1
|
McCrimmon RJ. Remembrance of things past: The consequences of recurrent hypoglycaemia in diabetes. Diabet Med 2022; 39:e14973. [PMID: 36251572 PMCID: PMC10015985 DOI: 10.1111/dme.14973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 01/18/2023]
Abstract
AIMS People with type 1 and type 2 diabetes still frequently experience hypoglycaemia, which can be severe, leading to loss of consciousness. This review will examine the cellular consequences of recurrent hypoglycaemia. METHODS This review, based on the Dorothy Hodgkin Lecture given at the Diabetes UK 2022 annual symposium by the author, will discuss our current understanding of the mechanisms by which hypoglycaemia is detected and the consequences of recurrent exposure to hypoglycaemia. RESULTS Glucose-responsive cells found in the periphery as well as multiple areas of the brain are organised in a classical sensori-motor integrative network encompassing peripheral, hindbrain and hypothalamic components. The mechanism used by glucose-responsive neurons to detect hypoglycaemia parallel those of the classical glucose sensor the pancreatic ß-cell, namely in their use of glucokinase, KATP channels and AMP-activated protein kinase. Recurrent exposure to hypoglycaemia results in a series of cellular adaptations that may be designed to increase the resilience of cells to future hypoglycaemia. This review also highlights how hypoglycaemia, as an oxidative stressor, may also exacerbate chronic hyperglycaemia-induced increases in oxidative stress and inflammation, leading to damage to vulnerable brain regions. CONCLUSIONS Impaired awareness of hypoglycaemia follows the adaptation of central glucose-responsive neurons to repeated hypoglycaemia and may represent a form of memory called habituation. In diabetes, recurrent hypoglycaemia may have tissue consequences as a result of a profound disruption in the cellular response to a hypoglycaemic challenge that increases vulnerability to oxidative damage.
Collapse
Affiliation(s)
- Rory J. McCrimmon
- Systems Medicine, School of MedicineUniversity of Dundee, Ninewells Hospital and Medical SchoolDundeeUK
| |
Collapse
|
2
|
Merchant HJ, McNeilly AD. Hypoglycaemia: Still the main drawback of insulin 100 years on: "From man to mouse". Diabet Med 2021; 38:e14721. [PMID: 34653271 DOI: 10.1111/dme.14721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/27/2022]
Abstract
One hundred years on from the initial discovery of insulin, we take this opportunity to reflect on the scientific discoveries that have improved so many lives. From its original crude form, insulin therapy has improved significantly over the past century. Despite this, hypoglycaemia remains an ever-present fear for people with Type 1 diabetes. As such, it is essential that research now looks to minimise the frequency and severity of insulin-induced hypoglycaemia and its complications, some of which can be life-threatening. Over the last century, one thing that has become apparent is the success and need for translational diabetes research. From its origin in dogs, insulin treatment has revolutionised the lives of those with Type 1 diabetes through the coordinated effort of scientists and clinicians. In this review, we recount the more recent research that uses a mouse-to-man approach, specifically in hypoglycaemia research.
Collapse
|
3
|
Emerging Concepts in Brain Glucose Metabolic Functions: From Glucose Sensing to How the Sweet Taste of Glucose Regulates Its Own Metabolism in Astrocytes and Neurons. Neuromolecular Med 2018; 20:281-300. [DOI: 10.1007/s12017-018-8503-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/13/2018] [Indexed: 12/16/2022]
|
4
|
Lontchi-Yimagou E, You JY, Carey M, Gabriely I, Shamoon H, Hawkins M. Potential approaches to prevent hypoglycemia-associated autonomic failure. J Investig Med 2018; 66:641-647. [PMID: 29141871 PMCID: PMC6338223 DOI: 10.1136/jim-2017-000582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2017] [Indexed: 01/27/2023]
Abstract
Clear health benefits are associated with intensive glucose control in type 1 diabetes mellitus (T1DM). However, maintaining near-normal glycemia remains an elusive goal for many patients, in large part owing to the risk of severe hypoglycemia. In fact, recurrent episodes of hypoglycemia lead to 'hypoglycemia-associated autonomic failure' (HAAF), characterized by defective counter-regulatory responses to hypoglycemia. Extensive studies to understand the mechanisms underlying HAAF have revealed multiple potential etiologies, suggesting various approaches to prevent the development of HAAF. In this review, we present an overview of the literature focused on pharmacological approaches that may prevent the development of HAAF. The purported underlying mechanisms of HAAF include: 1) central mechanisms (opioid receptors, ATP-sensitive K+(KATP) channels, adrenergic receptors, serotonin selective receptor inhibitors, γ-aminobuyric acid receptors, N-methyl D-aspartate receptors); 2) hormones (cortisol, estrogen, dehydroepiandrosterone (DHEA) or DHEA sulfate, glucagon-like peptide-1) and 3) nutrients (fructose, free fatty acids, ketones), all of which have been studied vis-à-vis their ability to impact the development of HAAF. A careful review of the current literature reveals many promising therapeutic approaches to treat or reduce this important limitation to optimal glycemic control.
Collapse
Affiliation(s)
- Eric Lontchi-Yimagou
- Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jee Young You
- Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Michelle Carey
- Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Ilan Gabriely
- Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Harry Shamoon
- Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Meredith Hawkins
- Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
5
|
Haythorne E, Hamilton DL, Findlay JA, Beall C, McCrimmon RJ, Ashford MLJ. Chronic exposure to K ATP channel openers results in attenuated glucose sensing in hypothalamic GT1-7 neurons. Neuropharmacology 2016; 111:212-222. [PMID: 27618741 DOI: 10.1016/j.neuropharm.2016.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/06/2016] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
Abstract
Individuals with Type 1 diabetes (T1D) are often exposed to recurrent episodes of hypoglycaemia. This reduces hormonal and behavioural responses that normally counteract low glucose in order to maintain glucose homeostasis, with altered responsiveness of glucose sensing hypothalamic neurons implicated. Although the molecular mechanisms are unknown, pharmacological studies implicate hypothalamic ATP-sensitive potassium channel (KATP) activity, with KATP openers (KCOs) amplifying, through cell hyperpolarization, the response to hypoglycaemia. Although initial findings, using acute hypothalamic KCO delivery, in rats were promising, chronic exposure to the KCO NN414 worsened the responses to subsequent hypoglycaemic challenge. To investigate this further we used GT1-7 cells to explore how NN414 affected glucose-sensing behaviour, the metabolic response of cells to hypoglycaemia and KATP activity. GT1-7 cells exposed to 3 or 24 h NN414 exhibited an attenuated hyperpolarization to subsequent hypoglycaemic challenge or NN414, which correlated with diminished KATP activity. The reduced sensitivity to hypoglycaemia was apparent 24 h after NN414 removal, even though intrinsic KATP activity recovered. The NN414-modified glucose responsiveness was not associated with adaptations in glucose uptake, metabolism or oxidation. KATP inactivation by NN414 was prevented by the concurrent presence of tolbutamide, which maintains KATP closure. Single channel recordings indicate that NN414 alters KATP intrinsic gating inducing a stable closed or inactivated state. These data indicate that exposure of hypothalamic glucose sensing cells to chronic NN414 drives a sustained conformational change to KATP, probably by binding to SUR1, that results in loss of channel sensitivity to intrinsic metabolic factors such as MgADP and small molecule agonists.
Collapse
Affiliation(s)
- Elizabeth Haythorne
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK.
| | - D Lee Hamilton
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK.
| | - John A Findlay
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK.
| | - Craig Beall
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK.
| | - Rory J McCrimmon
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK.
| | - Michael L J Ashford
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK.
| |
Collapse
|
6
|
Martín-Timón I, del Cañizo-Gómez FJ. Mechanisms of hypoglycemia unawareness and implications in diabetic patients. World J Diabetes 2015; 6:912-926. [PMID: 26185599 PMCID: PMC4499525 DOI: 10.4239/wjd.v6.i7.912] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/30/2014] [Accepted: 04/02/2015] [Indexed: 02/05/2023] Open
Abstract
Hypoglycemia unawareness (HU) is defined at the onset of neuroglycopenia before the appearance of autonomic warning symptoms. It is a major limitation to achieving tight diabetes and reduced quality of life. HU occurs in approximately 40% of people with type 1 diabetes mellitus (T1DM) and with less frequency in T2DM. Though the aetiology of HU is multifactorial, possible mechanisms include chronic exposure to low blood glucose, antecedent hypoglycaemia, recurrent severe hypoglycaemia and the failure of counter-regulatory hormones. Clinically it manifests as the inability to recognise impeding hypoglycaemia by symptoms, but the mechanisms and mediators remain largely unknown. Prevention and management of HU is complex, and can only be achieved by a multifactorial intervention of clinical care and structured patient education by the diabetes team. Less know regarding the impact of medications on the development or recognition of this condition in patients with diabetes. Several medications are thought to worsen or promote HU, whereas others may have an attenuating effect on the problem. This article reviews recent advances in how the brain senses and responds to hypoglycaemia, novel mechanisms by which people with insulin-treated diabetes develop HU and impaired counter-regulatory responses. The consequences that HU has on the person with diabetes and their family are also described. Finally, it examines the evidence for prevention and treatment of HU, and summarizes the effects of medications that may influence it.
Collapse
|
7
|
George PS, Tavendale R, Palmer CNA, McCrimmon RJ. Diazoxide improves hormonal counterregulatory responses to acute hypoglycemia in long-standing type 1 diabetes. Diabetes 2015; 64:2234-41. [PMID: 25591873 DOI: 10.2337/db14-1539] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/07/2015] [Indexed: 11/13/2022]
Abstract
Individuals with long-standing type 1 diabetes (T1D) are at increased risk of severe hypoglycemia secondary to impairments in normal glucose counterregulatory responses (CRRs). Strategies to prevent hypoglycemia are often ineffective, highlighting the need for novel therapies. ATP-sensitive potassium (KATP) channels within the hypothalamus are thought to be integral to hypoglycemia detection and initiation of CRRs; however, to date this has not been confirmed in human subjects. In this study, we examined whether the KATP channel-activator diazoxide was able to amplify the CRR to hypoglycemia in T1D subjects with long-duration diabetes. A randomized, double-blind, placebo-controlled cross-over trial using a stepped hyperinsulinemic hypoglycemia clamp was performed in 12 T1D subjects with prior ingestion of diazoxide (7 mg/kg) or placebo. Diazoxide resulted in a 37% increase in plasma levels of epinephrine and a 44% increase in plasma norepinephrine during hypoglycemia compared with placebo. In addition, a subgroup analysis revealed that the response to oral diazoxide was blunted in participants with E23K polymorphism in the KATP channel. This study has therefore shown for the first time the potential utility of KATP channel activators to improve CRRs to hypoglycemia in individuals with T1D and, moreover, that it may be possible to stratify therapeutic approaches by genotype.
Collapse
Affiliation(s)
- Priya S George
- Division of Diabetes and Cardiovascular Medicine, Medical Research Institute, Ninewells Hospital and Medical School, Dundee, Scotland, U.K.
| | - Roger Tavendale
- The Pat McPherson Centre for Pharmacogenomics & Pharmacogenetics, Medical Research Institute, Ninewells Hospital and Medical School, Dundee, Scotland, U.K
| | - Colin N A Palmer
- The Pat McPherson Centre for Pharmacogenomics & Pharmacogenetics, Medical Research Institute, Ninewells Hospital and Medical School, Dundee, Scotland, U.K
| | - Rory J McCrimmon
- Division of Diabetes and Cardiovascular Medicine, Medical Research Institute, Ninewells Hospital and Medical School, Dundee, Scotland, U.K
| |
Collapse
|
8
|
Chan O, Sherwin R. Influence of VMH fuel sensing on hypoglycemic responses. Trends Endocrinol Metab 2013; 24:616-24. [PMID: 24063974 PMCID: PMC3909530 DOI: 10.1016/j.tem.2013.08.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/20/2013] [Accepted: 08/27/2013] [Indexed: 12/12/2022]
Abstract
Hypoglycemia produces complex neural and hormonal responses that restore glucose levels to normal. Glucose, metabolic substrates and their transporters, neuropeptides and neurotransmitters alter the firing rate of glucose-sensing neurons in the ventromedial hypothalamus (VMH); these monitor energy status and regulate the release of neurotransmitters that instigate a suitable counter-regulatory response. Under normal physiological conditions, these mechanisms maintain blood glucose concentrations within narrow margins. However, antecedent hypoglycemia and diabetes can lead to adaptations within the brain that impair counter-regulatory responses. Clearly, the mechanisms employed to detect and regulate the response to hypoglycemia, and the pathophysiology of defective counter-regulation in diabetes, are complex and need to be elucidated to permit the development of therapies that prevent or reduce the risk of hypoglycemia.
Collapse
Affiliation(s)
- Owen Chan
- Yale University School of Medicine, Department of Internal Medicine - Section of Endocrinology, New Haven, CT, 06520 U.S.A
| | - Robert Sherwin
- Yale University School of Medicine, Department of Internal Medicine - Section of Endocrinology, New Haven, CT, 06520 U.S.A
| |
Collapse
|
9
|
Beall C, Haythorne E, Fan X, Du Q, Jovanovic S, Sherwin RS, Ashford MLJ, McCrimmon RJ. Continuous hypothalamic K(ATP) activation blunts glucose counter-regulation in vivo in rats and suppresses K(ATP) conductance in vitro. Diabetologia 2013; 56:2088-92. [PMID: 23793715 DOI: 10.1007/s00125-013-2970-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/23/2013] [Indexed: 11/28/2022]
Abstract
AIMS/HYPOTHESIS Acute systemic delivery of the sulfonylurea receptor (SUR)-1-specific ATP-sensitive K(+) channel (K(ATP)) opener, NN414, has been reported to amplify glucose counter-regulatory responses (CRRs) in rats exposed to hypoglycaemia. Thus, we determined whether continuous NN414 could prevent hypoglycaemia-induced defective counter-regulation. METHODS Chronically catheterised male Sprague-Dawley rats received a continuous infusion of NN414 into the third ventricle for 8 days after implantation of osmotic minipumps. Counter-regulation was examined by hyperinsulinaemic-hypoglycaemic clamp on day 8 after three episodes of insulin-induced hypoglycaemia (recurrent hypoglycaemia [RH]) on days 5, 6 and 7. In a subset of rats exposed to RH, NN414 infusion was terminated on day 7 to wash out NN414 before examination of counter-regulation on day 8. To determine whether continuous NN414 exposure altered K(ATP) function, we used the hypothalamic glucose-sensing GT1-7 cell line, which expresses the SUR-1-containing K(ATP) channel. RESULTS Continuous exposure to NN414 in the setting of RH increased, rather than decreased, the glucose infusion rate (GIR), as exemplified by attenuated adrenaline (epinephrine) secretion. Termination of NN414 on day 7 with subsequent washout for 24 h partially diminished the GIR. The same duration of exposure of GT1-7 cells to NN414 substantially reduced K(ATP) conductance, which was also reversed on washout of the agonist. The suppression of K(ATP) current was not associated with reduced channel subunit mRNA or protein levels. CONCLUSIONS/INTERPRETATION These data indicate that continuous K(ATP) activation results in suppressed CRRs to hypoglycaemia in vivo, which in vitro is associated with the reversible conversion of KATP into a stable inactive state.
Collapse
Affiliation(s)
- Craig Beall
- Cardiovascular and Diabetes Medicine, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY Scotland, UK
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- Philip E Cryer
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
11
|
Beall C, Ashford ML, McCrimmon RJ. The physiology and pathophysiology of the neural control of the counterregulatory response. Am J Physiol Regul Integr Comp Physiol 2011; 302:R215-23. [PMID: 22071156 DOI: 10.1152/ajpregu.00531.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Despite significant technological and pharmacological advancements, insulin replacement therapy fails to adequately replicate β-cell function, and so glucose control in type 1 diabetes mellitus (T1D) is frequently erratic, leading to periods of hypoglycemia. Moreover, the counterregulatory response (CRR) to falling blood glucose is impaired in diabetes, leading to an increased risk of severe hypoglycemia. It is now clear that the brain plays a significant role in the development of defective glucose counterregulation and impaired hypoglycemia awareness in diabetes. In this review, the basic intracellular glucose-sensing mechanisms are discussed, as well as the neural networks that respond to and coordinate the body's response to a hypoglycemic challenge. Subsequently, we discuss how the body responds to repeated hypoglycemia and how these adaptations may explain, at least in part, the development of impaired glucose counterregulation in diabetes.
Collapse
Affiliation(s)
- Craig Beall
- Medical Research Institute, Division of Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, Univ. of Dundee, Dundee, DD1 9SY, United Kingdom
| | | | | |
Collapse
|
12
|
Affiliation(s)
- Philip E Cryer
- Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
13
|
Current literature in diabetes. Diabetes Metab Res Rev 2009; 25:i-xii. [PMID: 19405078 DOI: 10.1002/dmrr.973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|