production of GLP-1 through various stimuli. Finally, we introduce the potential of L-cell differentiation as an attractive future therapeutic approach to increase GLP-1 production as an attractive therapeutic alternative for T2DM.
Collapse
Affiliation(s)
- Maedeh Movahednasab
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sana Khodadad
- Department of Genetics and Molecular Biology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeid Safabakhsh
- Micronesian Institute for Disease Prevention and Research, 736 Route 4, Suite 103, Sinajana, GU, 96910, USA
| | - Gordon Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Moiz A, Filion KB, Tsoukas MA, Yu OH, Peters TM, Eisenberg MJ. Mechanisms of GLP-1 Receptor Agonist-Induced Weight Loss: A Review of Central and Peripheral Pathways in Appetite and Energy Regulation. Am J Med 2025:S0002-9343(25)00059-2. [PMID: 39892489 DOI: 10.1016/j.amjmed.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) have become central in managing obesity and type 2 diabetes, primarily through appetite suppression and metabolic regulation. This review explores the mechanisms underlying GLP-1 RA-induced weight loss, focusing on central and peripheral pathways. Centrally, GLP-1 RAs modulate brain regions controlling appetite, influencing neurotransmitter and peptide release to regulate hunger and energy expenditure. Peripherally, GLP-1 RAs improve glycemic control by enhancing insulin secretion, reducing glucagon release, delaying gastric emptying, and regulating gut hormones. They also reduce triglycerides and low-density lipoprotein cholesterol, mitigate adipose tissue inflammation, and minimize ectopic fat deposition, promoting overall metabolic health. Emerging dual and triple co-agonists, targeting GLP-1 alongside glucose-dependent insulinotropic polypeptide, and glucagon pathways, may enhance weight loss and metabolic flexibility. Understanding these mechanisms is crucial as the therapeutic landscape evolves, offering clinicians and researchers insights to optimize the efficacy of current and future obesity treatments.
Collapse
Affiliation(s)
- Areesha Moiz
- Centre of Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada; Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Kristian B Filion
- Centre of Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada
| | - Michael A Tsoukas
- Department of Medicine, McGill University, Montreal, Canada; Division of Endocrinology and Metabolism, McGill University, Montreal, Canada
| | - Oriana Hy Yu
- Centre of Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada; Division of Endocrinology and Metabolism, McGill University, Montreal, Canada
| | - Tricia M Peters
- Centre of Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada; Division of Experimental Medicine, McGill University, Montreal, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada; Division of Endocrinology and Metabolism, McGill University, Montreal, Canada
| | - Mark J Eisenberg
- Centre of Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada; Division of Experimental Medicine, McGill University, Montreal, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada; Division of Cardiology, Jewish General Hospital/McGill University, Canada.
| |
Collapse
|
5
|
Kokkorakis M, Chakhtoura M, Rhayem C, Al Rifai J, Ghezzawi M, Valenzuela-Vallejo L, Mantzoros CS. Emerging pharmacotherapies for obesity: A systematic review. Pharmacol Rev 2025; 77:100002. [PMID: 39952695 DOI: 10.1124/pharmrev.123.001045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
The history of antiobesity pharmacotherapies is marked by disappointments, often entangled with societal pressure promoting weight loss and the prevailing conviction that excess body weight signifies a lack of willpower. However, categories of emerging pharmacotherapies generate hope to reduce obesity rates. This systematic review of phase 2 and phase 3 trials in adults with overweight/obesity investigates the effect of novel weight loss pharmacotherapies, compared to placebo/control or US Food and Drug Administration-approved weight loss medication, through searching Medline, Embase, and ClinicalTrials.gov (2012-2024). We identified 53 phase 3 and phase 2 trials, with 36 emerging antiobesity drugs or combinations thereof and 4 withdrawn or terminated trials. Oral semaglutide 50 mg is the only medication that has completed a phase 3 trial. There are 14 ongoing phase 3 trials on glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) (ecnoglutide, orforglipron, and TG103), GLP-1 RA/amylin agonist (CagriSema), GLP-1/glucagon RAs (mazdutide and survodutide), GLP-1/glucose-dependent insulinotropic polypeptide and glucagon RA (retatrutide), dapagliflozin, and the combination sibutramine/topiramate. Completed phase 2 trials on incretin-based therapies showed a mean percent weight loss of 7.4% to 24.2%. Almost half of the drugs undergoing phase 2 trials are incretin analogs. The obesity drug pipeline is expanding rapidly, with the most promising results reported with incretin analogs. Data on mortality and obesity-related complications, such as cardio-renal-metabolic events, are needed. Moreover, long-term follow-up data on the safety and efficacy of weight maintenance with novel obesity pharmacotherapies, along with studies focused on underrepresented populations, cost-effectiveness assessments, and drug availability, are needed to bridge the care gap for patients with obesity. SIGNIFICANCE STATEMENT: Obesity is the epidemic of the 21st century. Except for the newer injectable medications, drugs with suboptimal efficacy have been available in the clinician's armamentarium for weight management. However, emerging alternatives of novel agents and combinations populate the current obesity therapeutic pipeline. This systematic review identifies the state and mechanism of action of emerging pharmacotherapies undergoing or having completed phase 2 and phase 3 clinical trials. The information provided herein furthers the understanding of obesity management, implying direct clinical implications and stimulating research initiatives.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marlene Chakhtoura
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| | - Caline Rhayem
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jana Al Rifai
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Malak Ghezzawi
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Laura Valenzuela-Vallejo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
6
|
Dimitri P, Roth CL. Treatment of Hypothalamic Obesity With GLP-1 Analogs. J Endocr Soc 2024; 9:bvae200. [PMID: 39703362 PMCID: PMC11655849 DOI: 10.1210/jendso/bvae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Congenital and acquired damage to hypothalamic nuclei or neuronal circuits controlling satiety and energy expenditure results in hypothalamic obesity (HO). To date, successful weight loss and satiety has only been achieved in a limited number of affected patients across multiple drug trials. Glucagon-like peptide-1 (GLP-1) acts via central pathways that are independent from the hypothalamus to induce satiety. GLP-1 receptor agonists (GLP-1RAs) may provide an alternative approach to treating HO. Methods We performed a comprehensive search in Medline, Google Scholar, and clinical trials registries (ClinicalTrials.gov; clinicaltrialsregister.eur). This nonsystematic literature review was conducted to identify scientific papers published from January 2005 to February 2024 using the Pubmed and Embase databases. Key words used were GLP-1, GLP-1RA, hypothalamic obesity, suprasellar tumor, and craniopharyngioma. Results Our search identified 7 case studies, 5 case series, and 2 published clinical trials relating to the use of GLP-1RAs in HO. All case studies demonstrated weight loss and improved metabolic function. In contrast, results from case series were variable, with some showing no weight loss and others demonstrating moderate to significant weight loss and improved metabolic parameters. In the ECHO clinical trial, nearly half the subjects randomized to weekly exenatide showed reduced body mass index (BMI). Paradoxically, BMI reduction was greater in patients with more extensive hypothalamic injuries. Conclusion GLP-1RAs potentially offer a new approach to treating HO. There is a need to stratify patients who are more likely to respond. Further randomized controlled trials are required to determine their efficacy either in isolation or combined with other therapies.
Collapse
Affiliation(s)
- Paul Dimitri
- The Department of Paediatric Endocrinology, Sheffield Children's NHS Foundation Trust, Sheffield, S10 2TH, UK
- University of Sheffield, Sheffield, S10 2TN, UK
| | - Christian L Roth
- Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
7
|
Huang L, Guo Z, Jiang Z, Xu Y, Huang H. Resting metabolic rate in obesity. Postgrad Med J 2024:qgae153. [PMID: 39561990 DOI: 10.1093/postmj/qgae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/17/2024] [Indexed: 11/21/2024]
Abstract
The prevalence of obesity has continued to rise, and obesity and its attendant metabolic disorders are major global health threat factors. Among the current interventions for obesity, none have demonstrated sustained efficacy in achieving long-term outcomes. So, the identification of therapeutic targets is of paramount importance in the advancement and sustainability of obesity. Resting metabolic rate (RMR) constitutes 60%-75% of total energy expenditure and serves a crucial function in maintaining energy balance. Nevertheless, there exists considerable heterogeneity in RMR among individuals. Low RMR is associated with weight gain, elevating the susceptibility to obesity-related ailments. Hence, RMR will be the main focus of interest in the study of obesity treatment. In this review, we will elucidate the influence factors and mechanisms of action of RMR in obesity, with particular emphasis on the effects of obesity treatment on RMR and the alterations and influence factors of RMR in special types of populations with obesity.
Collapse
Affiliation(s)
- LingHong Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, NO. 950 Donghai Street, Fengze District, Quanzhou 362000, Fujian, China
| | - ZhiFeng Guo
- Department of Respiratory Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, NO. 950 Donghai Street, Fengze District, Quanzhou 362000, Fujian, China
| | - ZhengRong Jiang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, NO. 950 Donghai Street, Fengze District, Quanzhou 362000, Fujian, China
| | - YaJing Xu
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, NO. 950 Donghai Street, Fengze District, Quanzhou 362000, Fujian, China
| | - HuiBin Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, NO. 950 Donghai Street, Fengze District, Quanzhou 362000, Fujian, China
| |
Collapse
|
8
|
Lopes T, Hope DC, Ramos-Pittol JM, Curtis A, Shrewsbury JV, Davies I, Zhou Z, Sardini A, Minnion JS, Dormann D, Bewick GA, Murphy KG, Carling D, Bloom SR, Tan TM, Owen BM. Dietary protein defends lean mass and maintains the metabolic benefits of glucagon receptor agonism in mice. Mol Metab 2024; 89:102024. [PMID: 39236784 PMCID: PMC11424806 DOI: 10.1016/j.molmet.2024.102024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/12/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024] Open
Abstract
OBJECTIVE Glucagon has long been proposed as a component of multi-agonist obesity therapeutics due to its ability to induce energy expenditure and cause weight loss. However, chronic glucagon-receptor agonism has been associated with a reduction in circulating amino acids and loss of lean mass. Importantly, it is currently not known whether the metabolic benefits of glucagon can be maintained under contexts that allow the defence of lean mass. METHODS We investigate the metabolic effects of the long-acting glucagon receptor agonist, G108, when administered to obese mice at low-doses, and with dietary protein supplementation. RESULTS Dietary protein supplementation can only fully defend lean mass at a low dose of G108 that is sub-anorectic and does not reduce fat mass. However, in this context, G108 is still highly effective at improving glucose tolerance and reducing liver fat in obese mice. Mechanistically, liver RNA-Seq analysis reveals that dietary protein supplementation defends anabolic processes in low-dose G108-treated mice, and its effects on treatment-relevant glucose and lipid pathways are preserved. CONCLUSION Glucagon-mediated energy expenditure and weight loss may be mechanistically coupled to hypoaminocidemia and lean mass loss. However, our data suggest that glucagon can treat MAFLD at doses which allow full defence of lean mass given sufficient dietary protein intake. Therefore, proportionate glucagon therapy may be safe and effective in targeting hepatocytes and improving in glycaemia and liver fat.
Collapse
Affiliation(s)
- Tatiana Lopes
- Section of Investigative Medicine, Imperial College London, United Kingdom
| | - David Cd Hope
- Section of Investigative Medicine, Imperial College London, United Kingdom
| | | | - Anna Curtis
- Section of Investigative Medicine, Imperial College London, United Kingdom
| | - Jed V Shrewsbury
- Section of Investigative Medicine, Imperial College London, United Kingdom
| | - Iona Davies
- Section of Investigative Medicine, Imperial College London, United Kingdom
| | - Zijing Zhou
- Section of Investigative Medicine, Imperial College London, United Kingdom
| | - Alessandro Sardini
- MRC Laboratory of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - James S Minnion
- Section of Investigative Medicine, Imperial College London, United Kingdom
| | - Dirk Dormann
- MRC Laboratory of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Gavin A Bewick
- Diabetes and Obesity Theme, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Medicine, Kings College London and Diabetes Endocrinology and Obesity Clinical Academic Partnership Kings Health Partners, UK
| | - Kevin G Murphy
- Section of Investigative Medicine, Imperial College London, United Kingdom
| | - David Carling
- MRC Laboratory of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Stephen R Bloom
- Section of Investigative Medicine, Imperial College London, United Kingdom
| | - Tricia Mm Tan
- Section of Investigative Medicine, Imperial College London, United Kingdom.
| | - Bryn M Owen
- Section of Investigative Medicine, Imperial College London, United Kingdom.
| |
Collapse
|
9
|
Enyew Belay K, Jemal RH, Tuyizere A. Innovative Glucagon-based Therapies for Obesity. J Endocr Soc 2024; 8:bvae197. [PMID: 39574787 PMCID: PMC11579655 DOI: 10.1210/jendso/bvae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 11/24/2024] Open
Abstract
Obesity poses a significant global health challenge, with an alarming rise in prevalence rates. Traditional interventions, including lifestyle modifications, often fall short of achieving sustainable weight loss, ultimately leading to surgical interventions, which carry a significant burden and side effects. This necessitates the exploration of effective and relatively tolerable pharmacological alternatives. Among emerging therapeutic avenues, glucagon-based treatments have garnered attention for their potential to modulate metabolic pathways and regulate appetite. This paper discusses current research on the physiological mechanisms underlying obesity and the role of glucagon in energy homeostasis. Glucagon, traditionally recognized for its glycemic control functions, has emerged as a promising target for obesity management due to its multifaceted effects on metabolism, appetite regulation, and energy expenditure. This review focuses on the pharmacological landscape, encompassing single and dual agonist therapies targeting glucagon receptors (GcgRs), glucagon-like peptide-1 receptors (GLP-1Rs), glucose-dependent insulinotropic polypeptide receptors (GIPRs), amylin, triiodothyronine, fibroblast growth factor 21, and peptide tyrosine tyrosine. Moreover, novel triple-agonist therapies that simultaneously target GLP-1R, GIPR, and GcgR show promise in augmenting further metabolic benefits. This review paper tries to summarize key findings from preclinical and clinical studies, elucidating the mechanisms of action, safety profiles, and therapeutic potential of glucagon-based therapies in combating obesity and its comorbidities. Additionally, it explores ongoing research endeavors, including phase III trials, aimed at further validating the efficacy and safety of these innovative treatment modalities.
Collapse
Affiliation(s)
- Kibret Enyew Belay
- Department of Internal Medicine, Endocrinology and Metabolism Unit, Bahir Dar University, Bahir Dar 6000, Ethiopia
| | - Rebil Heiru Jemal
- Department of Internal Medicine, Adama Hospital Medical College, Adama 1000, Ethiopia
| | - Aloys Tuyizere
- Department of Internal Medicine, Endocrinology, Diabetes and Metabolism Unit, University of Rwanda, Kigali 00200, Rwanda
| |
Collapse
|
10
|
Svendstrup M, Rasmussen AK, Kistorp C, Klose M, Andreassen M. Semaglutide treatment of hypothalamic obesity - a real-life data study. Pituitary 2024; 27:685-692. [PMID: 39120810 PMCID: PMC11513754 DOI: 10.1007/s11102-024-01429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE Patients with tumors involving the hypothalamic region are at high risk of developing morbid obesity due to disturbances in the appetite regulative nuclei in hypothalamus. We evaluated the effect of the Glucagon-like peptide 1 (GLP-1) analogue semaglutide in patients with hypothalamic obesity. METHODS We recorded weight changes from real-time data before and after treatment with semaglutide in patients with hypothalamic obesity from our outpatient clinic at the Department of Endocrinology at Rigshospitalet, from September 2020 to November 2023. RESULTS A total of 26 patients were included in this study (15 females, median age at initiation of semaglutide was 52 (range 18-65) years). Body mass index (BMI) at initial diagnosis was median 25 (range 20-38) kg/m2 while BMI at initiation of semaglutide was median 38 (range 28-58) kg/m2. All but one patient lost weight during semaglutide treatment with a mean weight loss of 13.4 kg (95% CI 10.3-16.5 kg, p = < 0.001) after 12 months corresponding to a loss in BMI of 4.4 kg/m2 (95% CI 3.4-5.4 kg/m2, p = < 0.001) with a median dosage of semaglutide of 1.6 (range 0.5-2.5) mg. Fifteen patients (58%) lost more than 10% and two patients (8%) lost more than 20% of initial body weight, respectively. CONCLUSION Treatment with semaglutide shows promising results in reducing body weight in patients with acquired hypothalamic obesity. Whether the weight reduction remains stable after long time follow-up needs further investigation.
Collapse
Affiliation(s)
- Mathilde Svendstrup
- Department of Endocrinology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| | - Aase Krogh Rasmussen
- Department of Endocrinology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Caroline Kistorp
- Department of Endocrinology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marianne Klose
- Department of Endocrinology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mikkel Andreassen
- Department of Endocrinology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
11
|
Winther JB, Holst JJ. Glucagon agonism in the treatment of metabolic diseases including type 2 diabetes mellitus and obesity. Diabetes Obes Metab 2024; 26:3501-3512. [PMID: 38853300 DOI: 10.1111/dom.15693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with obesity and, therefore, it is important to target both overweight and hyperglycaemia. Glucagon plays important roles in glucose, amino acid and fat metabolism and may also regulate appetite and energy expenditure. These physiological properties are currently being exploited therapeutically in several compounds, most often in combination with glucagon-like peptide-1 (GLP-1) agonism in the form of dual agonists. With this combination, increases in hepatic glucose production and hyperglycaemia, which would be counterproductive, are largely avoided. In multiple randomized trials, the co-agonists have been demonstrated to lead to significant weight loss and, in participants with T2DM, even improved glycated haemoglobin (HbA1c) levels. In addition, significant reductions in hepatic fat content have been observed. Here, we review and discuss the studies so far available. Twenty-six randomized trials of seven different GLP-1 receptor (GLP-1R)/glucagon receptor (GCGR) co-agonists were identified and reviewed. GLP-1R/GCGR co-agonists generally provided significant weight loss, reductions in hepatic fat content, improved lipid profiles, insulin secretion and sensitivity, and in some cases, improved HbA1c levels. A higher incidence of adverse effects was present with GLP-1R/GCGR co-agonist treatment than with GLP-1 agonist monotherapy or placebo. Possible additional risks associated with glucagon agonism are also discussed. A delicate balance between GLP-1 and glucagon agonism seems to be of particular importance. Further studies exploring the optimal ratio of GLP-1 and glucagon receptor activation and dosage and titration regimens are needed to ensure a sufficient safety profile while providing clinical benefits.
Collapse
Affiliation(s)
- Jonathan Brix Winther
- Department of Biomedical Sciences and the NovoNordisk Foundation Centre for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences and the NovoNordisk Foundation Centre for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Nicol A, Ahmed M, Fischer C, Garces JG, Magnus S, Maung N, Molisani N, Petrov S, Palu RAS. Larval density can be used to predict genetic modifiers of glucagon signaling in Drosophila melanogaster. PLoS One 2024; 19:e0302565. [PMID: 39196987 PMCID: PMC11356449 DOI: 10.1371/journal.pone.0302565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 04/05/2024] [Indexed: 08/30/2024] Open
Abstract
Obesity is a growing concern. 42.3% of people in the U.S were considered obese between 2017-2018. Much is still unknown about the genetic components that contribute to weight gain. In humans, the hormone glucagon is a major contributor to the body's energy regulation as it signals for the breakdown of lipids. Treatments targeting the glucagon pathway have helped patients with both weight loss and appetite suppression. Understanding the genetic modifiers of glucagon signaling and its downstream pathways could enable the development of a wider variety of effective therapeutics. In this study, we blocked the glucagon pathway in Drosophila melanogaster by reducing the expression of the fly ortholog of the glucagon receptor (AKHR). We then crossed our model to the Drosophila Genetic Reference Panel (DGRP) and looked for natural variation in fat content. We used variation in larval density to identify candidate modifier genes through a genome-wide association study. We then tested these modifier genes by increasing or decreasing their expression in the AKHR model. We screened these candidates initially with the same density assay used in the original study to narrow down to four candidate genes that substantially impacted the density of the larvae: THADA, AmyD, GluRIIC, and CG9826. We further characterized these candidates using biochemical assays to analyze stored metabolites such as triglycerides, glucose, glycogen, and protein under control, high sugar, and high fat conditions to see if the larvae are resistant to environmental changes. Our results indicate consistency between the results of the density assay and direct measurement of metabolite levels. In particular, THADA and AmyD are highlighted as interesting genes for additional study. We hope to improve our understanding of the glucagon signaling pathway, obesity, and lipid metabolism. We also aim to provide candidate genes that can be regarded as future therapeutic targets.
Collapse
Affiliation(s)
- Audrey Nicol
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Malaika Ahmed
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Chelsea Fischer
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - John G. Garces
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Shana Magnus
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Nay Maung
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Nicholas Molisani
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Sophia Petrov
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Rebecca A. S. Palu
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| |
Collapse
|
13
|
Ansari S, Khoo B, Tan T. Targeting the incretin system in obesity and type 2 diabetes mellitus. Nat Rev Endocrinol 2024; 20:447-459. [PMID: 38632474 DOI: 10.1038/s41574-024-00979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 04/19/2024]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are widespread, non-communicable diseases that are responsible for considerable levels of morbidity and mortality globally, primarily in the form of cardiovascular disease (CVD). Changes to lifestyle and behaviour have insufficient long-term efficacy in most patients with these diseases; metabolic surgery, although effective, is not practically deliverable on the scale that is required. Over the past two decades, therapies based on incretin hormones, spearheaded by glucagon-like peptide 1 (GLP1) receptor agonists (GLP1RAs), have become the treatment of choice for obesity and T2DM, and clinical evidence now suggests that these agents have benefits for CVD. We review the latest advances in incretin-based pharmacotherapy. These include 'GLP1 plus' agents, which combine the known advantages of GLP1RAs with the activity of additional hormones, such as glucose-dependent insulinotropic peptide, glucagon and amylin, to achieve desired therapeutic goals. Second-generation non-peptidic oral GLP1RAs promise to extend the benefits of GLP1 therapy to those who do not want, or cannot have, subcutaneous injection therapy. We conclude with a discussion of the knowledge gaps that must be addressed before incretin-based therapies can be properly deployed for maximum benefit in the treatment of obesity and T2DM.
Collapse
Affiliation(s)
- Saleem Ansari
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Bernard Khoo
- Department of Endocrinology, Division of Medicine, Royal Free Campus, University College London, London, UK
| | - Tricia Tan
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK.
| |
Collapse
|
14
|
Sanyal AJ, Bedossa P, Fraessdorf M, Neff GW, Lawitz E, Bugianesi E, Anstee QM, Hussain SA, Newsome PN, Ratziu V, Hosseini-Tabatabaei A, Schattenberg JM, Noureddin M, Alkhouri N, Younes R. A Phase 2 Randomized Trial of Survodutide in MASH and Fibrosis. N Engl J Med 2024; 391:311-319. [PMID: 38847460 DOI: 10.1056/nejmoa2401755] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
BACKGROUND Dual agonism of glucagon receptor and glucagon-like peptide-1 (GLP-1) receptor may be more effective than GLP-1 receptor agonism alone for treating metabolic dysfunction-associated steatohepatitis (MASH). The efficacy and safety of survodutide (a dual agonist of glucagon receptor and GLP-1 receptor) in persons with MASH and liver fibrosis are unclear. METHODS In this 48-week, phase 2 trial, we randomly assigned adults with biopsy-confirmed MASH and fibrosis stage F1 through F3 in a 1:1:1:1 ratio to receive once-weekly subcutaneous injections of survodutide at a dose of 2.4, 4.8, or 6.0 mg or placebo. The trial had two phases: a 24-week rapid-dose-escalation phase, followed by a 24-week maintenance phase. The primary end point was histologic improvement (reduction) in MASH with no worsening of fibrosis. Secondary end points included a decrease in liver fat content by at least 30% and biopsy-assessed improvement (reduction) in fibrosis by at least one stage. RESULTS A total of 293 randomly assigned participants received at least one dose of survodutide or placebo. Improvement in MASH with no worsening of fibrosis occurred in 47% of the participants in the survodutide 2.4-mg group, 62% of those in the 4.8-mg group, and 43% of those in the 6.0-mg group, as compared with 14% of those in the placebo group (P<0.001 for the quadratic dose-response curve as best-fitting model). A decrease in liver fat content by at least 30% occurred in 63% of the participants in the survodutide 2.4-mg group, 67% of those in the 4.8-mg group, 57% of those in the 6.0-mg group, and 14% of those in the placebo group; improvement in fibrosis by at least one stage occurred in 34%, 36%, 34%, and 22%, respectively. Adverse events that were more frequent with survodutide than with placebo included nausea (66% vs. 23%), diarrhea (49% vs. 23%), and vomiting (41% vs. 4%); serious adverse events occurred in 8% with survodutide and 7% with placebo. CONCLUSIONS Survodutide was superior to placebo with respect to improvement in MASH without worsening of fibrosis, warranting further investigation in phase 3 trials. (Funded by Boehringer Ingelheim; 1404-0043 ClinicalTrials.gov number, NCT04771273; EudraCT number, 2020-002723-11.).
Collapse
Affiliation(s)
- Arun J Sanyal
- From the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.); Liverpat and University of Paris (P.B.), and Sorbonne Université, Institute for Cardiometabolism and Nutrition, Assistance Publique-Hôpitaux de Paris, INSERM Unité Mixte de Recherche Scientifique 1138, Centre de Recherche des Cordeliers (V.R.) - all in Paris; Boehringer Ingelheim, Ingelheim am Rhein (M.F., S.A.H and R.Y.), Saarland University Medical Center, Homburg (J.M.S.), and University of the Saarland, Saarbrücken (J.M.S.) - all in Germany; Covenant Metabolic Specialists, Sarasota, FL (G.W.N.); Houston Methodist Hospital and Houston Research Institute, Houston (M.N.), and the Texas Liver Institute, University of Texas Health San Antonio, San Antonio (E.L. and N.A.) - all in Texas; the University of Turin, Turin, Italy (E.B.); the Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, and Newcastle National Institute for Health and Care Research Biomedical Research Centre, Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle upon Tyne (Q.M.A.), the University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham (P.N.N.), and the Institute of Hepatology, Faculty of Life Sciences and Medicine, King's College London and King's College Hospital, London (P.N.N.) - all in the United Kingdom; Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (A.H.-T.); and Arizona Liver Health, Chandler (N.A.)
| | - Pierre Bedossa
- From the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.); Liverpat and University of Paris (P.B.), and Sorbonne Université, Institute for Cardiometabolism and Nutrition, Assistance Publique-Hôpitaux de Paris, INSERM Unité Mixte de Recherche Scientifique 1138, Centre de Recherche des Cordeliers (V.R.) - all in Paris; Boehringer Ingelheim, Ingelheim am Rhein (M.F., S.A.H and R.Y.), Saarland University Medical Center, Homburg (J.M.S.), and University of the Saarland, Saarbrücken (J.M.S.) - all in Germany; Covenant Metabolic Specialists, Sarasota, FL (G.W.N.); Houston Methodist Hospital and Houston Research Institute, Houston (M.N.), and the Texas Liver Institute, University of Texas Health San Antonio, San Antonio (E.L. and N.A.) - all in Texas; the University of Turin, Turin, Italy (E.B.); the Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, and Newcastle National Institute for Health and Care Research Biomedical Research Centre, Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle upon Tyne (Q.M.A.), the University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham (P.N.N.), and the Institute of Hepatology, Faculty of Life Sciences and Medicine, King's College London and King's College Hospital, London (P.N.N.) - all in the United Kingdom; Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (A.H.-T.); and Arizona Liver Health, Chandler (N.A.)
| | - Mandy Fraessdorf
- From the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.); Liverpat and University of Paris (P.B.), and Sorbonne Université, Institute for Cardiometabolism and Nutrition, Assistance Publique-Hôpitaux de Paris, INSERM Unité Mixte de Recherche Scientifique 1138, Centre de Recherche des Cordeliers (V.R.) - all in Paris; Boehringer Ingelheim, Ingelheim am Rhein (M.F., S.A.H and R.Y.), Saarland University Medical Center, Homburg (J.M.S.), and University of the Saarland, Saarbrücken (J.M.S.) - all in Germany; Covenant Metabolic Specialists, Sarasota, FL (G.W.N.); Houston Methodist Hospital and Houston Research Institute, Houston (M.N.), and the Texas Liver Institute, University of Texas Health San Antonio, San Antonio (E.L. and N.A.) - all in Texas; the University of Turin, Turin, Italy (E.B.); the Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, and Newcastle National Institute for Health and Care Research Biomedical Research Centre, Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle upon Tyne (Q.M.A.), the University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham (P.N.N.), and the Institute of Hepatology, Faculty of Life Sciences and Medicine, King's College London and King's College Hospital, London (P.N.N.) - all in the United Kingdom; Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (A.H.-T.); and Arizona Liver Health, Chandler (N.A.)
| | - Guy W Neff
- From the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.); Liverpat and University of Paris (P.B.), and Sorbonne Université, Institute for Cardiometabolism and Nutrition, Assistance Publique-Hôpitaux de Paris, INSERM Unité Mixte de Recherche Scientifique 1138, Centre de Recherche des Cordeliers (V.R.) - all in Paris; Boehringer Ingelheim, Ingelheim am Rhein (M.F., S.A.H and R.Y.), Saarland University Medical Center, Homburg (J.M.S.), and University of the Saarland, Saarbrücken (J.M.S.) - all in Germany; Covenant Metabolic Specialists, Sarasota, FL (G.W.N.); Houston Methodist Hospital and Houston Research Institute, Houston (M.N.), and the Texas Liver Institute, University of Texas Health San Antonio, San Antonio (E.L. and N.A.) - all in Texas; the University of Turin, Turin, Italy (E.B.); the Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, and Newcastle National Institute for Health and Care Research Biomedical Research Centre, Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle upon Tyne (Q.M.A.), the University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham (P.N.N.), and the Institute of Hepatology, Faculty of Life Sciences and Medicine, King's College London and King's College Hospital, London (P.N.N.) - all in the United Kingdom; Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (A.H.-T.); and Arizona Liver Health, Chandler (N.A.)
| | - Eric Lawitz
- From the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.); Liverpat and University of Paris (P.B.), and Sorbonne Université, Institute for Cardiometabolism and Nutrition, Assistance Publique-Hôpitaux de Paris, INSERM Unité Mixte de Recherche Scientifique 1138, Centre de Recherche des Cordeliers (V.R.) - all in Paris; Boehringer Ingelheim, Ingelheim am Rhein (M.F., S.A.H and R.Y.), Saarland University Medical Center, Homburg (J.M.S.), and University of the Saarland, Saarbrücken (J.M.S.) - all in Germany; Covenant Metabolic Specialists, Sarasota, FL (G.W.N.); Houston Methodist Hospital and Houston Research Institute, Houston (M.N.), and the Texas Liver Institute, University of Texas Health San Antonio, San Antonio (E.L. and N.A.) - all in Texas; the University of Turin, Turin, Italy (E.B.); the Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, and Newcastle National Institute for Health and Care Research Biomedical Research Centre, Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle upon Tyne (Q.M.A.), the University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham (P.N.N.), and the Institute of Hepatology, Faculty of Life Sciences and Medicine, King's College London and King's College Hospital, London (P.N.N.) - all in the United Kingdom; Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (A.H.-T.); and Arizona Liver Health, Chandler (N.A.)
| | - Elisabetta Bugianesi
- From the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.); Liverpat and University of Paris (P.B.), and Sorbonne Université, Institute for Cardiometabolism and Nutrition, Assistance Publique-Hôpitaux de Paris, INSERM Unité Mixte de Recherche Scientifique 1138, Centre de Recherche des Cordeliers (V.R.) - all in Paris; Boehringer Ingelheim, Ingelheim am Rhein (M.F., S.A.H and R.Y.), Saarland University Medical Center, Homburg (J.M.S.), and University of the Saarland, Saarbrücken (J.M.S.) - all in Germany; Covenant Metabolic Specialists, Sarasota, FL (G.W.N.); Houston Methodist Hospital and Houston Research Institute, Houston (M.N.), and the Texas Liver Institute, University of Texas Health San Antonio, San Antonio (E.L. and N.A.) - all in Texas; the University of Turin, Turin, Italy (E.B.); the Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, and Newcastle National Institute for Health and Care Research Biomedical Research Centre, Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle upon Tyne (Q.M.A.), the University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham (P.N.N.), and the Institute of Hepatology, Faculty of Life Sciences and Medicine, King's College London and King's College Hospital, London (P.N.N.) - all in the United Kingdom; Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (A.H.-T.); and Arizona Liver Health, Chandler (N.A.)
| | - Quentin M Anstee
- From the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.); Liverpat and University of Paris (P.B.), and Sorbonne Université, Institute for Cardiometabolism and Nutrition, Assistance Publique-Hôpitaux de Paris, INSERM Unité Mixte de Recherche Scientifique 1138, Centre de Recherche des Cordeliers (V.R.) - all in Paris; Boehringer Ingelheim, Ingelheim am Rhein (M.F., S.A.H and R.Y.), Saarland University Medical Center, Homburg (J.M.S.), and University of the Saarland, Saarbrücken (J.M.S.) - all in Germany; Covenant Metabolic Specialists, Sarasota, FL (G.W.N.); Houston Methodist Hospital and Houston Research Institute, Houston (M.N.), and the Texas Liver Institute, University of Texas Health San Antonio, San Antonio (E.L. and N.A.) - all in Texas; the University of Turin, Turin, Italy (E.B.); the Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, and Newcastle National Institute for Health and Care Research Biomedical Research Centre, Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle upon Tyne (Q.M.A.), the University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham (P.N.N.), and the Institute of Hepatology, Faculty of Life Sciences and Medicine, King's College London and King's College Hospital, London (P.N.N.) - all in the United Kingdom; Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (A.H.-T.); and Arizona Liver Health, Chandler (N.A.)
| | - Samina Ajaz Hussain
- From the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.); Liverpat and University of Paris (P.B.), and Sorbonne Université, Institute for Cardiometabolism and Nutrition, Assistance Publique-Hôpitaux de Paris, INSERM Unité Mixte de Recherche Scientifique 1138, Centre de Recherche des Cordeliers (V.R.) - all in Paris; Boehringer Ingelheim, Ingelheim am Rhein (M.F., S.A.H and R.Y.), Saarland University Medical Center, Homburg (J.M.S.), and University of the Saarland, Saarbrücken (J.M.S.) - all in Germany; Covenant Metabolic Specialists, Sarasota, FL (G.W.N.); Houston Methodist Hospital and Houston Research Institute, Houston (M.N.), and the Texas Liver Institute, University of Texas Health San Antonio, San Antonio (E.L. and N.A.) - all in Texas; the University of Turin, Turin, Italy (E.B.); the Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, and Newcastle National Institute for Health and Care Research Biomedical Research Centre, Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle upon Tyne (Q.M.A.), the University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham (P.N.N.), and the Institute of Hepatology, Faculty of Life Sciences and Medicine, King's College London and King's College Hospital, London (P.N.N.) - all in the United Kingdom; Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (A.H.-T.); and Arizona Liver Health, Chandler (N.A.)
| | - Philip N Newsome
- From the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.); Liverpat and University of Paris (P.B.), and Sorbonne Université, Institute for Cardiometabolism and Nutrition, Assistance Publique-Hôpitaux de Paris, INSERM Unité Mixte de Recherche Scientifique 1138, Centre de Recherche des Cordeliers (V.R.) - all in Paris; Boehringer Ingelheim, Ingelheim am Rhein (M.F., S.A.H and R.Y.), Saarland University Medical Center, Homburg (J.M.S.), and University of the Saarland, Saarbrücken (J.M.S.) - all in Germany; Covenant Metabolic Specialists, Sarasota, FL (G.W.N.); Houston Methodist Hospital and Houston Research Institute, Houston (M.N.), and the Texas Liver Institute, University of Texas Health San Antonio, San Antonio (E.L. and N.A.) - all in Texas; the University of Turin, Turin, Italy (E.B.); the Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, and Newcastle National Institute for Health and Care Research Biomedical Research Centre, Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle upon Tyne (Q.M.A.), the University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham (P.N.N.), and the Institute of Hepatology, Faculty of Life Sciences and Medicine, King's College London and King's College Hospital, London (P.N.N.) - all in the United Kingdom; Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (A.H.-T.); and Arizona Liver Health, Chandler (N.A.)
| | - Vlad Ratziu
- From the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.); Liverpat and University of Paris (P.B.), and Sorbonne Université, Institute for Cardiometabolism and Nutrition, Assistance Publique-Hôpitaux de Paris, INSERM Unité Mixte de Recherche Scientifique 1138, Centre de Recherche des Cordeliers (V.R.) - all in Paris; Boehringer Ingelheim, Ingelheim am Rhein (M.F., S.A.H and R.Y.), Saarland University Medical Center, Homburg (J.M.S.), and University of the Saarland, Saarbrücken (J.M.S.) - all in Germany; Covenant Metabolic Specialists, Sarasota, FL (G.W.N.); Houston Methodist Hospital and Houston Research Institute, Houston (M.N.), and the Texas Liver Institute, University of Texas Health San Antonio, San Antonio (E.L. and N.A.) - all in Texas; the University of Turin, Turin, Italy (E.B.); the Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, and Newcastle National Institute for Health and Care Research Biomedical Research Centre, Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle upon Tyne (Q.M.A.), the University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham (P.N.N.), and the Institute of Hepatology, Faculty of Life Sciences and Medicine, King's College London and King's College Hospital, London (P.N.N.) - all in the United Kingdom; Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (A.H.-T.); and Arizona Liver Health, Chandler (N.A.)
| | - Azadeh Hosseini-Tabatabaei
- From the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.); Liverpat and University of Paris (P.B.), and Sorbonne Université, Institute for Cardiometabolism and Nutrition, Assistance Publique-Hôpitaux de Paris, INSERM Unité Mixte de Recherche Scientifique 1138, Centre de Recherche des Cordeliers (V.R.) - all in Paris; Boehringer Ingelheim, Ingelheim am Rhein (M.F., S.A.H and R.Y.), Saarland University Medical Center, Homburg (J.M.S.), and University of the Saarland, Saarbrücken (J.M.S.) - all in Germany; Covenant Metabolic Specialists, Sarasota, FL (G.W.N.); Houston Methodist Hospital and Houston Research Institute, Houston (M.N.), and the Texas Liver Institute, University of Texas Health San Antonio, San Antonio (E.L. and N.A.) - all in Texas; the University of Turin, Turin, Italy (E.B.); the Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, and Newcastle National Institute for Health and Care Research Biomedical Research Centre, Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle upon Tyne (Q.M.A.), the University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham (P.N.N.), and the Institute of Hepatology, Faculty of Life Sciences and Medicine, King's College London and King's College Hospital, London (P.N.N.) - all in the United Kingdom; Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (A.H.-T.); and Arizona Liver Health, Chandler (N.A.)
| | - Jörn M Schattenberg
- From the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.); Liverpat and University of Paris (P.B.), and Sorbonne Université, Institute for Cardiometabolism and Nutrition, Assistance Publique-Hôpitaux de Paris, INSERM Unité Mixte de Recherche Scientifique 1138, Centre de Recherche des Cordeliers (V.R.) - all in Paris; Boehringer Ingelheim, Ingelheim am Rhein (M.F., S.A.H and R.Y.), Saarland University Medical Center, Homburg (J.M.S.), and University of the Saarland, Saarbrücken (J.M.S.) - all in Germany; Covenant Metabolic Specialists, Sarasota, FL (G.W.N.); Houston Methodist Hospital and Houston Research Institute, Houston (M.N.), and the Texas Liver Institute, University of Texas Health San Antonio, San Antonio (E.L. and N.A.) - all in Texas; the University of Turin, Turin, Italy (E.B.); the Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, and Newcastle National Institute for Health and Care Research Biomedical Research Centre, Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle upon Tyne (Q.M.A.), the University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham (P.N.N.), and the Institute of Hepatology, Faculty of Life Sciences and Medicine, King's College London and King's College Hospital, London (P.N.N.) - all in the United Kingdom; Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (A.H.-T.); and Arizona Liver Health, Chandler (N.A.)
| | - Mazen Noureddin
- From the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.); Liverpat and University of Paris (P.B.), and Sorbonne Université, Institute for Cardiometabolism and Nutrition, Assistance Publique-Hôpitaux de Paris, INSERM Unité Mixte de Recherche Scientifique 1138, Centre de Recherche des Cordeliers (V.R.) - all in Paris; Boehringer Ingelheim, Ingelheim am Rhein (M.F., S.A.H and R.Y.), Saarland University Medical Center, Homburg (J.M.S.), and University of the Saarland, Saarbrücken (J.M.S.) - all in Germany; Covenant Metabolic Specialists, Sarasota, FL (G.W.N.); Houston Methodist Hospital and Houston Research Institute, Houston (M.N.), and the Texas Liver Institute, University of Texas Health San Antonio, San Antonio (E.L. and N.A.) - all in Texas; the University of Turin, Turin, Italy (E.B.); the Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, and Newcastle National Institute for Health and Care Research Biomedical Research Centre, Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle upon Tyne (Q.M.A.), the University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham (P.N.N.), and the Institute of Hepatology, Faculty of Life Sciences and Medicine, King's College London and King's College Hospital, London (P.N.N.) - all in the United Kingdom; Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (A.H.-T.); and Arizona Liver Health, Chandler (N.A.)
| | - Naim Alkhouri
- From the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.); Liverpat and University of Paris (P.B.), and Sorbonne Université, Institute for Cardiometabolism and Nutrition, Assistance Publique-Hôpitaux de Paris, INSERM Unité Mixte de Recherche Scientifique 1138, Centre de Recherche des Cordeliers (V.R.) - all in Paris; Boehringer Ingelheim, Ingelheim am Rhein (M.F., S.A.H and R.Y.), Saarland University Medical Center, Homburg (J.M.S.), and University of the Saarland, Saarbrücken (J.M.S.) - all in Germany; Covenant Metabolic Specialists, Sarasota, FL (G.W.N.); Houston Methodist Hospital and Houston Research Institute, Houston (M.N.), and the Texas Liver Institute, University of Texas Health San Antonio, San Antonio (E.L. and N.A.) - all in Texas; the University of Turin, Turin, Italy (E.B.); the Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, and Newcastle National Institute for Health and Care Research Biomedical Research Centre, Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle upon Tyne (Q.M.A.), the University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham (P.N.N.), and the Institute of Hepatology, Faculty of Life Sciences and Medicine, King's College London and King's College Hospital, London (P.N.N.) - all in the United Kingdom; Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (A.H.-T.); and Arizona Liver Health, Chandler (N.A.)
| | - Ramy Younes
- From the Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond (A.J.S.); Liverpat and University of Paris (P.B.), and Sorbonne Université, Institute for Cardiometabolism and Nutrition, Assistance Publique-Hôpitaux de Paris, INSERM Unité Mixte de Recherche Scientifique 1138, Centre de Recherche des Cordeliers (V.R.) - all in Paris; Boehringer Ingelheim, Ingelheim am Rhein (M.F., S.A.H and R.Y.), Saarland University Medical Center, Homburg (J.M.S.), and University of the Saarland, Saarbrücken (J.M.S.) - all in Germany; Covenant Metabolic Specialists, Sarasota, FL (G.W.N.); Houston Methodist Hospital and Houston Research Institute, Houston (M.N.), and the Texas Liver Institute, University of Texas Health San Antonio, San Antonio (E.L. and N.A.) - all in Texas; the University of Turin, Turin, Italy (E.B.); the Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, and Newcastle National Institute for Health and Care Research Biomedical Research Centre, Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle upon Tyne (Q.M.A.), the University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham (P.N.N.), and the Institute of Hepatology, Faculty of Life Sciences and Medicine, King's College London and King's College Hospital, London (P.N.N.) - all in the United Kingdom; Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (A.H.-T.); and Arizona Liver Health, Chandler (N.A.)
| |
Collapse
|
15
|
Suba K, Patel Y, Martin-Alonso A, Hansen B, Xu X, Roberts A, Norton M, Chung P, Shrewsbury J, Kwok R, Kalogianni V, Chen S, Liu X, Kalyviotis K, Rutter GA, Jones B, Minnion J, Owen BM, Pantazis P, Distaso W, Drucker DJ, Tan TM, Bloom SR, Murphy KG, Salem V. Intra-islet glucagon signalling regulates beta-cell connectivity, first-phase insulin secretion and glucose homoeostasis. Mol Metab 2024; 85:101947. [PMID: 38677509 PMCID: PMC11177084 DOI: 10.1016/j.molmet.2024.101947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024] Open
Abstract
OBJECTIVE Type 2 diabetes (T2D) is characterised by the loss of first-phase insulin secretion. We studied mice with β-cell selective loss of the glucagon receptor (Gcgrfl/fl X Ins-1Cre), to investigate the role of intra-islet glucagon receptor (GCGR) signalling on pan-islet [Ca2+]I activity and insulin secretion. METHODS Metabolic profiling was conducted on Gcgrβ-cell-/- and littermate controls. Crossing with GCaMP6f (STOP flox) animals further allowed for β-cell specific expression of a fluorescent calcium indicator. These islets were functionally imaged in vitro and in vivo. Wild-type mice were transplanted with islets expressing GCaMP6f in β-cells into the anterior eye chamber and placed on a high fat diet. Part of the cohort received a glucagon analogue (GCG-analogue) for 40 days and the control group were fed to achieve weight matching. Calcium imaging was performed regularly during the development of hyperglycaemia and in response to GCG-analogue treatment. RESULTS Gcgrβ-cell-/- mice exhibited higher glucose levels following intraperitoneal glucose challenge (control 12.7 mmol/L ± 0.6 vs. Gcgrβ-cell-/- 15.4 mmol/L ± 0.0 at 15 min, p = 0.002); fasting glycaemia was not different to controls. In vitro, Gcgrβ-cell-/- islets showed profound loss of pan-islet [Ca2+]I waves in response to glucose which was only partially rescued in vivo. Diet induced obesity and hyperglycaemia also resulted in a loss of co-ordinated [Ca2+]I waves in transplanted islets. This was reversed with GCG-analogue treatment, independently of weight-loss (n = 8). CONCLUSION These data provide novel evidence for the role of intra-islet GCGR signalling in sustaining synchronised [Ca2+]I waves and support a possible therapeutic role for glucagonergic agents to restore the insulin secretory capacity lost in T2D.
Collapse
Affiliation(s)
- K Suba
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom; Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - Y Patel
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - A Martin-Alonso
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - B Hansen
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - X Xu
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - A Roberts
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - M Norton
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - P Chung
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - J Shrewsbury
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - R Kwok
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - V Kalogianni
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - S Chen
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - X Liu
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - K Kalyviotis
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - G A Rutter
- CHUM Research Center, University of Montreal, QC, Canada; Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom; Lee Kong Chian Imperial Medical School, Nanyang Technological University, Singapore
| | - B Jones
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - J Minnion
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - B M Owen
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - P Pantazis
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - W Distaso
- Imperial College Business School, Imperial College London, London SW7 2AZ, United Kingdom
| | - D J Drucker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - T M Tan
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - S R Bloom
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - K G Murphy
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - V Salem
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom; Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom; Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.
| |
Collapse
|
16
|
McGlone ER, Hope DCD, Davies I, Dore M, Goldin R, Jones B, Liu Z, Li JV, Vorkas PA, Khoo B, Carling D, Minnion J, Bloom SR, Tan TMM. Chronic treatment with glucagon-like peptide-1 and glucagon receptor co-agonist causes weight loss-independent improvements in hepatic steatosis in mice with diet-induced obesity. Biomed Pharmacother 2024; 176:116888. [PMID: 38861859 DOI: 10.1016/j.biopha.2024.116888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
OBJECTIVES Co-agonists at the glucagon-like peptide-1 and glucagon receptors (GLP1R/GCGR) show promise as treatments for metabolic dysfunction-associated steatotic liver disease (MASLD). Although most co-agonists to date have been heavily GLP1R-biased, glucagon directly acts on the liver to reduce fat content. The aims of this study were to investigate a GCGR-biased co-agonist as treatment for hepatic steatosis in mice. METHODS Mice with diet-induced obesity (DIO) were treated with Dicretin, a GLP1/GCGR co-agonist with high potency at the GCGR, Semaglutide (GLP1R monoagonist) or food restriction over 24 days, such that their weight loss was matched. Hepatic steatosis, glucose tolerance, hepatic transcriptomics, metabolomics and lipidomics at the end of the study were compared with Vehicle-treated mice. RESULTS Dicretin lead to superior reduction of hepatic lipid content when compared to Semaglutide or equivalent weight loss by calorie restriction. Markers of glucose tolerance and insulin resistance improved in all treatment groups. Hepatic transcriptomic and metabolomic profiling demonstrated many changes that were unique to Dicretin-treated mice. These include some known targets of glucagon signaling and others with as yet unclear physiological significance. CONCLUSIONS Our study supports the development of GCGR-biased GLP1/GCGR co-agonists for treatment of MASLD and related conditions.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Department of Surgery and Cancer, Imperial College London, London, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - David C D Hope
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Iona Davies
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Marian Dore
- Genomics facility, MRC Laboratory of Medical Sciences (LMS), Imperial College London, London, UK
| | - Rob Goldin
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ben Jones
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Zhigang Liu
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jia V Li
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Panagiotis A Vorkas
- Institute of Applied Biosciences, Centre for Research and Technology Hellas (INAB|CERTH), Thessaloniki 57001, Greece; School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| | - Bernard Khoo
- Endocrinology, Division of Medicine, University College London, London, UK
| | - David Carling
- Cellular Stress group, MRC LMS, Imperial College London, London, UK
| | - James Minnion
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Stephen R Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M-M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
17
|
Golubic R, Kennet J, Parker V, Robertson D, Luo D, Hansen L, Jermutus L, Ambery P, Ryaboshapkina M, Surakala M, Laker RC, Venables M, Koulman A, Park A, Evans M. Dual glucagon-like peptide-1 and glucagon receptor agonism reduces energy intake in type 2 diabetes with obesity. Diabetes Obes Metab 2024; 26:2634-2644. [PMID: 38562018 DOI: 10.1111/dom.15579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
AIMS To establish which components of energy balance mediate the clinically significant weight loss demonstrated with use of cotadutide, a glucagon-like peptide-1 (GLP-1)/glucagon receptor dual agonist, in early-phase studies. MATERIALS AND METHODS We conducted a phase 2a, single-centre, randomized, placebo-controlled trial in overweight and obese adults with type 2 diabetes. Following a 16-day single-blind placebo run-in, participants were randomized 2:1 to double-blind 42-day subcutaneous treatment with cotadutide (100-300 μg daily) or placebo. The primary outcome was percentage weight change. Secondary outcomes included change in energy intake (EI) and energy expenditure (EE). RESULTS A total of 12 participants (63%) in the cotadutide group and seven (78%) in the placebo group completed the study. The mean (90% confidence interval [CI]) weight change was -4.0% (-4.9%, -3.1%) and -1.4% (-2.7%, -0.1%) for the cotadutide and placebo groups, respectively (p = 0.011). EI was lower with cotadutide versus placebo (-41.3% [-66.7, -15.9]; p = 0.011). Difference in EE (per kJ/kg lean body mass) for cotadutide versus placebo was 1.0% (90% CI -8.4, 10.4; p = 0.784), assessed by doubly labelled water, and -6.5% (90% CI -9.3, -3.7; p < 0.001), assessed by indirect calorimetry. CONCLUSION Weight loss with cotadutide is primarily driven by reduced EI, with relatively small compensatory changes in EE.
Collapse
Affiliation(s)
- Rajna Golubic
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Jane Kennet
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Victoria Parker
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Darren Robertson
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Dan Luo
- Statistics, Biometrics Oncology, Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Lars Hansen
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Lutz Jermutus
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Phil Ambery
- Late Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maria Ryaboshapkina
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Rhianna C Laker
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | | | - Albert Koulman
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Adrian Park
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Mark Evans
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Sztanek F, Tóth LI, Pető A, Hernyák M, Diószegi Á, Harangi M. New Developments in Pharmacological Treatment of Obesity and Type 2 Diabetes-Beyond and within GLP-1 Receptor Agonists. Biomedicines 2024; 12:1320. [PMID: 38927527 PMCID: PMC11201978 DOI: 10.3390/biomedicines12061320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Guidelines for the management of obesity and type 2 diabetes (T2DM) emphasize the importance of lifestyle changes, including a reduced-calorie diet and increased physical activity. However, for many people, these changes can be difficult to maintain over the long term. Medication options are already available to treat obesity, which can help reduce appetite and/or reduce caloric intake. Incretin-based peptides exert their effect through G-protein-coupled receptors, the receptors for glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), and glucagon peptide hormones are important regulators of insulin secretion and energy metabolism. Understanding the role of intercellular signaling pathways and inflammatory processes is essential for the development of effective pharmacological agents in obesity. GLP-1 receptor agonists have been successfully used, but it is assumed that their effectiveness may be limited by desensitization and downregulation of the target receptor. A growing number of new agents acting on incretin hormones are becoming available for everyday clinical practice, including oral GLP-1 receptor agonists, the dual GLP-1/GIP receptor agonist tirzepatide, and other dual and triple GLP-1/GIP/glucagon receptor agonists, which may show further significant therapeutic potential. This narrative review summarizes the therapeutic effects of different incretin hormones and presents future prospects in the treatment of T2DM and obesity.
Collapse
Affiliation(s)
- Ferenc Sztanek
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - László Imre Tóth
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Attila Pető
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Third Department of Internal Medicine, Semmelweis Hospital of Borsod-Abauj-Zemplen County Central Hospital and University Teaching Hospital, H-3529 Miskolc, Hungary
| | - Marcell Hernyák
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ágnes Diószegi
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Mariann Harangi
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
- ELKH-UD Vascular Pathophysiology Research Group 11003, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
19
|
McGlone ER, Tan TMM. Glucagon-based therapy for people with diabetes and obesity: What is the sweet spot? Peptides 2024; 176:171219. [PMID: 38615717 DOI: 10.1016/j.peptides.2024.171219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
People with obesity and type 2 diabetes have a high prevalence of metabolic-associated steatotic liver disease, hyperlipidemia and cardiovascular disease. Glucagon increases hepatic glucose production; it also decreases hepatic fat accumulation, improves lipidemia and increases energy expenditure. Pharmaceutical strategies to antagonize the glucagon receptor improve glycemic outcomes in people with diabetes and obesity, but they increase hepatic steatosis and worsen dyslipidemia. Co-agonism of the glucagon and glucagon-like peptide-1 (GLP-1) receptors has emerged as a promising strategy to improve glycemia in people with diabetes and obesity. Addition of glucagon receptor agonism enhances weight loss, reduces liver fat and ameliorates dyslipidemia. Prior to clinical use, however, further studies are needed to investigate the safety and efficacy of glucagon and GLP-1 receptor co-agonists in people with diabetes and obesity and related conditions, with specific concerns regarding a higher prevalence of gastrointestinal side effects, loss of muscle mass and increases in heart rate. Furthermore, co-agonists with differing ratios of glucagon:GLP-1 receptor activity vary in their clinical effect; the optimum balance is yet to be identified.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Department of Surgery and Cancer, Imperial College London, London, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M-M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
20
|
McGlone ER, Bloom SR, Tan TMM. Glucagon resistance and metabolic-associated steatotic liver disease: a review of the evidence. J Endocrinol 2024; 261:e230365. [PMID: 38579751 PMCID: PMC11067060 DOI: 10.1530/joe-23-0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
Metabolic-associated steatotic liver disease (MASLD) is closely associated with obesity. MASLD affects over 1 billion adults globally but there are few treatment options available. Glucagon is a key metabolic regulator, and its actions include the reduction of liver fat through direct and indirect means. Chronic glucagon signalling deficiency is associated with hyperaminoacidaemia, hyperglucagonaemia and increased circulating levels of glucagon-like peptide 1 (GLP-1) and fibroblast growth factor 21 (FGF-21). Reduction in glucagon activity decreases hepatic amino acid and triglyceride catabolism; metabolic effects include improved glucose tolerance, increased plasma cholesterol and increased liver fat. Conversely, glucagon infusion in healthy volunteers leads to increased hepatic glucose output, decreased levels of plasma amino acids and increased urea production, decreased plasma cholesterol and increased energy expenditure. Patients with MASLD share many hormonal and metabolic characteristics with models of glucagon signalling deficiency, suggesting that they could be resistant to glucagon. Although there are few studies of the effects of glucagon infusion in patients with obesity and/or MASLD, there is some evidence that the expected effect of glucagon on amino acid catabolism may be attenuated. Taken together, this evidence supports the notion that glucagon resistance exists in patients with MASLD and may contribute to the pathogenesis of MASLD. Further studies are warranted to investigate the direct effects of glucagon on metabolism in patients with MASLD.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Stephen R Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M-M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
21
|
Liu Y, Kimita W, Bharmal SH, Petrov MS. Response to lowering plasma glucose is characterised by decreased oxyntomodulin: Results from a randomised controlled trial. Diabetes Metab Syndr 2024; 18:103052. [PMID: 38901179 DOI: 10.1016/j.dsx.2024.103052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/13/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND With the prevalence of diabetes reaching an epidemic level, there is a growing interest in the investigation of its remission. Proglucagon-derived peptides (PGDP) have been shown to have a glucose-regulating effect. However, whether they play a role in diabetes remission remains poorly understood. AIM To investigate changes in plasma levels of PGDP in glycaemic responders versus non-responders. METHODS The study was a randomised placebo-controlled trial comprising 18 adults with prediabetes (registered at www. CLINICALTRIALS gov as NCT03889210). Following an overnight fast, participants consumed ketone β-hydroxybutyrate (KEβHB)-supplemented beverage and placebo beverage in crossover manner. Serial blood samples were collected from baseline to 150 min at 30-min intervals. The endpoints were changes in glucagon-like peptide-1 (GLP-1), glicentin, oxyntomodulin, glucagon, and major proglucagon fragment (MPGF). Participants were stratified into the 'responders' and 'non-responders' subgroups based on their glycaemic changes following the ingestion of KEβHB. The area under the curve (AUC) was calculated to estimate the accumulated changes in the studied PGDP and compared using paired-t test between the KEβHB and placebo beverages. RESULTS Responders had a significantly greater reduction in plasma glucose compared with non-responders following acute ketosis (p < 0.001). The AUC0-150 for oxyntomodulin was significantly lower following the KEβHB beverage compared with the placebo (p = 0.045) in responders, but not in non-responders (p = 0.512). No significant differences in AUCs0-150 were found for GLP-1, glicentin, glucagon, and MPGF in either responders or non-responders. CONCLUSION Oxyntomodulin is involved in lowering plasma glucose and may play an important role in diabetes remission.
Collapse
Affiliation(s)
- Yutong Liu
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Wandia Kimita
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Sakina H Bharmal
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
22
|
Xie C, Alkhouri N, Elfeki MA. Role of incretins and glucagon receptor agonists in metabolic dysfunction-associated steatotic liver disease: Opportunities and challenges. World J Hepatol 2024; 16:731-750. [PMID: 38818288 PMCID: PMC11135259 DOI: 10.4254/wjh.v16.i5.731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/18/2024] [Accepted: 04/03/2024] [Indexed: 05/22/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the most common chronic liver disease worldwide, paralleling the rising pandemic of obesity and type 2 diabetes. Due to the growing global health burden and complex pathogenesis of MASLD, a multifaceted and innovative therapeutic approach is needed. Incretin receptor agonists, which were initially developed for diabetes management, have emerged as promising candidates for MASLD treatment. This review describes the pathophysiological mechanisms and action sites of three major classes of incretin/glucagon receptor agonists: glucagon-like peptide-1 receptor agonists, glucose-dependent insulinotropic polypeptide receptor agonists, and glucagon receptor agonists. Incretins and glucagon directly or indirectly impact various organs, including the liver, brain, pancreas, gastrointestinal tract, and adipose tissue. Thus, these agents significantly improve glycemic control and weight management and mitigate MASLD pathogenesis. Importantly, this study provides a summary of clinical trials analyzing the effectiveness and safety of incretin receptor agonists in MASLD management and provides an in-depth analysis highlighting their beneficial effects on improving liver function, hepatic steatosis, and intrahepatic inflammation. There are emerging challenges associated with the use of these medications in the real world, particularly adverse events, drug-drug interactions, and barriers to access, which are discussed in detail. Additionally, this review highlights the evolving role of incretin receptor agonists in MASLD management and suggests future research directions.
Collapse
Affiliation(s)
- Chencheng Xie
- Department of Internal Medicine, University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, United States
- Department of Hepatology, Avera Mckennan University Hospital and Transplant Institute, Sioux Falls, SD 57105, United States
| | - Naim Alkhouri
- Department of Hepatology, Arizona Liver Health, Chandler, AZ 85712, United States
| | - Mohamed A Elfeki
- Department of Internal Medicine, University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, United States
- Department of Hepatology, Avera McKennan University Hospital and Transplant Institute, Sioux Falls, SD 57105, United States.
| |
Collapse
|
23
|
Kistkins S, Moser O, Ankudovičs V, Blizņuks D, Mihailovs T, Lobanovs S, Sourij H, Pfeiffer AFH, Pīrāgs V. From classical dualistic antagonism to hormone synergy: potential of overlapping action of glucagon, insulin and GLP-1 for the treatment of diabesity. Endocr Connect 2024; 13:e230529. [PMID: 38579770 PMCID: PMC11046332 DOI: 10.1530/ec-23-0529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
The increasing prevalence of 'diabesity', a combination of type 2 diabetes and obesity, poses a significant global health challenge. Unhealthy lifestyle factors, including poor diet, sedentary behaviour, and high stress levels, combined with genetic and epigenetic factors, contribute to the diabesity epidemic. Diabesity leads to various significant complications such as cardiovascular diseases, stroke, and certain cancers. Incretin-based therapies, such as GLP-1 receptor agonists and dual hormone therapies, have shown promising results in improving glycaemic control and inducing weight loss. However, these therapies also come with certain disadvantages, including potential withdrawal effects. This review aims to provide insights into the cross-interactions of insulin, glucagon, and GLP-1, revealing the complex hormonal dynamics during fasting and postprandial states, impacting glucose homeostasis, energy expenditure, and other metabolic functions. Understanding these hormonal interactions may offer novel hypotheses in the development of 'anti-diabesity' treatment strategies. The article also explores the question of the antagonism of insulin and glucagon, providing insights into the potential synergy and hormonal overlaps between these hormones.
Collapse
Affiliation(s)
| | - Othmar Moser
- Division of Exercise Physiology and Metabolism, Institute of Sport Science, University of Bayreuth, Bayreuth, Germany
| | | | - Dmitrijs Blizņuks
- Institute of Smart Computing Technologies, Riga Technical University, Riga, Latvia
| | - Timurs Mihailovs
- Institute of Smart Computing Technologies, Riga Technical University, Riga, Latvia
| | | | - Harald Sourij
- Trials Unit for Interdisciplinary Metabolic Medicine, Division of Endocrinology and Diabetolgoy, Medical University of Graz, Graz, Austria
| | - Andreas F H Pfeiffer
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm, Berlin, Germany
| | - Valdis Pīrāgs
- Pauls Stradiņš Clinical University Hospital, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
| |
Collapse
|
24
|
Pena-Leon V, Perez-Lois R, Villalon M, Prida E, Muñoz-Moreno D, Fernø J, Quiñones M, Al-Massadi O, Seoane LM. Novel mechanisms involved in leptin sensitization in obesity. Biochem Pharmacol 2024; 223:116129. [PMID: 38490517 DOI: 10.1016/j.bcp.2024.116129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/21/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Leptin is a hormone that is secreted by adipocytes in proportion to adipose tissue size, and that informs the brain about the energy status of the body. Leptin acts through its receptor LepRb, expressed mainly in the hypothalamus, and induces a negative energy balance by potent inhibition of feeding and activation of energy expenditure. These actions have led to huge expectations for the development of therapeutic targets for metabolic complications based on leptin-derived compounds. However, the majority of patients with obesity presents elevated leptin production, suggesting that in this setting leptin is ineffective in the regulation of energy balance. This resistance to the action of leptin in obesity has led to the development of "leptin sensitizers," which have been tested in preclinical studies. Much research has focused on generating combined treatments that act on multiple levels of the gastrointestinal-brain axis. The gastrointestinal-brain axis secretes a variety of different anorexigenic signals, such as uroguanylin, glucagon-like peptide-1, amylin, or cholecystokinin, which can alleviate the resistance to leptin action. Moreover, alternative mechanism such as pharmacokinetics, proteostasis, the role of specific kinases, chaperones, ER stress and neonatal feeding modifications are also implicated in leptin resistance. This review will cover the current knowledge regarding the interaction of leptin with different endocrine factors from the gastrointestinal-brain axis and other novel mechanisms that improve leptin sensitivity in obesity.
Collapse
Affiliation(s)
- Veronica Pena-Leon
- Grupo Fisiopatología Endocrina, Departamento de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Raquel Perez-Lois
- Grupo Fisiopatología Endocrina, Departamento de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Maria Villalon
- Grupo Fisiopatología Endocrina, Departamento de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Eva Prida
- Translational Endocrinology group, Endocrinology Section, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (IDIS/CHUS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Diego Muñoz-Moreno
- Translational Endocrinology group, Endocrinology Section, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (IDIS/CHUS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Johan Fernø
- Hormone Laboratory, Department of Biochemistry and Pharmacology, Haukeland University Hospital, 5201 Bergen, Norway
| | - Mar Quiñones
- Grupo Fisiopatología Endocrina, Departamento de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Omar Al-Massadi
- Translational Endocrinology group, Endocrinology Section, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (IDIS/CHUS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| | - Luisa M Seoane
- Grupo Fisiopatología Endocrina, Departamento de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
25
|
Hope DCD, Ansari S, Choudhury S, Alexiadou K, Tabbakh Y, Ilesanmi I, Lazarus K, Davies I, Jimenez-Pacheco L, Yang W, Ball LJ, Malviya R, Reglinska B, Khoo B, Minnion J, Bloom SR, Tan TMM. Adaptive infusion of a glucagon-like peptide-1/glucagon receptor co-agonist G3215, in adults with overweight or obesity: Results from a phase 1 randomized clinical trial. Diabetes Obes Metab 2024; 26:1479-1491. [PMID: 38229453 DOI: 10.1111/dom.15448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024]
Abstract
AIMS To determine whether a continuous infusion of a glucagon-like peptide receptor (GLP-1R)/glucagon receptor (GCGR) co-agonist, G3215 is safe and well tolerated in adults with overweight or obesity. METHODS A phase 1 randomized, double blind, placebo-controlled trial of G3215 in overweight or obese participants, with or without type 2 diabetes. RESULTS Twenty-six participants were recruited and randomized with 23 completing a 14-day subcutaneous infusion of G3215 or placebo. The most common adverse events were nausea or vomiting, which were mild in most cases and mitigated by real-time adjustment of drug infusion. There were no cardiovascular concerns with G3215 infusion. The pharmacokinetic characteristics were in keeping with a continuous infusion over 14 days. A least-squares mean body weight loss of 2.39 kg was achieved with a 14-day infusion of G3215, compared with 0.84 kg with placebo infusion (p < .05). A reduction in food consumption was also observed in participants receiving G3215 and there was no deterioration in glycaemia. An improved lipid profile was seen in G3215-treated participants and consistent with GCGR activation, a broad reduction in circulating amino acids was seen during the infusion period. CONCLUSION An adaptive continuous infusion of the GLP-1/GCGR co-agonist, G3215, is safe and well tolerated offering a unique strategy to control drug exposure. By allowing rapid, response-directed titration, this strategy may allow for mitigation of adverse effects and afford significant weight loss within shorter time horizons than is presently possible with weekly GLP-1R and multi-agonists. These results support ongoing development of G3215 for the treatment of obesity and metabolic disease.
Collapse
Affiliation(s)
- David C D Hope
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Saleem Ansari
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Sirazum Choudhury
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Kleopatra Alexiadou
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Yasmin Tabbakh
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ibiyemi Ilesanmi
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Katharine Lazarus
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Iona Davies
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Lara Jimenez-Pacheco
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Wei Yang
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Laura-Jayne Ball
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Reshma Malviya
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Beata Reglinska
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Bernard Khoo
- Endocrinology, Division of Medicine, University College London, London, UK
| | - James Minnion
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Stephen R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M-M Tan
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
26
|
Gray SM, Goonatilleke E, Emrick MA, Becker JO, Hoofnagle AN, Stefanovski D, He W, Zhang G, Tong J, Campbell J, D’Alessio DA. High Doses of Exogenous Glucagon Stimulate Insulin Secretion and Reduce Insulin Clearance in Healthy Humans. Diabetes 2024; 73:412-425. [PMID: 38015721 PMCID: PMC10882148 DOI: 10.2337/db23-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Glucagon is generally defined as a counterregulatory hormone with a primary role to raise blood glucose concentrations by increasing endogenous glucose production (EGP) in response to hypoglycemia. However, glucagon has long been known to stimulate insulin release, and recent preclinical findings have supported a paracrine action of glucagon directly on islet β-cells that augments their secretion. In mice, the insulinotropic effect of glucagon is glucose dependent and not present during basal euglycemia. To test the hypothesis that the relative effects of glucagon on hepatic and islet function also vary with blood glucose, a group of healthy subjects received glucagon (100 ng/kg) during fasting glycemia or experimental hyperglycemia (∼150 mg/dL) on 2 separate days. During fasting euglycemia, administration of glucagon caused blood glucose to rise due to increased EGP, with a delayed increase of insulin secretion. When given during experimental hyperglycemia, glucagon caused a rapid, threefold increase in insulin secretion, as well as a more gradual increase in EGP. Under both conditions, insulin clearance was decreased in response to glucagon infusion. The insulinotropic action of glucagon, which is proportional to the degree of blood glucose elevation, suggests distinct physiologic roles in the fasting and prandial states. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Sarah M. Gray
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Elisha Goonatilleke
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Michelle A. Emrick
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Jessica O. Becker
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Andrew N. Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA
| | - Darko Stefanovski
- Department of Clinical Studies–New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square
| | - Wentao He
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Guofang Zhang
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Jenny Tong
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA
- Endocrine Section, VA Puget Sound Health Care System, Seattle
| | - Jonathan Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC
- Division of Endocrinology, Department of Medicine, Duke University, Durham, NC
| | - David A. D’Alessio
- Duke Molecular Physiology Institute, Duke University, Durham, NC
- Division of Endocrinology, Department of Medicine, Duke University, Durham, NC
| |
Collapse
|
27
|
Nalisa DL, Cuboia N, Dyab E, Jackson IL, Felix HJ, Shoki P, Mubiana M, Oyedeji-Amusa M, Azevedo L, Jiang H. Efficacy and safety of Mazdutide on weight loss among diabetic and non-diabetic patients: a systematic review and meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne) 2024; 15:1309118. [PMID: 38440786 PMCID: PMC10911117 DOI: 10.3389/fendo.2024.1309118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/22/2024] [Indexed: 03/06/2024] Open
Abstract
Background Overweight and obesity are increasing global public health problems. Mazdutide is a new dual agonist drug that can potentially reduce weight and blood glucose levels simultaneously. However, the synthesis of evidence on the efficacy and safety of this drug is scarce. Therefore, this study aimed to synthesize evidence on the efficacy and safety of Mazdutide compared to placebo on weight reduction among adults with and without diabetes. Methods We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs). Data were retrieved from six electronic databases: PubMed, Web of Science, Scopus, Cochrane Library, ClinicalTrial.gov, and Google Scholar, and manually searched from the included references. The data were synthesized using a random effect model. This analysis was performed in the R programming language using the Meta package. Results A total of seven RCTs involving 680 participants were included in this study. Mazdutide was more effective in reducing body weight (mean difference [MD]= -6.22%, 95% confidence interval [CI]: -8.02% to -4.41%, I2 = 90.0%), systolic blood pressure (MD = -7.57 mmHg, 95% CI: -11.17 to -3.98 mmHg, I2 = 46%), diastolic blood pressure (MD = -2.98 mmHg, 95% CI: -5.74 to -0.22 mmHg, I2 = 56%), total cholesterol (MD = -16.82%, 95% CI: -24.52 to -9.13%, I2 = 61%), triglycerides (MD = -43.29%, 95% CI: -61.57 to -25.01%, I2 = 68%), low-density lipoprotein (MD= -17.07%, 95% CI: -25.54 to -8.60%, I2 = 53%), and high-density lipoprotein (MD = -7.54%, 95% CI: -11.26 to -3.83%, I2 = 0%) than placebo. Mazdutide was associated with reduced hemoglobin A1c (HbA1c) and fasting plasma glucose in participants with type 2 diabetes. In the subgroup and meta-regression analyses, weight reduction was more significant in non-diabetics compared to diabetics, and in those who received a longer treatment duration (24 weeks) than in those on shorter durations (12-20 weeks). Participants who received Mazdutide had a higher risk of transient mild or moderate gastrointestinal side effects. Conclusion Mazdutite appears to be effective in weight reduction among patients with and without diabetes, and it has an advantage over other associated comorbidities. However, it was associated with mild or moderate gastrointestinal side effects. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=403859, identifier CRD42023403859.
Collapse
Affiliation(s)
- David Lubasi Nalisa
- Department of Metabolism and Endocrinology, Endocrine and Metabolic Disease Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
- Adult Hospital Internal Medicine Department, Endocrine Unit, The University Teaching Hospitals, Lusaka, Zambia
| | - Nelson Cuboia
- Center for Health Technology and Service Research (CINTESIS) & Health Research Network Associated Laboratory (RISE), University of Porto, Porto, Portugal
| | - Eman Dyab
- Pharmaceutics Department, Faculty of Pharmacy, University of Tripoli, Tripoli, Libya
| | - Idongesit Linus Jackson
- Department of Clinical Pharmacy and Biopharmacy, Faculty of Pharmacy, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Habimana Jean Felix
- Directorate of Research and Community Health-Ruli Higher Institute of Health -Saint Rose de Lima (RHIH), Kigali, Rwanda
| | - Pantaleon Shoki
- Business Development and Partnership, CLM Consultants Ltd., Dar es Salaam, Tanzania
| | - Mary Mubiana
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Mariam Oyedeji-Amusa
- Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg, South Africa
| | - Luís Azevedo
- Center for Health Technology and Service Research (CINTESIS) & Health Research Network Associated Laboratory (RISE), University of Porto, Porto, Portugal
| | - Hongwei Jiang
- Department of Metabolism and Endocrinology, Endocrine and Metabolic Disease Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
28
|
Melson E, Ashraf U, Papamargaritis D, Davies MJ. What is the pipeline for future medications for obesity? Int J Obes (Lond) 2024:10.1038/s41366-024-01473-y. [PMID: 38302593 DOI: 10.1038/s41366-024-01473-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024]
Abstract
Obesity is a chronic disease associated with increased risk of obesity-related complications and mortality. Our better understanding of the weight regulation mechanisms and the role of gut-brain axis on appetite has led to the development of safe and effective entero-pancreatic hormone-based treatments for obesity such as glucagon-like peptide-1 (GLP-1) receptor agonists (RA). Semaglutide 2.4 mg once weekly, a subcutaneously administered GLP-1 RA approved for obesity treatment in 2021, results in 15-17% mean weight loss (WL) with evidence of cardioprotection. Oral GLP-1 RA are also under development and early data shows similar WL efficacy to semaglutide 2.4 mg. Looking to the next generation of obesity treatments, combinations of GLP-1 with other entero-pancreatic hormones with complementary actions and/or synergistic potential (such as glucose-dependent insulinotropic polypeptide (GIP), glucagon, and amylin) are under investigation to enhance the WL and cardiometabolic benefits of GLP-1 RA. Tirzepatide, a dual GLP-1/GIP receptor agonist has been approved for glycaemic control in type 2 diabetes as well as for obesity management leading in up to 22.5% WL in phase 3 obesity trials. Other combinations of entero-pancreatic hormones including cagrisema (GLP-1/amylin RA) and the triple agonist retatrutide (GLP-1/GIP/glucagon RA) have also progressed to phase 3 trials as obesity treatments and early data suggests that may lead to even greater WL than tirzepatide. Additionally, agents with different mechanisms of action to entero-pancreatic hormones (e.g. bimagrumab) may improve the body composition during WL and are in early phase clinical trials. We are in a new era for obesity pharmacotherapy where combinations of entero-pancreatic hormones approach the WL achieved with bariatric surgery. In this review, we present the efficacy and safety data for the pipeline of obesity pharmacotherapies with a focus on entero-pancreatic hormone-based treatments and we consider the clinical implications and challenges that the new era in obesity management may bring.
Collapse
Affiliation(s)
- Eka Melson
- Diabetes Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| | - Uzma Ashraf
- Diabetes Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| | - Dimitris Papamargaritis
- Diabetes Research Centre, University of Leicester College of Life Sciences, Leicester, UK.
- Leicester Diabetes Centre, Leicester General Hospital, Leicester, LE5 4PW, UK.
- Department of Diabetes and Endocrinology, Kettering General Hospital NHS Foundation Trust, Kettering, NN16 8UZ, UK.
| | - Melanie J Davies
- Diabetes Research Centre, University of Leicester College of Life Sciences, Leicester, UK
- Leicester Diabetes Centre, Leicester General Hospital, Leicester, LE5 4PW, UK
| |
Collapse
|
29
|
Allard C, Cota D, Quarta C. Poly-Agonist Pharmacotherapies for Metabolic Diseases: Hopes and New Challenges. Drugs 2024; 84:127-148. [PMID: 38127286 DOI: 10.1007/s40265-023-01982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
The use of glucagon-like peptide-1 (GLP-1) receptor-based multi-agonists in the treatment of type 2 diabetes and obesity holds great promise for improving glycaemic control and weight management. Unimolecular dual and triple agonists targeting multiple gut hormone-related pathways are currently in clinical trials, with recent evidence supporting their efficacy. However, significant knowledge gaps remain regarding the biological mechanisms and potential adverse effects associated with these multi-target agents. The mechanisms underlying the therapeutic efficacy of GLP-1 receptor-based multi-agonists remain somewhat mysterious, and hidden threats may be associated with the use of gut hormone-based polyagonists. In this review, we provide a critical analysis of the benefits and risks associated with the use of these new drugs in the management of obesity and diabetes, while also exploring new potential applications of GLP-1-based pharmacology beyond the field of metabolic disease.
Collapse
Affiliation(s)
- Camille Allard
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Carmelo Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France.
| |
Collapse
|
30
|
Klein T, Augustin R, Hennige AM. Perspectives in weight control in diabetes - Survodutide. Diabetes Res Clin Pract 2024; 207:110779. [PMID: 37330144 DOI: 10.1016/j.diabres.2023.110779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists are approved treatments for Type 2 diabetes mellitus, with liraglutide and semaglutide also approved for the treatment of obesity. The natural gut hormone oxyntomodulin is a weak dual agonist of the glucagon receptor (GCGR) and GLP-1R. Development of poly-agonists mimicking oxyntomodulin, such as the novel dual GCGR/GLP-1R agonist survodutide, represents an important step towards a more effective treatment for people with Type 2 diabetes mellitus and obesity. Survodutide is a 29-amino acid peptide derived from glucagon, with the incorporation of potent GLP-1 activities. It contains a C18 diacid which mediates binding to albumin, thereby prolonging the half-life to enable once-weekly subcutaneous dosing. The utilisation of GCGR agonism aims to enhance body weight-lowering effects by increasing energy expenditure in addition to the anorectic action of GLP-1R agonists. Glucose-lowering efficacy of survodutide has been demonstrated in a Phase II trial in patients with Type 2 diabetes mellitus and obesity and was associated with clinically meaningful body weight loss. These data highlight the potential of dual GCGR/GLP-1R agonism for reducing glycated haemoglobin and body weight in patients with Type 2 diabetes mellitus, and for greater therapeutic efficacy compared with GLP-1R agonism alone.
Collapse
Affiliation(s)
- Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | - Robert Augustin
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | - Anita M Hennige
- Boehringer Ingelheim International GmbH, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany.
| |
Collapse
|
31
|
Parker VER, Robertson D, Erazo-Tapia E, Havekes B, Phielix E, de Ligt M, Roumans KHM, Mevenkamp J, Sjoberg F, Schrauwen-Hinderling VB, Johansson E, Chang YT, Esterline R, Smith K, Wilkinson DJ, Hansen L, Johansson L, Ambery P, Jermutus L, Schrauwen P. Cotadutide promotes glycogenolysis in people with overweight or obesity diagnosed with type 2 diabetes. Nat Metab 2023; 5:2086-2093. [PMID: 38066113 PMCID: PMC10730390 DOI: 10.1038/s42255-023-00938-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/31/2023] [Indexed: 12/21/2023]
Abstract
Cotadutide is a dual glucagon-like peptide 1 and glucagon receptor agonist under development for the treatment of non-alcoholic steatohepatitis and type 2 diabetes mellitus (T2DM) and chronic kidney disease. Non-alcoholic steatohepatitis is a complex disease with no approved pharmacotherapies, arising from an underlying state of systemic metabolic dysfunction in association with T2DM and obesity. Cotadutide has been shown to improve glycaemic control, body weight, lipids, liver fat, inflammation and fibrosis. We conducted a two-part, randomized phase 2a trial in men and women with overweight or obesity diagnosed with T2DM to evaluate the efficacy and safety of cotadutide compared with placebo and liraglutide. The primary endpoints were change from baseline to day 28 of treatment in postprandial hepatic glycogen (part A) and to day 35 of treatment in fasting hepatic glycogen (part B) with cotadutide versus placebo. Secondary endpoints in part B were changes in fasting hepatic glycogen with cotadutide versus the mono glucagon-like peptide 1 receptor agonist, liraglutide, and change in hepatic fat fraction. The trial met its primary endpoint. We showed that cotadutide promotes greater reductions in liver glycogen and fat compared with placebo and liraglutide. Safety and tolerability findings with cotadutide were comparable to those of previous reports. Thus, this work provides evidence of additional benefits of cotadutide that could be attributed to glucagon receptor engagement. Our results suggest that cotadutide acts on the glucagon receptor in the human liver to promote glycogenolysis and improve the metabolic health of the liver. ClinicalTrials.gov registration: NCT03555994 .
Collapse
Affiliation(s)
- Victoria E R Parker
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| | - Darren Robertson
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Edmundo Erazo-Tapia
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Bas Havekes
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Esther Phielix
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Marlies de Ligt
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Kay H M Roumans
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Julian Mevenkamp
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Folke Sjoberg
- Clinical Trial Consultants AB, Uppsala, Sweden
- Linköping University, Linköping, Sweden
| | - Vera B Schrauwen-Hinderling
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | - Yi-Ting Chang
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Russell Esterline
- Late-stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Kenneth Smith
- Centre of Metabolism, Ageing and Physiology, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Daniel J Wilkinson
- Centre of Metabolism, Ageing and Physiology, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Lars Hansen
- Late-stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Philip Ambery
- Late-stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lutz Jermutus
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
32
|
Argyrakopoulou G, Fountouli N, Dalamaga M, Kokkinos A. Revisiting Resting Metabolic Rate: What is the Relation to Weight Fluctuations? Curr Obes Rep 2023; 12:502-513. [PMID: 37755607 DOI: 10.1007/s13679-023-00528-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE OF REVIEW Despite the great progress in obesity-tackling strategies, a negative energy equilibrium between energy expenditure and energy intake remains the cornerstone in obesity management. The present review article aims to shed light on the complicated interrelations of resting metabolic rate to weight fluctuations. RECENT FINDINGS Energy expenditure depends on body composition and is highly affected by weight changes, exerting a significant role in subsequent weight regain and underlining the metabolic resistance that people with obesity face when dealing with weight maintenance. The main tissue involved in energy expenditure is fat-free mass, as opposed to fat mass, which exerts a substantially lower impact. Although people with obesity display higher energy expenditures than their lean counterparts, these decrease substantially in the setting of weight loss. Metabolic adaptation is the difference between measured and predicted RMR after weight loss, either via lifestyle modification or after obesity surgery. Plausible explanations for this include differences in body composition, with loss of fat-free mass playing a significant role. This becomes especially apparent in the setting of rapid and massive weight loss, as in the case of bariatric surgery. A better understanding of energy expenditure pathophysiology may aid in further enhancing weight loss and promoting weight maintenance in people with obesity.
Collapse
Affiliation(s)
| | - Nefeli Fountouli
- Diabetes and Obesity Unit, Athens Medical Center, 15125, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece
| | - Alexander Kokkinos
- First Department of Propaedeutic Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| |
Collapse
|
33
|
Genchi VA, Palma G, Sorice GP, D'Oria R, Caccioppoli C, Marrano N, Biondi G, Caruso I, Cignarelli A, Natalicchio A, Laviola L, Giorgino F, Perrini S. Pharmacological modulation of adaptive thermogenesis: new clues for obesity management? J Endocrinol Invest 2023; 46:2213-2236. [PMID: 37378828 PMCID: PMC10558388 DOI: 10.1007/s40618-023-02125-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Adaptive thermogenesis represents the main mechanism through which the body generates heat in response to external stimuli, a phenomenon that includes shivering and non-shivering thermogenesis. The non-shivering thermogenesis is mainly exploited by adipose tissue characterized by a brown aspect, which specializes in energy dissipation. A decreased amount of brown adipose tissue has been observed in ageing and chronic illnesses such as obesity, a worldwide health problem characterized by dysfunctional adipose tissue expansion and associated cardiometabolic complications. In the last decades, the discovery of a trans-differentiation mechanism ("browning") within white adipose tissue depots, leading to the generation of brown-like cells, allowed to explore new natural and synthetic compounds able to favour this process and thus enhance thermogenesis with the aim of counteracting obesity. Based on recent findings, brown adipose tissue-activating agents could represent another option in addition to appetite inhibitors and inhibitors of nutrient absorption for obesity treatment. PURPOSE This review investigates the main molecules involved in the physiological (e.g. incretin hormones) and pharmacological (e.g. β3-adrenergic receptors agonists, thyroid receptor agonists, farnesoid X receptor agonists, glucagon-like peptide-1, and glucagon receptor agonists) modulation of adaptive thermogenesis and the signalling mechanisms involved.
Collapse
Affiliation(s)
- V A Genchi
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - G Palma
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - G P Sorice
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - R D'Oria
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - C Caccioppoli
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - N Marrano
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - G Biondi
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - I Caruso
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - A Cignarelli
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - A Natalicchio
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - L Laviola
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - F Giorgino
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy.
| | - S Perrini
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| |
Collapse
|
34
|
Al-Sabah S, Jamal MH, Al-Khaledi G, Dsouza C, AlOtaibi F, Al-Ali W, Cherian P, Al-Khairi I, Ali H, Abu-Farha M, Abubaker J, Al-Mulla F. Increased Glucagon Immunoreactivity in a Rat Model of Diet-induced Obesity following Sleeve Gastrectomy. Med Princ Pract 2023; 32:000533746. [PMID: 37634505 PMCID: PMC10659591 DOI: 10.1159/000533746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023] Open
Abstract
OBJECTIVE Bariatric surgery is currently the most effective treatment for obesity, and procedures such as Roux-en Y gastric bypass and sleeve gastrectomy (SG) also result in rapid improvements in insulin sensitivity and glucose tolerance. In addition, these procedures cause changes in the secretion of various gut-derived hormones. The role these hormones play in the mechanism of the beneficial effects of bariatric surgery is still debated, but nonetheless, their importance provides inspiration for novel obesity-targeted pharmacotherapies. METHODS Male Sprague Dawley rats were fed either regular chow or a cafeteria diet to induce obesity. A sub-group of the obese animals then underwent either sham surgery or SG. RESULTS Following a 4-week recovery period, SG rats weighed significantly less than obese or sham-operated rats. Improvements in glucose tolerance and insulin sensitivity also occurred in the SG group, but these were not always statistically significant. We measured the intracellular lipid content of liver samples and found that obese rats showed signs of non-alcoholic fatty liver disease, which were significantly ameliorated by SG. There were significantly higher glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) responses to a standard mixed meal in the SG group, as well as paradoxically higher glucagon secretion. CONCLUSION These data highlight the need for more specific anti-glucagon antibodies to characterize the changes in proglucagon-derived peptide concentrations that occur following SG. Further studies are required to determine whether these peptides contribute to the therapeutic effects of SG.
Collapse
Affiliation(s)
- Suleiman Al-Sabah
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Mohammad H. Jamal
- Department of Surgery, College of Medicine, Kuwait University, Kuwait City, Kuwait
- Department of Organ Transplant, College of Medicine, Kuwait City, Kuwait
| | - Ghanim Al-Khaledi
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Carol Dsouza
- Department of Surgery, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Fatemah AlOtaibi
- Department of Surgery, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Waleed Al-Ali
- Department of Pathology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Preethi Cherian
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Irina Al-Khairi
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Hamad Ali
- Department of Medical Laboratory Sciences, College of Allied Health Sciences, Kuwait University, Kuwait City, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
35
|
Teng T, Sun G, Ding H, Song X, Bai G, Shi B, Shang T. Characteristics of glucose and lipid metabolism and the interaction between gut microbiota and colonic mucosal immunity in pigs during cold exposure. J Anim Sci Biotechnol 2023; 14:84. [PMID: 37400906 DOI: 10.1186/s40104-023-00886-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/03/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Cold regions have long autumn and winter seasons and low ambient temperatures. When pigs are unable to adjust to the cold, oxidative damage and inflammation may develop. However, the differences between cold and non-cold adaptation regarding glucose and lipid metabolism, gut microbiota and colonic mucosal immunological features in pigs are unknown. This study revealed the glucose and lipid metabolic responses and the dual role of gut microbiota in pigs during cold and non-cold adaptation. Moreover, the regulatory effects of dietary glucose supplements on glucose and lipid metabolism and the colonic mucosal barrier were evaluated in cold-exposed pigs. RESULTS Cold and non-cold-adapted models were established by Min and Yorkshire pigs. Our results exhibited that cold exposure induced glucose overconsumption in non-cold-adapted pig models (Yorkshire pigs), decreasing plasma glucose concentrations. In this case, cold exposure enhanced the ATGL and CPT-1α expression to promote liver lipolysis and fatty acid oxidation. Meanwhile, the two probiotics (Collinsella and Bifidobacterium) depletion and the enrichment of two pathogens (Sutterella and Escherichia-Shigella) in colonic microbiota are not conducive to colonic mucosal immunity. However, glucagon-mediated hepatic glycogenolysis in cold-adapted pig models (Min pigs) maintained the stability of glucose homeostasis during cold exposure. It contributed to the gut microbiota (including the enrichment of the Rikenellaceae RC9 gut group, [Eubacterium] coprostanoligenes group and WCHB1-41) that favored cold-adapted metabolism. CONCLUSIONS The results of both models indicate that the gut microbiota during cold adaptation contributes to the protection of the colonic mucosa. During non-cold adaptation, cold-induced glucose overconsumption promotes thermogenesis through lipolysis, but interferes with the gut microbiome and colonic mucosal immunity. Furthermore, glucagon-mediated hepatic glycogenolysis contributes to glucose homeostasis during cold exposure.
Collapse
Affiliation(s)
- Teng Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Guodong Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Hongwei Ding
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Xin Song
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Guangdong Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Tingting Shang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
36
|
Novikoff A, Müller TD. The molecular pharmacology of glucagon agonists in diabetes and obesity. Peptides 2023; 165:171003. [PMID: 36997003 PMCID: PMC10265134 DOI: 10.1016/j.peptides.2023.171003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Within recent decades glucagon receptor (GcgR) agonism has drawn attention as a therapeutic tool for the treatment of type 2 diabetes and obesity. In both mice and humans, glucagon administration enhances energy expenditure and suppresses food intake suggesting a promising metabolic utility. Therefore synthetic optimization of glucagon-based pharmacology to further resolve the physiological and cellular underpinnings mediating these effects has advanced. Chemical modifications to the glucagon sequence have allowed for greater peptide solubility, stability, circulating half-life, and understanding of the structure-function potential behind partial and "super"-agonists. The knowledge gained from such modifications has provided a basis for the development of long-acting glucagon analogues, chimeric unimolecular dual- and tri-agonists, and novel strategies for nuclear hormone targeting into glucagon receptor-expressing tissues. In this review, we summarize the developments leading toward the current advanced state of glucagon-based pharmacology, while highlighting the associated biological and therapeutic effects in the context of diabetes and obesity.
Collapse
Affiliation(s)
- Aaron Novikoff
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Timo D Müller
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
37
|
Ray A. Retatrutide: a triple incretin receptor agonist for obesity management. Expert Opin Investig Drugs 2023; 32:1003-1008. [PMID: 37902090 DOI: 10.1080/13543784.2023.2276754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/25/2023] [Indexed: 10/31/2023]
Abstract
INTRODUCTION Obesity treatment is evolving rapidly with the emergence of agents targeting incretin receptors. Retatrutide, a triple agonist of these receptors, shows promise in obesity management. AREAS COVERED Retatrutide, in phase-2 trials, exhibited significant reductions in glycated hemoglobin (HbA1c) and dose-dependent weight loss in individuals with type 2 diabetes mellitus (T2DM). In non-T2DM individuals, it produced substantial weight loss and improved glucose levels, albeit with gastrointestinal side effects. The role of glucagon receptor agonism in the management of heart failure and its potential impact on eating patterns have also been covered in this article. EXPERT OPINION Although the reductions in HbA1c and dose-dependent weight loss among individuals with T2DM were significantly more for higher doses of retatrutide, it needs to be observed that the active comparator was dulaglutide, which is not approved for the treatment of obesity, at a dose of 1.5 mg, which is much lower than the highest approved dose of 4.5 mg. Dose-dependent increase in heart rate and incidents of mild to moderate cardiac arrythmias raise cardiovascular safety concerns and signify that carrying out long-term cardiovascular outcome trials (CVOTs) will be critical. In addition, retatrutide's potential in heart failure management is intriguing given the series of positive findings of semaglutide on cardiovascular outcomes.
Collapse
Affiliation(s)
- Avik Ray
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
38
|
Jamaluddin A, Gorvin CM. RISING STARS: Targeting G protein-coupled receptors to regulate energy homeostasis. J Mol Endocrinol 2023; 70:e230014. [PMID: 36943057 PMCID: PMC10160555 DOI: 10.1530/jme-23-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 03/23/2023]
Abstract
G protein-coupled receptors (GPCRs) have a critical role in energy homeostasis, contributing to food intake, energy expenditure and glycaemic control. Dysregulation of energy expenditure can lead to metabolic syndrome (abdominal obesity, elevated plasma triglyceride, LDL cholesterol and glucose, and high blood pressure), which is associated with an increased risk of developing obesity, diabetes mellitus, non-alcoholic fatty liver disease and cardiovascular complications. As the prevalence of these chronic diseases continues to rise worldwide, there is an increased need to understand the molecular mechanisms by which energy expenditure is regulated to facilitate the development of effective therapeutic strategies to treat and prevent these conditions. In recent years, drugs targeting GPCRs have been the focus of efforts to improve treatments for type-2 diabetes and obesity, with GLP-1R agonists a particular success. In this review, we focus on nine GPCRs with roles in energy homeostasis that are current and emerging targets to treat obesity and diabetes. We discuss findings from pre-clinical models and clinical trials of drugs targeting these receptors and challenges that must be overcome before these drugs can be routinely used in clinics. We also describe new insights into how these receptors signal, including how accessory proteins, biased signalling, and complex spatial signalling could provide unique opportunities to develop more efficacious therapies with fewer side effects. Finally, we describe how combined therapies, in which multiple GPCRs are targeted, may improve clinical outcomes and reduce off-target effects.
Collapse
Affiliation(s)
- Aqfan Jamaluddin
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| |
Collapse
|
39
|
Jungnik A, Arrubla Martinez J, Plum-Mörschel L, Kapitza C, Lamers D, Thamer C, Schölch C, Desch M, Hennige AM. Phase I studies of the safety, tolerability, pharmacokinetics and pharmacodynamics of the dual glucagon receptor/glucagon-like peptide-1 receptor agonist BI 456906. Diabetes Obes Metab 2023; 25:1011-1023. [PMID: 36527386 DOI: 10.1111/dom.14948] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/21/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
AIM To report two phase I studies of the novel subcutaneous glucagon-like peptide-1 receptor/glucagon receptor (GLP-1R/GCGR) dual agonist BI 456906 versus placebo in healthy volunteers and people with overweight/obesity. MATERIALS AND METHODS A phase Ia study (NCT03175211) investigated single rising doses (SRDs) of BI 456906 in 24 males with a body mass index (BMI) of 20-<30 kg/m2 . A phase Ib study (NCT03591718) investigated multiple rising doses (MRDs) of BI 456906 (escalated over 6 [Part A] or 16 [Part B] weeks) in 125 adults with a BMI of 27-40 kg/m2 . RESULTS In the SRD study (N = 24), mean body weight decreased with increasing BI 456906 dose. In the MRD study, the maximum decreases in placebo-corrected mean body weight were at week 6 (-5.79%, dosage schedule [DS] 1; Part A) and week 16 (-13.8%, DS7; Part B). BI 456906 reduced plasma amino acids and glucagon, indicating target engagement at GCGRs and GLP-1Rs. Drug-related adverse events (AEs) increased with BI 456906 dose. The most frequent drug-related AE with SRDs was decreased appetite (n = 9, 50.0%), and two subjects (8.3%) did not complete the trial because of AEs (nausea and vomiting). During MRD Part A (N = 80), 10 subjects (12.5%) discontinued BI 456906, most commonly because of a cardiac or vascular AE (n = 6, 7.5%); during Part B (N = 45), eight subjects (17.8%) discontinued BI 456906, mainly because of AEs (n = 6, 13.3%), most commonly gastrointestinal disorders. CONCLUSIONS BI 456906 produced a placebo-corrected body weight loss of 13.8% (week 16), highlighting its potential to promote clinically meaningful body weight loss in people with overweight/obesity.
Collapse
Affiliation(s)
| | | | | | - Christoph Kapitza
- Profil Institute for Metabolic Research, Neuss, Germany
- Profil Mainz GmbH & Co. KG, Mainz, Germany
| | | | - Claus Thamer
- Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | | | | | | |
Collapse
|
40
|
Hope DCD, Tan TMM. Glucagon and energy expenditure; Revisiting amino acid metabolism and implications for weight loss therapy. Peptides 2023; 162:170962. [PMID: 36736539 DOI: 10.1016/j.peptides.2023.170962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Glucagon receptor (GCGR)-targeted multi-agonists are being developed for the treatment of obesity and metabolic disease. GCGR activity is utilised for its favourable weight loss and metabolic properties, including increased energy expenditure (EE) and hepatic lipid metabolism. GLP1R and GIPR activities are increasingly present in a multi-agonist strategy. Due to the compound effect of increased satiety, reduced food intake and increased energy expenditure, the striking weight loss effects of these multi-agonists has been demonstrated in pre-clinical models of obesity. The precise contribution and mechanism of GCGR activity to enhanced energy expenditure and weight loss in both rodents and humans is not fully understood. In this review, our understanding of glucagon-mediated EE is explored, and an amino acid-centric paradigm contributing to this phenomenon is presented. The current progress of GCGR-targeted multi-agonists in development is also highlighted with a focus on the implications of glucagon-stimulated hypoaminoacidemia.
Collapse
Affiliation(s)
- D C D Hope
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - T M-M Tan
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.
| |
Collapse
|
41
|
Abstract
Brown adipose tissue (BAT) displays the unique capacity to generate heat through uncoupled oxidative phosphorylation that makes it a very attractive therapeutic target for cardiometabolic diseases. Here, we review BAT cellular metabolism, its regulation by the central nervous and endocrine systems and circulating metabolites, the plausible roles of this tissue in human thermoregulation, energy balance, and cardiometabolic disorders, and the current knowledge on its pharmacological stimulation in humans. The current definition and measurement of BAT in human studies relies almost exclusively on BAT glucose uptake from positron emission tomography with 18F-fluorodeoxiglucose, which can be dissociated from BAT thermogenic activity, as for example in insulin-resistant states. The most important energy substrate for BAT thermogenesis is its intracellular fatty acid content mobilized from sympathetic stimulation of intracellular triglyceride lipolysis. This lipolytic BAT response is intertwined with that of white adipose (WAT) and other metabolic tissues, and cannot be independently stimulated with the drugs tested thus far. BAT is an interesting and biologically plausible target that has yet to be fully and selectively activated to increase the body's thermogenic response and shift energy balance. The field of human BAT research is in need of methods able to directly, specifically, and reliably measure BAT thermogenic capacity while also tracking the related thermogenic responses in WAT and other tissues. Until this is achieved, uncertainty will remain about the role played by this fascinating tissue in human cardiometabolic diseases.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | | | - Denis Richard
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, G1V 4G5, Canada
| |
Collapse
|
42
|
Corbin KD, Carnero EA, Allerton TD, Tillner J, Bock CP, Luyet PP, Göbel B, Hall KD, Parsons SA, Ravussin E, Smith SR. Glucagon-like peptide-1/glucagon receptor agonism associates with reduced metabolic adaptation and higher fat oxidation: A randomized trial. Obesity (Silver Spring) 2023; 31:350-362. [PMID: 36695055 PMCID: PMC9881753 DOI: 10.1002/oby.23633] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/16/2022] [Accepted: 10/02/2022] [Indexed: 01/26/2023]
Abstract
OBJECTIVE This study tested the hypothesis that treatment with the glucagon-like peptide-1/glucagon receptor agonist SAR425899 would lead to a smaller decrease in sleeping metabolic rate (SMR; kilocalories/day) than expected from the loss of lean and fat mass (metabolic adaptation). METHODS This Phase 1b, double-blind, randomized, placebo-controlled study was conducted at two centers in inpatient metabolic wards. Thirty-five healthy males and females with overweight and obesity (age = 36.5 ± 7.1 years) were randomized to a calorie-reduced diet (-1000 kcal/d) and escalating doses (0.06-0.2 mg/d) of SAR425899 (n = 17) or placebo (n = 18) for 19 days. SMR was measured by whole-room calorimetry. RESULTS Both groups lost weight (-3.68 ± 1.37 kg placebo; -4.83 ± 1.44 kg SAR425899). Those treated with SAR425899 lost more weight, fat mass, and fat free mass (p < 0.05) owing to a greater achieved energy deficit than planned. The SAR425899 group had a smaller reduction in body composition-adjusted SMR (p = 0.002) as compared with placebo, but not 24-hour energy expenditure. Fat oxidation and ketogenesis increased in both groups, with significantly greater increases with SAR425899 (p < 0.05). CONCLUSIONS SAR425899 led to reduced selective metabolic adaptation and increased lipid oxidation, which are believed to be beneficial for weight loss and weight-loss maintenance.
Collapse
Affiliation(s)
- Karen D Corbin
- AdventHealth Translational Research Institute, Orlando, Florida, USA
| | - Elvis A Carnero
- AdventHealth Translational Research Institute, Orlando, Florida, USA
| | | | | | | | | | | | - Kevin D Hall
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | | | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Steven R Smith
- AdventHealth Translational Research Institute, Orlando, Florida, USA
| |
Collapse
|
43
|
GLP-1 Receptor Agonists in Non-Alcoholic Fatty Liver Disease: Current Evidence and Future Perspectives. Int J Mol Sci 2023; 24:ijms24021703. [PMID: 36675217 PMCID: PMC9865319 DOI: 10.3390/ijms24021703] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
To date, non-alcoholic fatty liver disease (NAFLD) is the most frequent liver disease, affecting up to 70% of patients with diabetes. Currently, there are no specific drugs available for its treatment. Beyond their anti-hyperglycemic effect and the surprising role of cardio- and nephroprotection, GLP-1 receptor agonists (GLP-1 RAs) have shown a significant impact on body weight and clinical, biochemical and histological markers of fatty liver and fibrosis in patients with NAFLD. Therefore, GLP-1 RAs could be a weapon for the treatment of both diabetes mellitus and NAFLD. The aim of this review is to summarize the evidence currently available on the role of GLP-1 RAs in the treatment of NAFLD and to hypothesize potential future scenarios.
Collapse
|
44
|
Zimmermann T, Thomas L, Baader-Pagler T, Haebel P, Simon E, Reindl W, Bajrami B, Rist W, Uphues I, Drucker DJ, Klein H, Santhanam R, Hamprecht D, Neubauer H, Augustin R. BI 456906: Discovery and preclinical pharmacology of a novel GCGR/GLP-1R dual agonist with robust anti-obesity efficacy. Mol Metab 2022; 66:101633. [PMID: 36356832 PMCID: PMC9679702 DOI: 10.1016/j.molmet.2022.101633] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Obesity and its associated comorbidities represent a global health challenge with a need for well-tolerated, effective, and mechanistically diverse pharmaceutical interventions. Oxyntomodulin is a gut peptide that activates the glucagon receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R) and reduces bodyweight by increasing energy expenditure and reducing energy intake in humans. Here we describe the pharmacological profile of the novel glucagon receptor (GCGR)/GLP-1 receptor (GLP-1R) dual agonist BI 456906. METHODS BI 456906 was characterized using cell-based in vitro assays to determine functional agonism. In vivo pharmacological studies were performed using acute and subchronic dosing regimens to demonstrate target engagement for the GCGR and GLP-1R, and weight lowering efficacy. RESULTS BI 456906 is a potent, acylated peptide containing a C18 fatty acid as a half-life extending principle to support once-weekly dosing in humans. Pharmacological doses of BI 456906 provided greater bodyweight reductions in mice compared with maximally effective doses of the GLP-1R agonist semaglutide. BI 456906's superior efficacy is the consequence of increased energy expenditure and reduced food intake. Engagement of both receptors in vivo was demonstrated via glucose tolerance, food intake, and gastric emptying tests for the GLP-1R, and liver nicotinamide N-methyltransferase mRNA expression and circulating biomarkers (amino acids, fibroblast growth factor-21) for the GCGR. The dual activity of BI 456906 at the GLP-1R and GCGR was supported using GLP-1R knockout and transgenic reporter mice, and an ex vivo bioactivity assay. CONCLUSIONS BI 456906 is a potent GCGR/GLP-1R dual agonist with robust anti-obesity efficacy achieved by increasing energy expenditure and decreasing food intake.
Collapse
Affiliation(s)
- Tina Zimmermann
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Leo Thomas
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Tamara Baader-Pagler
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Peter Haebel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Eric Simon
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Wolfgang Reindl
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Besnik Bajrami
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Wolfgang Rist
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Ingo Uphues
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, University of Toronto, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.
| | - Holger Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Rakesh Santhanam
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Dieter Hamprecht
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany; Boehringer Ingelheim Research Italia, Via Lorenzini 8, 20139 Milano, Italy.
| | - Heike Neubauer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Robert Augustin
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| |
Collapse
|
45
|
Hope DCD, Hinds CE, Lopes T, Vincent ML, Shrewsbury JV, Yu ATC, Davies I, Scott R, Jones B, Murphy KG, Minnion JS, Sardini A, Carling D, Lutz TA, Bloom SR, Tan TMM, Owen BM. Hypoaminoacidemia underpins glucagon-mediated energy expenditure and weight loss. Cell Rep Med 2022; 3:100810. [PMID: 36384093 PMCID: PMC9729826 DOI: 10.1016/j.xcrm.2022.100810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 09/26/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022]
Abstract
Glucagon analogs show promise as components of next-generation, multi-target, anti-obesity therapeutics. The biology of chronic glucagon treatment, in particular, its ability to induce energy expenditure and weight loss, remains poorly understood. Using a long-acting glucagon analog, G108, we demonstrate that glucagon-mediated body weight loss is intrinsically linked to the hypoaminoacidemia associated with its known amino acid catabolic action. Mechanistic studies reveal an energy-consuming response to low plasma amino acids in G108-treated mice, prevented by dietary amino acid supplementation and mimicked by a rationally designed low amino acid diet. Therefore, low plasma amino acids are a pre-requisite for G108-mediated energy expenditure and weight loss. However, preventing hypoaminoacidemia with additional dietary protein does not affect the ability of G108 to improve glycemia or hepatic steatosis in obese mice. These studies provide a mechanism for glucagon-mediated weight loss and confirm the hepatic glucagon receptor as an attractive molecular target for metabolic disease therapeutics.
Collapse
Affiliation(s)
- David C D Hope
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Charlotte E Hinds
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tatiana Lopes
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Matthew L Vincent
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jed V Shrewsbury
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Arthur T C Yu
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Iona Davies
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Rebecca Scott
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ben Jones
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Kevin G Murphy
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - James S Minnion
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alessandro Sardini
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - David Carling
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Stephen R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M M Tan
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Bryn M Owen
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
46
|
Galsgaard KD, Elmelund E, Johansen CD, Bomholt AB, Kizilkaya HS, Ceutz F, Hunt JE, Kissow H, Winther-Sørensen M, Sørensen CM, Kruse T, Lau JF, Rosenkilde MM, Ørskov C, Christoffersen C, Holst JJ, Wewer Albrechtsen NJ. Glucagon receptor antagonism impairs and glucagon receptor agonism enhances triglycerides metabolism in mice. Mol Metab 2022; 66:101639. [PMID: 36400402 PMCID: PMC9706156 DOI: 10.1016/j.molmet.2022.101639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Treatment with glucagon receptor antagonists (GRAs) reduces blood glucose but causes dyslipidemia and accumulation of fat in the liver. We investigated the acute and chronic effects of glucagon on lipid metabolism in mice. METHODS Chronic effects of glucagon receptor signaling on lipid metabolism were studied using oral lipid tolerance tests (OLTTs) in overnight fasted glucagon receptor knockout (Gcgr-/-) mice, and in C57Bl/6JRj mice treated with a glucagon receptor antibody (GCGR Ab) or a long-acting glucagon analogue (GCGA) for eight weeks. Following treatment, liver tissue was harvested for RNA-sequencing and triglyceride measurements. Acute effects were studied in C57Bl/6JRj mice treated with a GRA or GCGA 1 h or immediately before OLTTs, respectively. Direct effects of glucagon on hepatic lipolysis were studied using isolated perfused mouse liver preparations. To investigate potential effects of GCGA and GRA on gastric emptying, paracetamol was, in separate experiments, administered immediately before OLTTs. RESULTS Plasma triglyceride concentrations increased 2-fold in Gcgr-/- mice compared to their wild-type littermates during the OLTT (P = 0.001). Chronic treatment with GCGR Ab increased, whereas GCGA treatment decreased, plasma triglyceride concentrations during OLTTs (P < 0.05). Genes involved in lipid metabolism were upregulated upon GCGR Ab treatment while GCGA treatment had opposite effects. Acute GRA and GCGA treatment, respectively, increased (P = 0.02) and decreased (P = 0.003) plasma triglyceride concentrations during OLTTs. Glucagon stimulated hepatic lipolysis, evident by an increase in free fatty acid concentrations in the effluent from perfused mouse livers. In line with this, GCGR Ab treatment increased, while GCGA treatment decreased, liver triglyceride concentrations. The effects of glucagon appeared independent of changes in gastric emptying of paracetamol. CONCLUSIONS Glucagon receptor signaling regulates triglyceride metabolism, both chronically and acutely, in mice. These data expand glucagon´s biological role and implicate that intact glucagon signaling is important for lipid metabolism. Glucagon agonism may have beneficial effects on hepatic and peripheral triglyceride metabolism.
Collapse
Affiliation(s)
- Katrine D. Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Elmelund
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian D. Johansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna B. Bomholt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hüsün S. Kizilkaya
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Ceutz
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jenna E. Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M. Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Kruse
- Novo Nordisk A/S, Research Chemistry, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | - Jesper F. Lau
- Novo Nordisk A/S, Research Chemistry, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | - Mette M. Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cathrine Ørskov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Christoffersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens J. Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J. Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Biochemistry, Bispebjerg & Frederiksberg Hospitals, University of Copenhagen, 2400 Bispebjerg, Denmark,Corresponding author. Department of Biomedical Sciences and Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, and Department of Clinical Biochemistry, Bispebjerg & Frederiksberg Hospitals, University of Copenhagen, 2400 Bispebjerg, Denmark.
| |
Collapse
|
47
|
Kim T, Nason S, Antipenko J, Finan B, Shalev A, DiMarchi R, Habegger KM. Hepatic mTORC2 Signaling Facilitates Acute Glucagon Receptor Enhancement of Insulin-Stimulated Glucose Homeostasis in Mice. Diabetes 2022; 71:2123-2135. [PMID: 35877180 PMCID: PMC9501720 DOI: 10.2337/db21-1018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 07/21/2022] [Indexed: 11/13/2022]
Abstract
Long-term glucagon receptor (GCGR) agonism is associated with hyperglycemia and glucose intolerance, while acute GCGR agonism enhances whole-body insulin sensitivity and hepatic AKTSer473 phosphorylation. These divergent effects establish a critical gap in knowledge surrounding GCGR action. mTOR complex 2 (mTORC2) is composed of seven proteins, including RICTOR, which dictates substrate binding and allows for targeting of AKTSer473. We used a liver-specific Rictor knockout mouse (RictorΔLiver) to investigate whether mTORC2 is necessary for insulin receptor (INSR) and GCGR cross talk. RictorΔLiver mice were characterized by impaired AKT signaling and glucose intolerance. Intriguingly, RictorΔLiver mice were also resistant to GCGR-stimulated hyperglycemia. Consistent with our prior report, GCGR agonism increased glucose infusion rate and suppressed hepatic glucose production during hyperinsulinemic-euglycemic clamp of control animals. However, these benefits to insulin sensitivity were ablated in RictorΔLiver mice. We observed diminished AKTSer473 and GSK3α/βSer21/9 phosphorylation in RictorΔLiver mice, whereas phosphorylation of AKTThr308 was unaltered in livers from clamped mice. These signaling effects were replicated in primary hepatocytes isolated from RictorΔLiver and littermate control mice, confirming cell-autonomous cross talk between GCGR and INSR pathways. In summary, our study reveals the necessity of RICTOR, and thus mTORC2, in GCGR-mediated enhancement of liver and whole-body insulin action.
Collapse
Affiliation(s)
- Teayoun Kim
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Shelly Nason
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Jessica Antipenko
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN
| | - Anath Shalev
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | | | - Kirk M. Habegger
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
48
|
Frampton J, Izzi-Engbeaya C, Salem V, Murphy KG, Tan TM, Chambers ES. The acute effect of glucagon on components of energy balance and glucose homoeostasis in adults without diabetes: a systematic review and meta-analysis. Int J Obes (Lond) 2022; 46:1948-1959. [PMID: 36123404 PMCID: PMC9584822 DOI: 10.1038/s41366-022-01223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 12/05/2022]
Abstract
Objective Using a systematic review and meta-analysis, we aimed to estimate the mean effect of acute glucagon administration on components of energy balance and glucose homoeostasis in adults without diabetes. Methods CENTRAL, CINAHL, Embase, MEDLINE, PubMed, and Scopus databases were searched from inception to May 2021. To be included, papers had to be a randomised, crossover, single- or double-blind study, measuring ad libitum meal energy intake, energy expenditure, subjective appetite, glucose, and/or insulin following acute administration of glucagon and an appropriate comparator in adults without diabetes. Risk of bias was assessed using the Revised Cochrane Risk of Bias Tool for Randomized trials with additional considerations for cross-over trials. Certainty of evidence was assessed using the GRADE approach. Random-effect meta-analyses were performed for outcomes with at least five studies. This study is registered on PROSPERO (CRD42021269623). Results In total, 13 papers (15 studies) were considered eligible: energy intake (5 studies, 77 participants); energy expenditure (5 studies, 59 participants); subjective appetite (3 studies, 39 participants); glucose (13 studies, 159 participants); insulin (12 studies, 147 participants). All studies had some concerns with regards to risk of bias. Mean intervention effect of acute glucagon administration on energy intake was small (standardised mean difference [SMD]: –0.19; 95% CI, –0.59 to 0.21; P = 0.345). Mean intervention effect of acute glucagon administration on energy expenditure (SMD: 0.72; 95% CI, 0.37–1.08; P < 0.001), glucose (SMD: 1.11; 95% CI, 0.60–1.62; P < 0.001), and insulin (SMD: 1.33; 95% CI, 0.88–1.77; P < 0.001) was moderate to large. Conclusions Acute glucagon administration produces substantial increases in energy expenditure, and in circulating insulin and glucose concentrations. However, the effect of acute glucagon administration on energy intake is unclear. Insufficient evidence was available to evaluate the acute effect of glucagon on subjective appetite.
Collapse
Affiliation(s)
- James Frampton
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, UK. .,Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
| | - Chioma Izzi-Engbeaya
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Victoria Salem
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, SW7 2BX, UK
| | - Kevin G Murphy
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Tricia M Tan
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Edward S Chambers
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| |
Collapse
|
49
|
Coskun T, Urva S, Roell WC, Qu H, Loghin C, Moyers JS, O'Farrell LS, Briere DA, Sloop KW, Thomas MK, Pirro V, Wainscott DB, Willard FS, Abernathy M, Morford L, Du Y, Benson C, Gimeno RE, Haupt A, Milicevic Z. LY3437943, a novel triple glucagon, GIP, and GLP-1 receptor agonist for glycemic control and weight loss: From discovery to clinical proof of concept. Cell Metab 2022; 34:1234-1247.e9. [PMID: 35985340 DOI: 10.1016/j.cmet.2022.07.013] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/10/2022] [Accepted: 07/22/2022] [Indexed: 12/22/2022]
Abstract
With an increasing prevalence of obesity, there is a need for new therapies to improve body weight management and metabolic health. Multireceptor agonists in development may provide approaches to fulfill this unmet medical need. LY3437943 is a novel triple agonist peptide at the glucagon receptor (GCGR), glucose-dependent insulinotropic polypeptide receptor (GIPR), and glucagon-like peptide-1 receptor (GLP-1R). In vitro, LY3437943 shows balanced GCGR and GLP-1R activity but more GIPR activity. In obese mice, administration of LY3437943 decreased body weight and improved glycemic control. Body weight loss was augmented by the addition of GCGR-mediated increases in energy expenditure to GIPR- and GLP-1R-driven calorie intake reduction. In a phase 1 single ascending dose study, LY3437943 showed a safety and tolerability profile similar to other incretins. Its pharmacokinetic profile supported once-weekly dosing, and a reduction in body weight persisted up to day 43 after a single dose. These findings warrant further clinical assessment of LY3437943.
Collapse
Affiliation(s)
- Tamer Coskun
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | - Shweta Urva
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - William C Roell
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Hongchang Qu
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Corina Loghin
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Julie S Moyers
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Libbey S O'Farrell
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Daniel A Briere
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Kyle W Sloop
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Melissa K Thomas
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Valentina Pirro
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - David B Wainscott
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Francis S Willard
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Matthew Abernathy
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - LaRonda Morford
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Yu Du
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Charles Benson
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Ruth E Gimeno
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Axel Haupt
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | | |
Collapse
|
50
|
Habegger KM. Cross Talk Between Insulin and Glucagon Receptor Signaling in the Hepatocyte. Diabetes 2022; 71:1842-1851. [PMID: 35657690 PMCID: PMC9450567 DOI: 10.2337/dbi22-0002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022]
Abstract
While the consumption of external energy (i.e., feeding) is essential to life, this action induces a temporary disturbance of homeostasis in an animal. A primary example of this effect is found in the regulation of glycemia. In the fasted state, stored energy is released to maintain physiological glycemic levels. Liver glycogen is liberated to glucose, glycerol and (glucogenic) amino acids are used to build new glucose molecules (i.e., gluconeogenesis), and fatty acids are oxidized to fuel long-term energetic demands. This regulation is driven primarily by the counterregulatory hormones epinephrine, growth hormone, cortisol, and glucagon. Conversely, feeding induces a rapid influx of diverse nutrients, including glucose, that disrupt homeostasis. Consistently, a host of hormonal and neural systems under the coordination of insulin are engaged in the transition from fasting to prandial states to reduce this disruption. The ultimate action of these systems is to appropriately store the newly acquired energy and to return to the homeostatic norm. Thus, at first glance it is tempting to assume that glucagon is solely antagonistic regarding the anabolic effects of insulin. We have been intrigued by the role of glucagon in the prandial transition and have attempted to delineate its role as beneficial or inhibitory to glycemic control. The following review highlights this long-known yet poorly understood hormone.
Collapse
Affiliation(s)
- Kirk M. Habegger
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|