1
|
Thapa K, Khan H, Chahuan S, Dhankhar S, Kaur A, Garg N, Saini M, Singh TG. Insights into therapeutic approaches for the treatment of neurodegenerative diseases targeting metabolic syndrome. Mol Biol Rep 2025; 52:260. [PMID: 39982557 DOI: 10.1007/s11033-025-10346-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
Due to the significant energy requirements of nerve cells, glucose is rapidly oxidized to generate ATP and works in conjunction with mitochondria in metabolic pathways, resulting in a combinatorial impact. The purpose of this review is to show how glucose metabolism disorder invariably disrupts the normal functioning of neurons, a phenomenon commonly observed in neurodegenerative diseases. Interventions in these systems may alleviate the degenerative load on neurons. Research on the concepts of metabolic adaptability during disease progression has become a key focus. The majority of the existing treatments are effective in mitigating some clinical symptoms, but they are unsuccessful in preventing neurodegeneration. Hence, there is an urgent need for breakthrough and highly effective therapies for neurodegenerative diseases. Here, we summarise the interactions that various neurodegenerative diseases have with abnormalities in insulin signalling, lipid metabolism, glucose control, and mitochondrial bioenergetics. These factors have a crucial role in brain activity and cognition, and also significantly contribute to neuronal degeneration in pathological conditions. In this article, we have discussed the latest and most promising treatment methods, ranging from molecular advancements to clinical trials, that aim at improving the stability of neurons.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, 174103, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Samrat Chahuan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Nitika Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Monika Saini
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | | |
Collapse
|
2
|
Moo EV, Møller TC, Sørensen FA, Inoue A, Bräuner-Osborne H. Arrestin-independent internalization of the GLP-1 receptor is facilitated by a GRK, clathrin, and caveolae-dependent mechanism. FEBS J 2025. [PMID: 39756024 DOI: 10.1111/febs.17338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/04/2024] [Accepted: 11/19/2024] [Indexed: 01/07/2025]
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) plays an important role in regulating insulin secretion and reducing body weight, making it a prominent target in the treatment of type 2 diabetes and obesity. Extensive research on GLP-1R signaling has provided insights into the connection between receptor function and physiological outcomes, such as the correlation between Gs signaling and insulin secretion, yet the exact mechanisms regulating signaling remain unclear. Here, we explore the internalization pathway of GLP-1R, which is crucial for controlling insulin release and maintaining pancreatic beta-cell function. Utilizing a reliable and sensitive time-resolved fluorescence resonance energy transfer (TR-FRET) internalization assay, combined with HEK293-derived knockout cell lines, we were able to directly compare the involvement of different endocytic machinery in GLP-1R internalization. Our findings indicate that the receptor internalizes independently of arrestin and is dependent on Gs and Gi/o activation and G protein-coupled receptor kinase phosphorylation. Mechanistically, we observed that the receptor undergoes distinct clathrin- and caveolae-mediated internalization in HEK293 cells. This study also investigated the role of arrestins in GLP-1R function and regulation. These insights into key endocytic components that are involved in the GLP-1R internalization pathway could enhance the rational design of GLP-1R therapeutics for type 2 diabetes and other GLP-1R-related diseases.
Collapse
Affiliation(s)
- Ee Von Moo
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | | | | | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | | |
Collapse
|
3
|
Olukorode JO, Orimoloye DA, Nwachukwu NO, Onwuzo CN, Oloyede PO, Fayemi T, Odunaike OS, Ayobami-Ojo PS, Divine N, Alo DJ, Alex CU. Recent Advances and Therapeutic Benefits of Glucagon-Like Peptide-1 (GLP-1) Agonists in the Management of Type 2 Diabetes and Associated Metabolic Disorders. Cureus 2024; 16:e72080. [PMID: 39574978 PMCID: PMC11579408 DOI: 10.7759/cureus.72080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
Glucagon-like peptide-1 (GLP-1) agonists have emerged as a groundbreaking class of medications for managing type 2 diabetes and associated metabolic disorders. These agents not only improve glycemic control by increasing insulin secretion and reducing glucagon levels but also promote significant weight loss, enhance cardiovascular and renal health, and offer potential neuroprotective benefits. Their multifaceted mechanisms include appetite suppression, increased energy expenditure, and direct neuroprotective effects. GLP-1 agonists have shown recent benefits in Obstructive Sleep Apnea, and the treatment of neurodegenerative diseases such as Alzheimer's and Parkinson's, as well as reducing the risk of stroke. This review highlights the therapeutic potential of GLP-1 agonists in diabetes management and beyond, advocating for continued research to optimize their clinical use and explore new therapeutic avenues.
Collapse
Affiliation(s)
- John O Olukorode
- Internal Medicine, Babcock University Teaching Hospital, Ilishan-Remo, NGA
| | | | | | - Chidera N Onwuzo
- Internal Medicine, SUNY Upstate Medical University, Syracuse, USA
- Internal Medicine, Benjamin S. Carson College of Health and Medical Sciences, Ilishan-Remo, NGA
- Internal Medicine, General Hospital Lagos Island, Lagos, NGA
| | - Praise O Oloyede
- Internal Medicine, Babcock University Teaching Hospital, Ilishan-Remo, NGA
| | - Temiloluwa Fayemi
- Internal Medicine, Babcock University Teaching Hospital, Ilishan-Remo, NGA
| | | | - Petra S Ayobami-Ojo
- Internal Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, GBR
| | - Nwachi Divine
- Internal Medicine, Babcock University Teaching Hospital, Ilishan-Remo, NGA
| | - Demilade J Alo
- Internal Medicine, Babcock University Teaching Hospital, Ilishan-Remo, NGA
| | - Chukwurah U Alex
- Internal Medicine, Danylo Halytsky Lviv National Medical University, Lviv, UKR
| |
Collapse
|
4
|
Joshi D. Incretin Therapy and Insulin Signaling: Therapeutic Targets for Diabetes And Associated Dementia. Curr Diabetes Rev 2024; 21:57-63. [PMID: 38425117 DOI: 10.2174/0115733998279875240216093902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Dementia is the primary cause of disability and dependence among the elderly population worldwide. The population living with dementia is anticipated to double in the next 17 years. Recent studies show the fact that compared to people without diabetes, people with Type 2 Diabetes (T2D) have about a 60% increased chance of developing dementia. In addition to cholinergic function being downregulated, improper insulin signalling also has a negative impact on synaptic plasticity and neuronal survival. Type 2 diabetes and dementia share various similar pathophysiological components. The ageing of the population and the ensuing rise in dementia prevalence are both results of ongoing medical advancements. It is possible that restoring insulin signaling could be a helpful therapy against dementia, as it is linked to both diminished cognitive function and the development of dementia, including AD. This review article comprehensively focused on scientific literature to analyze the relationship of Dementia with diabetes, recent experimental studies, and insight into incretin-based drug therapy for diabetes-related dementia.
Collapse
Affiliation(s)
- Deepika Joshi
- Siddhartha Institute of Pharmacy, Sahastradhara Road, Dehradun, Uttarakhand, India
- School of Pharmacy, Graphic Era Hill University, Clement Town Dehradun, Uttarakhand, India
| |
Collapse
|
5
|
Abubakar M, Nama L, Ansari MA, Ansari MM, Bhardwaj S, Daksh R, Syamala KLV, Jamadade MS, Chhabra V, Kumar D, Kumar N. GLP-1/GIP Agonist as an Intriguing and Ultimate Remedy for Combating Alzheimer's Disease through its Supporting DPP4 Inhibitors: A Review. Curr Top Med Chem 2024; 24:1635-1664. [PMID: 38803170 DOI: 10.2174/0115680266293416240515075450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a widespread neurological illness in the elderly, which impacted about 50 million people globally in 2020. Type 2 diabetes has been identified as a risk factor. Insulin and incretins are substances that have various impacts on neurodegenerative processes. Preclinical research has shown that GLP-1 receptor agonists decrease neuroinflammation, tau phosphorylation, amyloid deposition, synaptic function, and memory formation. Phase 2 and 3 studies are now occurring in Alzheimer's disease populations. In this article, we present a detailed assessment of the therapeutic potential of GLP-1 analogues and DPP4 inhibitors in Alzheimer's disease. AIM This study aimed to gain insight into how GLP-1 analogues and associated antagonists of DPP4 safeguard against AD. METHODS This study uses terms from search engines, such as Scopus, PubMed, and Google Scholar, to explore the role, function, and treatment options of the GLP-1 analogue for AD. RESULTS The review suggested that GLP-1 analogues may be useful for treating AD because they have been linked to anti-inflammatory, neurotrophic, and neuroprotective characteristics. Throughout this review, we discuss the underlying causes of AD and how GLP signaling functions. CONCLUSION With a focus on AD, the molecular and pharmacological effects of a few GLP-1/GIP analogs, both synthetic and natural, as well as DPP4 inhibitors, have been mentioned, which are in the preclinical and clinical studies. This has been demonstrated to improve cognitive function in Alzheimer's patients.
Collapse
Affiliation(s)
- Mohammad Abubakar
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Lokesh Nama
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohammad Arif Ansari
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohammad Mazharuddin Ansari
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Shivani Bhardwaj
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Rajni Daksh
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Katta Leela Venkata Syamala
- Department of Regulatory and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohini Santosh Jamadade
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Vishal Chhabra
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
- Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| |
Collapse
|
6
|
Korlipara H, Chua J, Buckholz A, Jamison J, Gonzalez A, Kumar S, Weber M, Salgado S, Sharaiha R, Newberry C. Semaglutide Is an Independent Predictor of Retained Solid Gastric Contents, but Same-Day Colonoscopy Mitigates Effect. TECHNIQUES AND INNOVATIONS IN GASTROINTESTINAL ENDOSCOPY 2024; 26:316-322. [DOI: 10.1016/j.tige.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Lei W, Cheng Y, Gao J, Liu X, Shao L, Kong Q, Zheng N, Ling Z, Hu W. Akkermansia muciniphila in neuropsychiatric disorders: friend or foe? Front Cell Infect Microbiol 2023; 13:1224155. [PMID: 37492530 PMCID: PMC10363720 DOI: 10.3389/fcimb.2023.1224155] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
An accumulating body of evidence suggests that the bacterium Akkermansia muciniphila exhibits positive systemic effects on host health, mainly by improving immunological and metabolic functions, and it is therefore regarded as a promising potential probiotic. Recent clinical and preclinical studies have shown that A. muciniphila plays a vital role in a variety of neuropsychiatric disorders by influencing the host brain through the microbiota-gut-brain axis (MGBA). Numerous studies observed that A. muciniphila and its metabolic substances can effectively improve the symptoms of neuropsychiatric disorders by restoring the gut microbiota, reestablishing the integrity of the gut mucosal barrier, regulating host immunity, and modulating gut and neuroinflammation. However, A. muciniphila was also reported to participate in the development of neuropsychiatric disorders by aggravating inflammation and influencing mucus production. Therefore, the exact mechanism of action of A. muciniphila remains much controversial. This review summarizes the proposed roles and mechanisms of A. muciniphila in various neurological and psychiatric disorders such as depression, anxiety, Parkinson's disease, Alzheimer's disease, multiple sclerosis, strokes, and autism spectrum disorders, and provides insights into the potential therapeutic application of A. muciniphila for the treatment of these conditions.
Collapse
Affiliation(s)
- Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Shandong First Medical University, Jinan, Shandong, China
| | - Yiwen Cheng
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Gao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Shao
- School of Clinical Medicine, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qingming Kong
- School of Biological Engineering, Hangzhou Medical College, Institute of Parasitic Diseases, Hangzhou, Zhejiang, China
| | - Nengneng Zheng
- Department of Obstetrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zongxin Ling
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiming Hu
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, Zhejiang, China
| |
Collapse
|
8
|
Gorgogietas V, Rajaei B, Heeyoung C, Santacreu BJ, Marín-Cañas S, Salpea P, Sawatani T, Musuaya A, Arroyo MN, Moreno-Castro C, Benabdallah K, Demarez C, Toivonen S, Cosentino C, Pachera N, Lytrivi M, Cai Y, Carnel L, Brown C, Urano F, Marchetti P, Gilon P, Eizirik DL, Cnop M, Igoillo-Esteve M. GLP-1R agonists demonstrate potential to treat Wolfram syndrome in human preclinical models. Diabetologia 2023; 66:1306-1321. [PMID: 36995380 PMCID: PMC10244297 DOI: 10.1007/s00125-023-05905-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/02/2023] [Indexed: 03/31/2023]
Abstract
AIMS/HYPOTHESIS Wolfram syndrome is a rare autosomal recessive disorder caused by pathogenic variants in the WFS1 gene. It is characterised by insulin-dependent diabetes mellitus, optic nerve atrophy, diabetes insipidus, hearing loss and neurodegeneration. Considering the unmet treatment need for this orphan disease, this study aimed to evaluate the therapeutic potential of glucagon-like peptide 1 receptor (GLP-1R) agonists under wolframin (WFS1) deficiency with a particular focus on human beta cells and neurons. METHODS The effect of the GLP-1R agonists dulaglutide and exenatide was examined in Wfs1 knockout mice and in an array of human preclinical models of Wolfram syndrome, including WFS1-deficient human beta cells, human induced pluripotent stem cell (iPSC)-derived beta-like cells and neurons from control individuals and individuals affected by Wolfram syndrome, and humanised mice. RESULTS Our study shows that the long-lasting GLP-1R agonist dulaglutide reverses impaired glucose tolerance in WFS1-deficient mice, and that exenatide and dulaglutide improve beta cell function and prevent apoptosis in different human WFS1-deficient models including iPSC-derived beta cells from people with Wolfram syndrome. Exenatide improved mitochondrial function, reduced oxidative stress and prevented apoptosis in Wolfram syndrome iPSC-derived neural precursors and cerebellar neurons. CONCLUSIONS/INTERPRETATION Our study provides novel evidence for the beneficial effect of GLP-1R agonists on WFS1-deficient human pancreatic beta cells and neurons, suggesting that these drugs may be considered as a treatment for individuals with Wolfram syndrome.
Collapse
Grants
- UH3 TR002065 NCATS NIH HHS
- U01 DK127786 NIDDK NIH HHS
- R01 DK132090 NIDDK NIH HHS
- UL1 TR000448 NCATS NIH HHS
- P60 DK020579 NIDDK NIH HHS
- P30 DK020579 NIDDK NIH HHS
- UL1 TR002345 NCATS NIH HHS
- UH2 TR002065 NCATS NIH HHS
- Pandarome project FWO and F.R.S.-FNRS under the Excellence of Science (EOS) programme
- Welbio-FNRS
- National Institutes of Health (NIH)/NIDDK
- Philanthropic supports from the Silberman Fund, the Ellie White Foundation for the Rare Genetic Disorders, the Snow Foundation, the Unravel Wolfram Syndrome Fund, the Stowe Fund, the Feiock Fund, the Cachia Fund, the Gildenhorn Fund, the Eye Hope Foundation, Ontario Wolfram League, Associazione Gentian - Sindrome di Wolfram Italia, Alianza de Familias Afectadas por el Sindrome Wolfram Spain, Wolfram syndrome UK, and Association Syndrome de Wolfram France.
- the Walloon Region SPW-EER Win2Wal project BetaSource
- National Institutes of Health Human Islet Research Network Consortium on Beta Cell Death & Survival from Pancreatic β-Cell Gene Networks to Therapy [HIRN-CBDS])
- Eye Hope Foundation
- Fonds Erasme for Medical Research
- Alianza de familias afectadas por el síndrome de Wolfram (AFASW)
- Brussels Region Innoviris (Bridge) project DiaType
- Dutch Diabetes Research Foundation (Innovate2CureType1)
- Fonds National de la Recherche Scientifique (FNRS)
- Francophone Foundation for Diabetes Research (FFRD, that is sponsored by the French Diabetes Federation, Abbott, Eli Lilly,Merck Sharp & Dohme and Novo Nordisk)
- NIH/ National Center for Advancing Translational Sciences (NCATS)
Collapse
Affiliation(s)
- Vyron Gorgogietas
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Bahareh Rajaei
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Chae Heeyoung
- Institut de Recherche Expérimental et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Université Catholique de Louvain, Bruxelles, Belgique
| | - Bruno J Santacreu
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Sandra Marín-Cañas
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Paraskevi Salpea
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Toshiaki Sawatani
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Anyishai Musuaya
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - María N Arroyo
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Khadija Benabdallah
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Celine Demarez
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Sanna Toivonen
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Cristina Cosentino
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Nathalie Pachera
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Maria Lytrivi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Ying Cai
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Cris Brown
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Fumihiko Urano
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, AOUP Cisanello University Hospital, University of Pisa, Pisa, Italy
| | - Patrick Gilon
- Institut de Recherche Expérimental et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Université Catholique de Louvain, Bruxelles, Belgique
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
9
|
Cooper DH, Ramachandra R, Ceban F, Di Vincenzo JD, Rhee TG, Mansur RB, Teopiz KM, Gill H, Ho R, Cao B, Lui LMW, Jawad MY, Arsenault J, Le GH, Ramachandra D, Guo Z, McIntyre RS. Glucagon-like peptide 1 (GLP-1) receptor agonists as a protective factor for incident depression in patients with diabetes mellitus: A systematic review. J Psychiatr Res 2023; 164:80-89. [PMID: 37331261 DOI: 10.1016/j.jpsychires.2023.05.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/20/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023]
Abstract
Glucagon-like peptide 1 (GLP-1) receptor agonists are widely used for glycemic control in patients with diabetes mellitus (DM) and are primarily indicated for type 2 diabetes mellitus (T2DM). GLP-1 receptor agonists have also been shown to have neuroprotective and antidepressant properties. Replicated evidence suggests that individuals with DM are significantly more likely to develop depression. Herein, we aim to investigate whether GLP-1 receptor agonists can be used prophylactically on patients with DM to lower the risk of incident depression. We conducted a systematic search for English-language articles published on the PubMed/MEDLINE, Scopus, Embase, APA, PsycInfo, Ovid and Google Scholar databases from inception to June 6, 2022. Four retrospective observational studies were identified that evaluated the neuroprotective effects of GLP-1 receptor agonists on incident depression in patients with DM. We found mixed results with regards to lowering the risk of incident depression, with two studies demonstrating a significant reduction in risk and two studies showing no such effect. A single study found that dulaglutide may lower susceptibility to depression. Our results were limited by high interstudy heterogeneity, paucity of literature, and lack of controlled trials. While we did not find evidence of GLP-1 receptor agonists significantly lowering risk of incident depression in patients with DM, promising neuroprotective data presented in two of the included papers, specifically on dulaglutide where information is scarce, provide the impetus for further investigation. Future research should focus on better elucidating the neuroprotective potential of different classes and doses of GLP-1 receptor agonists using controlled trials.
Collapse
Affiliation(s)
- Daniel H Cooper
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada.
| | - Ranuk Ramachandra
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada.
| | - Felicia Ceban
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada.
| | - Joshua D Di Vincenzo
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada.
| | - Taeho Greg Rhee
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA; VA New England Mental Illness, Research, Education and Clinical Center (MIRECC), VA Connecticut Healthcare System, West Haven, CT, USA; Department of Public Health Sciences, School of Medicine, University of Connecticut, Farmington, CT, USA.
| | - Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, ON, Canada.
| | - Kayla M Teopiz
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada.
| | - Hartej Gill
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, ON, Canada.
| | - Roger Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, Singapore.
| | - Bing Cao
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, 400715, PR China.
| | - Leanna M W Lui
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, ON, Canada.
| | | | - Juliet Arsenault
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada.
| | - Gia Han Le
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada.
| | - Diluk Ramachandra
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada.
| | - Ziji Guo
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Wasim R, Ansari TM, Siddiqui MH, Ahsan F, Shamim A, Singh A, Shariq M, Anwar A, Siddiqui AR, Parveen S. Repurposing of Drugs for Cardiometabolic Disorders: An Out and Out Cumulation. Horm Metab Res 2023; 55:7-24. [PMID: 36599357 DOI: 10.1055/a-1971-6965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cardiometabolic disorders (CMD) is a constellation of metabolic predisposing factors for atherosclerosis such as insulin resistance (IR) or diabetes mellitus (DM), systemic hypertension, central obesity, and dyslipidemia. Cardiometabolic diseases (CMDs) continue to be the leading cause of mortality in both developed and developing nations, accounting for over 32% of all fatalities globally each year. Furthermore, dyslipidemia, angina, arrhythmia, heart failure, myocardial infarction (MI), and diabetes mellitus are the major causes of death, accounting for an estimated 19 million deaths in 2012. CVDs will kill more than 23 million individuals each year by 2030. Nonetheless, new drug development (NDD) in CMDs has been increasingly difficult in recent decades due to increased costs and a lower success rate. Drug repositioning in CMDs looks promising in this scenario for launching current medicines for new therapeutic indications. Repositioning is an ancient method that dates back to the 1960s and is mostly based on coincidental findings during medication trials. One significant advantage of repositioning is that the drug's safety profile is well known, lowering the odds of failure owing to undesirable toxic effects. Furthermore, repositioning takes less time and money than NDD. Given these facts, pharmaceutical corporations are becoming more interested in medication repositioning. In this follow-up, we discussed the notion of repositioning and provided some examples of repositioned medications in cardiometabolic disorders.
Collapse
Affiliation(s)
| | | | | | - Farogh Ahsan
- Pharmacology, Integral University, Lucknow, India
| | | | - Aditya Singh
- Pharmaceutics, Integral University, Lucknow, India
| | | | - Aamir Anwar
- Pharmacy, Integral University, Lucknow, India
| | | | - Saba Parveen
- Pharmacology, Integral University, Lucknow, India
| |
Collapse
|
11
|
GLP-1 Receptor Agonists in Neurodegeneration: Neurovascular Unit in the Spotlight. Cells 2022; 11:cells11132023. [PMID: 35805109 PMCID: PMC9265397 DOI: 10.3390/cells11132023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Defects in brain energy metabolism and proteopathic stress are implicated in age-related degenerative neuronopathies, exemplified by Alzheimer’s disease (AD) and Parkinson’s disease (PD). As the currently available drug regimens largely aim to mitigate cognitive decline and/or motor symptoms, there is a dire need for mechanism-based therapies that can be used to improve neuronal function and potentially slow down the underlying disease processes. In this context, a new class of pharmacological agents that achieve improved glycaemic control via the glucagon-like peptide 1 (GLP-1) receptor has attracted significant attention as putative neuroprotective agents. The experimental evidence supporting their potential therapeutic value, mainly derived from cellular and animal models of AD and PD, has been discussed in several research reports and review opinions recently. In this review article, we discuss the pathological relevance of derangements in the neurovascular unit and the significance of neuron–glia metabolic coupling in AD and PD. With this context, we also discuss some unresolved questions with regard to the potential benefits of GLP-1 agonists on the neurovascular unit (NVU), and provide examples of novel experimental paradigms that could be useful in improving our understanding regarding the neuroprotective mode of action associated with these agents.
Collapse
|
12
|
Yang X, Feng P, Ji R, Ren Y, Wei W, Hölscher C. Therapeutic application of GLP-1 and GIP receptor agonists in Parkinson's disease. Expert Opin Ther Targets 2022; 26:445-460. [PMID: 35584372 DOI: 10.1080/14728222.2022.2079492] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Diabetes is a risk factor for Parkinson's disease (PD) and shares similar dysregulated insulin pathways. Glucagon-like peptide-1 (GLP-1) analogs originally designed to treat diabetes have shown potent neuroprotective activity in preclinical studies of PD. They are neuroprotective by inhibiting inflammation, improving neuronal survival, maintenance of synapses, and dopaminergic transmission in the brain. Building on this, three clinical studies have reported impressive effects in patients with PD, testing exendin-4 (Exenatide, Bydureon) or liraglutide (Victoza, Saxenda). Glucose-dependent insulinotropic peptide (GIP) is another peptide hormone that has shown good effects in animal models of PD. Novel dual GLP-1/GIP agonists have been developed that can penetrate the blood-brain barrier (BBB) and show superior effects in animal models compared to GLP-1 drugs. AREAS COVERED The review summarizes preclinical and clinical studies testing GLP-1R agonists and dual GLP-1/GIPR agonists in PD and discusses possible mechanisms of action. EXPERT OPINION Current strategies to treat PD by lowering the levels of alpha-synuclein have not shown effects in clinical trials. It is time to move on from the 'misfolding protein' hypothesis. Growth factors such as GLP-1 that can cross the BBB have already shown impressive effects in patients and are the future of drug discovery in PD.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan' an Road, Shanghai, China
| | - Peng Feng
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan, 030001, Shanxi Province, China
| | - Rong Ji
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan' an Road, Shanghai, China
| | - Yiqing Ren
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan' an Road, Shanghai, China
| | - Wenshi Wei
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan' an Road, Shanghai, China
| | - Christian Hölscher
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan, 030001, Shanxi Province, China.,Academy of Chinese Medical Science, Henan University of Traditional Chinese Medicine, No. 233 Zhongyuan Road, Zhengzhou, China
| |
Collapse
|
13
|
Zhu C, Li H, Kong X, Wang Y, Sun T, Wang F. Possible Mechanisms Underlying the Effects of Glucagon-Like Peptide-1 Receptor Agonist on Cocaine Use Disorder. Front Pharmacol 2022; 13:819470. [PMID: 35300299 PMCID: PMC8921771 DOI: 10.3389/fphar.2022.819470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Cocaine use disorder (CUD) is a major public health challenge with a high relapse rate and lack of effective pharmacotherapies; therefore, there is a substantial need to identify novel medications to treat this epidemic. Since the advent of glucagon-like peptide-1 (GLP-1) receptors (GLP-1Rs) agonists (GLP-1RAs), their potential has been extensively explored and expanded. In this review, we first summarized the biological effects of GLP-1, GLP-1Rs, and GLP-1RAs. Subsequently, the recent literature examining the behavioral effects and the possible pharmacological mechanisms of GLP-1RAs on CUD was reviewed. Increasing preclinical evidence suggests that GLP-1RAs are promising in regulating dopamine release, dopamine transporter (DAT) surface expression and function, mesolimbic reward system and GABAergic neurons, and maladaptive behaviors in animal models of self-administration and conditioned place preference. In addition, the emerging role of GLP-1RAs in inhibiting inflammatory cytokines was reported. These findings indicate that GLP-1RAs perform essential functions in the modulation of cocaine-seeking and cocaine-taking behaviors likely through multifaceted mechanisms. Although the current preclinical evidence provides convincing evidence to support GLP-1RA as a promising pharmacotherapy for CUD, other questions concerning clinical availability, impact and specific mechanisms remain to be addressed in further studies.
Collapse
Affiliation(s)
- Changliang Zhu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, Yinchuan, China.,Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Hailiang Li
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, Yinchuan, China.,Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Xuerui Kong
- Ningxia Key Laboratory of Cerebrocranial Disease, Yinchuan, China.,Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Yezhong Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, Yinchuan, China.,Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Yinchuan, China.,Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Shah S, Dooms MM, Amaral-Garcia S, Igoillo-Esteve M. Current Drug Repurposing Strategies for Rare Neurodegenerative Disorders. Front Pharmacol 2022; 12:768023. [PMID: 34992533 PMCID: PMC8724568 DOI: 10.3389/fphar.2021.768023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Rare diseases are life-threatening or chronically debilitating low-prevalent disorders caused by pathogenic mutations or particular environmental insults. Due to their high complexity and low frequency, important gaps still exist in their prevention, diagnosis, and treatment. Since new drug discovery is a very costly and time-consuming process, leading pharmaceutical companies show relatively low interest in orphan drug research and development due to the high cost of investments compared to the low market return of the product. Drug repurposing–based approaches appear then as cost- and time-saving strategies for the development of therapeutic opportunities for rare diseases. In this article, we discuss the scientific, regulatory, and economic aspects of the development of repurposed drugs for the treatment of rare neurodegenerative disorders with a particular focus on Huntington’s disease, Friedreich’s ataxia, Wolfram syndrome, and amyotrophic lateral sclerosis. The role of academia, pharmaceutical companies, patient associations, and foundations in the identification of candidate compounds and their preclinical and clinical evaluation will also be discussed.
Collapse
Affiliation(s)
- Sweta Shah
- Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | |
Collapse
|
15
|
Du H, Meng X, Yao Y, Xu J. The mechanism and efficacy of GLP-1 receptor agonists in the treatment of Alzheimer's disease. Front Endocrinol (Lausanne) 2022; 13:1033479. [PMID: 36465634 PMCID: PMC9714676 DOI: 10.3389/fendo.2022.1033479] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Abstract
Since type 2 diabetes mellitus (T2DM) is a risk factor for Alzheimer's disease (AD) and both have the same pathogenesis (e.g., insulin resistance), drugs used to treat T2DM have been gradually found to reduce the progression of AD in AD models. Of these drugs, glucagon-like peptide 1 receptor (GLP-1R) agonists are more effective and have fewer side effects. GLP-1R agonists have reducing neuroinflammation and oxidative stress, neurotrophic effects, decreasing Aβ deposition and tau hyperphosphorylation in AD models, which may be a potential drug for the treatment of AD. However, this needs to be verified by further clinical trials. This study aims to summarize the current information on the mechanisms and effects of GLP-1R agonists in AD.
Collapse
Affiliation(s)
- Haiyang Du
- Division of Orthopedics, Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyu Meng
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Yu Yao
- Division of Orthopedics, Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun Xu
- Division of Orthopedics, Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Jun Xu,
| |
Collapse
|
16
|
Abhangi KV, Patel JI. Neuroprotective effects of linagliptin in a rotenone-induced rat model of Parkinson's disease. Indian J Pharmacol 2022; 54:46-50. [PMID: 35343207 PMCID: PMC9012419 DOI: 10.4103/ijp.ijp_384_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The present study investigates the antiParkinsonian activity of dipeptidyl peptidase-4 (DPP-IV) inhibitor, linagliptin. The experimental Parkinson's disease (PD) was induced by administration of rotenone at a dose of 1.5 mg/kg at alternate day subcutaneously for 21 days. Standard drug (levodopa-200 mg/kg and carbidopa-50 mg/kg) and treatment drug (linagliptin-5 mg/kg, 10 mg/kg, and 20mg/kg) were administered orally daily 1 h before rotenone administration. In a rat rotenone model, linagliptin improved muscle coordination, motor performance, and corrected akinesia. Pretreatment with linagliptin showed significant higher levels of superoxide dismutase, catalase, and glutathione in brain homogenate of animals. Linagliptin significantly elevated the levels of striatal DA and active glucagon-like peptide 1 in brain homogenate of animals. Furthermore, linagliptin amended alterations induced by rotenone in the thiobarbituric acid reactive substances and inflammatory marker such as tumor necrosis factor-α level. The results of the present study indicate the neuroprotective potential of linagliptin for the management of PD might be due to remarkable improvement in motor functions, antioxidant, anti-inflammatory, anti-apoptotic, and neuroprotective mechanisms.
Collapse
Affiliation(s)
- Kinjal V Abhangi
- Department of Pharmacology, B. K. Mody Government Pharmacy College, Rajkot, Gujarat, India
| | | |
Collapse
|
17
|
Luo J, Zhang H, Lu J, Ma C, Chen T. Antidiabetic effect of an engineered bacterium Lactobacillus plantarum-pMG36e -GLP-1 in monkey model. Synth Syst Biotechnol 2021; 6:272-282. [PMID: 34584995 PMCID: PMC8455315 DOI: 10.1016/j.synbio.2021.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/12/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) reduces postprandial hyperglycaemia, but its short half-life inhibits clinical application. The aim of the current study was to evaluate the treatment efforts of an engineered strain, Lactobacillus plantarum-pMG36e-GLP-1 (L. plantarum-pMG36e-GLP-1), that continuously expresses GLP-1 in spontaneous type 2 diabetes mellitus (T2DM) monkeys. After 7 weeks of oral supplementation with L. plantarum-pMG36e-GLP-1, the fasting blood glucose (FPG) of monkeys was significantly (p < 0.05) reduced to a normal level and only a small amount of weight was lost. The results of metagenomic sequencing showed that L. plantarum-pMG36e-GLP-1 caused a substantial (p < 0.05) reduction in the intestinal pathogen Prevotella and marked enhancement of butyrate-producing Alistipes genera. According to the functional analysis using Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways, 19 metabolism-related pathways were significantly enriched in T2DM monkeys after treatment with L. plantarum-pMG36e-GLP-1. LC-MS faecal metabolomics analysis found 41 significant differential metabolites (11 higher and 30 lower) in monkeys after treatment pathways linked to the metabolism of cofactors and vitamins were the most relevant. The present study suggests that L. plantarum-pMG36e-GLP-1 had an impact on the gut microbial composition and faecal metabolomic profile in spontaneous T2DM monkeys and may be a novel candidate for diabetes treatment.
Collapse
Affiliation(s)
- Jie Luo
- School of Public Health and Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330031, China
| | - Hongfei Zhang
- Institute of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Jiachen Lu
- School of Queen Mary, Nanchang University, Nanchang, 330031, China
| | - ChaoLin Ma
- Institute of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, The First Affiliated Hospital, Nanchang University, 1299 Xuefu Road, Honggu District, Nanchang, 330031, PR China
| |
Collapse
|
18
|
Sim AY, Barua S, Kim JY, Lee YH, Lee JE. Role of DPP-4 and SGLT2 Inhibitors Connected to Alzheimer Disease in Type 2 Diabetes Mellitus. Front Neurosci 2021; 15:708547. [PMID: 34489627 PMCID: PMC8417940 DOI: 10.3389/fnins.2021.708547] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by memory loss and cognitive decline. Additionally, abnormal extracellular amyloid plaques accumulation and nerve damage caused by intracellular neurofibrillary tangles, and tau protein are characteristic of AD. Furthermore, AD is associated with oxidative stress, impaired mitochondrial structure and function, denormalization, and inflammatory responses. Recently, besides the amyloid β hypothesis, another hypothesis linking AD to systemic diseases has been put forth by multiple studies as a probable cause for AD. Particularly, type 2 diabetes mellitus (T2DM) and its features, including hyperinsulinemia, and chronic hyperglycemia with an inflammatory response, have been shown to be closely related to AD through insulin resistance. The brain cannot synthesize or store glucose, but it does require glucose, and the use of glucose in the brain is higher than that in any other organ in the mammalian body. One of the therapeutic drugs for T2DM, dipeptidyl peptidase-4 (DPP-4) inhibitor, suppresses the degradation of incretins, glucagon-like peptides and glucose-dependent insulinotropic peptide. Sodium-glucose cotransporter 2 (SGLT2) inhibitors, recently used in T2DM treatment, have a unique mechanism of action via inhibition of renal glucose reabsorption, and which is different from the mechanisms of previously used medications. This manuscript reviews the pathophysiological relationship between the two diseases, AD and T2DM, and the pharmacological effects of therapeutic T2DM drugs, especially DPP-4 inhibitors, and SGLT2 inhibitors.
Collapse
Affiliation(s)
- A Young Sim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sumit Barua
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong-Ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
19
|
Zhu C, Tao H, Rong S, Xiao L, Li X, Jiang S, Guo B, Wang L, Ding J, Gao C, Chang H, Sun T, Wang F. Glucagon-Like Peptide-1 Analog Exendin-4 Ameliorates Cocaine-Mediated Behavior by Inhibiting Toll-Like Receptor 4 Signaling in Mice. Front Pharmacol 2021; 12:694476. [PMID: 34349653 PMCID: PMC8327264 DOI: 10.3389/fphar.2021.694476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Exendin-4 (Ex4), a long-lasting glucagon-like peptide-1 analog, was reported to exert favourable actions on inhibiting cocaine-associated rewarding and reinforcing effects of drug in animal models of addiction. However, the therapeutic potential of different dose of GLP-1 receptor agonist Ex4 in different behavioral paradigms and the underlying pharmacological mechanisms of action are incompletely understood. Herein, we firstly investigated the effects of Ex4 on cocaine-induced condition place preference (CPP) as well as extinction and reinstatement in male C57BL/6J mice. Additionally, we sought to elucidate the underlying pharmacological mechanism of these actions of Ex4. The paradigm of cocaine-induced CPP was established using 20 mg/kg cocaine or saline alternately during conditioning, while the reinstatement paradigm was modeled using 10 mg/kg cocaine on the reinstatement day. Different dose of Ex4 was administrated intraperitoneally either during conditioning or during extinction state or only on the test day. To elucidate the molecular mechanism underlying the potential effects of Ex4 on maladaptive behaviors of cocaine, the TLR4-related inflammation within the hippocampus was observed by immunofluorescence staining, and the expression levels of toll-like receptor 4 (TLR4), tumor necrosis factor (TNF)-α, and interleukin (IL)-1β were detected by Western blotting. As a consequence, systemic administration of different dose of Ex4 was sufficient to inhibit the acquisition and expression of cocaine-induced CPP, facilitate the extinction of cocaine-associated reward and attenuate reinstatement of cocaine-induced behavior. Furthermore, Ex4 treatment diminished expression levels of TLR4, TNF-α, and IL-1β, which were up-regulated by cocaine exposure. Altogether, our results indicated that Ex4 effectively ameliorated cocaine-induced behaviors likely through neurobiological mechanisms partly attributable to the inhibition of TLR4, TNF-α and IL-1β in mice. Consequently, our findings improved our understanding of the efficacy of Ex4 for the amelioration of cocaine-induced behavior and suggested that Ex4 may be applied as a drug candidate for cocaine addiction.
Collapse
Affiliation(s)
- Changliang Zhu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Hong Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shikuo Rong
- Department of General Surgery, Chengdu Second Hospital, Chendu, China
| | - Lifei Xiao
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Xinxiao Li
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Shucai Jiang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Baorui Guo
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Lei Wang
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Jiangwei Ding
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Caibing Gao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Haigang Chang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Mehta K, Behl T, Kumar A, Uddin MS, Zengin G, Arora S. Deciphering the Neuroprotective Role of Glucagon-like Peptide-1 Agonists in Diabetic Neuropathy: Current Perspective and Future Directions. Curr Protein Pept Sci 2021; 22:4-18. [PMID: 33292149 DOI: 10.2174/1389203721999201208195901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/15/2020] [Accepted: 11/25/2020] [Indexed: 11/22/2022]
Abstract
Diabetic neuropathy is referred to as a subsequential and debilitating complication belonging to type 1 and type 2 diabetes mellitus. It is a heterogeneous group of disorders with a particularly complex pathophysiology and also includes multiple forms, ranging from normal discomfort to death. The evaluation of diabetic neuropathy is associated with hyperglycemic responses, resulting in an alteration in various metabolic pathways, including protein kinase C pathway, polyol pathway and hexosamine pathway in Schwann and glial cells of neurons. The essential source of neuronal destruction is analogous to these respective metabolic pathways, thus identified as potential therapeutic targets. These pathways regulating therapeutic medications may be used for diabetic neuropathy, however, only target specific drugs could have partial therapeutic activity. Various antidiabetic medications have been approved and marketed, which possess the therapeutic ability to control hyperglycemia and ameliorate the prevalence of diabetic neuropathy. Among all antidiabetic medications, incretin therapy, including Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors, are the most favorable medications for the management of diabetes mellitus and associated peripheral neuropathic complications. Besides enhancing glucose-evoked insulin release from pancreatic β-cells, these therapeutic agents also play a vital role to facilitate neurite outgrowth and nerve conduction velocity in dorsal root ganglion. Furthermore, incretin therapy also activates cAMP and ERK signalling pathways, resulting in nerve regeneration and repairing. These effects are evidently supported by a series of preclinical data and investigations associated with these medications. However, the literature lacks adequate clinical trial outcomes related to these novel antidiabetic medications. The manuscript emphasizes the pathogenesis, current pharmacological approaches and vivid description of preclinical and clinical data for the effective management of diabetic neuropathy.
Collapse
Affiliation(s)
- Keshav Mehta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - M Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk Uniersity Campus, Konya, Turkey
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
21
|
Cheng Y, Liu J, Ling Z. Short-chain fatty acids-producing probiotics: A novel source of psychobiotics. Crit Rev Food Sci Nutr 2021; 62:7929-7959. [PMID: 33955288 DOI: 10.1080/10408398.2021.1920884] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Psychobiotics-live microorganisms with potential mental health benefits, which can modulate the microbiota-gut-brain-axis via immune, humoral, neural, and metabolic pathways-are emerging as novel therapeutic options for the effective treatment of psychiatric disorders Recently, microbiome studies have identified numerous putative psychobiotic strains, of which short-chain fatty acids (SCFAs) producing bacteria have attracted special attention from neurobiologists. Recent studies have highlighted that SCFAs-producing bacteria such as Lactobacillus, Bifidobacterium and Clostridium have a very specific function in various psychiatric disorders, suggesting that these bacteria can be potential novel psychobiotics. SCFAs, potential mediators of microbiota-gut-brain axis, might modulate function of neurological processes. While the specific roles and mechanisms of SCFAs-producing bacteria of microbiota-targeted interventions on neuropsychiatric disease are largely unknown. This Review summarizes existing knowledge on the neuroprotective effects of the SCFAs-producing bacteria in neurological disorders via modulating microbiota-gut-brain axis and illustrate their possible mechanisms by which SCFAs-producing bacteria may act on these disorders, which will shed light on the SCFAs-producing bacteria as a promising novel source of psychobiotics.
Collapse
Affiliation(s)
- Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Institute of Microbe & Host Health, Linyi University, Linyi, Shandong, China
| |
Collapse
|
22
|
Nauck MA, Quast DR, Wefers J, Meier JJ. GLP-1 receptor agonists in the treatment of type 2 diabetes - state-of-the-art. Mol Metab 2021; 46:101102. [PMID: 33068776 PMCID: PMC8085572 DOI: 10.1016/j.molmet.2020.101102] [Citation(s) in RCA: 744] [Impact Index Per Article: 186.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND GLP-1 receptor agonists (GLP-1 RAs) with exenatide b.i.d. first approved to treat type 2 diabetes in 2005 have been further developed to yield effective compounds/preparations that have overcome the original problem of rapid elimination (short half-life), initially necessitating short intervals between injections (twice daily for exenatide b.i.d.). SCOPE OF REVIEW To summarize current knowledge about GLP-1 receptor agonist. MAJOR CONCLUSIONS At present, GLP-1 RAs are injected twice daily (exenatide b.i.d.), once daily (lixisenatide and liraglutide), or once weekly (exenatide once weekly, dulaglutide, albiglutide, and semaglutide). A daily oral preparation of semaglutide, which has demonstrated clinical effectiveness close to the once-weekly subcutaneous preparation, was recently approved. All GLP-1 RAs share common mechanisms of action: augmentation of hyperglycemia-induced insulin secretion, suppression of glucagon secretion at hyper- or euglycemia, deceleration of gastric emptying preventing large post-meal glycemic increments, and a reduction in calorie intake and body weight. Short-acting agents (exenatide b.i.d., lixisenatide) have reduced effectiveness on overnight and fasting plasma glucose, but maintain their effect on gastric emptying during long-term treatment. Long-acting GLP-1 RAs (liraglutide, once-weekly exenatide, dulaglutide, albiglutide, and semaglutide) have more profound effects on overnight and fasting plasma glucose and HbA1c, both on a background of oral glucose-lowering agents and in combination with basal insulin. Effects on gastric emptying decrease over time (tachyphylaxis). Given a similar, if not superior, effectiveness for HbA1c reduction with additional weight reduction and no intrinsic risk of hypoglycemic episodes, GLP-1RAs are recommended as the preferred first injectable glucose-lowering therapy for type 2 diabetes, even before insulin treatment. However, GLP-1 RAs can be combined with (basal) insulin in either free- or fixed-dose preparations. More recently developed agents, in particular semaglutide, are characterized by greater efficacy with respect to lowering plasma glucose as well as body weight. Since 2016, several cardiovascular (CV) outcome studies have shown that GLP-1 RAs can effectively prevent CV events such as acute myocardial infarction or stroke and associated mortality. Therefore, guidelines particularly recommend treatment with GLP-1 RAs in patients with pre-existing atherosclerotic vascular disease (for example, previous CV events). The evidence of similar effects in lower-risk subjects is not quite as strong. Since sodium/glucose cotransporter-2 (SGLT-2) inhibitor treatment reduces CV events as well (with the effect mainly driven by a reduction in heart failure complications), the individual risk of ischemic or heart failure complications should guide the choice of treatment. GLP-1 RAs may also help prevent renal complications of type 2 diabetes. Other active research areas in the field of GLP-1 RAs are the definition of subgroups within the type 2 diabetes population who particularly benefit from treatment with GLP-1 RAs. These include pharmacogenomic approaches and the characterization of non-responders. Novel indications for GLP-1 RAs outside type 2 diabetes, such as type 1 diabetes, neurodegenerative diseases, and psoriasis, are being explored. Thus, within 15 years of their initial introduction, GLP-1 RAs have become a well-established class of glucose-lowering agents that has the potential for further development and growing impact for treating type 2 diabetes and potentially other diseases.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany.
| | - Daniel R Quast
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Jakob Wefers
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Juris J Meier
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
23
|
Nutma S, le Feber J, Hofmeijer J. Neuroprotective Treatment of Postanoxic Encephalopathy: A Review of Clinical Evidence. Front Neurol 2021; 12:614698. [PMID: 33679581 PMCID: PMC7930064 DOI: 10.3389/fneur.2021.614698] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
Postanoxic encephalopathy is the key determinant of death or disability after successful cardiopulmonary resuscitation. Animal studies have provided proof-of-principle evidence of efficacy of divergent classes of neuroprotective treatments to promote brain recovery. However, apart from targeted temperature management (TTM), neuroprotective treatments are not included in current care of patients with postanoxic encephalopathy after cardiac arrest. We aimed to review the clinical evidence of efficacy of neuroprotective strategies to improve recovery of comatose patients after cardiac arrest and to propose future directions. We performed a systematic search of the literature to identify prospective, comparative clinical trials on interventions to improve neurological outcome of comatose patients after cardiac arrest. We included 53 studies on 21 interventions. None showed unequivocal benefit. TTM at 33 or 36°C and adrenaline (epinephrine) are studied most, followed by xenon, erythropoietin, and calcium antagonists. Lack of efficacy is associated with heterogeneity of patient groups and limited specificity of outcome measures. Ongoing and future trials will benefit from systematic collection of measures of baseline encephalopathy and sufficiently powered predefined subgroup analyses. Outcome measurement should include comprehensive neuropsychological follow-up, to show treatment effects that are not detectable by gross measures of functional recovery. To enhance translation from animal models to patients, studies under experimental conditions should adhere to strict methodological and publication guidelines.
Collapse
Affiliation(s)
- Sjoukje Nutma
- Department of Neurology, Medisch Spectrum Twente, Enschede, Netherlands
- Clinical Neurophysiology, University of Twente, Enschede, Netherlands
| | - Joost le Feber
- Clinical Neurophysiology, University of Twente, Enschede, Netherlands
| | - Jeannette Hofmeijer
- Clinical Neurophysiology, University of Twente, Enschede, Netherlands
- Department of Neurology, Rijnstate Hospital Arnhem, Arnhem, Netherlands
| |
Collapse
|
24
|
Adelusi TI, Akinbolaji GR, Yin X, Ayinde KS, Olaoba OT. Neurotrophic, anti-neuroinflammatory, and redox balance mechanisms of chalcones. Eur J Pharmacol 2020; 891:173695. [PMID: 33121951 DOI: 10.1016/j.ejphar.2020.173695] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/14/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023]
Abstract
The passage of time that evoke aging; the tilted redox balance that contribute oxidative entropy; the polarization of microglia cells that produce inflammatory phenotype; all represent the intricacies of CNS-dependent disease progression. Neurological diseases that result from CNS injury raise social concerns and the available therapeutic strategies are frustrated by low efficacy, high toxicity, and multiple side effects. However, emergent studies have shown the neuroprotective role of natural compounds - including chalcones - with high efficacy in the protection of CNS structures. These compounds reportedly demonstrate neurotrophic mechanism through the upregulation of neurotrophic factors, anti-apoptotic Bcl-2, and downregulation of Bax protein; anti-neuroinflammatory mechanism via the inhibition of neuroinflammatory pathways, attenuated secretion of pro-inflammatory cytokines, prevention of blood brain barrier (BBB) disruption, and protection against nerve senescence; antioxidant mechanism through the upregulation of Nrf2 activities, inhibition of Keap1, synthesis of antioxidant enzymes, and maintenance of high antioxidant/oxidant ratio. All these mechanisms represent chalcones' neuroprotective mechanisms. In this review, we highlight different pathways involved in CNS-related diseases and elucidate various mechanisms by which chalcones can perturb these shunts as a potential therapeutic modality.
Collapse
Affiliation(s)
- Temitope Isaac Adelusi
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Gbemisola Rebecca Akinbolaji
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | | | - Olamide Tosin Olaoba
- Laboratory of Functional and Structural Biochemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, São Paulo, Brazil.
| |
Collapse
|
25
|
Beneficial Effects of Glucagon-Like Peptide-1 (GLP-1) in Diabetes-Induced Retinal Abnormalities: Involvement of Oxidative Stress. Antioxidants (Basel) 2020; 9:antiox9090846. [PMID: 32927585 PMCID: PMC7554849 DOI: 10.3390/antiox9090846] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Hyperglycemia-induced oxidative stress plays a key role in diabetic complications, including diabetic retinopathy. The main goal of this study was to assess whether the topical administration (eye drops) of glucagon-like peptide-1 (GLP-1) has any effect on oxidative stress in the retina. Methods: db/db mice were treated with eye drops of GLP-1 or vehicle for three weeks, with db/+ mice being used as control. Studies included the assessment by western blot of the antioxidant defense markers CuZnSOD, MnSOD, glutathione peroxidase and reductase; immunofluorescence measurements of DNA/RNA damage, nitro tyrosine and Ki67 and Babam2 proteins. Results: GLP-1 eye drops protected from oxidative stress by increasing the protein levels of glutathione reductase, glutathione peroxidase and CuZnSOD and MnSOD in diabetic retinas. This was associated with a significant reduction of DNA/RNA damage and the activation of proteins involved in DNA repair in the retina (Babam2) and Ki67 (a biomarker of cell proliferation). Conclusions: GLP-1 modulates the antioxidant defense system in the diabetic retina and has a neuroprotective action favoring DNA repair and neuron cells proliferation.
Collapse
|
26
|
Markaki I, Winther K, Catrina SB, Svenningsson P. Repurposing GLP1 agonists for neurodegenerative diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:91-112. [PMID: 32854860 DOI: 10.1016/bs.irn.2020.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is a large unmet medical need to find disease modifying therapies against neurodegenerative diseases. This review summarizes data indicating that insulin resistance occurs in neurodegeneration and strategies to normalize insulin sensitivity in neurons may provide neuroprotective actions. In particular, recent preclinical and clinical studies in Parkinson's disease and Alzheimer's disease have indicated that glucagon-like peptide 1 (GLP1) agonism and dipeptidyl peptidase-4 inhibition may exert neuroprotection. Mechanistic insights from these studies and future directions for drug development against neurodegeneration based on GLP1 agonism are discussed.
Collapse
Affiliation(s)
- Ioanna Markaki
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Center of Neurology, Academic Specialist Center, Stockholm, Sweden.
| | - Kristian Winther
- Center of Diabetes, Academic Specialist Center, Stockholm, Sweden
| | - Sergiu-Bogdan Catrina
- Center of Diabetes, Academic Specialist Center, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Center of Neurology, Academic Specialist Center, Stockholm, Sweden; Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
27
|
Ferrari F, Moretti A, Villa RF. The treament of hyperglycemia in acute ischemic stroke with incretin-based drugs. Pharmacol Res 2020; 160:105018. [PMID: 32574826 DOI: 10.1016/j.phrs.2020.105018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/21/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
Stroke is a major cause of mortality and morbidity worldwide. Considerable experimental and clinical evidence suggests that both diabetes mellitus (DM) and post-stroke hyperglycemia are associated with increased mortality rate and worsened clinical conditions in acute ischemic stroke (AIS) patients. Insulin treatment does not seem to provide convincing benefits for these patients, therefore prompting a change of strategy. The selective agonists of Glucagon-Like Peptide-1 Receptors (GLP-1Ras) and the Inhibitors of Dipeptidyl Peptidase-IV (DPP-IVIs, gliptins) are two newer classes of glucose-lowering drugs used for the treatment of DM. This review examines in detail the rationale for their development and the physicochemical, pharmacokinetic and pharmacodynamic properties and clinical activities. Emphasis will be placed on their neuroprotective effects at cellular and molecular levels in experimental models of acute cerebral ischemia. In perspective, an adequate basis does exist for a novel therapeutic approach to hyperglycemia in AIS patients through the additive treatment with GLP-1Ras plus DPP-IVIs.
Collapse
Affiliation(s)
- Federica Ferrari
- Department of Advanced Diagnostic and Therapeutic Technologies, Section of Neuroradiology, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162 Milano, Italy; Departments of Biology-Biotechnology and Chemistry, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Antonio Moretti
- Departments of Biology-Biotechnology and Chemistry, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Roberto Federico Villa
- Departments of Biology-Biotechnology and Chemistry, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy.
| |
Collapse
|
28
|
DPP-4 Inhibitor Linagliptin is Neuroprotective in Hyperglycemic Mice with Stroke via the AKT/mTOR Pathway and Anti-apoptotic Effects. Neurosci Bull 2019; 36:407-418. [PMID: 31808042 DOI: 10.1007/s12264-019-00446-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/10/2019] [Indexed: 12/11/2022] Open
Abstract
Dipeptidyl peptidase 4 (DPP-4) inhibitors have been shown to have neuroprotective effects in diabetic patients suffering from stroke, but less research has focused on patients with mild hyperglycemia below the threshold for a diagnosis of diabetes. In this investigation, a hyperglycemic mouse model was generated by intraperitoneal injection of streptozotocin and then subjected to focal cerebral ischemia. We demonstrated that the DPP-4 inhibitor linagliptin significantly decreased the infarct volume, reduced neuronal cell death, decreased inflammation, and improved neurological deficit compared with control mice. Linagliptin up-regulated the expression of p-Akt and p-mTOR and regulated the apoptosis factors Bcl-2, Bax, and caspase 9. Taken together, these results suggest that linagliptin exerts a neuroprotective action likely through activation of the Akt/mTOR pathway along with anti-apoptotic and anti-inflammatory mechanisms. Therefore, linagliptin may be considered as a therapeutic treatment for stroke patients with mild hyperglycemia.
Collapse
|
29
|
Effects of obesity induced by high-calorie diet and its treatment with exenatide on muscarinic acetylcholine receptors in rat hippocampus. Biochem Pharmacol 2019; 169:113630. [DOI: 10.1016/j.bcp.2019.113630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/30/2019] [Indexed: 12/17/2022]
|
30
|
Brock C, Hansen CS, Karmisholt J, Møller HJ, Juhl A, Farmer AD, Drewes AM, Riahi S, Lervang HH, Jakobsen PE, Brock B. Liraglutide treatment reduced interleukin-6 in adults with type 1 diabetes but did not improve established autonomic or polyneuropathy. Br J Clin Pharmacol 2019; 85:2512-2523. [PMID: 31338868 PMCID: PMC6848951 DOI: 10.1111/bcp.14063] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/30/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
AIMS Type 1 diabetes can be complicated with neuropathy that involves immune-mediated and inflammatory pathways. Glucagon-like peptide-1 receptor agonists such as liraglutide, have shown anti-inflammatory properties, and thus we hypothesized that long-term treatment with liraglutide induced diminished inflammation and thus improved neuronal function. METHODS The study was a randomized, double-blinded, placebo-controlled trial of adults with type 1 diabetes and confirmed symmetrical polyneuropathy. They were randomly assigned (1:1) to receive either liraglutide or placebo. Titration was 6 weeks to 1.2-1.8 mg/d, continuing for 26 weeks. The primary endpoint was change in latency of early brain evoked potentials. Secondary endpoints were changes in proinflammatory cytokines, cortical evoked potential, autonomic function and peripheral neurophysiological testing. RESULTS Thirty-nine patients completed the study, of whom 19 received liraglutide. In comparison to placebo, liraglutide reduced interleukin-6 (-22.6%; 95% confidence interval [CI]: -38.1, -3.2; P = .025) with concomitant numerical reductions in other proinflammatory cytokines. However neuronal function was unaltered at the central, autonomic or peripheral level. Treatment was associated with -3.38 kg (95% CI: -5.29, -1.48; P < .001] weight loss and a decrease in urine albumin/creatinine ratio (-40.2%; 95% CI: -60.6, -9.5; P = .02). CONCLUSION Hitherto, diabetic neuropathy has no cure. Speculations can be raised whether mechanism targeted treatment, e.g. lowering the systemic level of proinflammatory cytokines may lead to prevention or treatment of the neuroinflammatory component in early stages of diabetic neuropathy. If ever successful, this would serve as an example of how fundamental mechanistic principles are translated into clinical practice similar to those applied in the cardiovascular and nephrological clinic.
Collapse
Affiliation(s)
- Christina Brock
- Mech-Sense, Department of Gastroenterology and Hepatology Aalborg University Hospital & Clinical Institute, Aalborg University, Aalborg, Denmark.,Department of Pharmacotherapy and Development, University of Copenhagen, Copenhagen, Denmark
| | | | - Jesper Karmisholt
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark.,Steno Diabetes Center North, Denmark
| | - Holger Jon Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Juhl
- Department of Neurophysiology, Aalborg University Hospital, Denmark
| | - Adam Donald Farmer
- Centre for Neuroscience and Trauma, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK.,Department of Gastroenterology, University Hospitals of North Midlands, Stoke on Trent, Staffordshire, UK
| | - Asbjørn Mohr Drewes
- Mech-Sense, Department of Gastroenterology and Hepatology Aalborg University Hospital & Clinical Institute, Aalborg University, Aalborg, Denmark.,Steno Diabetes Center North, Denmark
| | - Sam Riahi
- Department of Cardiology, Aalborg University Hospital and Department of Clinical Medicine, Aalborg University, Denmark
| | | | - Poul Erik Jakobsen
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark.,Steno Diabetes Center North, Denmark
| | - Birgitte Brock
- Steno Diabetes Center Copenhagen, Region Hovedstaden, Gentofte, Denmark.,Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
31
|
Fang X, Tian P, Zhao X, Jiang C, Chen T. Neuroprotective effects of an engineered commensal bacterium in the 1‐methyl‐4‐phenyl‐1, 2, 3, 6‐tetrahydropyridine Parkinson disease mouse model via producing glucagon‐like peptide‐1. J Neurochem 2019; 150:441-452. [PMID: 30851189 DOI: 10.1111/jnc.14694] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/28/2018] [Accepted: 03/05/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Xin Fang
- Department of Neurology The First Affiliated Hospital of Nanchang University Nanchang China
| | - Puyuan Tian
- Institute of Translational Medicine Nanchang University Nanchang Jiangxi PR China
| | - Xiaoxiao Zhao
- Institute of Translational Medicine Nanchang University Nanchang Jiangxi PR China
| | - Chunling Jiang
- Department of Radiation Oncology Jiangxi Cancer Hospital Nanchang Jiangxi PR China
| | - Tingtao Chen
- Institute of Translational Medicine Nanchang University Nanchang Jiangxi PR China
| |
Collapse
|
32
|
Exendin-4 improves behaviorial deficits via GLP-1/GLP-1R signaling following partial hepatectomy. Brain Res 2019; 1706:116-124. [DOI: 10.1016/j.brainres.2018.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/03/2018] [Accepted: 11/03/2018] [Indexed: 02/07/2023]
|
33
|
Rane P, Sarmah D, Bhute S, Kaur H, Goswami A, Kalia K, Borah A, Dave KR, Sharma N, Bhattacharya P. Novel Targets for Parkinson's Disease: Addressing Different Therapeutic Paradigms and Conundrums. ACS Chem Neurosci 2019; 10:44-57. [PMID: 29957921 DOI: 10.1021/acschemneuro.8b00180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease that is pathologically characterized by degeneration of dopamine neurons in the substantia nigra pars compacta (SNpc). PD leads to clinical motor features that include rigidity, tremor, and bradykinesia. Despite multiple available therapies for PD, the clinical features continue to progress, and patients suffer progressive disability. Many advances have been made in PD therapy which directly target the cause of the disease rather than providing symptomatic relief. A neuroprotective or disease modifying strategy that can slow or cease clinical progression and worsening disability remains as a major unmet medical need for PD management. The present review discusses potential novel therapies for PD that include recent interventions in the form of immunomodulatory techniques and stem cell therapy. Further, an introspective approach to identify numerous other novel targets that can alleviate PD pathogenesis and enable physicians to practice multitargeted therapy and that may provide a ray of hope to PD patients in the future are discussed.
Collapse
Affiliation(s)
- Pallavi Rane
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Shashikala Bhute
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Avirag Goswami
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| | - Anupom Borah
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam 788011, India
| | - Kunjan R. Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat-382355, India
| |
Collapse
|
34
|
Babic Perhoc A, Osmanovic Barilar J, Knezovic A, Farkas V, Bagaric R, Svarc A, Grünblatt E, Riederer P, Salkovic-Petrisic M. Cognitive, behavioral and metabolic effects of oral galactose treatment in the transgenic Tg2576 mice. Neuropharmacology 2018; 148:50-67. [PMID: 30571958 DOI: 10.1016/j.neuropharm.2018.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder associated with insulin resistance and glucose hypometabolism in the brain. Oral administration of galactose, a nutrient that provides an alternative source of energy, prevents and ameliorates early cognitive impairment in a streptozotocin-induced model (STZ-icv) of the sporadic AD (sAD). Here we explored the influence of 2-month oral galactose treatment (200 mg/kg/day) in the familial AD (fAD) by using 5- (5M) and 10- (10M) month-old transgenic Tg2576 mice mimicking the presymptomatic and the mild stage of fAD, and compared it to that observed in 7-month old STZ-icv rats mimicking mild-to-moderate sAD. Cognitive and behavioral performance was tested by Morris Water Maze, Open Field and Elevated Plus Maze tests, and metabolic status by intraperitoneal glucose tolerance test and fluorodeoxyglucose Positron-Emission Tomography scan. The level of insulin, glucagon-like peptide-1 (GLP-1) and soluble amyloid β1-42 (sAβ1-42) was measured by ELISA and the protein expression of insulin receptor (IR), glycogen synthase kinase-3β (GSK-3β), and pre-/post-synaptic markers by Western blot analysis. Although galactose normalized alterations in cerebral glucose metabolism in all Tg2576 mice (5M+2M; 10M+2M) and STZ-icv rats, it did not improve cognitive impairment in either model. Improvement of reduced grooming behavior and normalization in reduced plasma insulin levels were seen only in 5M+2M Tg2576 mice while in 10M+2M Tg2576 mice oral galactose induced metabolic exacerbation at the level of plasma insulin, GLP-1 homeostasis and glucose intolerance, and additionally increased hippocampal sAβ1-42 level, decreased IR expression and increased GSK-3β activity. The results indicate that therapeutic potential of oral galactose seems to depend on the stage and the type/model of AD and to differ in the absence and the presence of AD-like pathology.
Collapse
Affiliation(s)
- Ana Babic Perhoc
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, HR-10 000, Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, HR-10 000, Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, HR-10 000, Zagreb, Croatia
| | - Vladimir Farkas
- Department of Experimental Physics, Rudjer Boskovic Institute, Bijenicka 54, HR-10 000, Zagreb, Croatia
| | - Robert Bagaric
- Department of Experimental Physics, Rudjer Boskovic Institute, Bijenicka 54, HR-10 000, Zagreb, Croatia
| | - Alfred Svarc
- Department of Experimental Physics, Rudjer Boskovic Institute, Bijenicka 54, HR-10 000, Zagreb, Croatia
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Peter Riederer
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Würzburg, Füchsleinstrasse 15, 97080, Würzburg, Germany; Department of Clinical Research and Psychiatry, University of Southern Denmark Odense, Odense, Denmark
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, HR-10 000, Zagreb, Croatia; Research Centre of Excellence of Fundamental, Clinical and Translational Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 12, HR-10 000, Zagreb, Croatia.
| |
Collapse
|
35
|
Park SW, Mansur RB, Lee Y, Lee JH, Seo MK, Choi AJ, McIntyre RS, Lee JG. Liraglutide Activates mTORC1 Signaling and AMPA Receptors in Rat Hippocampal Neurons Under Toxic Conditions. Front Neurosci 2018; 12:756. [PMID: 30405339 PMCID: PMC6205986 DOI: 10.3389/fnins.2018.00756] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/01/2018] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to determine whether treatment with liraglutide, a glucagon-like peptide 1 (GLP-1) receptor agonist, would alter mammalian target of rapamycin complex 1 (mTORC1) signaling and/or α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor activity under dexamethasone-induced toxic conditions. Western blot analyses were performed to assess changes in mTORC1-mediated proteins, brain-derived neurotrophic factor (BDNF), and various synaptic proteins (PSD-95, synapsin I, and GluA1) in rat hippocampal cultures under toxic conditions induced by dexamethasone, which causes hippocampal cell death. Hippocampal dendritic outgrowth and spine formation were measured using immunostaining procedures. Dexamethasone significantly decreased the phosphorylation levels of mTORC1 as well as its downstream proteins. However, treatment with liraglutide prevented these reductions and significantly increased BDNF expression. The increase in BDNF expression was completely blocked by rapamycin and 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX). Liraglutide also recovered dexamethasone-induced decreases in the total length of hippocampal dendrites and reductions in spine density in a concentration-dependent manner. However, the positive effects of liraglutide on neural plasticity were abolished by the blockade of mTORC1 signaling and AMPA receptors. Furthermore, liraglutide significantly increased the expression levels of PSD-95, synapsin I, and GluA1, whereas rapamycin and NBQX blocked these effects. The present study demonstrated that liraglutide activated mTORC1 signaling and AMPA receptor activity as well as increased dendritic outgrowth, spine density, and synaptic proteins under toxic conditions in rat primary hippocampal neurons. These findings suggest that GLP-1 receptor (GLP-1R) activation by liraglutide may affect neuroplasticity through mTORC1 and AMPA receptors.
Collapse
Affiliation(s)
- Sung Woo Park
- Paik Institute for Clinical Research, Inje University, Busan, South Korea.,Department of Health Science and Technology, Graduate School, Inje University, Busan, South Korea.,Department of Convergence Biomedical Science, College of Medicine, Inje University, Busan, South Korea
| | - Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Jae-Hon Lee
- Department of Psychiatry, National Rehabilitation Center, Seoul, South Korea
| | - Mi Kyoung Seo
- Paik Institute for Clinical Research, Inje University, Busan, South Korea
| | - Ah Jeong Choi
- Paik Institute for Clinical Research, Inje University, Busan, South Korea
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Jung Goo Lee
- Paik Institute for Clinical Research, Inje University, Busan, South Korea.,Department of Health Science and Technology, Graduate School, Inje University, Busan, South Korea.,Department of Psychiatry, College of Medicine, Haeundae Paik Hospital, Inje University, Busan, South Korea
| |
Collapse
|
36
|
Chen T, Tian P, Huang Z, Zhao X, Wang H, Xia C, Wang L, Wei H. Engineered commensal bacteria prevent systemic inflammation-induced memory impairment and amyloidogenesis via producing GLP-1. Appl Microbiol Biotechnol 2018; 102:7565-7575. [PMID: 29955935 DOI: 10.1007/s00253-018-9155-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/30/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022]
Abstract
The anti-obesity drug GLP-1 has been proven to have an impact on central nervous system, while its extremely short half-life greatly limited its use. In this study, our group constructed two engineering strains MG1363-pMG36e-GLP-1 and VNP20009-pLIVE-GLP-1 to continuously express GLP-1, and supplementation of these strains, especially MG1363-pMG36e-GLP-1, had significantly restored the spatial learning and memory impairment of mice caused by LPS (p < 0.05), suppressed glia activation and Aβ accumulation, and downregulated inflammatory expressions of COX-2, TLR-4, TNF-a, and IL-1β. In addition, MG1363-pMG36e-GLP-1 had significantly blocked the translocation of NF-κB signal and inhibited the phosphorylation of redox-sensitive cytoplasmic signalings of MAPKs and PI3K/AKT. These data suggest that MG1363-pMG36e-GLP-1 could be used as a safe and effective nonabsorbed oral treatment for neuroinflammation-related diseases such as Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Tingtao Chen
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.,Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Puyuan Tian
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.,Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Zhixiang Huang
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Xiaoxiao Zhao
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Huan Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Chaofei Xia
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Le Wang
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Hua Wei
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China. .,State Key Laboratory of Food Science and Technology, Nanchang, Jiangxi, 330031, People's Republic of China. .,State Key Laboratory of Food Science and Technology, Nanchang University 235 Nanjing Donglu, Nanchang, Jiangxi, 330047, People's Republic of China.
| |
Collapse
|
37
|
Babic I, Gorak A, Engel M, Sellers D, Else P, Osborne AL, Pai N, Huang XF, Nealon J, Weston-Green K. Liraglutide prevents metabolic side-effects and improves recognition and working memory during antipsychotic treatment in rats. J Psychopharmacol 2018; 32:578-590. [PMID: 29493378 DOI: 10.1177/0269881118756061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Antipsychotic drugs (APDs), olanzapine and clozapine, do not effectively address the cognitive symptoms of schizophrenia and can cause serious metabolic side-effects. Liraglutide is a synthetic glucagon-like peptide-1 (GLP-1) receptor agonist with anti-obesity and neuroprotective properties. The aim of this study was to examine whether liraglutide prevents weight gain/hyperglycaemia side-effects and cognitive deficits when co-administered from the commencement of olanzapine and clozapine treatment. METHODS Rats were administered olanzapine (2 mg/kg, three times daily (t.i.d.)), clozapine (12 mg/kg, t.i.d.), liraglutide (0.2 mg/kg, twice daily (b.i.d.)), olanzapine + liraglutide co-treatment, clozapine + liraglutide co-treatment or vehicle (Control) ( n = 12/group, 6 weeks). Recognition and working memory were examined using Novel Object Recognition (NOR) and T-Maze tests. Body weight, food intake, adiposity, locomotor activity and glucose tolerance were examined. RESULTS Liraglutide co-treatment prevented olanzapine- and clozapine-induced reductions in the NOR test discrimination ratio ( p < 0.001). Olanzapine, but not clozapine, reduced correct entries in the T-Maze test ( p < 0.05 versus Control) while liraglutide prevented this deficit. Liraglutide reduced olanzapine-induced weight gain and adiposity. Olanzapine significantly decreased voluntary locomotor activity and liraglutide co-treatment partially reversed this effect. Liraglutide improved clozapine-induced glucose intolerance. CONCLUSION Liraglutide co-treatment improved aspects of cognition, prevented obesity side-effects of olanzapine, and the hyperglycaemia caused by clozapine, when administered from the start of APD treatment. The results demonstrate a potential treatment for individuals at a high risk of experiencing adverse effects of APDs.
Collapse
Affiliation(s)
- Ilijana Babic
- 1 Centre for Medical and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia.,2 Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,3 Illawarra and Shoalhaven Local Health District, Wollongong, NSW, Australia.,4 School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Ashleigh Gorak
- 2 Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,4 School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Martin Engel
- 1 Centre for Medical and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia.,2 Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Dominic Sellers
- 2 Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,4 School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Paul Else
- 2 Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,4 School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Ashleigh L Osborne
- 1 Centre for Medical and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia.,3 Illawarra and Shoalhaven Local Health District, Wollongong, NSW, Australia.,4 School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Nagesh Pai
- 2 Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,3 Illawarra and Shoalhaven Local Health District, Wollongong, NSW, Australia.,4 School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Xu-Feng Huang
- 1 Centre for Medical and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia.,2 Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,4 School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Jessica Nealon
- 2 Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,4 School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Katrina Weston-Green
- 1 Centre for Medical and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia.,2 Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,4 School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| |
Collapse
|
38
|
Aroor AR, Manrique-Acevedo C, DeMarco VG. The role of dipeptidylpeptidase-4 inhibitors in management of cardiovascular disease in diabetes; focus on linagliptin. Cardiovasc Diabetol 2018; 17:59. [PMID: 29669555 PMCID: PMC5907287 DOI: 10.1186/s12933-018-0704-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/12/2018] [Indexed: 12/15/2022] Open
Abstract
Multiple population based analyses have demonstrated a high incidence of cardiovascular disease (CVD) and cardiovascular (CV) mortality in subjects with T2DM that reduces life expectancy by as much as 15 years. Importantly, the CV system is particularly sensitive to the metabolic and immune derangements present in obese pre-diabetic and diabetic individuals; consequently, CV dysfunction is often the initial CV derangement to occur and promotes the progression to end organ/tissue damage in T2DM. Specifically, diabetic CVD can manifest as microvascular complications, such as nephropathy, retinopathy, and neuropathy, as well as, macrovascular impairments, including ischemic heart disease, peripheral vascular disease, and cerebrovascular disease. Despite some progress in prevention and treatment of CVD, mainly via blood pressure and dyslipidemia control strategies, the impact of metabolic disease on CV outcomes is still a major challenge and persists in proportion to the epidemics of obesity and diabetes. There is abundant pre-clinical and clinical evidence implicating the DPP-4-incretin axis in CVD. In this regard, linagliptin is a unique DPP-4 inhibitor with both CV and renal safety profiles. Moreover, it exerts beneficial CV effects beyond glycemic control and beyond class effects. Linagliptin is protective for both macrovascular and microvascular complications of diabetes in preclinical models, as well as clinical models. Given the role of endothelial-immune cell interactions as one of the key events in the initiation and progression of CVD, linagliptin modulates these cell–cell interactions by affecting two important pathways involving stimulation of NO signaling and potent inhibition of a key immunoregulatory molecule.
Collapse
Affiliation(s)
- Annayya R Aroor
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA.,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri-Columbia School of Medicine, One Hospital Drive, Columbia, MO, 65212, USA.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Camila Manrique-Acevedo
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA.,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri-Columbia School of Medicine, One Hospital Drive, Columbia, MO, 65212, USA.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Vincent G DeMarco
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA. .,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri-Columbia School of Medicine, One Hospital Drive, Columbia, MO, 65212, USA. .,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA. .,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
39
|
Li Y, Li L, Hölscher C. Incretin-based therapy for type 2 diabetes mellitus is promising for treating neurodegenerative diseases. Rev Neurosci 2018; 27:689-711. [PMID: 27276528 DOI: 10.1515/revneuro-2016-0018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/02/2016] [Indexed: 12/13/2022]
Abstract
Incretin hormones include glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Due to their promising action on insulinotropic secretion and improving insulin resistance (IR), incretin-based therapies have become a new class of antidiabetic agents for the treatment of type 2 diabetes mellitus (T2DM). Recently, the links between neurodegenerative diseases and T2DM have been identified in a number of studies, which suggested that shared mechanisms, such as insulin dysregulation or IR, may underlie these conditions. Therefore, the effects of incretins in neurodegenerative diseases have been extensively investigated. Protease-resistant long-lasting GLP-1 mimetics such as lixisenatide, liraglutide, and exenatide not only have demonstrated promising effects for treating neurodegenerative diseases in preclinical studies but also have shown first positive results in Alzheimer's disease (AD) and Parkinson's disease (PD) patients in clinical trials. Furthermore, the effects of other related incretin-based therapies such as GIP agonists, dipeptidyl peptidase-IV (DPP-IV) inhibitors, oxyntomodulin (OXM), dual GLP-1/GIP, and triple GLP-1/GIP/glucagon receptor agonists on neurodegenerative diseases have been tested in preclinical studies. Incretin-based therapies are a promising approach for treating neurodegenerative diseases.
Collapse
|
40
|
Neuroprotective effects of a triple GLP-1/GIP/glucagon receptor agonist in the APP/PS1 transgenic mouse model of Alzheimer's disease. Brain Res 2018; 1678:64-74. [DOI: 10.1016/j.brainres.2017.10.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/07/2017] [Accepted: 10/11/2017] [Indexed: 12/13/2022]
|
41
|
Babateen O, Korol SV, Jin Z, Bhandage AK, Ahemaiti A, Birnir B. Liraglutide modulates GABAergic signaling in rat hippocampal CA3 pyramidal neurons predominantly by presynaptic mechanism. BMC Pharmacol Toxicol 2017; 18:83. [PMID: 29246184 PMCID: PMC5732397 DOI: 10.1186/s40360-017-0191-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/06/2017] [Indexed: 12/31/2022] Open
Abstract
Background γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain where it regulates activity of neuronal networks. The receptor for glucagon-like peptide-1 (GLP-1) is expressed in the hippocampus, which is the center for memory and learning. In this study we examined effects of liraglutide, a GLP-1 analog, on GABA signaling in CA3 hippocampal pyramidal neurons. Methods We used patch-clamp electrophysiology to record synaptic and tonic GABA-activated currents in CA3 pyramidal neurons in rat hippocampal brain slices. Results We examined the effects of liraglutide on the neurons at concentrations ranging from one nM to one μM. Significant changes of the spontaneous inhibitory postsynaptic currents (sIPSCs) were only recorded with 100 nM liraglutide and then in just ≈50% of the neurons tested at this concentration. In neurons affected by liraglutide both the sIPSC frequency and the most probable amplitudes increased. When the action potential firing was inhibited by tetrodotoxin (TTX) the frequency and amplitude of IPSCs in TTX and in TTX plus 100 nM liraglutide were similar. Conclusions The results demonstrate that liraglutide regulation of GABA signaling of CA3 pyramidal neurons is predominantly presynaptic and more limited than has been observed for GLP-1 and exendin-4 in hippocampal neurons.
Collapse
Affiliation(s)
- Omar Babateen
- Department of Neuroscience, Uppsala University, 75124, Uppsala, SE, Sweden
| | - Sergiy V Korol
- Department of Neuroscience, Uppsala University, 75124, Uppsala, SE, Sweden
| | - Zhe Jin
- Department of Neuroscience, Uppsala University, 75124, Uppsala, SE, Sweden
| | - Amol K Bhandage
- Department of Neuroscience, Uppsala University, 75124, Uppsala, SE, Sweden
| | - Aikeremu Ahemaiti
- Department of Neuroscience, Uppsala University, 75124, Uppsala, SE, Sweden
| | - Bryndis Birnir
- Department of Neuroscience, Uppsala University, 75124, Uppsala, SE, Sweden.
| |
Collapse
|
42
|
The Role of Glucagon-Like Peptide 1 (GLP1) in Type 3 Diabetes: GLP-1 Controls Insulin Resistance, Neuroinflammation and Neurogenesis in the Brain. Int J Mol Sci 2017; 18:ijms18112493. [PMID: 29165354 PMCID: PMC5713459 DOI: 10.3390/ijms18112493] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD), characterized by the aggregation of amyloid-β (Aβ) protein and neuroinflammation, is the most common neurodegenerative disease globally. Previous studies have reported that some AD patients show impaired glucose utilization in brain, leading to cognitive decline. Recently, diabetes-induced dementia has been called "type 3 diabetes", based on features in common with those of type 2 diabetes and the progression of AD. Impaired glucose uptake and insulin resistance in the brain are important issues in type 3 diabetes, because these problems ultimately aggravate memory dysfunction in the brain. Glucagon-like peptide 1 (GLP-1) has been known to act as a critical controller of the glucose metabolism. Several studies have demonstrated that GLP-1 alleviates learning and memory dysfunction by enhancing the regulation of glucose in the AD brain. However, the specific actions of GLP-1 in the AD brain are not fully understood. Here, we review evidences related to the role of GLP-1 in type 3 diabetes.
Collapse
|
43
|
Abstract
OPINION STATEMENT Diabetes mellitus (DM) and its associated complications are becoming increasingly prevalent. Gastrointestinal symptoms associated with diabetes is known as diabetic enteropathy (DE) and may manifest as either diarrhea, fecal incontinence, constipation, dyspepsia, nausea, and vomiting or a combination of symptoms. The long-held belief that vagal autonomic neuropathy is the primary cause of DE has recently been challenged by newer theories of disease development. Specifically, hyperglycemia and the resulting oxidative stress on neural networks, including the nitrergic neurons and interstitial cells of Cajal (ICC), are now believed to play a central role in the development of DE. DE occurs in the majority of patients with diabetes; however, tools for early diagnosis and targeted therapy to counter the detrimental and potentially irreversible effects on the small bowel are lacking. Delay in diagnosis is further compounded by the fact that DE symptoms overlap with those of gastroparesis or can be confused with side effects from diabetes medications. Still, early recognition of the presence of DE is essential to mitigating symptoms and preventing further progression of complications including dysmotility and malabsorption. Current diagnostic modalities include manometry, wireless motility capsule (SmartPill™), and scintigraphy; however, these are not regularly utilized in clinical practice due to limited availability. Several medications are available for symptom relief in DE patients including rifaximin for small intestinal bacterial overgrowth (SIBO) and somatostatin analogues for diarrhea. While rodent models on stem cell therapy and alteration of the microbiome are promising, there is still a great need for further research on the pathologic underpinnings and development of novel treatment modalities for DE.
Collapse
Affiliation(s)
- Jonathan Gotfried
- Temple University Digestive Disease Center, Temple University Hospital, Philadelphia, PA, USA
| | - Stephen Priest
- Temple University Lewis Katz School of Medicine at Temple University & Temple University Health System, Philadelphia, PA, USA
| | - Ron Schey
- Temple University Digestive Disease Center, Temple University Hospital, Philadelphia, PA, USA. .,Temple University Lewis Katz School of Medicine at Temple University & Temple University Health System, Philadelphia, PA, USA.
| |
Collapse
|
44
|
Kim S, Jeong J, Jung HS, Kim B, Kim YE, Lim DS, Kim SD, Song YS. Anti-inflammatory Effect of Glucagon Like Peptide-1 Receptor Agonist, Exendin-4, through Modulation of IB1/JIP1 Expression and JNK Signaling in Stroke. Exp Neurobiol 2017; 26:227-239. [PMID: 28912645 PMCID: PMC5597553 DOI: 10.5607/en.2017.26.4.227] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 12/18/2022] Open
Abstract
Glucagon like peptide-1 (GLP-1) stimulates glucose-dependent insulin secretion. Dipeptidyl peptidase-4 (DPP-4) inhibitors, which block inactivation of GLP-1, are currently in clinical use for type 2 diabetes mellitus. Recently, GLP-1 has also been reported to have neuroprotective effects in cases of cerebral ischemia. We therefore investigated the neuroprotective effects of GLP-1 receptor (GLP-1R) agonist, exendin-4 (ex-4), after cerebral ischemia-reperfusion injury. Transient middle cerebral artery occlusion (tMCAO) was induced in rats by intracerebroventricular (i.c.v.) administration of ex-4 or ex9-39. Oxygen-glucose deprivation was also induced in primary neurons, bEnd.3 cells, and BV-2. Ischemia-reperfusion injury reduced expression of GLP-1R. Additionally, higher oxidative stress in SOD2 KO mice decreased expression of GLP-1R. Downregulation of GLP-1R by ischemic injury was 70% restored by GLP-1R agonist, ex-4, which resulted in significant reduction of infarct volume. Levels of intracellular cyclic AMP, a second messenger of GLP-1R, were also increased by 2.7-fold as a result of high GLP-1R expression. Moreover, our results showed that ex-4 attenuated pro-inflammatory cyclooxygenase-2 (COX-2) and prostaglandin E2 after MCAO. C-Jun NH2 terminal kinase (JNK) signaling, which stimulates activation of COX-2, was 36% inhibited by i.c.v. injection of ex-4 at 24 h. Islet-brain 1 (IB1), a scaffold regulator of JNK, was 1.7-fold increased by ex-4. GLP-1R activation by ex-4 resulted in reduction of COX-2 through increasing IB1 expression, resulting in anti-inflammatory neuroprotection during stroke. Our study suggests that the anti-inflammatory action of GLP-1 could be used as a new strategy for the treatment of neuroinflammation after stroke accompanied by hyperglycemia.
Collapse
Affiliation(s)
- Soojin Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Jaewon Jeong
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Hye-Seon Jung
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Bokyung Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Ye-Eun Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Da-Sol Lim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - So-Dam Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Yun Seon Song
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| |
Collapse
|
45
|
Keshava HB, Mowla A, Heinberg LJ, Schauer PR, Brethauer SA, Aminian A. Bariatric surgery may reduce the risk of Alzheimer's diseases through GLP-1 mediated neuroprotective effects. Med Hypotheses 2017; 104:4-9. [PMID: 28673587 DOI: 10.1016/j.mehy.2017.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 04/26/2017] [Accepted: 05/01/2017] [Indexed: 12/25/2022]
Abstract
Obesity and diabetes are associated with deficits in multiple neurocognitive domains and increased risk for dementia. Over the last two decades, there has been a significant increase in bariatric and metabolic surgery worldwide, driven by rising intertwined pandemics of obesity and diabetes, along with improvement in surgical techniques. Patients undergoing bariatric surgery achieve a significant decrease in their excess weight and a multitude of sequela associated with obesity, diabetes, and metabolic syndrome. Glucagon-like peptide 1 (GLP-1) is an intestinal peptide that has been implicated as one of the weight loss-independent mechanisms in how bariatric surgery affects type 2 diabetes. GLP-1 improves insulin secretion, inhibits apoptosis and induce pancreatic islet neogenesis, promotes satiety, and can regulate heart rate and blood pressure. Moreover, numerous studies have demonstrated potential neuroprotective and neurotrophic effects of GLP-1. Increased GLP-1 activity has been shown to increase cortical activity, promote neuronal growth, and inhibit neuronal degeneration. Specifically, in experimental studies on Alzheimer's disease, GLP-1 decreases amyloid deposition and neurofibrillary tangles. Furthermore, recent studies have also suggested that GLP-1 based therapies, new class of antidiabetic drugs, have favorable effects on neurodegenerative disorders such as Alzheimer's disease. We present a hypothesis that bariatric surgery can help delay or even prevent the onset of Alzheimer's disease in long-term by increasing the levels of GLP-1. This hypothesis has a potential for many studies from basic science projects to large population studies to fully understand the neurological and cognitive consequences of bariatric surgery and associated rise in GLP-1.
Collapse
Affiliation(s)
- Hari B Keshava
- Bariatric and Metabolic Institute, Department of General Surgery, Cleveland Clinic, Cleveland, OH, United States
| | - Ashkan Mowla
- Department of Neurology, Gates Vascular Institute, State University of New York (SUNY) at Buffalo, Buffalo, NY, United States
| | - Leslie J Heinberg
- Bariatric and Metabolic Institute, Department of General Surgery, Cleveland Clinic, Cleveland, OH, United States
| | - Philip R Schauer
- Bariatric and Metabolic Institute, Department of General Surgery, Cleveland Clinic, Cleveland, OH, United States
| | - Stacy A Brethauer
- Bariatric and Metabolic Institute, Department of General Surgery, Cleveland Clinic, Cleveland, OH, United States
| | - Ali Aminian
- Bariatric and Metabolic Institute, Department of General Surgery, Cleveland Clinic, Cleveland, OH, United States.
| |
Collapse
|
46
|
Muscogiuri G, DeFronzo RA, Gastaldelli A, Holst JJ. Glucagon-like Peptide-1 and the Central/Peripheral Nervous System: Crosstalk in Diabetes. Trends Endocrinol Metab 2017; 28:88-103. [PMID: 27871675 DOI: 10.1016/j.tem.2016.10.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 12/17/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is released in response to meals and exerts important roles in the maintenance of normal glucose homeostasis. GLP-1 is also important in the regulation of neurologic and cognitive functions. These actions are mediated via neurons in the nucleus of the solitary tract that project to multiple regions expressing GLP-1 receptors (GLP-1Rs). Treatment with GLP-1R agonists (GLP-1-RAs) reduces ischemia-induced hyperactivity, oxidative stress, neuronal damage and apoptosis, cerebral infarct volume, and neurologic damage, after cerebral ischemia, in experimental models. Ongoing human trials report a neuroprotective effect of GLP-1-RAs in Alzheimer's and Parkinson's disease. In this review, we discuss the role of GLP-1 and GLP-1-RAs in the nervous system with focus on GLP-1 actions on appetite regulation, glucose homeostasis, and neuroprotection.
Collapse
Affiliation(s)
| | - Ralph A DeFronzo
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX, USA
| | - Amalia Gastaldelli
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX, USA; Institute of Clinical Physiology of the National Research Council (CNR), Pisa, Italy.
| | - Jens J Holst
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
47
|
Neuroprotective Effects of the Glucagon-Like Peptide-1 Analog Exenatide After Out-of-Hospital Cardiac Arrest. Circulation 2016; 134:2115-2124. [DOI: 10.1161/circulationaha.116.024088] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/22/2016] [Indexed: 01/15/2023]
Abstract
Background:
In-hospital mortality in comatose patients resuscitated from out-of-hospital cardiac arrest (OHCA) is ≈50%. In OHCA patients, the leading cause of death is neurological injury secondary to ischemia and reperfusion. Glucagon-like peptide-1 analogs are approved for type 2 diabetes mellitus; preclinical and clinical data have suggested their organ-protective effects in patients with ischemia and reperfusion injury. The aim of this trial was to investigate the neuroprotective effects of the glucagon-like peptide-1 analog exenatide in resuscitated OHCA patients.
Methods:
We randomly assigned 120 consecutive comatose patients resuscitated from OHCA in a double-blind, 2-center trial. They were administered 17.4 μg exenatide (Byetta) or placebo over a 6-hour and 15-minute infusion, in addition to standardized intensive care including targeted temperature management. The coprimary end points were feasibility, defined as initiation of the study drug in >90% patients within 240 minutes of return of spontaneous circulation, and efficacy, defined as the geometric area under the neuron-specific enolase curve from 24 to 72 hours after admission. The main secondary end points included a composite end point of death and poor neurological function, defined as a Cerebral Performance Category score of 3 to 5 assessed at 30 and 180 days.
Results:
The study drug was initiated within 240 minutes of return of spontaneous circulation in 96% patients. The median blood glucose 8 hours after admission in patients receiving exenatide was lower than that in patients receiving placebo (5.8 [5.2–6.7] mmol/L versus 7.3 [6.2–8.7] mmol/L,
P
<0.0001). However, there were no significant differences in the area under the neuron-specific enolase curve, or a composite end point of death and poor neurological function between groups. Adverse events were rare with no significant difference between groups.
Conclusions:
Acute administration of exenatide to comatose patients in the intensive care unit after OHCA is feasible and safe. Exenatide did not reduce neuron-specific enolase levels and did not significantly improve a composite end point of death and poor neurological function after 180 days.
Clinical Trial Registration:
URL:
http://www.clinicaltrials.gov
. Unique identifier: NCT02442791.
Collapse
|
48
|
Zhang SS, Wu Z, Zhang Z, Xiong ZY, Chen H, Huang QB. Glucagon-like peptide-1 inhibits the receptor for advanced glycation endproducts to prevent podocyte apoptosis induced by advanced oxidative protein products. Biochem Biophys Res Commun 2016; 482:1413-1419. [PMID: 27965099 DOI: 10.1016/j.bbrc.2016.12.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To investigate whether and how glucagon-like peptide-1 (GLP-1) can protect podocytes from apoptosis induced by advanced oxidative protein products (AOPPs). METHODS Murine podocytes were stimulated with 200 μg/ml AOPP for 48 h in the presence or absence of GLP-1. Cell viability was assessed using the cell counting kit-8 assay. Podocyte apoptosis was detected by flow cytometry and Hoechst 33258 staining. Superoxide radical production was assayed using lucigenin-enhanced chemiluminescence, and Western blotting was used to measure expression of RAGE, NADPH oxidase subunits p47phox and gp91phox, as well as apoptosis-associated proteins p53, Bax, Bcl-2 and caspase-3. RESULTS Incubating podocytes with AOPPs reduced cell viability, triggered changes in cell morphology and promoted apoptosis. GLP-1 partially inhibited AOPP-induced apoptosis, O2- overproduction, and AOPP-induced expression of RAGE. GLP-1 inhibited expression of p47phox and gp91phox in AOPP-treated podocytes, and it attenuated AOPP-induced expression of p53, Bax and cleaved caspase-3, whereas it restored expression of Bcl-2. CONCLUSION GLP-1 partially inhibits AOPP-induced apoptosis in podocytes, perhaps by interfering with the AOPP-RAGE axis, decreasing oxidative stress and inhibiting the downstream p53/Bax/caspase-3 apoptotic pathway. GLP-1 may be a useful anti-apoptotic agent for early intervention in diabetic nephropathy.
Collapse
Affiliation(s)
- Shuang-Shuang Zhang
- Department of Pathophysiology, Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, China; Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhou Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhen Zhang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhou-Yi Xiong
- Department of Endocrinology, Yue Bei People's Hospital, Shaoguan, China
| | - Hong Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Qiao-Bing Huang
- Department of Pathophysiology, Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, China.
| |
Collapse
|
49
|
Tramutola A, Arena A, Cini C, Butterfield DA, Barone E. Modulation of GLP-1 signaling as a novel therapeutic approach in the treatment of Alzheimer’s disease pathology. Expert Rev Neurother 2016; 17:59-75. [PMID: 27715341 DOI: 10.1080/14737175.2017.1246183] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Antonella Tramutola
- Department of Biochemical Sciences ‘A. Rossi-Fanelli’, Sapienza University of Rome, Roma, Italy
| | - Andrea Arena
- Department of Biochemical Sciences ‘A. Rossi-Fanelli’, Sapienza University of Rome, Roma, Italy
| | - Chiara Cini
- Department of Biochemical Sciences ‘A. Rossi-Fanelli’, Sapienza University of Rome, Roma, Italy
| | - D. Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Eugenio Barone
- Department of Biochemical Sciences ‘A. Rossi-Fanelli’, Sapienza University of Rome, Roma, Italy
- Universidad Autónoma de Chile, Instituto de Ciencias Biomédicas, Facultad de Salud, Santiago, Chile
| |
Collapse
|
50
|
Ravages of Diabetes on Gastrointestinal Sensory-Motor Function: Implications for Pathophysiology and Treatment. Curr Gastroenterol Rep 2016; 18:6. [PMID: 26768896 DOI: 10.1007/s11894-015-0481-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Symptoms related to functional and sensory abnormalities are frequently encountered in patients with diabetes mellitus. Most symptoms are associated with impaired gastric and intestinal function. In this review, we discuss basic concepts of sensory-motor dysfunction and how they relate to clinical findings and gastrointestinal abnormalities that are commonly seen in diabetes. In addition, we review techniques that are available for investigating the autonomic nervous system, neuroimaging and neurophysiology of sensory-motor function. Such technological advances, while not readily available in the clinical setting, may facilitate stratification and individualization of therapy in diabetic patients in the future. Unraveling the structural, mechanical, and sensory remodeling in diabetes disease is based on a multidisciplinary approach that can bridge the knowledge from a variety of scientific disciplines. The final goal is to increase the understanding of the damage to GI structures and to sensory processing of symptoms, in order to assist clinicians with developing an optimal mechanics based treatment.
Collapse
|