1
|
Tsai ML, Shen SP, Chen YT, Chiu HY, Lin HY, Cheng HW, Kuo YW, Lin JH, Wang HS, Huang YY, Li CM, Chin YH, Ho HH, Lin HC. Effects of phototherapy combined with Lactobacillus salivarius AP-32 or Bifidobacterium animalis subsp. lactis CP-9 on improving neonatal jaundice and gut microbiome health: a randomized double-blind clinical study. Nutr J 2025; 24:73. [PMID: 40346590 PMCID: PMC12065217 DOI: 10.1186/s12937-025-01126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/02/2025] [Indexed: 05/11/2025] Open
Abstract
Neonatal jaundice is a common condition observed in newborns shortly after birth, making it one of the most frequent health concerns during the first two weeks of life. This study, conducted between May 2019 and July 2023, enrolled 300 full-term infants with bilirubin levels exceeding 15 mg/dL on the fourth day after birth. The infants were recruited and randomly assigned in equal numbers to one of three groups for further investigation. In addition to the control group, the other two groups of infants received probiotic supplementation administered twice daily, with each capsule delivering 5 × 10⁹ CFU of either Lactobacillus salivarius AP-32 or Bifidobacterium animalis subsp. lactis CP-9. Both probiotic groups significantly reduced the overall duration of phototherapy and accelerated the rate of bilirubin reduction compared to the control group. The AP-32 group experienced a significant reduction in hospitalization duration, staying seven hours less than the placebo group (P = 0.024). Analysis of gut microbiota revealed that the probiotic groups significantly enhanced microbial diversity in the intestines of neonates. The AP-32 group showed a significant increase in the abundance of L. salivarius, while the CP-9 group demonstrated a notable enhancement in the abundance of B. animalis. These findings suggest that integrating phototherapy with probiotic supplementation may enhance jaundice clearance increasing the abundance of beneficial gut bacteria, thereby facilitating the recovery of neonates.
Collapse
Affiliation(s)
- Ming-Luen Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Division of Neonatology, China Medical University Children's Hospital, Taichung, Taiwan
| | - Shang-Po Shen
- Division of Neonatology, China Medical University Children's Hospital, Taichung, Taiwan
| | - Yin-Ting Chen
- Division of Neonatology, China Medical University Children's Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Hsiao-Yu Chiu
- Division of Neonatology, China Medical University Children's Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hsiang-Yu Lin
- Division of Neonatology, China Medical University Children's Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Hao-Wen Cheng
- Division of Neonatology, China Medical University Children's Hospital, Taichung, Taiwan
| | - Yi-Wei Kuo
- Research and Development Department, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Jia-Hung Lin
- Research and Development Department, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Hui-Shan Wang
- Research and Development Department, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yen-Yu Huang
- Research and Development Department, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Ching-Min Li
- Research and Development Department, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yu-Hshun Chin
- Research and Development Department, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Hsieh-Hsun Ho
- Research and Development Department, Glac Biotech Co., Ltd., Tainan City, Taiwan.
| | - Hung-Chih Lin
- Division of Neonatology, China Medical University Children's Hospital, Taichung, Taiwan.
- Asia University Hospital, Asia University, Taichung, Taiwan.
| |
Collapse
|
2
|
Chen X, Yan L, Yang J, Xu C, Yang L. The impact of probiotics on oxidative stress and inflammatory markers in patients with diabetes: a meta-research of meta-analysis studies. Front Nutr 2025; 12:1552358. [PMID: 40123937 PMCID: PMC11926743 DOI: 10.3389/fnut.2025.1552358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 01/28/2025] [Indexed: 03/25/2025] Open
Abstract
Objective Probiotic supplementation has gained attention for its potential to modulate inflammatory and oxidative stress biomarkers, particularly in metabolic disorders. This meta-analysis evaluates the effects of probiotics on C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), malondialdehyde (MDA), total antioxidant capacity (TAC), glutathione (GSH), and nitric oxide (NO) in patients with diabetes. Methods A Meta-Research was conducted on 15 meta-analyses of unique 33 randomized controlled trials (RCTs) published between 2015 and 2022, involving 26 to 136 participants aged 26 to 66 years. Data were synthesized using standardized mean differences (SMD), with sensitivity analysis using a random-effect model. Results Probiotic supplementation significantly reduced CRP (SMD = -0.79, 95% CI: -1.19, -0.38), TNF-α (SMD = -1.35, 95% CI: -2.05, -0.66), and MDA levels (WMD: -0.82, 95% CI: -1.16, -0.47). Probiotics increased GSH (SMD = 1.00, 95% CI: 0.41, 1.59), TAC (SMD = 0.48, 95% CI: 0.27, 0.69), and NO (SMD = 0.60, 95% CI: 0.30, 0.91). Result on IL-6 was not significant (SMD = -0.29, 95% CI: -0.66, 0.09). Sensitivity analyses confirmed robustness. Conclusion Probiotics significantly improved inflammatory and oxidative stress biomarkers in patients with diabetes, with variations influenced by population and dosage. Future studies should explore novel probiotic strains and longer interventions.
Collapse
Affiliation(s)
- Xi Chen
- Department of Endocrinology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Lijun Yan
- Department of Geriatric Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jie Yang
- Department of Endocrinology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Chenlong Xu
- Department of Laboratory Medicine, Ningbo Yinzhou No.2 Hospital, Ningbo, China
| | - Lv Yang
- Department of Laboratory Medicine, Ningbo Yinzhou No.2 Hospital, Ningbo, China
| |
Collapse
|
3
|
Zhong H, Yu Y, Abdullah, Zhang H, Du J, Sun J, Chen L, Feng F, Guan R. Lactiplantibacillus plantarum N1 derived lipoteichoic acid alleviates insulin resistance in association with modulation of the gut microbiota and amino acid metabolism. Food Funct 2025; 16:1371-1388. [PMID: 39877991 DOI: 10.1039/d4fo06100d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
This study aimed to investigate the effects of heat-killed Lactiplantibacillus plantarum N1 (HK-N1) and lipoteichoic acid (LTA) derived from it on alleviating insulin resistance by modulating the gut microbiota and amino acid metabolism. High-fat diet (HFD)-fed mice were administered live bacteria or HK-N1, and the results demonstrated that HK-N1 significantly reduced epididymal adipocyte size and serum low density lipoprotein-cholesterol, and improved insulin resistance by increasing the YY peptide and glucagon-like peptide levels. HK-N1 also modulated the gut microbiome composition, enhancing microbiota uniformity and reducing the abundance of Ruminococcus, Oscillospira and norank_f_Mogibacteriaceae. Three main active substances obtained from HK-N1 (membrane protein, peptidoglycan, and lipoteichoic acid) were also used to investigate their potential effects in hyperglycemic zebrafish. Only LTA reduced blood sugar and altered the gut microbiome, particularly reducing Aeromonas, which is positively related to hyperglycemia. Untargeted metabolomics revealed that LTA improved vitamin and amino acid metabolism, thereby alleviating metabolic disorders in zebrafish. Collectively, our findings indicate that HK-N1, primarily through LTA, modulated insulin sensitivity by regulating the gut microbiota and amino acid metabolism, offering a potential therapeutic strategy for insulin resistance and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yufen Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Abdullah
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Haoxuan Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Juan Du
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- Hangzhou Kangyuan Food Science & Technology Co., Ltd, Hangzhou 310012, China
| | - Jiangwei Sun
- Sanya Branch of Hainan Academy of Inspection and Testing, Shanghai 201700, China
| | - Ling Chen
- Sanya Branch of Hainan Food and Drug Inspection Institute, San Ya, 572011, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
4
|
Noori M, Shateri Z, Babajafari S, Eskandari MH, Parastouei K, Ghasemi M, Afshari H, Samadi M. The effect of probiotic-fortified kefir on depression, appetite, oxidative stress, and inflammatory parameters in Iranian overweight and obese elderly: a randomized, double-blind, placebo-controlled clinical trial. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2025; 44:30. [PMID: 39920878 PMCID: PMC11806806 DOI: 10.1186/s41043-025-00773-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/26/2025] [Indexed: 02/09/2025]
Abstract
BACKGROUND It has been shown that the microflora of the gastrointestinal tract undergoes changes in obese individuals. The present study aimed to investigate the effect of kefir fortified with two strains, Lactobacillus helveticus and Bifidobacterium longum, on depression, appetite, oxidative stress, and inflammatory parameters in overweight and obese elderly individuals. METHODS This study was a double-blind, randomized, and placebo-controlled clinical trial conducted on 67 elderly men aged over 65, who were randomly divided into two groups. One group (n = 35) received one bottle (240 cc) of regular kefir as a placebo, while the intervention group (n = 32) received one bottle of probiotic-fortified kefir for eight weeks. Depression and appetite were evaluated using the Geriatric Depression Scale-15 (GDS-15) and a validated Visual Analogue Scale (VAS), respectively. Oxidative stress parameters were assessed using the standard calorimetric method, and inflammatory parameters were measured via the enzyme-linked immunosorbent assay method (ELISA). The differences between the two groups were compared using the independent samples T-test. RESULTS The median age of participant in both groups was 65 years. A significant difference in depression scores and the mean change between the two groups was observed after eight weeks (p = 0.001 and p = 0.042, respectively). Within-group comparison revealed a significant increase in appetite scores in both groups (p < 0.05 for both). Moreover, a significant difference in the changes in total antioxidant capacity (TAC) was noted (p = 0.009). However, no significant differences were observed in other oxidative and inflammatory parameters between the two groups (p˃0.05 for all). CONCLUSIONS The results demonstrated the positive impact of two specific strains of Bifidobacterium and Lactobacillus on improving depression in the elderly. However, when comparing the two groups, no significant effects were observed on appetite, inflammation, and oxidative stress parameters, except for TAC.
Collapse
Affiliation(s)
- Mehran Noori
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zainab Shateri
- Department of Nutrition and Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Siavash Babajafari
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Karim Parastouei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Ghasemi
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hoseein Afshari
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Samadi
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Habibi A, Letafatkar N, Sattari N, Nobakht S, Rafat Z, Soltani Moghadam S, Mirdamadi A, Javid M, Jamilian P, Hassanipour S, Keivanlou MH, Amini-Salehi E. Modulation of inflammatory markers in type 2 diabetes mellitus through gut microbiome-targeted interventions: An umbrella review on meta-analyses. Clin Nutr ESPEN 2025; 65:93-104. [PMID: 39551350 DOI: 10.1016/j.clnesp.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/23/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND & AIMS Type 2 diabetes mellitus (T2DM) poses a significant global health challenge due to various lifestyle factors contributing to its prevalence and associated complications. Chronic low-grade inflammation, characterized by elevated levels of inflammatory markers such as C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), plays a pivotal role in the pathogenesis of T2DM. Modulation of the gut microbiota through microbiome-targeted therapy (MTT), including probiotics, prebiotics, and synbiotics, has emerged as a potential strategy to mitigate inflammation and improve metabolic outcomes in T2DM. METHODS A systematic review and meta-analysis were conducted following PRISMA guidelines to evaluate the impact of MTT on inflammatory markers in patients with T2DM. Searches were performed in PubMed, Scopus, and Web of Science databases up to June 2024, with inclusion criteria limited to English-language meta-analyses of randomized controlled trials (RCTs) assessing the effects of probiotics, prebiotics, or synbiotics on inflammatory markers in T2DM patients. RESULTS Ten meta-analyses met the inclusion criteria, comprising studies investigating the effects of various MTT interventions on CRP, IL-6, and TNF-α levels in T2DM patients. Meta-analysis results indicated significant reductions in CRP (SMD: -0.070; 95 % CI: -0.119 to -0.020) and TNF-α (SMD: -0.370; 95 % CI: -0.554 to -0.186) levels following MTT, while IL-6 reductions (SMD: -0.070; 95 % CI: -0.269 to 0.129) did not reach statistical significance. However, heterogeneity in study quality, intervention protocols, and participant demographics posed challenges in interpretation. CONCLUSIONS While improvements in inflammatory markers with MTT have been observed, significant limitations-such as heterogeneity in study quality and variation in intervention protocols-highlight the need for further research to confirm its efficacy and clarify underlying mechanisms. Future studies should aim to address these limitations by exploring variations in dosage, supplement formulations, and bacterial strains, which are crucial for improving the reliability and broader applicability of MTT in the management of T2DM.
Collapse
Affiliation(s)
- Arman Habibi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Negin Letafatkar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nazila Sattari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara Nobakht
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Rafat
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Arian Mirdamadi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mona Javid
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mohammad-Hossein Keivanlou
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
6
|
Talebi S, Shab-Bidar S, Askari G, Mohammadi H, Moini A, Djafarian K. Comparison of the impact of intermittent fasting diet alone or in conjunction with probiotic supplementation versus calorie-restricted diet on inflammatory, oxidative stress, and antioxidant capacity biomarkers in women with polycystic ovary syndrome: A randomized placebo-controlled trial. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2025; 30:5. [PMID: 40200973 PMCID: PMC11974602 DOI: 10.4103/jrms.jrms_280_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/08/2024] [Accepted: 07/10/2024] [Indexed: 04/10/2025]
Abstract
Background The objective of this study was to compare the effects of early time-restricted eating (eTRE) and eTRE plus probiotic supplementation to daily caloric restriction (DCR) alone in terms of biomarkers of oxidative stress (OS), antioxidant capacity, inflammation, and blood pressure (BP) in obese women with polycystic ovary syndrome (PCOS). Materials and Methods The research was conducted as a randomized, parallel, placebo-controlled clinical trial with an 8-week follow-up period. Participants were randomly assigned to one of three groups: 14:10 eTRE with probiotic supplementation (n = 30), 14:10 eTRE with placebo supplementation (n = 30), or DCR with placebo supplementation (n = 30). At the beginning and 8 weeks of the intervention, systolic blood pressure (SBP) and diastolic BP, inflammation, and OS parameters were evaluated. Results A total of 90 participants (mean age, 30.49 years and mean weight, 81.45 kg) were enrolled in this trial. After 8-week intervention, we observed SBP significantly decreased in both the eTRE + probiotic group (-0.31 mmHg [95% confidence interval (CI): -0.55, -0.07]) and the eTRE + placebo group (-0.24 mmHg [95% CI: -0.43, 0.04]), with no significant differences observed between groups. Moreover, C-reactive protein (CRP) levels were significantly reduced in all groups (P < 0.005). Total antioxidant capacity (TAC) also showed notable improvement in both the eTRE + probiotic group (P = 0.012) and the DCR group (P = 0.032). However, there were no significant differences between the three groups regarding BP, OS, TAC, and CRP markers. Conclusion It was not found that eTRE alone or eTRE with probiotics intervention resulted in improving BP, inflammatory, OS, and antioxidant capacity biomarkers than a standard DCR diet among obese women with PCOS. The present study did not reveal significant improvements in BP, inflammatory markers, OS, or antioxidant capacity with either eTRE alone or eTRE combined with probiotics compared to a standard DCR among obese women diagnosed with PCOS.Trial Register no: IRCT20121110011421N5.
Collapse
Affiliation(s)
- Sepide Talebi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Askari
- Department of Community Nutrition, Nutrition and Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Moini
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Obstetrics and Gynecology, Arash Women’s Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Chaithanya V, Kumar J, Vajravelu Leela K, Ram M, Thulukanam J. Impact of Multistrain Probiotic Supplementation on Glycemic Control in Type 2 Diabetes Mellitus-Randomized Controlled Trial. Life (Basel) 2024; 14:1484. [PMID: 39598282 PMCID: PMC11595758 DOI: 10.3390/life14111484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Hyperglycemia, a key characteristic of type 2 diabetes mellitus (T2DM), highlights the need for effective management strategies. This study aims to analyze the impact of multistrain probiotic supplementation on glycemic control in T2DM patients. During a 24-week randomized controlled trial involving 130 participants, subjects were assigned to either a probiotic group or a placebo group. The key outcomes included fasting blood glucose (FBG), postprandial blood glucose (PPBG), glycated hemoglobin (HbA1c) levels, and lipid profiles, assessed at baseline and post-intervention. The results indicated a significant reduction in HbA1c (p = 0.004) and increased HDL-c (p = 0.023) and improvements in lipid profiles in the probiotic group, alongside a trend toward decreased FBG and PPBG. No serious adverse effects were reported, indicating good tolerance of probiotics. These findings suggest that probiotics may positively influence metabolic parameters in T2DM patients, supporting their potential as a complementary dietary intervention. Further research is needed to understand the underlying mechanisms and enhance probiotic formulations for diabetic control.
Collapse
Affiliation(s)
- Venkata Chaithanya
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalapattu 603203, Tamil Nadu, India; (V.C.); (K.V.L.); (J.T.)
| | - Janardanan Kumar
- Department of General Medicine, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalapattu 603203, Tamil Nadu, India
| | - Kakithakara Vajravelu Leela
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalapattu 603203, Tamil Nadu, India; (V.C.); (K.V.L.); (J.T.)
| | - Mohan Ram
- Department of Medical Laboratory Technology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalapattu 603203, Tamil Nadu, India;
| | - Jayaprakash Thulukanam
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalapattu 603203, Tamil Nadu, India; (V.C.); (K.V.L.); (J.T.)
| |
Collapse
|
8
|
dos Santos Pereira E, de Oliveira Raphaelli C, Massaut KB, Ribeiro JA, Soares Vitola HR, Pieniz S, Fiorentini ÂM. Probiotics: Therapeutic Strategy on the Prevention and Treatment of
Inflammatory Diseases: Obesity, Type 2 Diabetes Mellitus and Celiac
Disease. CURRENT NUTRITION & FOOD SCIENCE 2024; 20:1112-1125. [DOI: 10.2174/0115734013252358231016181809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/29/2023] [Accepted: 08/24/2023] [Indexed: 01/03/2025]
Abstract
Background:
Recent evidence demonstrates the fundamental role of the gut microbiota
in inflammatory diseases, and several mechanisms of action of probiotics in improvement of inflammatory
parameters.
Objective:
The objective of this review was to relate the consumption of probiotic bacteria and its
effects on inflammatory diseases, including obesity, type II diabetes and celiac disease.
Methods:
A search was carried out in English, between the years 2011 and 2022, for research articles
and clinical trials with humans and in vivo studies. Research showed improvement in cardiovascular
risk markers, and improvement in insulin sensitivity, lipid profile and plasma atherogenic
index, in obesity with the use of probiotics. In type II diabetes, decreased levels of fasting glucose,
glycated hemoglobin, insulin and glycemic index, and increased levels of peptide 1, superoxide
dismutase and glutathione peroxidase were observed.
Results:
In addition to cellular protection of the islets of Langerhans and positive alteration of TNF-
α and IL-1β markers. Improvement in the condition of patients with celiac disease was observed,
since the neutralization of the imbalance in serotonin levels was observed, reducing the expression
of genes of interest and also, a decrease in cytokines.
Conclusion:
Therefore, the use of probiotics should be encouraged.
Collapse
Affiliation(s)
| | | | - Khadija Bezerra Massaut
- Department of Food Science and Technology, Universidade Federal de Pelotas, Pelotas, Rs, Brazil
| | - Jardel Araújo Ribeiro
- Department of Food Science and Technology, Universidade Federal de Pelotas, Pelotas, Rs, Brazil
| | | | - Simone Pieniz
- Department of Food Science and Technology, Universidade Federal de Pelotas, Pelotas, Rs, Brazil
| | - Ângela Maria Fiorentini
- Department of Food Science and Technology, Universidade Federal de Pelotas, Pelotas, Rs, Brazil
| |
Collapse
|
9
|
Kobyliak N, Khomenko M, Falalyeyeva T, Fedchenko A, Savchuk O, Tseyslyer Y, Ostapchenko L. Probiotics for pancreatic β-cell function: from possible mechanism of action to assessment of effectiveness. Crit Rev Microbiol 2024; 50:663-683. [PMID: 37705353 DOI: 10.1080/1040841x.2023.2257776] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 07/27/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Type 2 diabetes (T2D) is a metabolic disease characterized by chronic hyperglycemia because of insulin resistance (IR) and\or pancreatic β-cell dysfunction. Last century research showed that gut microbiota has a direct effect on metabolism and metabolic diseases. New studies into the human microbiome and its connection with the host is making it possible to develop new therapies for a wide variety of diseases. Inflammation is a well-known precursor to metabolic syndrome, which increases the risk of hypertension, visceral obesity, and dyslipidemia, which can lead to T2D through the damage of pancreatic β-cell and reduce insulin secretion. Current understanding for beneficial effects of probiotics in T2D strictly rely on both animal and clinical data, which mostly focused on their impact on IR, anthropometric parameters, glycemic control and markers of chronic systemic inflammation. From the other hand, there is a lack of evidence-based probiotic efficacy on pancreatic β-cell function in terms of T2D and related metabolic disorders. Therefore, current review will focus on the efficacy of probiotics for the protection of β-cells damage and it`s mechanism in patients with T2D.
Collapse
Affiliation(s)
- Nazarii Kobyliak
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
- Medical Laboratory CSD, Kyiv, Ukraine
| | - Maria Khomenko
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Tetyana Falalyeyeva
- Medical Laboratory CSD, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | | | | | | |
Collapse
|
10
|
Zikou E, Koliaki C, Makrilakis K. The Role of Fecal Microbiota Transplantation (FMT) in the Management of Metabolic Diseases in Humans: A Narrative Review. Biomedicines 2024; 12:1871. [PMID: 39200335 PMCID: PMC11352194 DOI: 10.3390/biomedicines12081871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The gut microbiota represents a complex ecosystem of trillions of microorganisms residing in the human gastrointestinal tract, which is known to interact with the host physiology and regulate multiple functions. Alterations in gut microbial composition, diversity, and function are referred to as dysbiosis. Dysbiosis has been associated with a variety of chronic diseases, including Clostridioides difficile infections, but also cardiometabolic diseases, including obesity, metabolic syndrome, and type 2 diabetes mellitus (T2DM). The implication of gut microbiota dysbiosis in the pathogenesis of both obesity and T2DM has paved the way to implementing novel therapeutic approaches for metabolic diseases through gut microbial reconfiguration. These interventions include probiotics, prebiotics, and synbiotics, while a more innovative approach has been fecal microbiota transplantation (FMT). FMT is a procedure that delivers healthy human donor stool to another individual through the gastrointestinal tract, aiming to restore gut microbiota balance. Several studies have investigated this approach as a potential tool to mitigate the adverse metabolic effects of gut microbiota aberrations associated with obesity and T2DM. The aim of the present review was to critically summarize the existing evidence regarding the clinical applications of FMT in the management of obesity and T2DM and provide an update on the potential of this method to remodel the entire host microbiota, leading thus to weight loss and sustained metabolic benefits. Safety issues, long-term efficacy, limitations, and pitfalls associated with FMT studies are further discussed, emphasizing the need for further research and standardization in certain methodological aspects in order to optimize metabolic outcomes.
Collapse
|
11
|
Keivanlou MH, Amini-Salehi E, Sattari N, Hashemi M, Saberian P, Prabhu SV, Javid M, Mirdamadi A, Heidarzad F, Bakhshi A, Letafatkar N, Zare R, Hassanipour S, Nayak SS. Gut microbiota interventions in type 2 diabetes mellitus: An umbrella review of glycemic indices. Diabetes Metab Syndr 2024; 18:103110. [PMID: 39213690 DOI: 10.1016/j.dsx.2024.103110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND We aimed to explore how probiotics, prebiotics, or synbiotics impact glycemic indices in patients with diabetes mellitus. METHOD A comprehensive search was conducted on PubMed, Scopus, and Web of Science from inception up to April 2023. The random-effects model was employed for the study analysis. Furthermore, sensitivity and subgroup analyses were conducted to investigate potential sources of heterogeneity. AMSTAR2 checklist was used to determine the quality of studies. Comprehensive meta-analysis version 3 was used for the study analysis. RESULT A total of 31 studies were included in the final analysis. Based on the results of the meta-analysis, gut microbial therapy could significantly decrease serum fasting blood glucose levels in patients with type 2 diabetes mellitus (effect size: -0.211; 95 % CI: -0.257, -0.164; P < 0.001). Additionally, significant associations were also found between gut microbial therapy and improved serum levels of fasting insulin, glycated hemoglobin, and homeostatic model assessment for insulin resistance (effect size: -0.087; 95 % confidence interval: -0.120, -0.053; P < 0.001; effect size: -0.166; 95 % confidence interval: -0.200, -0.132; P < 0.001; effect size: -0.230; 95 % confidence interval: -0.288, -0.172; P < 0.001, respectively). CONCLUSION Our results revealed promising effects of gut microbiota modulation on glycemic profile of patients with type 2 diabetes mellitus. The use of these agents as additional treatments can be considered.
Collapse
Affiliation(s)
- Mohammad-Hossein Keivanlou
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nazila Sattari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Hashemi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parsa Saberian
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Mona Javid
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Arian Mirdamadi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Forough Heidarzad
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Arash Bakhshi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Negin Letafatkar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Zare
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | - Sandeep Samethadka Nayak
- Department of Internal Medicine, Yale New Haven Health Bridgeport Hospital , Bridgeport, CT, USA
| |
Collapse
|
12
|
Li S, Liu Z, Zhang Q, Su D, Wang P, Li Y, Shi W, Zhang Q. The Antidiabetic Potential of Probiotics: A Review. Nutrients 2024; 16:2494. [PMID: 39125375 PMCID: PMC11313988 DOI: 10.3390/nu16152494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Diabetes has become one of the most prevalent global epidemics, significantly impacting both the economy and the health of individuals. Diabetes is associated with numerous complications, such as obesity; hyperglycemia; hypercholesterolemia; dyslipidemia; metabolic endotoxemia; intestinal barrier damage; insulin-secretion defects; increased oxidative stress; and low-grade, systemic, and chronic inflammation. Diabetes cannot be completely cured; therefore, current research has focused on developing various methods to control diabetes. A promising strategy is the use of probiotics for diabetes intervention. Probiotics are a class of live, non-toxic microorganisms that can colonize the human intestine and help improve the balance of intestinal microbiota. In this review, we summarize the current clinical studies on using probiotics to control diabetes in humans, along with mechanistic studies conducted in animal models. The primary mechanism by which probiotics regulate diabetes is improved intestinal barrier integrity, alleviated oxidative stress, enhanced immune response, increased short-chain fatty acid production, etc. Therefore, probiotic supplementation holds great potential for the prevention and management of diabetes.
Collapse
Affiliation(s)
- Shiming Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100193, China
| | - Zichao Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Qi Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Dan Su
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA;
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Yixuan Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Wenbiao Shi
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Qian Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| |
Collapse
|
13
|
Wang X, Chen L, Zhang C, Shi Q, Zhu L, Zhao S, Luo Z, Long Y. Effect of probiotics at different intervention time on glycemic control in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1392306. [PMID: 39114293 PMCID: PMC11303337 DOI: 10.3389/fendo.2024.1392306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Background Type 2 diabetes mellitus(T2DM) is characterized by hyperglycemia. Gut microbiome adjustment plays a positive part in glucose regulation, which has become a hotspot. Probiotics have been studied for their potential to control the gut flora and to treat T2DM. However, the conclusion of its glucose-lowering effect is inconsistent based on different probiotic intervention times. Objectives To comprehensively evaluate how various probiotic intervention times affect glycemic control in people with T2DM. Methods We retrieved PubMed, Embase, Web of Science, and Cochrane Library on randomized controlled trials(RCTs)regarding the impact of probiotics on glycemic control in patients with T2DM from the inception to November 16, 2023. Separately, two researchers conducted a literature analysis, data extraction, and bias risk assessment of the involved studies. We followed the PRISMA guidelines, used RevMan 5.4 software for meta-analysis, and assessed the risk of bias by applying the Cochrane Handbook for Systematic Reviews 5.1.0. Results We included eight RCTs with 507 patients. Meta-analysis revealed that the use of probiotics might considerably reduce levels of glycosylated hemoglobin (HbA1c) {mean deviation (MD) = -0.33, 95% confidence interval (CI) (-0.59, -0.07), p = 0.01}, Insulin {standard mean deviation (SMD) = -0.48, 95% CI (-0.74, -0.22), p = 0.0003} and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR){SMD = -1.36, 95% CI (-2.30, -0.41), p = 0.005} than placebo group. No statistically significant differences were found regarding fasting blood glucose (FBG) and body mass index (BMI) {SMD = -0.39, 95% CI (-0.83, 0.05), p = 0.08}, {SMD = -0.40, 95% CI (-1.07, 0.27), p = 0.25}, respectively. Subgroup analyses, grouped by intervention times, showed that six to eight weeks of intervention improved HbA1c compared to the control group (p < 0.05), both six to eight weeks and 12-24 weeks had a better intervention effect on Insulin, and HOMA-IR (p < 0.05).In contrast, there was no statistically significant variation in the length between FBG and BMI regarding duration. Conclusion This meta-analysis found probiotics at different intervention times play a positive role in modulating glucose in T2DM, specifically for HbA1c in six to eight weeks, Insulin and HOMA-IR in six to eight weeks, and 12-24 weeks. To confirm our findings, further excellent large-sample research is still required. Systematic review registration https://www.crd.york.ac.uk/prospero, identifier CRD42023483325.
Collapse
Affiliation(s)
- Xinghui Wang
- School of Nursing, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Lu Chen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Chunling Zhang
- Department of Nutrition, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Qing Shi
- Department of Nutrition, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Lei Zhu
- School of Nursing, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Sisi Zhao
- School of Nursing, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Zhiqin Luo
- School of Nursing, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yirun Long
- School of Nursing, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
14
|
Baraquet ML, Rivarola E, Perovic NR. Dairy product consumption and type 2 diabetes in an Argentinian population: is there an association? NUTR HOSP 2024; 41:186-193. [PMID: 38224309 DOI: 10.20960/nh.04700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Introduction Introduction: dairy products have long been recommended as part of a healthy eating plan, but there is a controversial opinion about whether or not they should be included in the diet of people with type 2 diabetes (T2D). Objective: the aim of this study was to know if there is an association between the intake of total dairy and dairy subgroups and the chance of having T2D, and the status of markers of glucose metabolism. Methods: three hundred and forty-two adult subjects participated in the study. A validated food-frequency questionnaire was applied to establish the dairy intake. Clinical-pathological and anthropometric variables (height, weight, waist circumference and serum concentrations of blood glucose, glycated hemoglobin [HbA1c], high sensitive C-reactive protein [hs-CRP], tumor necrosis factor alpha [TNFα], interleukin [IL] 6 and IL-10) were measured. Consumption tertiles were calculated for each dairy subgroup. Correlation coefficients, multiple linear regression models and logistic regression models were used to assess the relation between dairy product consumption and markers of glucose metabolism. Results: a negative correlation was observed between the consumption of fermented dairy products and IL-10 (r = -0.27, p = 0.0206). Fermented dairy products were inversely associated with blood glucose, and HbA1c. Total dairy intake was positively associated with a lower chance of having diabetes in tertiles 2 and 3 of consumption, in relation to the reference tertile, adjusted for age, smoking habit, and alcohol intake, body mass index (BMI) and dietary variables. Conclusions: with this study, we broaden our understanding of the role of dairy intake in diabetes risk. However, more long-term studies are needed to confirm the associations and explore different confounding factors.
Collapse
Affiliation(s)
- Maria Lucia Baraquet
- Instituto de Investigaciones en Ciencias de la Salud (INICSA). Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Universidad Nacional de Córdoba
| | - Evangelina Rivarola
- Escuela de Nutrición. Facultad de Ciencias Médicas. Universidad Nacional de Córdoba
| | - Nilda Raquel Perovic
- Escuela de Nutrición. Facultad de Ciencias Médicas. Universidad Nacional de Córdoba
| |
Collapse
|
15
|
Keivanlou MH, Amini-Salehi E, Hassanipour S, Zare R, Mohammadi-Vajari E, Hashemi M, Salari A, Porteghali P. The Value of Microbiome-targeted Therapy on Lipid Indices of Patients with Type 2 Diabetes Mellitus: An Umbrella Meta-analysis of Randomized Controlled Trials. Curr Diabetes Rev 2024; 21:e180124225761. [PMID: 38243955 DOI: 10.2174/0115733998284844240102110559] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is considered a global health challenge with increasing prevalence in recent years. One of the key elements in managing T2DM patients is controlling their lipid profile. Recent studies suggest microbiome-targeted therapy (MTT) as a treatment strategy for enhancing lipid profiles in these patients. OBJECTIVE The current study aimed to investigate the impact of MTT on lipid indices of T2DM patients by performing an umbrella approach. METHODS Three international databases including PubMed, Scopus, and Web of Science were searched from inception up to April 2023 to find meta-analyses evaluating the impact of MTT (prebiotics, probiotics, and synbiotics) on the lipid profile of T2DM patients. Two independent researchers extracted data from the relevant meta-analyses. To find the source of heterogeneity various subgroup analyses were performed. Comprehensive Meta-Analyses (CMA) software version 3 was utilized for the final analysis. RESULTS Based on the results of the current study, MTT had on significant effects total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) (ES: - 0.092; 95%CI: -0.111, -0.074; P< 0.001, ES: -0.109; 95%CI: -0.137, -0.081; P< 0.001, ES: -0.036; 95%CI: -0.068, -0.005; P= 0.024, ES: 0.109; 95%CI: 0.056, 0.162; P<0.000, respectively). In subgroup analysis, probiotics showed the most substantial effect on all lipid biomarkers. CONCLUSION This research has provided promising insights into the potential impact of MTT on lipid levels in patients diagnosed with T2DM. Notably, MTT had the greatest impact on HDL levels, followed by TG, TC, and LDL. As a result of our study, MTT is recommended as an adjunctive therapeutic option for T2DM treatment due to its capability to regulate lipid profiles.
Collapse
Affiliation(s)
- Mohammad-Hossein Keivanlou
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Amini-Salehi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Zare
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | | | - Mohammad Hashemi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Arsalan Salari
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parham Porteghali
- Department of Internal Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
16
|
Garcia-Gutierrez E, O’Mahony AK, Dos Santos RS, Marroquí L, Cotter PD. Gut microbial metabolic signatures in diabetes mellitus and potential preventive and therapeutic applications. Gut Microbes 2024; 16:2401654. [PMID: 39420751 PMCID: PMC11492678 DOI: 10.1080/19490976.2024.2401654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetes mellitus can be subdivided into several categories based on origin and clinical characteristics. The most common forms of diabetes are type 1 (T1D), type 2 diabetes (T2D) and gestational diabetes mellitus (GDM). T1D and T2D are chronic diseases affecting around 537 million adults worldwide and it is projected that these numbers will increase by 12% over the next two decades, while GDM affects up to 30% of women during pregnancy, depending on diagnosis methods. These forms of diabetes have varied origins: T1D is an autoimmune disease, while T2D is commonly associated with, but not limited to, certain lifestyle patterns and GDM can result of a combination of genetic predisposition and pregnancy factors. Despite some pathogenic differences among these forms of diabetes, there are some common markers associated with their development. For instance, gut barrier impairment and inflammation associated with an unbalanced gut microbiota and their metabolites may be common factors in diabetes development and progression. Here, we summarize the microbial signatures that have been linked to diabetes, how they are connected to diet and, ultimately, the impact on metabolite profiles resulting from host-gut microbiota-diet interactions. Additionally, we summarize recent advances relating to promising preventive and therapeutic interventions focusing on the targeted modulation of the gut microbiota to alleviate T1D, T2D and GDM.
Collapse
Affiliation(s)
- Enriqueta Garcia-Gutierrez
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, Ireland
- Departamento de Ingeniería Agronómica, Instituto de Biotecnología Vegetal, ETSIA-Universidad Politécnica de Cartagena, Cartagena, Spain
| | - A. Kate O’Mahony
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- School of Microbiology, University College Cork, Co. Cork, Ireland
| | - Reinaldo Sousa Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Marroquí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Paul D. Cotter
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, Ireland
| |
Collapse
|
17
|
Li SX, Guo Y. Gut microbiome: New perspectives for type 2 diabetes prevention and treatment. World J Clin Cases 2023; 11:7508-7520. [DOI: 10.12998/wjcc.v11.i31.7508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/19/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), which is distinguished by increased glucose levels in the bloodstream, is a metabolic disease with a rapidly increasing incidence worldwide. Nevertheless, the etiology and characteristics of the mechanism of T2DM remain unclear. Recently, abundant evidence has indicated that the intestinal microbiota is crucially involved in the initiation and progression of T2DM. The gut microbiome, the largest microecosystem, engages in material and energy metabolism in the human body. In this review, we concentrated on the correlation between the gut flora and T2DM. Meanwhile, we summarized the pathogenesis involving the intestinal flora in T2DM, as well as therapeutic approaches aimed at modulating the gut microbiota for the management of T2DM. Through the analysis presented here, we draw attention to further exploration of these research directions.
Collapse
Affiliation(s)
- Shu-Xiao Li
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130000, Jilin Province, China
| | - Yan Guo
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130000, Jilin Province, China
| |
Collapse
|
18
|
Faghfouri AH, Afrakoti LGMP, Kavyani Z, Nogourani ZS, Musazadeh V, Jafarlou M, Dehghan P. The role of probiotic supplementation in inflammatory biomarkers in adults: an umbrella meta-analysis of randomized controlled trials. Inflammopharmacology 2023; 31:2253-2268. [PMID: 37698776 DOI: 10.1007/s10787-023-01332-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVE Despite the increasing evidence for probiotics' anti-inflammatory effects, the results of meta-analyses remain inconsistent. The present umbrella meta-analysis aimed to investigate the effects of probiotic supplementation on inflammatory biomarkers. METHODS We performed a wide-ranging systematic search in several databases, including PubMed, Web of Science, Scopus, EMBASE, and Google Scholar up to April 2023. The overall effect sizes were calculated using effect size (ES) values and their corresponding confidence intervals (CI). RESULTS Out of a total of 580 related articles, 39 studies were qualified for inclusion in the analysis. The results of the analysis revealed a significant reduction of C-reactive protein (CRP) (ES = -1.02; 95% CI: -1.23, -0.80, p < 0.001; I2: 94.1%, p < 0.001), TNF-α (ES = -0.35; 95% CI: -0.50, -0.20, p < 0.001; I2: 75.6%, p < 0.001), and interleukin-6 (IL-6) levels (ES = -0.36; 95% CI: -0.59, -0.13, p = 0.002; I2: 85.6%, p < 0.001), following probiotic supplementation. CONCLUSION Probiotic supplementation significantly reduced serum concentrations of TNF-a, CRP, and IL-6. Thus, probiotic supplementation can be considered adjuvant therapy to alleviate inflammation in various inflammatory conditions.
Collapse
Affiliation(s)
- Amir Hossein Faghfouri
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Zeynab Kavyani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
- School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahdi Jafarlou
- Faculty of Medicine and Health Science, UPM, 43400, Serdang, Malaysia
| | - Parvin Dehghan
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Xu D, Fu L, Pan D, Chu Y, Feng M, Lu Y, Yang C, Wang Y, Xia J, Sun G. Role of probiotics/synbiotic supplementation in glycemic control: A critical umbrella review of meta-analyses of randomized controlled trials. Crit Rev Food Sci Nutr 2022; 64:1467-1485. [PMID: 36052685 DOI: 10.1080/10408398.2022.2117783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The evidence regarding the beneficial effects of probiotics/synbiotic supplementation have been revealed by several meta-analyses, however some of these studies have fielded inconsistent results and a conclusion has yet to be reached. Therefore, the aim of present umbrella meta-analyses was to assess relevant evidence and elucidate the efficacy of probiotics/synbiotic supplementation in glycemic control. A comprehensive search in four databases (Cochrane library, PubMed, Web of science and Scopus) was performed to collect relevant studies up to August 2022, the pooled effects were measured with the use of random/fix-effect model depends on the heterogeneity. A total of 47 eligible meta-analyses involving 47,720 participants were identified to evaluate the pooled effects. The overall results showed that probiotics/synbiotic supplementation delivered significant decreases in fast plasma glucose (ES = -0.408, 95% CI: -0.518, -0.298; P < 0.001; I2 = 82.996, P < 0.001), fast plasma insulin (ES = -1.165, 95% CI: -1.454, -0.876; P < 0.001; I2 = 89.629, P < 0.001), homeostasis model assessment of insulin resistance (ES = -0.539, 95% CI: -0.624, -0.454; P < 0.001; I2 = 56.716, P < 0.001), and glycosylated hemoglobin (ES = -0.186, 95% CI: -0.270, -0.102; P < 0.001; I2 = 59.647, P = 0.001). Subgroup analysis showed that patients with impaired glucose homeostasis might benefit the most from probiotics/synbiotic supplementation. In conclusion, current umbrella meta-analysis strongly supporting the beneficial health effects of probiotics/synbiotic supplementation in glycemic control.
Collapse
Affiliation(s)
- Dengfeng Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Lingmeng Fu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
- Department of Quality Management, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - YiFang Chu
- Department of R&D Life Science, PepsiCo, Inc, Barrington, IL, USA
| | - Meiyuan Feng
- Department of R&D Life Science, PepsiCo, Inc, Shanghai, China
| | - Yifei Lu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Chao Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Yuanyuan Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Jiayue Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| |
Collapse
|
20
|
Pintarič M, Langerholc T. Probiotic Mechanisms Affecting Glucose Homeostasis: A Scoping Review. Life (Basel) 2022; 12:1187. [PMID: 36013366 PMCID: PMC9409775 DOI: 10.3390/life12081187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/08/2023] Open
Abstract
The maintenance of a healthy status depends on the coexistence between the host organism and the microbiota. Early studies have already focused on the nutritional properties of probiotics, which may also contribute to the structural changes in the gut microbiota, thereby affecting host metabolism and homeostasis. Maintaining homeostasis in the body is therefore crucial and is reflected at all levels, including that of glucose, a simple sugar molecule that is an essential fuel for normal cellular function. Despite numerous clinical studies that have shown the effect of various probiotics on glucose and its homeostasis, knowledge about the exact function of their mechanism is still scarce. The aim of our review was to select in vivo and in vitro studies in English published in the last eleven years dealing with the effects of probiotics on glucose metabolism and its homeostasis. In this context, diverse probiotic effects at different organ levels were highlighted, summarizing their potential mechanisms to influence glucose metabolism and its homeostasis. Variations in results due to different methodological approaches were discussed, as well as limitations, especially in in vivo studies. Further studies on the interactions between probiotics, host microorganisms and their immunity are needed.
Collapse
Affiliation(s)
- Maša Pintarič
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia;
| | | |
Collapse
|
21
|
Overview of Nutraceuticals and Cardiometabolic Diseases following Socio-Economic Analysis. ENDOCRINES 2022. [DOI: 10.3390/endocrines3020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The importance of functional food and nutraceutical products to deal with cardiometabolic diseases (CMDs) and metabolic syndrome (MetS) has gained attention in the past few years. The aim of this narrative review is to highlight the potential and effectiveness of nutraceutical in the improvement of CMDs and MetS biomarkers, alongside their burden of disease and economic health expenditure. A science database search was conducted between May and June 2021. A total of 35 studies were included in this paper. We included male and female subjects, children, and adults, in good health or with cardiovascular or metabolic disease. CMDs and MetS have gradually become worldwide health problems, becoming two of the major causes of morbidity and mortality in western countries. The results indicate a positive link between daily consumption of nutraceutical products and an improvement in cardiometabolic and anthropometric biomarkers. In this paper we included a wide range of nutraceutical products. Most of them showed promising data, indicating that nutraceuticals could provide a new therapeutic treatment to reduce prevalence and pharmaceutical expenditures attributed to CMDs and MetS. Unfortunately, there is a huge vacuum of data on nutraceutical usage, savings, and burden reduction. Therefore, further clinical and pharmaco-economic research in the field is highly required.
Collapse
|
22
|
Ziegler MC, Garbim Junior EE, Jahnke VS, Lisbôa Moura JG, Brasil CS, Schimitt da Cunha PH, Lora PS, Gemelli T. Impact of probiotic supplementation in a patient with type 2 diabetes on glycemic and lipid profile. Clin Nutr ESPEN 2022; 49:264-269. [DOI: 10.1016/j.clnesp.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/22/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
|
23
|
Skurk T, Bosy-Westphal A, Grünerbel A, Kabisch S, Keuthage W, Kronsbein P, Müssig K, Pfeiffer AFH, Simon MC, Tombek A, Weber KS, Rubin D. Dietary recommendations for persons with type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 2022; 130:S151-S184. [PMID: 35359013 DOI: 10.1055/a-1624-5095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Thomas Skurk
- ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany.,Else Kröner-Fresenius-Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
| | - Anja Bosy-Westphal
- Institute for Human Nutrition, Faculty of Agricultural and Nutritional Sciences, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Stefan Kabisch
- German Institute of Human Nutrition Potsdam-Rehbrücke, Potsdam, Germany.,Department of Endocrinology, Diabetes and Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany.,German Center for Diabetes Research (DZD), Munich, Germany
| | - Winfried Keuthage
- Focus Practice for Diabetes and Nutritional Medicine, Münster, Germany
| | - Peter Kronsbein
- Department of Ecotrophology, Niederrhein University of Applied Sciences, Mönchengladbach Campus, Germany
| | - Karsten Müssig
- Department of Internal Medicine, Gastroenterology and Diabetology, Niels Stensen Hospitals, Franziskus Hospital Harderberg, Georgsmarienhütte, Germany
| | - Andreas F H Pfeiffer
- Department of Endocrinology, Diabetes and Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marie-Christine Simon
- Institute of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | | | - Katharina S Weber
- Institute of Epidemiology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Diana Rubin
- Vivantes Hospital Spandau, Berlin, Germany.,Vivantes Humboldt Hospital, Berlin, Germany
| |
Collapse
|
24
|
Liu Y, Zheng S, Cui J, Guo T, Zhang J. Lactiplantibacillus plantarum Y15 alleviate type 2 diabetes in mice via modulating gut microbiota and regulating NF-κB and insulin signaling pathway. Braz J Microbiol 2022; 53:935-945. [PMID: 35150432 PMCID: PMC8853432 DOI: 10.1007/s42770-022-00686-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotics have been used for the treatment of chronic metabolic diseases, including type 2 diabetes (T2D). However, the mechanisms of antidiabetic effects are not well understood. The object of this study is to assess the antidiabetic effect of Lactiplantibacillus plantarum Y15 isolated from Chinese traditional dairy products in vivo. Results revealed that L. plantarum Y15 administration improved the biochemical indexes related to diabetes, reduced pro-inflammatory cytokines, L. plantarum Y15 administration reshaped the structure of gut microbiota, decreased the abundance of LPS-producing, and increased short-chain fatty acids (SCFAs)-producing bacteria, which subsequently reduce the levels of lipopolysaccharide (LPS) and pro-inflammatory cytokines. L. plantarum Y15 administration also regulated the expressions of the inflammation and insulin signaling pathway-related genes. These results suggest that L. plantarum Y15 may serve as a potential probiotic for developing food products to ameliorate T2D.
Collapse
Affiliation(s)
- Yin Liu
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China.
| | - Shujuan Zheng
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China
| | - Jiale Cui
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China
| | - Tingting Guo
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China
| | - Jingtao Zhang
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China
| |
Collapse
|
25
|
de Souza Pereira ÁM, de Almeida Sousa Lima LC, Lima LWS, Menezes TM, Vieira ÂM, de Souza Franco E, Paz ST, Maia CS, do Egito AS, Dos Santos KMO, Alonso Buriti FC, Maia MBDS. Safety Evaluation of Goat Milk Added with the Prebiotic Inulin Fermented with the Potentially Probiotic Native Culture Limosilactobacillus mucosae CNPC007 in Co-culture with Streptococcus thermophilus QGE: Analysis of Acute and Repeated Dose Oral Toxicity. Probiotics Antimicrob Proteins 2022; 15:716-727. [PMID: 35029787 DOI: 10.1007/s12602-021-09898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 10/19/2022]
Abstract
Despite functional goat milk products having emerged due to their importance for human nutrition and health, few studies have assessed the safety of consumption of goat dairy products containing potentially probiotic autochthonous lactic acid bacteria supplemented with prebiotic carbohydrates. Aiming this field, this study evaluated the safety of goat's milk fermented with Streptococcus thermophilus QGE, the autochthonous Limosilactobacillus mucosae CNPC007 culture, and the prebiotic inulin, through single- and repeated-dose oral toxicity tests (SDT and RDT, respectively) in animals. Ten female Swiss Webster mice were used for SDT evaluation - 2 groups, SDTc (20 mL/kg of filtered water) and SDTt (20 mL/kg of fermented milk) - and 40 Wistar rats for RDT - RDT3, RDT6, and RDT12 (treated with fermented milk at doses of 3 mL/kg, 6 mL/kg, and 12 mL/kg, respectively) and also RDTc (12 mL/kg of filtered water). For SDT, no signs of mortality or toxicity were observed, and the animals maintained the expected weight gain and feed intake. The RDT trials did not show mortality or signs of toxicity, as well as no change in body weight and organs, in the hematological and biochemical parameters, and also in relation to morphology and histology. Since the fermented milk did not cause any toxic effect in the conditions evaluated, it can be said that its no-adverse effect level (NOAEL) was considered to be higher than 20 mL/kg/day. Thus, the fermented milk with L. mucosae CNPC007 and inulin was considered to be of low toxicity, safe for use in rodents, and allowed for use in further studies.
Collapse
Affiliation(s)
- Áurea Marcela de Souza Pereira
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Av. Professor Moraes Rego, s/n, Recife, PE 50670-901, Brazil.
| | | | - Laisa Wanessa Santos Lima
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Av. Professor Moraes Rego, s/n, Recife, PE 50670-901, Brazil
| | - Tamires Meira Menezes
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Av. Professor Moraes Rego, s/n, Recife, PE 50670-901, Brazil
| | - Ângela Magalhães Vieira
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Professor Moraes Rego, s/n, Recife, PE, 50670-901, Brazil
| | - Eryvelton de Souza Franco
- Department of Veterinary Medicine, Brazilian University Center (UNIBRA), Rua Padre Inglês, 257, Recife, PE, 50050-230, Brazil
| | - Silvânia Tavares Paz
- Department of Histology and Embryology, Federal University of Pernambuco, Av. Professor Moraes Rego, s/n, Recife, PE, 50670-901, Brazil
| | - Carina Scanoni Maia
- Department of Histology and Embryology, Federal University of Pernambuco, Av. Professor Moraes Rego, s/n, Recife, PE, 50670-901, Brazil
| | - Antônio Sílvio do Egito
- Embrapa Goats and Sheep, Northeast Regional Unity, Brazilian Agricultural Research Corporation, R. Osvaldo Cruz, 1143, Campina Grande, PB, 58428-095, Brazil
| | - Karina Maria Olbrich Dos Santos
- Embrapa Food Technology, Brazilian Agricultural Research Corporation, Av. das Américas, 29501, Rio de Janeiro, RJ, 23020-470, Brazil
| | | | - Maria Bernadete de Sousa Maia
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Av. Professor Moraes Rego, s/n, Recife, PE 50670-901, Brazil
| |
Collapse
|
26
|
Li X, Lv C, Song J, Li J. Effect of Probiotic Supplementation on Cognitive Function and Metabolic Status in Mild Cognitive Impairment and Alzheimer's Disease: A Meta-Analysis. Front Nutr 2021; 8:757673. [PMID: 34957177 PMCID: PMC8692377 DOI: 10.3389/fnut.2021.757673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Alzheimer's disease (AD) is a progressive and multifactorial neurodegenerative disease accounting for 80% of dementia worldwide. Objective: To assess the influence of probiotics on cognitive function in patients with mild cognitive impairment (MCI) and AD. Methods: PubMed, Embase, and Cochrane Library databases were searched for relevant studies. Results: Six randomized controlled trials involving 462 patients with MCI and AD were included in this meta-analysis. The probiotic administration had favorable effects on homeostasis model assessment–insulin resistance [HOMA-IR; Weighted mean difference (WMD) = −0.34, 95% confidence intervals (95% CI): −0.44 to 0.24, P < 0.001, I2 = 0%], very low–density lipoprotein levels (VLDL; WMD = −3.71, 95% CI: −6.11 to −1.32, P=0.002, I2 = 57.7%), quantitative insulin sensitivity check index (QUICKI; WMD = 0.01, 95% CI: 0.00–0.01, P = 0.003, I2 = 51%), and triglyceride levels (WMD = −15.65, 95% CI: −27.48 to −3.83, P = 0.009, I2 = 63.4%) in patients with AD. However, after Hartung-Knapp adjustment, all effects were non-significant except for HOMA-IR (MD = −0.34, 95%CI = −0.58 to −0.11). The changes in the Mini-Mental State Examination, repeatable battery for the assessment of neuropsychological status, and other biomarkers of oxidative stress, inflammation, and lipid profiles (high-sensitivity C-reactive protein, malondialdehyde, and total cholesterol) were negligible. Conclusion: The findings suggested that the consumption of probiotics had favorable effects on the HOMA-IR in patients with AD. However, the probiotic treatment did not affect cognitive function, other biomarkers of oxidative stress, and other lipid profiles.
Collapse
Affiliation(s)
- Xurui Li
- Department of General Medicine, Hebei General Hospital, Shijiazhuang, China
| | - Chang Lv
- Department of Emergency, Hebei General Hospital, Shijiazhuang, China
| | - Jinxiao Song
- Department of Emergency, Hebei General Hospital, Shijiazhuang, China
| | - Jianguo Li
- Department of Emergency, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
27
|
L M L, L P B, S G G, L O S, O M D, R V B, L M S, M Ya S. Assessment of the Safety of Lactobacillus casei IMV B-7280 Probiotic Strain on a Mouse Model. Probiotics Antimicrob Proteins 2021; 13:1644-1657. [PMID: 33876388 PMCID: PMC8055307 DOI: 10.1007/s12602-021-09789-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 01/19/2023]
Abstract
Probiotics, in particular Lactobacillus (lactic acid bacteria, LAB) strains, are widely used in clinical practice. Despite that these probiotics have GRAS (generally regarded as safe) and qualified presumption of safety (QPS) statuses, the safety of particular strains still needs to be thoroughly studied. The aim of the study was to evaluate the safety of Lact. casei IMV B-7280 strain by investigating toxicity and the effects on gut microbiota in experimental animal model. Male BALB/c mice (7-8 weeks, weight 20-24 g) were treated with amounts of Lact. casei IMV B-7280 strain: 5 × 106, 5 × 108, or 5 × 109 CFU/animal once per day during 7 days, or in the amount of 1 × 1010 CFU/animal once per day during 3 days (most of the proposed probiotic doses for humans-from 108 to 109 CFU) and monitored during 14 days. Blood tests and serum biochemistry were conducted; the cecal content from mice of the experimental and control groups were freshly collected and analyzed. At the end of the experiments (15th day), the presence of LAB in the heart, liver, kidney, and mesenteric lymph nodes and peripheral blood was determined; histology of the brain, liver, heart, fragments of the small and large intestine, and mesenteric lymph nodes was conducted. Survival rate of BALB/c mice treated with Lact. casei IMV B-7280 strain in different concentrations in toxicity experiments during 14 days was 100%. We observed no signs of toxicity as changes in gait, lethargy, sleep, somatomotor activity as well as changes in fur, eyes, skin and mucous membranes, tremors, behavior pattern, convulsions, salivation, diarrhea, and local injuries in mice from all experimental groups. After administration of probiotic strain, the number of opportunistic bacteria in cecal contents, such as Staphylococcus spp., Candida spp., Pseudomonas spp., and total aerobic and optionally anaerobic bacteria decreased compared to controls; the population of beneficial bacteria such as lactobacilli increased in cecal contents of these mice. LAB were not detected in the peripheral blood, heart, liver, kidneys, and mesenteric lymph nodes after administration of this strain to intact mice. Lact. casei IMV B-7280 strain is safe at dose up to 1010 CFU/animal during 3- and 7-day oral administration to mice and has a positive effect on the gut microbiota composition; it could be potentially considered as safe probiotic for humans.
Collapse
Affiliation(s)
- Lazarenko L M
- Zabolotny Institute of microbiology and virology, National Academy of Sciences of Ukraine, 154, Akad. Zabolotny str, Kyiv, 03143, Ukraine
| | - Babenko L P
- Zabolotny Institute of microbiology and virology, National Academy of Sciences of Ukraine, 154, Akad. Zabolotny str, Kyiv, 03143, Ukraine
| | - Gichka S G
- Bogomolets National Medical University, 13, T. Shevchenko blvd, Kyiv, 01601, Ukraine
| | - Sakhno L O
- RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, 45, Vasylkivska str, Kyiv, 03022, Ukraine
| | - Demchenko O M
- Zabolotny Institute of microbiology and virology, National Academy of Sciences of Ukraine, 154, Akad. Zabolotny str, Kyiv, 03143, Ukraine
| | - Bubnov R V
- Zabolotny Institute of microbiology and virology, National Academy of Sciences of Ukraine, 154, Akad. Zabolotny str, Kyiv, 03143, Ukraine.
| | - Sichel L M
- Pure Research Products, LLC, 6107 Chelsea Manor Court, Boulder, Colorado, 80301, USA
| | - Spivak M Ya
- Zabolotny Institute of microbiology and virology, National Academy of Sciences of Ukraine, 154, Akad. Zabolotny str, Kyiv, 03143, Ukraine
| |
Collapse
|
28
|
Falalyeyeva T, Mamula Y, Scarpellini E, Leshchenko I, Humeniuk A, Pankiv I, Kobyliak N. Probiotics and obesity associated disease: an extended view beyond traditional strains. Minerva Gastroenterol (Torino) 2021; 67:348-356. [PMID: 35040301 DOI: 10.23736/s2724-5985.21.02909-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interaction between intestinal microbiota and obesity is becoming abundantly according to current many scientific investigations. In this article, probiotic therapy was offered as the promising strategy of metabolic disorders control through the recovery of microbiota composition and health maintenance with the help of impact on the abovementioned mechanisms. First, this therapy is safe, with minimal side effects, well-tolerated, and appropriate for long-term use. Second, it can improve body mass, glucose, and fat metabolism, increase insulin sensitivity, and decrease systemic chronic inflammation. In conclusion, the restorative role of gut microbiota on metabolic disorders and associated diseases could open new ways in the treatment of obesity, insulin resistance, and type 2 diabetes.
Collapse
Affiliation(s)
- Tetyana Falalyeyeva
- Institute of Biology and Medicine, Educational and Scientific Center, Taras Shevchenko National University, Kyiv, Ukraine
| | - Yelyzaveta Mamula
- Institute of Biology and Medicine, Educational and Scientific Center, Taras Shevchenko National University, Kyiv, Ukraine
| | - Emidio Scarpellini
- Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), Translational Research Center for Gastrointestinal Disorders (TARGID), Catholic University, Leuven, Belgium
| | - Ivan Leshchenko
- Department of Physiology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Alla Humeniuk
- Department of Physiology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Ivan Pankiv
- Department of Clinical Immunology, Allergology and Endocrinology, Bukovinian State Medical University, Chernivtsi, Ukraine
| | - Nazarii Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine -
- Medical Laboratory CSD, Kyiv, Ukraine
| |
Collapse
|
29
|
Zarezadeh M, Musazadeh V, Faghfouri AH, Roshanravan N, Dehghan P. Probiotics act as a potent intervention in improving lipid profile: An umbrella systematic review and meta-analysis. Crit Rev Food Sci Nutr 2021; 63:145-158. [PMID: 34817299 DOI: 10.1080/10408398.2021.2004578] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Several meta-analysis studies have revealed improving effects of probiotics on lipid profile, while some studies have reported controversial findings. The purpose of present study was to evaluate the efficacy of probiotics on blood lipids. Relevant studies were searched in the international databases, including PubMed, Scopus, EMBASE, Web of Science, and Cochrane Central Library up to August 2021. The pooled results were calculated with the use of a random-effects model to assess the effects of probiotics on blood lipids. Overall, 38 meta-analyses were inclueded in the study. The results indicated that the probiotics supplementation was effective on reduction of total cholesterol (TC) (ES= -0.46 mg/dL; 95% CI: -0.61, -0.30, p < 0.001; I2= 83.8%, p < 0.001), triglycerides (TG) (ES= -0.13 mg/dl; 95% CI: -0.23, -0.04, p = 0.006; I2= 74.7%, p < 0.001), and low-density lipoprotein cholesterol (LDL-C)levels (ES= -0.29 mg/dL; 95% CI: -0.40, -0.19, p < 0.001; I2= 77.8%, p < 0.001). There was no significant effect of probiotics on high-density lipoprotein cholesterol (HDL-C) levels (ES= 0.02 mg/dl; 95% CI: -0.04, 0.08, p = 0.519; I2= 72.5%, p= <0.001). The results of present umbrella meta-analysis strongly support supplementation with probiotics as an influential intervention for improving lipid profile.
Collapse
Affiliation(s)
- Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Hossein Faghfouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Skurk T, Bosy-Westphal A, Grünerbel A, Kabisch S, Keuthage W, Kronsbein P, Müssig K, Pfeiffer AFH, Simon MC, Tombek A, Weber KS, Rubin D, für den Ausschuss Ernährung der DDG. Empfehlungen zur Ernährung von Personen mit Typ-2-Diabetes mellitus. DIABETOL STOFFWECHS 2021. [DOI: 10.1055/a-1543-1293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Thomas Skurk
- ZIEL- Institute for Food & Health, Technische Universität München, Freising
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin, Technische Universität München, Freising
| | - Anja Bosy-Westphal
- Institut für Humanernährung, Agrar- und Ernährungswissenschaftliche Fakultät, Christian-Albrechts-Universität zu Kiel, Kiel
| | | | - Stefan Kabisch
- Abt. Endokrinologie, Diabetes und Ernährungsmedizin, Charité Universitätsmedizin Berlin, Berlin
- Deutsche Zentrum für Diabetesforschung (DZD), München
| | | | - Peter Kronsbein
- Fachbereich Oecotrophologie, Hochschule Niederrhein, Campus Mönchengladbach
| | - Karsten Müssig
- Klinik für Innere Medizin und Gastroenterologie, Niels-Stensen-Kliniken, Franziskus-Hospital Harderberg, Georgsmarienhütte
| | - Andreas F. H. Pfeiffer
- Abt. Endokrinologie, Diabetes und Ernährungsmedizin, Charité Universitätsmedizin Berlin, Berlin
| | - Marie-Christine Simon
- Institut für Ernährungs- und Lebensmittelwissenschaften, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn
| | | | - Katharina S. Weber
- Institut für Epidemiologie, Christian-Albrechts-Universität zu Kiel, Kiel
| | - Diana Rubin
- Vivantes Klinikum Spandau, Berlin
- Vivantes Humboldt Klinikum, Berlin
| | | |
Collapse
|
31
|
Alagiakrishnan K, Halverson T. Holistic perspective of the role of gut microbes in diabetes mellitus and its management. World J Diabetes 2021; 12:1463-1478. [PMID: 34630900 PMCID: PMC8472496 DOI: 10.4239/wjd.v12.i9.1463] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/24/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota (GM) plays a role in the development and progression of type 1 and type 2 diabetes mellitus (DM) and its complications. Gut dysbiosis contributes to the pathogenesis of DM. The GM has been shown to influence the efficacy of different antidiabetic medications. Intake of gut biotics, like prebiotics, probiotics and synbiotics, can improve the glucose control as well as the metabolic profile associated with DM. There is some preliminary evidence that it might even help with the cardiovascular, ophthalmic, nervous, and renal complications of DM and even contribute to the prevention of DM. More large-scale research studies are needed before wide spread use of gut biotics in clinical practice as an adjuvant therapy to the current management of DM.
Collapse
Affiliation(s)
| | - Tyler Halverson
- Department of Medicine, University of Alberta, Edmonton T6G 2G3, Alberta, Canada
| |
Collapse
|
32
|
Li Y, Tan Y, Xia G, Shuai J. Effects of probiotics, prebiotics, and synbiotics on polycystic ovary syndrome: a systematic review and meta-analysis. Crit Rev Food Sci Nutr 2021; 63:522-538. [PMID: 34287081 DOI: 10.1080/10408398.2021.1951155] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This meta-analysis of randomized controlled trials (RCTs) was performed to summarize the effects of probiotics, prebiotics, and synbiotics on insulin resistance (IR), lipid profiles, anthropometric indices, and C-reactive protein (CRP) level for polycystic ovary syndrome (PCOS). We searched 8 databases from their inception until 1st October, 2020. The effect sizes were expressed as standardized mean difference (SMD) with 95% confidence intervals (95% CI). Subgroup analyses were undertaken for further identification of effects of probiotics, prebiotics, and synbiotics, based on the following aspects: (1) type of intervention (probiotics, prebiotics, or synbiotics); (2) study duration (≥ 12 weeks or < 12 weeks); (3) number of probiotic strains (multi strains or single strain); (4) probiotic dose (≥ 2 × 108 colony-forming units [CFU] or < 2 × 108 CFU). A total of 17 eligible RCTs with 1049 participants were included. Results showed that probiotic, prebiotic, and synbiotic intake decreased fasting plasma glucose (SMD, -1.35; 95% CI, -2.22 to -0.49; p = 0.002), fasting insulin (SMD, -0.68; 95% CI, -1.08 to -0.27; p = 0.001), homeostatic model of assessment for IR (SMD, -0.73; 95% CI, -1.15 to -0.31; p = 0.001), triglycerides (SMD, -0.85; 95% CI, -1.59 to -0.11; p = 0.024), total cholesterol (SMD, -1.09; 95% CI, -1.98 to -0.21; p = 0.015), low-density lipoprotein cholesterol (SMD, -0.84; 95% CI, -1.64 to -0.03; p = 0.041), very-low-density lipoprotein cholesterol (SMD, -0.44; 95% CI, -0.70 to -0.18; p = 0.001), and increased quantitative insulin sensitivity check index (SMD, 2.00; 95% CI, - 0.79 to 3.22; p = 0.001). However, probiotic, prebiotic, and synbiotic supplements did not affect anthropometric indices, high-density lipoprotein cholesterol, and CRP levels. Subgroup analysis showed that probiotic or prebiotic might be the optimal choice for ameliorating IR or lipid profiles, respectively. Additionally, the effect was positively related to courses and therapeutical dose. Overall, the meta-analysis demonstrates that probiotic, prebiotic, or synbiotic administration is an effective and safe intervention for modifying IR and lipid profiles.
Collapse
Affiliation(s)
- Yuling Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Tan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Nanjing University of Chinese Medicine, Nanjing, China
| | - Guicheng Xia
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiaqi Shuai
- Masaryk University, Brno, The Czech Republic
| |
Collapse
|
33
|
Influence of Lactobacillus paracasei HII01 Supplementation on Glycemia and Inflammatory Biomarkers in Type 2 Diabetes: A Randomized Clinical Trial. Foods 2021; 10:foods10071455. [PMID: 34201653 PMCID: PMC8303256 DOI: 10.3390/foods10071455] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/21/2022] Open
Abstract
It has been shown that gut dysbiosis can be associated with the development of type 2 diabetes mellitus (T2DM). Consequently, intervention with probiotics may be a useful approach to improve metabolic variables in diabetes. The present study aimed to evaluate the efficacy of L. paracasei HII01 on glycemia in T2DM patients. In a randomized, double-blind, placebo-controlled study, 50 participants were allocated to receive L. paracasei HII01 (50 × 109 CFU/day) or a placebo (corn starch 10 mg/day). Blood and fecal samples were assessed at baseline and at the end of the trial. After 12 weeks of intervention, fasting blood glucose level had significantly decreased in the probiotic group compared with the placebo group. Importantly, probiotic supplementation significantly decreased the plasma levels of LPS, TNF-α, IL-6 and hsCRP compared the placebo group. Additionally, an increase in beneficial bacteria and a decrease in pathogenic bacteria, which related to the improvement of SCFAs, was found following L. paracasei HII01 supplementation. These findings demonstrated that L. paracasei HII01 improved hyperglycemia and inflammatory markers by favorably modifying gut microbiota and subsequently ameliorating the leaky gut and endotoxemia, thereby suggesting a potential role as an adjuvant treatment in type 2 diabetes.
Collapse
|
34
|
Rittiphairoj T, Pongpirul K, Janchot K, Mueller NT, Li T. Probiotics Contribute to Glycemic Control in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Adv Nutr 2021; 12:722-734. [PMID: 33126241 PMCID: PMC8166562 DOI: 10.1093/advances/nmaa133] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/27/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
This systematic review aimed to evaluate the effectiveness and safety of probiotics for glycemic control in adults with impaired glucose control, including prediabetes and type 2 diabetes mellitus (T2DM). We searched PubMed, Embase, and Cochrane databases, and trial registries up to February 2019. We included randomized controlled trials (RCTs) of participants with prediabetes or T2DM. Eligible trials compared probiotics versus either placebo, no intervention, or comparison probiotics, or compared synbiotics versus prebiotics. Primary outcomes were mean change in fasting blood glucose (FBG) and glycated hemoglobin (HbA1c) from baseline to short term (<12 wk) and long term (≥12 wk). We performed meta-analyses using the random-effects model. We included 28 RCTs (1947 participants). Overall, probiotics reduced FBG more than the placebo/no intervention group with a mean difference (MD) of -12.99 mg/dL (95% CI: -23.55, -2.42; P value: 0.016) over the short term; and -2.99 mg/dL (95% CI: -5.84, -0.13; P value: 0.040) over the long term. There was also some evidence for reduced HbA1c in the probiotics group at both short term (MD: -0.17; 95% CI: -0.37, 0.02; P value: 0.084) and long term (MD: -0.14; 95% CI: -0.34, 0.06; P value: 0.172), however, these did not reach statistical significance possibly because only a few trials reported HbA1c as an outcome. Subgroup analyses showed a greater reduction in HbA1c in participants not receiving insulin therapy than those receiving insulin therapy. Furthermore, the effect of probiotics on the reduction of FBG was more pronounced in participants with FBG >130 mg/dL and those not receiving insulin therapy than their counterparts. Probiotics were also effective in lowering serum cholesterol over the short and long term. In conclusion, we found that probiotics may have a glucose-lowering effect in T2DM participants. The effect appeared to be stronger in participants with poorly controlled diabetes and those not on insulin therapy. Systematic review registration: CRD42019121682.
Collapse
Affiliation(s)
- Thanitsara Rittiphairoj
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Krit Pongpirul
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Noel T Mueller
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, MD, USA
| | - Tianjing Li
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Ophthalmology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
35
|
Al-Jameel SS. Association of diabetes and microbiota: An update. Saudi J Biol Sci 2021; 28:4446-4454. [PMID: 34354429 PMCID: PMC8324937 DOI: 10.1016/j.sjbs.2021.04.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetes is an emerging health condition globally and is suggested to have a direct connection with the gut microbiota that determine our metabolic outcomes. Sensitivity to insulin and glucose metabolism is normal in healthy people as compared to those people who cannot maintain their glucose metabolism. One of the reasons of the differences is that healthy people have different microbiome that leads to achieve more short chain fatty acids and make up more branched amino acids, while the gut microbiota of the other group of people are more likely to produce compounds that affects glucose metabolism. Herein, this review will present the research related to the impact of gut microbes on diabetes carried out in the past decade. The review focus on the relation between gut microbiota and Type-1 Diabetes (T1D), Type-2 Diabetes (T2D), and how gut microbiota could be an alternative therapy for treatment of diabetes.
Collapse
Affiliation(s)
- Suhailah S Al-Jameel
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
36
|
Huda MN, Kim M, Bennett BJ. Modulating the Microbiota as a Therapeutic Intervention for Type 2 Diabetes. Front Endocrinol (Lausanne) 2021; 12:632335. [PMID: 33897618 PMCID: PMC8060771 DOI: 10.3389/fendo.2021.632335] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
Abstract
Mounting evidence suggested that the gut microbiota has a significant role in the metabolism and disease status of the host. In particular, Type 2 Diabetes (T2D), which has a complex etiology that includes obesity and chronic low-grade inflammation, is modulated by the gut microbiota and microbial metabolites. Current literature supports that unbalanced gut microbial composition (dysbiosis) is a risk factor for T2D. In this review, we critically summarize the recent findings regarding the role of gut microbiota in T2D. Beyond these associative studies, we focus on the causal relationship between microbiota and T2D established using fecal microbiota transplantation (FMT) or probiotic supplementation, and the potential underlying mechanisms such as byproducts of microbial metabolism. These microbial metabolites are small molecules that establish communication between microbiota and host cells. We critically summarize the associations between T2D and microbial metabolites such as short-chain fatty acids (SCFAs) and trimethylamine N-Oxide (TMAO). Additionally, we comment on how host genetic architecture and the epigenome influence the microbial composition and thus how the gut microbiota may explain part of the missing heritability of T2D found by GWAS analysis. We also discuss future directions in this field and how approaches such as FMT, prebiotics, and probiotics supplementation are being considered as potential therapeutics for T2D.
Collapse
Affiliation(s)
- M. Nazmul Huda
- Department of Nutrition, University of California Davis, Davis, CA, United States
- Obesity and Metabolism Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Human Nutrition Research Center, Davis, CA, United States
| | - Myungsuk Kim
- Department of Nutrition, University of California Davis, Davis, CA, United States
- Obesity and Metabolism Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Human Nutrition Research Center, Davis, CA, United States
| | - Brian J. Bennett
- Department of Nutrition, University of California Davis, Davis, CA, United States
- Obesity and Metabolism Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Human Nutrition Research Center, Davis, CA, United States
| |
Collapse
|
37
|
Moravejolahkami AR, Hojjati Kermani MA, Balouch Zehi Z, Mirenayat SMS, Mansourian M. The effect of probiotics on lipid profile & anthropometric indices in diabetic nephropathy; a systematic review and meta-analysis of clinical trials. J Diabetes Metab Disord 2021; 20:893-904. [PMID: 34222095 DOI: 10.1007/s40200-021-00765-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/07/2021] [Indexed: 12/12/2022]
Abstract
Purpose Recent trials have demonstrated the possible improvements in lipid profile & anthropometric indices after probiotics supplementation. We aimed to reanalyze the related literature to explore the efficacy of probiotics in Diabetic Nephropathy (DN) patients. Methods PubMed, Embase, Web of science, google scholar, Scopus, and Cochrane Library databases were systematically searched to find the related data on diabetic nephropathy population. All Randomized controlled trials (RCTs) that investigated the effect of probiotics on serum lipid markers (High-Density Lipoprotein [HDL], Triglyceride, Total Cholesterol, TC-to-HDL ratio, Low-Density Lipoprotein, Very Low-Density Lipoprotein) and anthropometric indices (Body Weight, Body Mass Index, waist-to-hip ratio) were included (PROSPERO No.CRD42020186189). Meta-analysis was performed using the random-effect model. Results Of 156 studies, seven were eligible for inclusion. Lipid biomarkers had a marginal reduction (except for HDL; WMD = 2.59 mg/dl; 95% CI = -0.28, 5.47; P = 0.077); whereas anthropometric indices increased in a non-significant manner. Conclusion There is limited evidence to support the efficacy of probiotics for the modulation of lipid profile and anthropometric indices in DN patients. Graphical abstract Probiotics did not beneficial effect on lipid profile & anthropometric markers in Diabetic Nephropathy; anyway, more trials should be conducted. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-021-00765-8.
Collapse
Affiliation(s)
- Amir Reza Moravejolahkami
- Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, P.O. Box 81746-73461, Hezar-Jerib Ave, Isfahan, Iran
| | - Mohammad Ali Hojjati Kermani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zakiyeh Balouch Zehi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Sadegh Mirenayat
- Department of Community Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marjan Mansourian
- Pediatric Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Science, P.O. Box 81746-73461, Hezar-Jerib Ave, Isfahan, Iran
| |
Collapse
|
38
|
Gholami A, Dabbaghmanesh MH, Ghasemi Y, Talezadeh P, Koohpeyma F, Montazeri-Najafabady N. Probiotics ameliorate pioglitazone-associated bone loss in diabetic rats. Diabetol Metab Syndr 2020. [DOI: 10.1186/s13098-020-00587-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Pioglitazone, as a PPAR gamma agonist, is used for the management of type 2 diabetes mellitus. Nevertheless, evidence showed that the therapeutic modulation of PPAR gamma activity using pioglitazone might be linked with bone mass reduction and fracture risk in type 2 diabetes mellitus patients. The objective of the current research was to inspect the preventive role of some types of probiotic strains, including (Lactobacillus acidophilus, Lactobacillus reuteri, Lactobacillus casei, Bifidobacterium longum, and Bacillus coagulans) against pioglitazone-induced bone loss.
Methods
Streptozotocin (60 mg/kg) was administered for diabetes induction. Diabetic rats were fed orally with pioglitazone (300 mg/kg) and probiotics (1 × 109 CFU/ml/day) alone and in combination for four weeks. Dual-energy X-ray absorptiometry (DXA) was used to assess BMD, BMC, and area of the femur, spine, and tibia at the end of the experiment. Serum glucose, serum calcium (Ca), alkaline phosphatase (ALP), phosphorus (P), Blood urea nitrogen (BUN), creatinine, and urine calcium were also analyzed.
Results
Administration of pioglitazone and probiotics alone and, in combination, significantly reduced elevated blood glucose. Pioglitazone treatment significantly increased urinary calcium and BUN and decreased ALP and creatinine. Co-treatment of probiotics with pioglitazone significantly decreased urinary calcium, creatinine, and ALP. Pioglitazone showed detrimental effects on femur-BMD, whereas treatment with probiotics remarkably ameliorated these effects. Among the tested probiotics, Bifidobacterium longum displayed the best protective effects on pioglitazone-induced bone loss in diabetic rats.
Conclusion
This study suggests probiotic supplementation in diabetic patients on pioglitazone regime could be considering as an excellent strategy to ameliorate bone loss induced by pioglitazone.
Collapse
|
39
|
Hallajzadeh J, Eslami RD, Tanomand A. Effect of Lactobacillus delbrueckii Subsp. lactis PTCC1057 on Serum Glucose, Fetuin-A ,and Sestrin 3 Levels in Streptozotocin-Induced Diabetic Mice. Probiotics Antimicrob Proteins 2020; 13:383-389. [PMID: 32862395 DOI: 10.1007/s12602-020-09693-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intake of probiotic bacteria may improve or preserve insulin sensitivity. Fetuin-A and sestrin 3 have emerged as promising candidate biomarkers for crucial roles in insulin signaling pathway. Therefore, the effect of oral supplementation with the probiotic bacterium Lactobacillus delbrueckii subsp. lactis PTCC1057 on proteins involved in insulin signaling pathway was investigated in normal and streptozotocin (STZ)-induced diabetic mice. The 6-8-week-old female mice were divided into a non-diabetic control, diabetic control, and diabetic experimental and non-diabetic experimental groups (5 mice each group). Diabetic and non-diabetic experimental groups treated with 3 × 107 CFU mL-1 L. delbrueckii subsp. lactis PTCC1057 by gavage feeding approach daily for 28 days. Serum glucose, fetuin-A, and sestrin 3 levels were measured by standard methods. The result showed that oral administration of L. delbrueckii significantly decreased serum glucose in comparison to diabetic control group (P = 0.01). Serum fetuin-A level was higher in diabetic control group than non-diabetic group and oral administration of L. delbrueckii subsp. lactis PTCC1057 significantly decreased fetuin-A level in diabetic experimental group in comparison with non-diabetic groups (P = 0.001). Sestrin 3 level significantly was lower in diabetic control group than non-diabetic control group (P = 0.03) and it significantly increased in diabetic experimental group in comparison with diabetic control group after intervention of L. delbrueckii subsp. lactis PTCC1057 (P = 0.02). The results show that feeding the STZ-induced diabetic mice with L. delbrueckii subsp. lactis PTCC1057 terminated to decrease in fasting blood glucose and fetuin-A level and increase in serum sestrin 3 level. Therefore, the L. delbrueckii subsp. lactis PTCC1057 can be considered as excellent candidate for future studies on diabetes mellitus.
Collapse
Affiliation(s)
- Jamal Hallajzadeh
- Department of Clinical Biochemistry, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Reza Dolatyari Eslami
- Department of Microbiology, Higher Education Institute of Rabe Rashid, East Azerbaijan, Tabriz, Iran
| | - Asghar Tanomand
- Department of Microbiology, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
40
|
Yan LH, Mu B, Pan D, Shi YN, Yuan JH, Guan Y, Li W, Zhu XY, Guo L. Association between small intestinal bacterial overgrowth and beta-cell function of type 2 diabetes. J Int Med Res 2020; 48:300060520937866. [PMID: 32691685 PMCID: PMC7375730 DOI: 10.1177/0300060520937866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aims Previous studies suggest that small intestinal bacterial overgrowth (SIBO) is associated with type 2 diabetes. However, few studies have evaluated the association between SIBO and beta-cell function in type 2 diabetes. The aim of this study was to evaluate whether beta-cell function was associated with SIBO. Materials and methods One hundred four patients with type 2 diabetes were included in this study. Based on the presence of SIBO, the patients were divided into SIBO-positive and SIBO-negative groups. Oral glucose tolerance tests were performed. Insulin sensitivity was measured using 1/homeostasis model assessment of insulin resistance (1/HOMA-IR) and the insulin sensitivity index (ISIM). Insulin release was calculated by HOMA-β, early-phase insulin secretion index InsAUC30/GluAUC30, and total-phase insulin secretion index InsAUC120/GluAUC120. Results Compared with the SIBO-negative group, patients in the SIBO-positive group showed a higher glucose level at 120 minutes, HbA1c, 1/HOMA-IR, and ISIM and a lower HOMA-β level, early-phase InsAUC30/GluAUC30, and total-phase InsAUC120/GluAUC120. Multiple linear regression analysis showed that body mass index, glucose at 0 minutes, and SIBO were independently associated with the early-phase and total-phase insulin secretion. Conclusion SIBO may be involved in lower levels of insulin release and worse glycemic control.
Collapse
Affiliation(s)
- Li-Hui Yan
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Biao Mu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Da Pan
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ya-Nan Shi
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Ji-Hong Yuan
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Yue Guan
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Wang Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Xiao-Yi Zhu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Lei Guo
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| |
Collapse
|
41
|
Kocsis T, Molnár B, Németh D, Hegyi P, Szakács Z, Bálint A, Garami A, Soós A, Márta K, Solymár M. Probiotics have beneficial metabolic effects in patients with type 2 diabetes mellitus: a meta-analysis of randomized clinical trials. Sci Rep 2020; 10:11787. [PMID: 32678128 PMCID: PMC7366719 DOI: 10.1038/s41598-020-68440-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
Probiotics have been reported to have a positive impact on the metabolic control of patients with type 2 diabetes. We aimed to systematically evaluate the effects of probiotics on cardiometabolic parameters in type 2 diabetes based on randomized controlled studies. MEDLINE, Embase, and CENTRAL databases were reviewed to search for randomized controlled trials that examined the effects of probiotic supplementation on cardiometabolic parameters in patients with type 2 diabetes. 32 trials provided results suitable to be included in the analysis. The effects of probiotics were calculated for the following parameters: BMI, total cholesterol levels, LDL, triglycerides, HDL, CRP, HbA1c levels, fasting plasma glucose, fasting insulin levels, systolic and diastolic blood pressure values. Data analysis showed a significant effect of probiotics on reducing total cholesterol, triglyceride levels, CRP, HbA1c, fasting plasma glucose, fasting insulin levels, and both systolic and diastolic blood pressure values. Supplementation with probiotics increased HDL levels however did not have a significant effect on BMI or LDL levels. Our data clearly suggest that probiotics could be a supplementary therapeutic approach in type 2 diabetes mellitus patients to improve dyslipidemia and to promote better metabolic control. According to our analysis, probiotic supplementation is beneficial in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Tícia Kocsis
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti str., Pecs, 7624, Hungary
| | - Bálint Molnár
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti str., Pecs, 7624, Hungary
| | - Dávid Németh
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti str., Pecs, 7624, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti str., Pecs, 7624, Hungary
- Hungarian Academy of Sciences, University of Szeged, Momentum Gastroenterology Multidisciplinary Research Group, Szeged, Hungary
| | - Zsolt Szakács
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti str., Pecs, 7624, Hungary
- Szentágothai Research Center, University of Pécs, Pecs, Hungary
| | - Alexandra Bálint
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti str., Pecs, 7624, Hungary
- Heart Institute, Medical School, University of Pécs, Pecs, Hungary
| | - András Garami
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti str., Pecs, 7624, Hungary
| | - Alexandra Soós
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti str., Pecs, 7624, Hungary
| | - Katalin Márta
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti str., Pecs, 7624, Hungary
| | - Margit Solymár
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti str., Pecs, 7624, Hungary.
| |
Collapse
|
42
|
Mazruei Arani N, Emam-Djomeh Z, Tavakolipour H, Sharafati-Chaleshtori R, Soleimani A, Asemi Z. The Effects of Probiotic Honey Consumption on Metabolic Status in Patients with Diabetic Nephropathy: a Randomized, Double-Blind, Controlled Trial. Probiotics Antimicrob Proteins 2020; 11:1195-1201. [PMID: 30218286 DOI: 10.1007/s12602-018-9468-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To the best of our knowledge, this study is the first evaluating the effects of probiotic honey intake on glycemic control, lipid profiles, biomarkers of inflammation, and oxidative stress in patients with diabetic nephropathy (DN). This investigation was conducted to evaluate the effects of probiotic honey intake on metabolic status in patients with DN. This randomized, double-blind, controlled clinical trial was performed among 60 patients with DN. Patients were randomly allocated into two groups to receive either 25 g/day probiotic honey containing a viable and heat-resistant probiotic Bacillus coagulans T11 (IBRC-M10791) (108 CFU/g) or 25 g/day control honey (n = 30 each group) for 12 weeks. Fasting blood samples were taken at baseline and 12 weeks after supplementation to quantify glycemic status, lipid concentrations, biomarkers of inflammation, and oxidative stress. After 12 weeks of intervention, patients who received probiotic honey compared with the control honey had significantly decreased serum insulin levels (- 1.2 ± 1.8 vs. - 0.1 ± 1.3 μIU/mL, P = 0.004) and homeostasis model of assessment-estimated insulin resistance (- 0.5 ± 0.6 vs. 0.003 ± 0.4, P = 0.002) and significantly improved quantitative insulin sensitivity check index (+ 0.005 ± 0.009 vs. - 0.0007 ± 0.005, P = 0.004). Additionally, compared with the control honey, probiotic honey intake has resulted in a significant reduction in total-/HDL-cholesterol (- 0.2 ± 0.5 vs. + 0.1 ± 0.1, P = 0.04). Probiotic honey intake significantly reduced serum high-sensitivity C-reactive protein (hs-CRP) (- 1.9 ± 2.4 vs. - 0.2 ± 2.7 mg/L, P = 0.01) and plasma malondialdehyde (MDA) levels (- 0.1 ± 0.6 vs. + 0.6 ± 1.0 μmol/L, P = 0.002) compared with the control honey. Probiotic honey intake had no significant effects on other metabolic profiles compared with the control honey. Overall, findings from the current study demonstrated that probiotic honey consumption for 12 weeks among DN patients had beneficial effects on insulin metabolism, total-/HDL-cholesterol, serum hs-CRP, and plasma MDA levels, but did not affect other metabolic profiles. http://www.irct.ir: IRCT201705035623N115.
Collapse
Affiliation(s)
- Navid Mazruei Arani
- Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Emam-Djomeh
- Department of Food Science, Technology and Engineering Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran
| | - Hamid Tavakolipour
- Department of Food Science and Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| | - Reza Sharafati-Chaleshtori
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R., Iran
| | - Alireza Soleimani
- Department of Internal Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| |
Collapse
|
43
|
Dudkiewicz A, Masmejean L, Arnaud C, Onarinde B, Sundara R, Pour-Taghi Anvarian A, Tucker N. Approaches for Improvement in Digestive Survival of Probiotics, a Comparative Study. POL J FOOD NUTR SCI 2020. [DOI: 10.31883/pjfns/120184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
44
|
Liang T, Wu L, Xi Y, Li Y, Xie X, Fan C, Yang L, Yang S, Chen X, Zhang J, Wu Q. Probiotics supplementation improves hyperglycemia, hypercholesterolemia, and hypertension in type 2 diabetes mellitus: An update of meta-analysis. Crit Rev Food Sci Nutr 2020; 61:1670-1688. [PMID: 32436397 DOI: 10.1080/10408398.2020.1764488] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: Although many studies have shown that consumption of probiotics is relevant to diabetes, the effects of probiotics improves clinical outcomes in type 2 diabetes have yielded conflicting results. The aim of this meta-analysis was conducted to assess the effects of probiotics supplementation on glycemic, blood lipids, pressure and inflammatory control in type 2 diabetes.Methods: PubMed, Web of science, Embase and the Cochrane Library databases were searched for relevant studies from February 2015 up to Janurary 2020, with no language restrictions. The pooled results were calculated with the use of a random-effects model to assess the impact of supplemental probiotics on glycemic, blood lipids, pressure and inflammatory control in type 2 diabetes. Additionally, subgroup analysis was conducted based on patients age, body mass index (BMI), country and duration of the probiotics supplement, respectively.Results: 13 studies were included in this meta-analysis, involving a total of 818 participants in 8 countries. Overall, compared with control groups, the subjects who received multiple species of probiotics had a statistically significant reduction in fasting blood sugar (FBS), homeostasis model assessment of insulin resistance (HOMA-IR), total cholesterol (TC), triglycerides (TG), systolic blood pressure (SBP), diastolic blood pressure (DBP) and tumor necrosis factor (TNF) -α [standardized mean difference (SMD): -0.89 mg/Dl, 95% CI: -1.66, -0.12 mg/dL; SMD: -0.43, 95% CI: -0.63, -0.23; SMD: -0.19 mg/dL, 95% CI: -0.36, -0.01 mg/dL; SMD: -0.23 mg/dL, 95% CI: -0.40, -0.05 mg/dL; SMD: -5.61 mmHg, 95% CI: -9.78, -1.45 mmHg; SMD: -3.41 mmHg, 95% CI: -6.12, -0.69 mmHg; and SMD: 6.92 pg/ml, 95% CI: 5.95, 7.89 pg/ml, respectively]. However, the subjects who received single-species of probiotic or probiotic with co-supplements in food only changed FBS, HOMA-IR, DBP and TG levels. Moreover, subgroup analyses revealed that the effects of probiotics supplementation on FBS, HMOA-IR, SBP and DBP are significantly influenced by patients age, body mass index (BMI), country and duration of the probiotics supplement.Conclusion: Our analysis revealed that glycemic, lipids, blood pressure and inflammation indicators are significantly improved by probiotic supplementation, particularly the subjects who ages ≤ 55, baseline BMI< 30 kg/m2, duration of intervention more than 8 weeks, and received multiple species probiotic.
Collapse
Affiliation(s)
- Tingting Liang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi an, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Lei Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi an, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Xi
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Congcong Fan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi an, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Lingshuang Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shuanghong Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi an, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi an, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
45
|
Lazarenko L, Bubnov R, Babenko L, Melnykova O, Spivak M. Methodical approaches of estimation of probiotics` quality and rational principles of their usage in clinical practice. SCIENCERISE: BIOLOGICAL SCIENCE 2020. [DOI: 10.15587/2519-8025.2020.202216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
46
|
Lactobacillus rhamnosus Reduces Blood Glucose Level through Downregulation of Gluconeogenesis Gene Expression in Streptozotocin-Induced Diabetic Rats. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:6108575. [PMID: 32399477 PMCID: PMC7201496 DOI: 10.1155/2020/6108575] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022]
Abstract
Some lactic acid bacteria (LAB) are observed to be potential probiotics with functional properties such as lowering fasting blood glucose (FBG), as a promising hyperglycemia management. This study investigated the ability and mechanism of Lactobacillus rhamnosus BSL and Lactobacillus rhamnosus R23 on lowering FBG in diabetic rats induced by streptozotocin (STZ). The rats were orally administered with L. rhamnosus BSL and L. rhamnosus R23 by giving 1 mL cell suspension (109 CFU/mL) daily for 30 days. The body weight (BW) was recorded once in three days, and FBG was recorded once in six days. An oral glucose tolerance test (OGTT) was measured 1 week after injection with STZ and before sacrifice. Fecal samples were collected on days 0, 15, and 30 for LAB population and identification, performed by PCR detecting 16S rRNA. Oral administration of L. rhamnosus BSL and L. rhamnosus R23 decreased FBG and improved glucose tolerance via downregulation of glucose-6-phosphatase (G6pc) expression by 0.57- and 0.60-fold change, respectively (P < 0.05). The lipid profiles, BUN, creatinine, SGOT, and SGPT were significantly (P < 0.05) different between normal and diabetic rats, but they were not significantly (P > 0.05) different among diabetic rats. Both strains were effective in increasing fecal LAB population. Molecular identification of the isolated LAB from fecal sample indicated that they were able to survive and pass through the digestive tract. These results suggested that both strains have the ability to manage blood glucose level and become a promising agent to manage hyperglycemia and diabetes.
Collapse
|
47
|
Do Probiotics Improve the Health Status of Individuals with Diabetes Mellitus? A Review on Outcomes of Clinical Trials. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1531567. [PMID: 31950031 PMCID: PMC6949658 DOI: 10.1155/2019/1531567] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/22/2019] [Accepted: 08/19/2019] [Indexed: 12/26/2022]
Abstract
Probiotics are now considered as an adjuvant and complementary therapeutic agent for several health complications, especially for metabolic and gastrointestinal disorders because of the influential impact of probiotic consumption on gut microbiota and immunity. Diabetes mellitus (DM) is fourth, in noncommunicable disease category, leading cause of mortality, morbidity, and economic crises in the world. Though several progressions are added in the medical field in recent decades, the treatment and management of diabetic-related health issues are still challenging. The present study summarizes the effects of probiotic supplementation on the health status of diabetic patients. The relevant information was collected from Scopus, PubMed, and Google Scholar. The detailed literature survey revealed that the consumption of probiotic supplementation significantly improved the overall health condition of diabetic patients. Especially, the probiotic intervention improved the fasting blood glucose, insulin sensitivity, and systemic inflammatory and antioxidant status in type 2 diabetic (T2D) patients. Moreover, improvement of gut microbial composition and prevention of bacterial translocation has also been observed in probiotic-supplemented T2D people. Some of the studies evidenced that the supplementation of probiotics can prevent and improve the gestational DM. Nevertheless, some of the studies reported negative results and limitations in the results of clinical trials. However, further studies are mandatory to develop a concrete probiotic-based adjuvant treatment procedure to treat DM.
Collapse
|
48
|
Ardeshirlarijani E, Tabatabaei-Malazy O, Mohseni S, Qorbani M, Larijani B, Baradar Jalili R. Effect of probiotics supplementation on glucose and oxidative stress in type 2 diabetes mellitus: a meta-analysis of randomized trials. Daru 2019; 27:827-837. [PMID: 31691101 PMCID: PMC6895351 DOI: 10.1007/s40199-019-00302-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The role of oxidative stress in pathogenesis of diabetes is well established. In addition, an association between gut microbiota and type 2 diabetes mellitus (T2DM) is widely observed in previously published reports. This meta-analysis critically examines the association between gut microbiota, and oxidative stress in T2DM. METHODS A systematic search for clinical trials was performed in PubMed, Web of Science and Scopus web databases up to 1 Jan 2019. Primary search terms include "microbiota", "diabetes", and "oxidative stress". Study was conducted according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guideline. All clinical trials that compared the effects of probiotic supplementations with a control group using end points serum levels of fasting blood sugar (FBS), hemoglobin A1C (HbA1C) and oxidative stress biomarkers were included. Two independent researchers screened the data extracted from the relevant studies. The pooled standardized mean difference (SMD) was estimated using the random or fixed effects model. Heterogeneity among the studies was assessed using Q-test. RESULTS Overall, 13 randomized clinical trials (RCTs) involving 840 subjects with T2DM were included in the meta-analysis. The analysis showed that probiotics intake resulted in significant improvement in serum levels of FBS [SMD: -0.35, 95% CI: (-0.59, -0.12)], total antioxidant status (TAS) [SMD: 0.33, 95% CI: (0.11, 0.55)], total glutathione (GSH) [SMD: 0.41, 95% CI: (0.26, 0.56)] and malondialdehyde (MDA) [SMD: -0.54, 95% CI: (-0.83, -0.26)]. No significant improvement was found in HbA1C [SMD: -0.06, 95% CI:(-0.82, 0.69)], and nitric oxide (NO) [SMD:-0.24, 95% CI:(-1.10, 0.62)] levels. CONCLUSION It seems that gut microbiota can exert beneficial effects in diabetic patients via altering oxidative stress' biomarkers. The beneficial effect of gut microbiota however was modest on FBS and non-significant on HbA1C. These results need to be confirmed by conducting more reliable RCTs. PROSPERO REGISTRATION NUMBER CRD42019134905. Graphical abstract Flow diagram of the study selection process.
Collapse
Affiliation(s)
| | - Ozra Tabatabaei-Malazy
- Non-Cummunicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Mohseni
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Baradar Jalili
- Department of Surgery, University of British Columbia, Vancouver, British Columbia Canada
| |
Collapse
|
49
|
Rittiphairoj T, Pongpirul K, Mueller NT, Li T. Probiotics for glycemic control in patients with type 2 diabetes mellitus: protocol for a systematic review. Syst Rev 2019; 8:227. [PMID: 31481125 PMCID: PMC6720889 DOI: 10.1186/s13643-019-1145-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 08/22/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a major public health problem worldwide. It is characterized by the increased concentration of glucose in the blood and leads to damage of the body system, especially blood vessels and nerves. Lifestyle modification is often combined with anti-diabetic therapy as the standard of care for T2DM to maintain the proper blood glucose and to prevent long-term diabetic complications. The role of probiotics in improving glycemic control has been investigated in several randomized controlled trials (RCTs). Previous systematic reviews and meta-analyses, including different sets of trials have concluded an overall beneficial effect of probiotics in patients with T2DM. At least two RCTs with a longer treatment duration have been published since the publication of existing reviews. METHODS We will conduct a systematic review of RCTs that evaluated the effectiveness and safety of probiotics for glycemic control in T2DM patients. Primary outcomes are fasting blood glucose and glycosylated hemoglobin (A1c). Secondary outcomes are plasma insulin, blood lipid profile, adverse events, and cost associated with the intervention and hospital visits. We will search PubMed, Embase, and the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, and trial registries. Two reviewers will independently screen titles and abstracts, review full texts, extract information, and assess the risk of bias. We will summarize the results both qualitatively and statistically. We will use random-effects model for meta-analysis. DISCUSSION This systematic review aims to examine whether probiotics are effective and safe for glycemic control in T2DM patients. Evidence generated from this review will inform clinical and public health practice and future research. SYSTEMATIC REVIEW REGISTRATION CRD42019121682.
Collapse
Affiliation(s)
- Thanitsara Rittiphairoj
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok, 10330 Thailand
| | - Krit Pongpirul
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok, 10330 Thailand
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Noel T. Mueller
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
- Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, MD 21205 USA
| | - Tianjing Li
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| |
Collapse
|
50
|
The Effect of Probiotic Yogurt on Glycemic Control in Type 2 Diabetes or Obesity: A Meta-Analysis of Nine Randomized Controlled Trials. Nutrients 2019; 11:nu11030671. [PMID: 30897796 PMCID: PMC6471569 DOI: 10.3390/nu11030671] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 01/04/2023] Open
Abstract
Probiotic yogurt is suggested as a nutritional approach in type 2 diabetes (T2D) and obesity. We performed a systematic review and meta-analysis of randomized controlled trials (RCTs) evaluating the effects of probiotic yogurt on glycemic outcomes in T2D or obesity. The databases used to search for RCTs included Medline and Scopus. The RCTs were eligible if outcomes included selected glycemic markers. In nine eligible trials, 237 and 235 subjects were in treatment (probiotic yogurt) and control (mostly conventional yogurt) groups, respectively. There was no significant difference for pooled unstandardized mean difference (USMD) hemoglobin A1c (HbA1c) by probiotic yogurt compared with the control in T2D (USMD: -0.366; 95% CI: -0.755, 0.024, p = 0.066) and obesity (USMD: 0.116, 95% CI: -0.007, 0.238, p = 0.065). Similarly, there were no effects of probiotic yogurt on fasting blood glucose, fasting insulin, or insulin resistance (estimated by homeostatic model assessment of insulin resistance (HOMA-IR)) in either T2D or obesity. In conclusion, the present meta-analysis has not demonstrated the benefits of consuming probiotic compared with conventional yogurt for improving glucose control in patients with diabetes or obesity. Larger trials are needed to verify the benefits of probiotic and/or conventional yogurt or other probiotic fermented milk (e.g., kefir) on glycemic markers in patients with diabetes and obesity.
Collapse
|