1
|
Oyabu M, Ohira Y, Fujita M, Yoshioka K, Kawaguchi R, Kubo A, Hatazawa Y, Yukitoshi H, Ortuste Quiroga HP, Horii N, Miura F, Araki H, Okano M, Hatada I, Gotoh H, Yoshizawa T, Fukada SI, Ogawa Y, Ito T, Ishihara K, Ono Y, Kamei Y. Dnmt3a overexpression disrupts skeletal muscle homeostasis, promotes an aging-like phenotype, and reduces metabolic elasticity. iScience 2025; 28:112144. [PMID: 40151644 PMCID: PMC11937683 DOI: 10.1016/j.isci.2025.112144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/10/2024] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Mammalian aging is reportedly driven by the loss of epigenetic information; however, its impact on skeletal muscle aging remains unclear. This study shows that aging mouse skeletal muscle exhibits increased DNA methylation, and overexpression of DNA methyltransferase 3a (Dnmt3a) induces an aging-like phenotype. Muscle-specific Dnmt3a overexpression leads to an increase in central nucleus-positive myofibers, predominantly in fast-twitch fibers, a shift toward slow-twitch fibers, elevated inflammatory and senescence markers, mitochondrial OXPHOS complex I reduction, and decreased basal autophagy. Dnmt3a overexpression resulted in reduced muscle mass and strength and impaired endurance exercise capacity with age, accompanied by an enhanced inflammatory signature. In addition, Dnmt3a overexpression reduced not only sensitivity to starvation-induced muscle atrophy but also the restorability from muscle atrophy. These findings suggest that increased DNA methylation disrupts skeletal muscle homeostasis, promotes an aging-like phenotype, and reduces muscle metabolic elasticity.
Collapse
Affiliation(s)
- Mamoru Oyabu
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Yuto Ohira
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Mariko Fujita
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Kiyoshi Yoshioka
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
- Institute for Research on Productive Aging (IRPA), Tokyo, Japan
| | - Runa Kawaguchi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Atsushi Kubo
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukino Hatazawa
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Hinako Yukitoshi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Huascar Pedro Ortuste Quiroga
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Naoki Horii
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Hiromitsu Araki
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Masaki Okano
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Maebashi 371-8511, Japan
| | - Hitoshi Gotoh
- Cell Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan
| | - Tatsuya Yoshizawa
- Cell Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan
| | - So-ichiro Fukada
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Kengo Ishihara
- Department of Food Science and Human Nutrition, Faculty of Agriculture, Ryukoku University, Shiga 520-2194, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
- Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
| | - Yasutomi Kamei
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| |
Collapse
|
2
|
Yang TC, Tsai JP, Hsu H, Chen YC, Liaw YC, Hsu SY, Yang HJ, Liaw YP. Delving Into the Interaction Between Exercise and Diabetes on Methylation of the FKBP5 Gene. J Diabetes Res 2025; 2025:1162708. [PMID: 40017583 PMCID: PMC11865466 DOI: 10.1155/jdr/1162708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/23/2025] [Indexed: 03/01/2025] Open
Abstract
Objective: FKBP5 is a critical gene involved in regulating the hypothalamic-pituitary-adrenal (HPA) axis and stress response. Aberrant DNA methylation at FKBP5 cytosine-phosphate-guanine (CpG) sites, such as cg22363520 and cg00862770, has been implicated in mental health disorders and metabolic diseases, including Type 2 diabetes. Exercise is a modulator of DNA methylation and metabolic health. This study investigates the interaction between exercise, diabetes, and FKBP5 methylation at cg22363520 and cg00862770 and explores their implications for mental health and disease development. Materials and Methods: FKBP5 methylation levels at cg22363520 and cg00862770 were analyzed in a cohort stratified by diabetes and exercise. Multiple linear regression models assessed the main effects and interactions of exercise and diabetes on FKBP5 methylation, with further stratified analyses for site-specific effects. Results: Exercise and diabetes showed significant and site-specific effects on FKBP5 methylation at cg22363520 and cg00862770. At cg22363520, exercise significantly reduced methylation levels in nondiabetic participants (β = -0.00195, p = 0.0157), while no significant effect was observed in diabetic individuals. Conversely, at cg00862770, exercise significantly decreased methylation levels in diabetic participants (β = -0.00611, p = 0.0081), with no significant effect in the nondiabetic group. Diabetes itself was associated with increased FKBP5 methylation at both sites, particularly in individuals without regular exercise. Additionally, significant interaction effects between exercise and diabetes were identified for both cg22363520 (p = 0.0336) and cg00862770 (p = 0.0021), highlighting the interplay between metabolic status and physical activity in regulating FKBP5 methylation. Conclusion: This study demonstrates that the effects of exercise on FKBP5 methylation are site-specific and influenced by diabetes status. Exercise reduces methylation at cg22363520 in nondiabetics and at cg00862770 in diabetics, indicating its role in modulating epigenetic regulation of stress and metabolic pathways. These findings underscore the interplay between exercise, diabetes, and FKBP5 methylation, with potential implications for improving mental health and metabolic outcomes.
Collapse
Affiliation(s)
- Teng-Chi Yang
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
- Department of Medical Affairs, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi County, Taiwan
| | - Jen Pi Tsai
- Division of Nephrology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi County, Taiwan
- School of Medicine, Tzu Chi University, Buddhist Tzu Chi School Foundation, Hualien County, Taiwan
| | - Honda Hsu
- School of Medicine, Tzu Chi University, Buddhist Tzu Chi School Foundation, Hualien County, Taiwan
- Division of Plastic Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi County, Taiwan
| | - Yen-Chung Chen
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
- Department of Neurology, Changhua Christian Hospital, Changhua City, Taiwan
| | - Yi-Chia Liaw
- Neurological Institute, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Shu Yi Hsu
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
| | - Hao Jan Yang
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
| | - Yung-Po Liaw
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
- Institute of Medicine, Chug Shan Medical University, Taichung City, Taiwan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
3
|
Murach KA, Bagley JR. A primer on global molecular responses to exercise in skeletal muscle: Omics in focus. JOURNAL OF SPORT AND HEALTH SCIENCE 2025:101029. [PMID: 39961420 DOI: 10.1016/j.jshs.2025.101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/19/2024] [Accepted: 12/19/2024] [Indexed: 02/20/2025]
Abstract
Advances in skeletal muscle omics has expanded our understanding of exercise-induced adaptations at the molecular level. Over the past 2 decades, transcriptome studies in muscle have detailed acute and chronic responses to resistance, endurance, and concurrent exercise, focusing on variables such as training status, nutrition, age, sex, and metabolic health profile. Multi-omics approaches, such as the integration of transcriptomic and epigenetic data, along with emerging ribosomal RNA sequencing advancements, have further provided insights into how skeletal muscle adapts to exercise across the lifespan. Downstream of the transcriptome, proteomic and phosphoproteomic studies have identified novel regulators of exercise adaptations, while single-cell/nucleus and spatial sequencing technologies promise to evolve our understanding of cellular specialization and communication in and around skeletal muscle cells. This narrative review highlights (a) the historical foundations of exercise omics in skeletal muscle, (b) current research at 3 layers of the omics cascade (DNA, RNA, and protein), and (c) applications of single-cell omics and spatial sequencing technologies to study skeletal muscle adaptation to exercise. Further elaboration of muscle's global molecular footprint using multi-omics methods will help researchers and practitioners develop more effective and targeted approaches to improve skeletal muscle health as well as athletic performance.
Collapse
Affiliation(s)
- Kevin A Murach
- Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR 72701, USA.
| | - James R Bagley
- Muscle Physiology Laboratory, Department of Kinesiology, College of Health and Social Sciences, San Francisco State University, San Francisco, CA 94132, USA.
| |
Collapse
|
4
|
Katayama M, Nomura K, Mudry JM, Chibalin AV, Krook A, Zierath JR. Exercise-induced methylation of the Serhl2 promoter and implication for lipid metabolism in rat skeletal muscle. Mol Metab 2025; 92:102081. [PMID: 39657853 PMCID: PMC11732562 DOI: 10.1016/j.molmet.2024.102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVES Environmental factors such as physical activity induce epigenetic modifications, with exercise-responsive DNA methylation changes occurring in skeletal muscle. To determine the skeletal muscle DNA methylation signature of endurance swim training, we used whole-genome methylated DNA immunoprecipitation (MeDIP) sequencing. METHODS We utilized endurance-trained rats, cultured L6 myotubes, and human skeletal muscle cells, employing MeDIP sequencing, gene silencing, and palmitate oxidation assays. Additional methods included promoter luciferase assays, fluorescence microscopy, and RNA/DNA analysis to investigate exercise-induced molecular changes. RESULTS Gene set enrichment analysis (GSEA) of differentially methylated promoter regions identified an enrichment of four gene sets, including those linked to lipid metabolic processes, with hypermethylated or hypomethylated promoter regions in skeletal muscle of exercise-trained rats. Bisulfite sequencing confirmed hypomethylation of CpGs in the Serhl2 (Serine Hydrolase Like 2) transcription start site in exercise-trained rats. Serhl2 gene expression was upregulated in both exercise-trained rats and an "exercise-in-a-dish" model of L6 myotubes subjected to electrical pulse stimulation (EPS). Serhl2 promoter activity was regulated by methylation and EPS. A Nr4a binding motif in the Serhl2 promoter, when deleted, reduced promoter activity and sensitivity to methylation in L6 myotubes. Silencing Serhl2 in L6 myotubes reduced intracellular lipid oxidation and triacylglycerol synthesis in response to EPS. CONCLUSIONS Exercise-training enhances intracellular lipid metabolism and phenotypic changes in skeletal muscle through epigenomic modifications on Serhl2. Hypomethylation of the Serhl2 promoter influences Nr4a transcription factor binding, promoter activity, and gene expression, linking exercise-induced epigenomic regulation of Serhl2 to lipid oxidation and triacylglycerol synthesis.
Collapse
Affiliation(s)
- Mutsumi Katayama
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kazuhiro Nomura
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jonathan M Mudry
- Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Alexander V Chibalin
- Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Jönsson J, Perfilyev A, Kugelberg U, Skog S, Lindström A, Ruhrmann S, Ofori JK, Bacos K, Rönn T, Öst A, Ling C. Impact of excess sugar on the whole genome DNA methylation pattern in human sperm. Epigenomics 2025; 17:89-104. [PMID: 39707713 PMCID: PMC11792836 DOI: 10.1080/17501911.2024.2439782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
AIMS, PATIENTS & METHODS Dietary factors may regulate the epigenome. We aimed to explore whether a diet intervention, including excess sugar, affects the methylome in human sperm, and to describe the sperm methylome. We used Whole Genome Bisulfite Sequencing (WGBS) to analyze DNA methylation in sperm taken at three time points from 15 males during a diet intervention; i) at baseline, ii) after one week on a standardized diet, and iii) after an additional week on a high-sugar diet providing 150% of their estimated total energy expenditure. RESULTS We identified seven nominal diet-associated differentially methylated regions in sperm (p < 0.05). The diet was nominally associated with methylation of 143 sites linked to fertility (e.g. AHRR, GNAS, and HDAC4), 313 sites in imprinted genes (e.g. GLIS3, PEG10, PEG3, and SNURF), and 42 sites in top 1%-expressed genes (e.g. CHD2) (p < 0.05). In sperm, 3'UTRs and introns had the highest levels of methylation, while 5'UTRs and CpG islands had the lowest levels. Non-expressed genes in human sperm were hypomethylated in exons compared with transcribed genes. CONCLUSIONS In human sperm, DNA methylation levels were linked to gene expression, and excess sugar had modest effects on methylation on imprinted and highly expressed genes, and genes affecting fertility.
Collapse
Affiliation(s)
- Josefine Jönsson
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Unn Kugelberg
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Signe Skog
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Axel Lindström
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Sabrina Ruhrmann
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Jones K. Ofori
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Tina Rönn
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Anita Öst
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
6
|
Yang X, Zhang Y, Wang X, Chen S, Zheng Y, Hou X, Wang S, Zheng X, Li Q, Sun Y, Wu J. Exercise-mediated epigenetic modifications in cardiovascular diseases. Epigenomics 2025; 17:179-191. [PMID: 39929231 PMCID: PMC11812364 DOI: 10.1080/17501911.2024.2447811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025] Open
Abstract
Cardiovascular diseases (CVDs) represent a prominent contributor to global morbidity and mortality rates, with projections indicating a rise in this burden due to population aging. While extensive research has underscored the efficacy of exercise in mitigating the risk of CVDs, the precise mechanisms, particularly within the realm of epigenetics, remain nascent. This article delves into cutting-edge research concerning exercise-induced epigenetic alterations and their impact on CVDs. Initially, we examine the cardiac implications stemming from exercise-induced epigenetic influences across varying intensities. Subsequently, our focus shifts toward delineating the mechanisms governing exercise-induced DNA methylation, lactylation modifications, and N6-methyladenosine (m6A) RNA modifications, alongside addressing associated challenges and outlining prospective research directions. These findings suggest that exercise-mediated epigenetic modifications offer promising therapeutic potential for the prevention and comorbidity management of CVDs. However, the heterogeneity and tissue specificity of these effects necessitate more targeted research to unlock their full therapeutic potential.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, China
- Cardiac Rehabilitation Center, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanqi Zhang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, China
- Cardiac Rehabilitation Center, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xingyi Wang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, China
- Cardiac Rehabilitation Center, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shiliang Chen
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, China
- Cardiac Rehabilitation Center, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yang Zheng
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, China
- Cardiac Rehabilitation Center, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinyu Hou
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, China
- Cardiac Rehabilitation Center, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shiyu Wang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, China
- Cardiac Rehabilitation Center, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xianghui Zheng
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, China
- Cardiac Rehabilitation Center, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qifeng Li
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, China
- Cardiac Rehabilitation Center, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yong Sun
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, China
| | - Jian Wu
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, China
- Cardiac Rehabilitation Center, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Pilotto AM, Turner DC, Mazzolari R, Crea E, Brocca L, Pellegrino MA, Miotti D, Bottinelli R, Sharples AP, Porcelli S. Human skeletal muscle possesses an epigenetic memory of high-intensity interval training. Am J Physiol Cell Physiol 2025; 328:C258-C272. [PMID: 39570634 DOI: 10.1152/ajpcell.00423.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/25/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Human skeletal muscle displays an epigenetic memory of resistance exercise induced-hypertrophy. It is unknown, however, whether high-intensity interval training (HIIT) also evokes an epigenetic muscle memory. This study used repeated training intervention interspersed with a detraining period to assess epigenetic memory of HIIT. Twenty healthy subjects (25 ± 5 yr) completed two HIIT interventions (training and retraining) lasting 2 mo, separated by 3 mo of detraining. Measurements at baseline, after training, detraining, and retraining included maximal oxygen consumption (V̇o2max). Vastus lateralis biopsies were taken for genome-wide DNA methylation and targeted gene expression analyses. V̇o2max improved during training and retraining (P < 0.001) without differences between interventions (P > 0.58). Thousands of differentially methylated positions (DMPs) predominantly demonstrated a hypomethylated state after training, retained even after 3-mo of exercise cessation and into retraining. Five genes, ADAM19, INPP5a, MTHFD1L, CAPN2, and SLC16A3, possessed differentially methylated regions (DMRs) with retained hypomethylated memory profiles and increased gene expression. The retained hypomethylation during detraining was associated with an enhancement in expression of the same genes even after 3 mo of detraining. SLC16A3, INPP5a, and CAPN2 are involved in lactate transport and calcium signaling. Despite similar physiological adaptations between training and retraining, memory profiles were found at epigenetic and gene expression level, characterized by retained hypomethylation and increased gene expression after training into long-term detraining and retraining. These genes were associated with calcium signaling and lactate transport. Although significant memory was not observed in physiological parameters, our novel findings indicate that human skeletal muscle possesses an epigenetic memory of HIIT.NEW & NOTEWORTHY Cells possess a "memory" such that adaptations can be more quickly regained when a previously encountered challenge is reintroduced. Exercise provides an excellent experimental model to explore the concept of cellular memory to physiologically relevant stressors in humans. This study highlights molecular mechanisms that contribute to muscle memory in response to high-intensity interval training in humans, showing retention of DNA methylation and gene expression profiles from earlier training into detraining and retraining.
Collapse
Affiliation(s)
- Andrea M Pilotto
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Daniel C Turner
- Institute of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Raffaele Mazzolari
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Emanuela Crea
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Lorenza Brocca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Maria Antonietta Pellegrino
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Centre for Research in Biology and Sport Medicine, University of Pavia, Pavia, Italy
| | | | - Roberto Bottinelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Respiratory Rehabilitation Unit of Pavia Institute, Pavia, Italy
| | - Adam P Sharples
- Institute of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Simone Porcelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
8
|
Rapps K, Weller A, Meiri N. Epigenetic regulation is involved in reversal of obesity. Neurosci Biobehav Rev 2024; 167:105906. [PMID: 39343077 DOI: 10.1016/j.neubiorev.2024.105906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Epigenetic processes play a crucial role in mediating the impact of environmental energetic challenges, from overconsumption to starvation. Over-nutrition of energy-dense foods and sedentary lifestyles contribute to the development of obesity, characterized by excessive fat storage and impaired metabolic signaling, stemming from disrupted brain signaling. Conversely, dieting and physical activity facilitate body weight rebalancing and trigger adaptive neural responses. These adaptations involve the upregulation of neurogenesis, synaptic plasticity and optimized brain function and energy homeostasis, balanced hormone signaling, normal metabolism, and reduced inflammation. The transition of the brain from a maladaptive to an adaptive state is partially guided by epigenetic mechanisms. While epigenetic mechanisms underlying obesity-related brain changes have been described, their role in mediating the reversal of maladaptation/obesity through lifestyle interventions remains less explored. This review focuses on elucidating epigenetic mechanisms involved in hypothalamic adaptations induced by lifestyle interventions. Given that lifestyle interventions are widely prescribed and accessible approaches for weight loss and maintenance, it is our challenge to uncover epigenetic mechanisms moderating these hypothalamic-functional beneficial changes.
Collapse
Affiliation(s)
- Kayla Rapps
- Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel; Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel; Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Aron Weller
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel; Department of Psychology, Bar Ilan University, Ramat-Gan, Israel
| | - Noam Meiri
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel.
| |
Collapse
|
9
|
Frasca D, Romero M, Blomberg BB. Similarities in B Cell Defects between Aging and Obesity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1407-1413. [PMID: 39495900 DOI: 10.4049/jimmunol.2300670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 09/16/2024] [Indexed: 11/06/2024]
Abstract
The aging population is increasing worldwide, and there is also an increase in the aging population living with overweight and obesity, due to changes in lifestyle and in dietary patterns that elderly individuals experience later in life. Both aging and obesity are conditions of accelerated metabolic dysfunction and dysregulated immune responses. In this review, we summarize published findings showing that obesity induces changes in humoral immunity similar to those induced by aging and that the age-associated B cell defects are mainly due to metabolic changes. We discuss the role of the obese adipose tissue in inducing dysfunctional humoral responses and autoimmune Ab secretion.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| | - Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
10
|
Gao Q, Huan C, Jia Z, Cao Q, Yuan P, Li X, Wang C, Mao Z, Huo W. SOCS3 Methylation Partially Mediated the Association of Exposure to Triclosan but Not Triclocarban with Type 2 Diabetes Mellitus: A Case-Control Study. Int J Mol Sci 2024; 25:12113. [PMID: 39596180 PMCID: PMC11594987 DOI: 10.3390/ijms252212113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
This study aimed to evaluate the association of TCs (triclosan (TCS) and triclocarban) exposure with T2DM and glucose metabolism-related indicators and the mediating effect of SOCS3 methylation on their associations. A total of 956 participants (330 T2DM and 626 controls) were included in this case-control study. Logistic regression and generalized linear models were used to assess the effect of TCs on T2DM and glucose metabolism-related indicators. The dose-response relationship between TCs and T2DM was analyzed by restricted cubic spline. Finally, after evaluating the association between TCs and SOCS3 methylation levels, the mediating effect of SOCS3 methylation on the TC-associated T2DM was estimated. Each 1-unit increase in TCS levels was associated with a 13.2% increase in the risk of T2DM (OR = 1.132, 95% CI: 1.062, 1.207). A linear dose-response relationship was found between TCS and T2DM. TCS was negatively associated with Chr17:76356190 methylation. Moreover, mediation analysis revealed that Chr17:76356190 methylation mediated 14.54% of the relationship between TCS exposure and T2DM. Exposure to TCS was associated with a higher prevalence of T2DM. SOCS3 methylation partially mediated the association of TCS with T2DM. Our findings may provide new insights into the treatment of T2DM, and the study of the biological mechanisms of T2DM.
Collapse
Affiliation(s)
- Qian Gao
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; (Q.G.)
| | - Changsheng Huan
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; (Q.G.)
| | - Zexin Jia
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; (Q.G.)
| | - Qingqing Cao
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; (Q.G.)
| | - Pengcheng Yuan
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; (Q.G.)
| | - Xin Li
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; (Q.G.)
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wenqian Huo
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; (Q.G.)
| |
Collapse
|
11
|
Banker M, Jansen EC, Goodrich JM, English L, Dolinoy DC, Song PXK, Mitchell JA, Téllez-Rojo MM, Cantoral A, Peterson KE. Associations between Sleep and Physical Activity Behavior Clusters and Epigenetic Age Acceleration in Mexican Adolescents. Med Sci Sports Exerc 2024; 56:2173-2183. [PMID: 38949160 PMCID: PMC11524790 DOI: 10.1249/mss.0000000000003498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Epigenetic aging, a marker of biological aging measured by DNA methylation, may be affected by behaviors, including sleep and physical activity. However, investigations of physical activity and sleep with epigenetic aging among pediatric populations are scant and have not accounted for correlated behaviors. METHODS The study population included 472 Mexico City adolescents (52% female). Blood collection and 7-d wrist actigraphy (Actigraph GTX-BT) occurred during a follow-up visit when participants were 14.5 (2.09) yr. Leukocyte DNA methylation was measured with the Infinium MethylationEPIC array after bisulfite conversion, and nine epigenetic clocks were calculated. Sleep versus wake time was identified through a pruned dynamic programing algorithm, and physical activity was processed with Chandler cutoffs. Kmeans clustering was used to select actigraphy-assessed physical activity and sleep behavior clusters. Linear regression analyses were used to evaluate adjusted associations between the clusters and epigenetic aging. RESULTS There were three unique clusters: "Short sleep/high sedentary behavior," "Adequate sleep duration and late sleep timing/low moderate or vigorous physical activity (MVPA)," and "Adequate sleep duration/high MVPA." Compared with the "Adequate duration/high MVPA," adolescents with "Adequate duration and late sleep timing/low MVPA" had more accelerated aging for the GrimAge clock ( β = 0.63; 95% confidence interval, 0.07-1.19). In pubertal-stratified analyses, more mature adolescents in the "Adequate sleep duration and late sleep timing/low MVPA group" had accelerated epigenetic aging. In contrast, females in the "Short sleep/high sedentary" group had decelerated epigenetic aging for the Wu pediatric clock. CONCLUSIONS Associations between behavior clusters and epigenetic aging varied by pubertal status and sex. Contrary results in the Wu clock suggest the need for future research on pediatric-specific clocks.
Collapse
Affiliation(s)
- Margaret Banker
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI
| | - Erica C. Jansen
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI
- Sleep Disorders Center and Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| | - Lindsey English
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| | - Dana C. Dolinoy
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| | - Peter X. K. Song
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI
| | - Jonathan A. Mitchell
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Pennsylvania, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA
| | - Martha María Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, MEXICO
| | | | - Karen E. Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| |
Collapse
|
12
|
Nwabo Kamdje AH, Dongmo Fogang HP, Mimche PN. Role of epigenetic in cancer biology, in hematologic malignancies and in anticancer therapy. FRONTIERS IN MOLECULAR MEDICINE 2024; 4:1426454. [PMID: 39308891 PMCID: PMC11412843 DOI: 10.3389/fmmed.2024.1426454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/08/2024] [Indexed: 09/25/2024]
Abstract
Major epigenetic changes are associated with carcinogenesis, including aberrant DNA methylations and post-translational modifications of histone. Indeed evidence accumulated in recent years indicates that inactivating DNA hypermethylation preferentially targets the subset of polycomb group (PcG) genes that are regulators of developmental processes. Conversely, activating DNA hypomethylation targets oncogenic signaling pathway genes, but outcomes of both events lead in the overexpression of oncogenic signaling pathways that contribute to the stem-like state of cancer cells. On the basis of recent evidence from population-basedclinical and experimental studies, we hypothesize that factors associated with risk for developing a hematologic malignancy (HM), such as metabolic syndrome and chronic inflammation, may trigger epigenetic mechanisms to increase the transcriptional expression of oncogenes and activate oncogenic signaling pathways. Signaling pathways associated with such risk factors include but are not limited to pro-inflammatory nuclear factor κB (NF-κB) and mitogenic, growth, and survival Janus kinase (JAK) intracellular non-receptor tyrosine kinase-triggered pathways. The latter includes signaling pathways such as transducer and activator of transcription (STAT), Ras GTPases/mitogen-activated protein kinases (MAPKs)/extracellular signal-related kinases (ERKs), phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), and β-catenin pathways. Recent findings on epigenetic mechanisms at work in the biology of cancer and in HMs and their importance in the etiology and pathogenesis of these diseases are herein summarized and discussed. Furthermore, the role of epigenetic processes in the determination of biological identity, the consequences for interindividual variability in disease clinical profile, and the potential of epigenetic drugs in HMs are also considered.
Collapse
Affiliation(s)
- Armel Hervé Nwabo Kamdje
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Garoua, Garoua, Cameroon
| | - Hervet Paulain Dongmo Fogang
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Garoua, Garoua, Cameroon
| | - Patrice N. Mimche
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
13
|
Arivarasan VK, Diwakar D, Kamarudheen N, Loganathan K. Current approaches in CRISPR-Cas systems for diabetes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 210:95-125. [PMID: 39824586 DOI: 10.1016/bs.pmbts.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
In the face of advancements in health care and a shift towards healthy lifestyle, diabetes mellitus (DM) still presents as a global health challenge. This chapter explores recent advancements in the areas of genetic and molecular underpinnings of DM, addressing the revolutionary potential of CRISPR-based genome editing technologies. We delve into the multifaceted relationship between genes and molecular pathways contributing to both type1 and type 2 diabetes. We highlight the importance of how improved genetic screening and the identification of susceptibility genes are aiding in early diagnosis and risk stratification. The spotlight then shifts to CRISPR-Cas9, a robust genome editing tool capable of various applications including correcting mutations in type 1 diabetes, enhancing insulin production in T2D, modulating genes associated with metabolism of glucose and insulin sensitivity. Delivery methods for CRISPR to targeted tissues and cells are explored, including viral and non-viral vectors, alongside the exciting possibilities offered by nanocarriers. We conclude by discussing the challenges and ethical considerations surrounding CRISPR-based therapies for DM. These include potential off-target effects, ensuring long-term efficacy and safety, and navigating the ethical implications of human genome modification. This chapter offers a comprehensive perspective on how genetic and molecular insights, coupled with the transformative power of CRISPR, are paving the way for potential cures and novel therapeutic approaches for DM.
Collapse
Affiliation(s)
- Vishnu Kirthi Arivarasan
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Diksha Diwakar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Neethu Kamarudheen
- The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | | |
Collapse
|
14
|
Wang Y, Ren J, Luo B. The association between dietary, physical activity and the DNA methylation of PPARGC1A, HLA-DQA1 and ADCY3 in pregnant women with gestational diabetes mellitus: a nest case-control study. BMC Pregnancy Childbirth 2024; 24:503. [PMID: 39060963 PMCID: PMC11282794 DOI: 10.1186/s12884-024-06673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is associated with DNA methylation and lifestyle. The effects of DNA methylation on GDM, and the interaction between DNA methylation and lifestyle factors are not well elucidated. The objective of this study was to explore the association between GDM, DNA methylation and lifestyle factors. METHODS A nest case-control design was performed. Sociodemographic data, dietary intake and daily physical activity information of pregnant women were collected. Bisulfate pyrosequencing was used to detect the DNA methylation level of PPARGC1A, HLA-DQA1, and ADCY3 genes. The differences of DNA methylation levels between the GDM group and the control group were compared. The correlation between clinical characteristics, dietary, physical activity and DNA methylation level was analyzed. RESULTS A total of 253 pregnant women were enrolled, of which, 60 participants (GDM: 30; control: 30) were included in the final analysis. There were no significant differences in DNA methylation levels of six methylated sites between the two groups in this study (P > 0.05). Daily intake of potato and poultry were associated with DNA methylation level of the CpG 1 site of the ADCY3 gene in all participants and the control group (P < 0.05). Duration of folic acid intake before pregnancy was correlated with the methylation level of the CpG 1 site of the ADCY3 gene in all participants (r = 0.341, P = 0.04) and the control group (r = 0.431, P = 0.025). Daily oil intake was correlated with the methylation level of CpG 2 (r = 0.627, P = 0.016) and CpG 3 (r = 0.563, P = 0.036) of PPARGC1A in the GDM group. CONCLUSION The association between the DNA methylation levels and GDM wasn't validated. There were associations between dietary and DNA methylation in pregnant women. A large-sample-sized and longitudinal study is warranted to further investigate the impacts of lifestyle on DNA methylation.
Collapse
Affiliation(s)
- Yan Wang
- Department of Reproductive Medicine Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Jianhua Ren
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Biru Luo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
- Department of Nursing, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Geiger C, Needhamsen M, Emanuelsson EB, Norrbom J, Steindorf K, Sundberg CJ, Reitzner SM, Lindholm ME. DNA methylation of exercise-responsive genes differs between trained and untrained men. BMC Biol 2024; 22:147. [PMID: 38965555 PMCID: PMC11225400 DOI: 10.1186/s12915-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/14/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Physical activity is well known for its multiple health benefits and although the knowledge of the underlying molecular mechanisms is increasing, our understanding of the role of epigenetics in long-term training adaptation remains incomplete. In this intervention study, we included individuals with a history of > 15 years of regular endurance or resistance training compared to age-matched untrained controls performing endurance or resistance exercise. We examined skeletal muscle DNA methylation of genes involved in key adaptation processes, including myogenesis, gene regulation, angiogenesis and metabolism. RESULTS A greater number of differentially methylated regions and differentially expressed genes were identified when comparing the endurance group with the control group than in the comparison between the strength group and the control group at baseline. Although the cellular composition of skeletal muscle samples was generally consistent across groups, variations were observed in the distribution of muscle fiber types. Slow-twitch fiber type genes MYH7 and MYL3 exhibited lower promoter methylation and elevated expression in endurance-trained athletes, while the same group showed higher methylation in transcription factors such as FOXO3, CREB5, and PGC-1α. The baseline DNA methylation state of those genes was associated with the transcriptional response to an acute bout of exercise. Acute exercise altered very few of the investigated CpG sites. CONCLUSIONS Endurance- compared to resistance-trained athletes and untrained individuals demonstrated a different DNA methylation signature of selected skeletal muscle genes, which may influence transcriptional dynamics following a bout of acute exercise. Skeletal muscle fiber type distribution is associated with methylation of fiber type specific genes. Our results suggest that the baseline DNA methylation landscape in skeletal muscle influences the transcription of regulatory genes in response to an acute exercise bout.
Collapse
Affiliation(s)
- Carla Geiger
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Division of Physical Activity, Prevention and Cancer, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Medical School, Heidelberg University, Heidelberg, Germany
| | - Maria Needhamsen
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eric B Emanuelsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jessica Norrbom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Karen Steindorf
- Division of Physical Activity, Prevention and Cancer, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Carl Johan Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Stefan M Reitzner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department for Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Malene E Lindholm
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Center for Inherited Cardiovascular Disease, School of Medicine, Stanford University, 870 Quarry Rd, Stanford, CA, 94305, USA.
| |
Collapse
|
16
|
Nair VD, Pincas H, Smith GR, Zaslavsky E, Ge Y, Amper MAS, Vasoya M, Chikina M, Sun Y, Raja AN, Mao W, Gay NR, Esser KA, Smith KS, Zhao B, Wiel L, Singh A, Lindholm ME, Amar D, Montgomery S, Snyder MP, Walsh MJ, Sealfon SC. Molecular adaptations in response to exercise training are associated with tissue-specific transcriptomic and epigenomic signatures. CELL GENOMICS 2024; 4:100421. [PMID: 38697122 PMCID: PMC11228891 DOI: 10.1016/j.xgen.2023.100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 05/04/2024]
Abstract
Regular exercise has many physical and brain health benefits, yet the molecular mechanisms mediating exercise effects across tissues remain poorly understood. Here we analyzed 400 high-quality DNA methylation, ATAC-seq, and RNA-seq datasets from eight tissues from control and endurance exercise-trained (EET) rats. Integration of baseline datasets mapped the gene location dependence of epigenetic control features and identified differing regulatory landscapes in each tissue. The transcriptional responses to 8 weeks of EET showed little overlap across tissues and predominantly comprised tissue-type enriched genes. We identified sex differences in the transcriptomic and epigenomic changes induced by EET. However, the sex-biased gene responses were linked to shared signaling pathways. We found that many G protein-coupled receptor-encoding genes are regulated by EET, suggesting a role for these receptors in mediating the molecular adaptations to training across tissues. Our findings provide new insights into the mechanisms underlying EET-induced health benefits across organs.
Collapse
Affiliation(s)
- Venugopalan D Nair
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Hanna Pincas
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gregory R Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mary Anne S Amper
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mital Vasoya
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maria Chikina
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yifei Sun
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Weiguang Mao
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicole R Gay
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
| | - Kevin S Smith
- Departments of Pathology and Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Bingqing Zhao
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Laurens Wiel
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Aditya Singh
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Malene E Lindholm
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - David Amar
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Stephen Montgomery
- Departments of Pathology and Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Martin J Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
17
|
Bittel AJ, Chen YW. DNA Methylation in the Adaptive Response to Exercise. Sports Med 2024; 54:1419-1458. [PMID: 38561436 DOI: 10.1007/s40279-024-02011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
Emerging evidence published over the past decade has highlighted the role of DNA methylation in skeletal muscle function and health, including as an epigenetic transducer of the adaptive response to exercise. In this review, we aim to synthesize the latest findings in this field to highlight: (1) the shifting understanding of the genomic localization of altered DNA methylation in response to acute and chronic aerobic and resistance exercise in skeletal muscle (e.g., promoter, gene bodies, enhancers, intergenic regions, un-annotated regions, and genome-wide methylation); (2) how these global/regional methylation changes relate to transcriptional activity following exercise; and (3) the factors (e.g., individual demographic or genetic features, dietary, training history, exercise parameters, local epigenetic characteristics, circulating hormones) demonstrated to alter both the pattern of DNA methylation after exercise, and the relationship between DNA methylation and gene expression. Finally, we discuss the changes in non-CpG methylation and 5-hydroxymethylation after exercise, as well as the importance of emerging single-cell analyses to future studies-areas of increasing focus in the field of epigenetics. We anticipate that this review will help generate a framework for clinicians and researchers to begin developing and testing exercise interventions designed to generate targeted changes in DNA methylation as part of a personalized exercise regimen.
Collapse
Affiliation(s)
- Adam J Bittel
- Research Center for Genetic Medicine, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| | - Yi-Wen Chen
- Research Center for Genetic Medicine, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Science, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Department of Integrative Systems Biology, Institute for Biomedical Sciences, The George Washington University, 2121 I St NW, Washington, DC, 20052, USA
| |
Collapse
|
18
|
Caporossi D, Dimauro I. Exercise-induced redox modulation as a mediator of DNA methylation in health maintenance and disease prevention. Free Radic Biol Med 2024; 213:113-122. [PMID: 38242245 DOI: 10.1016/j.freeradbiomed.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
The evidence for physical activity (PA) as a major public health preventive approach and a potent medical therapy has increased exponentially in the last decades. The biomolecular mechanisms supporting the associations between PA and/or structured exercise training with health maintenance and disease prevention are not completely characterized. However, increasing evidence pointed out the role of epigenetic modifications in exercise adaptation and health-enhancing PA throughout life, DNA methylation being the most intensely studied epigenetic modification induced by acute and chronic exercise. The current data on the modulation of DNA methylation determined by physically active behavior or exercise interventions points out genes related to energy regulation, mitochondrial function, and biosynthesis, as well as muscle regeneration, calcium signaling pathways, and brain plasticity, all consistent with the known exercise-induced redox signaling and/or reactive oxygen species (ROS) unbalance. Thus, the main focus of this review is to discuss the role of ROS and redox-signaling on DNA methylation profile and its impact on exercise-induced health benefits in humans.
Collapse
Affiliation(s)
- Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis 15, Rome, 00135, Italy.
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis 15, Rome, 00135, Italy
| |
Collapse
|
19
|
García-Giménez JL, Cánovas-Cervera I, Pallardó FV. Oxidative stress and metabolism meet epigenetic modulation in physical exercise. Free Radic Biol Med 2024; 213:123-137. [PMID: 38199289 DOI: 10.1016/j.freeradbiomed.2024.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Physical exercise is established as an important factor of health and generally is recommended for its positive effects on several tissues, organs, and systems. These positive effects come from metabolic adaptations that also include oxidative eustress, in which physical activity increases ROS production and antioxidant mechanisms, although this depends on the intensity of the exercise. Muscle metabolism through mechanisms such as aerobic and anaerobic glycolysis, tricarboxylic acid cycle, and oxidative lipid metabolism can produce metabolites and co-factors which directly impact the epigenetic machinery. In this review, we clearly reinforce the evidence that exercise regulates several epigenetic mechanisms and explain how these mechanisms can be regulated by metabolic products and co-factors produced during exercise. In fact, recent evidence has demonstrated the importance of epigenetics in the gene expression changes implicated in metabolic adaptation after exercise. Importantly, intermediates of the metabolism generated by continuous, acute, moderate, or strenuous exercise control the activity of epigenetic enzymes, therefore turning on or turning off the gene expression of specific programs which can lead to physiological adaptations after exercise.
Collapse
Affiliation(s)
- José Luis García-Giménez
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15, Valencia, 46010, Spain; Biomedical Research Institute INCLIVA, Av/Menéndez Pelayo. 4acc, Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | - Irene Cánovas-Cervera
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15, Valencia, 46010, Spain; Biomedical Research Institute INCLIVA, Av/Menéndez Pelayo. 4acc, Valencia, 46010, Spain.
| | - Federico V Pallardó
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15, Valencia, 46010, Spain; Biomedical Research Institute INCLIVA, Av/Menéndez Pelayo. 4acc, Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
20
|
Wu H, Hu Y, Jiang C, Chen C. Global scientific trends in research of epigenetic response to exercise: A bibliometric analysis. Heliyon 2024; 10:e25644. [PMID: 38370173 PMCID: PMC10869857 DOI: 10.1016/j.heliyon.2024.e25644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
The purpose of this work is to comprehensively understand the adaptive response of multiple epigenetic modifications on gene expression changes driven by exercise. Here, we retrieved literatures from publications in the PubMed and Web of Science Core Collection databases up to and including October 15, 2023. After screening with the exclusion criteria, 1910 publications were selected in total, comprising 1399 articles and 511 reviews. Specifically, a total of 512, 224, and 772 publications is involved in DNA methylation, histone modification, and noncoding RNAs, respectively. The correlations between publication number, authors, institutions, countries, references, and the characteristics of hotspots were explored by CiteSpace. Here, the USA (621 publications) ranked the world's most-influential countries, the University of California System (68 publications) was the most productive, and Tiago Fernandes (14 publications) had the most-published publications. A comprehensive keyword analysis revealed that cardiovascular disease, cancer, skeletal muscle development, and metabolic syndrome, and are the research hotspots. The detailed impact of exercise was further discussed in different aspects of these three categories of epigenetic modifications. Detailed analysis of epigenetic modifications in response to exercise, including DNA methylation, histone modification, and changes in noncoding RNAs, will offer valuable information to help researchers understand hotspots and emerging trends.
Collapse
Affiliation(s)
- Huijuan Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Yue Hu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Cai Jiang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Cong Chen
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, 350122 Fuzhou, Fujian, China
- Fujian Key Laboratory of Cognitive Rehabilitation, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, China
| |
Collapse
|
21
|
Dong H, Sun Y, Nie L, Cui A, Zhao P, Leung WK, Wang Q. Metabolic memory: mechanisms and diseases. Signal Transduct Target Ther 2024; 9:38. [PMID: 38413567 PMCID: PMC10899265 DOI: 10.1038/s41392-024-01755-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
Metabolic diseases and their complications impose health and economic burdens worldwide. Evidence from past experimental studies and clinical trials suggests our body may have the ability to remember the past metabolic environment, such as hyperglycemia or hyperlipidemia, thus leading to chronic inflammatory disorders and other diseases even after the elimination of these metabolic environments. The long-term effects of that aberrant metabolism on the body have been summarized as metabolic memory and are found to assume a crucial role in states of health and disease. Multiple molecular mechanisms collectively participate in metabolic memory management, resulting in different cellular alterations as well as tissue and organ dysfunctions, culminating in disease progression and even affecting offspring. The elucidation and expansion of the concept of metabolic memory provides more comprehensive insight into pathogenic mechanisms underlying metabolic diseases and complications and promises to be a new target in disease detection and management. Here, we retrace the history of relevant research on metabolic memory and summarize its salient characteristics. We provide a detailed discussion of the mechanisms by which metabolic memory may be involved in disease development at molecular, cellular, and organ levels, with emphasis on the impact of epigenetic modulations. Finally, we present some of the pivotal findings arguing in favor of targeting metabolic memory to develop therapeutic strategies for metabolic diseases and provide the latest reflections on the consequences of metabolic memory as well as their implications for human health and diseases.
Collapse
Affiliation(s)
- Hao Dong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuezhang Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lulingxiao Nie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Aimin Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pengfei Zhao
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Wai Keung Leung
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
22
|
Vasileva F, Hristovski R, Font-Lladó R, Georgiev G, Sacot A, López-Ros V, Calleja-González J, Barretina-Ginesta J, López-Bermejo A, Prats-Puig A. Physical Exercise-Induced DNA Methylation in Disease-Related Genes in Healthy Adults-A Systematic Review With Bioinformatic Analysis. J Strength Cond Res 2024; 38:384-393. [PMID: 38088908 DOI: 10.1519/jsc.0000000000004686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
ABSTRACT Vasileva, F, Hristovski, R, Font-Lladó, R, Georgiev, G, Sacot, A, López-Ros, V, Calleja-González, J, Barretina-Ginesta, J, López-Bermejo, A, and Prats-Puig, A. Physical exercise-induced DNA methylation in disease-related genes in healthy adults-A systematic review with bioinformatic analysis. J Strength Cond Res 38(2): 384-393, 2024-This study aimed to systematically review the existing literature regarding physical exercise (PE) and DNA methylation (DNAm) in healthy adults. Specific goals were to (a) identify differently methylated genes (DMGs) after PE intervention, their imprinting status, chromosome and genomic location, function, and related diseases; and (b) to screen for core genes and identify methylation changes of the core genes that can be modified by PE intervention. Our search identified 2,869 articles from which 8 were finally included. We identified 1851 DMGs ( p < 0.05) after PE intervention, although 45 of them were imprinted. Aerobic exercise (AE) seems to induce more DNA hypermethylation rather than hypomethylation, whereas anaerobic exercise (AN) seems to induce more DNA hypomethylation rather than hypermethylation. Aerobic exercise induced highest % of methylation changes on chromosome 6, whereas AN and mixed type (MT) on chromosome 1. Mixed type induced higher % of methylation changes close to transcription start site in comparison to AE and AN. After PE intervention, DMGs were mainly involved in fat metabolism, cell growth, and neuronal differentiation, whereas diseases regulated by those genes were mainly chronic diseases (metabolic, cardiovascular, neurodegenerative). Finally, 19 core genes were identified among DMGs, all related to protein metabolism. In conclusion, our findings may shed some light on the mechanisms explaining PE-induced health benefits such as the potential role that PE-induced DNAm may have in disease prevention and disease treatment.
Collapse
Affiliation(s)
- Fidanka Vasileva
- University School of Health and Sport, University of Girona, Girona, Spain
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research, Girona, Spain
| | - Robert Hristovski
- Faculty of Physical Education, Sport and Health, University Ss. Cyril and Methodius, Skopje, Republic of North Macedonia
| | - Raquel Font-Lladó
- University School of Health and Sport, University of Girona, Girona, Spain
- Research Group of Culture and Education, Institute of Educational Research, University of Girona, Girona, Spain
| | - Georgi Georgiev
- Faculty of Physical Education, Sport and Health, University Ss. Cyril and Methodius, Skopje, Republic of North Macedonia
| | - Arnau Sacot
- University School of Health and Sport, University of Girona, Girona, Spain
- Basquet Girona, Girona, Spain
| | - Víctor López-Ros
- University School of Health and Sport, University of Girona, Girona, Spain
- Chair of Sport and Physical Education-Centre of Olympic Studies, University of Girona, Girona, Spain
| | - Julio Calleja-González
- Department of Physical Education and Sport, Faculty of Education and Sport, University of the Basque Country, Vitoria, Spain
| | | | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research, Girona, Spain
- Pediatric Endocrinology, Dr. Josep Girona Hospital, Girona, Spain
- Department of Medical Sciences, University of Girona, Girona, Spain; and
| | - Anna Prats-Puig
- University School of Health and Sport, University of Girona, Girona, Spain
- Research Group of Clinical Anatomy, Embryology and Neuroscience, Department of Medical Sciences, University of Girona, Girona, Spain
| |
Collapse
|
23
|
Sint Jago SC, Bahabry R, Schreiber AM, Homola J, Ngyuen T, Meijia F, Allendorfer JB, Lubin FD. Aerobic exercise alters DNA hydroxymethylation levels in an experimental rodent model of temporal lobe epilepsy. Epilepsy Behav Rep 2023; 25:100642. [PMID: 38323091 PMCID: PMC10844942 DOI: 10.1016/j.ebr.2023.100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 02/08/2024] Open
Abstract
The therapeutic potential of aerobic exercise in mitigating seizures and cognitive issues in temporal lobe epilepsy (TLE) is recognized, yet the underlying mechanisms are not well understood. Using a rodent TLE model induced by Kainic acid (KA), we investigated the impact of a single bout of exercise (i.e., acute) or 4 weeks of aerobic exercise (i.e., chronic). Blood was processed for epilepsy-associated serum markers, and DNA methylation (DNAme), and hippocampal area CA3 was assessed for gene expression levels for DNAme-associated enzymes. While acute aerobic exercise did not alter serum Brain-Derived Neurotrophic Factor (BDNF) or Interleukin-6 (IL-6), chronic exercise resulted in an exercise-specific decrease in serum BDNF and an increase in serum IL-6 levels in epileptic rats. Additionally, whole blood DNAme levels, specifically 5-hydroxymethylcytosine (5-hmC), decreased in epileptic animals following chronic exercise. Hippocampal CA3 5-hmC levels and ten-eleven translocation protein (TET1) expression mirrored these changes. Furthermore, immunohistochemistry analysis revealed that most 5-hmC changes in response to chronic exercise were neuron-specific within area CA3 of the hippocampus. Together, these findings suggest that DNAme mechanisms in the rodent model of TLE are responsive to chronic aerobic exercise, with emphasis on neuronal 5-hmC DNAme in the epileptic hippocampus.
Collapse
Affiliation(s)
| | - Rudhab Bahabry
- Department of Neurobiology, University of Alabama at Birmingham, United States
| | | | - Julia Homola
- Department of Neurobiology, University of Alabama at Birmingham, United States
| | - Tram Ngyuen
- Department of Neurobiology, University of Alabama at Birmingham, United States
| | - Fernando Meijia
- Department of Neurobiology, University of Alabama at Birmingham, United States
| | - Jane B. Allendorfer
- Department of Neurobiology, University of Alabama at Birmingham, United States
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Farah D. Lubin
- Department of Neurobiology, University of Alabama at Birmingham, United States
| |
Collapse
|
24
|
Rousseau E, Raman R, Tamir T, Bu A, Srinivasan S, Lynch N, Langer R, White FM, Cima MJ. Actuated tissue engineered muscle grafts restore functional mobility after volumetric muscle loss. Biomaterials 2023; 302:122317. [PMID: 37717406 PMCID: PMC11512195 DOI: 10.1016/j.biomaterials.2023.122317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/29/2023] [Accepted: 09/03/2023] [Indexed: 09/19/2023]
Abstract
Damage that affects large volumes of skeletal muscle tissue can severely impact health, mobility, and quality-of-life. Efforts to restore muscle function by implanting tissue engineered muscle grafts at the site of damage have demonstrated limited restoration of force production. Various forms of mechanical and biochemical stimulation have been shown to have a potentially beneficial impact on graft maturation, vascularization, and innervation. However, these approaches yield unpredictable and incomplete recovery of functional mobility. Here we show that targeted actuation of implanted grafts, via non-invasive transcutaneous light stimulation of optogenetic engineered muscle, restores motor function to levels similar to healthy mice 2 weeks post-injury. Furthermore, we conduct phosphoproteomic analysis of actuated engineered muscle in vivo and in vitro to show that repeated muscle contraction alters signaling pathways that play key roles in skeletal muscle contractility, adaptation to injury, neurite growth, neuromuscular synapse formation, angiogenesis, and cytoskeletal remodeling. Our study uncovers changes in phosphorylation of several proteins previously unreported in the context of muscle contraction, revealing promising mechanisms for leveraging actuated muscle grafts to restore mobility after volumetric muscle loss.
Collapse
Affiliation(s)
- Erin Rousseau
- Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Ritu Raman
- Department of Mechanical Engineering, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA.
| | - Tigist Tamir
- Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA; Department of Biological Engineering, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Angel Bu
- Department of Mechanical Engineering, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Shriya Srinivasan
- Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Naomi Lynch
- Department of Mechanical Engineering, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Forest M White
- Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA; Department of Biological Engineering, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Michael J Cima
- Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| |
Collapse
|
25
|
Whytock KL, Pino MF, Sun Y, Yu G, De Carvalho FG, Yeo RX, Vega RB, Parmar G, Divoux A, Kapoor N, Yi F, Cornnell H, Patten DA, Harper ME, Gardell SJ, Smith SR, Walsh MJ, Sparks LM. Comprehensive interrogation of human skeletal muscle reveals a dissociation between insulin resistance and mitochondrial capacity. Am J Physiol Endocrinol Metab 2023; 325:E291-E302. [PMID: 37584609 PMCID: PMC11901339 DOI: 10.1152/ajpendo.00143.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
Insulin resistance and blunted mitochondrial capacity in skeletal muscle are often synonymous, however, this association remains controversial. The aim of this study was to perform an in-depth multifactorial comparison of skeletal muscle mitochondrial capacity between individuals who were lean and active (Active, n = 9), individuals with obesity (Obese, n = 9), and individuals with obesity, insulin resistance, and type 2 diabetes (T2D, n = 22). Mitochondrial capacity was assessed by ex vivo mitochondrial respiration with fatty-acid and glycolytic-supported protocols adjusted for mitochondrial content (mtDNA and citrate synthase activity). Supercomplex assembly was measured by Blue Native (BN)-PAGE and immunoblot. Tricarboxylic (TCA) cycle intermediates were assessed with targeted metabolomics. Exploratory transcriptomics and DNA methylation analyses were performed to uncover molecular differences affecting mitochondrial function among the three groups. We reveal no discernable differences in skeletal muscle mitochondrial content, mitochondrial capacity, supercomplex assembly, TCA cycle intermediates, and mitochondrial molecular profiles between obese individuals with and without T2D that had comparable levels of confounding factors (body mass index, age, and aerobic capacity). We highlight that lean, active individuals have greater mitochondrial content, mitochondrial capacity, supercomplex assembly, and TCA cycle intermediates. These phenotypical changes are reflected at the level of DNA methylation and gene transcription. The collective observation of comparable muscle mitochondrial capacity in individuals with obesity and T2D (vs. individuals without T2D) underscores a dissociation from skeletal muscle insulin resistance. Clinical trial number: NCT01911104.NEW & NOTEWORTHY Whether impaired mitochondrial capacity contributes to skeletal muscle insulin resistance is debated. Our multifactorial analysis shows no differences in skeletal muscle mitochondrial content, mitochondrial capacity, and mitochondrial molecular profiles between obese individuals with and without T2D that had comparable levels of confounding factors (BMI, age, aerobic capacity). We highlight that lean, active individuals have enhanced skeletal muscle mitochondrial capacity that is also reflected at the level of DNA methylation and gene transcription.
Collapse
Affiliation(s)
- Katie L Whytock
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Maria F Pino
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Yifei Sun
- Icahn School of Medicine at Mount Sinai, New York City, New York, United States
| | - GongXin Yu
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | | | - Reichelle X Yeo
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Rick B Vega
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Gaganvir Parmar
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Adeline Divoux
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Nidhi Kapoor
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Fancaho Yi
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Heather Cornnell
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - David A Patten
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Stephen J Gardell
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Steven R Smith
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Martin J Walsh
- Icahn School of Medicine at Mount Sinai, New York City, New York, United States
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| |
Collapse
|
26
|
Jacques M, Landen S, Romero JA, Hiam D, Schittenhelm RB, Hanchapola I, Shah AD, Voisin S, Eynon N. Methylome and proteome integration in human skeletal muscle uncover group and individual responses to high-intensity interval training. FASEB J 2023; 37:e23184. [PMID: 37698381 DOI: 10.1096/fj.202300840rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023]
Abstract
Exercise is a major beneficial contributor to muscle metabolism, and health benefits acquired by exercise are a result of molecular shifts occurring across multiple molecular layers (i.e., epigenome, transcriptome, and proteome). Identifying robust, across-molecular level targets associated with exercise response, at both group and individual levels, is paramount to develop health guidelines and targeted health interventions. Sixteen, apparently healthy, moderately trained (VO2 max = 51.0 ± 10.6 mL min-1 kg-1 ) males (age range = 18-45 years) from the Gene SMART (Skeletal Muscle Adaptive Responses to Training) study completed a longitudinal study composed of 12-week high-intensity interval training (HIIT) intervention. Vastus lateralis muscle biopsies were collected at baseline and after 4, 8, and 12 weeks of HIIT. DNA methylation (~850 CpG sites) and proteomic (~3000 proteins) analyses were conducted at all time points. Mixed models were applied to estimate group and individual changes, and methylome and proteome integration was conducted using a holistic multilevel approach with the mixOmics package. A total of 461 proteins significantly changed over time (at 4, 8, and 12 weeks), whilst methylome overall shifted with training only one differentially methylated position (DMP) was significant (adj.p-value < .05). K-means analysis revealed cumulative protein changes by clusters of proteins that presented similar changes over time. Individual responses to training were observed in 101 proteins. Seven proteins had large effect-sizes >0.5, among them are two novel exercise-related proteins, LYRM7 and EPN1. Integration analysis showed bidirectional relationships between the methylome and proteome. We showed a significant influence of HIIT on the epigenome and more so on the proteome in human muscle, and uncovered groups of proteins clustering according to similar patterns across the exercise intervention. Individual responses to exercise were observed in the proteome with novel mitochondrial and metabolic proteins consistently changed across individuals. Future work is required to elucidate the role of these proteins in response to exercise.
Collapse
Affiliation(s)
- Macsue Jacques
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Shanie Landen
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Javier Alvarez Romero
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Danielle Hiam
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
- Institute of Nutrition and Health Sciences, Deakin University, Melbourne, Victoria, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility, Monash University, Melbourne, Victoria, Australia
| | - Iresha Hanchapola
- Monash Proteomics & Metabolomics Facility, Monash University, Melbourne, Victoria, Australia
| | - Anup D Shah
- Monash Proteomics & Metabolomics Facility, Monash University, Melbourne, Victoria, Australia
| | - Sarah Voisin
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
27
|
Landen S, Jacques M, Hiam D, Alvarez-Romero J, Schittenhelm RB, Shah AD, Huang C, Steele JR, Harvey NR, Haupt LM, Griffiths LR, Ashton KJ, Lamon S, Voisin S, Eynon N. Sex differences in muscle protein expression and DNA methylation in response to exercise training. Biol Sex Differ 2023; 14:56. [PMID: 37670389 PMCID: PMC10478435 DOI: 10.1186/s13293-023-00539-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Exercise training elicits changes in muscle physiology, epigenomics, transcriptomics, and proteomics, with males and females exhibiting differing physiological responses to exercise training. However, the molecular mechanisms contributing to the differing adaptations between the sexes are poorly understood. METHODS We performed a meta-analysis for sex differences in skeletal muscle DNA methylation following an endurance training intervention (Gene SMART cohort and E-MTAB-11282 cohort). We investigated for sex differences in the skeletal muscle proteome following an endurance training intervention (Gene SMART cohort). Lastly, we investigated whether the methylome and proteome are associated with baseline cardiorespiratory fitness (maximal oxygen consumption; VO2max) in a sex-specific manner. RESULTS Here, we investigated for the first time, DNA methylome and proteome sex differences in response to exercise training in human skeletal muscle (n = 78; 50 males, 28 females). We identified 92 DNA methylation sites (CpGs) associated with exercise training; however, no CpGs changed in a sex-dependent manner. In contrast, we identified 189 proteins that are differentially expressed between the sexes following training, with 82 proteins differentially expressed between the sexes at baseline. Proteins showing the most robust sex-specific response to exercise include SIRT3, MRPL41, and MBP. Irrespective of sex, cardiorespiratory fitness was associated with robust methylome changes (19,257 CpGs) and no proteomic changes. We did not observe sex differences in the association between cardiorespiratory fitness and the DNA methylome. Integrative multi-omic analysis identified sex-specific mitochondrial metabolism pathways associated with exercise responses. Lastly, exercise training and cardiorespiratory fitness shifted the DNA methylomes to be more similar between the sexes. CONCLUSIONS We identified sex differences in protein expression changes, but not DNA methylation changes, following an endurance exercise training intervention; whereas we identified no sex differences in the DNA methylome or proteome response to lifelong training. Given the delicate interaction between sex and training as well as the limitations of the current study, more studies are required to elucidate whether there is a sex-specific training effect on the DNA methylome. We found that genes involved in mitochondrial metabolism pathways are differentially modulated between the sexes following endurance exercise training. These results shed light on sex differences in molecular adaptations to exercise training in skeletal muscle.
Collapse
Affiliation(s)
- Shanie Landen
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Macsue Jacques
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Danielle Hiam
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | | | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Facility, Monash University, Melbourne, Australia
| | - Anup D Shah
- Monash Proteomics and Metabolomics Facility, Monash University, Melbourne, Australia
| | - Cheng Huang
- Monash Proteomics and Metabolomics Facility, Monash University, Melbourne, Australia
| | - Joel R Steele
- Monash Proteomics and Metabolomics Facility, Monash University, Melbourne, Australia
| | - Nicholas R Harvey
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, 4226, Australia
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Larisa M Haupt
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Lyn R Griffiths
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Kevin J Ashton
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, 4226, Australia
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Sarah Voisin
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
28
|
Giri AK, Prasad G, Parekatt V, Rajashekar D, Tandon N, Bharadwaj D. Epigenome-wide methylation study identified two novel CpGs associated with T2DM risk and a network of co-methylated CpGs capable of patient's classifications. Hum Mol Genet 2023; 32:2576-2586. [PMID: 37184252 DOI: 10.1093/hmg/ddad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023] Open
Abstract
Prevention of Type 2 diabetes mellitus (T2DM) pandemic needs markers that can precisely predict the disease risk in an individual. Alterations in DNA methylations due to exposure towards environmental risk factors are widely sought markers for T2DM risk prediction. To identify such individual DNA methylation signatures and their effect on disease risk, we performed an epigenome-wide association study (EWAS) in 844 Indian individuals of Indo-European origin. We identified and validated methylation alterations at two novel CpG sites in MIR1287 (cg01178710) and EDN2-SCMH1 (cg04673737) genes associated with T2DM risk at the epigenome-wide-significance-level (P < 1.2 × 10-7). Further, we also replicated the association of two known CpG sites in TXNIP, and CPT1A in the Indian population. With 535 EWAS significant CpGs (P < 1.2 × 10-7) identified in the discovery phase samples, we created a co-methylation network using weighted correlation network analysis and identified four modules among the CpGs. We observed that methylation of one of the module associates with T2DM risk factors (e.g. BMI, insulin and C-peptide) and can be used as markers to segregate T2DM patients with good glycemic control (e.g. low HbA1c) and dyslipidemia (low HDL and high TG) from the other patients. Additionally, an intronic SNP (rs6503650) in the JUP gene, a member of the same module, associated with methylation at all the 14 hub CpG sites of that module as methQTL. Our network-assisted EWAS is the first to systematically explore DNA methylation variations conferring risks to T2DM in Indians and use the identified risk CpG sites for patient segregation with different clinical outcomes. These findings can be useful for better stratification of patients to improve the clinical management and treatment effects.
Collapse
Affiliation(s)
- Anil K Giri
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gauri Prasad
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vaisak Parekatt
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Donaka Rajashekar
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Nikhil Tandon
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Dwaipayan Bharadwaj
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
29
|
Furrer R, Hawley JA, Handschin C. The molecular athlete: exercise physiology from mechanisms to medals. Physiol Rev 2023; 103:1693-1787. [PMID: 36603158 PMCID: PMC10110736 DOI: 10.1152/physrev.00017.2022] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Human skeletal muscle demonstrates remarkable plasticity, adapting to numerous external stimuli including the habitual level of contractile loading. Accordingly, muscle function and exercise capacity encompass a broad spectrum, from inactive individuals with low levels of endurance and strength to elite athletes who produce prodigious performances underpinned by pleiotropic training-induced muscular adaptations. Our current understanding of the signal integration, interpretation, and output coordination of the cellular and molecular mechanisms that govern muscle plasticity across this continuum is incomplete. As such, training methods and their application to elite athletes largely rely on a "trial-and-error" approach, with the experience and practices of successful coaches and athletes often providing the bases for "post hoc" scientific enquiry and research. This review provides a synopsis of the morphological and functional changes along with the molecular mechanisms underlying exercise adaptation to endurance- and resistance-based training. These traits are placed in the context of innate genetic and interindividual differences in exercise capacity and performance, with special consideration given to aging athletes. Collectively, we provide a comprehensive overview of skeletal muscle plasticity in response to different modes of exercise and how such adaptations translate from "molecules to medals."
Collapse
Affiliation(s)
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | | |
Collapse
|
30
|
Patel P, Selvaraju V, Babu JR, Geetha T. Association of the DNA Methylation of Obesity-Related Genes with the Dietary Nutrient Intake in Children. Nutrients 2023; 15:2840. [PMID: 37447167 DOI: 10.3390/nu15132840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The occurrence of obesity stems from both genetic and external influences. Despite thorough research and attempts to address it through various means such as dietary changes, physical activity, education, and medications, a lasting solution to this widespread problem remains elusive. Nutrients play a crucial role in various cellular processes, including the regulation of gene expression. One of the mechanisms by which nutrients can affect gene expression is through DNA methylation. This modification can alter the accessibility of DNA to transcription factors and other regulatory proteins, thereby influencing gene expression. Nutrients such as folate and vitamin B12 are involved in the one-carbon metabolism pathway, which provides the methyl groups necessary for DNA methylation. Studies have shown that the inadequate intake of these nutrients can lead to alterations in DNA methylation patterns. For this study, we aim to understand the differences in the association of the dietary intake between normal weight and overweight/obese children and between European American and African American children with the DNA methylation of the three genes NRF1, FTO, and LEPR. The research discovered a significant association between the nutritional intake of 6-10-years-old children, particularly the methyl donors present in their diet, and the methylation of the NRF1, FTO, and LEPR genes. Additionally, the study emphasizes the significance of considering health inequalities, particularly family income and maternal education, when investigating the epigenetic impact of methyl donors in diet and gene methylation.
Collapse
Affiliation(s)
- Priyadarshni Patel
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | | | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
31
|
Mannar V, Boro H, Patel D, Agstam S, Dalvi M, Bundela V. Epigenetics of the Pathogenesis and Complications of Type 2 Diabetes Mellitus. TOUCHREVIEWS IN ENDOCRINOLOGY 2023; 19:46-53. [PMID: 37313245 PMCID: PMC10258626 DOI: 10.17925/ee.2023.19.1.46] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/23/2023] [Indexed: 06/15/2023]
Abstract
Epigenetics of type 2 diabetes mellitus (T2DM) has widened our knowledge of various aspects of the disease. The aim of this review is to summarize the important epigenetic changes implicated in the disease risks, pathogenesis, complications and the evolution of therapeutics in our current understanding of T2DM. Studies published in the past 15 years, from 2007 to 2022, from three primary platforms namely PubMed, Google Scholar and Science Direct were included. Studies were searched using the primary term 'type 2 diabetes and epigenetics' with additional terms such as 'risks', 'pathogenesis', 'complications of diabetes' and 'therapeutics'. Epigenetics plays an important role in the transmission of T2DM from one generation to another. Epigenetic changes are also implicated in the two basic pathogenic components of T2DM, namely insulin resistance and impaired insulin secretion. Hyperglycaemia-i nduced permanent epigenetic modifications of the expression of DNA are responsible for the phenomenon of metabolic memory. Epigenetics influences the development of micro-and macrovascular complications of T2DM. They can also be used as biomarkers in the prediction of these complications. Epigenetics has expanded our understanding of the action of existing drugs such as metformin, and has led to the development of newer targets to prevent vascular complications. Epigenetic changes are involved in almost all aspects of T2DM, from risks, pathogenesis and complications, to the development of newer therapeutic targets.
Collapse
Affiliation(s)
- Velmurugan Mannar
- Department of Medicine, Aarupadai Veedu Medical College, Puducherry, India
| | - Hiya Boro
- Department of Endocrinology and Metabolism, Aadhar Health Institute, Hisar, India
| | - Deepika Patel
- Department of Endocrinology, Mediheal Hospital, Nairobi, Kenya
| | - Sourabh Agstam
- Department of Cardiology, VMMC and Safdarjung Hospital, New Delhi, India
| | - Mazhar Dalvi
- Department of Endocrinology, Mediclinic Al Noor Hospital, Abu Dhabi, United Arab Emirates
| | - Vikash Bundela
- Department of Gastroenterology, Aadhar Health Institute, Hisar, India
| |
Collapse
|
32
|
Liu S, Liu Y, Liu Z, Hu Y, Jiang M. A review of the signaling pathways of aerobic and anaerobic exercise on atherosclerosis. J Cell Physiol 2023; 238:866-879. [PMID: 36890781 DOI: 10.1002/jcp.30989] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/10/2023]
Abstract
Atherosclerosis (AS), a chronic inflammatory vascular disease with lipid metabolism abnormalities, is one of the major pathological bases of coronary heart disease. As people's lifestyles and diets change, the incidence of AS increases yearly. Physical activity and exercise training have recently been identified as effective strategies for lowering cardiovascular disease (CVD) risk. However, the best exercise mode to ameliorate the risk factors related to AS is not clear. The effect of exercise on AS is affected by the type of exercise, intensity, and duration. In particular, aerobic and anaerobic exercise are the two most widely discussed types of exercise. During exercise, the cardiovascular system undergoes physiological changes via various signaling pathways. The review aims to summarize signaling pathways related to AS in two different exercise types and provide new ideas for the prevention and treatment of AS in clinical practice.
Collapse
Affiliation(s)
- Sibo Liu
- The QUEEN MARY School, Nanchang University, Nanchang, China
| | - Yuhe Liu
- Medical Collage of Hebei University of Engineering, Handan, China
| | - Zhihan Liu
- The QUEEN MARY School, Nanchang University, Nanchang, China
| | - Yansong Hu
- The QUEEN MARY School, Nanchang University, Nanchang, China
| | - Meixiu Jiang
- The Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
33
|
Kaimala S, Ansari SA, Emerald BS. DNA methylation in the pathogenesis of type 2 diabetes. VITAMINS AND HORMONES 2023; 122:147-169. [PMID: 36863792 DOI: 10.1016/bs.vh.2022.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Type 2 diabetes (T2D) is a metabolic disease characterized by the development of β-cell dysfunction with hepatic, muscular and adipose tissue insulin resistance. Although the molecular mechanisms leading to its development are not entirely known, investigations of its causes reveal a multifactorial contribution to its development and progression in most cases. In addition, regulatory interactions mediated by epigenetic modifications such as DNA methylation, histone tail modifications and regulatory RNAs have been found to play a significant role in the etiology of T2D. In this chapter, we discuss the role of DNA methylation and its dynamics in the development of the pathological features of T2D.
Collapse
Affiliation(s)
- Suneesh Kaimala
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
34
|
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, Zheng MH, Li F, Yuan LQ, Li ZH. Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Signal Transduct Target Ther 2023; 8:98. [PMID: 36864020 PMCID: PMC9981733 DOI: 10.1038/s41392-023-01333-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/02/2023] [Accepted: 01/18/2023] [Indexed: 03/04/2023] Open
Abstract
Epigenetics regulates gene expression and has been confirmed to play a critical role in a variety of metabolic diseases, such as diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), osteoporosis, gout, hyperthyroidism, hypothyroidism and others. The term 'epigenetics' was firstly proposed in 1942 and with the development of technologies, the exploration of epigenetics has made great progresses. There are four main epigenetic mechanisms, including DNA methylation, histone modification, chromatin remodelling, and noncoding RNA (ncRNA), which exert different effects on metabolic diseases. Genetic and non-genetic factors, including ageing, diet, and exercise, interact with epigenetics and jointly affect the formation of a phenotype. Understanding epigenetics could be applied to diagnosing and treating metabolic diseases in the clinic, including epigenetic biomarkers, epigenetic drugs, and epigenetic editing. In this review, we introduce the brief history of epigenetics as well as the milestone events since the proposal of the term 'epigenetics'. Moreover, we summarise the research methods of epigenetics and introduce four main general mechanisms of epigenetic modulation. Furthermore, we summarise epigenetic mechanisms in metabolic diseases and introduce the interaction between epigenetics and genetic or non-genetic factors. Finally, we introduce the clinical trials and applications of epigenetics in metabolic diseases.
Collapse
Affiliation(s)
- Yan-Lin Wu
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zheng-Jun Lin
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Fuxingzi Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Zhi-Hong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
35
|
Appropriate exercise might have some benefits for both mothers and their babies via epigenesis. Hypertens Res 2023; 46:762-764. [PMID: 36635528 DOI: 10.1038/s41440-022-01166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 01/14/2023]
|
36
|
Wierzbicka A, Świątkiewicz M, Tyra M, Szmatoła T, Oczkowicz M. Effect of different doses of cholecalciferol and calcidiol on meat quality parameters and skeletal muscle transcriptome profiles in swine. Meat Sci 2023; 197:109071. [PMID: 36512856 DOI: 10.1016/j.meatsci.2022.109071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Skeletal muscle tissue is one of the potential targets for vitamin D actions. There are indications that vitamin D supplementation to swine has a positive effect on meat quality. However, these issues need further study, especially in terms of response to the use of different forms of vitamin D. We carried out a multi-purpose study to compare the effects of cholecalciferol and calcidiol on meat quality and muscle tissue transcriptome. Meat quality assessment and gene expression analysis were performed on longissimus dorsi samples collected from swine fed grower/finisher diets containing 2000 IU cholecalciferol/1500 IU cholecalciferol per kg (n = 8), 3000 IU cholecalciferol/2500 IU cholecalciferol per kg (n = 10), 2000 IU cholecalciferol +1000 IU calcidiol/1500 IU cholecaliferol +1000 IU calcidiol per kg (n = 8), and 2000 IU calcidiol/1500 IU calcidiol per kg (n = 8). The results suggest that increasing the dose of cholecalciferol and using calcidiol in the diet of finishers may improve meat texture parameters (shear force P = 0,014, toughness P = 0,048, cohesiveness P = 0,017, resilience P = 0,002). Shear force (68.46 N-51.42 N) and toughness (145.85 N-114.52 N) decreased the most under the effect of increasing cholecalciferol dosage. In turn, cohesiveness (0.60 N-0.65 N) and resilience (0.23 N-0.28 N) increased most strongly under the use of cholecalciferol+calcidiol. Moreover, the results indicate no significant effect of increasing cholecalciferol dose and use calcidiol in the swine diet on muscle tissue transcriptome.
Collapse
Affiliation(s)
- Alicja Wierzbicka
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Ul. Krakowska 1, 32-083 Balice, Poland.
| | - Małgorzata Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Ul. Krakowska 1, 32-083 Balice, Poland.
| | - Mirosław Tyra
- Department of Pig Breeding, National Research Institute of Animal Production, Ul. Krakowska 1, 32-083 Balice, Poland.
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Ul. Krakowska 1, 32-083 Balice, Poland; Center for Experimental and Innovative Medicine, The University of Agriculture in Kraków, Rędzina 1c, 30 248 Kraków, Poland.
| | - Maria Oczkowicz
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Ul. Krakowska 1, 32-083 Balice, Poland.
| |
Collapse
|
37
|
da Silva Rodrigues G, Noronha NY, Almeida ML, Sobrinho ACDS, Watanabe LM, Pinhel MADS, de Lima JGR, Zhang R, Nonino CB, Alves CRR, Bueno Júnior CR. Exercise training modifies the whole blood DNA methylation profile in middle-aged and older women. J Appl Physiol (1985) 2023; 134:610-621. [PMID: 36701486 DOI: 10.1152/japplphysiol.00237.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This is a longitudinal single-arm clinical trial aimed to investigate whether exercise training would modify the whole blood methylation profile in healthy women. A total of 45 subjects were engaged in an exercise training protocol during a 14-wk follow up, consisting of aerobic cardiorespiratory and muscle strength exercises. Subjects were evaluated at baseline (PRE), after 7 wk of exercise training (POST 7), and after 14 wk of exercise training (POST 14). Functional primary outcomes included anthropometric, blood pressure, biochemical measurements, physical tests, and global health assessments. Blood samples were collected at each time point to determine the methylation profile using a DNA methylation array technique screening up to 850k different sites. Exercise training decreased blood pressure and triglyceride levels and enhanced physical performance, including upper- and lower-body maximum strength. Moreover, exercise training improved markers of quality of life. In the array analysis, 14 wk of exercise training changed the methylation of more than 800 sites. Across these differentially methylated sites, we found that differentially methylated sites in the promoter region were more hypermethylated after exercise training, suggesting that this hypermethylation process may affect the transcription process. When inputting the differentially methylated sites in pathway analysis, we found several metabolic pathways, including AMPK signaling, TGF-β signaling, and insulin signaling. This study demonstrates that exercise training promotes a robust change in the whole blood methylation profile and provides new insights into the key regulators of exercise-induced benefits.NEW & NOTEWORTHY We have shown that exercise training lowers blood pressure and triglyceride levels, improves physical performance, and improves quality of life in middle-aged and elderly women. Regarding epigenetic data, we noticed that more than 800 sites are differentially methylated in whole blood after physical training. We emphasize that the differentially methylated sites in the promoter region are more hypermethylated after physical training. In addition, this study shows that key members of metabolic pathways, including AMPK signaling, TGF-β signaling, and insulin signaling, are among the genes hypermethylated after physical exercise in older women.
Collapse
Affiliation(s)
| | - Natália Y Noronha
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Mariana L Almeida
- College of Nursing of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Andressa C da S Sobrinho
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Lígia M Watanabe
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Marcela A de S Pinhel
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - João G R de Lima
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Ren Zhang
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Carla B Nonino
- Health Sciences Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Christiano R R Alves
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Carlos R Bueno Júnior
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.,College of Nursing of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.,School of Physical Education and Sport of Ribeirão Preto, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
38
|
Low HC, Chilian WM, Ratnam W, Karupaiah T, Md Noh MF, Mansor F, Ng ZX, Pung YF. Changes in Mitochondrial Epigenome in Type 2 Diabetes Mellitus. Br J Biomed Sci 2023; 80:10884. [PMID: 36866104 PMCID: PMC9970885 DOI: 10.3389/bjbs.2023.10884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023]
Abstract
Type 2 Diabetes Mellitus is a major chronic metabolic disorder in public health. Due to mitochondria's indispensable role in the body, its dysfunction has been implicated in the development and progression of multiple diseases, including Type 2 Diabetes mellitus. Thus, factors that can regulate mitochondrial function, like mtDNA methylation, are of significant interest in managing T2DM. In this paper, the overview of epigenetics and the mechanism of nuclear and mitochondrial DNA methylation were briefly discussed, followed by other mitochondrial epigenetics. Subsequently, the association between mtDNA methylation with T2DM and the challenges of mtDNA methylation studies were also reviewed. This review will aid in understanding the impact of mtDNA methylation on T2DM and future advancements in T2DM treatment.
Collapse
Affiliation(s)
- Hui Ching Low
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - William M. Chilian
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Wickneswari Ratnam
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Tilakavati Karupaiah
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University Lakeside Campus, Subang Jaya, Selangor, Malaysia
| | - Mohd Fairulnizal Md Noh
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institute of Health, Setia Alam, Shah Alam, Malaysia
| | - Fazliana Mansor
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institute of Health, Setia Alam, Shah Alam, Malaysia
| | - Zhi Xiang Ng
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Yuh Fen Pung
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia,*Correspondence: Yuh Fen Pung,
| |
Collapse
|
39
|
Hunter DJ, James LS, Hussey B, Ferguson RA, Lindley MR, Mastana SS. Impacts of Eccentric Resistance Exercise on DNA Methylation of Candidate Genes for Inflammatory Cytokines in Skeletal Muscle and Leukocytes of Healthy Males. Genes (Basel) 2023; 14:478. [PMID: 36833405 PMCID: PMC9957508 DOI: 10.3390/genes14020478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Physical inactivity and a poor diet increase systemic inflammation, while chronic inflammation can be reduced through exercise and nutritional interventions. The mechanisms underlying the impacts of lifestyle interventions on inflammation remain to be fully explained; however, epigenetic modifications may be critical. The purpose of our study was to investigate the impacts of eccentric resistance exercise and fatty acid supplementation on DNA methylation and mRNA expression of TNF and IL6 in skeletal muscle and leukocytes. Eight non-resistance exercise-trained males completed three bouts of isokinetic eccentric contractions of the knee extensors. The first bout occurred at baseline, the second occurred following a three-week supplementation of either omega-3 polyunsaturated fatty acid or extra virgin olive oil and the final bout occurred after eight-weeks of eccentric resistance training and supplementation. Acute exercise decreased skeletal muscle TNF DNA methylation by 5% (p = 0.031), whereas IL6 DNA methylation increased by 3% (p = 0.01). Leukocyte DNA methylation was unchanged following exercise (p > 0.05); however, three hours post-exercise the TNF DNA methylation decreased by 2% (p = 0.004). In skeletal muscle, increased TNF and IL6 mRNA expression levels were identified immediately post-exercise (p < 0.027); however, the leukocyte mRNA expression was unchanged. Associations between DNA methylation and markers of exercise performance, inflammation and muscle damage were identified (p < 0.05). Acute eccentric resistance exercise is sufficient to induce tissue-specific DNA methylation modifications to TNF and IL6; however, neither eccentric training nor supplementation was sufficient to further modify the DNA methylation.
Collapse
Affiliation(s)
- David John Hunter
- Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| | - Lynsey S. James
- Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| | - Bethan Hussey
- Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| | - Richard A. Ferguson
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| | - Martin R. Lindley
- Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
- School of Biomedical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sarabjit S. Mastana
- Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| |
Collapse
|
40
|
Restoring Epigenetic Reprogramming with Diet and Exercise to Improve Health-Related Metabolic Diseases. Biomolecules 2023; 13:biom13020318. [PMID: 36830687 PMCID: PMC9953584 DOI: 10.3390/biom13020318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Epigenetic reprogramming predicts the long-term functional health effects of health-related metabolic disease. This epigenetic reprogramming is activated by exogenous or endogenous insults, leading to altered healthy and different disease states. The epigenetic and environmental changes involve a roadmap of epigenetic networking, such as dietary components and exercise on epigenetic imprinting and restoring epigenome patterns laid down during embryonic development, which are paramount to establishing youthful cell type and health. Nutrition and exercise are among the most well-known environmental epigenetic factors influencing the proper developmental and functional lifestyle, with potential beneficial or detrimental effects on health status. The diet and exercise strategies applied from conception could represent an innovative epigenetic target for preventing and treating human diseases. Here, we describe the potential role of diet and exercise as therapeutic epigenetic strategies for health and diseases, highlighting putative future perspectives in this field.
Collapse
|
41
|
Impaired muscle stem cell function and abnormal myogenesis in acquired myopathies. Biosci Rep 2023; 43:232343. [PMID: 36538023 PMCID: PMC9829652 DOI: 10.1042/bsr20220284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle possesses a high plasticity and a remarkable regenerative capacity that relies mainly on muscle stem cells (MuSCs). Molecular and cellular components of the MuSC niche, such as immune cells, play key roles to coordinate MuSC function and to orchestrate muscle regeneration. An abnormal infiltration of immune cells and/or imbalance of pro- and anti-inflammatory cytokines could lead to MuSC dysfunctions that could have long lasting effects on muscle function. Different genetic variants were shown to cause muscular dystrophies that intrinsically compromise MuSC function and/or disturb their microenvironment leading to impaired muscle regeneration that contributes to disease progression. Alternatively, many acquired myopathies caused by comorbidities (e.g., cardiopulmonary or kidney diseases), chronic inflammation/infection, or side effects of different drugs can also perturb MuSC function and their microenvironment. The goal of this review is to comprehensively summarize the current knowledge on acquired myopathies and their impact on MuSC function. We further describe potential therapeutic strategies to restore MuSC regenerative capacity.
Collapse
|
42
|
Li Z, Wang XQ. Clinical effect and biological mechanism of exercise for rheumatoid arthritis: A mini review. Front Immunol 2023; 13:1089621. [PMID: 36685485 PMCID: PMC9852831 DOI: 10.3389/fimmu.2022.1089621] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
Rheumatoid arthritis (RA) is a common systematic, chronic inflammatory, autoimmune, and polyarticular disease, causing a range of clinical manifestations, including joint swelling, redness, pain, stiffness, fatigue, decreased quality of life, progressive disability, cardiovascular problems, and other comorbidities. Strong evidence has shown that exercise is effective for RA treatment in various clinical domains. Exercise training for relatively longer periods (e.g., ≥ 12 weeks) can decrease disease activity of RA. However, the mechanism underlying the effectiveness of exercise in reducing RA disease activity remains unclear. This review first summarizes and highlights the effectiveness of exercise in RA treatment. Then, we integrate current evidence and propose biological mechanisms responsible for the potential effects of exercise on immune cells and immunity, inflammatory response, matrix metalloproteinases, oxidative stress, and epigenetic regulation. However, a large body of evidence was obtained from the non-RA populations. Future studies are needed to further examine the proposed biological mechanisms responsible for the effectiveness of exercise in decreasing disease activity in RA populations. Such knowledge will contribute to the basic science and strengthen the scientific basis of the prescription of exercise therapy for RA in the clinical routine.
Collapse
Affiliation(s)
- Zongpan Li
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Sport Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Sport Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
43
|
Cai Y, Wang M, Zong Y, Li C, Fu S, Xie K. Demethylation of miR-299-5p by aerobic exercise relieves insulin resistance in the vascular endothelium by repressing resistin. Diabetes Res Clin Pract 2023; 195:110176. [PMID: 36427628 DOI: 10.1016/j.diabres.2022.110176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/13/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
AIMS Insulin resistance (IR) is a critical marker underlying type 2 diabetes mellitus (T2DM). Exercise is reported to prevent IR, yet the mechanism of which is complicated and largely unknown. Here, the study aimed to ascertain whether and how aerobic exercise mediates IR in T2DM. METHODS An in vivo model of high-fat diet (HFD)-induced IR and an in vitro model of high-glucose-induced IR were constructed. RESULTS Aerobic exercise training in mice led to attenuation of IR in the vascular endothelium. microRNA-299-5p (miR-299-5p) expression was deficient in T2MD, which could be restored by aerobic exercise through modulating the DNA methylation modification enzymes. The expression of miR-299-5p enhanced by aerobic exercise consequently resulted in ameliorating the IR in vivo. Furthermore, increased levels of nitric oxide (NO), reduced levels of Angiotensin II (Ang II), vascular endothelial growth factor (VEGF), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6) in response to miR-299-5p elevation suggested the anti-IR role of miR-299-5p in IR-cell model. Dual-luciferase reporter and ChIP assays identified that miR-299-5p could bind to resistin and hence repressed the resistin level. CONCLUSION The key observation of the study is that aerobic exercise stimulates miR-299-5p-targeted resistin inhibition through demethylation, which underlies the mechanism of reducing IR.
Collapse
Affiliation(s)
- Ying Cai
- Department of Rehabilitation Medicine, Xiangya Hospital Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, PR China
| | - Mingzhu Wang
- Department of Rehabilitation Medicine, Xiangya Hospital Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, PR China
| | - Yujiao Zong
- Department of Rehabilitation Medicine, Xiangya Hospital Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, PR China
| | - Cui Li
- Department of Rehabilitation Medicine, Xiangya Hospital Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, PR China
| | - Siqian Fu
- Department of Rehabilitation Medicine, Xiangya Hospital Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, PR China
| | - Kangling Xie
- Department of Rehabilitation Medicine, Xiangya Hospital Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, PR China.
| |
Collapse
|
44
|
Gevaert AB, Wood N, Boen JRA, Davos CH, Hansen D, Hanssen H, Krenning G, Moholdt T, Osto E, Paneni F, Pedretti RFE, Plösch T, Simonenko M, Bowen TS. Epigenetics in the primary and secondary prevention of cardiovascular disease: influence of exercise and nutrition. Eur J Prev Cardiol 2022; 29:2183-2199. [PMID: 35989414 DOI: 10.1093/eurjpc/zwac179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 01/11/2023]
Abstract
Increasing evidence links changes in epigenetic systems, such as DNA methylation, histone modification, and non-coding RNA expression, to the occurrence of cardiovascular disease (CVD). These epigenetic modifications can change genetic function under influence of exogenous stimuli and can be transferred to next generations, providing a potential mechanism for inheritance of behavioural intervention effects. The benefits of exercise and nutritional interventions in the primary and secondary prevention of CVD are well established, but the mechanisms are not completely understood. In this review, we describe the acute and chronic epigenetic effects of physical activity and dietary changes. We propose exercise and nutrition as potential triggers of epigenetic signals, promoting the reshaping of transcriptional programmes with effects on CVD phenotypes. Finally, we highlight recent developments in epigenetic therapeutics with implications for primary and secondary CVD prevention.
Collapse
Affiliation(s)
- Andreas B Gevaert
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Campus Drie Eiken D.T.228, Universiteitsplein 1, Antwerp 2610, Belgium.,Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Nathanael Wood
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jente R A Boen
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Campus Drie Eiken D.T.228, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Constantinos H Davos
- Cardiovascular Research Laboratory, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Dominique Hansen
- Department of Cardiology, Heart Center Hasselt, Jessa Hospital, Hasselt, Belgium.,BIOMED-REVAL-Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
| | - Henner Hanssen
- Department of Sport, Exercise and Health, Sports and Exercise Medicine, Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Trine Moholdt
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian Institute of Science and Technology (NTNU), Trondheim, Norway.,Department of Women's Health, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Elena Osto
- Institute of Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland.,University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Laboratory of Translational Nutrition Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Francesco Paneni
- University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Roberto F E Pedretti
- Cardiovascular Department, IRCCS MultiMedica, Care and Research Institute, Milan, Italy
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Perinatal Neurobiology, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Maria Simonenko
- Physiology Research and Blood Circulation Department, Cardiopulmonary Exercise Test SRL, Federal State Budgetary Institution, 'V.A. Almazov National Medical Research Centre' of the Ministry of Health of the Russian Federation, Saint-Petersburg, Russian Federation
| | - T Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
45
|
Wu Y, Zou H. Research Progress on Mitochondrial Dysfunction in Diabetic Retinopathy. Antioxidants (Basel) 2022; 11:2250. [PMID: 36421435 PMCID: PMC9686704 DOI: 10.3390/antiox11112250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 09/07/2023] Open
Abstract
Diabetic Retinopathy (DR) is one of the most important microvascular complications of diabetes mellitus, which can lead to blindness in severe cases. Mitochondria are energy-producing organelles in eukaryotic cells, which participate in metabolism and signal transduction, and regulate cell growth, differentiation, aging, and death. Metabolic changes of retinal cells and epigenetic changes of mitochondria-related genes under high glucose can lead to mitochondrial dysfunction and induce mitochondrial pathway apoptosis. In addition, mitophagy and mitochondrial dynamics also change adaptively. These mechanisms may be related to the occurrence and progression of DR, and also provide valuable clues for the prevention and treatment of DR. This article reviews the mechanism of DR induced by mitochondrial dysfunction, and the prospects for related treatment.
Collapse
Affiliation(s)
- Yiwei Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
46
|
Wang K, Liu H, Hu Q, Wang L, Liu J, Zheng Z, Zhang W, Ren J, Zhu F, Liu GH. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct Target Ther 2022; 7:374. [PMID: 36336680 PMCID: PMC9637765 DOI: 10.1038/s41392-022-01211-8] [Citation(s) in RCA: 243] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Aging is accompanied by the decline of organismal functions and a series of prominent hallmarks, including genetic and epigenetic alterations. These aging-associated epigenetic changes include DNA methylation, histone modification, chromatin remodeling, non-coding RNA (ncRNA) regulation, and RNA modification, all of which participate in the regulation of the aging process, and hence contribute to aging-related diseases. Therefore, understanding the epigenetic mechanisms in aging will provide new avenues to develop strategies to delay aging. Indeed, aging interventions based on manipulating epigenetic mechanisms have led to the alleviation of aging or the extension of the lifespan in animal models. Small molecule-based therapies and reprogramming strategies that enable epigenetic rejuvenation have been developed for ameliorating or reversing aging-related conditions. In addition, adopting health-promoting activities, such as caloric restriction, exercise, and calibrating circadian rhythm, has been demonstrated to delay aging. Furthermore, various clinical trials for aging intervention are ongoing, providing more evidence of the safety and efficacy of these therapies. Here, we review recent work on the epigenetic regulation of aging and outline the advances in intervention strategies for aging and age-associated diseases. A better understanding of the critical roles of epigenetics in the aging process will lead to more clinical advances in the prevention of human aging and therapy of aging-related diseases.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Huicong Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Qinchao Hu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- Hospital of Stomatology, Sun Yat-sen University, 510060, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 510060, Guangzhou, China
| | - Lingna Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Jiaqing Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Zikai Zheng
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jie Ren
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Fangfang Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China.
| |
Collapse
|
47
|
Frasca D. Several areas of overlap between obesity and aging indicate obesity as a biomarker of accelerated aging of human B cell function and antibody responses. Immun Ageing 2022; 19:48. [PMID: 36289515 PMCID: PMC9598013 DOI: 10.1186/s12979-022-00301-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022]
Abstract
Aging and obesity are high risk factors for several conditions and diseases. They are both associated with systemic inflammation and they are both ameliorated by a healthy life style, suggesting that they may share cellular and molecular pathways and underlying mechanisms. A close relationship between aging and obesity is also supported by the observation that the aging overweight/obese population is increasing worldwide, and mechanisms involved will be presented here. A focus of our work is to evaluate if obesity may be considered a good biomarker of accelerated aging of human antibody responses. We will summarize our published results showing the effects of obesity in accelerating age defects in the peripheral B cell pool and how these lead to dysfunctional humoral immunity.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, RMSB 3153, 1600 NW 10th Ave, Miami, FL, 33136, USA.
| |
Collapse
|
48
|
miR-539-5p regulates Srebf1 transcription in the skeletal muscle of diabetic mice by targeting DNA methyltransferase 3b. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:718-732. [PMID: 36090753 PMCID: PMC9439965 DOI: 10.1016/j.omtn.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 08/10/2022] [Indexed: 11/24/2022]
Abstract
Aberrant DNA methylation is associated with diabetes, but the precise regulatory events that control the levels and activity of DNA methyltransferases (DNMTs) is not well understood. Here we show that miR-539-5p targets Dnmt3b and regulates its cellular levels. miR-539-5p and Dnmt3b show inverse patterns of expression in skeletal muscle of diabetic mice. By binding to the 3′ UTR of Dnmt3b, miR-539-5p downregulates its levels in C2C12 cells and in human primary skeletal muscle cells. miR-539-5p-Dnmt3b interaction regulates Srebf1 transcription by altering methylation at CpG islands within Srebf1 in C2C12 cells. Dnmt3b inhibition alone was sufficient to upregulate Srebf1 transcription. In vivo antagonism of miR-539-5p in normal mice induced hyperglycemia and hyperinsulinemia and impaired oral glucose tolerance. These mice had elevated Dnmt3b and decreased Srebf1 levels in skeletal muscle. db/db mice injected with miR-539-5p mimics showed improved circulatory glucose and cholesterol levels. Oral glucose tolerance improved together with normalization of Dnmt3b and Srebf1 levels in skeletal muscle. Our results support a critical role of miR-539-5p and Dnmt3b in aberrant skeletal muscle metabolism during diabetes by regulating Srebf1 transcription; modulating the miR-539-5p-Dnmt3b axis might have therapeutic potential for addressing altered skeletal muscle physiology during insulin resistance and type 2 diabetes.
Collapse
|
49
|
Ling C, Bacos K, Rönn T. Epigenetics of type 2 diabetes mellitus and weight change - a tool for precision medicine? Nat Rev Endocrinol 2022; 18:433-448. [PMID: 35513492 DOI: 10.1038/s41574-022-00671-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 12/12/2022]
Abstract
Pioneering studies performed over the past few decades demonstrate links between epigenetics and type 2 diabetes mellitus (T2DM), the metabolic disorder with the most rapidly increasing prevalence in the world. Importantly, these studies identified epigenetic modifications, including altered DNA methylation, in pancreatic islets, adipose tissue, skeletal muscle and the liver from individuals with T2DM. As non-genetic factors that affect the risk of T2DM, such as obesity, unhealthy diet, physical inactivity, ageing and the intrauterine environment, have been associated with epigenetic modifications in healthy individuals, epigenetics probably also contributes to T2DM development. In addition, genetic factors associated with T2DM and obesity affect the epigenome in human tissues. Notably, causal mediation analyses found DNA methylation to be a potential mediator of genetic associations with metabolic traits and disease. In the past few years, translational studies have identified blood-based epigenetic markers that might be further developed and used for precision medicine to help patients with T2DM receive optimal therapy and to identify patients at risk of complications. This Review focuses on epigenetic mechanisms in the development of T2DM and the regulation of body weight in humans, with a special focus on precision medicine.
Collapse
Affiliation(s)
- Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden.
| | - Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Tina Rönn
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
50
|
Van Dyck L, Güiza F, Derese I, Pauwels L, Casaer MP, Hermans G, Wouters PJ, Van den Berghe G, Vanhorebeek I. DNA methylation alterations in muscle of critically ill patients. J Cachexia Sarcopenia Muscle 2022; 13:1731-1740. [PMID: 35274472 PMCID: PMC9178166 DOI: 10.1002/jcsm.12970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/15/2021] [Accepted: 02/21/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Intensive care unit (ICU)-acquired weakness can persist beyond ICU stay and has been associated with long-term functional impairment of ICU survivors. Recently, DNA methylation alterations were found in the blood of ICU patients, partially explaining long-term developmental impairment of critically ill children. As illness-induced aberrant DNA methylation theoretically could also be involved in long-term weakness, we investigated whether the DNA methylation signature in muscle of adult critically ill patients differs from that in muscle of healthy controls. METHODS Genome-wide methylation was determined (Infinium® HumanMethylationEPIC BeadChips) in DNA extracted from skeletal muscle biopsies that had been collected on Day 8 ± 1 in ICU from 172 EPaNIC-trial patients [66% male sex, median age 62.7 years, median body mass index (BMI) 25.9 kg/m2 ] and 20 matched healthy controls (70% male sex, median age 58.0 years, median BMI 24.4 kg/m2 ). Methylation status of individual cytosine-phosphate-guanine (CpG) sites of patients and controls was compared with F-tests, using the Benjamini-Hochberg false discovery rate to correct for multiple comparisons. Differential methylation of DNA regions was assessed with bump hunting, with 1000 permutations assessing uncertainty, expressed as family-wise error rate. Gene expression was investigated for 10 representative affected genes. RESULTS In DNA from ICU patients, 565 CpG sites, associated with 400 unique genes, were differentially methylated as compared with controls (average difference 3.2 ± 0.1% ranging up to 16.9%, P < 0.00005). Many of the associated genes appeared highly relevant for muscle structure and function/weakness, including genes involved in myogenesis, muscle regeneration, nerve/muscle membrane excitability, muscle denervation/re-innervation, axon guidance/myelination/degeneration/regeneration, synapse function, ion channelling with especially calcium signalling, metabolism (glucose, protein, and fat), insulin signalling, neuroendocrine hormone regulation, mitochondrial function, autophagy, apoptosis, oxidative stress, Wnt signalling, transcription regulation, muscle fat infiltration during regeneration, and fibrosis. In patients as compared with controls, we also identified two hypomethylated regions, spanning 18 and 3 CpG sites in the promoters of the HIC1 and NADK2 genes, respectively (average differences 5.8 ± 0.01% and 12.1 ± 0.04%, family-wise error rate <0.05). HIC1 and NADK2 play important roles in muscle regeneration and postsynaptic acetylcholine receptors and in mitochondrial processes, respectively. Nine of 10 investigated genes containing DNA methylation alterations were differentially expressed in patients as compared with controls (P ≤ 0.03). CONCLUSIONS Critically ill patients present with a different DNA methylation signature in skeletal muscle as compared with healthy controls, which in theory could provide a biological basis for long-term persistence of weakness in ICU survivors. TRIAL REGISTRATION ClinicalTrials.gov: NCT00512122, registered on 31 July 2007.
Collapse
Affiliation(s)
- Lisa Van Dyck
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Fabian Güiza
- Clinical Division of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Inge Derese
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lies Pauwels
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Michaël P Casaer
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,Clinical Division of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Greet Hermans
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Pieter J Wouters
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,Clinical Division of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Greet Van den Berghe
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,Clinical Division of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ilse Vanhorebeek
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|