1
|
Li Z, Zhao H, Hu H, Shang H, Ren Y, Qiu W, Su H, Lyu H, Chen X. Mechanisms of resistance to trastuzumab in HER2-positive gastric cancer. Chin J Cancer Res 2024; 36:306-321. [PMID: 38988489 PMCID: PMC11230884 DOI: 10.21147/j.issn.1000-9604.2024.03.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/30/2024] [Indexed: 07/12/2024] Open
Abstract
Gastric cancer is one of the most prevalent cancers worldwide, and human epidermal growth factor receptor 2 (HER2)-positive cases account for approximately 20% of the total cases. Currently, trastuzumab + chemotherapy is the recommended first-line treatment for patients with HER2-positive advanced gastric cancer, and the combination has exhibited definite efficacy in HER2-targeted therapy. However, the emergence of drug resistance during treatment considerably reduces its effectiveness; thus, it is imperative to investigate the potential mechanisms underlying resistance. In the present review article, we comprehensively introduce multiple mechanisms underlying resistance to trastuzumab in HER2-positive gastric cancer cases, aiming to provide insights for rectifying issues associated with resistance to trastuzumab and devising subsequent treatment strategies.
Collapse
Affiliation(s)
- Zhifei Li
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou 450008, China
| | - Huan Zhao
- Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Huihui Hu
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou 450008, China
| | - Haili Shang
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou 450008, China
| | - Yongjing Ren
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou 450008, China
| | - Wenhui Qiu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hao Su
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China
| | - Huifang Lyu
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xiaobing Chen
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou 450008, China
| |
Collapse
|
2
|
Wang Q, Liu L, Gou X, Zhang T, Zhao Y, Xie Y, Zhou J, Liu Y, Song K. The 3'‑untranslated region of XB130 regulates its mRNA stability and translational efficiency in non‑small cell lung cancer cells. Oncol Lett 2023; 26:427. [PMID: 37720672 PMCID: PMC10502931 DOI: 10.3892/ol.2023.14013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/02/2023] [Indexed: 09/19/2023] Open
Abstract
Silencing XB130 inhibits cell proliferation and epithelial-mesenchymal transition in non-small cell lung cancer (NSCLC), suggesting that downregulating XB130 expression may impede NSCLC progression. However, the molecular mechanism underlying the regulation of XB130 expression remains unclear. In the present study, the role of the 3'-untranslated region (3'-UTR) in the regulation of XB130 expression was investigated. Recombinant psiCHECK-2 vectors with wild-type, truncated, or mutant XB130 3'-UTR were constructed, and the effects of these insertions on reporter gene expression were examined using a dual-luciferase reporter assay and reverse transcription-quantitative PCR. Additionally, candidate proteins that regulated XB130 expression by binding to critical regions of the XB130 3'-UTR were screened for using an RNA pull-down assay, followed by mass spectrometry and western blotting. The results revealed that insertion of the entire XB130 3'-UTR (1,218 bp) enhanced reporter gene expression. Positive regulatory elements were primarily found in nucleotides 113-989 of the 3'-UTR, while negative regulatory elements were found in the 1-112 and 990-1,218 regions of the 3'-UTR. Deletion analyses identified nucleotides 113-230 and 503-660 of the 3'-UTR as two major fragments that likely promote XB130 expression by increasing mRNA stability and translation rate. Additionally, a U-rich element in the 970-1,053 region of the 3'-UTR was identified as a negative regulatory element that inhibited XB130 expression by suppressing translation. Furthermore, seven candidate proteins that potentially regulated XB130 expression by binding to the 113-230, 503-660, and 970-1,053 regions of the 3'-UTR were identified, shedding light on the regulatory mechanism of XB130 expression. Collectively, these results suggested that complex sequence integrations in the mRNA 3'-UTR variably affected XB130 expression in NSCLC cells.
Collapse
Affiliation(s)
- Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Lingling Liu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Xuanjing Gou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Ying Liu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Kewei Song
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Department of Sport and Health, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
3
|
Zhu XL, Hu DY, Zeng ZX, Jiang WW, Chen TY, Chen TC, Liao WQ, Lei WZ, Fang WJ, Pan WH. XB130 inhibits healing of diabetic skin ulcers through the PI3K/Akt signalling pathway. World J Diabetes 2023; 14:1369-1384. [PMID: 37771334 PMCID: PMC10523235 DOI: 10.4239/wjd.v14.i9.1369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/06/2023] [Accepted: 08/02/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Diabetic skin ulcers, a significant global healthcare burden, are mainly caused by the inhibition of cell proliferation and impaired angiogenesis. XB130 is an adaptor protein that regulates cell proliferation and migration. However, the role of XB130 in the development of diabetic skin ulcers remains unclear. AIM To investigate whether XB130 can regulate the inhibition of proliferation and vascular damage induced by high glucose. Additionally, we aim to determine whether XB130 is involved in the healing process of diabetic skin ulcers, along with its molecular mechanisms. METHODS We conducted RNA-sequencing analysis to identify the key genes involved in diabetic skin ulcers. We investigated the effects of XB130 on wound healing using histological analyses. In addition, we used reverse transcription-quantitative polymerase chain reaction, Western blot, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining, immunofluorescence, wound healing, and tubule formation experiments to investigate their effects on cellular processes in human umbilical vein endothelial cells (HUVECs) stimulated with high glucose. Finally, we performed functional analysis to elucidate the molecular mechanisms underlying diabetic skin ulcers. RESULTS RNA-sequencing analysis showed that the expression of XB130 was up-regulated in the tissues of diabetic skin ulcers. Knockdown of XB130 promoted the healing of skin wounds in mice, leading to an accelerated wound healing process and shortened wound healing time. At the cellular level, knockdown of XB130 alleviated high glucose-induced inhibition of cell proliferation and angiogenic impairment in HUVECs. Inhibition of the PI3K/Akt pathway removed the proliferative effects and endothelial protection mediated by XB130. CONCLUSION The findings of this study indicated that the expression of XB130 is up-regulated in high glucose-stimulated diabetic skin ulcers and HUVECs. Knockdown of XB130 promotes cell proliferation and angiogenesis via the PI3K/Akt signalling pathway, which accelerates the healing of diabetic skin ulcers.
Collapse
Affiliation(s)
- Xin-Lin Zhu
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Dong-Ying Hu
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Zhao-Xiang Zeng
- Department of Vascular Surgery, Department of Vascular Surgery, Changhai Hospital, Navy Medical University, Shanghai 20003, China
| | - Wei-Wei Jiang
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Tian-Yang Chen
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Tian-Cheng Chen
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wan-Qing Liao
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wen-Zhi Lei
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wen-Jie Fang
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wei-Hua Pan
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
4
|
Yang S, Wang B, Liao J, Hong Z, Zhong X, Chen S, Wu Z, Zhang X, Zuo Q. Molecular mechanism of XB130 adaptor protein mediates trastuzumab resistance in gastric cancer. Clin Transl Oncol 2023; 25:685-695. [PMID: 36284062 DOI: 10.1007/s12094-022-02974-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/02/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Recent studies have shown that the activation of PI3K/AKT signaling pathway is an essential molecular mechanism participating in trastuzumab resistance in HER2 + GC (gastric cancer). However, how can we effectively inhibit AKT activity associated with drug resistance during trastuzumab treatment? Screening inhibitors against the upstream receptors of PI3K/AKT signaling pathway or interacting proteins of members has become an important way. METHODS In this study, western blot, qRT-PCR, CCK8, Co-IP and other techniques were used to explore possible mechanisms participating in trastuzumab resistance in vitro. Besides, the xenograft mouse model and GC tissue samples from patients were used to further validate the in-vitro results. RESULTS The expression of XB130 adaptor protein was remarkably increased in GC cell lines resistant to trastuzumab, and knockdown of XB130 could reverse the resistance via downregulating p-AKT. In addition, p-SRC (Tyr416) was increased in resistant cells, which could facilitate the binding of XB130 to PI3K p85α. It was also discovered that XB130 could negatively regulate PTEN gene transcription, and thus a positive feedback loop was formed between SRC-XB130-PTEN. CONCLUSIONS In HER2 + GC, XB130 contributes to trastuzumab resistance by stimulating the PI3K/AKT signaling pathway through binding to PI3K p85α under the mediation of SRC kinase and regulating PTEN gene transcription, and in turn forming a positive feedback loop between SRC-XB130-PTEN.
Collapse
Affiliation(s)
- Shengnan Yang
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Binbin Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Jiaqi Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Ziyang Hong
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Xuxian Zhong
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Suling Chen
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Ziqing Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Xingyu Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Qiang Zuo
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China.
| |
Collapse
|
5
|
Wang Q, Yang G, Jiang Y, Luo M, Li C, Zhao Y, Xie Y, Song K, Zhou J. XB130, regulated by miR-203, miR-219, and miR-4782-3p, mediates the proliferation and metastasis of non-small-cell lung cancer cells. Mol Carcinog 2020; 59:557-568. [PMID: 32159887 DOI: 10.1002/mc.23180] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/09/2020] [Accepted: 02/27/2020] [Indexed: 01/06/2023]
Abstract
XB130 is a novel adapter protein that behaves as a tumor promoter or suppressor mediating cell proliferation and metastasis in the development of different human tumors. Altered expression of XB130 has been verified in human non-small cell-lung cancer (NSCLC). However, the exact effect of XB130 on NSCLC is not well-understood. In this study, we investigated the biological function and posttranscriptional regulation of XB130 in NSCLC. First, the effects of XB130 silence on NSCLC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) were examined. Then the targeting relationship between XB130 and miR-203, miR-219, or miR-4782-3p was demonstrated by dual-luciferase reporter assay. Finally, the effects of miR-203, miR-219, and miR-4782-3p on NSCLC cell function were studied, respectively. We found that XB130 silence significantly inhibited cell growth, migration and invasion, and reversed EMT. Furthermore, XB130 was posttranscriptionally regulated by miR-203, miR-219, and miR-4782-3p. Overexpression of miR-203, miR-219, or miR-4782-3p inhibited cell growth, migration and invasion, and reversed EMT, just like the role of XB130 in NSCLC cells, whereas the suppressive effects of microRNA (miRNA) overexpression were weakened by miRNA inhibitors or ectopic expression of XB130 in NSCLC cells. These data demonstrate that XB130 is posttranscriptionally regulated by miR-203, miR-219, and miR-4782-3p and mediates the proliferation and metastasis of NSCLC cells.
Collapse
Affiliation(s)
- Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Guohui Yang
- Department of Medical Intensive Care Unit, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yinhui Jiang
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Mei Luo
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Chao Li
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Kewei Song
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China.,Department of Sport and Health, Guizhou Medical University, Guiyang, China
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| |
Collapse
|
6
|
Cho HR, Wang Y, Bai X, Xiang YY, Lu C, Post A, Al Habeeb A, Liu M. XB130 deficiency enhances carcinogen-induced skin tumorigenesis. Carcinogenesis 2019; 40:1363-1375. [DOI: 10.1093/carcin/bgz042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
AbstractXB130 is an adaptor protein that functions as a mediator of multiple tyrosine kinases important for regulating cell proliferation, survival, migration and invasion. Formerly predicted as an oncogene, alterations of its expression are documented in various human cancers. However, the exact role of XB130 in tumorigenesis is unknown. To address its function in skin tumorigenesis, a two-stage dimethylbenzanthracene (DMBA)/12-O-tetradecanoylphorbol 13-acetate (TPA) study was performed on XB130 knockout (KO), heterozygous (HZ) and wild-type (WT) littermate mice. DMBA/TPA-treated XB130 KO and HZ males developed a significantly higher number of epidermal tumors that were notably larger in size than did WT mice. Interestingly, DMBA/TPA-treated female mice did not show any difference in tumor multiplicity regardless of the genotypes. The skin tumor lesions of XB130 KO males were more progressed with an increased frequency of keratoacanthoma. Deficiency of XB130 dramatically increased epidermal tumor cell proliferation. The responses to DMBA and TPA stimuli were also individually investigated to elucidate the mechanistic role of XB130 at different stages of tumorigenesis. DMBA-treated male XB130 KO mice showed compensatory p53-mediated stress response. TPA-treated XB130 KO males demonstrated more skin ulceration with more severe edema, enhanced cell proliferation, accumulation of infiltrating neutrophils and increased production of pro-inflammatory cytokine genes compared with WT mice. Enhanced activities of nuclear factor-kappa B pathway, increased protein expression of metalloproteinase-9 and ERK1/2 phosphorylation were found in these KO mice. These findings demonstrate that XB130 acts as a tumor suppressor in carcinogen-induced skin tumorigenesis that may be mediated through inhibiting inflammation.
Collapse
Affiliation(s)
- Hae-Ra Cho
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yingchun Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
| | - Xiaohui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
| | - Yun-Yan Xiang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
| | - Christina Lu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
| | - Alexander Post
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
| | - Ayman Al Habeeb
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Xie T, Jiang C, Dai T, Xu R, Zhou X, Su X, Zhao X. Knockdown of XB130 restrains cancer stem cell-like phenotype through inhibition of Wnt/β-Catenin signaling in breast cancer. Mol Carcinog 2019; 58:1832-1845. [PMID: 31219645 DOI: 10.1002/mc.23071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
The cancer stem cells (CSCs) is a subset of cancer cells that possess stem cell properties, which plays a crucial role in the occurrence, metastasis, and recurrence of the tumor. XB130 is a novel adapter protein potentially serves as a functional factor in CSCs. To determine the role of CSCs in breast cancer, we focused on the study of XB130. In our study, we found that XB130 expression was significantly upregulated in breast cancer and was closely related to the clinicopathologic characteristics, overall survival and poor prognosis of breast cancer patients. Functionally, we found that knockdown of XB130 was not only played an important role in proliferation, epithelial-mesenchymal transition (EMT), and metastasis in breast cancer cells but also exhibited potent antitumor activity in animal tumor models. Moreover, we demonstrated that silencing endogenous XB130 regulated the cancer stem cell-like properties of breast cancer, including the formation of self-renewing spheres and the proportion of breast cancer SP+ cells. Mechanistically, our studies indicated that downregulation of XB130 restrained the EMT and Wnt/β-catenin signaling, so as to weaken the tumor-initiating cell-like phenotype of breast cancer cells. This study indicates that XB130 plays an important role in maintaining the EMT and stem cell-like characteristics of breast cancer cells, supporting the significance of XB130 as a new potential therapeutic target for early diagnosis and prognosis of breast cancer.
Collapse
Affiliation(s)
- Tian Xie
- Department of GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Obstetrics, Obstetrics and Prenatal Diagnosis Center, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chao Jiang
- Department of Cancer Center, People's Hospital of Baoan District, Shenzhen, China.,Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Cancer Center, Guangzhou, China
| | - Ting Dai
- Department of GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Rui Xu
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Cancer Center, Guangzhou, China.,Department of Internal Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiang Zhou
- Department of Microsurgery, Trauma and Hand Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaobo Su
- Department of GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaohui Zhao
- Department of GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China.,The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| |
Collapse
|
8
|
Li GM, Liang CJ, Zhang DX, Zhang LJ, Wu JX, Xu YC. XB130 Knockdown Inhibits the Proliferation, Invasiveness, and Metastasis of Hepatocellular Carcinoma Cells and Sensitizes them to TRAIL-Induced Apoptosis. Chin Med J (Engl) 2018; 131:2320-2331. [PMID: 30246718 PMCID: PMC6166462 DOI: 10.4103/0366-6999.241800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background XB130 is a recently discovered adaptor protein that is highly expressed in many malignant tumors, but few studies have investigated its role in hepatocellular carcinoma (HCC). Therefore, this study explored the relationship between this protein and liver cancer and investigated its molecular mechanism of action. Methods The expression of XB130 between HCC tissues and adjacent nontumor tissues was compared by real-time polymerase chain reaction, immunochemistry, and Western blotting. XB130 silencing was performed using small hairpin RNA. The effect of silencing XB130 was examined using Cell Counting Kit-8, colony assay, wound healing assay, and cell cycle analysis. Results We found that XB130 was highly expressed in HCC tissues (cancer tissues vs. adjacent tissues: 0.23 ± 0.02 vs. 0.17 ± 0.02, P < 0.05) and liver cancer cell lines, particularly MHCC97H and HepG2 (MHCC97H and HepG2 vs. normal liver cell line LO-2: 2.35 ± 0.26 and 2.04 ± 0.04 vs. 1.00 ± 0.04, respectively, all P < 0.05). The Cell Counting Kit-8 assay, colony formation assay, and xenograft model in nude mice showed that silencing XB130 inhibited cell proliferative ability both in vivo and in vitro, with flow cytometry demonstrating that the cells were arrested in the G0/G1 phase in HepG2 (HepG2 XB130-silenced group [shA] vs. HepG2 scramble group [NA]: 74.32 ± 5.86% vs. 60.21 ± 3.07%, P < 0.05) and that the number of G2/M phase cells was decreased (HepG2 shA vs. HepG2 NA: 8.06 ± 2.41% vs. 18.36 ± 4.42%, P < 0.05). Furthermore, the cell invasion and migration abilities were impaired, and the levels of the epithelial-mesenchymal transition-related indicators vimentin and N-cadherin were decreased, although the level of E-cadherin was increased after silencing XB130. Western blotting showed that the levels of phosphorylated phosphoinositide 3-kinase (PI3K) and phospho-protein kinase B (p-Akt) also increased, although the level of phosphorylated phosphatase and tensin homolog increased, indicating that XB130 activated the PI3K/Akt pathway. Furthermore, we found that a reduction in XB130 increased liver cancer cell sensitivity to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Conclusions Our findings suggest that XB130 might be used as a predictor of liver cancer as well as one of the targets for its treatment.
Collapse
Affiliation(s)
- Guang-Ming Li
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Chao-Jie Liang
- Department of General Surgery, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Dong-Xin Zhang
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Li-Jun Zhang
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ji-Xiang Wu
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ying-Chen Xu
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
9
|
Huang Z, Liu Y, Yang C, Li X, Pan C, Rao J, Li N, Liao W, Lin L. Combined neutrophil/platelet/lymphocyte/differentiation score predicts chemosensitivity in advanced gastric cancer. BMC Cancer 2018; 18:515. [PMID: 29720123 PMCID: PMC5932840 DOI: 10.1186/s12885-018-4414-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/19/2018] [Indexed: 12/17/2022] Open
Abstract
Background Gastric cancer is common in developing regions, and we hope to find out an economical but practical prognostic indicator. It was reported that pre-treatment peripheral neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR), as well as differentiation status, were associated with cancer progression. Hence, we introduced a novel combined Neutrophil/platelet/lymphocyte/differentiation Score (cNPLDS) to improve the prediction value of palliative chemotherapeutic response in advanced gastric cancer. Methods According to statistical sample size estimation, 136 primary diagnosed unresectable advanced ptaients were included for a retrospective study. The follow-up end-point was progression free survival (PFS) during the first-line palliative chemotherapy. Differentiation stratified patients into well, medium and poor groups by score 1 to 3, while patients with neither elevated NLR and PLR, only one elevated, or both elevated were of the combined NLR-PLR score (cNPS) 1 to 3, respectively. The cNPLDS was calculated by multiplying the tumor differentiation score and cNPS. Results Determined by the receiver operating characteristic (ROC) curve, the optimal cut-off points for NLR and PLR were 3.04 and 223. Through univariate analysis and survival analysis, poor differentiation, high NLR, high PLR, high cNPS, and high cNPLDS respectively indicated inferior PFS during the first-line palliative chemotherapy. Patients were furhter classified into low to high risk groups by cNPLDS. Groups of elevated NLR, PLR, cNPS, and cNPLDS showed lower disease control rate. Compared to other parameters, cNPLDS significantly improved the accuracy in predicing the first-progression. Conclusions This study indicates that the novel parameter cNPLDS is superior to NLR or PLR alone, or even cNPS, in predicting the first-line chemosensitivity in advanced gastric cancer.
Collapse
Affiliation(s)
- Zhenhua Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yantan Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chen Yang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoyin Li
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Changqie Pan
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jinjun Rao
- Key laboratory of new drug screening of Guangdong Province, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Nailin Li
- Department of Medicine-Solna, Karolinska Institute, Clinical Pharmacology Group, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Li Lin
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Chen B, Liao M, Wei Q, Liu F, Zeng Q, Wang W, Liu J, Hou J, Yu X, Liu J. XB130 is overexpressed in prostate cancer and involved in cell growth and invasion. Oncotarget 2018; 7:59377-59387. [PMID: 27509056 PMCID: PMC5312318 DOI: 10.18632/oncotarget.11074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/29/2016] [Indexed: 02/06/2023] Open
Abstract
XB130 is a cytosolic adaptor protein involved in various physiological processes and oncogenesis of certain malignancies, but its role in the development of prostate cancer remains unclear. In current study, we examined XB130 expression in prostate cancer tissues and found that XB130 expression was remarkably increased in prostate cancer tissues and significantly correlated with increased prostate specific antigen (PSA), free PSA (f-PSA), prostatic acid phosphatase (PAP) and T classification. Patients with highly expressed XB130 had significantly decreased survival, which suggested XB130 as a possible prognostic indicator for prostate cancer. In vitro experiments showed that reduced XB130 expression restrained tumor growth both in vitro and in vivo. Furthermore, XB130 knockdown hindered transition of G1 to S phase in prostate cancer cell line DU145 and LNCap, which might contribute to the inhibition of cellular proliferation. Results from transwell assay demonstrated that downregulation of XB130 may attenuate invasion and metastasis of prostate cancer. Semiquantitative analysis of Western blot suggested that decreased XB130 expression was accompanied by diminished Akt signaling and EMT process. Thus, above observations suggest that XB130 may be a novel molecular marker and potent therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Bin Chen
- Department of Science and Training, General Hospital of Guangzhou Military Command of People's Liberation Army, Guangzhou, Guangdong, China.,Guangzhou Huabo Biopharmaceutical Research Institute, Guangzhou, Guangdong, China
| | - Mengying Liao
- Department Of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qiang Wei
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Feiye Liu
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Qinsong Zeng
- Department of Urology, General Hospital of Guangzhou Military Command of People's Liberation Army, Guangzhou, Guangdong, China
| | - Wei Wang
- Department of Urology, General Hospital of Guangzhou Military Command of People's Liberation Army, Guangzhou, Guangdong, China
| | - Jun Liu
- Department of Urology, General Hospital of Guangzhou Military Command of People's Liberation Army, Guangzhou, Guangdong, China
| | | | - Xinpei Yu
- Guangdong Provincial Key Laboratory of Geriatric Infection and Organ Function Support and Guangzhou Key Laboratory of Geriatric Infection and Organ Function Support, Guangzhou, Guangdong, China.,Center for Geriatrics, General Hospital of Guangzhou Military Command of People's Liberation Army, Guangzhou, Guangdong, China
| | - Jian Liu
- Center for Geriatrics, General Hospital of Guangzhou Military Command of People's Liberation Army, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Toba H, Tomankova T, Wang Y, Bai X, Cho HR, Guan Z, Adeyi OA, Tian F, Keshavjee S, Liu M. XB130 deficiency enhances lipopolysaccharide-induced septic response and acute lung injury. Oncotarget 2018; 7:25420-31. [PMID: 27029000 PMCID: PMC5041914 DOI: 10.18632/oncotarget.8326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 03/08/2016] [Indexed: 01/03/2023] Open
Abstract
XB130 is a novel oncoprotein that promotes cancer cell survival, proliferation and migration. Its physiological function in vivo is largely unknown. The objective of this study was to determine the role of XB130 in lipopolysaccharide (LPS)-induced septic responses and acute lung injury. LPS was intraperitoneally administrated to Xb130 knockout (KO) and wild type (WT) mice. There was a significant weight loss in KO mice at Day 2 and significantly higher disease scores during the 7 days of observation. The levels of tumor necrosis factor-alpha, monocyte chemoattractant protein-1, interleukin-6 and interleukin-10 in the serum were significantly higher in KO mice at Day 2. In KO mice there were a significantly higher lung injury score, higher wet/dry lung weight ratio, more apoptotic cells and less proliferative cells in the lung. Macrophage infiltration was significantly elevated in the lung of KO mice. There was significantly increased number of p-GSK-3β positive cells in KO mice, which were mainly neutrophils and macrophages. XB130 is expressed in alveolar type I and type II cells in the lung. The expression in these cells was significantly reduced after LPS challenge. XB130 deficiency delayed the recovery from systemic septic responses, and the presence of XB130 in the alveolar epithelial cells may provide protective mechanisms by reducing cell death and promoting cell proliferation, and reducing pulmonary permeability.
Collapse
Affiliation(s)
- Hiroaki Toba
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Tereza Tomankova
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Yingchun Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Xiaohui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Hae-Ra Cho
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Zhehong Guan
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Oyedele A Adeyi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Feng Tian
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Shen J, Jin C, Liu Y, Rao H, Liu J, Li J. XB130 enhances invasion and migration of human colorectal cancer cells by promoting epithelial‑mesenchymal transition. Mol Med Rep 2017; 16:5592-5598. [PMID: 28849225 DOI: 10.3892/mmr.2017.7279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 06/08/2017] [Indexed: 11/06/2022] Open
Abstract
The expression of XB130 is associated with invasion and migration of many tumor cells, but its roles in human colorectal cancer (CRC) remains unknown. To investigate this, protein expression levels of XB130 in numerous human CRC cell lines were compared with a normal colorectal mucosa cell line by western blotting. Knockdown of XB130 using small interfering (si)RNA was performed to assess the effects on cell invasion and migration in a Transwell assay and a scratch test. Western blotting was also used to quantify the levels of proteins associated with epithelial‑mesenchymal transition (EMT), including E‑cadherin, vimentin, phosphorylated (p)‑protein kinase B (AKT), p‑forkhead homeobox type O 3a (FOXO3a) and zinc finger E‑box‑binding homeobox 1 (ZEB‑1). The relative expression of XB130 protein was significantly higher in CRC cells compared with control cells (P<0.01). Knockdown of XB130 using siRNA significantly decreased the invasive and migratory responses of CRC cells (P<0.01). In addition, levels of E‑cadherin were increased, while vimentin, p‑AKT, p‑FOXO3a and ZEB‑1 were decreased (P<0.01). In conclusion, the present study demonstrated that the expression of XB130 is elevated in CRC cells. Loss of XB130 was associated with decreased invasion and migration of CRC cells, possibly as a result of EMT inhibition. Thus, upregulation of XB130 may underlie some of the tumorigenic events observed in human CRCs. XB130 may be a promising target for CRC therapy in humans; further mechanistic studies exploring the function of XB130 in CRC cells are warranted.
Collapse
Affiliation(s)
- Jiancheng Shen
- Clinical Laboratory, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang 312499, P.R. China
| | - Chang'e Jin
- Intensive Care Unit, Laigang Hospital Affiliated to Taishan Medical University, Laiwu, Shandong 272009, P.R. China
| | - Yonglin Liu
- Clinical Laboratory, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310002, P.R. China
| | - Heping Rao
- Department of Nursing, School of Medicine, Quzhou College of Technology, Quzhou, Zhejiang 324000, P.R. China
| | - Jinrong Liu
- Department of Child Healthcare, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Jie Li
- Department of Infectious Disease, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
13
|
Toba H, Wang Y, Bai X, Zamel R, Cho HR, Liu H, Lira A, Keshavjee S, Liu M. XB130 promotes bronchioalveolar stem cell and Club cell proliferation in airway epithelial repair and regeneration. Oncotarget 2016; 6:30803-17. [PMID: 26360608 PMCID: PMC4741569 DOI: 10.18632/oncotarget.5062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/21/2015] [Indexed: 02/06/2023] Open
Abstract
Proliferation of bronchioalveolar stem cells (BASCs) is essential for epithelial repair. XB130 is a novel adaptor protein involved in the regulation of epithelial cell survival, proliferation and migration through the PI3K/Akt pathway. To determine the role of XB130 in airway epithelial injury repair and regeneration, a naphthalene-induced airway epithelial injury model was used with XB130 knockout (KO) mice and their wild type (WT) littermates. In XB130 KO mice, at days 7 and 14, small airway epithelium repair was significantly delayed with fewer number of Club cells (previously called Clara cells). CCSP (Club cell secreted protein) mRNA expression was also significantly lower in KO mice at day 7. At day 5, there were significantly fewer proliferative epithelial cells in the KO group, and the number of BASCs significantly increased in WT mice but not in KO mice. At day 7, phosphorylation of Akt, GSK-3β, and the p85α subunit of PI3K was observed in airway epithelial cells in WT mice, but to a much lesser extent in KO mice. Microarray data also suggest that PI3K/Akt-related signals were regulated differently in KO and WT mice. An inhibitory mechanism for cell proliferation and cell cycle progression was suggested in KO mice. XB130 is involved in bronchioalveolar stem cell and Club cell proliferation, likely through the PI3K/Akt/GSK-3β pathway.
Collapse
Affiliation(s)
- Hiroaki Toba
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Universal Health Network, Toronto, ON, Canada
| | - Yingchun Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Universal Health Network, Toronto, ON, Canada
| | - Xiaohui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Universal Health Network, Toronto, ON, Canada
| | - Ricardo Zamel
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Universal Health Network, Toronto, ON, Canada
| | - Hae-Ra Cho
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Universal Health Network, Toronto, ON, Canada
| | - Hongmei Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Universal Health Network, Toronto, ON, Canada
| | - Alonso Lira
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Universal Health Network, Toronto, ON, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Universal Health Network, Toronto, ON, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Universal Health Network, Toronto, ON, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Zhang R, Zhang J, Wu Q, Meng F, Liu C. XB130: A novel adaptor protein in cancer signal transduction. Biomed Rep 2016; 4:300-306. [PMID: 26998266 DOI: 10.3892/br.2016.588] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 01/18/2016] [Indexed: 12/13/2022] Open
Abstract
Adaptor proteins are functional proteins that contain two or more protein-binding modules to link signaling proteins together, which affect cell growth and shape and have no enzymatic activity. The actin filament-associated protein (AFAP) family is an important member of the adaptor proteins, including AFAP1, AFAP1L1 and AFAP1L2/XB130. AFAP1 and AFAP1L1 share certain common characteristics and function as an actin-binding protein and a cSrc-activating protein. XB130 exhibits certain unique features in structure and function. The mRNA of XB130 is expressed in human spleen, thyroid, kidney, brain, lung, pancreas, liver, colon and stomach, and the most prominent disease associated with XB130 is cancer. XB130 has a controversial effect on cancer. Studies have shown that XB130 can promote cancer progression and downregulation of XB130-reduced growth of tumors derived from certain cell lines. A higher mRNA level of XB130 was shown to be associated with a better survival in non-small cell lung cancer. Previous studies have shown that XB130 can regulate cell growth, migration and invasion and possibly has the effect through the cAMP-cSrc-phosphoinositide 3-kinase/Akt pathway. Except for cancer, XB130 is also associated with other pathological or physiological procedures, such as airway repair and regeneration.
Collapse
Affiliation(s)
- Ruiyao Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi 710061, P.R. China
| | - Jingyao Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi 710061, P.R. China
| | - Qifei Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi 710061, P.R. China
| | - Fandi Meng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi 710061, P.R. China
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi 710061, P.R. China
| |
Collapse
|
15
|
Liu B, Qi C, Liu XC, Zhao XD. AFAP-1L2 influences proliferation and apoptosis of pancreatic cancer cells via PI3K/Akt pathway. Shijie Huaren Xiaohua Zazhi 2015; 23:4490-4498. [DOI: 10.11569/wcjd.v23.i28.4490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of actin filament-associated protein 1-like 2 (AFAP-1L2) in different pancreatic cancer cell lines, the effect of AFAP-1L2 on cell proliferation, cell cycle and apoptosis, and the possible mechanism.
METHODS: Western blot and real-time quantitative PCR (qRT-PCR) were used to detect the AFAP-1L2 protein and mRNA expression in PANC-1, MiaPaCa-2, Colo-357, BXPC-3, SW1990 and CFPAC-1 cell lines (having different differentiation degrees). siAFAP-1L2 plasmid was constructed and transfected into MiaPaCa-2 cell to downregulate the expression of AFAP-1L2. Proteins of the phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) pathway were detected by Western blot and qRT-PCR after siAFAP-1L2 transfection. Proliferation was detected by MTT assay. Cell cycle and apoptosis were detected by flow cytometry.
RESULTS: Western blot and qRT-PCR analyses showed that AFAP-1L2 was correlated with differentiation degree, and the expression was higher in cell lines with low differentiation than in those with moderate or high differentiation. PI3KCA protein expression in the siAFAP-1L2 group was lower than that in the MOCK and siRNA control groups (F = 20.16, P = 0.0022). α-Akt mRNA expression in the siAFAP-1L2 group was higher than that in the MOCK and siRNA control groups (F = 7.719, P = 0.0219); α-pAkt protein expression in the siAFAP-1L2 group was lower than that in MOCK and siRNA control groups (F = 5.507, P = 0.0439). PI3KCA mRNA expression in the siAFAP-1L2 group was lower than that in the AFAP-1L2 and siRNA control groups (F = 20.16, P = 0.0022). α-Akt mRNA expression in the siAFAP-1L2 group was higher than that in the MOCK and siRNA control groups (F = 6.068, P = 0.0362); α-pAkt mRNA expression in the siAFAP-1L2 group was lower than that in the MOCK and siRNA control groups (F = 10.33, P = 0.0114). MTT assay showed that the proliferation of MiaPaCa-2 cells at 48 h, 72 h, and 96 h was inhibited after siAFAP-1L2 transfection (F = 3.924, P < 0.05; F = 6.812, P < 0.01; F = 7.003, P < 0.01). Flow cytometry showed that cells in G1 phase were increased, but those in G2 and S phases were decreased (F = 4.87, 5.26, 4.94, P < 0.05 for all). The apoptosis rate of MiaPaCa-2 cell was increased after siAFAP-1L2 transfection (F = 7.231, P < 0.01).
CONCLUSION: AFAP-1L2 expression is associated with cell differentiation. AFAP-1L2 modulates cell proliferation, cell cycle and apoptosis via the PI3K/Akt pathway. AFAP-1L2 is a target candidate for pancreatic cancer therapy.
Collapse
|
16
|
Liang C, Wang Z, Li YY, Yu BH, Zhang F, Li HY. miR-33a suppresses the nuclear translocation of β-catenin to enhance gemcitabine sensitivity in human pancreatic cancer cells. Tumour Biol 2015; 36:9395-403. [DOI: 10.1007/s13277-015-3679-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/15/2015] [Indexed: 01/07/2023] Open
|
17
|
Li J, Sun W, Wei H, Wang X, Li H, Yi Z. Expression of XB130 in human ductal breast cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:5300-5308. [PMID: 26191231 PMCID: PMC4503102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/30/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVES XB130 is involved in gene regulation, cell proliferation, cell survival, cell migration, and tumorigenesis. In the present study, we first evaluated the expression of the XB130 and its prognostic significance in breast cancer. Then we evaluated whether XB130 could be a target for therapy in breast cancer. MATERIALS AND METHODS Immunohistochemistry was used to assess the level of XB130 protein in surgically resected, formalin-fixed, paraffin-embedded breast cancer specimens. Associations between XB130 and the postoperative prognosis of patients with breast cancer were evaluated. We evaluated the effect of XB130 inhibited by RNA interference on proliferation, invasion and apoptosis in vitro in a metastatic subclone of MCF-7 breast cancer cell line (LM-MCF-7). The effect of XB130 silencing alone or in combination with gemcitabine on LM-MCF-7 cells apoptosis was also investigated. RESULTS XB130 protein was present in the cytoplasm of malignant cells, and not in the normal breast tissues. There was correlation between the presence of XB130 in tumour cells and lymph node status, tumor classification and clinical stage. XB130 expression level was significantly associated with recurrence-free and overall survival. Furthermore, multivariate Cox regression analyses revealed that positive XB130 was an independent risk factor for overall survival and recurrence free survival. XB130 silencing alone inhibits tumor growth and induces apoptosis in the LM-MCF-7 cells. Depletion of the XB130 in combination with gemcitabine resulted in marked apoptotic and necrotic cell death in LM-MCF-7 cells. CONCLUSIONS XB130 could be useful as a prognostic marker of recurrence-free and overall survival in invasive breast cancer, as well as for the response to chemotherapy.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Antimetabolites, Antineoplastic/pharmacology
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Breast Neoplasms/therapy
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/secondary
- Carcinoma, Ductal, Breast/therapy
- Cell Movement
- Cell Proliferation
- Chi-Square Distribution
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Disease-Free Survival
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Kaplan-Meier Estimate
- MCF-7 Cells
- Mastectomy
- Middle Aged
- Multivariate Analysis
- Neoplasm Invasiveness
- Neoplasm Staging
- Proportional Hazards Models
- RNA Interference
- Risk Factors
- Signal Transduction
- Time Factors
- Transfection
- Treatment Outcome
- Up-Regulation
- Gemcitabine
Collapse
Affiliation(s)
- Jiacun Li
- Department of Clinical Laboratory, The Affiliated Hospital of Weifang Medical CollegeWeifang, China
| | - Wanli Sun
- Department of Clinical Laboratory, The Affiliated Hospital of Weifang Medical CollegeWeifang, China
| | - Hui Wei
- Department of Hepatobiliary Surgery, The People’s Hospital of ZhangqiuJinnan, China
| | - Xiurong Wang
- Department of Ultrasonography, The People’s Hospital of ZhangqiuJinnan, China
| | - Hongjun Li
- Department of Clinical Laboratory, The Affiliated Hospital of Weifang Medical CollegeWeifang, China
| | - Zhengjun Yi
- Department of Clinical Laboratory, The Affiliated Hospital of Weifang Medical CollegeWeifang, China
| |
Collapse
|
18
|
Wang X, Wang R, Liu Z, Hao F, Huang H, Guo W. XB130 expression in human osteosarcoma: a clinical and experimental study. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:2565-2573. [PMID: 26045762 PMCID: PMC4440071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/28/2014] [Indexed: 06/04/2023]
Abstract
Identifying prognostic factors for osteosarcoma (OS) aids in the selection of patients who require more aggressive management. XB130 is a newly characterized adaptor protein that was reported to be a prognostic factor of certain tumor types. However, the association between XB130 expression and the prognosis of OS remains unknown. In the present study, we investigated the association between XB130 expression and clinicopathologic features and prognosis in patients suffering OS, and further investigated its potential role on OS cells in vitro and vivo. A retrospective immunohistochemical study of XB130 was performed on archival formalin-fixed paraffin-embedded specimens from 60 pairs of osteosarcoma and noncancerous bone tissues, and compared the expression of XB130 with clinicopathological parameters. We then investigate the effect of XB130 sliencing on invasion in vitro and lung metastasis in vivo of the human OS cell line. Immunohistochemical assays revealed that XB130 expression in OS tissues was significantly higher than that in corresponding noncancerous bone tissues (P=0.001). In addition, high XB130 expression more frequently occurred in OS tissues with advanced clinical stage (P=0.002) and positive distant metastasis (P=0.001). Moreover, OS patients with high XB130 expression had significantly shorter overall survival and disease-free survival (both P<0.001) when compared with patients with the low expression of XB130. The univariate analysis and multivariate analysis shown that high XB130 expression and distant metastasis were the independent poor prognostic factor.We showed that XB130 depletion by RNA interference inhibited invasion of XB130-rich U2OS cells in vitro and lung metastasis in vivo. This is the first study to reveal that XB130 overexpression may be related to the prediction of metastasis potency and poor prognosis for OS patients, suggesting that XB130 may serve as a prognostic marker for the optimization of clinical treatments. Furthermore, XB130 is the potential molecular target for OS therapy.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Orthopedics, Central Hospital of YishuiLinyi, Shan Dong Province, China
| | - Ruiguo Wang
- Department of Orthopedics and Traumatology, Rizhao Hospital of TCMRizhao, China
| | - Zhaolong Liu
- Department of Pediatric surgery, People’s Hospital of RizhaoRizhao, China
| | - Fengyun Hao
- Department of Pathology, The Affiliated Hospital of Medical college, Qingdao UniversityShandong Province, Qingdao, China
| | - Hai Huang
- Department of Orthopedics, Linyi People’s HospitalLinyi, Shangdong, China
| | - Wenchen Guo
- Department of Clinical Laboratory, Weifang People’s HospitalWeifang, Shandong Province, China
| |
Collapse
|
19
|
Sun L, Duan J, Jiang Y, Wang L, Huang N, Lin L, Liao Y, Liao W. Metastasis-associated in colon cancer-1 upregulates vascular endothelial growth factor-C/D to promote lymphangiogenesis in human gastric cancer. Cancer Lett 2014; 357:242-253. [PMID: 25444928 DOI: 10.1016/j.canlet.2014.11.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 12/13/2022]
Abstract
Lymphangiogenesis is actively contributed to lymphatic metastasis in gastric cancer (GC), and vascular endothelial growth factor (VEGF)-C and VEGF-D are key regulators for lymphangiogenesis. Metastasis-associated in colon cancer-1 (MACC1) was reported to be associated with lymph node metastasis in a few clinical studies, while little is known about the role of MACC1 in lymphangiogenesis. Hence, in the present study, we explored the potential role of MACC1 in lymphangiogenesis as well as the underlying mechanisms. By clinical observation, we found a positive relationship between MACC1 and lymphangiogenesis. Besides, similar results were also obtained from in vivo and in vitro studies. With an indirect co-culture system, we got that supernatant from MACC1 overexpressed GC cells accelerated human lymphatic endothelial cells' (HLECs') capacity of tube-like formation through enhancing cell proliferation and migration. Moreover, MACC1 overexpressed xenografts also presented more lymphatic vessels. Furthermore, MACC1 significantly increased the expression of VEGF-C/VEGF-D in GC cells and transplanted tumors, which was subsequently suppressed by c-Met inhibitor. All these data suggested a critical role for MACC1 in lymphatic dissemination of GC, providing evidence that MACC1 upregulated VEGF-C/VEGF-D secretion to promote lymphangiogenesis via c-Met signaling.
Collapse
Affiliation(s)
- Li Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiangman Duan
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yaqi Jiang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Oncology, Subei People's Hospital, Yangzhou University, Yangzhou 225001, China
| | - Lin Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Na Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Li Lin
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yulin Liao
- Department of Cardiology and Organ Failure Key Laboratory of Ministry of Education, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
20
|
Zhao J, Wang Y, Wakeham A, Hao Z, Toba H, Bai X, Keshavjee S, Mak TW, Liu M. XB130 deficiency affects tracheal epithelial differentiation during airway repair. PLoS One 2014; 9:e108952. [PMID: 25272040 PMCID: PMC4182764 DOI: 10.1371/journal.pone.0108952] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 08/26/2014] [Indexed: 12/26/2022] Open
Abstract
The repair and regeneration of airway epithelium is important for maintaining homeostasis of the respiratory system. XB130 is an adaptor protein involved in the regulation of cell proliferation, survival and migration. In the human trachea, XB130 is expressed on the apical site of ciliated epithelial cells. We hypothesize that XB130 may play a role in epithelial repair and regeneration after injury. Xb130 knockout (KO) mice were generated, and a mouse isogenic tracheal transplantation model was used. Adult Xb130 KO mice did not show any significant anatomical and physiological phenotypes in comparison with their wild type (WT) littermates. The tracheal epithelium in Xb130 KO mice, however, was significantly thicker than that in WT mice. Severe ischemic epithelial injury was observed immediately after the tracheal transplantation, which was followed by epithelial cell flattening, proliferation and differentiation. No significant differences were observed in terms of initial airway injury and apoptosis. However, at Day 10 after transplantation, the epithelial layer was significantly thicker in Xb130 KO mice, and associated with greater proliferative (Ki67+) and basal (CK5+) cells, as well as thickening of the connective tissue and fibroblast layer between the epithelium and tracheal cartilages. These results suggest that XB130 is involved in the regulation of airway epithelial differentiation, especially during airway repair after injury.
Collapse
Affiliation(s)
- Jinbo Zhao
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Thoracic Surgery, Tangdu Hospital, Forth Military Medical University, Xi’an, Shaanxi, China
| | - Yingchun Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Andrew Wakeham
- Advanced Medical Discovery Institute, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Zhenyue Hao
- Advanced Medical Discovery Institute, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hiroaki Toba
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Xiaohui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tak W. Mak
- Advanced Medical Discovery Institute, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
21
|
Bai XH, Cho HR, Moodley S, Liu M. XB130-A Novel Adaptor Protein: Gene, Function, and Roles in Tumorigenesis. SCIENTIFICA 2014; 2014:903014. [PMID: 24995146 PMCID: PMC4068053 DOI: 10.1155/2014/903014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/15/2014] [Indexed: 06/03/2023]
Abstract
Several adaptor proteins have previously been shown to play an important role in the promotion of tumourigenesis. XB130 (AFAP1L2) is an adaptor protein involved in many cellular functions, such as cell survival, cell proliferation, migration, and gene and miRNA expression. XB130's functional domains and motifs enable its interaction with a multitude of proteins involved in several different signaling pathways. As a tyrosine kinase substrate, tyrosine phosphorylated XB130 associates with the p85 α regulatory subunit of phosphoinositol-3-kinase (PI3K) and subsequently affects Akt activity and its downstream signalling. Tumourigenesis studies show that downregulation of XB130 expression by RNAi inhibits tumor growth in mouse xenograft models. Furthermore, XB130 affects tumor oncogenicity by regulating the expression of specific tumour suppressing miRNAs. The expression level and pattern of XB130 has been studied in various human tumors, such as thyroid, esophageal, and gastric cancers, as well as, soft tissue tumors. Studies show the significant effects of XB130 in tumourigenesis and suggest its potential as a diagnostic biomarker and therapeutic target for cancer treatments.
Collapse
Affiliation(s)
- Xiao-Hui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, ON, Canada M5G 1L7
| | - Hae-Ra Cho
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, ON, Canada M5G 1L7 ; Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada M5S 1A8
| | - Serisha Moodley
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, ON, Canada M5G 1L7 ; Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada M5S 1A8
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, ON, Canada M5G 1L7 ; Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada M5S 1A8 ; Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada M5S 1A8 ; Department of Surgery, Faculty of Medicine, University of Toronto, 149 College Street, Toronto, ON, Canada M5T 1P5
| |
Collapse
|
22
|
Prognostic significance of XB130 expression in surgically resected pancreatic ductal adenocarcinoma. World J Surg Oncol 2014; 12:49. [PMID: 24581082 PMCID: PMC3996025 DOI: 10.1186/1477-7819-12-49] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 02/19/2014] [Indexed: 01/09/2023] Open
Abstract
Background XB130 is a newly discovered adaptor protein for intracellular signal transduction; it is involved in gene regulation, cell proliferation, cell survival, cell migration, and tumorigenesis. However, its expression and role in pancreatic ductal adenocarcinoma (PDAC) have not been investigated. The present study was designed to clarify the prognostic significance of XB130 expression in PDAC. Methods A total of 76 consecutive patients with surgically resected PDAC were retrospectively reviewed. XB130 expression was detected by immunohistochemical analysis on the paraffin-embedded tumour sections. Correlation between the expression of XB130 and clinicopathological parameters was analyzed. Results XB130 expression was significantly upregulated in PDAC(56.5%, 43/76) compared to normal pancreas (0%, 0/15; P < 0.05). Increased XB130 expression was correlated with lymph node metastasis (P = 0.017), distant metastasis (P = 0.0024), high tumour-node-metastasis (TNM) stage (P =0.001), and high tumour grade (P = 0.013). The survival of 43 patients with high XB130 expression was significantly worse than that of the 33 patients with low XB130 expression (P = 0.001). Univariate analysis showed that high XB130 expression (P = 0.0045), tumour size (P = 0.024), distant metastasis (P = 0.003), TNM stage (P = 0.002) and lymphatic metastasis (P = 0.016) were independent prognostic factors of postoperative survival. Multivariate analysis using the Cox proportional hazards model showed that high XB130 expression and distant metastasis (P = 0.0239) were significant independent risk factors. Conclusions XB130 was overexpressed in the PDAC. XB130 is a promising pathological marker for the prediction of outcome in patients with PDAC.
Collapse
|
23
|
Wang Z, Jiang B, Chen L, Di J, Cui M, Liu M, Ma Y, Yang H, Xing J, Zhang C, Yao Z, Zhang N, Dong B, Ji J, Su X. GOLPH3 predicts survival of colorectal cancer patients treated with 5-fluorouracil-based adjuvant chemotherapy. J Transl Med 2014; 12:15. [PMID: 24444035 PMCID: PMC4029222 DOI: 10.1186/1479-5876-12-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 01/14/2014] [Indexed: 12/13/2022] Open
Abstract
Background Golgi phosphoprotein 3 (GOLPH3) has been validated as a potent oncogene involved in the progression of many types of solid tumors, and its overexpression is associated with poor clinical outcome in many cancers. However, it is still unknown the association of GOLPH3 expression with the prognosis of colorectal cancer (CRC) patients who received 5-fluorouracil (5-FU)-based adjuvant chemotherapy. Methods The expression of GOLPH3 was determined by qRT-PCR and immunohistochemistry in colorectal tissues from CRC patients treated with 5-FU based adjuvant chemotherapy after surgery. The association of GOLPH3 with clinicopathologic features and prognosis was analysed. The effects of GOLPH3 on 5-FU sensitivity were examined in CRC cell lines. Results GOLPH3 expression was elevated in CRC tissues compared with matched adjacent noncancerous tissues. Kaplan-Meier survival curves indicated that high GOLPH3 expression was significantly associated with prolonged disease-free survival (DFS, P = 0.002) and overall survival (OS, P = 0.011) in patients who received 5-FU-based adjuvant chemotherapy. Moreover, multivariate analysis showed that GOLPH3 expression was an independent prognostic factor for DFS in CRC patients treated with 5-FU-based chemotherapy (HR, 0.468; 95%CI, 0.222-0.987; P = 0.046). In vitro, overexpression of GOLPH3 facilitated the 5-FU chemosensitivity in CRC cells; while siRNA-mediated knockdown of GOLPH3 reduced the sensitivity of CRC cells to 5-FU-induced apoptosis. Conclusions Our results suggest that GOLPH3 is associated with prognosis in CRC patients treated with postoperative 5-FU-based adjuvant chemotherapy, and may serve as a potential indicator to predict 5-FU chemosensitivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xiangqian Su
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Minimally Invasive Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, 100142 Beijing, China.
| |
Collapse
|
24
|
Shi M, Zheng D, Sun L, Wang L, Lin L, Wu Y, Zhou M, Liao W, Liao Y, Zuo Q, Liao W. XB130 promotes proliferation and invasion of gastric cancer cells. J Transl Med 2014; 12:1. [PMID: 24387290 PMCID: PMC3882781 DOI: 10.1186/1479-5876-12-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/27/2013] [Indexed: 01/24/2023] Open
Abstract
Background XB130 has been reported to be expressed by various types of cells such as thyroid cancer and esophageal cancer cells, and it promotes the proliferation and invasion of thyroid cancer cells. Our previous study demonstrated that XB130 is also expressed in gastric cancer (GC), and that its expression is associated with the prognosis, but the role of XB130 in GC has not been well characterized. Methods In this study, we investigated the influence of XB130 on gastric tumorigenesis and metastasis in vivo and in vitro using the MTT assay, clonogenic assay, BrdU incorporation assay, 3D culture, immunohistochemistry and immunofluorescence. Western blot analysis was also performed to identify the potential mechanisms involved. Results The proliferation, migration, and invasion of SGC7901 and MNK45 gastric adenocarcinoma cell lines were all significantly inhibited by knockdown of XB130 using small hairpin RNA. In a xenograft model, tumor growth was markedly inhibited after shXB130-transfected GC cells were implanted into nude mice. After XB130 knockdown, GC cells showed a more epithelial-like phenotype, suggesting an inhibition of the epithelial-mesenchymal transition (EMT) process. In addition, silencing of XB130 reduced the expression of p-Akt/Akt, upregulated expression of epithelial markers including E-cadherin, α-catenin and β-catenin, and downregulated mesenchymal markers including fibronectin and vimentin. Expression of oncoproteins related to tumor metastasis, such as MMP2, MMP9, and CD44, was also significantly reduced. Conclusions These findings indicate that XB130 enhances cell motility and invasiveness by modulating the EMT-like process, while silencing XB130 in GC suppresses tumorigenesis and metastasis, suggesting that it may be a potential therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Qiang Zuo
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, 510515 Guangzhou, China.
| | | |
Collapse
|
25
|
Wang L, Wu Y, Lin L, Liu P, Huang H, Liao W, Zheng D, Zuo Q, Sun L, Huang N, Shi M, Liao Y, Liao W. Metastasis-associated in colon cancer-1 upregulation predicts a poor prognosis of gastric cancer, and promotes tumor cell proliferation and invasion. Int J Cancer 2013; 133:1419-30. [PMID: 23457029 DOI: 10.1002/ijc.28140] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/19/2013] [Indexed: 12/13/2022]
Abstract
Metastasis-associated in colon cancer-1 (MACC1) is a newly identified oncogene, and little is known about its role in gastric cancer (GC). Our study was performed to investigate whether MACC1 influences the prognosis of GC patients and to explore the potential mechanisms involved. MACC1 expression was verified to be higher in GC tissues than in adjacent nontumorous tissues by Western blotting. A retrospective analysis of 361 GC patients (Stages I-IV) revealed that higher MACC1 expression was associated with more advanced disease, more frequent postoperative recurrence, more metastases and a higher mortality rate. The disease-free survival of Stage I-III patients and overall survival of Stage-IV patients were significantly worse when their tumors showed high MACC1 expression. To investigate the underlying mechanisms, MACC1 overexpression and downregulation were established in two GC cell lines (BGC-823 and MKN-28 cells). MACC1 overexpression significantly accelerated tumor growth and facilitated metastasis in athymic mice. MACC1 also promoted the proliferation, migration and invasion of both GC cell lines. Moreover, gastric MACC1 mRNA expression levels were significantly correlated with markers of the epithelial-to-mesenchymal transition (EMT) in patients with GC. MACC1 overexpression upregulated mesenchymal-epithelial transition factor and induced changes to markers of EMT, whereas silencing of MACC1 reversed all these changes. These findings provide some novel insights into the role of MACC1, a gene that contributes to a poor prognosis of GC by promoting tumor cell proliferation and invasion as well as the EMT.
Collapse
Affiliation(s)
- Lin Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
XB130, a new adaptor protein, regulates expression of tumor suppressive microRNAs in cancer cells. PLoS One 2013; 8:e59057. [PMID: 23527086 PMCID: PMC3602428 DOI: 10.1371/journal.pone.0059057] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 02/11/2013] [Indexed: 12/16/2022] Open
Abstract
XB130, a novel adaptor protein, promotes cell growth by controlling expression of many related genes. MicroRNAs (miRNAs), which are frequently mis-expressed in cancer cells, regulate expression of targeted genes. In this present study, we aimed to explore the oncogenic mechanism of XB130 through miRNAs regulation. We analyzed miRNA expression in XB130 short hairpin RNA (shRNA) stably transfected WRO thyroid cancer cells by a miRNA array assay, and 16 miRNAs were up-regulated and 22 miRNAs were down-regulated significantly in these cells, in comparison with non-transfected or negative control shRNA transfected cells. We chose three of the up-regulated miRNAs (miR-33a, miR-149 and miR-193a-3p) and validated them by real-time qRT-PCR. Ectopic overexpression of XB130 suppressed these 3 miRNAs in MRO cells, a cell line with very low expression of XB130. Furthermore, we transfected miR mimics of these 3 miRNAs into WRO cells. They negatively regulated expression of oncogenes (miR-33a: MYC, miR-149: FOSL1, miR-193a-3p: SLC7A5), by targeting their 3′ untranslated region, and reduced cell growth. Our results suggest that XB130 could promote growth of cancer cells by regulating expression of tumor suppressive miRNAs and their targeted genes.
Collapse
|