1
|
Shu M, Yates TB, John C, Harman-Ware AE, Happs RM, Bryant N, Jawdy SS, Ragauskas AJ, Tuskan GA, Muchero W, Chen JG. Providing biological context for GWAS results using eQTL regulatory and co-expression networks in Populus. THE NEW PHYTOLOGIST 2024; 244:603-617. [PMID: 39169686 DOI: 10.1111/nph.20026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Our study utilized genome-wide association studies (GWAS) to link nucleotide variants to traits in Populus trichocarpa, a species with rapid linkage disequilibrium decay. The aim was to overcome the challenge of interpreting statistical associations at individual loci without sufficient biological context, which often leads to reliance solely on gene annotations from unrelated model organisms. We employed an integrative approach that included GWAS targeting multiple traits using three individual techniques for lignocellulose phenotyping, expression quantitative trait loci (eQTL) analysis to construct transcriptional regulatory networks around each candidate locus and co-expression analysis to provide biological context for these networks, using lignocellulose biosynthesis in Populus trichocarpa as a case study. The research identified three candidate genes potentially involved in lignocellulose formation, including one previously recognized gene (Potri.005G116800/VND1, a critical regulator of secondary cell wall formation) and two genes (Potri.012G130000/AtSAP9 and Potri.004G202900/BIC1) with newly identified putative roles in lignocellulose biosynthesis. Our integrative approach offers a framework for providing biological context to loci associated with trait variation, facilitating the discovery of new genes and regulatory networks.
Collapse
Affiliation(s)
- Mengjun Shu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Timothy B Yates
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Cai John
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, 37996, TN, USA
| | - Anne E Harman-Ware
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, 80401, CO, USA
| | - Renee M Happs
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, 80401, CO, USA
| | - Nathan Bryant
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, 37996, TN, USA
| | - Sara S Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Arthur J Ragauskas
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, 37996, TN, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| |
Collapse
|
2
|
Xia J, Zhan L, Zhang J, Song W, Xu X. Identification of Rapeseed ( Brassica napus L.) Plant Height-Associated QTL Using BSA-seq and RNA-seq. Int J Mol Sci 2024; 25:9875. [PMID: 39337363 PMCID: PMC11432562 DOI: 10.3390/ijms25189875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Plant height (PH) is a critical agronomic trait in Brassica napus, significantly impacting yield. Consequently, identifying genes associated with plant height is a pivotal objective in oilseed rape breeding. This study employed a combination of bulk segregant analysis sequencing (BSA-seq) and RNA sequencing (RNA-seq) for analysis. A novel quantitative trait locus (QTL), qPH_C02, was identified between 63,989,634 and 64,945,122 bp on chromosome C02, from which eight candidate genes were screened. The Gene Ontology (GO) analysis revealed enrichment in peroxisomes, while the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated enrichment in the oxidative phosphorylation (OP) pathway. It is hypothesized that the observed differences in plant height and silique length may be attributed to the regulation of peroxidase activity in the OP pathway, which in turn alters plant energy metabolism and controls nutrient uptake. Subsequently, we will further test this hypothesis. The results of this study will contribute to our understanding of the genetic basis for differences in plant height and provide a foundation for the selection and breeding of Brassica napus varieties with desired plant shapes.
Collapse
Affiliation(s)
- Jichun Xia
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Lanlan Zhan
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Jiaying Zhang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Wenhui Song
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Xinfu Xu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
3
|
Sybilska E, Collin A, Sadat Haddadi B, Mur LAJ, Beckmann M, Guo W, Simpson CG, Daszkowska-Golec A. The cap-binding complex modulates ABA-responsive transcript splicing during germination in barley (Hordeum vulgare). Sci Rep 2024; 14:18278. [PMID: 39107424 PMCID: PMC11303550 DOI: 10.1038/s41598-024-69373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
To decipher the molecular bases governing seed germination, this study presents the pivotal role of the cap-binding complex (CBC), comprising CBP20 and CBP80, in modulating the inhibitory effects of abscisic acid (ABA) in barley. Using both single and double barley mutants in genes encoding the CBC, we revealed that the double mutant hvcbp20.ab/hvcbp80.b displays ABA insensitivity, in stark contrast to the hypersensitivity observed in single mutants during germination. Our comprehensive transcriptome and metabolome analysis not only identified significant alterations in gene expression and splicing patterns but also underscored the regulatory nexus among CBC, ABA, and brassinosteroid (BR) signaling pathways.
Collapse
Affiliation(s)
- Ewa Sybilska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Anna Collin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | | | - Luis A J Mur
- Department of Life Science, Aberystwyth University, Aberystwyth, UK
| | - Manfred Beckmann
- Department of Life Science, Aberystwyth University, Aberystwyth, UK
| | - Wenbin Guo
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Craig G Simpson
- Cell and Molecular Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
4
|
Avalbaev A, Fedyaev V, Lubyanova A, Yuldashev R, Allagulova C. 24-Epibrassinolide Reduces Drought-Induced Oxidative Stress by Modulating the Antioxidant System and Respiration in Wheat Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:148. [PMID: 38256702 PMCID: PMC10818601 DOI: 10.3390/plants13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024]
Abstract
Brassinosteroids (BRs) represent a group of plant signaling molecules with a steroidal skeleton that play an essential role in plant adaptation to different environmental stresses, including drought. In this work, the effect of pretreatment with 0.4 µM 24-epibrassinolide (EBR) on the oxidant/antioxidant system in 4-day-old wheat seedlings (Triticum aestivum L.) was studied under moderate drought stress simulated by 12% polyethylene glycol 6000 (PEG). It was revealed that EBR-pretreatment had a protective effect on wheat plants as evidenced by the maintenance of their growth rate, as well as the reduction in lipid peroxidation and electrolyte leakage from plant tissues under drought conditions. This effect was likely due to the ability of EBR to reduce the stress-induced accumulation of reactive oxygen species (ROS) and modulate the activity of antioxidant enzymes. Meanwhile, EBR pretreatment enhanced proline accumulation and increased the barrier properties of the cell walls in seedlings by accelerating the lignin deposition. Moreover, the ability of EBR to prevent a drought-caused increase in the intensity of the total dark respiration and the capacity of alternative respiration contributes significantly to the antistress action of this hormone.
Collapse
Affiliation(s)
- Azamat Avalbaev
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 Pr. Oktyabrya, Ufa 450054, Russia; (A.L.); (R.Y.); (C.A.)
| | - Vadim Fedyaev
- Institute of Nature and Human, Ufa University of Sciences and Technology, 32 Zaki Validi, Ufa 450076, Russia;
| | - Alsu Lubyanova
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 Pr. Oktyabrya, Ufa 450054, Russia; (A.L.); (R.Y.); (C.A.)
| | - Ruslan Yuldashev
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 Pr. Oktyabrya, Ufa 450054, Russia; (A.L.); (R.Y.); (C.A.)
| | - Chulpan Allagulova
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 Pr. Oktyabrya, Ufa 450054, Russia; (A.L.); (R.Y.); (C.A.)
| |
Collapse
|
5
|
Zhang Z, Chen Z, Song H, Cheng S. From plant survival to thriving: exploring the miracle of brassinosteroids for boosting abiotic stress resilience in horticultural crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1218229. [PMID: 37546254 PMCID: PMC10401277 DOI: 10.3389/fpls.2023.1218229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023]
Abstract
Abiotic stresses pose significant threat to horticultural crop production worldwide. These stresses adversely affect plant growth, development, and ultimately declined crop growth, yield and quality. In recent years, plant scientists have been actively investigating innovative strategies to enhance abiotic stress resilience in crops, and one promising avenue of research focuses on the use of brassinosteroids (BRs). BRs are a class of plant hormones that play crucial roles in various physiological processes, including cell elongation, differentiation, and stress responses. They have emerged as potent regulators of plant growth and development, and their role in improving abiotic stress tolerance is gaining considerable attention. BRs have been shown to mitigate the negative effects of abiotic stresses by modulating key physiological and biochemical processes, including stomatal regulation, antioxidant defense, osmotic adjustment, and nutrient uptake. Abiotic stresses disrupt numerous physiological functions and lead to undesirable phenotypic traits in plants. The use of BRs as a tool to improve crop resilience offers significant promise for sustainable agriculture in the face of increasing abiotic stresses caused by climate change. By unraveling the phenomenon of BRs, this review emphasizes the potential of BRs as an innovative approach for boosting abiotic stress tolerance and improving the overall productivity and quality of horticultural crops. Further research and field trials are necessary to fully harness the benefits of BRs and translate these findings into practical applications for crop production systems.
Collapse
Affiliation(s)
- Zhilu Zhang
- College of Chemistry and Environmental Engineering, Ping Dingshan University, Pingdingshan, Henan, China
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, Henan, China
| | - Zhongyu Chen
- People’s Park Management Office of Nanyang City Garden and Greening Center, Garden and Greening Center of Nanyang City, Nanyang, Henan, China
| | - Haina Song
- College of Chemistry and Environmental Engineering, Ping Dingshan University, Pingdingshan, Henan, China
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, Henan, China
| | - Shiping Cheng
- College of Chemistry and Environmental Engineering, Ping Dingshan University, Pingdingshan, Henan, China
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, Henan, China
| |
Collapse
|
6
|
Lorca M, Cabezas D, Araque I, Terán A, Hernández S, Mellado M, Espinoza L, Mella J. Cancer and brassinosteroids: Mechanisms of action, SAR and future perspectives. Steroids 2023; 190:109153. [PMID: 36481216 DOI: 10.1016/j.steroids.2022.109153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/24/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022]
Abstract
Brassinosteroids are plant hormones whose main function is to stimulate plant growth. However, they have been studied for their biological applications in humans. Brassinosteroid compounds have displayed an important role in the study of cancer pathology and show potential for developing novel anticancer drugs. In this review we describe the relationship of brassinosteroids with cancer with focus on the last decade, the mechanisms of cytotoxic activity described to date, and a structure-activity relationship based on the available information.
Collapse
Affiliation(s)
- Marcos Lorca
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile.
| | - David Cabezas
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile.
| | - Ileana Araque
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile.
| | - Andrés Terán
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile.
| | - Santiago Hernández
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile.
| | - Marco Mellado
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile.
| | - Luis Espinoza
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España No. 1680, Valparaíso 2340000, Chile.
| | - Jaime Mella
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile; Centro de Investigación Farmacopea Chilena (CIFAR), Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile.
| |
Collapse
|
7
|
Chen E, Yang X, Liu R, Zhang M, Zhang M, Zhou F, Li D, Hu H, Li C. GhBEE3-Like gene regulated by brassinosteroids is involved in cotton drought tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1019146. [PMID: 36311136 PMCID: PMC9606830 DOI: 10.3389/fpls.2022.1019146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Brassinosteroids (BRs) are important phytohormones that play a vital role in plant drought tolerance, but their mechanisms in cotton (Gossypium hirsutum L.) are poorly understood. Numerous basic helix-loop-helix (bHLH) family genes are involved in the responses to both BRs and drought stress. GhBEE3-Like, a bHLH transcription factor, is repressed by both 24-epi-BL (an active BR substance) and PEG8000 (drought simulation) treatments in cotton. Moreover, GhBZR1, a crucial transcription factor in BR signaling pathway, directly binds to the E-box element in GhBEE3-Like promoter region and inhibits its expression, which has been confirmed by electrophoretic mobility shift assay (EMSA) and dual luciferase reporter assay. Functional analysis revealed that Arabidopsis with GhBEE3-Like overexpression had drought sensitive phenotype, while GhBEE3-Like knock-down cotton plants obtained by virus-induced gene silencing (VIGS) technology were more tolerant to drought stress. Furthermore, the expression levels of three stress-related genes, GhERD10, GhCDPK1 and GhRD26, were significantly higher in GhBEE3-Like knock-down cotton than in control cotton after drought treatment. These results suggest that GhBEE3-Like is inhibited by BRs which elevates the expressions of stress-related genes to enhance plant drought tolerance. This study lays the foundation for understanding the mechanisms of BR-regulated drought tolerance and establishment of drought-resistant cotton lines.
Collapse
Affiliation(s)
- Eryong Chen
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaobei Yang
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Ruie Liu
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mengke Zhang
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Meng Zhang
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Feng Zhou
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Dongxiao Li
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Haiyan Hu
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Chengwei Li
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
8
|
Gao X, Ma J, Tie J, Li Y, Hu L, Yu J. BR-Mediated Protein S-Nitrosylation Alleviated Low-Temperature Stress in Mini Chinese Cabbage ( Brassica rapa ssp. pekinensis). Int J Mol Sci 2022; 23:ijms231810964. [PMID: 36142872 PMCID: PMC9503245 DOI: 10.3390/ijms231810964] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Brassinosteroids (BRs), a novel plant hormone, are widely involved in plant growth and stress response processes. Nitric oxide (NO), as an important gas signaling molecule, can regulate target protein activity, subcellular localization and function in response to various stresses through post-translational S-nitrosylation modifications. However, the relationship between BR and NO in alleviating low-temperature stress of mini Chinese cabbage remains unclear. The hydroponic experiment combined with the pharmacological and molecular biological method was conducted to study the alleviating mechanism of BR at low temperature in mini Chinese cabbage. The results showed that low temperature inhibited the growth of mini Chinese cabbage seedlings, as evidenced by dwarf plants and yellow leaves. Treatment with 0.05 mg/L BR and 50 µM NO donor S-nitrosoglutathione (GSNO) significantly increased the leaf area, stem diameter, chlorophyll content, dry and fresh weight and proline content. Meanwhile, the malondialdehyde (MDA) content in 0.05 mg/L BR- and 50 µM GSNO-treated leaves were significantly lower than those in other treated leaves under low-temperature conditions. In addition, BR and GSNO applications induced an increase in NO and S-nitrosothiol (SNO) levels in vivo under low-temperature stress. Similarly, spraying BR after the elimination of NO also increased the level of S-nitrosylation in vivo, while spraying GSNO after inhibiting BR biosynthesis decreased the level of NO and SNO in vivo. In contrast, the S-nitrosoglutathione reductase (BrGSNOR) relative expression level and GSNOR enzyme activity were downregulated and inhibited by BR treatment, GSNO treatment and spraying BR after NO clearance, while the relative expression level of BrGSNOR was upregulated and GSNOR enzyme activity was also increased when spraying GSNO after inhibiting BR synthesis. Meanwhile, the biotin switch assay showed that exogenous BR increased the level of total nitrosylated protein in vivo under low-temperature stress. These results suggested that BR might act as an upstream signal of NO, induced the increase of NO content in vivo and then induced the protein S-nitrosylation modification to alleviate the damage of mini Chinese cabbage seedlings under low-temperature stress.
Collapse
Affiliation(s)
- Xueqin Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jizhong Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianzhong Tie
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yutong Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: (L.H.); (J.Y.)
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: (L.H.); (J.Y.)
| |
Collapse
|
9
|
Sharma A, Ramakrishnan M, Khanna K, Landi M, Prasad R, Bhardwaj R, Zheng B. Brassinosteroids and metalloids: Regulation of plant biology. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127518. [PMID: 34836689 DOI: 10.1016/j.jhazmat.2021.127518] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 06/28/2021] [Accepted: 10/13/2021] [Indexed: 05/06/2023]
Abstract
Metalloid contamination in the environment is one of the serious concerns posing threat to our ecosystems. Excess of metalloid concentrations (including antimony, arsenic, boron, selenium etc.) in soil results in their over accumulation in plant tissues, which ultimately causes phytotoxicity and their bio-magnification. So, it is very important to find some ecofriendly approaches to counter negative impacts of above mentioned metalloids on plant system. Brassinosteroids (BRs) belong to family of plant steroidal hormones, and are considered as one of the ecofriendly way to counter metalloid phytotoxicity. This phytohormone regulates the plant biology in presence of metalloids by modulating various key biological processes like cell signaling, primary and secondary metabolism, bio-molecule crosstalk and redox homeostasis. The present review explains the in-depth mechanisms of BR regulated plant responses in presence of metalloids, and provides some biotechnological aspects towards ecofriendly management of metalloid contamination.
Collapse
Affiliation(s)
- Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Muthusamy Ramakrishnan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Kanika Khanna
- Plant Stress Physiology Lab, Department of Botanical and Environment Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Rajendra Prasad
- Department of Horticulture, Kulbhaskar Ashram Post Graduate College, Prayagraj, Uttar Pradesh, India
| | - Renu Bhardwaj
- Plant Stress Physiology Lab, Department of Botanical and Environment Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
10
|
Graeff M, Rana S, Wendrich JR, Dorier J, Eekhout T, Aliaga Fandino AC, Guex N, Bassel GW, De Rybel B, Hardtke CS. A single-cell morpho-transcriptomic map of brassinosteroid action in the Arabidopsis root. MOLECULAR PLANT 2021; 14:1985-1999. [PMID: 34358681 PMCID: PMC8674818 DOI: 10.1016/j.molp.2021.07.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/03/2021] [Accepted: 07/29/2021] [Indexed: 05/05/2023]
Abstract
The effects of brassinosteroid signaling on shoot and root development have been characterized in great detail but a simple consistent positive or negative impact on a basic cellular parameter was not identified. In this study, we combined digital 3D single-cell shape analysis and single-cell mRNA sequencing to characterize root meristems and mature root segments of brassinosteroid-blind mutants and wild type. The resultant datasets demonstrate that brassinosteroid signaling affects neither cell volume nor cell proliferation capacity. Instead, brassinosteroid signaling is essential for the precise orientation of cell division planes and the extent and timing of anisotropic cell expansion. Moreover, we found that the cell-aligning effects of brassinosteroid signaling can propagate to normalize the anatomy of both adjacent and distant brassinosteroid-blind cells through non-cell-autonomous functions, which are sufficient to restore growth vigor. Finally, single-cell transcriptome data discern directly brassinosteroid-responsive genes from genes that can react non-cell-autonomously and highlight arabinogalactans as sentinels of brassinosteroid-dependent anisotropic cell expansion.
Collapse
Affiliation(s)
- Moritz Graeff
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Surbhi Rana
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Jos R Wendrich
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9000 Ghent, Belgium
| | - Julien Dorier
- Bioinformatics Competence Center, University of Lausanne, Genopode Building, 1015 Lausanne, Switzerland
| | - Thomas Eekhout
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9000 Ghent, Belgium
| | - Ana Cecilia Aliaga Fandino
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, Genopode Building, 1015 Lausanne, Switzerland
| | - George W Bassel
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9000 Ghent, Belgium
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland.
| |
Collapse
|
11
|
Qadir M, Wang X, Shah SRU, Zhou XR, Shi J, Wang H. Molecular Network for Regulation of Ovule Number in Plants. Int J Mol Sci 2021; 22:ijms222312965. [PMID: 34884791 PMCID: PMC8657818 DOI: 10.3390/ijms222312965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
In seed-bearing plants, the ovule ("small egg") is the organ within the gynoecium that develops into a seed after fertilization. The gynoecium located in the inner compartment of the flower turns into a fruit. The number of ovules in the ovary determines the upper limit or the potential of seed number per fruit in plants, greatly affecting the final seed yield. Ovule number is an important adaptive characteristic for plant evolution and an agronomic trait for crop improvement. Therefore, understanding the mechanism and pathways of ovule number regulation becomes a significant research aspect in plant science. This review summarizes the ovule number regulators and their regulatory mechanisms and pathways. Specially, an integrated molecular network for ovule number regulation is constructed, in which phytohormones played a central role, followed by transcription factors, enzymes, other protein and micro-RNA. Of them, AUX, BR and CK are positive regulator of ovule number, whereas GA acts negatively on it. Interestingly, many ovule number regulators have conserved functions across several plant taxa, which should be the targets of genetic improvement via breeding or gene editing. Many ovule number regulators identified to date are involved in the diverse biological process, such as ovule primordia formation, ovule initiation, patterning, and morphogenesis. The relations between ovule number and related characteristics/traits especially of gynoecium/fruit size, ovule fertility, and final seed number, as well as upcoming research questions, are also discussed. In summary, this review provides a general overview of the present finding in ovule number regulation, which represents a more comprehensive and in-depth cognition on it.
Collapse
Affiliation(s)
- Muslim Qadir
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chines Academy of Agricultural Sciences, Wuhan 430062, China; (M.Q.); (X.W.)
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Lasbela 74200, Pakistan;
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chines Academy of Agricultural Sciences, Wuhan 430062, China; (M.Q.); (X.W.)
| | - Syed Rehmat Ullah Shah
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Lasbela 74200, Pakistan;
- Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7080, SE-75007 Uppsala, Sweden
| | - Xue-Rong Zhou
- Commonwealth Scientific Industrial Research Organization (CSIRO) Agriculture Food, Canberra, ACT 2601, Australia;
| | - Jiaqin Shi
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chines Academy of Agricultural Sciences, Wuhan 430062, China; (M.Q.); (X.W.)
- Correspondence: (J.S.); (H.W.)
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chines Academy of Agricultural Sciences, Wuhan 430062, China; (M.Q.); (X.W.)
- Correspondence: (J.S.); (H.W.)
| |
Collapse
|
12
|
Alemany M. Estrogens and the regulation of glucose metabolism. World J Diabetes 2021; 12:1622-1654. [PMID: 34754368 PMCID: PMC8554369 DOI: 10.4239/wjd.v12.i10.1622] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/10/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
The main estrogens: estradiol, estrone, and their acyl-esters have been studied essentially related to their classical estrogenic and pharmacologic functions. However, their main effect in the body is probably the sustained control of core energy metabolism. Estrogen nuclear and membrane receptors show an extraordinary flexibility in the modulation of metabolic responses, and largely explain gender and age differences in energy metabolism: part of these mechanisms is already sufficiently known to justify both. With regard to energy, the estrogen molecular species act essentially through four key functions: (1) Facilitation of insulin secretion and control of glucose availability; (2) Modulation of energy partition, favoring the use of lipid as the main energy substrate when more available than carbohydrates; (3) Functional protection through antioxidant mechanisms; and (4) Central effects (largely through neural modulation) on whole body energy management. Analyzing the different actions of estrone, estradiol and their acyl esters, a tentative classification based on structure/effects has been postulated. Either separately or as a group, estrogens provide a comprehensive explanation that not all their quite diverse actions are related solely to specific molecules. As a group, they constitute a powerful synergic action complex. In consequence, estrogens may be considered wardens of energy homeostasis.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, University of Barcelona, Barcelona 08028, Catalonia, Spain
| |
Collapse
|
13
|
Anfang M, Shani E. Transport mechanisms of plant hormones. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102055. [PMID: 34102450 PMCID: PMC7615258 DOI: 10.1016/j.pbi.2021.102055] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 05/27/2023]
Abstract
Plant growth, development, and response to the environment are mediated by a group of small signaling molecules named hormones. Plants regulate hormone response pathways at multiple levels, including biosynthesis, metabolism, perception, and signaling. In addition, plants exhibit the unique ability to spatially control hormone distribution. In recent years, multiple transporters have been identified for most of the plant hormones. Here we present an updated snapshot of the known transporters for the hormones abscisic acid, auxin, brassinosteroid, cytokinin, ethylene, gibberellin, jasmonic acid, salicylic acid, and strigolactone. We also describe new findings regarding hormone movement and elaborate on hormone substrate specificity and possible genetic redundancy in hormone transport and distribution. Finally, we discuss subcellular, cell-to-cell, and long-distance hormone movement and local hormone sinks that trigger or prevent hormone-mediated responses.
Collapse
Affiliation(s)
- Moran Anfang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
14
|
Jiang C, Li B, Song Z, Zhang Y, Yu C, Wang H, Wang L, Zhang H. PtBRI1.2 promotes shoot growth and wood formation through a brassinosteroid-mediated PtBZR1-PtWNDs module in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6350-6364. [PMID: 34089602 DOI: 10.1093/jxb/erab260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
Brassinosteroid-insensitive-1 (BRI1) plays important roles in various signalling pathways controlling plant growth and development. However, the regulatory mechanism of BRI1 in brassinosteroid (BR)-mediated signalling for shoot growth and wood formation in woody plants is largely unknown. In this study, PtBRI1.2, a brassinosteroid-insensitive-1 gene, was overexpressed in poplar. Shoot growth and wood formation of transgenic plants were examined and the regulatory genes involved were verified. PtBRI1.2 was localized to the plasma membrane, with a predominant expression in leaves. Ectopic expression of PtBRI1.2 in Arabidopsis bri1-201 and bri1-5 mutants rescued their retarded-growth phenotype. Overexpression of PtBRI1.2 in poplar promoted shoot growth and wood formation in transgenic plants. Further studies revealed that overexpression of PtBRI1.2 promoted the accumulation of PtBZR1 (BRASSINAZOLE RESISTANT1) in the nucleus, which subsequently activated PtWNDs (WOOD-ASSOCIATED NAC DOMAIN transcription factors) to up-regulate expression of secondary cell wall biosynthesis genes involved in wood formation. Our results suggest that PtBRI1.2 plays a crucial role in regulating shoot growth and wood formation by activating BR signalling.
Collapse
Affiliation(s)
- Chunmei Jiang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Bei Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and abiotic Resistant Plants in the Universities of Shandong, and Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, China
| | - Zhizhong Song
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and abiotic Resistant Plants in the Universities of Shandong, and Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, China
| | - Yuliang Zhang
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Chunyan Yu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and abiotic Resistant Plants in the Universities of Shandong, and Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, China
| | - Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Limin Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and abiotic Resistant Plants in the Universities of Shandong, and Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and abiotic Resistant Plants in the Universities of Shandong, and Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
15
|
Wang Y, Duran HGS, van Haarst JC, Schijlen EGWM, Ruyter-Spira C, Medema MH, Dong L, Bouwmeester HJ. The role of strigolactones in P deficiency induced transcriptional changes in tomato roots. BMC PLANT BIOLOGY 2021; 21:349. [PMID: 34301182 PMCID: PMC8299696 DOI: 10.1186/s12870-021-03124-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/09/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Phosphorus (P) is an essential macronutrient for plant growth and development. Upon P shortage, plant responds with massive reprogramming of transcription, the Phosphate Starvation Response (PSR). In parallel, the production of strigolactones (SLs)-a class of plant hormones that regulates plant development and rhizosphere signaling molecules-increases. It is unclear, however, what the functional link is between these two processes. In this study, using tomato as a model, RNAseq was used to evaluate the time-resolved changes in gene expression in the roots upon P starvation and, using a tomato CAROTENOID CLEAVAGE DIOXYGENASES 8 (CCD8) RNAi line, what the role of SLs is in this. RESULTS Gene ontology (GO)-term enrichment and KEGG analysis of the genes regulated by P starvation and P replenishment revealed that metabolism is an important component of the P starvation response that is aimed at P homeostasis, with large changes occurring in glyco-and galactolipid and carbohydrate metabolism, biosynthesis of secondary metabolites, including terpenoids and polyketides, glycan biosynthesis and metabolism, and amino acid metabolism. In the CCD8 RNAi line about 96% of the PSR genes was less affected than in wild-type (WT) tomato. For example, phospholipid biosynthesis was suppressed by P starvation, while the degradation of phospholipids and biosynthesis of substitute lipids such as sulfolipids and galactolipids were induced by P starvation. Around two thirds of the corresponding transcriptional changes depend on the presence of SLs. Other biosynthesis pathways are also reprogrammed under P starvation, such as phenylpropanoid and carotenoid biosynthesis, pantothenate and CoA, lysine and alkaloids, and this also partially depends on SLs. Additionally, some plant hormone biosynthetic pathways were affected by P starvation and also here, SLs are required for many of the changes (more than two thirds for Gibberellins and around one third for Abscisic acid) in the gene expression. CONCLUSIONS Our analysis shows that SLs are not just the end product of the PSR in plants (the signals secreted by plants into the rhizosphere), but also play a major role in the regulation of the PSR (as plant hormone).
Collapse
Affiliation(s)
- Yanting Wang
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Jan C van Haarst
- Business Unit Bioscience, Plant Research International, Wageningen, The Netherlands
| | - Elio G W M Schijlen
- Business Unit Bioscience, Plant Research International, Wageningen, The Netherlands
| | - Carolien Ruyter-Spira
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Lemeng Dong
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Harro J Bouwmeester
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Application of homobrassinolide enhances growth, yield and quality of tomato. Saudi J Biol Sci 2021; 28:4800-4806. [PMID: 34354469 PMCID: PMC8324986 DOI: 10.1016/j.sjbs.2021.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/04/2022] Open
Abstract
Brassinosteroids (BRs) have emerged as pleiotropic phytohormone owing to their wide function in crop growth and metabolism. Homobrassinolide (HBR) being an analogue of BRs is known to improve the growth, yield and quality parameters in many crop plants. Thus, an evaluation study was conducted for two years (2018 and 2019) to elucidate the performance of tomato plants (Solanum lycopersicum L.) to a novel group of phytohormone,HBR. The field experiment comprised of seven treatments with homobrassinolide 0.04% (Emulsifiable Concentrate) EC at four different concentrations (0.06, 0.08, 0.10 and 0.12 g active ingredient (a.i.) ha−1) and two well-known growth promoters viz., Gibberellic acid (GA), Naphthalene Acetic Acid (NAA) along with the untreated control. Plant height and chlorophyll concentration were found significantly different in both years of experiment as well as among the different treatments. HBR at 0.12 g a.i. ha−1 was found better with maximum number of fruits (77.36 plant−1), fruit length (6.72 cm), fruit breadth (6.45 cm) and fruit weight (80.52 g) over other concentrations and treatments. Fruit yield was more pronounced in the plots treated with plant growth regulators compared to untreated control. However, significantly higher fruit yield of 91.07 t ha−1 (62.58 t ha−1 with untreated control) along with improved quality traits viz., fruit firmness (4.11 kg cm−2), ascorbic acid content (24.09 mg 100 g−1), total soluble solids (4.43°Brix) and keeping quality (12.50 days) was recorded in 0.12 g a.i. ha−1 HBR treated plots. Thus, it can be inferred that HBRapplication would be a better option to enhance growth, yield as well as quality traits in tomato.
Collapse
|
17
|
Xu R, Guo Y, Peng S, Liu J, Li P, Jia W, Zhao J. Molecular Targets and Biological Functions of cAMP Signaling in Arabidopsis. Biomolecules 2021; 11:biom11050688. [PMID: 34063698 PMCID: PMC8147800 DOI: 10.3390/biom11050688] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/11/2023] Open
Abstract
Cyclic AMP (cAMP) is a pivotal signaling molecule existing in almost all living organisms. However, the mechanism of cAMP signaling in plants remains very poorly understood. Here, we employ the engineered activity of soluble adenylate cyclase to induce cellular cAMP elevation in Arabidopsis thaliana plants and identify 427 cAMP-responsive genes (CRGs) through RNA-seq analysis. Induction of cellular cAMP elevation inhibits seed germination, disturbs phytohormone contents, promotes leaf senescence, impairs ethylene response, and compromises salt stress tolerance and pathogen resistance. A set of 62 transcription factors are among the CRGs, supporting a prominent role of cAMP in transcriptional regulation. The CRGs are significantly overrepresented in the pathways of plant hormone signal transduction, MAPK signaling, and diterpenoid biosynthesis, but they are also implicated in lipid, sugar, K+, nitrate signaling, and beyond. Our results provide a basic framework of cAMP signaling for the community to explore. The regulatory roles of cAMP signaling in plant plasticity are discussed.
Collapse
Affiliation(s)
- Ruqiang Xu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: ; Tel.: +86-0371-6778-5095
| | - Yanhui Guo
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Song Peng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Jinrui Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Panyu Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Wenjing Jia
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Junheng Zhao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| |
Collapse
|
18
|
Avalbaev A, Yuldashev R, Fedorova K, Petrova N, Fedina E, Gilmanova R, Karimova F, Shakirova F. 24-epibrassinolide-induced growth promotion of wheat seedlings is associated with changes in the proteome and tyrosine phosphoproteome. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:456-463. [PMID: 33369832 DOI: 10.1111/plb.13233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Brassinosteroids (BRs) represent a unique class of steroidal plant hormones that display pronounced growth-promoting activity at very low concentrations. Although many efforts have been made to characterize the molecular basis of BR action, little is known about the mechanisms behind the growth-promoting effect of BRs at protein level. Proteomic analysis of response to the steroid plant hormone 24-epibrassinolide (EBR) in wheat seedling shoots (Triticum aestivum L.) was performed using two-dimensional electrophoresis (2-DE) and immunoblotting with highly specific antibodies (PY20) to phosphotyrosine. EBR-modulated proteins and phosphotyrosine polypeptides were identified using MALDI-TOF mass spectrometry. The study revealed that EBR-stimulated growth of wheat seedlings was accompanied by changes in the content of multiple proteins as well as in tyrosine phosphorylation of numerous polypeptides. Among them, 22 differentially accumulated proteins and 13 phosphotyrosine proteins were identified. Based on their performed functions, the identified proteins are involved in physiological processes (photosynthesis, growth, energy and amino acid metabolism) closely associated with intensification of plant metabolism. The EBR-induced changes in protein abundance and tyrosine phosphorylation profile may contribute to growth stimulation of wheat seedlings under the action of EBR. The obtained data suggest an important role for EBR in the activation of protein metabolism underlying fundamental physiological processes, including growth promotion.
Collapse
Affiliation(s)
- A Avalbaev
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - R Yuldashev
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - K Fedorova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - N Petrova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, 420111, Kazan, Russia
| | - E Fedina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, 420111, Kazan, Russia
| | - R Gilmanova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, 420111, Kazan, Russia
| | - F Karimova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, 420111, Kazan, Russia
| | - F Shakirova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, 450054, Ufa, Russia
| |
Collapse
|
19
|
Zheng T, Dong T, Haider MS, Jin H, Jia H, Fang J. Brassinosteroid Regulates 3-Hydroxy-3-methylglutaryl CoA Reductase to Promote Grape Fruit Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11987-11996. [PMID: 33059448 DOI: 10.1021/acs.jafc.0c04466] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Brassinosteroids (BRs) are known to regulate plant growth and development. However, only little is known about their mechanism in the regulation of berry development in grapes. This study demonstrates that BR treatment enhances the accumulation of fruit sugar components, reduces the content of organic acids (e.g., tartaric acid), promotes coloration, and increases the anthocyanin content in grape berries at the onset of the veraison, half veraison, and full veraison stages at the rate of 0.0998, 0.0560, and 0.0281 mg·g-1, respectively. In addition, BR treatment was also found to accelerate the biosynthesis of terpenoid aroma components, such as α-pinene, d-limonene, and γ-terpinene, which influence the aromatic composition of grapes. BRs can negatively regulate the expression of VvHMGR, a key gene involved in the mevalonate (MVA) pathway, and reduce the activity of 3-hydroxy-3-methylglutaryl CoA reductase (HMGR). Inhibiting the expression of HMGR promoted the accumulation of anthocyanins and fruit coloration. Meanwhile, after the inhibition, the contents of auxin indole-3-acetic acid (IAA), abscisic acid (ABA), and brassinosteroid (BR) increased, while gibberellin (GA3) and zeatin riboside (ZR) decreased, and its aromatic composition also changed. Therefore, it may be concluded that BRs inhibited HMGR activity and cooperated with VvHMGR to regulate the formation of color, aroma, and other quality characteristics in fruits.
Collapse
Affiliation(s)
- Ting Zheng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianyu Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Muhammad S Haider
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huanchun Jin
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- China Wine Industry Technology Institute, Yinchuan 750000, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- China Wine Industry Technology Institute, Yinchuan 750000, China
| |
Collapse
|
20
|
Kaur Kohli S, Bhardwaj A, Bhardwaj V, Sharma A, Kalia N, Landi M, Bhardwaj R. Therapeutic Potential of Brassinosteroids in Biomedical and Clinical Research. Biomolecules 2020; 10:E572. [PMID: 32283642 PMCID: PMC7226375 DOI: 10.3390/biom10040572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/28/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
Steroids are a pivotal class of hormones with a key role in growth modulation and signal transduction in multicellular organisms. Synthetic steroids are widely used to cure large array of viral, fungal, bacterial, and cancerous infections. Brassinosteroids (BRs) are a natural collection of phytosterols, which have structural similarity with animal steroids. BRs are dispersed universally throughout the plant kingdom. These plant steroids are well known to modulate a plethora of physiological responses in plants leading to improvement in quality as well as yield of food crops. Moreover, they have been found to play imperative role in stress-fortification against various stresses in plants. Over a decade, BRs have conquered worldwide interest due to their diverse biological activities in animal systems. Recent studies have indicated anticancerous, antiangiogenic, antiviral, antigenotoxic, antifungal, and antibacterial bioactivities of BRs in the animal test systems. BRs inhibit replication of viruses and induce cytotoxic effects on cancerous cell lines. Keeping in view the biological activities of BRs, this review is an attempt to update the information about prospects of BRs in biomedical and clinical application.
Collapse
Affiliation(s)
- Sukhmeen Kaur Kohli
- Plant Stress Physiology Lab, Department of Botanical and Environment Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (S.K.K.); (A.S.)
| | - Abhay Bhardwaj
- Department of Bio-organic and Biological Chemistry, Kharkiv National Medical University, Kharkiv 61000, Ukraine; (A.B.); (V.B.)
| | - Vinay Bhardwaj
- Department of Bio-organic and Biological Chemistry, Kharkiv National Medical University, Kharkiv 61000, Ukraine; (A.B.); (V.B.)
| | - Anket Sharma
- Plant Stress Physiology Lab, Department of Botanical and Environment Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (S.K.K.); (A.S.)
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Namarta Kalia
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India;
| | - Marco Landi
- Department of Agriculture, Food & Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Renu Bhardwaj
- Plant Stress Physiology Lab, Department of Botanical and Environment Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (S.K.K.); (A.S.)
| |
Collapse
|
21
|
Díaz K, Espinoza L, Carvajal R, Conde-González M, Niebla V, Olea AF, Coll Y. Biological Activities and Molecular Docking of Brassinosteroids 24-Norcholane Type Analogs. Int J Mol Sci 2020; 21:E1832. [PMID: 32155857 PMCID: PMC7084776 DOI: 10.3390/ijms21051832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/13/2020] [Accepted: 03/04/2020] [Indexed: 01/11/2023] Open
Abstract
The quest and design of new brassinosteroids analogs is a matter of current interest. Herein, the effect of short alkyl side chains and the configuration at C22 on the growth-promoting activity of a series of new brassinosteroid 24-norcholan-type analogs have been evaluated by the rice leaf inclination test using brassinolide as positive control. The highest activities were found for triol 3 with a C22(S) configuration and monobenzoylated derivatives. A docking study of these compounds into the active site of the Brassinosteroid Insensitive 1(BRI1)-ligand-BRI1-Associated Receptor Kinase 1 (BAK1) complex was performed using AutoDock Vina, and protein-ligand contacts were analyzed using LigPlot+. The results suggest that the hydrophobic interactions of ligands with the receptor BRI1LRR and hydrogen bonding with BAK1 in the complex are important for ligand recognition. For monobenzoylated derivatives, the absence of the hydrophobic end in the alkyl chain seems to be compensated by the benzoyl group. Thus, it would be interesting to determine if this result depends on the nature of the substituent group. Finally, mixtures of S/R triols 3/4 exhibit activities that are comparable or even better than those found for brassinolide. Thus, these compounds are potential candidates for application in agriculture to improve the growth and yield of plants against various types of biotic and abiotic stress.
Collapse
Affiliation(s)
- Katy Díaz
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; (K.D.); (L.E.); (R.C.)
| | - Luis Espinoza
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; (K.D.); (L.E.); (R.C.)
| | - Rodrigo Carvajal
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; (K.D.); (L.E.); (R.C.)
| | - Marcos Conde-González
- Center for Natural Products Research, Faculty of Chemistry, University of Havana. Zapata y G, La Habana 10400, Cuba; (M.C.-G.); (V.N.)
| | - Vladimir Niebla
- Center for Natural Products Research, Faculty of Chemistry, University of Havana. Zapata y G, La Habana 10400, Cuba; (M.C.-G.); (V.N.)
| | - Andrés F. Olea
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, Santiago 8900000, Chile
| | - Yamilet Coll
- Center for Natural Products Research, Faculty of Chemistry, University of Havana. Zapata y G, La Habana 10400, Cuba; (M.C.-G.); (V.N.)
| |
Collapse
|
22
|
Killiny N, Nehela Y. Abscisic acid deficiency caused by phytoene desaturase silencing is associated with dwarfing syndrome in citrus. PLANT CELL REPORTS 2019; 38:965-980. [PMID: 31055623 DOI: 10.1007/s00299-019-02418-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
In citrus, abscisic acid-deficiency was associated with a dwarfing phenotype, slow growth, small leaves, decreased fresh weight, and faster water loss. ABA supplementation reversed the dwarfing phenotype and enhanced growth. Abscisic acid (ABA) is a ubiquitously distributed phytohormone, which is almost produced by all living kingdoms. In plants, ABA plays pleiotropic physiological roles in growth, development, and stress responses. We explored the hidden relationship between ABA deficiency, and citrus dwarfing. We used targeted-HPLC, targeted-GC-MS, molecular genetics, immunoassays, and gene expression techniques to investigate the effects of the silencing of phytoene desaturase (PDS) gene on the ABA-biosynthetic pathway, endogenous ABA content, and other phytohormones. Silencing of PDS directly suppressed the carotenoids compounds involved in ABA biosynthesis, altered phytohormonal profile, and caused phytoene accumulation and ABA deficiency. The reduction of ABA presumably due to the limited availability of its precursor, zeaxanthin. The ABA-deficient citrus cuttings displayed photobleaching, a dwarf phenotype with impaired growth characteristics that included slow growth, small leaves, decreased fresh weight, and faster water loss. ABA supplementation enhanced the growth and reversed the dwarfing phenotype of the ABA-deficient cuttings. Our data demonstrate that ABA-deficiency may lead to dwarfing phenotype and impaired growth in citrus cuttings. The negative influence of ABA-deficiency on growth rate is the result of altered water relations. Addition of ABA to the CTV-tPDS roots restored shoot growth and reversed the dwarfing phenotype.
Collapse
Affiliation(s)
- Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA.
| | - Yasser Nehela
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| |
Collapse
|
23
|
Dermastia M. Plant Hormones in Phytoplasma Infected Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:477. [PMID: 31057582 PMCID: PMC6478762 DOI: 10.3389/fpls.2019.00477] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/28/2019] [Indexed: 05/21/2023]
Abstract
Phytoplasmas are bacterial plant pathogens that need a plant host and an insect vector for their spread and survival. In plants, the physiological responses that phytoplasmas trigger result in symptom development through effects on hormonal, nutritional, and stress signaling pathways, and the interactions between these. In this review, recent advances on the involvement of plant hormones together with their known and deduced roles in plants infected with phytoplasmas are discussed. Several studies have directly, or in many cases indirectly, addressed plant hormone systems in phytoplasma-infected plants. These have provided accumulating evidence that phytoplasmas extensively affect plant hormone pathways. Phytoplasmas thus, with disturbing complex plant hormone networks, suppress plant immunity and modify plant structure, while optimizing their nutrient acquisition and facilitating their colonization of the plants, and their dissemination among plants by their insect vectors.
Collapse
Affiliation(s)
- Marina Dermastia
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
24
|
Agostini RB, Postigo A, Rius SP, Rech GE, Campos-Bermudez VA, Vargas WA. Long-Lasting Primed State in Maize Plants: Salicylic Acid and Steroid Signaling Pathways as Key Players in the Early Activation of Immune Responses in Silks. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:95-106. [PMID: 30253116 DOI: 10.1094/mpmi-07-18-0208-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the present study, we investigated the induced systemic resistance (ISR) activated by the beneficial fungus Trichoderma atroviride in maize plants, and the early immunological responses triggered after challenge with the ear rot pathogen Fusarium verticillioides. By transcriptional analysis, we were able to identify the gene core set specifically modulated in silks of maize plants expressing ISR. Our results showed that the main transcriptional reprogramming falls into genes involved in five main functional categories: cell structure or cell wall, amino acid and protein metabolism, stress responses, signaling, and transport. Among these ISR-related genes, it is important to highlight novel findings regarding hormone metabolism and signaling. The expression of hormone-dependent genes was in good agreement with the abscisic acid, jasmonic acid, and salicylic acid (SA) levels detected in the plants under study. The experimental design allowed the identification of novel regulatory elements related to a heightened state of defense in silks and suggests that steroids and SA are central components of a master regulatory network controlling the immunity of silks during ISR. The results presented also provide evidence about the molecular mechanisms used by maize silks against F. verticillioides to counteract pathogenic development and host invasion, including pathogenesis-related genes, plant cell-wall reinforcement, fungal cell-wall-degrading enzymes and secondary metabolism.
Collapse
Affiliation(s)
- Romina B Agostini
- 1 Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Argentina; and
| | - Agustina Postigo
- 1 Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Argentina; and
| | - Sebastian P Rius
- 1 Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Argentina; and
| | - Gabriel E Rech
- 2 Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Valeria A Campos-Bermudez
- 1 Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Argentina; and
| | - Walter A Vargas
- 1 Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Argentina; and
| |
Collapse
|
25
|
Sharma A, Rather GA, Misra P, Dhar MK, Lattoo SK. Gene Silencing and Over-Expression Studies in Concurrence With Promoter Specific Elicitations Reveal the Central Role of WsCYP85A69 in Biosynthesis of Triterpenoids in Withania somnifera (L.) Dunal. FRONTIERS IN PLANT SCIENCE 2019; 10:842. [PMID: 31333694 PMCID: PMC6624744 DOI: 10.3389/fpls.2019.00842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/12/2019] [Indexed: 05/16/2023]
Abstract
Withania somnifera (Ashwagandha) synthesizes a wide spectrum of triterpenoids that are produced via an intricate isoprenoid pathway whose biosynthetic and regulatory mechanism remains elusive. Their pharmacological examination position them as potent bioactive molecules, hence demanding their copious production. Previous investigations have revealed that P450 monooxygenases are pivotal enzymes involved in the biosynthetic machinery of various metabolites and assist in decorating their core skeletal structures. The present study entails the isolation and functional characterization of castasterone synthase (CYP85A69) from W. somnifera. The full length WsCYP85A69, having an open reading frame of 1413 bp, encodes 470 amino acid residues. Further, in vitro conversion of 6-deoxocastasterone into castasterone validated its oxidative functionality. Product formation was confirmed using LC-PDA-MS with a m/z value of 506 [M+ACN]+. In planta transient over-expression of WsCYP85A69 significantly enhanced castasterone, stigmasterol and withanolides (WS-I, WS-II, WS-III). Artificial micro-RNA mediated silencing of WsCYP85A69 resulted in the reduced accumulation of castasterone, stigmasterol and withanolides (WS-I, WS-II, WS-III). Altogether, these non-complementary approaches plausibly suggest a key role of WsCYP85A69 in the biosynthesis of castasterone and the accumulation of withanolides and stigmasterol. Furthermore, a promoter analysis of WsCYP85A69 resulted in the identification of several potential cis-regulatory elements. Elicitations, given on the basis of identified cis-regulatory elements, demonstrated methyl jasmonate as an effective inducer of WsCYP85A69. Overall, these empirical findings suggest that functional characterization of WsCYP85A69 may conceivably be helpful to unravel the mechanism of brassinosteroids biosynthesis and could also pave the way for targeted metabolic engineering.
Collapse
Affiliation(s)
- Arti Sharma
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Gulzar A. Rather
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Prashant Misra
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Manoj K. Dhar
- School of Biotechnology, Faculty of Life Sciences, University of Jammu, Jammu, India
- *Correspondence: Manoj K. Dhar,
| | - Surrinder K. Lattoo
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Surrinder K. Lattoo, ;
| |
Collapse
|
26
|
Jan S, Alyemeni MN, Wijaya L, Alam P, Siddique KH, Ahmad P. Interactive effect of 24-epibrassinolide and silicon alleviates cadmium stress via the modulation of antioxidant defense and glyoxalase systems and macronutrient content in Pisum sativum L. seedlings. BMC PLANT BIOLOGY 2018; 18:146. [PMID: 30012086 PMCID: PMC6048797 DOI: 10.1186/s12870-018-1359-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/02/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND This study assessed the effects of 24-epibrassinolide (EBL, 10-7M) and silicon (2 mM) on the alleviation of cadmium (Cd, 150 mg L-1) toxicity in Pisum sativum L. seedlings via the modulation of growth, antioxidant defense, glyoxalase system, and nutrient uptake. RESULTS Shoot and root lengths declined by 46.43% and 52.78%, respectively, following Cd stress. Shoot and root dry weights also declined with Cd toxicity. Biochemical and physiological aspects exhibit significant decline including total chlorophyll (33.09%), carotenoid (51.51%), photosynthetic efficiency (32.60%), photochemical quenching (19.04%), leaf relative water content (40.18%), and gas exchange parameters (80.65%). However, EBL or Si supplementation alone or in combination modulates the previously mentioned parameters. Cadmium stress increased proline and glycine betaine (GB) contents by 4.37 and 2.41-fold, respectively. Exposure of plants to Cd stress increased the accumulation of H2O2, malondialdehyde content, electrolyte leakage, and methylglyoxal, which declined significantly with EBL and Si supplementation, both individually and in combination. Similarly, Cd stress adversely affected enzymatic and non-enzymatic antioxidants, but EBL and/or Si supplementation maintained antioxidant levels. Glyoxalase I (GlyI) accumulated after Cd stress and increased further with the application of EBL and Si. However, GlyII content declined after Cd stress but increased with supplementation of EBL and Si. Cadmium accumulation occurred in the following order: roots > shoots>leaves. Supplementation with EBL and Si, individually and in combination reduced Cd accumulation and enhanced the uptake of macronutrients and micronutrients in shoots and roots, which declined with Cd toxicity. CONCLUSION The application of 24-EBL and Si, individually and in combination, alleviated the adverse effects of Cd by improving growth, biochemical parameters, nutrient uptake, osmolyte accumulation, and the anti-oxidative defense and glyoxalase systems in Pisum sativum seedlings.
Collapse
Affiliation(s)
- Sumira Jan
- ICAR- Central Institute of Temperate Horticulture, Rangreth, Air Field, Srinagar, Jammu, Kashmir, India
| | - Mohammed Nasser Alyemeni
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Leonard Wijaya
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Pravej Alam
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia
| | - Kadambot H Siddique
- The UWA Institute of Agriculture and School of Agriculture & Environment, The University of Western Australia, LB 5005, Perth, WA, 6001, Australia
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
- Department of Botany, S.P. College, Srinagar, Jammu, Kashmir, 190001, India.
| |
Collapse
|