1
|
Meybodi SM, Rezazadeh Khabaz MJ, Vojdani A, Nasiri Z, Mazhari SA, Tabar FA, Javazm SA, Owrang M, Noori Z, Pishva MS, Badameh P, Maleki MH, Nadimi E. Bifidobacterium adolescentis prevents diabetes-induced liver injury via pyroptosis attenuation. Exp Cell Res 2025; 447:114518. [PMID: 40097086 DOI: 10.1016/j.yexcr.2025.114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 02/24/2025] [Accepted: 03/11/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD), along with non-alcoholic steatohepatitis (NASH), lacks definitive therapy and typically remains asymptomatic until reaching advanced stages. Lipid metabolism and inflammation management using probiotics such as Bifidobacterium adolescentis is suggested to alleviate or suppress NAFLD development. Hence, this study aims to investigate the effects of Bifidobacterium adolescentis treatment on mitigating pyroptosis, an inflammatory cell death pathway, in the liver of rats with NAFLD induced by high-fat diet (HFD) and streptozotocin (STZ) administration. METHODS Forty 8-week adult male Sprague Dawley rats were divided into four groups. Bifidobacterium adolescentis was administered for 8 and 16 weeks at 4 × 1010 CFU/day to rats fed a high-fat diet (HFD). Subsequently, the mRNA expression levels of pyroptotic-related genes including Cas1, Cas3, Cas11, NLRP3, GSDMD, IL-1β, and NF-κB were quantified in liver tissue using quantitative polymerase chain reaction (qPCR). Histopathological alterations and stereological changes in liver structure, as well as lipid profile (FBG, TG, TC, HDL, LDL), and liver indices (ALT, AST, ALP, LDH), were also evaluated across the different groups. RESULTS Bifidobacterium adolescentis administration significantly reduced the expression levels of NF-κB and pyroptotic-related genes. Additionally, this probiotic effectively reversed the adverse effects of the high-fat diet (HFD) on liver volume, Kupffer cell numbers, and hepatocyte nuclei. Furthermore, it improved the lipid profile and liver indices of rats fed with the HFD. CONCLUSION This study demonstrates that B. adolescentis supplementation prevents diabetes-induced liver injury by attenuating pyroptosis. These findings suggest that Bifidobacterium adolescentis may be a promising therapeutic approach for managing NAFLD and its associated complications, primarily by modulating key genes associated with pyroptosis and inflammation in rats fed with a high-fat diet.
Collapse
Affiliation(s)
- Seyed Mohammadmahdi Meybodi
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | | | - Andia Vojdani
- Department of Microbiology, School of Biology, University of Tehran, Tehran, Iran.
| | - Zahra Nasiri
- Department of Cellular and Molecular Biology, Faculty of Materials, Najafabad Branch, Islamic Azad University, Isfahan, Iran.
| | | | - Farideh Akhlaghi Tabar
- Department of Genetics, Faculty of Basic Science, Qom Branch, Islamic Azad University, Qom, Iran.
| | - Sara Abdizadeh Javazm
- Department of Microbiology, Faculty of Sciences, Karaj Branch, Islamic Azad University, Karaj, Iran.
| | - Marzieh Owrang
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zahra Noori
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Maryam Sadat Pishva
- University of Tehran, Kish International Campus, School of Biology, Kish Island, Iran.
| | - Parisa Badameh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Hasan Maleki
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Elham Nadimi
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Medical Biotechnology Department, School of Advanced, Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Ng MY, Hagen T. A strategy for liver selective NRF2 induction via cytochrome P450 activated prodrugs with low activity in hypoxia. J Biol Chem 2025:108487. [PMID: 40209947 DOI: 10.1016/j.jbc.2025.108487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025] Open
Abstract
Activation of the transcription factor NRF2 has been shown to be a promising therapeutic approach in the treatment of hepatosteatosis. NRF2 is believed to exert beneficial effects by upregulating cellular oxidative defense mechanisms and inhibiting inflammation. However, a major concern associated with long-term treatment with NRF2 activators are drug side effects, including the promotion of tumorigenesis. Many NRF2 activators function by forming cysteine adducts with KEAP1, which normally mediates the ubiquitination and degradation of NRF2. In this study we identified NRF2 activator prodrugs of 4-methylcatechol and tert-butylhydroquinone. These prodrugs are converted into their active metabolites in a liver selective, cytochrome P450 dependent manner and function by inhibiting KEAP1, resulting in NRF2 activation. Unexpectedly, we also found that a number of NRF2 activating compounds, including 4-methylcatechol and tert-butylhydroquinone, show a markedly lower activity under hypoxic conditions compared to normoxia. Our findings suggest that the lower activity of these NRF2 inducers is a consequence of less potent cysteine adduct formation with KEAP1. The lower activity of NRF2 inducing compounds in hypoxia may limit tumor promoting effects of NRF2 induction. Our study provides an important proof of concept that it is possible to selectively activate NRF2 in the liver for the treatment of hepatosteatosis while avoiding tumorigenic effects as well as side effects of NRF2 activation in other tissues.
Collapse
Affiliation(s)
- Mei Ying Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, MD7, 117596 Singapore
| | - Thilo Hagen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, MD7, 117596 Singapore.
| |
Collapse
|
3
|
Fan X, Zhou Y, Bai W, Li X, Lin L, Lin H, Yang M, Yu X, Wang J, Lin L, Wang W. Intravital imaging of translocated bacteria via fluorogenic labeling of gut microbiota in situ. Proc Natl Acad Sci U S A 2025; 122:e2415845122. [PMID: 40153461 PMCID: PMC12002288 DOI: 10.1073/pnas.2415845122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/19/2025] [Indexed: 03/30/2025] Open
Abstract
The translocation of bacteria from intestinal tracts into blood vessels and distal organs plays pivotal roles in the pathogenesis of numerous severe diseases. Intravital monitoring of bacterial translocation, however, is not yet feasible, which greatly hinders us from comprehending this spatially and temporally dynamic process. Here we report an in vivo fluorogenic labeling method, which enables in situ imaging of mouse gut microbiota and real-time tracking of the translocated bacteria. By mimicking the peptidoglycan stem peptide in bacteria, a tetrapeptide probe composed of alternating D- and L-amino acids and separately equipped with a fluorophore and a quencher on the N- and C-terminal amino acid, is designed. Because of its resistance to host proteases, it can be directly used in gavage and achieves fluorogenic labeling of the microbiota in the gut via the functioning of the L,D-transpeptidases of the labeled bacteria. Using intravital two-photon microscopy, we then successfully visualize the translocation of gut bacteria into the bloodstream and liver in obesity mouse models. This technique can help further exploration into the spatiotemporal activities of gut microbiota in vivo, and be valuable in investigating the less understood pathogenicity of bacterial translocation in many severe diseases.
Collapse
Affiliation(s)
- Xinqi Fan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai200032, China
| | - Yingjun Zhou
- State Key Laboratory of Genetic Engineering, Department of Microbiology, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai200438, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200127, China
| | - Wenjuan Bai
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Xue Li
- State Key Laboratory of Genetic Engineering, Department of Microbiology, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai200438, China
| | - Liyuan Lin
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200127, China
| | - Huibin Lin
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200127, China
| | - Ming Yang
- State Key Laboratory of Genetic Engineering, Department of Microbiology, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai200438, China
| | - Xiaofei Yu
- State Key Laboratory of Genetic Engineering, Department of Microbiology, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai200438, China
| | - Jing Wang
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Liang Lin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai200032, China
| | - Wei Wang
- State Key Laboratory of Genetic Engineering, Department of Microbiology, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai200438, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200127, China
| |
Collapse
|
4
|
Nandy A, Helderman RCM, Thapa S, Peck SH, Richards A, Jayapalan S, Narayani N, Czech MP, Rosen CJ, Rendina-Ruedy E. Enhanced fatty acid oxidation in osteoprogenitor cells provides protection from high-fat diet induced bone dysfunction. J Bone Miner Res 2025; 40:283-298. [PMID: 39657629 PMCID: PMC11789392 DOI: 10.1093/jbmr/zjae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/14/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
Bone homeostasis within the skeletal system is predominantly maintained by bone formation and resorption, where formation of new bone involves maturation of stromal cells to mineral and matrix secreting mature osteoblasts, which requires cellular energy or adenosine triphosphate. Alterations in systemic metabolism can influence osteoblast function. In line with this, type 2 diabetes mellitus (T2DM), a common metabolic disorder is also associated with reduced bone formation and increased risk of fracture. Impairment in lipid metabolism is one of the key features associated with T2DM-related pathologies in multiple tissues. Therefore, we tested the hypothesis that the reduced bone formation reported in obese murine models of impaired glucose tolerance is a function of disrupted lipid metabolism in osteoblasts. We first confirmed that mice fed a high-fat diet (HFD) have reduced bone microarchitecture along with lower bone formation rates. Interestingly, osteoblasts from obese mice harbor higher numbers of cytosolic lipid droplets along with decreased bioenergetic profiles compared to control cells. Further supporting this observation, bone cortex demonstrated higher total lipid content in HFD fed mice compared to control-fed mice. As a further proof of principle, we generated a novel murine model to conditionally delete Plin2 in osteoblast-progenitor cells using Prrx1-Cre, to enhance lipid droplet breakdown. Our data demonstrate that knocking down Plin2 in an osteoprogenitor specific manner protects from HFD induced osteoblast dysfunction. Furthermore, the mechanism of action involves enhanced osteoblast fatty acid oxidation. In conclusion, the current studies establish that HFD induced glucose intolerance leads to perturbations in osteoblast lipid metabolism, thus causing lower bone formation, which can be protected against by increasing fatty acid oxidation.
Collapse
Affiliation(s)
- Ananya Nandy
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Ron C M Helderman
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Frank H. Netter M.D. School of Medicine, Quinnipiac University, North Haven, CT 06518, United States
| | - Santosh Thapa
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Sun H Peck
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN 37232, United States
- Department of Veterans Affairs, Nashville Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN 37232, United States
| | - Alison Richards
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Shobana Jayapalan
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Nikita Narayani
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| | - Clifford J Rosen
- Maine Health Institute for Research, Scarborough, ME 04074, United States
| | - Elizabeth Rendina-Ruedy
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, United States
| |
Collapse
|
5
|
Elgretli W, Shengir M, Sasson S, Ramanakumar AV, Cinque F, Ballestreros LER, Deschenes M, Wong P, Chen T, Kronfli N, Saeed S, Keeshan A, Tandon S, Cooper C, Sebastiani G. Association of MASLD Phenotypes With Liver Fibrosis in Hepatitis C: The Role of Cardiometabolic Risk Factors. J Viral Hepat 2025; 32:e70004. [PMID: 39868661 PMCID: PMC11771651 DOI: 10.1111/jvh.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/28/2025]
Abstract
Steatotic liver disease is prevalent among people with hepatitis C virus (HCV). The new definition of metabolic dysfunction-associated steatotic liver disease (MASLD) emphasises the metabolic drivers of steatosis and recognises its frequent coexistence with other chronic liver diseases, including HCV. We aimed to evaluate the association of coexisting MASLD and HCV with liver fibrosis. Individuals with HCV who underwent transient elastography (TE) with associated controlled attenuation parameter (CAP) were included from two clinical centres. MASLD and significant liver fibrosis were defined as the presence of steatosis (CAP ≥ 275 dB/m) with at least one cardiometabolic risk factor, and liver stiffness measurement (LSM) ≥ 7.1 kPa measured by TE, respectively. Associated cofactors of significant liver fibrosis were determined using stepwise regression and cross-validation by LASSO models to select confounders. Among 590 participants, 31% were diagnosed with MASLD. The prevalence of significant liver fibrosis was the highest among people with MASLD (58%) followed by HCV-related steatosis (45%) and the non-steatosis group (39%). After adjusting for potential confounders, MASLD was associated with significant liver fibrosis (adjusted odds ratio [aOR] 2.29, 95% confidence interval [CI] 1.07-4.87). Furthermore, specific MASLD phenotypes including diabetes, hypertension and overweight were associated with significant liver fibrosis, with aORs of 4.76 (95% CI 2.16-10.49), 3.44 (95% CI 1.77-6.68) and 2.54 (95% CI 1.27-5.07), respectively. In conclusion, MASLD is associated with liver fibrosis in people with HCV, specifically the diabetes, overweight and hypertensive phenotypes. Beyond pursuing a virological cure, healthcare providers should prioritise managing metabolic conditions, particularly diabetes, hypertension and obesity.
Collapse
Affiliation(s)
- Wesal Elgretli
- Division of Experimental MedicineMcGill UniversityMontrealQuebecCanada
| | - Mohamed Shengir
- Division of Experimental MedicineMcGill UniversityMontrealQuebecCanada
| | - Solomon Sasson
- Department of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | | | - Felice Cinque
- Department of PathophysiologyTransplantation University of MilanMilanItaly
- Chronic Viral Illness Service, Division of Infectious Diseases, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
| | - Luz Esther Ramos Ballestreros
- Chronic Viral Illness Service, Division of Infectious Diseases, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
| | - Marc Deschenes
- Division of Gastroenterology and Hepatology, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
| | - Phil Wong
- Division of Gastroenterology and Hepatology, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
| | - Tianyan Chen
- Division of Gastroenterology and Hepatology, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
| | - Nadine Kronfli
- Chronic Viral Illness Service, Division of Infectious Diseases, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
- Centre for Outcomes Research and EvaluationResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Sahar Saeed
- Public Health SciencesQueen's UniversityKingstonOntarioCanada
| | - Alexa Keeshan
- Division of Infectious Diseases, Department of MedicineOttawa Hospital Research Institute, The Ottawa HospitalOttawaOntarioCanada
| | - Saniya Tandon
- Division of Infectious Diseases, Department of MedicineOttawa Hospital Research Institute, The Ottawa HospitalOttawaOntarioCanada
| | - Curtis Cooper
- Division of Infectious Diseases, Department of MedicineOttawa Hospital Research Institute, The Ottawa HospitalOttawaOntarioCanada
| | - Giada Sebastiani
- Division of Experimental MedicineMcGill UniversityMontrealQuebecCanada
- Chronic Viral Illness Service, Division of Infectious Diseases, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
- Division of Gastroenterology and Hepatology, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
| |
Collapse
|
6
|
Wang X, Cao Y. A Narrative Review: Relationship Between Glycemic Variability and Emerging Complications of Diabetes Mellitus. Biomolecules 2025; 15:188. [PMID: 40001491 PMCID: PMC11853042 DOI: 10.3390/biom15020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
A growing body of evidence emphasizes the role of glycemic variability (GV) in the development of conventional diabetes-related complications. Furthermore, advancements in diabetes management and increased life expectancy have led to the emergence of new complications, such as cancer, liver disease, fractures, infections, and cognitive dysfunction. GV is considered to exacerbate oxidative stress and inflammation, acting as a major mechanism underlying these complications. However, few reviews have synthesized the association between GV and these emerging complications or examined their underlying mechanisms. Hence, this narrative review provides a comprehensive discussion of the burden, risks, and mechanisms of GV in these complications, offering further evidence supporting GV as a potential therapeutic target for diabetes management.
Collapse
Affiliation(s)
| | - Yanli Cao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, China;
| |
Collapse
|
7
|
Krönert N, Moulla Y, Lange UG, Blüher M, Linder N, Fuhrmann A, Busse H, Linder A, Karlas T, Wiegand J, Morgenroth R, Seidemann L, Dietrich A. A hypocaloric protein-rich diet before metabolic surgery improves liver function in patients with obesity and diabetes : A secondary analysis of a randomized clinical trial. Langenbecks Arch Surg 2025; 410:36. [PMID: 39804512 PMCID: PMC11729132 DOI: 10.1007/s00423-024-03600-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
PURPOSE Obesity and type 2 diabetes (T2DM) are major risk factors for hepatic steatosis. Diet or bariatric surgery can reduce liver volume, fat content, and inflammation. However, little is known about their effects on liver function, as evaluated here using the LiMAx test. METHODS In the MetaSurg study (RCT on the effects of different Roux-en-Y gastric bypass (RYGB) limb lengths on diabetes remission in patients with BMI ≥ 27 to ≤ 60 kg/m2 and T2DM; trial registration: DRKS00007810, German Clinical Trials Register Freiburg), 24 consecutive patients underwent liver function (LiMAx) and imaging assessments (MRI, transient elastography; TE) before and after diet and surgery. Two weeks before surgery, the patients received a hypocaloric protein-rich diet. RESULTS Nine of 18 patients had a pathologic LiMAx value (≤ 315 µg/kg/h) at baseline. After two weeks of diet, LiMAx values improved (p = 0.01, paired t test, n = 15). LiMAx values further recovered six months after RYGB (p = 0.01, paired t test, n = 15), which was accompanied by decreased liver volumes (p = 0.005, paired t test, n = 10), proton density fat fraction (p = 0.003, paired t test, n = 12), and TE measurements (p = 0.032, paired t test, n = 14). The need for medical diabetes treatment decreased from 100 to 35%. CONCLUSION Liver function improved after a two-week hypocaloric protein-rich diet and metabolic surgery in patients with obesity and T2DM. These data suggest that a two-week diet for this group of patients prior to abdominal surgery could improve a presumably impaired liver function.
Collapse
Affiliation(s)
- Natalie Krönert
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, Leipzig University Hospital, Leipzig, Germany
| | - Yusef Moulla
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, Leipzig University Hospital, Leipzig, Germany
| | - Undine Gabriele Lange
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, Leipzig University Hospital, Leipzig, Germany
| | - Matthias Blüher
- Department of Endocrinology, Nephrology, Rheumatology, Leipzig University Hospital, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Nicolas Linder
- Department of Diagnostic and Interventional Radiology, Leipzig University Hospital, Leipzig, Germany
| | - Alexander Fuhrmann
- Department of Diagnostic and Interventional Radiology, Leipzig University Hospital, Leipzig, Germany
| | - Harald Busse
- Department of Diagnostic and Interventional Radiology, Leipzig University Hospital, Leipzig, Germany
| | - Anna Linder
- Department of Diagnostic and Interventional Radiology, Leipzig University Hospital, Leipzig, Germany
| | - Thomas Karlas
- Department of Oncology, Gastroenterology, Hepatology, Pneumology and Infectiology, Leipzig University Hospital, Leipzig, Germany
| | - Johannes Wiegand
- Department of Oncology, Gastroenterology, Hepatology, Pneumology and Infectiology, Leipzig University Hospital, Leipzig, Germany
| | - Roland Morgenroth
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University Hospital Leipzig, Leipzig, Germany
| | - Lena Seidemann
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, Leipzig University Hospital, Leipzig, Germany
| | - Arne Dietrich
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, Leipzig University Hospital, Leipzig, Germany.
- Clinic for Visceral, Transplant, Thoracic and Vascular Surgery, Leipzig University Hospital, Liebigstr. 20, D-04103, Leipzig, Germany.
| |
Collapse
|
8
|
Odanga JJ, Anderson SM, Presnell SC, LeCluyse EL, Chen J, Weaver JR. Impact of Post-Thaw Enrichment of Primary Human Hepatocytes on Steatosis, Inflammation, and Fibrosis in the TruVivo ® System. Pharmaceuticals (Basel) 2024; 17:1624. [PMID: 39770467 PMCID: PMC11728523 DOI: 10.3390/ph17121624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Liver diseases are a global health concern. Many in vitro liver models utilize cryopreserved primary human hepatocytes (PHHs), which commonly undergo post-thaw processing through colloidal silica gradients to remove debris and enrich for a viable PHH population. Post-thaw processing effects on healthy PHHs are partially understood, but the consequences of applying disease-origin PHHs to post-thaw density gradient separation have not been described. Methods: Using the TruVivo® system, diseased, type 2 diabetes mellitus (T2DM), and fibrotic PHHs were cultured for 14 days after initially being subjected to either low-density (permissive) or high-density (selective) gradients using Percoll-based thawing medium. Results: Changes in functionality, including albumin and urea secretion and CYP3A4 activity, were measured in diseased, T2DM, and fibrotic PHHs enriched in low Percoll compared to PHHs enriched in high Percoll. Lipogenesis increased in the PHHs enriched in low Percoll. Higher expression of CK18 and TGF-β, two fibrotic markers, and changes in expression of the macrophage markers CD68 and CD163 were also measured. Conclusions: The use of Percoll for the enrichment of PHHs post-thaw results in differences in attachment and functionality, along with changes in diseased phenotypes, in the TruVivo® system.
Collapse
Affiliation(s)
- Justin J. Odanga
- Institute of Regenerative Medicine, LifeNet Health, VA Beach, VA 23453, USA; (J.J.O.); (S.M.A.); (S.C.P.); (J.C.)
| | - Sharon M. Anderson
- Institute of Regenerative Medicine, LifeNet Health, VA Beach, VA 23453, USA; (J.J.O.); (S.M.A.); (S.C.P.); (J.C.)
| | - Sharon C. Presnell
- Institute of Regenerative Medicine, LifeNet Health, VA Beach, VA 23453, USA; (J.J.O.); (S.M.A.); (S.C.P.); (J.C.)
| | - Edward L. LeCluyse
- Research and Development, LifeNet Health, Research Triangle Park, NC 27709, USA;
| | - Jingsong Chen
- Institute of Regenerative Medicine, LifeNet Health, VA Beach, VA 23453, USA; (J.J.O.); (S.M.A.); (S.C.P.); (J.C.)
| | - Jessica R. Weaver
- Institute of Regenerative Medicine, LifeNet Health, VA Beach, VA 23453, USA; (J.J.O.); (S.M.A.); (S.C.P.); (J.C.)
| |
Collapse
|
9
|
Feng G, He N, Gao J, Li XC, Zhang FN, Liu CC, Targher G, Byrne CD, Mi M, Zheng MH, Ye F. Causal relationship between key genes and metabolic dysfunction-associated fatty liver disease risk mediated by immune cells: A Mendelian randomization and mediation analysis. Diabetes Obes Metab 2024; 26:5590-5599. [PMID: 39228284 DOI: 10.1111/dom.15925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
AIM Non-invasive diagnostics for metabolic dysfunction-associated fatty liver disease (MAFLD) remain challenging. We aimed to identify novel key genes as non-invasive biomarkers for MAFLD, elucidate causal relationships between biomarkers and MAFLD and determine the role of immune cells as potential mediators. MATERIALS AND METHODS Utilizing published transcriptome data of patients with biopsy-proven MAFLD, we applied linear models for microarray data, least absolute shrinkage and selector operation (LASSO) regressions and receiver operating characteristic (ROC) curve analyses to identify and validate biomarkers for MAFLD. Using the expression quantitative trait loci database and a cohort of 778 614 Europeans, we used Mendelian randomization to analyse the causal relationships between key biomarkers and MAFLD. Additionally, mediation analysis was performed to examine the involvement of 731 immunophenotypes in these relationships. RESULTS We identified 31 differentially expressed genes, and LASSO regression showed three hub genes, IGFBP2, PEG10, and P4HA1, with area under the receiver operating characteristic (AUROC) curve of 0.807, 0.772 and 0.791, respectively, for identifying MAFLD. The model of these three genes had an AUROC of 0.959 and 0.800 in the development and validation data sets, respectively. This model was also validated using serum-based enzyme-linked immunosorbent assay data from MAFLD patients and control subjects (AUROC: 0.819, 95% confidence interval: 0.736-0.902). PEG10 was associated with an increased MAFLD risk (odds ratio = 1.106, p = 0.032) via inverse variance-weighted analysis, and about 30% of this risk was mediated by the percentage of CD11c + CD62L- monocytes. CONCLUSIONS The MAFLD panels have good diagnostic accuracy, and the causal link between PEG10 and MAFLD was mediated by the percentage of CD11c + CD62L- monocytes.
Collapse
Affiliation(s)
- Gong Feng
- Department of Infectious Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of General Practice, Xi'an Medical University, Xi'an, China
| | - Na He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Jing Gao
- School of Medicine, Xiamen University, Xiamen, China
- Department of Emergency Medicine, Affiliated Hospital of Xizang Minzu University, Xianyang, China
| | - Xiao-Cheng Li
- Institute of General Practice, Xi'an Medical University, Xi'an, China
| | - Fen-Na Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Cheng-Cheng Liu
- Institute of General Practice, Xi'an Medical University, Xi'an, China
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton General Hospital, Southampton, UK
| | - Man Mi
- Institute of General Practice, Xi'an Medical University, Xi'an, China
| | - Ming-Hua Zheng
- Department of Hepatology, MAFLD Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Feng Ye
- Department of Infectious Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Wen H, Deng H, Yang L, Li L, Lin J, Zheng P, Bjelakovic M, Ji G. Vitamin E for people with non-alcoholic fatty liver disease. Cochrane Database Syst Rev 2024; 10:CD015033. [PMID: 39412049 PMCID: PMC11481097 DOI: 10.1002/14651858.cd015033.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2024]
Abstract
RATIONALE Non-alcoholic fatty liver disease (NAFLD), recently renamed metabolic dysfunction-associated steatotic liver disease (MASLD), is the most common liver disease worldwide, affecting an estimated 3 in 10 people. The available treatment is far from optimal. Diet and lifestyle changes to promote weight loss and weight loss maintenance are the basic management of NAFLD, but these are difficult to achieve and maintain. Vitamin E has shown beneficial effects on oxidative stress, which plays a major role in the pathogenesis of NAFLD. However, there is uncertainty about the effects of vitamin E for people with NAFLD. OBJECTIVES To evaluate the beneficial and harmful effects of vitamin E alone, or vitamin E in combination with other vitamins or minerals, versus placebo or no intervention in people with NAFLD. SEARCH METHODS We used recommended Cochrane search methods. The latest search was performed on 2 February 2024. ELIGIBILITY CRITERIA We included randomised clinical trials that compared vitamin E alone, or in combination with other vitamins or minerals, at any dose, duration, and route of administration, versus placebo or no intervention, in people with NAFLD of any age, sex, or ethnic origin. We included participants with imaging techniques or histology-proven NAFLD and minimal alcohol intake, and participants with steatohepatitis who had liver biopsies. OUTCOMES Our critical outcomes were all-cause mortality, liver-related mortality, and serious adverse events. Our important outcomes were liver-related morbidity, health-related quality of life, non-serious adverse events, biochemical response, and imaging assessment of the degree of fatty liver. RISK OF BIAS We used Cochrane's RoB 2 tool to assess risk of bias for each of the predefined outcomes. SYNTHESIS METHODS We used standard Cochrane methods. We used GRADE to assess the certainty of evidence. INCLUDED STUDIES We included 16 randomised clinical trials involving 1066 paediatric and adult participants with NAFLD. Experimental groups received vitamin E alone (14 trials) or vitamin E in combination with vitamin C (2 trials). Control groups received placebo in 13 trials and no intervention in three trials. Daily dosages of oral vitamin E ranged from 298 international units (IU) to 1000 IU. Co-interventions were lifestyle and low-calorie diet interventions in 13 trials, ursodeoxycholic acid in one trial, unchanged diet and physical activity in one trial, and baseline treatments for type 2 diabetes in one trial. Nine trials had more than two intervention groups, but we used only the groups in which vitamin E alone or vitamin E in combination with vitamin C were compared with placebo or no intervention. In total, 7.9% (84/1066) of participants dropped out. Follow-up ranged from 2 months to 24 months. SYNTHESIS OF RESULTS Vitamin E versus placebo or no intervention The effects of vitamin E versus placebo or no intervention on all-cause mortality (risk ratio (RR) 3.45, 95% confidence interval (CI) 0.57 to 20.86; 3 trials, 351 participants; very low certainty evidence) and serious adverse events (RR 1.91, 95% CI 0.30 to 12.01; 2 trials, 283 participants; very low certainty evidence) are very uncertain. There were no data on liver-related mortality or liver-related morbidity. The effects of vitamin E versus placebo or no intervention on physical health-related quality of life (mean difference (MD) 0.74, 95% CI -0.52 to 2.01; 2 trials, 251 participants; higher scores indicate better quality of life; very low certainty evidence); psychosocial health-related quality of life (MD -0.57, 95% CI -4.11 to 2.97; 2 trials, 251 participants; higher scores indicate better quality of life; very low certainty evidence); and non-serious adverse events (RR 0.86, 95% CI 0.64 to 1.17; 2 trials, 283 participants; very low certainty evidence) are also very uncertain. There were no data on proportion of participants without a decrease in liver enzymes. Vitamin E likely slightly reduces serum alanine transaminase (ALT) (MD -9.29, 95% CI -13.69 to -4.89; 11 trials, 708 participants; moderate certainty evidence) and aspartate aminotransferase (AST) (MD -4.90, 95% CI -7.24 to -2.57; 11 trials, 695 participants; moderate certainty evidence) levels compared with placebo or no intervention. Vitamin E may slightly reduce serum alkaline phosphatase (ALP) levels (MD -5.21, 95% CI -9.88 to -0.54; 5 trials, 416 participants; very low certainty evidence), but the evidence is very uncertain. Vitamin E plus vitamin C versus placebo There were no data on all-cause mortality, liver-related mortality, serious adverse events, liver-related morbidity, health-related quality of life, and non-serious adverse events. The effects of vitamin E plus vitamin C on reducing serum ALT (MD -0.50, 95% CI -4.58 to 3.58; 2 trials, 133 participants; very low certainty evidence), AST (MD 0.09, 95% CI -3.39 to 3.57; 1 trial, 88 participants; very low certainty evidence), and gamma-glutamyl transferase (GGT) levels (MD 1.58, 95% CI -3.22 to 6.38; 1 trial, 88 participants; very low certainty evidence) are very uncertain. We identified three ongoing trials, and six trials are awaiting classification. AUTHORS' CONCLUSIONS Given the very low certainty evidence, we do not know if long-term treatment (18 months to 24 months) with vitamin E administered alone affects all-cause mortality, serious adverse events, quality of life, or non-serious adverse events in people with NAFLD when compared with placebo or no intervention. We found no data on liver-related mortality, liver-related morbidity, or proportion of participants without a decrease in liver enzymes. Vitamin E likely reduces ALT and AST slightly when compared with placebo, but whether this has any impact on the clinical course in people with NAFLD is unknown. The trials on vitamin E plus vitamin C did not report on all-cause mortality, liver-related mortality, serious adverse events, liver-related morbidity, health-related quality of life, or non-serious adverse events. Given the very low certainty evidence, we do not know the effects of vitamin E plus vitamin C on liver enzymes in people with NAFLD when compared with placebo. FUNDING Three trials disclosed no external funding. Five trials were industry funded. Five trials were funded by organisations with no vested interests. Three trials did not provide any information on clinical trial support or sponsorship. REGISTRATION Protocol: doi.org/10.1002/14651858.CD015033.
Collapse
Affiliation(s)
- Hongzhu Wen
- Department of Gastroenterology, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyong Deng
- EBM Center of TCM, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Yang
- Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lujin Li
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiang Lin
- Department of Gastroenterology, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peiyong Zheng
- Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Milica Bjelakovic
- Clinic of Gastroenterohepatology, University Clinical Centre Nis, Nis, Serbia
| | - Guang Ji
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Yahya MA, Alshammari GM, Osman MA, Al-Harbi LN, Yagoub AEA, AlSedairy SA. Liquorice root extract and isoliquiritigenin attenuate high-fat diet-induced hepatic steatosis and damage in rats by regulating AMPK. Arch Physiol Biochem 2024; 130:385-400. [PMID: 36121371 DOI: 10.1080/13813455.2022.2102654] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/11/2022]
Abstract
Objective: This study compared the ability of Liquorice roots aqueous extract (LRE) and its ingredient, isoliquiritigenin (ISL), in alleviating high-fat diet (HFD)-induced hepatic steatosis and examined if this effect involves activation of AMPK.Materials and methods: Control or HFD-fed rats were treated with the vehicle, LRE (200 mg/kg), or ISL (30 mg/kg) for 8 weeks orally.Results: ISL and LRE reduced HFD-induced hyperglycaemia, improved liver structure, lowered serum and hepatic lipids, and attenuated hepatic oxidative stress and inflammation. In the control and HFD-fed rats, ISL and LRE significantly stimulated the muscular and hepatic mRNA and protein levels of AMPK, improved oral glucose tolerance, reduced hepatic mRNA levels of SREBP1/2, and upregulated hepatic levels of PPARα and Bcl2. These effects were comparable for ISL and LRE and were prevented by co-administration of compound C, an AMPK inhibitor.Discussion and conclusion: ISL and LRE provide an effective theory to alleviate hepatic steatosis through activating AMPK.
Collapse
Affiliation(s)
- Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Magdi A Osman
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Laila Naif Al-Harbi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abu ElGasim A Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sahar Abdulaziz AlSedairy
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Mishra F, Yuan Y, Yang JJ, Li B, Chan P, Liu Z. Depletion of Activated Hepatic Stellate Cells and Capillarized Liver Sinusoidal Endothelial Cells Using a Rationally Designed Protein for Nonalcoholic Steatohepatitis and Alcoholic Hepatitis Treatment. Int J Mol Sci 2024; 25:7447. [PMID: 39000553 PMCID: PMC11242029 DOI: 10.3390/ijms25137447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Nonalcoholic steatohepatitis (NASH) and alcoholic hepatitis (AH) affect a large part of the general population worldwide. Dysregulation of lipid metabolism and alcohol toxicity drive disease progression by the activation of hepatic stellate cells and the capillarization of liver sinusoidal endothelial cells. Collagen deposition, along with sinusoidal remodeling, alters sinusoid structure, resulting in hepatic inflammation, portal hypertension, liver failure, and other complications. Efforts were made to develop treatments for NASH and AH. However, the success of such treatments is limited and unpredictable. We report a strategy for NASH and AH treatment involving the induction of integrin αvβ3-mediated cell apoptosis using a rationally designed protein (ProAgio). Integrin αvβ3 is highly expressed in activated hepatic stellate cells (αHSCs), the angiogenic endothelium, and capillarized liver sinusoidal endothelial cells (caLSECs). ProAgio induces the apoptosis of these disease-driving cells, therefore decreasing collagen fibril, reversing sinusoid remodeling, and reducing immune cell infiltration. The reversal of sinusoid remodeling reduces the expression of leukocyte adhesion molecules on LSECs, thus decreasing leukocyte infiltration/activation in the diseased liver. Our studies present a novel and effective approach for NASH and AH treatment.
Collapse
Affiliation(s)
- Falguni Mishra
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Yi Yuan
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jenny J Yang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Bin Li
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Payton Chan
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Zhiren Liu
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
13
|
Ni W, Lu Y, Wang W. Exploring the interconnected between type 2 diabetes mellitus and nonalcoholic fatty liver disease: Genetic correlation and Mendelian randomization analysis. Medicine (Baltimore) 2024; 103:e38008. [PMID: 38728519 PMCID: PMC11081543 DOI: 10.1097/md.0000000000038008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Epidemiological and clinical studies have indicated a higher risk of nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM), implying a potentially shared genetic etiology, which is still less explored. Genetic links between T2DM and NAFLD were assessed using linkage disequilibrium score regression and pleiotropic analysis under composite null hypothesis. European GWAS data have identified shared genes, whereas SNP-level pleiotropic analysis under composite null hypothesis has explored pleiotropic loci. generalized gene-set analysis of GWAS data determines pleiotropic pathways and tissue enrichment using eQTL mapping to identify associated genes. Mendelian randomization analysis was used to investigate the causal relationship between NAFLD and T2DM. Linkage disequilibrium score regression analysis revealed a strong genetic correlation between T2DM and NAFLD, and identified 24 pleiotropic loci. These single-nucleotide polymorphisms are primarily involved in biosynthetic regulation, RNA biosynthesis, and pancreatic development. generalized gene-set analysis of GWAS data analysis revealed significant enrichment in multiple brain tissues. Gene mapping using these 3 methods led to the identification of numerous pleiotropic genes, with differences observed in liver and kidney tissues. These genes were mainly enriched in pancreas, brain, and liver tissues. The Mendelian randomization method indicated a significantly positive unidirectional causal relationship between T2DM and NAFLD. Our study identified a shared genetic structure between NAFLD and T2DM, providing new insights into the genetic pathogenesis and mechanisms of NAFLD and T2DM comorbidities.
Collapse
Affiliation(s)
- Wenjuan Ni
- Department of Endocrinology, First Affiliated Hospital of Baotou Medical Collage, Baotou, Inner Mongolia, China
| | - Yao Lu
- Baotou Medical Collage, Baotou, Inner Mongolia, China
| | - Wei Wang
- Department of Endocrinology, First Affiliated Hospital of Baotou Medical Collage, Baotou, Inner Mongolia, China
| |
Collapse
|
14
|
Yuan X, Liu T, Luo K, Xie C, Zhou L. Neo-construction of a SO 2-tunable near-infrared ratiometric fluorescent probe for high-fidelity diagnosis and evaluation hazards of Cd 2+-induced liver injury. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133653. [PMID: 38301443 DOI: 10.1016/j.jhazmat.2024.133653] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Cadmium-contaminated water and food are seriously hazardous to the human health, especially liver injury. To understand the entanglement relationship between cadmium ion (Cd2+)-induced liver injury and the biomarker sulfur dioxide (SO2), a reliable bioanalytical tool is urgently needed, detecting SO2 to diagnose and evaluate the extent of liver injury in vivo. Herein, based on the Förster resonance energy transfer (FRET) mechanism, a novel SO2-tunable NIR ratiometric fluorescent probe (SMP) was developed, it was used to diagnose and treat liver injury induced by Cd2+ in biosystems. Specifically, it was constructed by conjugating a NIR dicyanoisophorone with a NIR benzopyranate as the donor and acceptor, respectively, and the ratiometric response of SO2- regulated by the Michael addition reaction. In addition, SMP exhibits rapid reaction time (<15 s), two well-resolved emission peaks (68 nm) with less cross-talk between channels for high imaging resolution, superior selectivity, and low limit of detection (LOD=80.3 nM) for SO2 detection. Impressively, SMP has been successfully used for intracellular ratiometric imaging of Cd2+-induced SO2 and diagnostic and therapeutic evaluation in liver injury mice models with satisfactory results. Therefore, SMP may provide a powerful molecular tool for revealing the occurrence and development relationship between SO2 and Cd2+-induced liver injury. ENVIRONMENTAL IMPLICATION: Cadmium ions are one of the well-known toxic environmental pollutants, which are enriched in the human body through inhalation of cadmium-contaminated air or from the food chain, leading to damage in various organs, especially liver injury. Therefore, we developed a novel fluorescent probe that can specifically detect SO2 in Cd2+-induced liver injury, which is critically important for the diagnosis and evaluation of Cd2+-induced liver injury diseases. The specific detection of SO2 of this probe has been successfully demonstrated in live HepG2 cells and Cd2+-induced liver injury mice.
Collapse
Affiliation(s)
- Xiaomin Yuan
- Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ting Liu
- Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Kun Luo
- Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Can Xie
- Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
15
|
Khatun A, Panchali T, Gorai S, Dutta A, Das TK, Ghosh K, Pradhan S, Mondal KC, Chakrabarti S. Impaired brain equanimity and neurogenesis in the diet-induced overweight mouse: a preventive role by syringic acid treatment. Nutr Neurosci 2024; 27:271-288. [PMID: 36947578 DOI: 10.1080/1028415x.2023.2187510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
OBJECTIVES In this study mice were fed a high-fat diet for 12 weeks to establish diet-induced obesity and syringic acid (SA) was assessed for anti-obese, neuroprotective, and neurogenesis. METHOD Animals were given HFD for 12 weeks to measure metabolic characteristics and then put through the Barns-maze and T-maze tests to measure memory. Additionally, the physiology of the blood-brain barrier, oxidative stress parameters, the expression of inflammatory genes, neurogenesis, and histopathology was evaluated in the brain. RESULT DIO raised body weight, BMI, and other metabolic parameters after 12 weeks of overfeeding. A reduced spontaneous alternation in behavior (working memory, reference memory, and total time to complete a task), decreased enzymatic and non-enzymatic antioxidants, oxidative biomarkers, increased neurogenesis, and impaired blood-brain barrier were all seen in DIO mice. SA (50 mg/kg) treatment of DIO mice (4 weeks after 8 weeks of HFD feeding) reduced diet-induced changes in lipid parameters associated with obesity, hepatological parameters, memory, blood-brain barrier, oxidative stress, neuroinflammation, and neurogenesis. SA also reduced the impact of malondialdehyde and enhanced the effects of antioxidants such as glutathione, superoxide dismutase (SOD), and total thiol (MDA). Syringic acid improved neurogenesis, cognition, and the blood-brain barrier while reducing neurodegeneration in the hippocampal area. DISCUSSION According to the results of the study, syringic acid therapy prevented neurodegeneration, oxidative stress, DIO, and memory loss. Syringic acid administration may be a useful treatment for obesity, memory loss, and neurogenesis, but more research and clinical testing is needed.
Collapse
Affiliation(s)
- Amina Khatun
- Department of Biological Sciences, Midnapore City College, Paschim Medinipur, India
| | - Titli Panchali
- Department of Paramedical & Allied Health Science, Midnapore City College, Paschim Medinipur, India
| | - Sukhamoy Gorai
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Ananya Dutta
- Department of Paramedical & Allied Health Science, Midnapore City College, Paschim Medinipur, India
| | - Tridip Kumar Das
- Department of Biological Sciences, Midnapore City College, Paschim Medinipur, India
| | - Kuntal Ghosh
- Department of Biological Sciences, Midnapore City College, Paschim Medinipur, India
| | - Shrabani Pradhan
- Department of Paramedical & Allied Health Science, Midnapore City College, Paschim Medinipur, India
| | | | - Sudipta Chakrabarti
- Department of Biological Sciences, Midnapore City College, Paschim Medinipur, India
| |
Collapse
|
16
|
Lee SB, Choi JE, Hong KW, Jung DH. Genetic Variants Linked to Myocardial Infarction in Individuals with Non-Alcoholic Fatty Liver Disease and Their Potential Interaction with Dietary Patterns. Nutrients 2024; 16:602. [PMID: 38474730 PMCID: PMC10934498 DOI: 10.3390/nu16050602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
In recent studies, non-alcoholic fatty liver disease (NAFLD) has been associated with a high risk of ischemic heart disease. This study aimed to investigate a genetic variant within a specific gene associated with myocardial infarction (MI) among patients with NAFLD. We included 57,205 participants from a Korean genome and epidemiology study. The baseline population consisted of 45,400 individuals, with 11,805 identified as patients with NAFLD. Genome-wide association studies were conducted for three groups: the entire sample, the healthy population, and patients with NAFLD. We defined the p-value < 1 × 10-5 as the nominal significance and the p-value < 5 × 10-2 as statistically significant for the gene-by-nutrient interaction. Among the significant single-nucleotide polymorphisms (SNPs), the lead SNP of each locus was further analyzed. In this cross-sectional study, a total of 1529 participants (2.8%) had experienced MI. Multivariable logistic regression was performed to evaluate the association of 102 SNPs across nine loci. Nine SNPs (rs11891202, rs2278549, rs13146480, rs17293047, rs184257317, rs183081683, rs1887427, rs146939423, and rs76662689) demonstrated an association with MI in the group with NAFLD Notably, the MI-associated SNP, rs134146480, located within the SORCS2 gene, known for its role in secreting insulin in islet cells, showed the most significant association with MI (p-value = 2.55 × 10-7). Our study identifies candidate genetic polymorphisms associated with NAFLD-related MI. These findings may serve as valuable indicators for estimating MI risk and for conducting future investigations into the underlying mechanisms of NAFLD-related MI.
Collapse
Affiliation(s)
- Sung-Bum Lee
- Department of Family Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 22972, Republic of Korea;
| | - Ja-Eun Choi
- R&D Division, Theragen Health Co., Ltd., Seongnam-si 13493, Republic of Korea;
| | - Kyung-Won Hong
- R&D Division, Theragen Health Co., Ltd., Seongnam-si 13493, Republic of Korea;
| | - Dong-Hyuk Jung
- Department of Family Medicine, Yongin Severance Hospital, Yongin-si 16995, Republic of Korea
| |
Collapse
|
17
|
Ji S, Qu Y, Sun Q, Zhao F, Qiu Y, Li Z, Li Y, Song H, Zhang M, Zhang W, Fu H, Cai J, Zhang Z, Zhu Y, Cao Z, Lv Y, Shi X. Mediating Role of Liver Dysfunction in the Association between Arsenic Exposure and Diabetes in Chinese Adults: A Nationwide Cross-Sectional Study of China National Human Biomonitoring (CNHBM) 2017-2018. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2693-2703. [PMID: 38285630 DOI: 10.1021/acs.est.3c08718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Inconsistent results have been reported regarding the association between low-to-moderate arsenic (As) exposure and diabetes. The effect of liver dysfunction on As-induced diabetes remains unclear. The cross-sectional study included 10,574 adults from 2017-2018 China National Human Biomonitoring. Urinary total As (TAs) levels were analyzed as markers of As exposure. Generalized linear mixed models and restricted cubic splines models were used to examine the relationships among TAs levels, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) concentrations, and diabetes prevalence. Mediating analysis was performed to assess whether liver dysfunction mediated the association between TAs and diabetes. Overall, the OR (95% CI) of diabetes in participants in the second, third, and fourth quartiles of TAs were 1.08 (0.88, 1.33), 1.17 (0.94, 1.45), and 1.52 (1.22, 1.90), respectively, in the fully adjusted models compared with those in the lowest quartile. Serum ALT was positively associated with TAs and diabetes. Additionally, mediation analyses showed that ALT mediated 4.32% of the association between TAs and diabetes in the overall population and 8.86% in the population without alcohol consumption in the past year. This study suggested that alleviating the hepatotoxicity of As could have implications for both diabetes and liver disease.
Collapse
Affiliation(s)
- Saisai Ji
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yingli Qu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qi Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yidan Qiu
- Department of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou 310058, China
| | - Zheng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yawei Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Haocan Song
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Miao Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Wenli Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hui Fu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jiayi Cai
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zhuona Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ying Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zhaojin Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| |
Collapse
|
18
|
Yang RX, Fan JG. Metabolic comorbidities, endocrine—Diabetes, polycystic ovarian syndrome, thyroid dysfunction. METABOLIC STEATOTIC LIVER DISEASE 2024:123-136. [DOI: 10.1016/b978-0-323-99649-5.00004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Chimoriya R, Ho V, Wang ZV, Chang R, Boumelhem BB, Simmons D, Kormas N, Gorrell MD, Piya MK. Application and Diagnostic Performance of Two-Dimensional Shear Wave Elastography and Liver Fibrosis Scores in Adults with Class 3 Obesity. Nutrients 2023; 16:74. [PMID: 38201904 PMCID: PMC10780854 DOI: 10.3390/nu16010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
There are no ideal non-invasive tests for assessing the severity of liver fibrosis in people with metabolic dysfunction-associated steatotic liver disease (MASLD) and class 3 obesity, where body habitus often makes imaging technically challenging. This study aimed to assess the applicability and diagnostic performance of two-dimensional shear wave elastography (2D-SWE), alongside several serum-based liver fibrosis scoring methods, in individuals with class 3 obesity. A cross-sectional study was conducted in patients aged ≥18 years and with a body mass index (BMI) ≥ 40 kg/m2 who were participants in a publicly funded multidisciplinary weight management program in South Western Sydney. The 2D-SWE was performed using the ElastQ Imaging (EQI) procedure with the Phillips EPIQ Elite series ultrasound. An EQI Median value of ≥6.43 kPa was taken as a cutoff score for significant fibrosis, and the scan was considered valid when the liver EQI IQR/Med value was <30%. The Fibrosis-4 (FIB-4) index, AST-to-platelet ratio index (APRI), NAFLD fibrosis score (NFS), and circulating fibroblast activation protein index (FAP index) were calculated from fasting blood samples. The participants (n = 116; 67.2% female) were aged 47.2 ± 12.9 years, with BMI 54.5 ± 11.0 kg/m2. EQI Median values were obtained for 97.4% (113/116) of the 2D-SWE scans, and 91.4% (106/116) of the scans were considered valid. The EQI Median values exhibited a moderately positive correlation with the FIB-4 index (r = 0.438; p < 0.001) and a weakly positive correlation with the APRI (r = 0.388; p < 0.001), NFS (r = 0.210; p = 0.036) and FAP index (r = 0.226; p = 0.020). All liver fibrosis scores were positively correlated with one another. Among those referred for a liver biopsy based on the 2D-SWE and serum scores, half (11/22) underwent liver biopsy, and their 2D-SWE scores exhibited 72.7% accuracy (sensitivity: 71.4%; specificity: 75%) in detecting significant fibrosis. Our results show that 2D-SWE is a feasible, non-invasive test to assess liver fibrosis among people with class 3 obesity. Further research is needed to assess how 2D-SWE can be used alongside existing serum-based risk scores to reliably detect significant fibrosis, which would potentially reduce the need for invasive liver biopsy.
Collapse
Affiliation(s)
- Ritesh Chimoriya
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (R.C.); (V.H.); (D.S.)
| | - Vincent Ho
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (R.C.); (V.H.); (D.S.)
- Camden and Campbelltown Hospitals, Campbelltown, NSW 2560, Australia; (R.C.); (N.K.)
| | - Ziqi Vincent Wang
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (Z.V.W.); (B.B.B.); (M.D.G.)
| | - Ruby Chang
- Camden and Campbelltown Hospitals, Campbelltown, NSW 2560, Australia; (R.C.); (N.K.)
| | - Badwi B. Boumelhem
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (Z.V.W.); (B.B.B.); (M.D.G.)
| | - David Simmons
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (R.C.); (V.H.); (D.S.)
- Camden and Campbelltown Hospitals, Campbelltown, NSW 2560, Australia; (R.C.); (N.K.)
| | - Nic Kormas
- Camden and Campbelltown Hospitals, Campbelltown, NSW 2560, Australia; (R.C.); (N.K.)
| | - Mark D. Gorrell
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (Z.V.W.); (B.B.B.); (M.D.G.)
| | - Milan K. Piya
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (R.C.); (V.H.); (D.S.)
- Camden and Campbelltown Hospitals, Campbelltown, NSW 2560, Australia; (R.C.); (N.K.)
| |
Collapse
|
20
|
Liu Y, Lin M, Mu X, Qin L, Deng J, Liu Y, Wu X, He W, Pang H, Han F, Sun C, Nie X. Protective effect of solanesol in glucose-induced hepatocyte injury: Mechanistic insights on oxidative stress and mitochondrial preservation. Chem Biol Interact 2023; 383:110676. [PMID: 37586544 DOI: 10.1016/j.cbi.2023.110676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/15/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Solanesol is a tetra sesquiterpene enol with various biological activities. Modern medical studies have confirmed that solanesol has the function of lipid antioxidation and scavenges free radicals. This study aimed to investigate the protective effect of solanesol against oxidative damage induced by high glucose on human normal hepatocytes (L-02 cells) and its possible mechanism. The results showed that solanesol could effectively improve the decrease of cell viability induced by high glucose, decrease the contents of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) in the extracellular medium, increased the enzyme activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT), balanced the level of reactive oxygen species (ROS) in cells, inhibited lipid peroxidation of all kinds of biological membranes, and restored mitochondrial membrane potential (MMP). In addition, Solanesol also inhibited the expression of Keap1, promoted the nuclear translocation of Nrf2 by hydrogen bonding with Nrf2, and activated the expression of downstream antioxidant factors NQO1 and HO-1. Altogether, these findings suggest that solanesol may be a potential protectant against diabetic liver injury.
Collapse
Affiliation(s)
- Yiqiu Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China
| | - Musen Lin
- Zunyi Tobacco Monopoly Bureau, Zunyi, 563000, China
| | - Xingrui Mu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China
| | - Lin Qin
- College of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
| | - Junyu Deng
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China
| | - Ye Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
| | - Xingqian Wu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
| | - Wenjie He
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
| | - Huiwen Pang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chengxin Sun
- College of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi, 563006, China; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
21
|
Li M, Tang F, Lao J, Yang Y, Cao J, Song R, Wu P, Wang Y. Multicomponent prediction of 2-year mortality and amputation in patients with diabetic foot using a random survival forest model: Uric acid, alanine transaminase, urine protein and platelet as important predictors. Int Wound J 2023; 21:e14376. [PMID: 37743574 PMCID: PMC10824700 DOI: 10.1111/iwj.14376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
The current methods for the prediction of mortality and amputation for inpatients with diabetic foot (DF) use only conventional, simple variables, which limits their performance. Here, we used a random survival forest (RSF) model and multicomponent variables to improve the prediction of mortality and amputation for these patients. We performed a retrospective cohort study of 175 inpatients with DF who were recruited between 2014 and 2021. Thirty-one predictors in six categories were considered as potential covariates. Seventy percent (n = 122) of the participants were randomly selected to constitute a training set, and 30% (n = 53) were assigned to a testing set. The RSF model was used to screen appropriate variables for their value as predictors of 2-year all-cause mortality and amputation, and a multicomponent prediction model was established. Model performance was evaluated using the area under the curve (AUC) and the Hosmer-Lemeshow test. The AUCs were compared using the Delong test. Seventeen variables were selected to predict mortality and 23 were selected to predict amputation. Uric acid and alanine transaminase were the top two most useful variables for the prediction of mortality, whereas urine protein and platelet were the top variables for the prediction of amputation. The AUCs were 0.913 and 0.851 for the prediction of mortality for the training and testing sets, respectively; and the equivalent AUCs were 0.963 and 0.893 for the prediction of amputation. There were no significant differences between the AUCs for the training and testing sets for both the mortality and amputation models. These models showed a good degree of fit. Thus, the RSF model can predict mortality and amputation in inpatients with DF. This multicomponent prediction model could help clinicians consider predictors of different dimensions to effectively prevent DF from clinical outcomes .
Collapse
Affiliation(s)
- Mingzhuo Li
- Department of Plastic SurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
- Center for Big Data Research in Health and MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound RepairJinanChina
- Shandong Data Open Innovative Application LaboratoryJinanChina
| | - Fang Tang
- Center for Big Data Research in Health and MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
- Shandong Data Open Innovative Application LaboratoryJinanChina
| | - Jiahui Lao
- Center for Big Data Research in Health and MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
- Shandong Data Open Innovative Application LaboratoryJinanChina
| | - Yang Yang
- Center for Big Data Research in Health and MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
- Shandong Data Open Innovative Application LaboratoryJinanChina
| | - Jia Cao
- Center for Big Data Research in Health and MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
- Shandong Data Open Innovative Application LaboratoryJinanChina
| | - Ru Song
- Department of Plastic SurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound RepairJinanChina
| | - Peng Wu
- Department of Plastic SurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound RepairJinanChina
| | - Yibing Wang
- Department of Plastic SurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
- Center for Big Data Research in Health and MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound RepairJinanChina
| |
Collapse
|
22
|
Wang M, Zhao Y, He Y, Zhang L, Liu J, Zheng S, Bai Y. The bidirectional relationship between NAFLD and type 2 diabetes: A prospective population-based cohort study. Nutr Metab Cardiovasc Dis 2023; 33:1521-1528. [PMID: 37336719 DOI: 10.1016/j.numecd.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND AND AIMS To explore the bidirectional relationship between NAFLD and type 2 diabetes and the possible directions of the main effect. METHODS AND RESULTS 30 633 participants from the Jinchang cohort were enrolled. Firstly, cox proportional hazards regression model was used to assess the unidirectional causality between NAFLD and prediabetes and type 2 diabetes. Secondly, cross-lag path analysis model was conducted to estimate the bidirectional relationship between NAFLD and prediabetes and type 2 diabetes, and to determine the direction of the main effects. Finally, potential effect modifications were also considered by age, sex, hyperlipidemia, and overweight/obesity. We found that NAFLD increased the risk of prediabetes and type 2 diabetes with adjusted HR (95%CI) of 1.355(95%CI: 1.255-1.462) and 1.898(95%CI: 1.415-2.545), respectively. Prediabetes and type 2 diabetes also increased the risk of NAFLD, with adjusted HR (95%CI) of 1.245(95%CI: 1.115-1.392) and 1.592(95%CI: 1.373-1.846), respectively. Cross-lag path analysis showed that NAFLD significantly affected the incidence of prediabetes (β = 0.285, P < 0.001), while the effect on type 2 diabetes was not statistically significant. The effect of prediabetes and type 2 diabetes on the risk of NAFLD was weak, and the path coefficients were 0.076 and 0.037, respectively. Stratified analyses showed similar results. CONCLUSION This study provides evidence that there was a bidirectional causal association between NAFLD and type 2 diabetes, and the progression from NAFLD through prediabetes to type 2 diabetes may be the main pathway.
Collapse
Affiliation(s)
- Minzhen Wang
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Yanan Zhao
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Yingqian He
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Lulu Zhang
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jing Liu
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Shan Zheng
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Yana Bai
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China.
| |
Collapse
|
23
|
Siwan E, Parry SN, Williams KH, McGill MJ, Wu T, Wong J, Twigg SM, Min D. Circulating soluble CD163 as a potential biomarker of diabetes complications. J Diabetes Complications 2023; 37:108525. [PMID: 37301062 DOI: 10.1016/j.jdiacomp.2023.108525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
AIMS To investigate whether soluble CD163 (sCD163) is altered in those with diabetes and various subtypes of complications and non-alcoholic fatty liver disease (NAFLD), and whether it can assess disease complications and severity in people with diabetes. METHODS Adults with diabetes (n = 101) were recruited and assessed for the presence of any complications (D+Comps). Liver steatosis presence was determined by ultrasound and liver stiffness measurement (LSM) by transient elastography. Liver pathology other than non-alcoholic steatohepatitis (NASH) was excluded. Plasma sCD163 was measured by ELISA. RESULTS sCD163 was higher in D+Comps (n = 59) compared to D-comps (n = 42) in those with microvascular complications (n = 56; 1.3-fold), including a 1.4-fold increase in chronic kidney disease (CKD) (n = 42). sCD163 correlated positively with HbA1c and urinary albumin-creatinine ratio and negatively with HDL-c in D+Comps. sCD163 was increased 1.7-fold in those with advanced NASH fibrosis (LSM ≥ 10.3 kPa, n = 19) compared to those without (LSM < 10.3 kPa, n = 80). The AUC-ROC-curve was 0.64 for sCD163 to detect CKD and 0.74 to detect advanced NASH fibrosis. CONCLUSIONS In this study, the elevated circulating sCD163 occurred in people with diabetes who had microvascular complications or advanced NASH fibrosis, suggesting sCD163 may have clinical utility as a biomarker in certain diabetes complications and disease severity in NAFLD.
Collapse
Affiliation(s)
- Elisha Siwan
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkin Centre, The University of Sydney, Sydney, NSW, Australia
| | - Sarah N Parry
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkin Centre, The University of Sydney, Sydney, NSW, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Kathryn H Williams
- Nepean Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Margaret J McGill
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Ted Wu
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Jencia Wong
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkin Centre, The University of Sydney, Sydney, NSW, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Stephen M Twigg
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkin Centre, The University of Sydney, Sydney, NSW, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Danqing Min
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkin Centre, The University of Sydney, Sydney, NSW, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| |
Collapse
|
24
|
Frankowski R, Kobierecki M, Wittczak A, Różycka-Kosmalska M, Pietras T, Sipowicz K, Kosmalski M. Type 2 Diabetes Mellitus, Non-Alcoholic Fatty Liver Disease, and Metabolic Repercussions: The Vicious Cycle and Its Interplay with Inflammation. Int J Mol Sci 2023; 24:ijms24119677. [PMID: 37298632 DOI: 10.3390/ijms24119677] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The prevalence of metabolic-related disorders, such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (DM2), has been increasing. Therefore, developing improved methods for the prevention, treatment, and detection of these two conditions is also necessary. In this study, our primary focus was on examining the role of chronic inflammation as a potential link in the pathogenesis of these diseases and their interconnections. A comprehensive search of the PubMed database using keywords such as "non-alcoholic fatty liver disease", "type 2 diabetes mellitus", "chronic inflammation", "pathogenesis", and "progression" yielded 177 relevant papers for our analysis. The findings of our study revealed intricate relationships between the pathogenesis of NAFLD and DM2, emphasizing the crucial role of inflammatory processes. These connections involve various molecular functions, including altered signaling pathways, patterns of gene methylation, the expression of related peptides, and up- and downregulation of several genes. Our study is a foundational platform for future research into the intricate relationship between NAFLD and DM2, allowing for a better understanding of the underlying mechanisms and the potential for introducing new treatment standards.
Collapse
Affiliation(s)
- Rafał Frankowski
- Students' Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Mateusz Kobierecki
- Students' Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Andrzej Wittczak
- Students' Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | | | - Tadeusz Pietras
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Kasper Sipowicz
- Department of Interdisciplinary Disability Studies, The Maria Grzegorzewska University in Warsaw, 02-353 Warsaw, Poland
| | - Marcin Kosmalski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| |
Collapse
|
25
|
Zhao X, Ma Y, Shi M, Huang M, Xin J, Ci S, Chen M, Jiang T, Hu Z, He L, Pan F, Guo Z. Excessive iron inhibits insulin secretion via perturbing transcriptional regulation of SYT7 by OGG1. Cell Mol Life Sci 2023; 80:159. [PMID: 37209177 PMCID: PMC11072990 DOI: 10.1007/s00018-023-04802-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
Although iron overload is closely related to the occurrence of type 2 diabetes mellitus (T2DM), the specific mechanism is unclear. Here, we found that excessive iron inhibited the secretion of insulin (INS) and impaired islet β cell function through downregulating Synaptotagmin 7 (SYT7) in iron overload model in vivo and in vitro. Our results further demonstrated that 8-oxoguanine DNA glycosylase (OGG1), a key protein in the DNA base excision repair, was an upstream regulator of SYT7. Interestingly, such regulation could be suppressed by excessive iron. Ogg1-null mice, iron overload mice and db/db mice exhibit reduced INS secretion, weakened β cell function and subsequently impaired glucose tolerance. Notably, SYT7 overexpression could rescue these phenotypes. Our data revealed an intrinsic mechanism by which excessive iron inhibits INS secretion through perturbing the transcriptional regulation of SYT7 by OGG1, which suggested that SYT7 was a potential target in clinical therapy for T2DM.
Collapse
Affiliation(s)
- Xingqi Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Ying Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Munan Shi
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Miaoling Huang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Jingyu Xin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Shusheng Ci
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Meimei Chen
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China
| | - Tao Jiang
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China.
| |
Collapse
|
26
|
Ma YL, Ke JF, Wang JW, Wang YJ, Xu MR, Li LX. Blood lactate levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease in type 2 diabetes: a real-world study. Front Endocrinol (Lausanne) 2023; 14:1133991. [PMID: 37223022 PMCID: PMC10200915 DOI: 10.3389/fendo.2023.1133991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
AIM To investigate the association between blood lactate levels and metabolic dysfunction-associated fatty liver disease (MAFLD) in type 2 diabetes mellitus (T2DM). METHODS 4628 Chinese T2DM patients were divided into quartiles according to blood lactate levels in this real-world study. Abdominal ultrasonography was used to diagnosis MAFLD. The associations of blood lactate levels and quartiles with MAFLD were analyzed by logistic regression. RESULTS There were a significantly increased trend in both MAFLD prevalence (28.9%, 36.5%, 43.5%, and 54.7%) and HOMA2-IR value (1.31(0.80-2.03), 1.44(0.87-2.20), 1.59(0.99-2.36), 1.82(1.15-2.59)) across the blood lactate quartiles in T2DM patients after adjustment for age, sex, diabetic duration, and metformin use (all p<0.001 for trend). After correcting for other confounding factors, not only increased blood lactate levels were obviously associated with MAFLD presence in the patients with (OR=1.378, 95%CI: 1.210-1.569, p<0.001) and without taking metformin (OR=1.181, 95%CI: 1.010-1.381, p=0.037), but also blood lactate quartiles were independently correlated to the increased risk of MAFLD in T2DM patients (p<0.001 for trend). Compared with the subjects in the lowest blood lactate quartiles, the risk of MAFLD increased to 1.436-, 1.473-, and 2.055-fold, respectively, in those from the second to the highest lactate quartiles. CONCLUSIONS The blood lactate levels in T2DM subjects were independently associated with an increased risk of MAFLD, which was not affected by metformin-taking and might closely related to insulin resistance. Blood lactate levels might be used as a practical indicator for assessing the risk of MAFLD in T2DM patients.
Collapse
Affiliation(s)
- Yi-Lin Ma
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Jiang-Feng Ke
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jun-Wei Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Yu-Jie Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Man-Rong Xu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Lian-Xi Li
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| |
Collapse
|
27
|
Asero C, Giandalia A, Cacciola I, Morace C, Lorello G, Caspanello AR, Alibrandi A, Squadrito G, Russo GT. High Prevalence of Severe Hepatic Fibrosis in Type 2 Diabetic Outpatients Screened for Non-Alcoholic Fatty Liver Disease. J Clin Med 2023; 12:jcm12082858. [PMID: 37109195 PMCID: PMC10146119 DOI: 10.3390/jcm12082858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a highly frequent condition in patients with type 2 diabetes (T2D), but the identification of subjects at higher risk of developing the more severe forms remains elusive in clinical practice. The aim of this study was to evaluate the occurrence and severity of liver fibrosis and its predictive factors in T2D outpatients without a known history of chronic liver disease by using recommended non-invasive methods. METHODS Consecutive T2D outpatients underwent a set of measurements of clinical and laboratory parameters, FIB-4 score (Fibrosis-4 index), and liver stiffness with controlled attenuation-parameter (CAP) performed by transient elastography (FibroScan) after excluding previous causes of liver disease. RESULTS Among the 205 T2D outpatients enrolled in the study (median age: 64 years, diabetes duration: 11 years, HbA1c: 7.4%, and BMI: 29.6 kg/m2), 54% had high ALT and/or AST levels, 15.6% had liver stiffness value > 10.1 kPa (severe fibrosis), 55.1% had CAP values > 290 dB/m (severe steatosis), and FIB-4 score was >2 in 11.2% of subjects (>2.67 in 15 subjects). Moreover, 49 (23.9%) T2D patients had clinically meaningful liver harm, with either a FIB-4 score > 2 and/or FibroScan > 10.1 kPa. At regression analysis, BMI, HbA1c, creatinine, and triglycerides values were independent predictors of liver fibrosis. CONCLUSIONS Liver fibrosis is a frequent finding in T2D outpatients without a known history of liver disease, especially in those with obesity, hypertriglyceridemia, worse glycemic control, and high creatinine levels.
Collapse
Affiliation(s)
- Clelia Asero
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
- Medicine and Hepatology Unit, University Hospital of Messina, 98124 Messina, Italy
| | - Annalisa Giandalia
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
- Internal Medicine and Diabetology Unit, University Hospital of Messina, 98124 Messina, Italy
| | - Irene Cacciola
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
- Medicine and Hepatology Unit, University Hospital of Messina, 98124 Messina, Italy
| | - Carmela Morace
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| | - Giuseppe Lorello
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| | - Amalia Rita Caspanello
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
- Medicine and Hepatology Unit, University Hospital of Messina, 98124 Messina, Italy
| | - Angela Alibrandi
- Unit of Statistical and Mathematical Sciences, Department of Economics, University of Messina, 98122 Messina, Italy
| | - Giovanni Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
- Internal Medicine Unit, University Hospital of Messina, 98124 Messina, Italy
| | - Giuseppina T Russo
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
- Internal Medicine and Diabetology Unit, University Hospital of Messina, 98124 Messina, Italy
| |
Collapse
|
28
|
Zhao Y, Zhao W, Bu H, Toshiyoshi M, Zhao Y. Liraglutide on type 2 diabetes mellitus with nonalcoholic fatty liver disease: A systematic review and meta-analysis of 16 RCTs. Medicine (Baltimore) 2023; 102:e32892. [PMID: 36820578 PMCID: PMC9907937 DOI: 10.1097/md.0000000000032892] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a common comorbidity of type 2 diabetes mellitus (T2DM). Our aim is to investigate the effects of liraglutide on T2DM with NAFLD. METHODS Relevant articles published from the earliest publication to March 2022 were selected from several databases. The Cochrane Collaboration's RevMan software was used for the analysis. RESULTS Sixteen studies are selected for this meta-analysis, which includes totally 634 patients in the treatment group and 630 patients in the control group. As a result, 14 studies show that fasting plasma glucose levels of the experimental group are lower than that of the control group; 15 studies show that glycosylated hemoglobin A1c levels of the experimental group are lower than that of the control group; 13 studies show that triglyceride levels of the experimental group are lower than that of the control group; twelve studies show that total cholesterol levels of the experimental group are lower than that of the control group; 10 studies show that alanine aminotransferase levels of the experimental group is lower than that of the control group; 10 studies show that no significant difference in changes in aspartate transaminase between 2 groups; 13 studies show that low density lipoprotein cholesterol levels of the experimental group is lower than that of the control group; 9 studies show that no significant difference in changes in high density lipoprotein cholesterol between 2 groups; 7 studies mentioned adverse effects and the difference is significant. CONCLUSION Liraglutide is potentially curative for T2DM with NAFLD.
Collapse
Affiliation(s)
- Yan Zhao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenli Zhao
- Department of Public Health, International College, Krirk University, Bangkok, Thailand
- Liver Center, Saga University Hospital, Saga University, Saga, Japan
| | - Huaien Bu
- School of Health Science and Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Maeda Toshiyoshi
- International Education College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ye Zhao
- Department of Public Health, International College, Krirk University, Bangkok, Thailand
- * Correspondence: Ye Zhao, Department of Public Health, International College, Krirk University, Bangkok 10220, Thailand (e-mail: )
| |
Collapse
|
29
|
Muacevic A, Adler JR, Ahsan Talpur F, Lal B, Kumari A, Kivan H, Anirudh Chunchu V, Hirani S. Effect of Vitamin E on Clinical Outcomes in Patients With Non-alcoholic Fatty Liver Disease: A Meta-Analysis. Cureus 2022; 14:e32764. [PMID: 36686141 PMCID: PMC9853086 DOI: 10.7759/cureus.32764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of the current meta-analysis was to assess the effects of vitamin E on clinical outcomes in individuals with non-alcoholic fatty liver disease (NAFLD). The current meta-analysis was planned, reported, and conducted per the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Two authors systematically searched for all papers using PubMed, Cochrane Central Register, and Embase from inception to October 15, 2022. Outcomes assessed in the current meta-analysis included changes in alanine transaminase (ALT) and aspartate transaminase (AST) from baseline in IU/L. Other outcomes included a change in BMI (kg/cm2), a change in total cholesterol level from baseline (mg/l), and a fibrosis score. Total articles were included in the current meta-analysis, enrolling 569 patients (274 patients in the vitamin E group and 295 in the placebo group). The study found that reduction in ALT levels, AST levels, and BMI was significantly greater in patients in the vitamin E group compared to the placebo group. However, no significant differences were reported in terms of change in fibrosis score and total cholesterol.
Collapse
|
30
|
Roy B, Runa SA. SARS-CoV-2 infection and diabetes: Pathophysiological mechanism of multi-system organ failure. World J Virol 2022; 11:252-274. [PMID: 36188734 PMCID: PMC9523319 DOI: 10.5501/wjv.v11.i5.252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023] Open
Abstract
Since the discovery of the coronavirus disease 2019 outbreak, a vast majority of studies have been carried out that confirmed the worst outcome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in people with preexisting health conditions, including diabetes, obesity, hypertension, cancer, and cardiovascular diseases. Likewise, diabetes itself is one of the leading causes of global public health concerns that impose a heavy global burden on public health as well as socio-economic development. Both diabetes and SARS-CoV-2 infection have their independent ability to induce the pathogenesis and severity of multi-system organ failure, while the co-existence of these two culprits can accelerate the rate of disease progression and magnify the severity of the disease. However, the exact pathophysiology of multi-system organ failure in diabetic patients after SARS-CoV-2 infection is still obscure. This review summarized the organ-specific possible molecular mechanisms of SARS-CoV-2 and diabetes-induced pathophysiology of several diseases of multiple organs, including the lungs, heart, kidneys, brain, eyes, gastrointestinal system, and bones, and sub-sequent manifestation of multi-system organ failure.
Collapse
Affiliation(s)
- Bipradas Roy
- Department of Physiology, Wayne State University, Detroit, MI 48201, United States
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, United States
| | - Sadia Afrin Runa
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
31
|
Trifan A, Stratina E, Nastasa R, Rotaru A, Stafie R, Zenovia S, Huiban L, Sfarti C, Cojocariu C, Cuciureanu T, Muzica C, Chiriac S, Girleanu I, Singeap AM, Stanciu C. Simultaneously Screening for Liver Steatosis and Fibrosis in Romanian Type 2 Diabetes Mellitus Patients Using Vibration-Controlled Transient Elastography with Controlled Attenuation Parameter. Diagnostics (Basel) 2022; 12:diagnostics12071753. [PMID: 35885657 PMCID: PMC9322355 DOI: 10.3390/diagnostics12071753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 12/19/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common finding among patients with type 2 diabetes mellitus (T2DM). Between NAFLD and T2DM exist a bidirectional relationship. Patients with T2DM are at high risk for NAFLD, and evidence suggests that T2DM is linked to progressive NAFLD and poor liver outcomes. NAFLD promotes the development of T2DM and leads to a substantial increase in the risk of T2DM complications. This study aimed to assess the prevalence of liver steatosis and fibrosis in patients with T2DM from north-eastern Romania by using Vibration-Controlled Transient Elastography (VCTE) with Controlled Attenuation Parameter (CAP), which is a non-invasive method and can assess simultaneously liver steatosis and fibrosis. In total, 424 consecutive patients with T2DM were enrolled and evaluated using VCTE with CAP from January 2020 to January 2022. Clinical and laboratory data were recorded in all patients. For the CAP score, we used the following cut-offs: mild steatosis (S1)—274 dB/m, moderate steatosis (S2)—290 dB/m, and severe steatosis (S3)—302 dB/m. For liver fibrosis, to differentiate between fibrosis stages, the cut-off values were F ≥ 8.2 kPa for significant fibrosis (F2), F ≥ 9.7 kPa for advanced fibrosis (F3), and F ≥ 13.6 kPa for cirrhosis (F4). In total, 380 diabetic patients (72.6%) had liver steatosis (51.3% females, the mean age of 55.22 ± 10.88 years, mean body mass index (BMI) 29.12 ± 5.64 kg/m2). Among them, 26 (8.4%) patients had moderate liver steatosis (S2) and 242 (78.5%) patients had severe hepatic steatosis (S3). According to VCTE measurements, 176 (57.14%) patients had liver fibrosis, 36 (11.7%) of them had advanced fibrosis (F3), and 42 (13.6%) diabetic patients had cirrhosis (F4). Univariate analyses showed that severe steatosis was significantly associated with ferritin (β = 0.223, p = 0.022), total cholesterol (β = 0.159, p = 0.031), and HDL-cholesterol (β = −0.120, p = 0.006). In multivariate analyses, BMI (β = 0.349, p < 0.001), fasting plasma glucose (β = 0.211, p = 0.006), and triglycerides (β = 0.132, p = 0.044) were predictors of S3. Patients with T2DM have a high prevalence of severe steatosis and advanced fibrosis which can lead to the development and progression of complications with high morbidity and mortality rates. Hence, it is necessary to implement screening strategies to prevent advanced liver disease in patients with T2DM.
Collapse
Affiliation(s)
- Anca Trifan
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.T.); (A.R.); (R.S.); (S.Z.); (L.H.); (C.S.); (C.C.); (T.C.); (C.M.); (S.C.); (I.G.); (A.-M.S.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency Hospital, 700111 Iasi, Romania
| | - Ermina Stratina
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.T.); (A.R.); (R.S.); (S.Z.); (L.H.); (C.S.); (C.C.); (T.C.); (C.M.); (S.C.); (I.G.); (A.-M.S.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency Hospital, 700111 Iasi, Romania
- Correspondence: (E.S.); (R.N.)
| | - Robert Nastasa
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.T.); (A.R.); (R.S.); (S.Z.); (L.H.); (C.S.); (C.C.); (T.C.); (C.M.); (S.C.); (I.G.); (A.-M.S.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency Hospital, 700111 Iasi, Romania
- Correspondence: (E.S.); (R.N.)
| | - Adrian Rotaru
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.T.); (A.R.); (R.S.); (S.Z.); (L.H.); (C.S.); (C.C.); (T.C.); (C.M.); (S.C.); (I.G.); (A.-M.S.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency Hospital, 700111 Iasi, Romania
| | - Remus Stafie
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.T.); (A.R.); (R.S.); (S.Z.); (L.H.); (C.S.); (C.C.); (T.C.); (C.M.); (S.C.); (I.G.); (A.-M.S.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency Hospital, 700111 Iasi, Romania
| | - Sebastian Zenovia
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.T.); (A.R.); (R.S.); (S.Z.); (L.H.); (C.S.); (C.C.); (T.C.); (C.M.); (S.C.); (I.G.); (A.-M.S.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency Hospital, 700111 Iasi, Romania
| | - Laura Huiban
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.T.); (A.R.); (R.S.); (S.Z.); (L.H.); (C.S.); (C.C.); (T.C.); (C.M.); (S.C.); (I.G.); (A.-M.S.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency Hospital, 700111 Iasi, Romania
| | - Catalin Sfarti
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.T.); (A.R.); (R.S.); (S.Z.); (L.H.); (C.S.); (C.C.); (T.C.); (C.M.); (S.C.); (I.G.); (A.-M.S.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency Hospital, 700111 Iasi, Romania
| | - Camelia Cojocariu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.T.); (A.R.); (R.S.); (S.Z.); (L.H.); (C.S.); (C.C.); (T.C.); (C.M.); (S.C.); (I.G.); (A.-M.S.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency Hospital, 700111 Iasi, Romania
| | - Tudor Cuciureanu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.T.); (A.R.); (R.S.); (S.Z.); (L.H.); (C.S.); (C.C.); (T.C.); (C.M.); (S.C.); (I.G.); (A.-M.S.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency Hospital, 700111 Iasi, Romania
| | - Cristina Muzica
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.T.); (A.R.); (R.S.); (S.Z.); (L.H.); (C.S.); (C.C.); (T.C.); (C.M.); (S.C.); (I.G.); (A.-M.S.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency Hospital, 700111 Iasi, Romania
| | - Stefan Chiriac
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.T.); (A.R.); (R.S.); (S.Z.); (L.H.); (C.S.); (C.C.); (T.C.); (C.M.); (S.C.); (I.G.); (A.-M.S.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency Hospital, 700111 Iasi, Romania
| | - Irina Girleanu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.T.); (A.R.); (R.S.); (S.Z.); (L.H.); (C.S.); (C.C.); (T.C.); (C.M.); (S.C.); (I.G.); (A.-M.S.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency Hospital, 700111 Iasi, Romania
| | - Ana-Maria Singeap
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.T.); (A.R.); (R.S.); (S.Z.); (L.H.); (C.S.); (C.C.); (T.C.); (C.M.); (S.C.); (I.G.); (A.-M.S.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency Hospital, 700111 Iasi, Romania
| | - Carol Stanciu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.T.); (A.R.); (R.S.); (S.Z.); (L.H.); (C.S.); (C.C.); (T.C.); (C.M.); (S.C.); (I.G.); (A.-M.S.); (C.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency Hospital, 700111 Iasi, Romania
| |
Collapse
|
32
|
Monserrat-Mesquida M, Quetglas-Llabrés M, Bouzas C, Montemayor S, Mascaró CM, Casares M, Llompart I, Gámez JM, Tejada S, Martínez JA, Tur JA, Sureda A. A Greater Improvement of Intrahepatic Fat Contents after 6 Months of Lifestyle Intervention Is Related to a Better Oxidative Stress and Inflammatory Status in Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2022; 11:1266. [PMID: 35883758 PMCID: PMC9311979 DOI: 10.3390/antiox11071266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a disorder characterized by the excessive accumulation of lipids in the liver parenchyma. To date, there is no effective pharmacological treatment against NAFLD. Objective: To assess the relationship between the improvement of the intrahepatic fat content (IFC) in patients with NAFLD and metabolic syndrome and biomarkers of oxidative stress and inflammation after 6 months of lifestyle intervention. Patients diagnosed with NAFLD (n = 60 adults; 40-60 years old) residing in the Balearic Islands, Spain, were distributed in tertiles attending the improvement of IFC calculated by magnetic resonance imaging (MRI). Anthropometrics, blood pressure, maximal oxygen uptake, and pro/antioxidant and inflammatory biomarkers were determined in plasma before and after the lifestyle intervention. The improvement in IFC levels was higher in tertile 3 with respect to tertiles 2 and 1. The greatest improvement in IFC is related to cardiorespiratory fitness and adherence to the Mediterranean diet (ADM). Higher reductions in weight, body mass index (BMI), and alanine aminotransferase (ALT) were observed in tertile 3 with respect to tertile 1 after 6 months of intervention. The improvement in catalase, irisin, and cytokeratin 18 plasma levels were higher in tertile 3, whereas no differences were observed in superoxide dismutase activity. Malondialdehyde and protein carbonyl levels, as biomarkers of oxidative damage, remained unchanged in all groups. The present data show that the reduction of IFC is associated with an improvement in pro/antioxidant and pro-inflammatory status and a better cardiorespiratory fitness in NAFLD patients.
Collapse
Affiliation(s)
- Margalida Monserrat-Mesquida
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma de Mallorca, Spain; (M.M.-M.); (M.Q.-L.); (C.B.); (S.M.); (C.M.M.); (I.L.); (J.M.G.); (S.T.); (A.S.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Magdalena Quetglas-Llabrés
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma de Mallorca, Spain; (M.M.-M.); (M.Q.-L.); (C.B.); (S.M.); (C.M.M.); (I.L.); (J.M.G.); (S.T.); (A.S.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Cristina Bouzas
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma de Mallorca, Spain; (M.M.-M.); (M.Q.-L.); (C.B.); (S.M.); (C.M.M.); (I.L.); (J.M.G.); (S.T.); (A.S.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Sofía Montemayor
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma de Mallorca, Spain; (M.M.-M.); (M.Q.-L.); (C.B.); (S.M.); (C.M.M.); (I.L.); (J.M.G.); (S.T.); (A.S.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Catalina M. Mascaró
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma de Mallorca, Spain; (M.M.-M.); (M.Q.-L.); (C.B.); (S.M.); (C.M.M.); (I.L.); (J.M.G.); (S.T.); (A.S.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Miguel Casares
- Radiodiagnosis Service, Red Asistencial Juaneda, 07011 Palma de Mallorca, Spain;
| | - Isabel Llompart
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma de Mallorca, Spain; (M.M.-M.); (M.Q.-L.); (C.B.); (S.M.); (C.M.M.); (I.L.); (J.M.G.); (S.T.); (A.S.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Clinical Analysis Service, University Hospital Son Espases, 07198 Palma de Mallorca, Spain
| | - José M. Gámez
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma de Mallorca, Spain; (M.M.-M.); (M.Q.-L.); (C.B.); (S.M.); (C.M.M.); (I.L.); (J.M.G.); (S.T.); (A.S.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- Cardiology Service, University Hospital Son Llàtzer, 07010 Palma de Mallorca, Spain
| | - Silvia Tejada
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma de Mallorca, Spain; (M.M.-M.); (M.Q.-L.); (C.B.); (S.M.); (C.M.M.); (I.L.); (J.M.G.); (S.T.); (A.S.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - J. Alfredo Martínez
- Cardiometabolics Precision Nutrition Program, Instituto Madrileño de Estudios Avanzados de la Alimentación (IMDEA Food-CEI UAM-CSIC), 28049 Madrid, Spain;
| | - Josep A. Tur
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma de Mallorca, Spain; (M.M.-M.); (M.Q.-L.); (C.B.); (S.M.); (C.M.M.); (I.L.); (J.M.G.); (S.T.); (A.S.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma de Mallorca, Spain; (M.M.-M.); (M.Q.-L.); (C.B.); (S.M.); (C.M.M.); (I.L.); (J.M.G.); (S.T.); (A.S.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
33
|
Pozzan R, Pena RG, Palma CCSSV, de Carvalho Abi-Abib R, Terra C, Cobas RA. Risk factors associated with nonalcoholic fatty liver disease evaluated by elastography in patients with type 2 diabetes. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:452-458. [PMID: 35657127 PMCID: PMC10697651 DOI: 10.20945/2359-3997000000492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
Objective There is controversy about the indication for nonalcoholic fatty liver disease (NAFLD) screening in patients with type 2 diabetes mellitus (T2D). The present study aims to contribute to NAFLD surveillance in patients with T2D, assessing the association of clinical and biological variables with hepatic stiffness and steatosis. Subjects and methods A cross-sectional design was used, with data collection from electronic medical records, including adults with T2D who underwent transient elastography (TE) between June 2018 and December 2019. Liver stiffness and steatosis were evaluated using TE and controlled attenuation parameter (CAP), respectively, with cutoff points > 8 kpa for increased stiffness and > 275 dBm for steatosis. The relationship between clinical variables and elastography results were evaluated by bivariate correlation and multivariate analysis, using SPSS 27. Seventy-nine patients (n = 79) met the inclusion and exclusion criteria. Results Advanced fibrosis and hepatic steatosis were detected in 17,7% and in 21,5% of the patients, respectively. There was a direct and significant correlation between CAP and BMI, waist circumference, HbA1c, triglycerides levels, and insulin doses and an inverse correlation with HDL. The waist circumference, low levels of HDL cholesterol and the insulin dose maintained a significant association with CAP values in multivariate analysis. Elastography values showed an inverse correlation with HDL and a direct correlation with BMI and insulin dose. The association was only maintained for the insulin dose in multivariate analysis. Conclusion Our results suggest that clinical factors such as insulin dose, waist circumference, and HDL cholesterol levels could identify T2D patients more likely to present NAFLD.
Collapse
Affiliation(s)
- Roselee Pozzan
- Disciplina de Diabetes/Serviço de Diabetes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Ronaldo Gama Pena
- Disciplina de Diabetes/Serviço de Diabetes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | - Raquel de Carvalho Abi-Abib
- Disciplina de Diabetes/Serviço de Diabetes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil,
| | - Carlos Terra
- Divisão de Gastroenterologia - Unidade de Fígado, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Roberta Arnoldi Cobas
- Disciplina de Diabetes/Serviço de Diabetes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
34
|
Park J, Kwon HJ, Sohn W, Cho JY, Park SJ, Chang Y, Ryu S, Kim BI, Cho YK. Risk of liver fibrosis in patients with prediabetes and diabetes mellitus. PLoS One 2022; 17:e0269070. [PMID: 35653399 PMCID: PMC9162349 DOI: 10.1371/journal.pone.0269070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to assess the risk of liver fibrosis in those with no glucose intolerance, prediabetes, or diabetes. A cross-sectional study was conducted based on a cohort from a health examination program which included a magnetic resonance elastography (MRE). Participants were classified into three groups according to glucose tolerance: no glucose intolerance, prediabetes, and diabetes mellitus. Liver fibrosis was evaluated by liver stiffness measurement (LSM) value using two-dimensional real-time MRE. The risk of significant liver fibrosis was compared among three groups. A total of 2,090 subjects were included: no glucose intolerance (n = 889); prediabetes (n = 985); and diabetes (n = 216). Mean values of LSM in those with no glucose intolerance, prediabetes, and diabetes were 2.37 ± 0.43 kPa, 2.41 ± 0.34 kPa, and 2.65 ± 0.70 kPa, respectively (p<0.001). Proportions of significant fibrosis (LSM ≥2.97 kPa) in no glucose intolerance, prediabetes, and diabetes groups were 3.1%, 4.4%, and 16.7%, respectively (p<0.001). Compared with those with no glucose intolerance, those with diabetes had higher risk of significant fibrosis (adjusted odds ratio [aOR]: 3.02, 95% confidence interval [CI]: 1.57–5.81, p<0.001). However, there was no difference between prediabetes and no glucose intolerance (aOR: 1.05, 95% CI: 0.59–1.86, p = 0.876). A subgroup analysis also showed that prediabetes, unlike diabetes, was not associated with significant fibrosis in subjects with or without liver disease. Diabetes, but not prediabetes, is a risk factor for significant liver fibrosis. This finding is consistent regarldess of the pressence of liver disease.
Collapse
Affiliation(s)
- Jongsin Park
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Heon-Ju Kwon
- Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won Sohn
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- * E-mail:
| | - Ju-Yeon Cho
- Department of Internal Medicine, Chosun University Hospital, Gwang-Ju, Republic of Korea
| | - Soo Jin Park
- Department of Surgery, Wonkwang University Sanbon Hospital, Gunpo, Korea
| | - Yoosoo Chang
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Seungho Ryu
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Byung Ik Kim
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong Kyun Cho
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
35
|
Yang Y, Cai J, Yang X, Wang K, Sun K, Yang Z, Zhang L, Yang L, Gu C, Huang X, Wang Z, Zhu X. Dysregulated m6A modification promotes lipogenesis and development of non-alcoholic fatty liver disease and hepatocellular carcinoma. Mol Ther 2022; 30:2342-2353. [PMID: 35192934 PMCID: PMC9171149 DOI: 10.1016/j.ymthe.2022.02.021] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/30/2021] [Accepted: 02/17/2022] [Indexed: 11/23/2022] Open
Abstract
Type 2 diabetes mellitus (DM2) is associated closely with non-alcoholic fatty liver disease (NAFLD) by affecting lipid metabolism, which may lead to non-alcoholic steatohepatitis (NASH), fibrosis, and hepatocellular carcinoma (HCC). N6-methyladenosine (m6A) RNA methylation is an important epigenetic regulation for gene expression and is related to HCC development. We developed a new NAFLD model oriented from DM2 mouse, which spontaneously progressed to histological features of NASH, fibrosis, and HCC with high incidence. By RNA sequencing, protein expression and methylated RNA immunoprecipitation (MeRIP)-qPCR analysis, we found that enhanced expression of ACLY and SCD1 in this NAFLD model and human HCC samples was due to excessive m6A modification, but not elevation of mature SREBP1. Moreover, targeting METTL3/14 in vitro increases protein level of ACLY and SCD1 as well as triglyceride and cholesterol production and accumulation of lipid droplets. m6A sequencing analysis revealed that overexpressed METTL14 binds to mRNA of ACLY and SCD1 and alters their expression pattern. Our findings demonstrate a new NAFLD mouse model that provides a study platform for DM2-related NAFLD and reveals a unique epitranscriptional regulating mechanism for lipid metabolism via m6A-modified protein expression of ACLY and SCD1.
Collapse
Affiliation(s)
- Yeming Yang
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Jingshu Cai
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Xue Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Kaifang Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Kuanxiang Sun
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Zhenglin Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Lin Zhang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Lu Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Chun Gu
- Department of Hepatobiliary & Pancreatic Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Department of Hepatobiliary & Pancreatic Center, Chinese Academy of Medical Sciences and Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan 610072, China
| | - Xiang Huang
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| | - Ziyan Wang
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.
| | - Xianjun Zhu
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072 China; Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, China.
| |
Collapse
|
36
|
Wen H, Deng H, Yang L, Li L, Lin J, Zheng P, Ji G. Vitamin E for people with non-alcoholic fatty liver disease. Cochrane Database Syst Rev 2022. [DOI: 10.1002/14651858.cd015033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hongzhu Wen
- Department of Gastroenterology; Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Hongyong Deng
- EBM Center of TCM; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Lili Yang
- Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Lujin Li
- Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Jiang Lin
- Department of Gastroenterology; Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Peiyong Zheng
- Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Guang Ji
- Shanghai University of Traditional Chinese Medicine; Shanghai China
| |
Collapse
|
37
|
Zhou H, Zeng X, Xue Y, Wang X, Liu S, Zhu Z, Luo Z, Ma Z, Zhang H, Zhan Q, Bai Y, Huang X, Zeng Q, Ren H, Xu D. Visit-to-Visit Fasting Glucose Variability in Young Adulthood and Nonalcoholic Fatty Liver Disease in Middle Age. J Clin Endocrinol Metab 2022; 107:e2301-e2308. [PMID: 35244697 PMCID: PMC9272423 DOI: 10.1210/clinem/dgac122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Diabetes has a bidirectional association with nonalcoholic fatty liver disease (NAFLD) and increases the risk of cirrhosis and related complications. OBJECTIVE To investigate the association between visit-to-visit fasting glucose (FG) variability in early adulthood and NAFLD in middle age. METHODS This prospective cohort study included 2467 Black and White adults aged 18 to 30 years at baseline (1985-1986) who were followed over 25 years in the Coronary Artery Risk Development in Young Adults Study. FG variability measures included coefficient of variation about the mean FG (CV-FG), the SD of FG (SD-FG), and the average real variability of FG (ARV-FG) across 25 years (year 0, 7, 10, 15, 20, and 25 examinations). NAFLD was defined as liver attenuation ≤ 40 Hounsfield units on computed tomography scan at year 25 examination after excluding other causes of hepatic steatosis. RESULTS Of the 2467 participants, 241 (9.8%) had NAFLD at year 25. In multivariate analysis, the odds ratio for NAFLD was 2.80 (95% CI, 1.69-4.64; P trend < 0.001) for the fourth quartile vs first quartile of CV-FG after adjusting for confounding variables, including mean FG. Similar results were observed for SD-FG and ARV-FG. CONCLUSION Greater visit-to-visit FG variability in early adulthood was associated with higher risk of NAFLD in middle age independent of mean FG level. FG variability may help identify individuals at high risk for NAFLD.
Collapse
Affiliation(s)
- Haobin Zhou
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xianghui Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuting Xue
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiao Wang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shenrong Liu
- Department of Cardiac Pediatrics, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences/Guangdong General Hospital, Guangzhou, 510080, China
| | - Zongyuan Zhu
- Department of Huiqiao Building, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zichao Luo
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhuang Ma
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hao Zhang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiong Zhan
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yujia Bai
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xingfu Huang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hao Ren
- Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
38
|
Nwakiban Atchan A, Shivashankara ST, Piazza S, Tchamgoue AD, Beretta G, Dell’Agli M, Magni P, Agbor GA, Kuiaté JR, Manjappara UV. Polyphenol-Rich Extracts of Xylopia and Aframomum Species Show Metabolic Benefits by Lowering Hepatic Lipid Accumulation in Diet-Induced Obese Mice. ACS OMEGA 2022; 7:11914-11928. [PMID: 35449947 PMCID: PMC9016817 DOI: 10.1021/acsomega.2c00050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Metabolic syndrome is a complex condition associated with a series of pathologies featuring glucose intolerance, diabetes, high blood pressure, dyslipidemia, microalbuminuria, overweight, and obesity. It is also related to nonalcoholic fatty liver disease (NAFLD), recognized as the most familiar cause of chronic liver disease worldwide. The overall prevalence of metabolic syndrome and, consequently, the one of NAFLD is constantly increasing worldwide. The initial management of these diseases involves lifestyle modifications, including changes in diet and physical exercise. In addition to conventional drugs like orlistat, botanicals are traditionally used to counteract these disorders, and some of them are currently under evaluation. The present work evaluated the in vivo beneficial effects of hydroalcoholic extracts of two Cameroonian spices, focusing on obesity-related hepatic lipid injury in high-fat-fed C57BL/6 mice. Hydroethanolic extracts were prepared and characterized by reverse phase-high-performance liquid chromatography (HPLC)-photodiode array detection and ultra performance liquid chromatography-triple time-of-flight electrospray ionization tandem mass spectroscopy (TOF-ESI-MS/MS) analysis. Plant extracts were orally administered for 30 days at different dose levels (100 and 200 mg kg-1 body weight (BW)) to obese C57BL/6 mice. Food intake (FI) and BW were recorded daily. Plasma biochemical parameters and lipid content were estimated at the beginning and at the end of the experiment. Liver tissues were subjected to histological examinations, lipid content, as well as oxidative stress markers, and FAME (fatty acid methyl esters) were estimated. Oral administration of extracts at 200 mg kg-1 BW significantly reduced FI and prevented BW gain. A decrease in the weight of the liver and a decrease in the hepatic and plasma lipid content were observed. Plasma enzyme (serum glutamic-oxaloacetic transaminase, SGOT; serum glutamic pyruvic transaminase, SGPT; alkaline phosphatase, ALP) activities were not indicative of any organ damage. Chemical analysis suggested that phenolic acids (4-caffeoylquinic acid, p-coumaric acid 4-O-glucoside, 5-caffeoylshikimic acid, caffeic acid hexose, and 4-O-methyl gallic acid) and flavonoids (morusin derivatives, naringenin-7-O-glucoside, and homoisoflavanone) identified in the extracts could potentially justify the biological properties observed. The main findings of this study showed that Xylopia parviflora (A. Rich.) Benth and Aframomum citratum (Pereira ex Oliv. et Hanb.) K. Shum decreased hepatic lipid accumulation in high-fat-diet (HFD)-induced obese C57BL/6 mice and confirmed, at least in part, our previous in vitro and ex vivo studies. The molecular mechanisms underlying these effects are still unclear and will be explored in the future.
Collapse
Affiliation(s)
| | - Shilpa Talkad Shivashankara
- Department
of Lipid Science, CSIR-Central Food Technological
Research Institute (CFTRI), Mysore 570 020, India
| | - Stefano Piazza
- Department
of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan 20133, Italy
| | - Armelle Deutou Tchamgoue
- Centre
for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants
Studies, P.O. Box 13033, Yaoundé 13033, Cameroon
| | - Giangiacomo Beretta
- Department
of Environmental Science and Policy, Università
degli Studi di Milano, Milan 20133, Italy
| | - Mario Dell’Agli
- Department
of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan 20133, Italy
| | - Paolo Magni
- Department
of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan 20133, Italy
- IRCCS MultiMedica,
Sesto San Giovanni, Via
Milanese, 300, Sesto San Giovanni, Milan 20099, Italy
| | - Gabriel Agbor Agbor
- Centre
for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants
Studies, P.O. Box 13033, Yaoundé 13033, Cameroon
| | - Jules-Roger Kuiaté
- Department
of Biochemistry, Faculty of Science, University
of Dschang, P.O. Box 96, Dschang 67, Cameroon
| | | |
Collapse
|
39
|
The Coexistence of Nonalcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus. J Clin Med 2022; 11:jcm11051375. [PMID: 35268466 PMCID: PMC8910939 DOI: 10.3390/jcm11051375] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
The incidence of nonalcoholic fatty liver disease (NAFLD) is growing worldwide. Epidemiological data suggest a strong relationship between NAFLD and T2DM. This is associated with common risk factors and pathogenesis, where obesity, insulin resistance and dyslipidemia play pivotal roles. Expanding knowledge on the coexistence of NAFLD and T2DM could not only protect against liver damage and glucotoxicity, but may also theoretically prevent the subsequent occurrence of other diseases, such as cancer and cardiovascular disorders, as well as influence morbidity and mortality rates. In everyday clinical practice, underestimation of this problem is still observed. NAFLD is not looked for in T2DM patients; on the contrary, diagnosis for glucose metabolism disturbances is usually not performed in patients with NAFLD. However, simple and cost-effective methods of detection of fatty liver in T2DM patients are still needed, especially in outpatient settings. The treatment of NAFLD, especially where it coexists with T2DM, consists mainly of lifestyle modification. It is also suggested that some drugs, including hypoglycemic agents, may be used to treat NAFLD. Therefore, the aim of this review is to detail current knowledge of NAFLD and T2DM comorbidity, its prevalence, common pathogenesis, diagnostic procedures, complications and treatment, with special attention to outpatient clinics.
Collapse
|
40
|
Karkucinska-Wieckowska A, Simoes ICM, Kalinowski P, Lebiedzinska-Arciszewska M, Zieniewicz K, Milkiewicz P, Górska-Ponikowska M, Pinton P, Malik AN, Krawczyk M, Oliveira PJ, Wieckowski MR. Mitochondria, oxidative stress and nonalcoholic fatty liver disease: A complex relationship. Eur J Clin Invest 2022; 52:e13622. [PMID: 34050922 DOI: 10.1111/eci.13622] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023]
Abstract
According to the 'multiple-hit' hypothesis, several factors can act simultaneously in nonalcoholic fatty liver disease (NAFLD) progression. Increased nitro-oxidative (nitroso-oxidative) stress may be considered one of the main contributors involved in the development and risk of NAFLD progression to nonalcoholic steatohepatitis (NASH) characterized by inflammation and fibrosis. Moreover, it has been repeatedly postulated that mitochondrial abnormalities are closely related to the development and progression of liver steatosis and NAFLD pathogenesis. However, it is difficult to determine with certainty whether mitochondrial dysfunction or oxidative stress are primary events or a simple consequence of NAFLD development. On the one hand, increasing lipid accumulation in hepatocytes could cause a wide range of effects from mild to severe mitochondrial damage with a negative impact on cell fate. This can start the cascade of events, including an increase of cellular reactive nitrogen species (RNS) and reactive oxygen species (ROS) production that promotes disease progression from simple steatosis to more severe NAFLD stages. On the other hand, progressing mitochondrial bioenergetic catastrophe and oxidative stress manifestation could be considered accompanying events in the vast spectrum of abnormalities observed during the transition from NAFL to NASH and cirrhosis. This review updates our current understanding of NAFLD pathogenesis and clarifies whether mitochondrial dysfunction and ROS/RNS are culprits or bystanders of NAFLD progression.
Collapse
Affiliation(s)
| | - Ines C M Simoes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Kalinowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Lebiedzinska-Arciszewska
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
- Translational Medicine Group, Pomeranian Medical University, Szczecin, Poland
| | | | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Afshan N Malik
- Department of Diabetes, School of Life Course, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Marcin Krawczyk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
41
|
Fiorentino TV, De Vito F, Suraci E, Marasco R, Catalano F, Andreozzi F, Hribal ML, Luzza F, Sesti G. Augmented duodenal levels of sodium/glucose co-transporter 1 are associated with higher risk of nonalcoholic fatty liver disease and noninvasive index of liver fibrosis. Diabetes Res Clin Pract 2022; 185:109789. [PMID: 35192912 DOI: 10.1016/j.diabres.2022.109789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022]
Abstract
AIMS Subjects with elevated 1 h post-load glucose concentrations (1hPG) exhibit increased risk of non-alcoholic fatty liver disease (NAFLD) and duodenal sodium/glucose co-transporter 1 (SGLT-1) levels. Herein, we evaluate whether higher SGLT-1 duodenal levels are associated with NAFLD and increased risk of advance liver fibrosis. METHODS SGLT-1 levels were assessed on duodenal mucosa in 52 individuals subdivided into two groups according to ultrasonography-defined presence of NAFLD. Intracellular triglycerides levels and activation of endoplasmic reticulum (ER) stress were evaluated in human hepatocytes exposed to high-glucose concentration (HG). RESULTS Individuals with NAFLD exhibited higher duodenal SGLT-1 abundance along with raised 1hPG, as compared to those without NAFLD. The mediation analysis showed that augmented duodenal SGLT-1 levels were a predictor of NAFLD, and the link between increased duodenal SGLT-1 content and NAFLD risk was mediated by augmented 1hPG. Amongst participants with NAFLD, those with intermediate/high probability of advance liver fibrosis, estimated by NAFLD fibrosis score, exhibited higher duodenal SGLT-1 abundance and 1hPG levels as compared to the low probability group. Hepatocytes exposed to HG showed increased triglycerides accumulation and an up-regulation of ER stress pathway. CONCLUSIONS Increased duodenal SGLT-1 abundance and the related early post-prandial hyperglycemia are associated with NAFLD and advance liver fibrosis.
Collapse
Affiliation(s)
- Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| | - Francesca De Vito
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Evelina Suraci
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Raffaella Marasco
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Federica Catalano
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Francesco Luzza
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome-Sapienza, Rome 00189, Italy
| |
Collapse
|
42
|
Nozu T, Okumura T. Pathophysiological Commonality Between Irritable Bowel Syndrome and Metabolic Syndrome: Role of Corticotropin-releasing Factor-Toll-like Receptor 4-Proinflammatory Cytokine Signaling. J Neurogastroenterol Motil 2022; 28:173-184. [PMID: 35189599 PMCID: PMC8978123 DOI: 10.5056/jnm21002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/26/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022] Open
Abstract
Irritable bowel syndrome (IBS) displays chronic abdominal pain with altered defecation. Most of the patients develop visceral hypersensitivity possibly resulting from impaired gut barrier and altered gut microbiota. We previously demonstrated that colonic hyperpermeability with visceral hypersensitivity in animal IBS models, which is mediated via corticotropin-releasing factor (CRF)-Toll-like receptor 4 (TLR4)-proinflammatory cytokine signaling. CRF impairs gut barrier via TLR4. Leaky gut induces bacterial translocation resulting in dysbiosis, and increases lipopolysaccharide (LPS). Activation of TLR4 by LPS increases the production of proinflammatory cytokines, which activate visceral sensory neurons to induce visceral hypersensitivity. LPS also activates CRF receptors to further increase gut permeability. Metabolic syndrome (MS) is a cluster of cardiovascular risk factors, including insulin resistance, obesity, dyslipidemia, and hypertension, and recently several researchers suggest the possibility that impaired gut barrier and dysbiosis with low-grade systemic inflammation are involved in MS. Moreover, TLR4-proinflammatory cytokine contributes to the development of insulin resistance and obesity. Thus, the existence of pathophysiological commonality between IBS and MS is expected. This review discusses the potential mechanisms of IBS and MS with reference to gut barrier and microbiota, and explores the possibility of existence of pathophysiological link between these diseases with a focus on CRF, TLR4, and proinflammatory cytokine signaling. We also review epidemiological data supporting this possibility, and discuss the potential of therapeutic application of the drugs used for MS to IBS treatment. This notion may pave the way for exploring novel therapeutic approaches for these disorders.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.,Center for Medical Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.,Department of General Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
43
|
The association between metabolic risk factors, nonalcoholic fatty liver disease, and the incidence of liver cancer: a nationwide population-based cohort study. Hepatol Int 2022; 16:807-816. [DOI: 10.1007/s12072-021-10281-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
|
44
|
Ren J, Wang X, Yee C, Gorrell MD, McLennan SV, Twigg SM. Sitagliptin Is More Effective Than Gliclazide in Preventing Pro-Fibrotic and Pro-Inflammatory Changes in a Rodent Model of Diet-Induced Non-Alcoholic Fatty Liver Disease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030727. [PMID: 35163991 PMCID: PMC8838637 DOI: 10.3390/molecules27030727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
A diet-induced non-alcoholic fatty liver disease (NAFLD) model causing obesity in rodents was used to examine whether sitagliptin and gliclazide therapies have similar protective effects on pathological liver change. Methods: Male mice were fed a high-fat diet (HFD) or standard chow (Chow) ad libitum for 25 weeks and randomly allocated to oral sitagliptin or gliclazide treatment for the final 10 weeks. Fasting blood glucose and circulating insulin were measured. Inflammatory and fibrotic liver markers were assessed by qPCR. The second messenger ERK and autophagy markers were examined by Western immunoblot. F4/80, collagens and CCN2 were assessed by immunohistochemistry (IHC). Results: At termination, HFD mice were obese, hyperinsulinemic and insulin-resistant but non-diabetic. The DPP4 inhibitor sitagliptin prevented intrahepatic induction of pro-fibrotic markers collagen-IV, collagen-VI, CCN2 and TGF-β1 and pro-inflammatory markers TNF-α and IL-1β more effectively than sulfonylurea gliclazide. By IHC, liver collagen-VI and CCN2 induction by HFD were inhibited only by sitagliptin. Sitagliptin had a greater ability than gliclazide to normalise ERK-protein liver dysregulation. Conclusion: These data indicate that sitagliptin, compared with gliclazide, exhibits greater inhibition of pro-fibrotic and pro-inflammatory changes in an HFD-induced NAFLD model. Sitagliptin therapy, even in the absence of diabetes, may have specific benefits in diet-induced NAFLD.
Collapse
Affiliation(s)
- Jing Ren
- Greg Brown Diabetes and Endocrinology Research Laboratories, Sydney Medical School (Central), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (J.R.); (X.W.); (C.Y.); (S.V.M.)
| | - Xiaoyu Wang
- Greg Brown Diabetes and Endocrinology Research Laboratories, Sydney Medical School (Central), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (J.R.); (X.W.); (C.Y.); (S.V.M.)
| | - Christine Yee
- Greg Brown Diabetes and Endocrinology Research Laboratories, Sydney Medical School (Central), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (J.R.); (X.W.); (C.Y.); (S.V.M.)
| | - Mark D. Gorrell
- Liver Enzymes in Metabolism and Inflammation Program, Centenary Institute, The University of Sydney, Newtown, NSW 2042, Australia;
- A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Susan V. McLennan
- Greg Brown Diabetes and Endocrinology Research Laboratories, Sydney Medical School (Central), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (J.R.); (X.W.); (C.Y.); (S.V.M.)
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- New South Wales Health Pathology (Eastern), Camperdown, NSW 2050, Australia
| | - Stephen M. Twigg
- Greg Brown Diabetes and Endocrinology Research Laboratories, Sydney Medical School (Central), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (J.R.); (X.W.); (C.Y.); (S.V.M.)
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Correspondence: ; Tel.: +612-8627-1890; Fax: +612-8627-1604
| |
Collapse
|
45
|
Lin J, Li H, Wan Q. A Cross-Sectional Study of the Correlation Between the Atherogenic Index of Plasma and Nonalcoholic Fatty Liver Disease in Patients with Type 2 Diabetes. Diabetes Metab Syndr Obes 2022; 15:2227-2234. [PMID: 35936051 PMCID: PMC9348630 DOI: 10.2147/dmso.s375300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The main objective of this study was to examine the possible association between the atherogenic index of plasma (AIP) and the prevalence of nonalcoholic fatty liver disease (NAFLD) in Chinese individuals with type 2 diabetes mellitus (T2DM). PATIENTS AND METHODS In this survey, data from 1074 patients with T2DM were retrospectively extracted. The correlations between each variable and NAFLD were determined by univariate analysis, and then, the statistically significant variables were evaluated for their association with AIP and NAFLD by multivariate regression analysis. RESULTS AIP levels were significantly higher in all males and females with NAFLD than those without NAFLD (p<0.001). The prevalence of NAFLD increased progressively throughout the AIP quartiles (trend P < 0.001) and accounted for possible variables in Model 3 of the multivariate logistic regression analysis (OR: 2244.984). In terms of sensitivity and specificity, the AIP index was found to be 65.0% and 90.1% accurate, respectively, with a 95% CI of 0.804-0.893. According to a stratified analysis, females, patients over the age of 56 and current nonsmokers were found to have a higher chance of developing NAFLD. CONCLUSION T2DM individuals with NAFLD were found to have a higher AIP index than those without NAFLD. The prevalence and progression of NAFLD in T2DM patients may be influenced by the AIP index.
Collapse
Affiliation(s)
- Jie Lin
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, People’s Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Hang Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, People’s Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Qin Wan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, People’s Republic of China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
- Correspondence: Qin Wan, Tel +86 138 8274 6971, Email
| |
Collapse
|
46
|
Miyamori D, Tanaka M, Furuhashi M, Ohnishi H, Koyama M, Osanami A, Higashiura Y, Numata K, Hisasue T, Hanawa N, Moniwa N, Miura T. Prediction of new onset of diabetes mellitus during a 10-year period by using a combination of levels of alanine aminotransferase and γ-glutamyl transferase. Endocr J 2021; 68:1391-1402. [PMID: 34234055 DOI: 10.1507/endocrj.ej20-0823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Levels of alanine aminotransferase (ALT) and γ-glutamyl transferase (GGT) have been reported to be associated with increased risk of diabetes mellitus (DM). However, whether a combination of levels of ALT and GGT predicts new onset of DM better than does ALT or GGT alone in both males and females has not fully been addressed. We investigated the relationship between the combination of ALT and GGT and DM development during a 10-year follow-up period in 13,919 subjects (male/female: 8,983/4,936; age 48 ± 10 years) who received health examinations. During the 10-year period, 617 males (6.9%) and 153 females (3.1%) had new onset of DM. Multivariable Cox proportional hazard models with a restricted cubic spline showed that hazard ratios (HRs) of DM development increased with higher levels of ALT and GGT at baseline in both sexes after adjustment of confounding factors. When divided into 4 subgroups of high (H-) and low (L-) levels of ALT (male/female: 27/21 U/L) and GGT (male/female: 43/23 U/L) using cutoff values shown by receiver operating characteristic curve analyses, the adjusted HR in the H-ALT/H-GGT group was significantly higher than HR in the L-ALT/L-GGT group as the reference in males (HR [95% confidence interval]: 1.73[1.36-2.20], p < 0.001) but was not significantly higher in females (1.50 [0.97-2.33], p = 0.065). The addition of the combination of H-ALT/H-GGT to traditional risk factors with and without H-ALT or H-GGT alone significantly improved the discriminatory capability for predicting development of DM. In conclusion, the combination of H-ALT/H-GGT efficiently predicts development of DM in male individuals but not significantly in female individuals.
Collapse
Affiliation(s)
- Daisuke Miyamori
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Marenao Tanaka
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
- Tanaka Medical Clinic, Yoichi 046-0021, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Hirofumi Ohnishi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
- Department of Public Health, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Masayuki Koyama
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
- Department of Public Health, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Arata Osanami
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Yukimura Higashiura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Keita Numata
- Department of Health Checkup and Promotion, Keijinkai Maruyama Clinic, Sapporo 064-0820, Japan
| | - Takashi Hisasue
- Department of Health Checkup and Promotion, Keijinkai Maruyama Clinic, Sapporo 064-0820, Japan
| | - Nagisa Hanawa
- Department of Health Checkup and Promotion, Keijinkai Maruyama Clinic, Sapporo 064-0820, Japan
| | - Norihito Moniwa
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| |
Collapse
|
47
|
Malek M, Khamseh ME, Chehrehgosha H, Nobarani S, Alaei-Shahmiri F. Triglyceride glucose-waist to height ratio: a novel and effective marker for identifying hepatic steatosis in individuals with type 2 diabetes mellitus. Endocrine 2021; 74:538-545. [PMID: 34355342 DOI: 10.1007/s12020-021-02815-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The triglyceride-glucose index (TyG), and TyG-driven parameters incorporating TyG and obesity indices have been proposed as reliable indicators of insulin resistance and its related comorbidities. This study evaluated the effectiveness of these indices in identifying hepatic steatosis in individuals with Type 2 diabetes (T2DM). METHODS This was a cross-sectional study consisting of 175 patients with T2DM (122 with and 53 without NAFLD). TyG index, triglyceride glucose-body mass index (TyG-BMI), triglyceride glucose-waist circumference (TyG-WC), and triglyceride glucose-waist-to-height ratio (TyG-WHtR) were determined using standard formulas. Controlled attenuation parameter (CAP) was measured by transient elastography (FibroScan). RESULTS Among obesity parameters, CAP showed the strongest correlation with WHtR, followed by BMI and WC (all P < 0.001). Regression analyses demonstrated TyG-WHtR as a significant predictor of NAFLD with the highest odds ratio, reaching 10.69 (95% CI: 1.68-68.22) for the top quartile (Q4) compared to the first quartile (P = 0.01), followed by TyG-BMI (Q4: 6.75; 95% CI: 1.49-30.67) and TyG-WC (Q4: 5.90; 95% CI: 0.99-35.18). Moreover, TyG-WHtR presented the largest AUC for detection of NAFLD (0.783, P < 0.001) in ROC analysis, followed by TyG-BMI (AUC: 0.751, P < 0.001), TyG-WC (AUC: 0.751, P < 0.001), and TyG (AUC: 0.647, P = 0.002). TyG-WHtR value of 5.58 (sensitivity: 79%, specificity: 68%, P < 0.001) was the best cut-off point to identify hepatic steatosis in this population. CONCLUSIONS This study confirmed that the TyG-related indices comprising TyG and obesity parameters can identify hepatic steatosis more successfully than TyG alone. Furthermore, our results highlighted TyG-WHtR as a simple and effective marker for screening fatty liver in patients with T2DM, which may be used practically in clinical setting.
Collapse
Affiliation(s)
- Mojtaba Malek
- Research Center for Prevention of Cardiovascular Disease, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohammad E Khamseh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Haleh Chehrehgosha
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Sohrab Nobarani
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fariba Alaei-Shahmiri
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
48
|
Metformin treatment reverses high fat diet- induced non-alcoholic fatty liver diseases and dyslipidemia by stimulating multiple antioxidant and anti-inflammatory pathways. Biochem Biophys Rep 2021; 28:101168. [PMID: 34825068 PMCID: PMC8605070 DOI: 10.1016/j.bbrep.2021.101168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 01/06/2023] Open
Abstract
Purpose This current study investigated the effect of metformin treatment on hepatic oxidative stress and inflammation associated with nonalcoholic fatty liver disease (NADLD) in high fat diet (HFD) fed rats. Method Wistar rats were fed with a HFD or laboratory chow diet for 8 weeks. Metformin was administered orally at a dose of 200 mg/kg. Body weight, food and water intake were recorded on daily basis. Oral glucose tolerance test (OGTT), biochemical analysis and histological examinations were conducted on plasma and tissue samples. Antioxidant and anti-inflammatory mRNA expression was analyzed using reverse transcription polymeric chain reaction (RT-PCR). Results Metformin treatment for 8 weeks prevented HFD-induced weight gain and decreased fat deposition in HFD fed rats. Biochemical analysis revealed that metformin treatment significantly attenuated nitro-oxidative stress markers malondialdehyde (MDA), advanced protein oxidation product (APOP), and excessive nitric oxide (NO) levels in the liver of HFD fed rats. Gene expression analysis demonestrated that metformin treatment was associated with an enhanced expression of antioxidant genes such as Nrf-2, HO-1, SOD and catalase in liver of HFD fed rats. Metformin treatment also found to modulate the expression of fat metabolizing and anti-inflammatory genes including PPAR--γ, C/EBP-α, SREBP1c, FAS, AMPK and GLUT-4. Consistent with the biochemical and gene expression data, the histopathological examination unveiled that metformin treatment attenuated inflammatory cells infiltration, steatosis, hepatocyte necrosis, collagen deposition, and fibrosis in the liver of HFD fed rats. Conclusion In conclusion, this study suggests that metformin might be effective in the prevention and treatment of HFD-induced steatosis by reducing hepatic oxidative stress and inflammation in the liver.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AMPK, AMP-activated protein kinase
- APOP, advanced protein oxidation product
- AST, aspartate aminotransferase
- ATP, Adinosine triphosphate
- AUC, area under the curve
- CAT, catalase
- FAS, Fatty acid synthase
- HDL, high density lipoprotein
- HF, High fat
- HSCs, Hepatic stellate cells
- IACUC, Institutional Animal Care and Use Committee
- IL-6, interleukin-6
- Inflammation
- LDL, low density lipoprotein
- Lipid peroxidation
- MDA, Malondialdehyde
- MPO, Myeloperoxidase
- Met, Metformin
- Metformin
- NAFLD, nonalcoholic fatty liver disease
- NO, nitric oxide
- Non-alcoholic fatty liver disease
- OGTT, Oral glucose tolerance test
- Obesity
- PBS, Phosphate buffer saline
- PGC-1α, peroxisome proliferator-activated receptor γ coactivator 1
- PPAR-γ, peroxisome proliferator-activated receptor γ
- ROS, reactive oxygen species
- SOD, Superoxide dismutase
- SREBP1c, sterol regulatory element-binding protein 1c
- TBA, Thiobarbituric acid
- TBARS, Thiobarbituric acid reactive substances
Collapse
|
49
|
Goldberg RB, Tripputi MT, Boyko EJ, Budoff M, Chen ZZ, Clark JM, Dabelea DM, Edelstein SL, Gerszten RE, Horton E, Mather KJ, Perreault L, Temprosa M, Wallia A, Watson K, Irfan Z. Hepatic Fat in Participants With and Without Incident Diabetes in the Diabetes Prevention Program Outcome Study. J Clin Endocrinol Metab 2021; 106:e4746-e4765. [PMID: 33705543 PMCID: PMC8530730 DOI: 10.1210/clinem/dgab160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT There is little information about fatty liver in prediabetes as it transitions to early diabetes. OBJECTIVE This study is aimed at evaluating the prevalence and determinants of fatty liver in the Diabetes Prevention Program (DPP). METHODS We measured liver fat as liver attenuation (LA) in Hounsfield units (HU) in 1876 participants at ~14 years following randomization into the DPP, which tested the effects of lifestyle or metformin interventions versus standard care to prevent diabetes. LA was compared among intervention groups and in those with versus without diabetes, and associations with baseline and follow-up measurements of anthropometric and metabolic covariates were assessed. RESULTS There were no differences in liver fat between treatment groups at 14 years of follow-up. Participants with diabetes had lower LA (mean ± SD: 46 ± 16 vs 51 ± 14 HU; P < 0.001) and a greater prevalence of fatty liver (LA < 40 HU) (34% vs 17%; P < 0.001). Severity of metabolic abnormalities at the time of LA evaluation was associated with lower LA categories in a graded manner and more strongly in those with diabetes. Averaged annual fasting insulin (an index of insulin resistance [OR, 95% CI 1.76, 1.41-2.20]) waist circumference (1.63, 1.17-2.26), and triglyceride (1.42, 1.13-1.78), but not glucose, were independently associated with LA < 40 HU prevalence. CONCLUSION Fatty liver is common in the early phases of diabetes development. The association of LA with insulin resistance, waist circumference, and triglyceride levels emphasizes the importance of these markers for hepatic steatosis in this population and that assessment of hepatic fat in early diabetes development is warranted.
Collapse
Affiliation(s)
- Ronald B Goldberg
- Diabetes Research Institute, Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, FL 33136USA
- Correspondence: Ronald B Goldberg, MD, Diabetes Research Institute, Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, 1450 Northwest 10th Avenue, Miami, FL 33136 USA.
| | - Mark T Tripputi
- Milken Institute School of Public Health and Health Services, The Biostatistics Center, George Washington University, Rockville, MD 20852USA
| | - Edward J Boyko
- University of Washington, Department of Medicine, Seattle, WA 98108USA
| | - Matthew Budoff
- Los Angeles Biomedical Research Institute, Torrance CA 90502USA
| | - Zsu-Zsu Chen
- Division of Endocrinology, Bone, and Metabolism, Beth Israel Deaconess Medical Center, Harvard, Boston, MA 02215, USA
| | - Jeanne M Clark
- Division of General Internal Medicine, The Johns Hopkins University, Baltimore MD 21287USA
| | - Dana M Dabelea
- Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045USA
| | - Sharon L Edelstein
- Milken Institute School of Public Health and Health Services, The Biostatistics Center, George Washington University, Rockville, MD 20852USA
- Sharon L. Edelstein, ScM, The Biostatistics Center, Milken Institute School of Public Health, The George Washington University, 6110 Executive Blvd., Suite 750, Rockville, MD 20852, USA.
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard, Boston, MA 02215, USA
| | | | | | - Leigh Perreault
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045USA
| | - Marinella Temprosa
- Milken Institute School of Public Health and Health Services, The Biostatistics Center, George Washington University, Rockville, MD 20852USA
| | - Amisha Wallia
- Northwestern University Feinberg School of Medicine, Chicago IL 60610USA
| | - Karol Watson
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095USA
| | - Zeb Irfan
- J. W. Ruby Memorial Hospital, Morgantown, WV 26505USA
| |
Collapse
|
50
|
Ooi GJ, Meikle PJ, Huynh K, Earnest A, Roberts SK, Kemp W, Parker BL, Brown W, Burton P, Watt MJ. Hepatic lipidomic remodeling in severe obesity manifests with steatosis and does not evolve with non-alcoholic steatohepatitis. J Hepatol 2021; 75:524-535. [PMID: 33887358 DOI: 10.1016/j.jhep.2021.04.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUNDS & AIMS Obesity often leads to non-alcoholic fatty liver disease (NAFLD), which can progress from simple steatosis (non-alcoholic fatty liver (NAFL)) to non-alcoholic steatohepatitis (NASH). The accumulation of certain lipid subtypes is linked with worsening metabolic and liver disease, however, specific changes during progression from No-NAFL to NAFL then NASH are unresolved. Herein, we characterise the liver, adipose tissue and plasma lipidome of worsening NAFLD in obesity, and evaluate the utility of plasma lipids as biomarkers of NAFLD. METHODS Venous blood, liver, visceral and subcutaneous adipose tissue samples were obtained from 181 patients undergoing bariatric surgery. NAFLD severity was assessed histologically. Lipidomic analysis was performed using liquid chromatography-tandem mass spectrometry. RESULTS The liver lipidome showed substantial changes with increasing steatosis, with increased triacylglycerols, diacylglycerols and sphingolipids including ceramide, dihydroceramide, hexosyl-ceramide and GM3 ganglioside species. These lipid species were also increased in plasma with increasing hepatic steatosis and showed strong correlations with liver lipids. Adipose tissue lipidomes showed no correlation with NAFLD. There were no significant changes in liver lipids with NASH compared to NAFL. The addition of plasma lipid variables to routine markers yielded significant improvements in diagnostic accuracy for NASH (AUROC 0.667 vs. 0.785, p = 0.025). CONCLUSION Overall, these data provide a detailed description of the lipidomic changes with worsening NAFLD, showing significant changes with steatosis but no additional changes with NASH. Alterations in the liver lipidome are paralleled by similar changes in plasma. Further investigation is warranted into the potential utility of plasma lipids as non-invasive biomarkers of NAFLD in obesity. LAY SUMMARY Non-alcoholic fatty liver disease (NAFLD) is characterised by distinct changes in the liver lipidome with steatosis. The development of non-alcoholic steatohepatitis (NASH) does not result in further changes in the lipidome. Lipids within body fat do not appear to influence the lipid profile of the liver or blood. Changes in liver lipids are paralleled by changes in blood lipids. This has potential to be developed into a non-invasive biomarker for NAFLD. CLINICAL TRIAL NUMBER ACTRN12615000875505.
Collapse
Affiliation(s)
- Geraldine J Ooi
- Centre for Obesity Research and Education, Department of Surgery, Monash University, Melbourne, Victoria 3004, Australia.
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Arul Earnest
- Department of Epidemiology and Preventative Medicine, School of Public Health and Preventative Medicine, Monash University, Melbourne, Victoria 3004, Australia
| | - Stuart K Roberts
- Department of Gastroenterology, The Alfred Hospital and Monash University, Melbourne, Victoria, 3181, Australia
| | - William Kemp
- Department of Gastroenterology, The Alfred Hospital and Monash University, Melbourne, Victoria, 3181, Australia
| | - Benjamin L Parker
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Wendy Brown
- Centre for Obesity Research and Education, Department of Surgery, Monash University, Melbourne, Victoria 3004, Australia
| | - Paul Burton
- Centre for Obesity Research and Education, Department of Surgery, Monash University, Melbourne, Victoria 3004, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|