1
|
Wu HT, Liao CC, Peng CF, Lee TY, Liao PH. Exploring the application of machine learning to identify the correlations between phthalate esters and disease: enhancing nursing assessments. Health Inf Sci Syst 2025; 13:10. [PMID: 39736874 PMCID: PMC11683034 DOI: 10.1007/s13755-024-00324-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025] Open
Abstract
Background Health risks associated with phthalate esters depend on exposure level, individual sensitivities, and other contributing factors. Purpose This study employed artificial intelligence algorithms while applying data mining techniques to identify correlations between phthalate esters [di(2-ethylhexyl) phthalate, DEHP], lifestyle factors, and disease outcomes. Methods We conducted exploratory analysis using demographic and laboratory data collected from the Taiwan Biobank. The study developed a prediction model to examine the relationship between phthalate esters and the risk of developing certain diseases based on various artificial intelligence algorithms, including logistic regression, artificial neural networks, and Bayesian networks. Results The results indicate that phthalate esters exhibited a greater impact on bone and joint issues than heart problems. We observed that DEHP metabolites, such as mono(2-carboxymethylhexyl) phthalate, mono-n-butyl phthalate, and monoethylphthalate, leave higher residue in females than in males, with statistically significant differences. Monoethylphthalate levels were lower in individuals who exercised regularly than those who did not, indicating statistically significant differences. Conclusions This study's findings can serve as a valuable reference for clinical nursing assessments regarding diseases related to osteoporosis, arthritis, and musculoskeletal pain. Medical professionals can enhance care quality by considering factors beyond patients' essential physical assessment items.Trial Registration: This study was registered under NCT05892029 on May 5, 2023, retrospectively.
Collapse
Affiliation(s)
- Hao-Ting Wu
- Department of Nursing, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Chien-Chang Liao
- Department of Gastroenterologist, Tainan Municipal Hospital (Managed By Show Chwan Medical Care Corporation), Tainan, Taiwan
| | - Chiung-Fang Peng
- Department of Research, Taiwan Academy of Ecological Hazard & Health Management, Taipei, Taiwan
| | - Tso-Ying Lee
- Nursing Reserach center & School of Nursing, Taipei Medical University Hospital & Taipei Medical University, Taipei, Taiwan
| | - Pei-Hung Liao
- School of Nursing, National Taipei University of Nursing and Health Sciences, No. 365, Ming-Te Road, Peitou District, Taipei, 112 Taiwan
| |
Collapse
|
2
|
Petrarca MH, Tfouni SAV. Endocrine-disrupting pesticides in infant formulas marketed in Brazil: Interference-free GC-MS analysis and early-life dietary exposure assessment. Food Res Int 2025; 208:116172. [PMID: 40263836 DOI: 10.1016/j.foodres.2025.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/27/2025] [Accepted: 03/10/2025] [Indexed: 04/24/2025]
Abstract
Endocrine-disrupting compounds (EDCs) include ubiquitous and persistent environmental contaminants that interfere with the endocrine system's functions. Many of these compounds are used as acaricides, fungicides, herbicides, and insecticides in agricultural fields worldwide. Considering the serious implications of exposure to EDCs in the first months of life and the few works on pesticide residues in infant formulas, the present research focused exclusively on endocrine-disrupting pesticides in infant formulas intended for babies below 1 year old available in the Brazilian market. An accurate, sensitive, and selective gas chromatography-mass spectrometry (GC-MS) method was successfully validated, and then, applied to infant formula samples. The limits of detection and quantification were low enough to meet the maximum residue level (MRL) of 10.0 μg/kg established for infant formula. Recoveries varied from 86.3 to 119.8 % and precision values, under repeatability and within-laboratory reproducibility, were ≤ 19.7 %. Another unique feature of the study was the detection and strategies to remove a potential matrix-interfering compound, which shared the same ions monitored for malathion in GC-MS analysis, thus preventing false positives. Among the 60 infant formula samples analysed, dimethoate, an organophosphate insecticide, was detected in five samples, with one soy-based infant formula exceeding the MRL. Based on a deterministic approach, the estimated daily intakes were within the acceptable daily intake (ADI) values and below the acute reference dose (ARfD), indicating no major health concerns.
Collapse
Affiliation(s)
- Mateus Henrique Petrarca
- Centro de Ciência e Qualidade de Alimentos, Instituto de Tecnologia de Alimentos - ITAL, Avenida Brasil n 2880, 13070-178, Campinas, SP, Brazil.
| | - Silvia Amelia Verdiani Tfouni
- Centro de Ciência e Qualidade de Alimentos, Instituto de Tecnologia de Alimentos - ITAL, Avenida Brasil n 2880, 13070-178, Campinas, SP, Brazil
| |
Collapse
|
3
|
Guo Z, Tan Y, Lin C, Li H, Xie Q, Lai Z, Liang X, Tan L, Jing C. Unraveling the connection between endocrine-disrupting chemicals and anxiety: An integrative epidemiological and bioinformatic perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118188. [PMID: 40267882 DOI: 10.1016/j.ecoenv.2025.118188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/27/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND The evidence linking endocrine-disrupting chemicals (EDCs) to anxiety in adults is currently sparse, while the effects of various categories of EDCs on the risk of anxiety, along with the underlying mechanisms, remain poorly understood. METHODS Four EDCs-polycyclic aromatic hydrocarbons (PAHs), phenols, pesticides, and phthalates-were quantified in 3927 adults from the National Health and Nutrition Examination Survey (NHANES) (2007-2012). We employed five statistical models to assess the individual and joint impacts of EDCs on anxiety risk. Causal mediation analysis frameworks were constructed to explore the mediating role of oxidative stress (OS). We identified potential biological mechanisms linking analytes to outcomes using the Comparative Toxicogenomics Database (CTD), MalaCards, and Open Targets, followed by enrichment analyses with Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). RESULTS In individual chemical analyses, nine PAHs were significantly associated with increased anxiety risk (P < 0.05). Mixed-effects analyses showed that co-exposure to EDCs positively correlated with anxiety, primarily due to 2-hydroxyfluorene (2-FLU) and 3-hydroxyfluorene (3-FLU). Bilirubin mediated 5.42 % of the anxiety linked to the PAH mixture. The inflammatory genes TNF and IL-6 were identified as key biological stressors, with enrichment analysis indicating significant involvement in reactive oxygen species metabolic processes and the AGE-RAGE signaling pathway. CONCLUSION This study highlights the association between EDCs and anxiety in a representative U.S. population, indicating that exposure to PAHs may elevate anxiety risk through OS, inflammation, and the AGE-RAGE signaling pathway. Further longitudinal study were merited to support our results.
Collapse
Affiliation(s)
- Ziang Guo
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China; Department of Epidemiology, School of Medicine, Jinan University , No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China; Guangzhou Center for Disease Control and Prevention, No.1 Qide Road, Guangzhou , Guangdong 510440, China
| | - Yuxuan Tan
- Department of Global Health, School of Public Health, Wuhan University, Wuhan, Hubei 430071, China
| | - Chuhang Lin
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China; Department of Epidemiology, School of Medicine, Jinan University , No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China
| | - Haiying Li
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China; Department of Epidemiology, School of Medicine, Jinan University , No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China
| | - Qianqian Xie
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China; Department of Epidemiology, School of Medicine, Jinan University , No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China
| | - Zhengtian Lai
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China; Department of Epidemiology, School of Medicine, Jinan University , No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China
| | - Xiao Liang
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China; Department of Epidemiology, School of Medicine, Jinan University , No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, No.1 Qide Road, Guangzhou , Guangdong 510440, China.
| | - Chunxia Jing
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong 510632, China; Department of Epidemiology, School of Medicine, Jinan University , No.601 Huangpu Ave West, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
4
|
Nguyen TD, Huynh TN, Nguyen VT, Dinh KV, Wiegand C, Pham TL, Bui MH, Itayama T, Tran NT, Wang Z, Dao TS. Multigenerational testing reveals delayed chronic toxicity of bisphenol A to Daphnia magna: A common characteristic of endocrine-disrupting chemicals? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126253. [PMID: 40239941 DOI: 10.1016/j.envpol.2025.126253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Bisphenol A (BPA) poses longstanding environmental concerns due to its widespread presence and recognized toxicity; however, its multigenerational ecotoxicity, in aquatic models such as water fleas, remains incompletely understood. This study examined the impact of sublethal BPA exposure on Daphnia magna across six generations, tracking changes in both life-history and population traits. Over the first five generations, BPA exposure produced minor and inconsistent effects on age at first oogenesis, age at first offspring production, growth rate, and fertility. The sixth generation exhibited prolonged oogenesis, delayed first offspring production, reduced body size, and decreased fertility, indicating delayed adverse effects. These multigenerational effects did not significantly alter population size or dynamics. Furthermore, BPA exposure did not affect feeding behavior in D. magna over six days, suggesting that food consumption-mediated mechanisms were unlikely a contributing factor. Our findings reveal BPA's delayed adverse effects on D. magna fitness, underscoring potential vulnerabilities for D. magna and other species under additional environmental stressors. These results support literature indicating that endocrine-disrupting chemicals can cause delayed and cumulative adverse effects on zooplankton descendants. Broadening multigenerational research to include a wider range of species, alongside sub-organismal analyses, is crucial to advancing regulatory frameworks and understanding underlying mechanisms.
Collapse
Affiliation(s)
- Tan-Duc Nguyen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou University, Shantou, 515063, China
| | - Trong-Nhan Huynh
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Viet Nam; CARE, HCMUT, Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Van-Tai Nguyen
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Viet Nam; CARE, HCMUT, Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Khuong V Dinh
- Department of Fisheries Biology, Nha Trang University, Nha Trang City, Viet Nam; Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Thanh Luu Pham
- Faculty of Environment and Labour Safety, Ton Duc Thang University, 19 Nguyen Huu Tho street, Tan Phong ward, District 7, Ho Chi Minh City, 700000, Viet Nam
| | - Manh-Ha Bui
- Department of Environmental Sciences, Saigon University, Ho Chi Minh City, Viet Nam
| | - Tomoaki Itayama
- Department of Science and Technology, Nagasaki University, Nagasaki City, Japan
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China
| | - Zhen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou University, Shantou, 515063, China.
| | - Thanh-Son Dao
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Viet Nam; CARE, HCMUT, Vietnam National University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
5
|
Mundstock Dias GR, Freitas Ferreira AC, Miranda-Alves L, Graceli JB, Pires de Carvalho D. Endocrine Disruptors Chemicals: Impacts of Bisphenol A, Tributyltin and Lead on Thyroid Function. Mol Cell Endocrinol 2025; 599:112467. [PMID: 39855591 DOI: 10.1016/j.mce.2025.112467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
The large-scale industrial production characteristic of the last century led to an increase in man-made compounds and mobilization of natural compounds, many of which can accumulate in the environment and organisms due to their bioaccumulation and biomagnification properties. The endocrine system is especially vulnerable to these compounds that are known as endocrine disruptor chemicals (EDCs). Thyroid hormones (THs) are essential for normal development and growth, besides being the main regulators of basal metabolic rate. Thus, compounds able to affect THs synthesis, transport, and action could produce important deleterious effects, impacting the development of metabolic and endocrine diseases. Herein, we will review the main effects of EDCs on the thyroid axis, with special emphasis on the widely used substances bisphenol A (BPA), employed in the synthesis of polycarbonate plastics and epoxy resins; tributyltin (TBT), an organotin chemical substance widely used in several agro-industrial applications; and lead (Pb), a ubiquitous environmental and occupational polluting heavy metal. Exposure to these EDCs occurs mainly from the ingestion of contaminated food and beverages. Furthermore, there are few epidemiological studies evaluating human risk, and experimental studies employ different exposure models, making it difficult to integrate results. However, even low doses of these EDCs warn of thyrotoxicity. Since THs homeostasis is essential for health and humans are increasingly being exposed to EDCs, it is important to clarify which substances might act as thyroid hormone system disrupting chemicals and how they act in order to try to overcome their deleterious effects and limit the exposure to these compounds.
Collapse
Affiliation(s)
- Glaecir Roseni Mundstock Dias
- Programa de Pós-graduação em Medicina (Endocrinologia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Andrea Claudia Freitas Ferreira
- Programa de Pós-graduação em Medicina (Endocrinologia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Programa de Pós-graduação em Ciências Biológicas (Fisiologia), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Núcleo Interdisciplinar NUMPEX, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, Brazil
| | - Leandro Miranda-Alves
- Programa de Pós-graduação em Medicina (Endocrinologia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratório de Endocrinologia Experimental, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jones Bernardes Graceli
- Departamento de Morfologia, Universidade Federal do Espírito Santo, Vitória, ES, Brazil; Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Denise Pires de Carvalho
- Programa de Pós-graduação em Medicina (Endocrinologia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Programa de Pós-graduação em Ciências Biológicas (Fisiologia), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Borjian N, Farhadian S, Shareghi B, Asgharzadeh S, Momeni L, Ghobadi S. Binding affinity and mechanism of dicofol-lysozyme interaction: Insights from multi-spectroscopy and molecular dynamic simulations. Int J Biol Macromol 2025; 308:142569. [PMID: 40157692 DOI: 10.1016/j.ijbiomac.2025.142569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The pervasive use of dicofol in agricultural settings has been linked to biomolecular perturbations, posing significant threats to environmental sustainability and human health. Therefore, it is crucial to investigate the interactions between dicofol and biomacromolecules, such as proteins. This study employed a range of molecular modeling approaches and spectroscopic techniques to examine the binding interaction between dicofol and lysozyme to elucidate the underlying mechanisms of these toxic effects. Molecular docking studies identified the most optimal binding site for dicofol on the lysozyme structure, highlighting the precise region within the protein where dicofol binds most effectively. Molecular dynamic simulations showed that the dicofol-lysozyme system was stable throughout the entire simulation period. UV-vis absorption and fluorescence emission studies confirmed that dicofol interacts with lysozyme to form a complex. FT-IR analysis revealed that this interaction alters lysozyme's conformation, decreasing alpha-helical content while increasing β-sheet content. Furthermore, a direct relationship was observed between dicofol concentration and lysozyme's activity and stability, with higher dicofol levels causing a notable decline in both factors. In conclusion, this research deepens our understanding of the specific interactions between dicofol and lysozyme while also highlighting the importance of studying such interactions to evaluate the environmental and health risks linked to pesticide usage.
Collapse
Affiliation(s)
- Negar Borjian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Sanaz Asgharzadeh
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Lida Momeni
- Department of Biology, Faculty of Science, University of Payam Noor, Iran
| | - Sirous Ghobadi
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
7
|
Li Z, Song X, Turay DAK, Chen Y, Zhao G, Jiang Y, Zhou K, Ji X, Zhang X, Chen M. Association of Personal Care and Consumer Product Chemicals with Long-Term Amenorrhea: Insights into Serum Globulin and STAT3. TOXICS 2025; 13:187. [PMID: 40137514 PMCID: PMC11945380 DOI: 10.3390/toxics13030187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Chemicals in personal care and consumer products are suspected to disrupt endocrine function and affect reproductive health. However, the link between mixed exposure and long-term amenorrhea is not well understood. This study analyzed data from 684 women (2013-2018 National Health and Nutrition Examination Survey) to assess exposure to eight polyfluorinated alkyl substances (PFASs), 15 phthalates (PAEs), six phenols, and four parabens. Various statistical models for robustness tests and mediation analysis were used to explore associations with long-term amenorrhea and the role of serum globulin. Biological mechanisms were identified through an integrated strategy involving target analysis of key chemicals and long-term amenorrhea intersections, pathway analysis, and target validation. Results showed that women with long-term amenorrhea had higher exposure levels of Perfluorodecanoic acid, Perfluorohexane sulfonic acid (PFHxS), Perfluorononanoic acid, n-perfluorooctanoic acid (n_PFOA), n-perfluorooctane sulfonic acid, and Perfluoromethylheptane sulfonic acid isomers. Logistic regression with different adjustments consistently found significant associations between elevated PFAS concentrations and increased long-term amenorrhea risk, confirmed by Partial Least Squares Discriminant Analysis. Mediation analysis revealed that serum globulin partially mediated the relationship between PFAS exposure and long-term amenorrhea. Network and target analysis suggested that PFHxS and n_PFOA may interact with Signal Transducer and Activator of Transcription 3 (STAT3). This study highlights significant associations between PFAS exposure, particularly PFHxS and n_PFOA, and long-term amenorrhea, with serum globulin and STAT3 serving as mediators in the underlying mechanisms.
Collapse
Affiliation(s)
- Ziyi Li
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Z.L.); (X.S.); (D.A.K.T.); (Y.C.); (G.Z.); (Y.J.); (K.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xue Song
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Z.L.); (X.S.); (D.A.K.T.); (Y.C.); (G.Z.); (Y.J.); (K.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Daniel Abdul Karim Turay
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Z.L.); (X.S.); (D.A.K.T.); (Y.C.); (G.Z.); (Y.J.); (K.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanling Chen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Z.L.); (X.S.); (D.A.K.T.); (Y.C.); (G.Z.); (Y.J.); (K.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guohong Zhao
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Z.L.); (X.S.); (D.A.K.T.); (Y.C.); (G.Z.); (Y.J.); (K.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yingtong Jiang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Z.L.); (X.S.); (D.A.K.T.); (Y.C.); (G.Z.); (Y.J.); (K.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Kun Zhou
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Z.L.); (X.S.); (D.A.K.T.); (Y.C.); (G.Z.); (Y.J.); (K.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoming Ji
- Department of Occupational Medicine and Environmental Health, School of Public Health, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Nanjing Medical University, Nanjing 211166, China;
| | - Xiaoling Zhang
- Department of Hygienic Analysis and Detection, Nanjing Medical University, Nanjing 211166, China;
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Z.L.); (X.S.); (D.A.K.T.); (Y.C.); (G.Z.); (Y.J.); (K.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Occupational Medicine and Environmental Health, School of Public Health, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Nanjing Medical University, Nanjing 211166, China;
| |
Collapse
|
8
|
Yeo KE, Lim S, Kim A, Lim YB, Lee CR, Kim JI, Kim BN. Association Between Endocrine-Disrupting Chemicals Exposure and Attention-Deficit/Hyperactivity Disorder Symptoms in Children With Attention-Deficit/Hyperactivity Disorder. Soa Chongsonyon Chongsin Uihak 2025; 36:18-25. [PMID: 39811025 PMCID: PMC11725660 DOI: 10.5765/jkacap.240035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 01/16/2025] Open
Abstract
Objectives This study investigated the relationship between exposure to endocrine-disrupting chemicals (EDCs), specifically phthalates, bisphenol A, bisphenol F, and bisphenol S, and the severity of attention-deficit/hyperactivity disorder (ADHD) symptoms using neuropsychological tests in children diagnosed with ADHD. Methods This study included 67 medication-naïve children with ADHD aged 6-16 years. The urinary concentrations of EDCs were measured, and ADHD symptom severity was evaluated using neuropsychological tests and clinical symptom scale measurements. The Jonckheere-Terpstra test, Pearson and Spearman correlation analyses, linear regression models, and multiple regression models were used to examine the relationship between EDC exposure and ADHD symptoms. Results A significant correlation was observed between urinary phthalate metabolite concentrations and commission error T-scores in the visual Advanced Test of Attention test. No significant associations were found with other neuropsychological indicators or bisphenol levels. Conclusion Phthalate exposure affects impulsivity in children with ADHD, which is consistent with the results of previous studies that used parental surveys. However, bisphenols are not clearly associated with ADHD symptoms, which is consistent with the results of previous studies.
Collapse
Affiliation(s)
- Kang-Eun Yeo
- Department of Psychiatry, Seoul National University
College of Medicine, Seoul, Korea
- Department of Psychiatry, Seoul National University
Hospital, Seoul, Korea
| | - Seungbee Lim
- Biomedical Research Institute, Seoul National University
Hospital, Seoul, Korea
| | - Aelin Kim
- Biomedical Research Institute, Seoul National University
Hospital, Seoul, Korea
| | - You Bin Lim
- Department of Psychiatry, Seoul National University
College of Medicine, Seoul, Korea
- Division of Child and Adolescent Psychiatry, Department
of Psychiatry, Seoul National University Hospital, Seoul,
Korea
| | - Chae Rim Lee
- Division of Child and Adolescent Psychiatry, Department
of Psychiatry, Seoul National University Hospital, Seoul,
Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University College of
Medicine, Seoul, Korea
| | - Bung-Nyun Kim
- Department of Psychiatry, Seoul National University
College of Medicine, Seoul, Korea
- Division of Child and Adolescent Psychiatry, Department
of Psychiatry, Seoul National University Hospital, Seoul,
Korea
| |
Collapse
|
9
|
Yao L, Fu Z, Duan Q, Wu M, Song F, Wang H, Qin Y, Bai Y, Zhou C, Quan X, Lee J. An intelligent spectral identification approach for the simultaneous detection of endocrine-disrupting chemicals in aquatic environments. ENVIRONMENTAL RESEARCH 2025; 264:120368. [PMID: 39547564 DOI: 10.1016/j.envres.2024.120368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
With the rapid progression of industrialization, the application and release of endocrine disruptors (EDCs), including bisphenol A (BPA), octylphenol and nonylphenol have significantly increased, presenting substantial health hazards. Conventional analytical techniques, such as high-performance liquid chromatography and gas chromatography-mass spectrometry, are highly sophisticated but suffer from complex procedures and high costs. To overcome these limitations, this study introduces an innovative spectral methodology for the simultaneous detection of multiple aquatic multicomponent EDCs. By leveraging chemical machine vision, specifically with convolutional neural network (CNN) models, we employed a long-path holographic spectrometer for rapid, cost-effective identification of BPA, 4-tert-octylphenol, and 4-nonylphenol in aqueous samples. The CNN, refined with the ResNet-50 architecture, demonstrated superior predictive performance, achieving detection limits as low as 3.34, 3.71 and 4.36 μg/L, respectively. The sensitivity and quantification capability of our approach were confirmed through the analysis of spectral image Euclidean distances, while its universality and resistance properties were validated by assessments of environmental samples. This technology offers significantly advantages over conventional techniques in terms of efficiency and cost, offering a novel solution for EDC monitoring in aquatic environments. The implications of this research extend beyond improved detection speed and cost reduction, presenting new methodologies for analyzing complex chemical systems and contributing to environmental protection and public health.
Collapse
Affiliation(s)
- Liulu Yao
- Laboratory of Environmental Aquatic Chemistry, Department of Environmental Science, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Zhizhi Fu
- Laboratory of Environmental Aquatic Chemistry, Department of Environmental Science, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Qiannan Duan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity. College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, PR China
| | - Mingzhe Wu
- Laboratory of Environmental Aquatic Chemistry, Department of Environmental Science, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Fan Song
- Laboratory of Environmental Aquatic Chemistry, Department of Environmental Science, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Haoyu Wang
- Laboratory of Environmental Aquatic Chemistry, Department of Environmental Science, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Yiheng Qin
- Laboratory of Environmental Aquatic Chemistry, Department of Environmental Science, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Yonghui Bai
- Laboratory of Environmental Aquatic Chemistry, Department of Environmental Science, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Chi Zhou
- Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, Shaanxi Provincial Environmental Monitoring Centre, Xi'an, 71005, PR China
| | - Xudong Quan
- Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, Shaanxi Provincial Environmental Monitoring Centre, Xi'an, 71005, PR China
| | - Jianchao Lee
- Laboratory of Environmental Aquatic Chemistry, Department of Environmental Science, Shaanxi Normal University, Xi'an, 710062, PR China.
| |
Collapse
|
10
|
Stratmann M, Özel F, Marinopoulou M, Lindh C, Kiviranta H, Gennings C, Bornehag CG. Prenatal exposure to endocrine disrupting chemicals and the association with behavioural difficulties in 7-year-old children in the SELMA study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00739-x. [PMID: 39702465 DOI: 10.1038/s41370-024-00739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Endocrine disrupting chemicals (EDCs) can cross the placenta and thereby expose the fetus, which may lead to developmental consequences. It is still unclear which chemicals are of concern regarding neurodevelopment and specifically behaviour, when being exposed to a mixture. OBJECTIVE The objective is to determine associations between prenatal exposure to EDCs and behavioural difficulties. Furthermore, we investigated sex-specific associations and determined chemicals of concern in significant regressions. METHODS Associations between prenatal exposure to EDCs (both as single compounds and their mixtures) and behavioural outcomes using the Strengths and Difficulties Questionnaire (SDQ) were estimated in 607 mother-child pairs in the Swedish Environmental Longitudinal, Mother and Child, Asthma and Allergy (SELMA) study. Levels for chemical compounds were measured in either urine or serum (median of 10 weeks of gestation). Associations were estimated for the total SDQ score (quasipoisson regression) and a 90th percentile cut-off (logistic regression). Exposure for EDC mixtures (phenols, phthalates, PFAS and persistent chlorinated) was studied using weighted quantile sum (WQS) regression with deciles and with and without repeated holdout validation techniques. The models were adjusted for selected covariates. RESULTS The odds for behavioural difficulties increased in girls with higher chemical exposures (OR 1.77, 95% CI 1.67, 1.87) using the full sample and borderline for the validation set (OR 1.31, 95% CI 0.93, 1.85) with 94/100 positive betas in the 100 repeated holdout validations. Chemicals of concern for girls are mostly short-lived chemicals and more specifically plasticizers. No pattern of significant associations was detected for boys. SIGNIFICANCE There is an indication of increased behavioural difficulties for girls in the SELMA population with higher exposure to mixtures of EDCs. Using the repeated holdout validation techniques, the inference is more stable, reproducible and generalisable. Prenatal exposure to mixtures of environmental chemicals should be considered when assessing the safety of chemicals. IMPACT Growing evidence points towards a "mixture effect" where different environmental chemicals might act jointly where individual compounds may be below a level of concern, but the combination may have an effect on human health. We are constantly exposed to a complicated mixture pattern that is individual for every person as this mixture depends on personal choices of lifestyle, diet and housing to name a few. Our study suggests that prenatal exposure to EDCs might adversely affect the behaviour of children and especially girls. Hence, risk assessment needs to improve and sex-specific mechanisms should be included in assessments.
Collapse
Affiliation(s)
- Marlene Stratmann
- Department of Health Sciences, Karlstad University, Karlstad, Sweden.
| | - Fatih Özel
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Centre for Women's Mental Health During the Reproductive Lifespan-Womher, Uppsala University, Uppsala, Sweden
| | - Maria Marinopoulou
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Child and Adolescent Habilitation, Region Värmland, Karlstad, Sweden
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Hannu Kiviranta
- Department of Health Security, Finnish Institute for Health and Welfare, 70701, Kuopio, Finland
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carl-Gustaf Bornehag
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Kucera J, Chalupova Z, Wabitsch M, Bienertova-Vasku J. Endocrine disruption of adipose physiology: Screening in SGBS cells. J Appl Toxicol 2024; 44:1784-1792. [PMID: 39044430 DOI: 10.1002/jat.4679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
The increasing use of industrial chemicals has raised concerns regarding exposure to endocrine-disrupting chemicals (EDCs), which interfere with developmental, reproductive and metabolic processes. Of particular concern is their interaction with adipose tissue, a vital component of the endocrine system regulating metabolic and hormonal functions. The SGBS (Simpson Golabi Behmel Syndrome) cell line, a well-established human-relevant model for adipocyte research, closely mimics native adipocytes' properties. It responds to hormonal stimuli, undergoes adipogenesis and has been successfully used to study the impact of EDCs on adipose biology. In this study, we screened human exposure-relevant doses of various EDCs on the SGBS cell line to investigate their effects on viability, lipid accumulation and adipogenesis-related protein expression. Submicromolar doses were generally well tolerated; however, at higher doses, EDCs compromised cell viability, with cadmium chloride (CdCl2) showing the most pronounced effects. Intracellular lipid levels remained unaffected by EDCs, except for tributyltin (TBT), used as a positive control, which induced a significant increase. Analysis of adipogenesis-related protein expression revealed several effects, including downregulation of fatty acid-binding protein 4 (FABP4) by dibutyl phthalate, upregulation by CdCl2 and downregulation of perilipin 1 and FABP4 by perfluorooctanoic acid. Additionally, TBT induced dose-dependent upregulation of C/EBPα, perilipin 1 and FABP4 protein expression. These findings underscore the importance of employing appropriate models to study EDC-adipocyte interactions. Conclusions from this research could guide strategies to reduce the negative impacts of EDC exposure on adipose tissue.
Collapse
Affiliation(s)
- Jan Kucera
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Physical Activities and Health Sciences, Faculty of Sports Studies, Masaryk University, Brno, Czech Republic
| | - Zuzana Chalupova
- Department of Internal Medicine and Cardiology, University Hospital Brno, Brno, Czech Republic
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Julie Bienertova-Vasku
- Department of Physical Activities and Health Sciences, Faculty of Sports Studies, Masaryk University, Brno, Czech Republic
| |
Collapse
|
12
|
Alva-Gallegos R, Jirkovský E, Mladěnka P, Carazo A. Small phenolic compounds as potential endocrine disruptors interacting with estrogen receptor alpha. Front Endocrinol (Lausanne) 2024; 15:1440654. [PMID: 39512757 PMCID: PMC11540614 DOI: 10.3389/fendo.2024.1440654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024] Open
Abstract
The human body is regularly exposed to simple catechols and small phenols originating from our diet or as a consequence of exposure to various industrial products. Several biological properties have been associated with these compounds such as antioxidant, anti-inflammatory, or antiplatelet activity. Less explored is their potential impact on the endocrine system, in particular through interaction with the alpha isoform of the estrogen receptor (ERα). In this study, human breast cancer cell line MCF-7/S0.5 was employed to investigate the effects on ERα of 22 closely chemically related compounds (15 catechols and 7 phenols and their methoxy derivatives), to which humans are widely exposed. ERα targets genes ESR1 (ERα) and TFF1, both on mRNA and protein level, were chosen to study the effect of the tested compounds on the mentioned receptor. A total of 7 compounds seemed to impact mRNA and protein expression similarly to estradiol (E2). The direct interaction of the most active compounds with the ERα ligand binding domain (LBD) was further tested in cell-free experiments using the recombinant form of the LBD, and 4-chloropyrocatechol was shown to behave like E2 with about 1/3 of the potency of E2. Our results provide evidence that some of these compounds can be considered potential endocrine disruptors interacting with ERα.
Collapse
Affiliation(s)
| | | | | | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czechia
| |
Collapse
|
13
|
Su J, Yang X, Xu H, Pei Y, Liu QS, Zhou Q, Jiang G. Screening (ant)agonistic activities of xenobiotics on the retinoic acid receptor alpha (RARα) using in vitro and in silico analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174717. [PMID: 38997027 DOI: 10.1016/j.scitotenv.2024.174717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Retinoic acid receptors (RARs) are known as crucial endocrine receptors that could mediate a broad diversity of biological processes. However, the data on endocrine disrupting effects of emerging chemicals by targeting RAR (ant)agonism are far from sufficient. Herein, we investigated the RARα agonistic or antagonistic activities for 75 emerging chemicals of concern, and explored their interactions with this receptor. A recombinant two-hybrid yeast assay was used to examine the RARα activities of the test chemicals, wherein 7 showed effects of RARα agonism and 54 exerted potentials of RARα antagonism. The representative chemicals with RARα agonistic activities, i.e. 4-hydroxylphenol (4-HP) and bisphenol AF (BPAF), significantly increased the mRNA levels of CRABP2 and CYP26A1, while 4 select chemicals with RARα antagonistic potentials, including bisphenol A (BPA), tetrabromobisphenol A (TBBPA), 4-tert-octylphenol (4-t-OP), and 4-n-nonylphenol (4-n-NP), conversely decreased the transcriptional levels of the test genes. The in silico molecular docking analysis using 3 different approaches further confirmed the substantial binding between the chemicals with RARα activities and this nuclear receptor protein. This work highlights the promising strategy for screening endocrine-disrupting effects of emerging chemicals of concern by targeting RARα (ant)agonism.
Collapse
Affiliation(s)
- Jiahui Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Hanqing Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China
| | - Yao Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Strand D, Lundgren B, Bergdahl IA, Martin JW, Karlsson O. Personalized mixture toxicity testing: A proof-of-principle in vitro study evaluating the steroidogenic effects of reconstructed contaminant mixtures measured in blood of individual adults. ENVIRONMENT INTERNATIONAL 2024; 192:108991. [PMID: 39299052 DOI: 10.1016/j.envint.2024.108991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024]
Abstract
Chemical risk assessments typically focus on single substances, often overlooking real-world co-exposures to chemical mixtures. Mixture toxicology studies using representative mixtures can reveal potential chemical interactions, but these do not account for the unique chemical profiles that occur in the blood of diverse individuals. Here we used the H295R steroidogenesis assay to screen personalized mixtures of 24 persistent organic pollutants (POPs) for cytotoxicity and endocrine disruption. Each mixture was reconstructed at a human exposure relevant concentration (1×), as well as at 10- and 100-fold higher concentration (10×, 100×) by acoustic liquid handling based on measured blood concentrations in a Swedish cohort. Among the twelve mixtures tested, nine mixtures decreased the cell viability by 4-18%, primarily at the highest concentration. While the median and maximum mixtures based on the whole study population induced no measurable effects on steroidogenesis at any concentration, the personalized mixture from an individual with the lowest total POPs concentration was the only mixture that affected estradiol synthesis (35% increase at the 100× concentration). Mixtures reconstructed from blood levels of three different individuals stimulated testosterone synthesis at the 1× (11-15%) and 10× concentrations (12-16%), but not at the 100× concentration. This proof-of-principle personalized toxicity study illustrates that population-based representative chemical mixtures may not adequately account for the toxicological risks posed to individuals. It highlights the importance of testing a range of real-world mixtures at relevant concentrations to explore potential interactions and non-monotonic effects. Further toxicological studies of personalized contaminant mixtures could improve chemical risk assessment and advance the understanding of human health, as chemical exposome data become increasingly available.
Collapse
Affiliation(s)
- Denise Strand
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Bo Lundgren
- Science for Life Laboratory, Biochemical and Cellular Assay Unit, Dept. of Biochemistry and Biophysics, Stockholm University, Stockholm 106 91, Sweden
| | - Ingvar A Bergdahl
- Department of Public Health and Clinical Medicine, Section for Sustainable Health, Umeå University, Umeå 901 85 Sweden
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden.
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden.
| |
Collapse
|
15
|
Essfeld F, Luckner B, Bruder A, Marghany F, Ayobahan SU, Alvincz J, Eilebrecht S. Gene biomarkers for the assessment of thyroid-disrupting activity in zebrafish embryos. CHEMOSPHERE 2024; 365:143287. [PMID: 39243900 DOI: 10.1016/j.chemosphere.2024.143287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Active ingredients of pesticides or biocides and industrial chemicals can negatively affect environmental organisms, potentially endangering populations and ecosystems. European legislation mandates that chemical manufacturers provide data for the environmental risk assessment of substances to obtain registration. Endocrine disruptors, substances that interfere with the hormone system, are not granted marketing authorization due to their adverse effects. Current methods for identifying disruptors targeting the thyroid hormone system are costly and require many amphibians. Consequently, alternative methods compliant with the 3R principle (replacement, reduction, refinement) are essential to prioritize risk assessment using reliable biomarkers at non-protected life stages. Our study focused on detecting robust biomarkers for thyroid-disrupting mechanisms of action (MoA) by analyzing molecular signatures in zebrafish embryos induced by deiodinase inhibitor iopanoic acid and thyroid peroxidase inhibitor methimazole. We exposed freshly fertilized zebrafish eggs to these compounds, measuring lethality, hatching rate, swim bladder size and transcriptomic responses. Both compounds significantly reduced swim bladder size, aligning with prior findings. Transcriptome analysis revealed specific molecular fingerprints consistent with the MoA under investigation. This analysis confirmed regulation directions seen in other studies involving thyroid disruptors and allowed us to identify genes like tg, scl2a11b, guca1d, cthrc1a, si:ch211-226h7.5, soul5, nnt2, cox6a2 and mep1a as biomarker genes for thyroid disrupting MoA in zebrafish embryos as per OECD test guideline 236. Future screening methods based on our findings will enable precise identification of thyroid-related activity in chemicals, promoting the development of environmentally safer substances. Additionally, these biomarkers could potentially be incorporated into legally mandated chronic toxicity tests in fish, potentially replacing amphibian tests for thyroid disruption screening in the future.
Collapse
Affiliation(s)
- Fabian Essfeld
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany; Computational Biology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Benedikt Luckner
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Antonia Bruder
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany; Biotechnology, Faculty of Biology, University of Münster, Germany
| | - Fatma Marghany
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Steve Uwa Ayobahan
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Julia Alvincz
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany.
| |
Collapse
|
16
|
Pang WK, Kuznetsova E, Holota H, De Haze A, Beaudoin C, Volle DH. Understanding the role of endocrine disrupting chemicals in testicular germ cell cancer: Insights into molecular mechanisms. Mol Aspects Med 2024; 99:101307. [PMID: 39213722 DOI: 10.1016/j.mam.2024.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/14/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
This comprehensive review examines the complex interplay between endocrine disrupting chemicals (EDCs) and the development of testicular germ cell tumors (TGCTs). Despite the high cure rates of TGCTs, challenges in diagnosis and treatment remain, necessitating a deeper understanding of the etiology of the disease. Here, we emphasize current knowledge on the role of EDCs as potential risk factors for TGCTs, focusing on pesticides and perfluorinated and polyfluoroalkyl substances (PFAs/PFCs). Evidence suggests that EDCs disrupt endocrine pathways and induce epigenetic changes that contribute to the development of TGCTs. However, the direct link between EDCs and TGCTs remains elusive and requires further investigation of the molecular mechanisms. We also highlighted the importance of studying nuclear receptors as potential targets for understanding TGCT etiology. In addition, recent evidence implicates PFAs/PFCs in TGCT incidence, highlighting the need for further research into their impact on human health. Overall, this review provides valuable insights into the potential role of EDCs in TGCT development and suggests avenues for future research, while also highlighting how understanding their influence may pave the way for novel therapeutic approaches to improve disease management.
Collapse
Affiliation(s)
- Won-Ki Pang
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France.
| | - Ekaterina Kuznetsova
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France
| | - Hélène Holota
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France
| | - Angélique De Haze
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France
| | - Claude Beaudoin
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France
| | - David H Volle
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France.
| |
Collapse
|
17
|
Michelangeli F, Mohammed NA, Jones B, Tairu M, Al‐Mousa F. Cytotoxicity by endocrine disruptors through effects on ER Ca 2+ transporters, aberrations in Ca 2+ signalling pathways and ER stress. FEBS Open Bio 2024; 14:1384-1396. [PMID: 39138623 PMCID: PMC11492318 DOI: 10.1002/2211-5463.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/24/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Concerns regarding man-made organic chemicals pervading our ecosystem and having adverse and detrimental effects upon organisms, including man, have now been studied for several decades. Since the 1970s, some environmental pollutants were identified as having endocrine disrupting affects. These endocrine disrupting chemicals (EDC) were initially shown to have estrogenic or anti-estrogenic properties and some were also shown to bind to a variety of hormone receptors. However, since the 1990s it has also been identified that many of these EDC additionally, have the ability of causing abnormal alterations in Ca2+ signalling pathways (also commonly involved in hormone signalling), leading to exaggerated elevations in cytosolic [Ca2+] levels, that is known to cause activation of a number of cell death pathways. The major emphasis of this review is to present a personal perspective of the evidence for some types of EDC, specifically alkylphenols and brominated flame retardants (BFRs), causing direct effects on Ca2+ transporters (mainly the SERCA Ca2+ ATPases), culminating in acute cytotoxicity and cell death. Evidence is also presented to indicate that this Ca2+ATPase inhibition, which leads to abnormally elevated cytosolic [Ca2+], as well as a decreased luminal ER [Ca2+], which triggers the ER stress response, are both involved in acute cytotoxicity.
Collapse
Affiliation(s)
- Francesco Michelangeli
- Chester Medical SchoolUniversity of ChesterUK
- School of BiosciencesUniversity of BirminghamUK
| | - Noor A. Mohammed
- School of BiosciencesUniversity of BirminghamUK
- Department of BiologyUniversity of DuhokIraq
| | | | | | - Fawaz Al‐Mousa
- General Directorate of Poison Control CentreMinistry of HealthRiyadhSaudi Arabia
| |
Collapse
|
18
|
Al Miad A, Saikat SP, Alam MK, Sahadat Hossain M, Bahadur NM, Ahmed S. Metal oxide-based photocatalysts for the efficient degradation of organic pollutants for a sustainable environment: a review. NANOSCALE ADVANCES 2024; 6:d4na00517a. [PMID: 39258117 PMCID: PMC11382149 DOI: 10.1039/d4na00517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024]
Abstract
Photocatalytic degradation is a highly efficient technique for eliminating organic pollutants such as antibiotics, organic dyes, toluene, nitrobenzene, cyclohexane, and refinery oil from the environment. The effects of operating conditions, concentrations of contaminants and catalysts, and their impact on the rate of deterioration are the key focuses of this review. This method utilizes light-activated semiconductor catalysts to generate reactive oxygen species that break down contaminants. Modified photocatalysts, such as metal oxides, doped metal oxides, and composite materials, enhance the effectiveness of photocatalytic degradation by improving light absorption and charge separation. Furthermore, operational conditions such as pH, temperature, and light intensity also play a crucial role in enhancing the degradation process. The results indicated that both high pollutant and catalyst concentrations improve the degradation rate up to a threshold, beyond which no significant benefits are observed. The optimal operational conditions were found to significantly enhance photocatalytic efficiency, with a marked increase in degradation rates under ideal settings. Antibiotics and organic dyes generally follow intricate degradation pathways, resulting in the breakdown of these substances into smaller, less detrimental compounds. On the other hand, hydrocarbons such as toluene and cyclohexane, along with nitrobenzene, may necessitate many stages to achieve complete mineralization. Several factors that affect the efficiency of degradation are the characteristics of the photocatalyst, pollutant concentration, light intensity, and the existence of co-catalysts. This approach offers a sustainable alternative for minimizing the amount of organic pollutants present in the environment, contributing to cleaner air and water. Photocatalytic degradation hence holds tremendous potential for remediation of the environment.
Collapse
Affiliation(s)
- Abdullah Al Miad
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University Noakhali Bangladesh
| | - Shassatha Paul Saikat
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University Noakhali Bangladesh
| | - Md Kawcher Alam
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University Noakhali Bangladesh
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Md Sahadat Hossain
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University Noakhali Bangladesh
| | - Samina Ahmed
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| |
Collapse
|
19
|
Strand D, Nylander E, Höglund A, Lundgren B, Martin JW, Karlsson O. Screening persistent organic pollutants for effects on testosterone and estrogen synthesis at human-relevant concentrations using H295R cells in 96-well plates. Cell Biol Toxicol 2024; 40:69. [PMID: 39136868 PMCID: PMC11322491 DOI: 10.1007/s10565-024-09902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024]
Abstract
Many persistent organic pollutants (POPs) are suspected endocrine disruptors and it is important to investigate their effects at low concentrations relevant to human exposure. Here, the OECD test guideline #456 steroidogenesis assay was downscaled to a 96-well microplate format to screen 24 POPs for their effects on viability, and testosterone and estradiol synthesis using the human adrenocortical cell line H295R. The compounds (six polyfluoroalkyl substances, five organochlorine pesticides, ten polychlorinated biphenyls and three polybrominated diphenyl ethers) were tested at human-relevant levels (1 nM to 10 µM). Increased estradiol synthesis, above the OECD guideline threshold of 1.5-fold solvent control, was shown after exposure to 10 µM PCB-156 (153%) and PCB-180 (196%). Interestingly, the base hormone synthesis varied depending on the cell batch. An alternative data analysis using a linear mixed-effects model that include multiple independent experiments and considers batch-dependent variation was therefore applied. This approach revealed small but statistically significant effects on estradiol or testosterone synthesis for 17 compounds. Increased testosterone levels were demonstrated even at 1 nM for PCB-74 (18%), PCB-99 (29%), PCB-118 (16%), PCB-138 (19%), PCB-180 (22%), and PBDE-153 (21%). The MTT assay revealed significant effects on cell viability after exposure to 1 nM of perfluoroundecanoic acid (12%), 3 nM PBDE-153 (9%), and 10 µM of PCB-156 (6%). This shows that some POPs can interfere with endocrine signaling at concentrations found in human blood, highlighting the need for further investigation into the toxicological mechanisms of POPs and their mixtures at low concentrations relevant to human exposure.
Collapse
Affiliation(s)
- Denise Strand
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18, Stockholm, Sweden
| | - Erik Nylander
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18, Stockholm, Sweden
| | - Andrey Höglund
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18, Stockholm, Sweden
| | - Bo Lundgren
- Science for Life Laboratory, Biochemical and Cellular Assay unit, Dept. of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18, Stockholm, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18, Stockholm, Sweden.
| |
Collapse
|
20
|
Prabhakaran R, Thamarai R. Elucidation of the CadA Protein 3D Structure and Affinity for Metals. Bioinform Biol Insights 2024; 18:11779322241266701. [PMID: 39131902 PMCID: PMC11311160 DOI: 10.1177/11779322241266701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 06/15/2024] [Indexed: 08/13/2024] Open
Abstract
The mitigation of cadmium (Cd) pollution, a significant ecological threat, is of paramount importance. Pseudomonas aeruginosa harbors 2 Cd resistance genes, namely, cadR and cadA. Presently, our focus is on the identification and characterization of the cation-transporting P-type ATPase (cadA) in Pseudomonas aeruginosa BC15 through in silico methods. The CadA protein and its binding capacities remain poorly understood, with no available structural elucidation. The presence of the cadA gene in P aeruginosa was confirmed, showing a striking 99% sequence similarity with both P aeruginosa and P putida. Phylogenetic analysis unveiled the evolutionary relationship between CadA protein sequences from various Pseudomonas species. Physicochemical analysis demonstrated the stability of CadA, revealing a composition of 690 amino acids, a molecular weight of 73 352.85, and a predicted isoelectric point (PI) of 5.39. Swiss-Model homology modelling unveiled a 33.73% sequence homology with CopA (3J09), and the projected structure indicated that 89.3% of amino acid residues were situated favourably within the Ramachandran plot, signifying energetic stability. Notably, the study identified metal-binding sites in CadA, namely, H3, C30, C32, C35, H48, C89, and C106. Docking studies revealed a higher efficiency of Cd binding with CadA compared to other heavy metals. This underscores the crucial role of N-terminal cysteine residues in Cd removal. It is evident that CadA of P aeruginosa BC15 plays a crucial role in Cd tolerance, rendering it a potential microorganism for Cd toxicity bioremediation. The structural and functional elucidation of CadA, facilitated by this study, holds promise for advancing cost-effective strategies in the remediation of cadmium-contaminated environments.
Collapse
Affiliation(s)
- Rajkumar Prabhakaran
- Scientist, Central Research Facility, Santosh Deemed to be University, Delhi, India
| | - Rajkumar Thamarai
- Postdoctoral Fellow, Department of Animal Science, Manonmaniam Sundaranar University, Tirunelveli, India
| |
Collapse
|
21
|
Sharma N, Kumar V, S V, Umesh M, Sharma P, Thazeem B, Kaur K, Thomas J, Pasrija R, Utreja D. Hazard identification of endocrine-disrupting carcinogens (EDCs) in relation to cancers in humans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104480. [PMID: 38825092 DOI: 10.1016/j.etap.2024.104480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/21/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Endocrine disrupting chemicals or carcinogens have been known for decades for their endocrine signal disruption. Endocrine disrupting chemicals are a serious concern and they have been included in the top priority toxicants and persistent organic pollutants. Therefore, researchers have been working for a long time to understand their mechanisms of interaction in different human organs. Several reports are available about the carcinogen potential of these chemicals. The presented review is an endeavor to understand the hazard identification associated with endocrine disrupting carcinogens in relation to the human body. The paper discusses the major endocrine disrupting carcinogens and their potency for carcinogenesis. It discusses human exposure, route of entry, carcinogenicity and mechanisms. In addition, the paper discusses the research gaps and bottlenecks associated with the research. Moreover, it discusses the limitations associated with the analytical techniques for detection of endocrine disrupting carcinogens.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India
| | - Vinay Kumar
- Biomaterials & Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India.
| | - Vimal S
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, Karnataka 560029, India
| | - Preeti Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Basheer Thazeem
- Waste Management Division, Integrated Rural Technology Centre (IRTC), Palakkad, Kerala 678592, India
| | - Komalpreet Kaur
- Punjab Agricultural University, Institute of Agriculture, Gurdaspur, Punjab 143521, India
| | - Jithin Thomas
- Department of Biotechnology, Mar Athanasius College, Kerala, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| |
Collapse
|
22
|
Toso A, Garoche C, Balaguer P. Human and fish differences in steroid receptors activation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174889. [PMID: 39047839 DOI: 10.1016/j.scitotenv.2024.174889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Steroid receptors (SRs) are transcription factors activated by steroid hormones (SHs) that belong to the nuclear receptors (NRs) superfamily. Several studies have shown that SRs are targets of endocrine disrupting chemicals (EDCs), widespread substances in the environment capable of interfering with the endogenous hormonal pathways and causing adverse health effects in living organisms and/or their progeny. Cell lines with SRs reporter gene are currently used for in vitro screening of large quantities of chemicals with suspected endocrine-disrupting activities. However, most of these cell lines express human SRs and therefore the toxicological data obtained are also extrapolated to non-mammalian species. In parallel, in vivo tests have recently been developed on fish species whose data are also extrapolated to mammalian species. As some species-specific differences in SRs activation by natural and synthetic chemicals have been recently reported, the aim of this review is to summarize those between human and fish SRs, as representatives of mammalian and non-mammalian toxicology, respectively. Overall, this literature study aims to improve inter-species extrapolation of toxicological data on EDCs and to understand which reporter gene cell lines expressing human SRs are relevant for the assessment of effects in fish and whether in vivo tests on fish can be properly used in the assessment of adverse effects on human health.
Collapse
Affiliation(s)
- Anna Toso
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34090 Montpellier, France; Department Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland.
| | - Clémentine Garoche
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34090 Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34090 Montpellier, France
| |
Collapse
|
23
|
Chamanee G, Sewwandi M, Wijesekara H, Vithanage M. Occurrence and abundance of microplastics and plasticizers in landfill leachate from open dumpsites in Sri Lanka. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123944. [PMID: 38608854 DOI: 10.1016/j.envpol.2024.123944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/23/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
This is the first attempt that investigate the abundance of plasticizers in leachate sediment in the scientific literature, alongside the debut effort to explore the abundance of microplastics and plasticizers in landfill leachate and sediment in Sri Lanka. Microplastics in sizes ranging from ≥2.0-5.0, ≥1.0-2.0, and ≥ 0.5-1.0 mm were extracted from the leachate draining from ten municipal solid waste open dump sites and sediment samples covering seven districts. Microplastics were extracted by density separation (Saturated ZnCl2) followed by wet peroxide digestion and the chemical identification was conducted by Fourier Transform Infrared spectroscopy. Plasticizers were extracted to hexane and analyzed by high-performance liquid chromatography. The total mean microplastic abundance in leachate was 2.06 ± 0.62 mg/L whereas it was 363 ± 111 mg/kg for leachate sediments. The most frequently found polymer type was polyethylene (>50%), and white color was dominant. The average concentration of bisphenol A (BPA), benzophenone (BP) and diethyl-hydrogen phthalate (DHEP) in leachate was 158 ± 84.4, 0.75 ± 0.16 and 170 ± 85.8 μg/L respectively. Furthermore, BP and DHEP in leachate sediment was 100 ± 68.3 and 1034 ± 455 μg/kg respectively. As landfill leachate is directly discharged into nearby surface and groundwater bodies that serve as sources of drinking water, the study highlights the potential concerns of microplastic and plasticizer exposure to the surrounding Sri Lankan community through consumption of contaminated drinking water. Therefore, there is a timely need of develop the effective waste management and pollution control measures to minimize the possible threats to both the environment and human health.
Collapse
Affiliation(s)
- Gayathri Chamanee
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, 70140, Sri Lanka
| | - Madushika Sewwandi
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, 70140, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Institute of Agriculture, University of Western Australia, Perth, WA6009, Australia.
| |
Collapse
|
24
|
Aghaei M, Khoshnamvand N, Janjani H, Dehghani MH, Karri RR. Exposure to environmental pollutants: A mini-review on the application of wastewater-based epidemiology approach. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:65-74. [PMID: 38887772 PMCID: PMC11180043 DOI: 10.1007/s40201-024-00895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/12/2024] [Indexed: 06/20/2024]
Abstract
Wastewater-based epidemiology (WBE) is considered an innovative and promising tool for estimating community exposure to a wide range of chemical and biological compounds by analyzing wastewater. Despite scholars' interest in WBE studies, there are uncertainties and limitations associated with this approach. This current review focuses on the feasibility of the WBE approach in assessing environmental pollutants, including pesticides, heavy metals, phthalates, bisphenols, and personal care products (PCPs). Limitations and challenges of WBE studies are initially discussed, and then future perspectives, gaps, and recommendations are presented in this review. One of the key limitations of this approach is the selection and identification of appropriate biomarkers in studies. Selecting biomarkers considering the basic requirements of a human exposure biomarker is the most important criterion for validating this new approach. Assessing the stability of biomarkers in wastewater is crucial for reliable comparisons of substance consumption in the population. However, directly analyzing wastewater does not provide a clear picture of biomarker stability. This uncertainty affects the reliability of temporal and spatial comparisons. Various uncertainties also arise from different steps involved in WBE. These uncertainties include sewage sampling, exogenous sources, analytical measurements, back-calculation, and estimation of the population under investigation. Further research is necessary to ensure that measured pollutant levels accurately reflect human excretion. Utilizing data from WBE can support healthcare policy in assessing exposure to environmental pollutants in the general population. Moreover, WBE seems to be a valuable tool for biomarkers that indicate healthy conditions, lifestyle, disease identification, and exposure to pollutants. Although this approach has the potential to serve as a biomonitoring tool in large communities, it is necessary to monitor more metabolites from wastewater to enhance future studies.
Collapse
Affiliation(s)
- Mina Aghaei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Nahid Khoshnamvand
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hosna Janjani
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Solid Waste Research (CSWR), Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| |
Collapse
|
25
|
Sangwan S, Bhattacharyya R, Banerjee D. Plastic compounds and liver diseases: Whether bisphenol A is the only culprit. Liver Int 2024; 44:1093-1105. [PMID: 38407523 DOI: 10.1111/liv.15879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
Plastics, while providing modern conveniences, have become an inescapable source of global concern due to their role in environmental pollution. Particularly, the focus on bisphenol A (BPA) reveals its biohazardous nature and association with liver issues, specifically steatosis. However, research indicates that BPA is just one facet of the problem, as other bisphenol analogues, microplastics, nanoplastics and additional plastic derivatives also pose potential risks. Notably, BPA is implicated in every stage of non-alcoholic fatty liver disease (NAFLD) onset and progression, surpassing hepatitis B virus as a primary cause of chronic liver disease worldwide. As plastic contamination tops the environmental contaminants list, urgent action is needed to assess causative factors and mitigate their impact. This review delves into the molecular disruptions linking plastic pollutant exposure to liver diseases, emphasizing the broader connection between plastics and the rising prevalence of NAFLD.
Collapse
Affiliation(s)
- Sonal Sangwan
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajasri Bhattacharyya
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
26
|
Pannetier P, Gölz L, Pissarreira Mendes Fagundes MT, Knörr S, Behnstedt L, Coordes S, Matthiessen P, Morthorst JE, Vergauwen L, Knapen D, Holbech H, Braunbeck T, Baumann L. Development of the integrated fish endocrine disruptor test (iFEDT)-Part A: Merging of existing fish test guidelines. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:817-829. [PMID: 37483114 DOI: 10.1002/ieam.4819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/21/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
There has been increasing interest in endocrine-disrupting chemicals (EDCs) among scientists and public authorities over the last 30 years, notably because of their wide use and the increasing evidence of detrimental effects on humans and the environment. However, test systems for the detection of potential EDCs as well as testing strategies still require optimization. Thus, the aim of the present project was the development of an integrated test protocol that merges the existing OECD test guidelines (TGs) 229 (fish short-term reproduction assay) and 234 (fish sexual development test) and implements thyroid-related endpoints for fish. The integrated fish endocrine disruptor test (iFEDT) represents a comprehensive approach for fish testing, which covers reproduction, early development, and sexual differentiation, and will thus allow the identification of multiple endocrine-disruptive effects in fish. Using zebrafish (Danio rerio) as a model organism, two exposure tests were performed with well-studied EDCs: 6-propyl-2-thiouracil (PTU), an inhibitor of thyroid hormone synthesis, and 17α-ethinylestradiol (EE2), an estrogen receptor agonist. In part A of this article, the effects of PTU and EE2 on established endpoints of the two existing TGs are reported, whereas part B focuses on the novel thyroid-related endpoints. Results of part A document that, as expected, both PTU and EE2 had strong effects on various endocrine-related endpoints in zebrafish and their offspring. Merging of TGs 229 and 234 proved feasible, and all established biomarkers and endpoints were responsive as expected, including reproductive and morphometric changes (PTU and EE2), vitellogenin levels, sex ratio, gonad maturation, and histopathology (only for EE2) of different life stages. A validation of the iFEDT with other well-known EDCs will allow verification of the sensitivity and usability and confirm its capacity to improve the existing testing strategy for EDCs in fish. Integr Environ Assess Manag 2024;20:817-829. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Pauline Pannetier
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Laboratoire de Ploufragan-Plouzané-Niort, Site de Plouzané, Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail, Plouzané, France
| | - Lisa Gölz
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | | | - Susanne Knörr
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Laura Behnstedt
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Sara Coordes
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | | | - Jane E Morthorst
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Lucia Vergauwen
- Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, Zebrafishlab, University of Antwerp, Wilrijk, Belgium
| | - Dries Knapen
- Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, Zebrafishlab, University of Antwerp, Wilrijk, Belgium
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Lisa Baumann
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Amsterdam Institute for Life and Environment (A-LIFE), Section Environmental Health and Toxicology, Vrije Universiteit Amsterdam, HV Amsterdam, The Netherlands
| |
Collapse
|
27
|
Rahimlou M, Mousavi MA, Chiti H, Peyda M, Mousavi SN. Association of maternal exposure to endocrine disruptor chemicals with cardio-metabolic risk factors in children during childhood: a systematic review and meta-analysis of cohort studies. Diabetol Metab Syndr 2024; 16:82. [PMID: 38576015 PMCID: PMC10993545 DOI: 10.1186/s13098-024-01320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND In the present systematic review and meta-analysis, the association of maternal exposure to the endocrine disrupting chemicals (EDCs) with cardio-metabolic risk factors in children during childhood for the first time. METHOD The PubMed, Scopus, EMBASE, and Web of Science databases were systematically searched, up to Feb 2023. In total 30 cohort studies had our inclusion criteria. A random-effects model was used for the variables that had considerable heterogeneity between studies. The Newcastle-Ottawa Scale (NOS) tool was used to classify the quality score of studies. All statistical analyses were conducted using Stata 14 and P-value < 0.05 considered as a significant level. RESULTS In the meta-analysis, maternal exposure to the EDCs was weakly associated with higher SBP (Fisher_Z: 0.06, CI: 0.04, 0.08), BMI (Fisher_Z: 0.07, CI: 0.06, 0.08), and WC (Fisher_Z: 0.06, CI: 0.03, 0.08) z-scores in children. A significant linear association was found between maternal exposure to the bisphenol-A and pesticides with BMI and WC z-score in children (p < 0.001). Subgroup analysis showed significant linear association of BPA and pesticides, in the urine samples of mothers at the first trimester of pregnancy, with BMI and WC z-score in children from 2-8 years (p < 0.05). CONCLUSION Prenatal exposure to the EDCs in the uterine period could increase the risk of obesity in children. Maternal exposure to bisphenol-A and pesticides showed the strongest association with the obesity, especially visceral form, in the next generation.
Collapse
Affiliation(s)
- Mehran Rahimlou
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mir Ali Mousavi
- Department of General Surgery, Ayatollah Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Chiti
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mazyar Peyda
- Department of Environmental Health Engineering, School of Public Health, Zanjan University of Medical Sciences, Honarestan St., Janbazan St., Zanjan, Iran
| | - Seyedeh Neda Mousavi
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
28
|
Masinga P, Simbanegavi TT, Makuvara Z, Marumure J, Chaukura N, Gwenzi W. Emerging organic contaminants in the soil-plant-receptor continuum: transport, fate, health risks, and removal mechanisms. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:367. [PMID: 38488937 DOI: 10.1007/s10661-023-12282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/29/2023] [Indexed: 03/17/2024]
Abstract
There is a lack of comprehensive reviews tracking emerging organic contaminants (EOCs) within the soil-plant continuum using the source-pathway-receptor-impact-mitigation (SPRIM) framework. Therefore, this review examines existing literature to gain insights into the occurrence, behaviour, fate, health hazards, and strategies for mitigating EOCs within the soil-plant system. EOCs identified in the soil-plant system encompass endocrine-disrupting chemicals, surfactants, pharmaceuticals, personal care products, plasticizers, gasoline additives, flame retardants, and per- and poly-fluoroalkyl substances (PFAS). Sources of EOCs in the soil-plant system include the land application of biosolids, wastewater, and solid wastes rich in EOCs. However, less-studied sources encompass plastics and atmospheric deposition. EOCs are transported from their sources to the soil-plant system and other receptors through human activities, wind-driven processes, and hydrological pathways. The behaviour, persistence, and fate of EOCs within the soil-plant system are discussed, including sorption, degradation, phase partitioning, (bio)transformation, biouptake, translocation, and bioaccumulation in plants. Factors governing the behaviour, persistence, and fate of EOCs in the soil-plant system include pH, redox potential, texture, temperature, and soil organic matter content. The review also discusses the environmental receptors of EOCs, including their exchange with other environmental compartments (aquatic and atmospheric), and interactions with soil organisms. The ecological health risks, human exposure via inhalation of particulate matter and consumption of contaminated food, and hazards associated with various EOCs in the soil-plant system are discussed. Various mitigation measures including removal technologies of EOCs in the soil are discussed. Finally, future research directions are presented.
Collapse
Affiliation(s)
- Privilege Masinga
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, Mount Pleasant, P. O. Box MP 167, Harare, Zimbabwe
| | - Tinoziva T Simbanegavi
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, Mount Pleasant, P. O. Box MP 167, Harare, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley, 8301, South Africa
| | - Willis Gwenzi
- Biosystems and Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe.
- Biosystems and Environmental Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe.
| |
Collapse
|
29
|
Haleem N, Kumar P, Zhang C, Jamal Y, Hua G, Yao B, Yang X. Microplastics and associated chemicals in drinking water: A review of their occurrence and human health implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169594. [PMID: 38154642 DOI: 10.1016/j.scitotenv.2023.169594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Microplastics (MPs) have entered drinking water (DW) via various pathways, raising concerns about their potential health impacts. This study provides a comprehensive review of MP-associated chemicals, such as oligomers, plasticizers, stabilizers, and ultraviolet (UV) filters that can be leached out during DW treatment and distribution. The leaching of these chemicals is influenced by various environmental and operating factors, with three major ones identified: MP concentration and polymer type, pH, and contact time. The leaching process is substantially enhanced during the disinfection step of DW treatment, due to ultraviolet light and/or disinfectant-triggered reactions. The study also reviewed human exposure to MPs and associated chemicals in DW, as well as their health impacts on the human nervous, digestive, reproductive, and hepatic systems, especially the neuroendocrine toxicity of endocrine-disrupting chemicals. An overview of MPs in DW, including tap water and bottled water, was also presented to enable a background understanding of MPs-associated chemicals. In short, certain chemicals leached from MPs in DW can have significant implications for human health and demand further research on their long-term health impacts, mitigation strategies, and interactions with other pollutants such as disinfection byproducts (DBPs) and per- and polyfluoroalkyl substances (PFASs). This study is anticipated to facilitate the research and management of MPs in DW and beverages.
Collapse
Affiliation(s)
- Noor Haleem
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, USA; Institute of Environmental Sciences and Engineering National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Pradeep Kumar
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, USA
| | - Cheng Zhang
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA
| | - Yousuf Jamal
- Institute of Chemical Engineering & Technology, University of the Punjab, Lahore 54590, Pakistan
| | - Guanghui Hua
- Department of Civil and Environmental Engineering, South Dakota State University, Brookings, SD 57007, USA
| | - Bin Yao
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, USA
| | - Xufei Yang
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
30
|
Ramon-Gomez K, Ron SR, Deem SL, Pike KN, Stevens C, Izurieta JC, Nieto-Claudin A. Plastic ingestion in giant tortoises: An example of a novel anthropogenic impact for Galapagos wildlife. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122780. [PMID: 37863249 DOI: 10.1016/j.envpol.2023.122780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
The human population of Galapagos has rapidly increased in the last decades accelerating the anthropogenic pressures on the archipelago's natural resources. The growing human footprint, including inadequate management of garbage, may lead to conservation conflicts. Here, we assessed the ingestion of debris by Western Santa Cruz giant tortoises (Chelonoidis porteri) within human-modified and protected areas. Additionally, we characterized environmental debris and quantified tortoise abundance together with tortoise fecal samples. We processed a total of 6629 fecal samples along a gradient of anthropogenic disturbance based on human debris presence. We found 590 pieces of debris in samples within human-modified areas (mean of 3.97 items/kg of feces) and only two pieces in the protected area (mean of 0.08 items/kg of feces). Plastic waste was the predominant category in feces within the anthropic area (86.3%; n = 511), followed by cloth, metal, paper, synthetic rubber, construction materials, and glass. On average, the proportion of plastic was higher in feces (84%) than it was in environmental debris (67%), denoting that plastics are more readily ingested than other types of debris. We also found that green, white, and light blue plastics were consumed more often than their prevalence in the environment, suggesting color discrimination. Tortoise abundance was higher in the protected area when compared to the human-modified area; however, recapture rates were higher in anthropized landscapes which increases tortoise exposure to plastics and other human associated threats. Our results indicate that plastics are frequently consumed by tortoises in the polluted anthropic areas of western Santa Cruz, but scarce in protected areas. More research is needed to understand the negative impacts associated with plastics for Galapagos terrestrial species. We encourage local stakeholders to implement current policies limiting expansion of urban areas, plastic use, and improving waste management systems to minimize threats to human and animal health.
Collapse
Affiliation(s)
- Karina Ramon-Gomez
- Charles Darwin Foundation, Charles Darwin Avenue, Santa Cruz, 200350, Galapagos Islands, Ecuador; Museo de Zoología, Escuela de Biología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Santiago R Ron
- Museo de Zoología, Escuela de Biología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Sharon L Deem
- Charles Darwin Foundation, Charles Darwin Avenue, Santa Cruz, 200350, Galapagos Islands, Ecuador; Saint Louis Zoo Institute for Conservation Medicine, One Government Drive, Saint Louis, MO, 63110, USA
| | - Kyana N Pike
- College of Science and Engineering, James Cook University, Townsville, 4810, Australia
| | - Colton Stevens
- Charles Darwin Foundation, Charles Darwin Avenue, Santa Cruz, 200350, Galapagos Islands, Ecuador
| | - Juan Carlos Izurieta
- Charles Darwin Foundation, Charles Darwin Avenue, Santa Cruz, 200350, Galapagos Islands, Ecuador
| | - Ainoa Nieto-Claudin
- Charles Darwin Foundation, Charles Darwin Avenue, Santa Cruz, 200350, Galapagos Islands, Ecuador; Saint Louis Zoo Institute for Conservation Medicine, One Government Drive, Saint Louis, MO, 63110, USA; Complutense University of Madrid, Veterinary Faculty, Puerta de Hierro Av, Madrid, 28040, Spain.
| |
Collapse
|
31
|
Yilmaz ET, Alemdar A, Enginar H. Microencapsulation of limonene with polyurethane-urea and its application on cotton fabrics. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2023; 17. [DOI: 10.1080/16583655.2023.2226493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/17/2023] [Accepted: 06/08/2023] [Indexed: 09/01/2023]
Affiliation(s)
| | - Aydın Alemdar
- MG International Fragrance Company, Gebze, Kocaeli, Turkey
| | - Hüseyin Enginar
- Department of Chemistry, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
32
|
Urbanetz LAML, Junior JMS, Maciel GAR, Simões RDS, Baracat MCP, Baracat EC. Does bisphenol A (BPA) participates in the pathogenesis of Polycystic Ovary Syndrome (PCOS)? Clinics (Sao Paulo) 2023; 78:100310. [PMID: 38008036 PMCID: PMC10757276 DOI: 10.1016/j.clinsp.2023.100310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/28/2023] Open
Abstract
PCOS is an endocrine disorder characterized by chronic anovulation, hyperandrogenism, and polycystic ovaries. Its etiology is uncertain. It is debated whether BPA would be a component of the environmental factor in the etiology of PCOS. Contamination by BPA can occur from food packaging (exposure during the diet) and through skin absorption and/or inhalation. It can be transferred to the fetus via the placenta or to the infant via breast milk, and it can be found in follicular fluid, fetal serum, and amniotic fluid. The phenolic structure of BPA allows it to interact with Estrogen Receptors (ERs) through genomic signaling, in which BPA binds to nuclear ERα or Erβ, or through nongenomic signaling by binding to membrane ERs, prompting a rapid and intense response. With daily and constant exposure, BPA's tendency to bioaccumulate and its ability to activate nongenomic signaling pathways can alter women's metabolic and reproductive function, leading to hyperandrogenism, insulin resistance, obesity, atherogenic dyslipidemia, chronic inflammatory state, and anovulation and favoring PCOS. The harmful changes caused by BPA can be passed on to future generations without the need for additional exposure because of epigenetic modifications. Not only high BPA levels can produce harmful effects, but at low levels, BPA may be harmful when exposure occurs during the most vulnerable periods, such as the fetal and neonatal periods, as well as during the prepubertal age causing an early accumulation of BPA in the body. Learning how BPA participates in the pathogenesis of PCOS poses a challenge and further studies should be conducted.
Collapse
Affiliation(s)
| | - José Maria Soares Junior
- Gynecology Division, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Gustavo Arantes Rosa Maciel
- Gynecology Division, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Ricardo Dos Santos Simões
- Gynecology Division, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Maria Cândida Pinheiro Baracat
- Gynecology Division, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Edmund Chada Baracat
- Gynecology Division, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| |
Collapse
|
33
|
Maipas S, Liossi S, Konstantinidou A, Mouliou M, Lazaris AC, Papageorgiou E, Kavantzas N. Incorporating Medical Museum Specimens Into the Training of Environmental Health Students. ENVIRONMENTAL HEALTH INSIGHTS 2023; 17:11786302231211085. [PMID: 37954976 PMCID: PMC10634264 DOI: 10.1177/11786302231211085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
Xenobiotics, radiation, and other environmental health risk factors leave their mark on human organs. This can be demonstrated through the use of pathology museum specimens. Upon completing two semesters of postgraduate studies in environmental health, a tour of the Museum of Pathology is offered to postgraduate students at Athens Medical School who are being trained in environmental health. A structured questionnaire is employed to assess the specimens' impact on several aspects: improving students' observational skills, reinforcing the taught material, acquiring new relevant knowledge, and cultivate the social-cognitive ability of empathy. Additionally, students are asked to evaluate the necessity of preserving metadata associated mainly with the social context of the specimens. This research-educational initiative, a component of an ongoing larger project, underscores the significant educational and research value of museum specimens pertaining to environmental health. Furthermore, effectively utilizing such exhibits can enrich the museum experience for visitors and increase public awareness of environmental health issues.
Collapse
Affiliation(s)
- Sotirios Maipas
- Master Program “Environment and Health. Management of Environmental Health Effects,” School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens General Hospital “Laikon,” Athens, Greece
| | - Sofia Liossi
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens General Hospital “Laikon,” Athens, Greece
| | - Anastasia Konstantinidou
- Master Program “Environment and Health. Management of Environmental Health Effects,” School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens General Hospital “Laikon,” Athens, Greece
| | - Marlen Mouliou
- Department of History and Archaeology, School of Philosophy, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas C Lazaris
- Master Program “Environment and Health. Management of Environmental Health Effects,” School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens General Hospital “Laikon,” Athens, Greece
| | - Effie Papageorgiou
- Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica, Egaleo, Greece
| | - Nikolaos Kavantzas
- Master Program “Environment and Health. Management of Environmental Health Effects,” School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens General Hospital “Laikon,” Athens, Greece
| |
Collapse
|
34
|
Aghayev Z, Szafran AT, Tran A, Ganesh HS, Stossi F, Zhou L, Mancini MA, Pistikopoulos EN, Beykal B. Machine Learning Methods for Endocrine Disrupting Potential Identification Based on Single-Cell Data. Chem Eng Sci 2023; 281:119086. [PMID: 37637227 PMCID: PMC10448728 DOI: 10.1016/j.ces.2023.119086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Humans are continuously exposed to a variety of toxicants and chemicals which is exacerbated during and after environmental catastrophes such as floods, earthquakes, and hurricanes. The hazardous chemical mixtures generated during these events threaten the health and safety of humans and other living organisms. This necessitates the development of rapid decision-making tools to facilitate mitigating the adverse effects of exposure on the key modulators of the endocrine system, such as the estrogen receptor alpha (ERα), for example. The mechanistic stages of the estrogenic transcriptional activity can be measured with high content/high throughput microscopy-based biosensor assays at the single-cell level, which generates millions of object-based minable data points. By combining computational modeling and experimental analysis, we built a highly accurate data-driven classification framework to assess the endocrine disrupting potential of environmental compounds. The effects of these compounds on the ERα pathway are predicted as being receptor agonists or antagonists using the principal component analysis (PCA) projections of high throughput, high content image analysis descriptors. The framework also combines rigorous preprocessing steps and nonlinear machine learning algorithms, such as the Support Vector Machines and Random Forest classifiers, to develop highly accurate mathematical representations of the separation between ERα agonists and antagonists. The results show that Support Vector Machines classify the unseen chemicals correctly with more than 96% accuracy using the proposed framework, where the preprocessing and the PCA steps play a key role in suppressing experimental noise and unraveling hidden patterns in the dataset.
Collapse
Affiliation(s)
- Zahir Aghayev
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT
| | - Adam T. Szafran
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Anh Tran
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX
- Texas A&M Energy Institute, Texas A&M University, College Station, TX
| | - Hari S. Ganesh
- Discipline of Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat - 382055, India
| | - Fabio Stossi
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX
| | - Lan Zhou
- Department of Statistics, Texas A&M University, College Station, TX
| | - Michael A. Mancini
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- GCC Center for Advanced Microscopy and Image Informatics, Houston, TX
| | - Efstratios N. Pistikopoulos
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX
- Texas A&M Energy Institute, Texas A&M University, College Station, TX
| | - Burcu Beykal
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT
| |
Collapse
|
35
|
Cascajosa-Lira A, Guzmán-Guillén R, Arjona AB, Aguinaga-Casañas MA, Ayala-Soldado N, Moyano-Salvago MR, Molina A, Jos Á, Cameán AM, Pichardo S. Risk assessment and environmental consequences of the use of the Allium-derived compound propyl-propane thiosulfonate (PTSO) in agrifood applications. ENVIRONMENTAL RESEARCH 2023; 236:116682. [PMID: 37459943 DOI: 10.1016/j.envres.2023.116682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
The organosulfur compound propyl-propane thiosulfonate (PTSO), mainly found in Allium cepa, has a promising use in the agrifood industry. To confirm its safety for livestock, consumers, and environment, toxicological assessment is needed. In this regard, endocrine-disrupting chemicals (EDCs) are in the spotlight of research. Therefore, as part of the risk assessment of PTSO, in the present work, an in vivo study was performed in mice exposed to PTSO to investigate its potential reproductive toxicity considering fertility, genetic and endocrine endpoints. Five-weeks-old CD1 mice (80 males, 80 females) were exposed for 11 or 16 weeks (males or females, respectively) to different doses of PTSO (0, 14, 28 and 55 mg PTSO/kg b.w./day; 20 animals per group and sex) through the food pellets. No clinical observations or mortality and no changes in absolute organ weights and relative organ weights/body weight or brain ratios occurred during the study. The estrous cycle did not undergo any significant toxicologically relevant change. Most of the sex hormones displayed normal values. Some alterations in the expression of some genes related to reproduction is only observed in females, but they do not appear to have consequences in the development of sex organs. Docking results showed the impossibility of stable binding to estrogen and androgen receptors. Considering all the results obtained, the safe profile of PTSO can be confirmed for different agrifood applications at the conditions assayed.
Collapse
Affiliation(s)
| | | | | | | | - Nahúm Ayala-Soldado
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, 14071, Córdoba, Spain
| | - M Rosario Moyano-Salvago
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, 14071, Córdoba, Spain
| | - Ana Molina
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, 14071, Córdoba, Spain
| | - Ángeles Jos
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Ana M Cameán
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Silvia Pichardo
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Spain
| |
Collapse
|
36
|
Duh-Leong C, Maffini MV, Kassotis CD, Vandenberg LN, Trasande L. The regulation of endocrine-disrupting chemicals to minimize their impact on health. Nat Rev Endocrinol 2023; 19:600-614. [PMID: 37553404 DOI: 10.1038/s41574-023-00872-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 08/10/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are substances generated by human industrial activities that are detrimental to human health through their effects on the endocrine system. The global societal and economic burden posed by EDCs is substantial. Poorly defined or unenforced policies can increase human exposure to EDCs, thereby contributing to human disease, disability and economic damage. Researchers have shown that policies and interventions implemented at both individual and government levels have the potential to reduce exposure to EDCs. This Review describes a set of evidence-based policy actions to manage, minimize or even eliminate the widespread use of these chemicals and better protect human health and society. A number of specific challenges exist: defining, identifying and prioritizing EDCs; considering the non-linear or non-monotonic properties of EDCs; accounting for EDC exposure effects that are latent and do not appear until later in life; and updating testing paradigms to reflect 'real-world' mixtures of chemicals and cumulative exposure. A sound strategy also requires partnering with health-care providers to integrate strategies to prevent EDC exposure in clinical care. Critical next steps include addressing EDCs within global policy frameworks by integrating EDC exposure prevention into emerging climate policy.
Collapse
Affiliation(s)
- Carol Duh-Leong
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, University of Massachusetts - Amherst, Amherst, MA, USA
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA.
- New York University Wagner Graduate School of Public Service, New York, NY, USA.
| |
Collapse
|
37
|
Zhang R, Wang B, Li L, Li S, Guo H, Zhang P, Hua Y, Cui X, Li Y, Mu Y, Huang X, Li X. Modeling and insights into the structural characteristics of endocrine-disrupting chemicals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115251. [PMID: 37451095 DOI: 10.1016/j.ecoenv.2023.115251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) can cause serious harm to human health and the environment; therefore, it is important to rapidly and correctly identify EDCs. Different computational models have been proposed for the prediction of EDCs over the past few decades, but the reported models are not always easily available, and few studies have investigated the structural characteristics of EDCs. In the present study, we have developed a series of artificial intelligence models targeting EDC receptors: the androgen receptor (AR); estrogen receptor (ER); and pregnane X receptor (PXR). The consensus models achieved good predictive results for validation sets with balanced accuracy values of 87.37%, 90.13%, and 79.21% for AR, ER, and PXR binding assays, respectively. Analysis of the physical-chemical properties suggested that several chemical properties were significantly (p < 0.05) different between EDCs and non-EDCs. We also identified structural alerts that can indicate an EDC, which were integrated into the web server SApredictor. These models and structural characteristics can provide useful tools and information in the discrimination and mechanistic understanding of EDCs in drug discovery and environmental risk assessment.
Collapse
Affiliation(s)
- Ruiqiu Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Bailun Wang
- Department of Anesthesiology and perioperative medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Anesthesia and Respiratory Intensive Care Medicine, Jinan 250014, China
| | - Ling Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Shengjie Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Huizhu Guo
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Pei Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Yuqing Hua
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Xueyan Cui
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Yan Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Yan Mu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Xin Huang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Xiao Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China.
| |
Collapse
|
38
|
Yi H, Wu H, Zhu W, Lin Q, Zhao X, Lin R, Luo Y, Wu L, Lin D. Phthalate exposure and risk of ovarian dysfunction in endometriosis: human and animal data. Front Cell Dev Biol 2023; 11:1154923. [PMID: 37560165 PMCID: PMC10407402 DOI: 10.3389/fcell.2023.1154923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023] Open
Abstract
Objective: We aimed to explore the correlations between and possible mechanisms of common environmental endocrine disruptors, phthalates, and ovarian dysfunction in endometriosis. Methods: Subjects were included in the case group (n = 107) who were diagnosed with endometriosis by postoperative pathology in Fujian Maternal and Child Hospital from February 2018 to February 2021, and the women who were excluded from endometriosis by surgery were as the control group (n = 70). The demographic information of the subjects were evaluated by questionnaire, and the clinical characteristics were evaluated by medical records and 3-year follow-up results. Gas chromatography‒mass spectrometry was used to quantify 10 metabolites of phthalates, including dimethyl ortho-phthalate (DMP), mono-n-methyl phthalate (MMP), dioctyl ortho-phthalate (DEP), mono-ethyl phthalate (MEP), di-n-butyl ortho-phthalate (DBP), mono-butyl phthalate (MBP), benzylbutyl phthalate (BBzP), mono-benzyl; phthalate (MBzP), diethylhexyl phthalate (DEHP) and mono-ethylhexyl phthalate (MEHP), in the urine samples of the subjects. Furthermore, a total of 54 SD rats were exposed to DEHP 0, 5, 50, 100, 250, 500, 1,000, 2000, and 3,000 mg/kg/day for 2 weeks. The SD rats' body weight, oestrus cycle changes, and serum anti-mullerian hormone (AMH) levels were evaluated. After sacrifice, the mass index of the rat uterus and bilateral ovaries were calculated. Finally, bioinformatics analysis of rat ovarian tissues was performed to explore the possible mechanism. SPSS 24.0 (IBM, United States) was used for data analysis. p-value <0.05 was considered statistically significant. Results: The human urinary levels of DMP (p < 0.001), MMP (p = 0.001), DEP (p = 0.003), MEP (p = 0.002), DBP (p = 0.041), MBP (p < 0.001), BBzP (p = 0.009), DEHP (p < 0.001), and MEHP (p < 0.001) were significantly higher in women with endometriosis than in controls. Notably, DEHP was a significant risk factor for endometriosis (OR: 11.0, 95% CI: 5.4-22.6). The area under the ROC curve increased when multiple phthalates were diagnosed jointly, reaching 0.974 as the highest value, which was helpful for the diagnosis of endometriosis. In vivo experiments showed that after DEHP exposure in rats, the mass index of the ovary and uterus decreased in a dose-dependent manner; the oestrus cycle of SD rats was irregularly prolonged and disordered; and the serum AMH level was negatively correlated with the DEHP exposure dose (Rho = -0.8, p < 0.001). Bioinformatics analysis of rat ovarian tissues showed that seven genes involved in the steroid biosynthesis pathway were upregulated and may play a negative role in ovarian function. Conclusion: Exposure to phthalates, especially DEHP, is associated with the occurrence of endometriosis and affects women's reproductive prognosis and ovarian function. The steroid biosynthesis pathway may be related to ovarian dysfunction. The detection of phthalate in urine may become a new biological target for the diagnosis of endometriosis.
Collapse
Affiliation(s)
- Huan Yi
- National Key Gynecology Clinical Specialty Construction Unit of China, Fujian Provincial Key Gynecology Clinical Specialty, Fujian Provincial Maternity and Children’s Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Huamin Wu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Fuzhou, Fuzhou, Fujian, China
| | - Wenbin Zhu
- National Key Gynecology Clinical Specialty Construction Unit of China, Fujian Provincial Key Gynecology Clinical Specialty, Fujian Provincial Maternity and Children’s Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Qi Lin
- Fujian Health College, Health Management Department, Fuzhou, Fujian, China
| | - Xiaoyan Zhao
- National Key Gynecology Clinical Specialty Construction Unit of China, Fujian Provincial Key Gynecology Clinical Specialty, Fujian Provincial Maternity and Children’s Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Rong Lin
- National Key Gynecology Clinical Specialty Construction Unit of China, Fujian Provincial Key Gynecology Clinical Specialty, Fujian Provincial Maternity and Children’s Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yan Luo
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Fuzhou, Fuzhou, Fujian, China
| | - Lixiang Wu
- National Key Gynecology Clinical Specialty Construction Unit of China, Fujian Provincial Key Gynecology Clinical Specialty, Fujian Provincial Maternity and Children’s Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Danmei Lin
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Fuzhou, Fuzhou, Fujian, China
| |
Collapse
|
39
|
Płotka-Wasylka J, Mulkiewicz E, Lis H, Godlewska K, Kurowska-Susdorf A, Sajid M, Lambropoulou D, Jatkowska N. Endocrine disrupting compounds in the baby's world - A harmful environment to the health of babies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163350. [PMID: 37023800 DOI: 10.1016/j.scitotenv.2023.163350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 06/01/2023]
Abstract
Globally, there has been a significant increase in awareness of the adverse effects of chemicals with known or suspected endocrine-acting properties on human health. Human exposure to endocrine disrupting compounds (EDCs) mainly occurs by ingestion and to some extent by inhalation and dermal uptake. Although it is difficult to assess the full impact of human exposure to EDCs, it is well known that timing of exposure is of importance and therefore infants are more vulnerable to EDCs and are at greater risk compared to adults. In this regard, infant safety and assessment of associations between prenatal exposure to EDCs and growth during infancy and childhood has been received considerable attention in the last years. Hence, the purpose of this review is to provide a current update on the evidence from biomonitoring studies on the exposure of infants to EDCs and a comprehensive view of the uptake, the mechanisms of action and biotransformation in baby/human body. Analytical methods used and concentration levels of EDCs in different biological matrices (e.g., placenta, cord plasma, amniotic fluid, breast milk, urine, and blood of pregnant women) are also discussed. Finally, key issues and recommendations were provided to avoid hazardous exposure to these chemicals, taking into account family and lifestyle factors related to this exposure.
Collapse
Affiliation(s)
- Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland; BioTechMed Center, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland.
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | - Hanna Lis
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | - Klaudia Godlewska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | | | - Muhammad Sajid
- Applied Research Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Dimitra Lambropoulou
- Department of Chemistry, Environmental Pollution Control Laboratory, Aristotle University of Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki GR-57001, Greece
| | - Natalia Jatkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland.
| |
Collapse
|
40
|
Pérez H, Quintero García OJ, Amezcua-Allieri MA, Rodríguez Vázquez R. Nanotechnology as an efficient and effective alternative for wastewater treatment: an overview. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2971-3001. [PMID: 37387425 PMCID: wst_2023_179 DOI: 10.2166/wst.2023.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The increase in the surface and groundwater contamination due to global population growth, industrialization, proliferation of pathogens, emerging pollutants, heavy metals, and scarcity of drinking water represents a critical problem. Because of this problem, particular emphasis will be placed on wastewater recycling. Conventional wastewater treatment methods may be limited due to high investment costs or, in some cases, poor treatment efficiency. To address these issues, it is necessary to continuously evaluate novel technologies that complement and improve these traditional wastewater treatment processes. In this regard, technologies based on nanomaterials are also being studied. These technologies improve wastewater management and constitute one of the main focuses of nanotechnology. The following review describes wastewater's primary biological, organic, and inorganic contaminants. Subsequently, it focuses on the potential of different nanomaterials (metal oxides, carbon-based nanomaterials, cellulose-based nanomaterials), membrane, and nanobioremediation processes for wastewater treatment. The above is evident from the review of various publications. However, nanomaterials' cost, toxicity, and biodegradability need to be addressed before their commercial distribution and scale-up. The development of nanomaterials and nanoproducts must be sustainable and safe throughout the nanoproduct life cycle to meet the requirements of the circular economy.
Collapse
Affiliation(s)
- Heilyn Pérez
- Centro Nacional de Estudios Avanzados de Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico E-mail:
| | - Omar Jasiel Quintero García
- Centro Nacional de Estudios Avanzados de Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico
| | - Myriam Adela Amezcua-Allieri
- Gerencia de Transformación de Biomasa, Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, colonia San Bartolo Atepehuacan, Mexico City 07730, Mexico
| | - Refugio Rodríguez Vázquez
- Centro Nacional de Estudios Avanzados de Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico
| |
Collapse
|
41
|
Pannetier P, Poulsen R, Gölz L, Coordes S, Stegeman H, Koegst J, Reger L, Braunbeck T, Hansen M, Baumann L. Reversibility of Thyroid Hormone System-Disrupting Effects on Eye and Thyroid Follicle Development in Zebrafish (Danio rerio) Embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1276-1292. [PMID: 36920003 DOI: 10.1002/etc.5608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 03/10/2023] [Indexed: 05/27/2023]
Abstract
Early vertebrate development is partially regulated by thyroid hormones (THs). Environmental pollutants that interact with the TH system (TH system-disrupting chemicals [THSDCs]) can have massively disrupting effects on this essential phase. Eye development of fish is directly regulated by THs and can, therefore, be used as a thyroid-related endpoint in endocrine disruptor testing. To evaluate the effects of THSDC-induced eye malformations during early development, zebrafish (Danio rerio) embryos were exposed for 5 days postfertilization (dpf) to either propylthiouracil, a TH synthesis inhibitor, or tetrabromobisphenol A, which interacts with TH receptors. Subsequently, one half of the embryos were exposed further to the THSDCs until 8 dpf, while the other half of the embryos were raised in clean water for 3 days to check for reversibility of effects. Continued THSDC exposure altered eye size and pigmentation and induced changes in the cellular structure of the retina. This correlated with morphological alterations of thyroid follicles as revealed by use of a transgenic zebrafish line. Interestingly, effects were partly reversible after a recovery period as short as 3 days. Results are consistent with changes in TH levels measured in different tissues of the embryos, for example, in the eyes. The results show that eye development in zebrafish embryos is very sensitive to THSDC treatment but able to recover quickly from early exposure by effective repair mechanisms. Environ Toxicol Chem 2023;42:1276-1292. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Pauline Pannetier
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Rikke Poulsen
- Environmental Metabolomics Laboratory, Department of Environmental Science, University of Aarhus, Aarhus, Denmark
| | - Lisa Gölz
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Sara Coordes
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Hanna Stegeman
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Johannes Koegst
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Luisa Reger
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Martin Hansen
- Environmental Metabolomics Laboratory, Department of Environmental Science, University of Aarhus, Aarhus, Denmark
| | - Lisa Baumann
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Amsterdam Institute for Life and Environment (A-LIFE), Section on Environmental Health & Toxicology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Jäger MC, Patt M, González-Ruiz V, Boccard J, Wey T, Winter DV, Rudaz S, Odermatt A. Extended steroid profiling in H295R cells provides deeper insight into chemical-induced disturbances of steroidogenesis: Exemplified by prochloraz and anabolic steroids. Mol Cell Endocrinol 2023; 570:111929. [PMID: 37037411 DOI: 10.1016/j.mce.2023.111929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023]
Abstract
Human adrenocortical H295R cells have been validated by the OECD Test Guideline 456 to detect chemicals disrupting testosterone and 17β-estradiol (estradiol) biosynthesis. This study evaluated a novel approach to detect disturbances of steroidogenesis in H295R cells, exemplified by prochloraz and five anabolic steroids. Steroid profiles were assessed by an untargeted LC-MS-based method, providing a relative quantification of 57 steroids annotated according to their accurate masses and retention times. Such a panel of steroids included several mineralocorticoids, glucocorticoids, progestins and adrenal androgens. The coverage of a high number of metabolites in this extended steroid profiling facilitated grouping of chemicals with similar effects and detecting subtler differences between chemicals. It allowed, for example, distinguishing between the effects of turinabol and oxymetholone, supposed to act similarly in a previous characterization including only nine adrenal steroids. Furthermore, the results revealed that product/substrate ratios can provide superior information on altered enzyme activities compared to individual metabolite levels. For example, the 17α-hydroxypregnenolone/pregnenolone ratio was found to be a more sensitive marker for detecting 17α-hydroxylase inhibition by prochloraz than the corresponding individual steroids. These results illustrate that chemical grouping and calculation of product/substrate ratios can provide valuable information on mode-of-action and help prioritizing further experimental work.
Collapse
Affiliation(s)
- Marie-Christin Jäger
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055, Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | - Melanie Patt
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055, Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | - Víctor González-Ruiz
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055, Basel, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva 4, Switzerland.
| | - Julien Boccard
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055, Basel, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva 4, Switzerland.
| | - Tim Wey
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055, Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | - Denise V Winter
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055, Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | - Serge Rudaz
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055, Basel, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva 4, Switzerland.
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055, Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| |
Collapse
|
43
|
Alva-Gallegos R, Carazo A, Mladěnka P. Toxicity overview of endocrine disrupting chemicals interacting in vitro with the oestrogen receptor. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104089. [PMID: 36841273 DOI: 10.1016/j.etap.2023.104089] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The oestrogen receptor (ER) from the nuclear receptor family is involved in different physiological processes, which can be affected by multiple xenobiotics. Some of these compounds, such as bisphenols, pesticides, and phthalates, are widespread as consequence of human activities and are commonly present also in human organism. Xenobiotics able to interact with ER and trigger a hormone-like response, are known as endocrine disruptors. In this review, we aim to summarize the available knowledge on products derived from human industrial activity and other xenobiotics reported to interact with ER. ER-disrupting chemicals behave differently towards oestrogen-dependent cell lines than endogenous oestradiol. In low concentrations, they stimulate proliferation, whereas at higher concentrations, are toxic to cells. In addition, most of the knowledge on the topic is based on individual compound testing, and only a few studies assess xenobiotic combinations, which better resemble real circumstances. Confirmation from in vivo models is lacking also.
Collapse
Affiliation(s)
- Raul Alva-Gallegos
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
44
|
Zhang W, Ma X, Zhang Y, Tong W, Zhang X, Liang Y, Song M. Obesogenic effect of Bisphenol P on mice via altering the metabolic pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114703. [PMID: 36857923 DOI: 10.1016/j.ecoenv.2023.114703] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/12/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol P (BPP), structurally similar to bisphenol A, is commonly identified in the samples of environment, food, and humans. Unfortunately, very little information is currently available on adverse effects of BPP. The obesogenic effects and underlying mechanisms of BPP on mice were investigated in this study. Compared with the control, high-resolution microcomputed tomography (micro-CT) scans displayed that the visceral fat volume of mice was significantly increased at a dose of 5 mg/kg/day after BPP exposure for 14 days, whereas the subcutaneous fat volume remained unchanged. Nontargeted metabolomic analysis revealed that BPP significantly perturbed the metabolic pathways of mouse livers, and acetyl-CoA was identified as the potential key metabolite responsible for the visceral fat induced by BPP. These findings recommend that a great deal of attention should be paid to the obesogenic properties of BPP as a result of its widely utilized and persistence in the environment.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuerui Ma
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China
| | - Yijia Zhang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China
| | - Wanjing Tong
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China
| | - Xing Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China
| | - Maoyong Song
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
45
|
Babichuk N, Sarkar A, Mulay S, Knight J, Randell E. Dietary exposure to thyroid disrupting chemicals: a community-based study in Canada. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2023; 41:1-21. [PMID: 36876896 DOI: 10.1080/26896583.2023.2174763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The marine ecosystem around the Island of Newfoundland is contaminated by thyroid disrupting chemicals (TDCs). Coastal inhabitants may be exposed to TDCs through consumption of contaminated local seafood products and affecting thyroid functions. The aim of this study was to explore: (1) consumption frequency of local seafood products consumed by rural residents, (2) thyroid hormones (THs) and TDCs concentrations in residents, (3) relationships between local seafood consumption, TDC concentrations, and THs. Participants (n = 80) were recruited from two rural Newfoundland communities. Seafood consumption was measured through a validated seafood consumption questionnaire. Blood samples were collected from all participants and tested for THs (thyroid stimulating hormone, free thyroxine, free triiodothyronine) and TDCs, including polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), polybrominated biphenyls (PBBs), and dichlorodiphenyldichloroethylene (p,p'-DDE). Cod was the most frequently consumed local species, but there was a wide range of other local species consumed. Older participants (>50 years) had greater plasma concentrations of PBB-153, PCBs and p,p'-DDE, and males had higher concentrations of all TDCs than females. The consumption frequency of local cod was found to be positively associated with several PCB congeners, p,p'-DDE and ∑14TDCs. There was no significant relationship between TDCs and THs in either simple or multivariate linear regression analyses.
Collapse
Affiliation(s)
- Nicole Babichuk
- Division of Community Health and Humanities, Faculty of Medicine, Health Sciences Centre, Memorial University, St. John's, NL, Canada
| | - Atanu Sarkar
- Division of Community Health and Humanities, Faculty of Medicine, Health Sciences Centre, Memorial University, St. John's, NL, Canada
| | - Shree Mulay
- Division of Community Health and Humanities, Faculty of Medicine, Health Sciences Centre, Memorial University, St. John's, NL, Canada
| | - John Knight
- Primary Healthcare Research Unit, Faculty of Medicine, Memorial University, St. John's, NL, Canada
| | - Edward Randell
- Department of Laboratory Medicine, Faculty of Medicine, Memorial University, St. John's, NL, Canada
| |
Collapse
|
46
|
Fabbri L, Garlantézec R, Audouze K, Bustamante M, Carracedo Á, Chatzi L, Ramón González J, Gražulevičienė R, Keun H, Lau CHE, Sabidó E, Siskos AP, Slama R, Thomsen C, Wright J, Lun Yuan W, Casas M, Vrijheid M, Maitre L. Childhood exposure to non-persistent endocrine disrupting chemicals and multi-omic profiles: A panel study. ENVIRONMENT INTERNATIONAL 2023; 173:107856. [PMID: 36867994 DOI: 10.1016/j.envint.2023.107856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Individuals are exposed to environmental pollutants with endocrine disrupting activity (endocrine disruptors, EDCs) and the early stages of life are particularly susceptible to these exposures. Previous studies have focused on identifying molecular signatures associated with EDCs, but none have used repeated sampling strategy and integrated multiple omics. We aimed to identify multi-omic signatures associated with childhood exposure to non-persistent EDCs. METHODS We used data from the HELIX Child Panel Study, which included 156 children aged 6 to 11. Children were followed for one week, in two time periods. Twenty-two non-persistent EDCs (10 phthalate, 7 phenol, and 5 organophosphate pesticide metabolites) were measured in two weekly pools of 15 urine samples each. Multi-omic profiles (methylome, serum and urinary metabolome, proteome) were measured in blood and in a pool urine samples. We developed visit-specific Gaussian Graphical Models based on pairwise partial correlations. The visit-specific networks were then merged to identify reproducible associations. Independent biological evidence was systematically sought to confirm some of these associations and assess their potential health implications. RESULTS 950 reproducible associations were found among which 23 were direct associations between EDCs and omics. For 9 of them, we were able to find corroborating evidence from previous literature: DEP - serotonin, OXBE - cg27466129, OXBE - dimethylamine, triclosan - leptin, triclosan - serotonin, MBzP - Neu5AC, MEHP - cg20080548, oh-MiNP - kynurenine, oxo-MiNP - 5-oxoproline. We used these associations to explore possible mechanisms between EDCs and health outcomes, and found links to health outcomes for 3 analytes: serotonin and kynurenine in relation to neuro-behavioural development, and leptin in relation to obesity and insulin resistance. CONCLUSIONS This multi-omics network analysis at two time points identified biologically relevant molecular signatures related to non-persistent EDC exposure in childhood, suggesting pathways related to neurological and metabolic outcomes.
Collapse
Affiliation(s)
- Lorenzo Fabbri
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ronan Garlantézec
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail), UMR_S 1085, Rennes, France
| | - Karine Audouze
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain
| | - Ángel Carracedo
- Medicine Genomics Group, Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), University of Santiago de Compostela, CEGEN-PRB3, Santiago de Compostela, Spain; Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Juan Ramón González
- ISGlobal, Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain; Department of Mathematics, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Hector Keun
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer & Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Chung-Ho E Lau
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College, South Kensington, London, UK
| | - Eduard Sabidó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain; Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alexandros P Siskos
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer & Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Rémy Slama
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Inserm, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Cathrine Thomsen
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Wen Lun Yuan
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France; Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain
| | - Léa Maitre
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
47
|
Protective effects of Korean Red Ginseng against toxicity of endocrine-disrupting chemicals. J Ginseng Res 2023; 47:193-198. [PMID: 36926605 PMCID: PMC10014227 DOI: 10.1016/j.jgr.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Several chemicals have been developed owing to the progression of industrialization, among which endocrine-disrupting chemicals (EDCs; essential for plastic production) are used as plasticizers and flame retardants. Plastics have become an essential element in modern life because they provide convenience, thus increasing EDCs exposure to humans. EDCs cause adverse effects such as deterioration of reproductive function, cancer, and neurological abnormalities by disrupting the endocrine system and hence are classified as "dangerous substances." Additionally, they are toxic to various organs but continue to be used. Therefore, it is necessary to review the contamination status of EDCs, select potentially hazardous substances for management, and monitor the safety standards. In addition, it is necessary to discover substances that can protect against EDC toxicity and conduct active research on the protective effects of these substances. According to recent research, Korean Red Ginseng (KRG) exhibits protective effects against several toxicities caused by EDCs to humans. In this review, the effects of EDCs on the human body and the role of KRG in protection against EDC toxicity are discussed.
Collapse
|
48
|
Thanigaivel S, Vickram S, Dey N, Jeyanthi P, Subbaiya R, Kim W, Govarthanan M, Karmegam N. Ecological disturbances and abundance of anthropogenic pollutants in the aquatic ecosystem: Critical review of impact assessment on the aquatic animals. CHEMOSPHERE 2023; 313:137475. [PMID: 36528154 DOI: 10.1016/j.chemosphere.2022.137475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Anthropogenic toxins are discharged into the environment and distributed through a variety of environmental matrices. Trace contaminant detection and analysis has advanced dramatically in recent decades, necessitating further specialized technique development. These pollutants can be mobile and persistent in small amounts in the environment, and ecological receptors will interact with it. Despite the fact that few researches have been undertaken on invertebrate exposure, accumulation, and biological implications, it is apparent that a wide range of pollutants can accumulate in the tissues of aquatic insects, earthworms, amphipod crustaceans, and mollusks. Due to long-term stability during long-distance transit, a number of chemical and microbiological agents that were not previously deemed pollutants have been found in various environmental compartments. The uptake of such pollutants by the aquatic organism is done through the process of bioaccumulation when dangerous compounds accumulate in living beings while biomagnification is the process of a pollutant becoming more hazardous as it moves up the trophic chain. Organic and metal pollution harms animals of every species studied so far, from bacteria to phyla in between. The environmental protection agency says these poisons harm humans as well as a variety of aquatic organisms when the water quality is sacrificed in typical wastewater treatment systems. Contrary to popular belief, treated effluents discharged into aquatic bodies contain considerable levels of Anthropogenic contaminants. This evolution necessitates a more robust and recent advancement in the field of remediation and their techniques to completely discharge the various organic and inorganic contaminants.
Collapse
Affiliation(s)
- Sundaram Thanigaivel
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Nibedita Dey
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Palanivelu Jeyanthi
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600 062, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Natchimuthu Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| |
Collapse
|
49
|
Macedo S, Teixeira E, Gaspar TB, Boaventura P, Soares MA, Miranda-Alves L, Soares P. Endocrine-disrupting chemicals and endocrine neoplasia: A forty-year systematic review. ENVIRONMENTAL RESEARCH 2023; 218:114869. [PMID: 36460069 DOI: 10.1016/j.envres.2022.114869] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Endocrine disrupting chemicals (EDCs) are exogenous substances recognised as relevant tumourigenic chemicals. Studies show that even EDCs which were long abolished are still contributing to the increasing incidence of neoplasia. AIM To investigate the association between human exposure to EDCs and the risk of endocrine-related tumours: breast, prostate, thyroid, uterus, testis, and ovary. METHODS A systematic review using PubMed, Scopus, and Embase was conducted, searching for original observational studies published between 1980 and 2020, approaching EDCs exposure and endocrine tumourigenic risk in humans. We comprised neoplasia of six endocrine organs. We included all the studies on EDCs reporting tumour odds ratio, risk ratio, or hazard ratio. Study levels of confidence and risk of bias were accessed applying accredited guidelines. Human-made accidents and natural EDCs were not considered in the present study. RESULTS Our search returned 3271 papers. After duplicate removal and screening, only 237 papers were included (corresponding to 268 records). EDCs were grouped from the most frequently (pesticides) to the least frequently studied (salts). The most tumourigenic EDC groups were phthalates (63%), heavy metals (54%), particulate matter (47%), and pesticides (46%). Pesticides group comprised the highest number of retrieved studies (n = 133). Increased neoplasia risk was found in 43-67% of the studies, with a lower value for ovary (43%) and a higher value for thyroid (67%). CONCLUSIONS The innovative nature of our review comes from including human studies of six endocrine-related neoplasia aiming to understand the contribution of specific EDCs groups to each organ's tumourigenesis. Thyroid was the organ presenting the highest cancer risk after EDC exposure which may explain the increasing thyroid cancer incidence. However, detailed and controlled works reporting the effects of EDCs are scarce, probably justifying conflicting results. Multinational and multicentric human studies with biochemical analysis are needed to achieve stronger and concordant evidence.
Collapse
Affiliation(s)
- Sofia Macedo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Elisabete Teixeira
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Tiago Bordeira Gaspar
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Paula Boaventura
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.
| | - Mariana Alves Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Laboratory of Experimental Endocrinology (LEEx), Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Postgraduate Endocrinology Program, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Laboratory of Experimental Endocrinology (LEEx), Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Postgraduate Endocrinology Program, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil.
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| |
Collapse
|
50
|
Gong P, Bailbé D, Tolu S, Pommier G, Liu J, Movassat J. Preconceptional exposure of adult male rats to bisphenol S impairs insulin sensitivity and glucose tolerance in their male offspring. CHEMOSPHERE 2023; 314:137691. [PMID: 36592828 DOI: 10.1016/j.chemosphere.2022.137691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/07/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Since the use of bisphenol A (BPA) has been restricted because of its endocrine disruptor properties, bisphenol S (BPS) has been widely used as a substitute of BPA. However, BPS exerts similar effects on metabolic health as BPA. The effects of maternal exposure to BPA and BPS on the metabolic health of offspring have been largely documented during the past decade. However, the impact of preconceptional paternal exposure to BPS on progenies remains unexplored. In this study we investigated the impact of paternal exposure to BPS before conception, on the metabolic phenotype of offspring. Male Wistar rats were administered BPS through drinking water at the dose of 4 μg/kg/day (BPS-4 sires) or 40 μg/kg/day (BPS-40 sires) for 2 months before mating with females. The progenies (F1) were studied at fetal stage and in adulthood. We showed that preconceptional paternal exposure to BPS for 2 months did not alter the metabolic status of sires. The female offspring of sires exposed to lower or higher doses of BPS showed no alteration of their metabolic phenotype compared to females from control sires. In contrast, male offspring of BPS-4 sires exhibited increased body weight and body fat/lean ratio, decreased insulin sensitivity and increased glucose-induced insulin secretion at adult age, compared to the male offspring of control sires. Moreover, male offspring of BPS-4 sires developed glucose intolerance later in life. None of these effects were apparent in male offspring of BPS-40 sires. In conclusion, our study provides the first evidence of the non-monotonic and sex-specific effects of preconceptional paternal exposure to BPS on the metabolic health of offspring, suggesting that BPS is not a safe BPA substitute regarding the inter-generational transmission of metabolic disorders through the paternal lineage.
Collapse
Affiliation(s)
- Pengfei Gong
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Danielle Bailbé
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Stefania Tolu
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Gaëlle Pommier
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France; Université Paris Cité, UFR Sciences Du Vivant, F-75013, Paris, France
| | - Junjun Liu
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University, Jinan, Shandong, China
| | - Jamileh Movassat
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France. http://bfa.univ-paris-diderot.fr
| |
Collapse
|