1
|
Lemche E, Hortobágyi T, Kiecker C, Turkheimer F. Neuropathological links between T2DM and LOAD: systematic review and meta-analysis. Physiol Rev 2025; 105:1429-1486. [PMID: 40062731 DOI: 10.1152/physrev.00040.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/01/2025] [Accepted: 02/22/2025] [Indexed: 04/16/2025] Open
Abstract
Recent decades have described parallel neuropathological mechanisms increasing the risk for developing late-onset Alzheimer's dementia (LOAD) in type 2 diabetes mellitus (T2DM); however, still little is known of the role of diabetic encephalopathy and brain atrophy in LOAD. The aim of this systematic review is to provide a comprehensive view on diabetic encephalopathy/cerebral atrophy, taking into account neuroimaging data, neuropathology, metabolic and endocrine mechanisms, amyloid formation, brain perfusion impairments, neuroimmunology, and inflammasome activation. Key switches were identified, to further meta-analyze genomic candidate loci and epigenetic modifications. For the qualitative meta-analysis of genomic bases extracted, human linkage studies were examined; for epigenetic mechanisms, data from both human and animal studies are described. For the systematic review of pathophysiological mechanisms, 1,259 publications were evaluated and 93 gene loci extracted for candidate risk linkages. Sixty-six publications were evaluated for genomic association and descriptions of epigenomic modifications. Overall accumulated results highlight the insulin signaling system, vascular markers, inflammation and inflammasome pathways, amylin interactions, and glycosylation mechanisms. The protocol was registered with PROSPERO (ID: CRD42023440535).
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Tibor Hortobágyi
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Clemens Kiecker
- Department for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
2
|
Foroozanmehr B, Hemmati MA, Yaribeygi H, Karav S, Jamialahmadi T, Sahebkar A. Parkinson's disease and brain insulin signaling: Mechanisms and potential role of GLP-1 mimetics. Brain Res 2025; 1862:149738. [PMID: 40449678 DOI: 10.1016/j.brainres.2025.149738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/21/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized primarily by the degeneration of dopaminergic neurons in the substantia nigra pars compacta. The pathophysiology of PD is complex and multifactorial involving genetic factors, oxidative stress, mitochondrial dysfunction, impaired protein clearance, and neuroinflammation but recent evidence emphasizes the role of impaired brain insulin signaling. Insulin is a metabolic hormone with extensive effects on metabolic substrates but recent studies have demonstrated that it is also involved in central signaling pathways and induces different brain areas related to food craving, motor activities, cognitive abilities, and emotional feelings. Hence it has been suggested that induction of brain insulin sensitivity may be a promising treatment for PD. Glucagon-like peptide-1 (GLP-1) mimetics are a new-generation class of antidiabetics that normalize glucose homeostasis via several pathways. Recent studies suggest extra-glycemic benefits for GLP-1 mimetics against PD. GLP-1 mimetics can prevent or slow PD progression. Additionally, these agents can improve cognitive functions by improving brain insulin signaling pathways. In this review, we aim to highlight the role of brain insulin signaling in PD pathophysiology and discuss the possible benefits of GLP-1 mimetics in PD management.
Collapse
Affiliation(s)
- Behina Foroozanmehr
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Chen W, Liu X, Muñoz VR, Kahn CR. Loss of insulin signaling in microglia impairs cellular uptake of Aβ and neuroinflammatory response exacerbating AD-like neuropathology. Proc Natl Acad Sci U S A 2025; 122:e2501527122. [PMID: 40388612 DOI: 10.1073/pnas.2501527122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/07/2025] [Indexed: 05/21/2025] Open
Abstract
Insulin receptors are present on cells throughout the body, including the brain. Dysregulation of insulin signaling in neurons and astrocytes has been implicated in altered mood, cognition, and the pathogenesis of Alzheimer's disease (AD). To define the role of insulin signaling in microglia, the primary phagocytes in the brain critical for maintenance and damage repair, we created mice with an inducible microglia-specific insulin receptor knockout (MG-IRKO). RiboTag profiling of microglial mRNAs revealed that loss of insulin signaling results in alterations of gene expression in pathways related to innate immunity and cellular metabolism. In vitro, loss of insulin signaling in microglia results in metabolic reprogramming with an increase in glycolysis and impaired uptake of Aβ. In vivo, MG-IRKO mice exhibit alterations in mood and social behavior, and when crossed with the 5xFAD mouse model of AD, the resultant mice exhibit increased levels of Aβ plaque and elevated neuroinflammation. Thus, insulin signaling in microglia plays a key role in microglial cellular metabolism and the ability of the cells to take up Aβ, such that reduced insulin signaling in microglia alters mood and social behavior and accelerates AD pathogenesis. Together, these data indicate key roles of insulin action in microglia and the potential of targeting insulin signaling in microglia in treatment of AD.
Collapse
Affiliation(s)
- Wenqiang Chen
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215
- Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev 2730, Denmark
| | - Xiangyu Liu
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215
| | - Vitor Rosetto Muñoz
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215
- Laboratory of Molecular Biology of Exercise, University of Campinas, Limeira, São Paulo 13484-350, Brazil
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
4
|
Zhang Y, Su D, Liu Y, He B, Wang H, Shi C, Yang Y. Transcriptomic analysis reveals potential targets associated with hippocampus vulnerability in spatial cognitive dysfunctionof type 2 diabetes mellitus rats. Neuroscience 2025; 579:35-46. [PMID: 40425127 DOI: 10.1016/j.neuroscience.2025.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 05/14/2025] [Accepted: 05/23/2025] [Indexed: 05/29/2025]
Abstract
BACKGROUND Cognitive dysfunction is one of the major complications of T2DM.However, the precise molecular mechanism underlying this relationship remains unclear. Present study aimed to identify potential predictors of cognitive dysfunction associated with T2DM specifically within the hippocampus. METHODS T2DM was induced by a high-fat diet combined with streptozotocin injections. Morris water maze was employed to assess spatial cognitive ability. HE staining was used to evaluate neurons injury in hippocampus. Transcriptome sequencing was conducted on the hippocampus to identify potential genes. The results obtained from sequencing analysis werevalidated using qRT-PCR. GO and KEGG analyses were performed to investigate the functions of differentially expressed genes (DEGs) and their associated biological pathways. RESULTS Compared with CON rats, thespatial cognitive ability decreased in T2DM rats. Hippocampus neurons reduced in CA1 area of T2DM rats. In total, 123 DEGswere identified bytranscriptome sequencing, including 25 upregulated genes and 98 downregulated genes. The qRT-PCR results verified the RNA-seq. KEGG pathway analysis showed the major enriched pathways were TNF signaling pathway, arachidonic acid metabolism, AGE-RAGE signaling pathway in diabetic complications, and cellular senescence. GO analysis showed that DEGs involved in biological process were mainly related to vasculogenesis, response to hypoxia, regulation of cell proliferation and aging. CONCLUSIONS Our transcriptomic analysis reveals the "cellular senescence" signaling pathway may be implicated in T2DM-induced spatial cognitive dysfunction and Tgfbr2 may be the important DEG involved in this pathway, which will be the primary focus of our future research endeavors.
Collapse
Affiliation(s)
- Ying Zhang
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Beijing, China
| | - Dongmei Su
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Beijing, China
| | - Yuru Liu
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Bin He
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Beijing, China
| | - Huiping Wang
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Beijing, China
| | - Cuige Shi
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Beijing, China.
| | - Yishu Yang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Ayoub S, Arabi M, Al-Najjar Y, Laswi I, Outeiro TF, Chaari A. Glycation in Alzheimer's Disease and Type 2 Diabetes: The Prospect of Dual Drug Approaches for Therapeutic Interventions. Mol Neurobiol 2025:10.1007/s12035-025-05051-9. [PMID: 40402411 DOI: 10.1007/s12035-025-05051-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 05/07/2025] [Indexed: 05/23/2025]
Abstract
As global life expectancy increases, the prevalence of neurodegenerative diseases like Alzheimer's disease (AD) continues to rise. Since therapeutic options are minimal, a deeper understanding of the pathophysiology is essential for improved diagnosis and treatments. AD is marked by the aggregation of Aβ proteins, tau hyperphosphorylation, and progressive neuronal loss, though its precise origins remain poorly understood. Meanwhile, type 2 diabetes mellitus (T2DM) is characterized by chronic hyperglycemia, leading to the formation of advanced glycation end products (AGEs), which are implicated in tissue damage and neurotoxicity. These AGEs can be resistant to proteolysis and, therefore, accumulate, exacerbating AD pathology and accelerating neurodegeneration. Insulin resistance, a hallmark of T2DM, further complicates AD pathogenesis by promoting tau hyperphosphorylation and Aβ plaque accumulation. Additionally, gut microbiome dysbiosis in T2DM fosters AGE accumulation and neuroinflammation, underscoring the intricate relationship between metabolic disorders, gut health, and neurodegenerative processes. This complex interplay presents both a challenge and a potential avenue for therapeutic intervention. Emerging evidence suggests that antidiabetic medications may offer cognitive benefits in AD, as well as in other neurodegenerative conditions, pointing to a shared pathophysiology. Thus, we posit that targeting AGEs, insulin signaling, and gut microbiota dynamics presents promising opportunities for innovative treatment approaches in AD and T2DM.
Collapse
Affiliation(s)
- Sama Ayoub
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Maryam Arabi
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Yousef Al-Najjar
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Ibrahim Laswi
- Department of Internal Medicine, Yale New Haven Hospital, New Haven, CT, USA
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, Newcastle, NE2 4HH, UK
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Scientific Employee With an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Von-Siebold-Straße 3a, 37075, Göttingen, Germany
| | - Ali Chaari
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
6
|
Chen W, Kullmann S, Rhea EM. Expanding the understanding of insulin resistance in brain and periphery. Trends Endocrinol Metab 2025:S1043-2760(25)00099-2. [PMID: 40393910 DOI: 10.1016/j.tem.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/22/2025]
Abstract
Insulin resistance is a central feature of metabolic disorders such as type 2 diabetes (T2D). While studies on this disorder have largely been linked to glucose metabolism and intracellular signaling, recent advances reveal that insulin resistance extends beyond traditional glucose regulatory pathways, impacting multiple organs including the brain, contributing to cognitive dysfunction and neurodegenerative diseases such as Alzheimer's disease (AD). This opinion revisits insulin resistance through molecular, cellular, and systemic perspectives, emphasizing the intersection between peripheral and brain insulin resistance (BIR), the role of the blood-brain barrier (BBB), and emerging biomarkers. Furthermore, we integrate insights from multi-omics and neuroimaging studies to refine our understanding, advocating for a broader perspective that informs early detection and intervention in metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Wenqiang Chen
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark.
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany; German Center for Diabetes Research, München-Neuherberg, Germany
| | - Elizabeth M Rhea
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
7
|
Alzarea EA, Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Papadakis M, Beshay ON, Batiha GES. The Conceivable Role of Metabolic Syndrome in the Pathogenesis of Alzheimer's Disease: Cellular and Subcellular Alterations in Underpinning a Tale of Two. Neuromolecular Med 2025; 27:35. [PMID: 40379890 DOI: 10.1007/s12017-025-08832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/09/2025] [Indexed: 05/19/2025]
Abstract
Alzheimer's disease (AD)is an age-related neurodegenerative disease characterized by memory decline and cognitive impairment .AD is common in people aged > 65 years, though most of AD cases are sporadic, which accounts for 95%, and 1-5% of AD is caused by familial causes . The causes of AD are aging, environmental toxins, and cardiometabolic factors that induce the degeneration of cholinergic neurons. It has been shown that the metabolic syndrome which is a clustering of dissimilar constituents including insulin resistance (IR), glucose intolerance, visceral obesity, hypertension, and dyslipidemia is implicated in the pathogenesis of AD. Metabolic syndrome disapprovingly affects cognitive function and the development in AD by inducing the development of oxidative stress, neuroinflammation, and brain IR. These changes, together with brain IR, impair cerebrovascular reactivity causing cognitive impairment and dementia. Nevertheless, the fundamental mechanism by which metabolic syndrome persuades AD risk is not entirely explicated. Accordingly, this review aims to discuss the connotation between metabolic syndrome and AD. In conclusion, metabolic syndrome is regarded as a possible risk factor for the initiation of AD neuropathology by diverse signaling pathways such as brain IR, activation of inflammatory signaling pathways, neuroinflammation, defective proteostasis, and dysregulation of lipid mediators.
Collapse
Affiliation(s)
- Ekremah A Alzarea
- Hematopathology, Department of Pathology, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Jabir Ibn Hayyan Medical University, Al-Ameer Qu./Najaf-Iraq, PO.Box13, Kufa, Iraq
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, Australia
- Department of Research & Development, Funogen, Athens, Greece
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Olivia N Beshay
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
8
|
Kim JH, Seo HJ, Noh BW, He MT, Choi YH, Cho EJ, Noh JS. Protective effects of Cuscuta chinensis Lam. extract against learning and memory dysfunction induced by streptozotocin and amyloid β 25-35 in vivo model. Arch Physiol Biochem 2025:1-13. [PMID: 40353733 DOI: 10.1080/13813455.2025.2502861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 04/09/2025] [Indexed: 05/14/2025]
Abstract
Alzheimer's disease (AD) is associated with hyperglycaemia and amyloid beta (Aβ) accumulation. In the present study, we investigated whether an aqueous extract of Cuscuta chinensis Lam. (CCWE) improved cognitive disorder in a hyperglycaemic and cognitive-impaired mouse model. Hyperglycaemia was induced by streptozotocin (STZ, 50 mg/kg) and a single intracerebroventricular injection of Aβ25-35 (25 nM) was performed. The Aβ25-35-injected hyperglycaemic mice were then administered CCWE (100 or 200 mg/kg/day) for 14-d. The protective effects of the CCWE were evaluated by behavioural tests and western blot analysis. The bioactive compounds in CCWE were isolated by UPLC-QTOF/MS analysis. The administration of CCWE improved the learning and memory function in STZ/Aβ25-35-injected mice. Moreover, CCWE positively regulated the amyloidogenic pathway-related proteins and insulin signalling-related proteins. The bioactive components in CCWE were also identified. These findings suggest the possibility of CCWE as a potential candidate for the dual-targeting treatment of hyperglycaemia and AD.
Collapse
Affiliation(s)
- Ji-Hyun Kim
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Hyo Jeong Seo
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Byeong Wook Noh
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Mei Tong He
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - Yung-Hyun Choi
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan, Republic of Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Jeong Sook Noh
- Department of Food Science and Nutrition, Tongmyong University, Busan, Republic of Korea
| |
Collapse
|
9
|
Zhou ZD, Yi L, Popławska-Domaszewicz K, Chaudhuri KR, Jankovic J, Tan EK. Glucagon-like peptide-1 receptor agonists in neurodegenerative diseases: Promises and challenges. Pharmacol Res 2025; 216:107770. [PMID: 40344943 DOI: 10.1016/j.phrs.2025.107770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/10/2025] [Accepted: 05/07/2025] [Indexed: 05/11/2025]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists (GRA) belong to a class of compounds that reduce blood glucose and energy intake by simulating actions of endogenous incretin hormone GLP-1 after it is released by the gut following food consumption. They are used to treat type 2 diabetes mellitus (T2DM) and obesity and have systemic effects on various organs, including the brain, liver, pancreas, heart, and the gut. Patients with T2DM have a higher risk of developing neurodegenerative diseases (NDs), including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), accompanied by more severe motor deficits and faster disease progression, suggesting dysregulation of insulin signaling in these diseases. Experimental studies have shown that GRA have protective effects to modulate neuroinflammation, oxidative stress, mitochondrial and autophagic functions, and protein misfolding. Hence the compounds have generated enormous interest as novel therapeutic agents against NDs. To date, clinical trials have shown that three GRA, exenatide, liraglutide and lixisenatide can improve motor deficits as an add-on therapy in PD patients and liraglutide can improve cognitive function in AD patients. The neuroprotective effects of these and other GRA, such as PT320 (a sustained-released exenatide) and semaglutide, are still under investigation. The dual GLP-1/gastric inhibitory polypeptide (GIP) receptor agonists have been demonstrated to have beneficial effects in AD and PD mice models. Overall, GRA are highly promising novel drugs, but future clinical studies should identify which subsets of patients should be targeted as potential candidates for their symptomatic and/or neuroprotective benefits, investigate whether combinations with other classes of drugs can further augment their efficacy, and evaluate their long-term disease-modifying and adverse effects.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, 308433, Singapore; Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, 169857, Singapore.
| | - Lingxiao Yi
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, 308433, Singapore.
| | - Karolina Popławska-Domaszewicz
- Department of Neurology, Poznan University of Medical Sciences, Poznan 60-355, Poland; Parkinson's Foundation Centre of Excellence, King's College Hospital, Denmark Hill, London SE5 9RS, UK.
| | - Kallol Ray Chaudhuri
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, King's College London, Cutcombe Road, London SE5 9RT, UK.
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA.
| | - Eng King Tan
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, 308433, Singapore; Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, 169857, Singapore.
| |
Collapse
|
10
|
Ma H, Chang Z, Sun H, Ma D, Li Z, Hao L, Zhang Z, Hölscher C, Zhang Z. A novel Dual GLP-1/CCK Receptor Agonist Improves Cognitive Performance and Synaptogenesis in the 5 × FAD Alzheimer Mouse Model. Mol Neurobiol 2025:10.1007/s12035-025-05037-7. [PMID: 40338455 DOI: 10.1007/s12035-025-05037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 05/04/2025] [Indexed: 05/09/2025]
Abstract
Glucagon-like peptide 1 (GLP-1) is a peptide hormone and growth factor. Cholecystokinin (CCK) is another peptide hormone, growth factor and neurotransmitter. Both peptide hormones have shown good neuroprotective effects in animal models of Alzheimer's disease (AD). In this study, we tested the effects of a dual GLP-1/CCK (25 nmol/kg ip. for 14 days) receptor agonist that had previously shown good effects in animal models of diabetes. The GLP-1 analogue Liraglutide (50 nmol/kg ip.) was used as a positive control. Memory was improved in the water maze and the Y-maze, spontaneous activity was increased, the chronic inflammation response had been reduced and levels of NLRP3, IL-10 and TNFα were brought back to physiological levels. Levels of amyloid aggregates in the brain were reduced by the drugs. The expression of proteins SIRPα and CD47 which is related to reduced inflammation levels was reduced. Importantly, growth factor signalling was much improved and growth levels of BDNF, TrkB receptor, p-CREB, and an upregulation of the PI3K-AKT signalling pathway had been observed. Post-synaptic density protein (PSD) and synaptophysin levels were reduced, too. In transmission electron microscope analysis, the synaptic cleft was found to be wider in 5xFAD mice. In Golgi stain evaluations, synapse numbers were brought back to normal levels by the drugs. In a direct comparison with Liraglutide, the dual GLP-1/CCK receptor agonist was superior in the water maze tests and in the upregulation of BDNF and TrkB levels in the brain. In other parameters, the dual agonist and Liraglutide showed comparable effects. In conclusion, the combination of GLP-1 and CCK receptor activation did not show overall improvements over single GLP-1 receptor activation.
Collapse
Affiliation(s)
- He Ma
- School of Medical Sciences, Academy of Chinese Medical Sciences, Shangzhen Academy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
| | - Zhenghui Chang
- School of Medical Sciences, Academy of Chinese Medical Sciences, Shangzhen Academy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
| | - Hongyu Sun
- School of Medical Sciences, Academy of Chinese Medical Sciences, Shangzhen Academy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
| | - Dongrui Ma
- School of Medical Sciences, Academy of Chinese Medical Sciences, Shangzhen Academy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
| | - Zhonghua Li
- School of Medical Sciences, Academy of Chinese Medical Sciences, Shangzhen Academy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, 450046, Henan Province, China
| | - Li Hao
- School of Medical Sciences, Academy of Chinese Medical Sciences, Shangzhen Academy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, 450046, Henan Province, China
| | - Zhenqiang Zhang
- School of Medical Sciences, Academy of Chinese Medical Sciences, Shangzhen Academy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, 450046, Henan Province, China
| | - Christian Hölscher
- Henan Academy of Innovations in Medical Science, Brain Institute, Zhengzhou, 451100, Henan Province, China.
| | - Zijuan Zhang
- School of Medical Sciences, Academy of Chinese Medical Sciences, Shangzhen Academy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China.
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, 450046, Henan Province, China.
| |
Collapse
|
11
|
D'Alessandro MCB, Kanaan S, Geller M, Praticò D, Daher JPL. Mitochondrial dysfunction in Alzheimer's disease. Ageing Res Rev 2025; 107:102713. [PMID: 40023293 DOI: 10.1016/j.arr.2025.102713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive cognitive decline and distinct neuropathological features. The absence of a definitive cure presents a significant challenge in neurology and neuroscience. Early clinical manifestations, such as memory retrieval deficits and apathy, underscore the need for a deeper understanding of the disease's underlying mechanisms. While amyloid-β plaques and tau neurofibrillary tangles have dominated research efforts, accumulating evidence highlights mitochondrial dysfunction as a central factor in AD pathogenesis. Mitochondria, essential cellular organelles responsible for energy production necessary for neuronal function become impaired in AD, triggering several cellular consequences. Factors such as oxidative stress, disturbances in energy metabolism, failures in the mitochondrial quality control system, and dysregulation of calcium release are associated with mitochondrial dysfunction. These abnormalities are closely linked to the neurodegenerative processes driving AD development and progression. This review explores the intricate relationship between mitochondrial dysfunction and AD pathogenesis, emphasizing its role in disease onset and progression, while also considering its potential as a biomarker and a therapeutic target.
Collapse
Affiliation(s)
- Maria Clara Bila D'Alessandro
- Universidade Federal Fluminense, Faculty of Medicine, Desembargador Athayde Parreiras road 100, Niterói, Rio de Janeiro, Brazil.
| | - Salim Kanaan
- Universidade Federal Fluminense, Faculty of Medicine, Department of Pathology, Marquês do Paraná road, 303, 2nd floor, Niterói, Rio de Janeiro, Brazil.
| | - Mauro Geller
- Unifeso, Department of Immunology and Microbiology, Alberto Torres avenue 111, Teresópolis, Rio de Janeiro, Brazil
| | - Domenico Praticò
- Department of Neurosciences, Lewis Katz School of Medicine. Temple University, 3500 North Broad Street, Philadelphia, PA, United States.
| | - João Paulo Lima Daher
- Universidade Federal Fluminense, Faculty of Medicine, Department of Pathology, Marquês do Paraná road, 303, 2nd floor, Niterói, Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Ponce-Lopez T. Peripheral Inflammation and Insulin Resistance: Their Impact on Blood-Brain Barrier Integrity and Glia Activation in Alzheimer's Disease. Int J Mol Sci 2025; 26:4209. [PMID: 40362446 PMCID: PMC12072112 DOI: 10.3390/ijms26094209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory impairment, and synaptic dysfunction. The accumulation of amyloid beta (Aβ) plaques and hyperphosphorylated tau protein leads to neuronal dysfunction, neuroinflammation, and glial cell activation. Emerging evidence suggests that peripheral insulin resistance and chronic inflammation, often associated with type 2 diabetes (T2D) and obesity, promote increased proinflammatory cytokines, oxidative stress, and immune cell infiltration. These conditions further damage the blood-brain barrier (BBB) integrity and promote neurotoxicity and chronic glial cell activation. This induces neuroinflammation and impaired neuronal insulin signaling, reducing glucose metabolism and exacerbating Aβ accumulation and tau hyperphosphorylation. Indeed, epidemiological studies have linked T2D and obesity with an increased risk of developing AD, reinforcing the connection between metabolic disorders and neurodegeneration. This review explores the relationships between peripheral insulin resistance, inflammation, and BBB dysfunction, highlighting their role in glial activation and the exacerbation of AD pathology.
Collapse
Affiliation(s)
- Teresa Ponce-Lopez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico
| |
Collapse
|
13
|
Kalkman HO, Smigielski L. Ceramides may Play a Central Role in the Pathogenesis of Alzheimer's Disease: a Review of Evidence and Horizons for Discovery. Mol Neurobiol 2025:10.1007/s12035-025-04989-0. [PMID: 40295359 DOI: 10.1007/s12035-025-04989-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/19/2025] [Indexed: 04/30/2025]
Abstract
While several hypotheses have been proposed to explain the underlying mechanisms of Alzheimer's disease, none have been entirely satisfactory. Both genetic and non-genetic risk factors, such as infections, metabolic disorders and psychological stress, contribute to this debilitating disease. Multiple lines of evidence indicate that ceramides may be central to the pathogenesis of Alzheimer's disease. Tumor necrosis factor-α, saturated fatty acids and cortisol elevate the brain levels of ceramides, while genetic risk factors, such as mutations in APP, presenilin, TREM2 and APOE ε4, also elevate ceramide synthesis. Importantly, ceramides displace sphingomyelin and cholesterol from lipid raft-like membrane patches that connect the endoplasmic reticulum and mitochondria, disturbing mitochondrial oxidative phosphorylation and energy production. As a consequence, the flattening of lipid rafts alters the function of γ-secretase, leading to increased production of Aβ42. Moreover, ceramides inhibit the insulin-signaling cascade via at least three mechanisms, resulting in the activation of glycogen synthase kinase-3 β. Activation of this kinase has multiple consequences, as it further deteriorates insulin resistance, promotes the transcription of BACE1, causes hyperphosphorylation of tau and inhibits the transcription factor Nrf2. Functional Nrf2 prevents apoptosis, mediates anti-inflammatory activity and improves blood-brain barrier function. Thus, various seemingly unrelated Alzheimer's disease risk factors converge on ceramide production, whereas the elevated levels of ceramides give rise to the well-known pathological features of Alzheimer's disease. Understanding and targeting these mechanisms may provide a promising foundation for the development of novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Hans O Kalkman
- Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Lukasz Smigielski
- Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Vandersmissen J, Dewachter I, Cuypers K, Hansen D. The Impact of Exercise Training on the Brain and Cognition in Type 2 Diabetes, and its Physiological Mediators: A Systematic Review. SPORTS MEDICINE - OPEN 2025; 11:42. [PMID: 40274715 PMCID: PMC12022206 DOI: 10.1186/s40798-025-00836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/16/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Type 2 diabetes (T2DM) affects brain structure and function, and is associated with an increased risk of dementia and mild cognitive impairment. It is known that exercise training has a beneficial effect on cognition and brain structure and function, at least in healthy people, but the impact of exercise training on these aspects remains to be fully elucidated in patients with T2DM. OBJECTIVE To determine the impact of exercise training on cognition and brain structure and function in T2DM, and identify the involved physiological mediators. METHODS This paper systematically reviews studies that evaluate the effect of exercise training on cognition in T2DM, and aims to indicate the most beneficial exercise modality for improving or preserving cognition in this patient group. In addition, the possible physiological mediators and targets involved in these improvements are narratively described in the second part of this review. Papers published up until the 14th of January 2025 were searched by means of the electronic databases PubMed, Embase, and Web of Science. Studies directly investigating the effect of any kind of exercise training on the brain or cognition in patients with T2DM, or animal models thereof, were included, with the exception of human studies assessing cognition only at one time point, and studies combining exercise training with other interventions (e.g. dietary changes, cognitive training, etc.). Study quality was assessed by means of the TESTEX tool for human studies, and the CAMARADES tool for animal studies. RESULTS For the systematic part of the review, 22 papers were found to be eligible. 18 out of 22 papers (81.8%) showed a significant positive effect of exercise training on cognition in T2DM, of which two studies only showed significant improvements in the minority of the cognitive tests. Four papers (18.2%) could not find a significant effect of exercise on cognition in T2DM. Resistance and endurance exercise were found to be equally effective for achieving cognitive improvement. Machine-based power training is seemingly more effective than resistance training with body weight and elastic bands to reach cognitive improvement. In addition, BDNF, lactate, leptin, adiponectin, GSK3β, GLP-1, the AMPK/SIRT1 pathway, and the PI3K/Akt pathway were identified as plausible mediators directly from studies investigating the effect of exercise training on brain structure and function in T2DM. Via these mediators, exercise training induces multiple beneficial brain changes, such as increased neuroplasticity, increased insulin sensitivity, and decreased inflammation. CONCLUSION Overall, exercise training beneficially affects cognition and brain structure and function in T2DM, with resistance and endurance exercise having similar effects. However, there is a need for additional studies, and more methodological consistency between different studies in order to define an exercise program optimal for improving cognition in T2DM. Furthermore, we were able to define several mediators involved in the effect of exercise training on cognition in T2DM, but further research is necessary to unravel the entire process.
Collapse
Affiliation(s)
- Jitske Vandersmissen
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Hasselt University, Wetenschapspark 7, 3590, Diepenbeek, Belgium.
| | - Ilse Dewachter
- Biomedical Research Institute, BIOMED, Hasselt University, 3590, Diepenbeek, Belgium
| | - Koen Cuypers
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Hasselt University, Wetenschapspark 7, 3590, Diepenbeek, Belgium
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Dominique Hansen
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Hasselt University, Wetenschapspark 7, 3590, Diepenbeek, Belgium
- Heart Centre Hasselt, Jessa Hospital, 3500, Hasselt, Belgium
| |
Collapse
|
15
|
Urkon M, Ferencz E, Szász JA, Szabo MIM, Orbán-Kis K, Szatmári S, Nagy EE. Antidiabetic GLP-1 Receptor Agonists Have Neuroprotective Properties in Experimental Animal Models of Alzheimer's Disease. Pharmaceuticals (Basel) 2025; 18:614. [PMID: 40430434 PMCID: PMC12114801 DOI: 10.3390/ph18050614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 05/29/2025] Open
Abstract
In addition to the classically accepted pathophysiological features of Alzheimer's disease (AD), increasing attention is paid to the role of the insulin-resistant state of the central nervous system. Glucagon-like peptide-1 receptor (GLP-1R) agonism demonstrated neuroprotective consequences by mitigating neuroinflammation and oxidative damage. The present review aims to offer a comprehensive overview of the neuroprotective properties of GLP-1R agonists (GLP-1RAs), with a particular focus on experimental animal models of AD. Ameliorated amyloid-β plaque and neurofibrillary tangle formation and deposition following exenatide, liraglutide, and lixisenatide treatment was confirmed in several models. The GLP-1RAs studied alleviated central insulin resistance, as evidenced by the decreased serine phosphorylation of insulin receptor substrate 1 (IRS-1) and restored downstream phosphoinositide 3-kinase/RAC serine/threonine-protein kinase (PI3K/Akt) signaling. Furthermore, the GLP-1RAs influenced multiple mitogen-activated protein kinases (extracellular signal-regulated kinase: ERK; c-Jun N-terminal kinase: JNK, p38) positively and suppressed glycogen synthase kinase 3 (GSK-3β) hyperactivation. A lower proportion of reactive microglia and astrocytes was associated with better neuronal preservation following their administration. Finally, restoration of cognitive functions, particularly spatial memory, was also observed for semaglutide and dulaglutide. GLP-1RAs, therefore, hold promising disease-modifying potential in the management of AD.
Collapse
Affiliation(s)
- Melinda Urkon
- Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Elek Ferencz
- Service of Translational Medicine and Clinical Research, Emergency County Hospital Miercurea Ciuc, 530173 Miercurea Ciuc, Romania
| | - József Attila Szász
- Department M3, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- 2nd Clinic of Neurology, Targu Mures County Emergency Clinical Hospital, 540136 Targu Mures, Romania
| | - Monica Iudita Maria Szabo
- Department M3, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Clinic of Diabetology, Nutrition and Metabolic Disease, Targu Mures County Emergency Clinical Hospital, 540136 Targu Mures, Romania
| | - Károly Orbán-Kis
- 2nd Clinic of Neurology, Targu Mures County Emergency Clinical Hospital, 540136 Targu Mures, Romania
- Department of Physiology, M2, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Szabolcs Szatmári
- Department M3, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- 2nd Clinic of Neurology, Targu Mures County Emergency Clinical Hospital, 540136 Targu Mures, Romania
| | - Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry, F1, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania;
- Laboratory of Medical Analysis, Clinical County Hospital Mures, 540394 Targu Mures, Romania
| |
Collapse
|
16
|
Yao Y, Shu T, Guo X, Huang J, Chen Q, Liu X, Ouyang C, Yang X, Lei M. Trelagliptin Ameliorates Memory Decline in Diabetic Rats through the AMPK/AKT/GSK-3β Pathway in the Cerebral Cortex. ACS OMEGA 2025; 10:15673-15680. [PMID: 40290996 PMCID: PMC12019456 DOI: 10.1021/acsomega.5c00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/27/2025] [Accepted: 04/04/2025] [Indexed: 04/30/2025]
Abstract
Examining how hypoglycemic medications affect brain function is one of the best approaches to addressing cognitive impairment. In this study, trelagliptin, a dipeptidyl peptidase-4 (DPP4) inhibitor, was utilized to assess memory loss in diabetic rats through fear conditioning tests. Trelagliptin restored fear memory in diabetic rats that had been disrupted over a relatively long period (24 h) or extended period (5 days). Moreover, trelagliptin treatment reduced the higher incidence of neuronal cell death in the cerebral cortex, as observed via Nissl or hematoxylin and eosin staining. Subsequent analyses revealed that diabetic rats exhibited elevated levels of inflammatory cytokines (p-IKKα and p-NFκB) and a trend toward oxidative damage, indicated by malondialdehyde (MDA), superoxide dismutase 2 (SOD2), and glutathione peroxidase 4 (GPX4) detection. However, administration of trelagliptin reversed these markers to baseline levels. Additionally, trelagliptin activated p-AMPK, p-AKT, and p-GSK-3β. Notably, trelagliptin upregulated the expression of postsynaptic density protein 95 (PSD95) and synaptotagmin 1 (SYT1) while downregulating amyloid precursor protein (APP) and beta-site amyloid precursor protein cleaving enzyme 1 (BACE1). These findings suggest that trelagliptin alleviates cognitive impairment in diabetic rats, likely through AMPK-AKT-GSK-3β-mediated mitigation of oxidative stress, enhancement of synaptic plasticity, and reduction of Aβ accumulation.
Collapse
Affiliation(s)
- Yue Yao
- Pharmacy
College, Xianning Medical College, Hubei
University of Science and Technology, No. 88, Xianning Avenue, Xianning City, Hubei Province 437100, China
- The People’s
Hospital of Lezhi, No.
405, Yingbin Avenue, Lezhi County, Sichuan Province 641599, China
| | - Ting Shu
- Pharmacy
College, Xianning Medical College, Hubei
University of Science and Technology, No. 88, Xianning Avenue, Xianning City, Hubei Province 437100, China
| | - Xiying Guo
- Pharmacy
College, Xianning Medical College, Hubei
University of Science and Technology, No. 88, Xianning Avenue, Xianning City, Hubei Province 437100, China
- Hubei Key
Laboratory of Diabetes and Angiopathy, Medical Research Institute,
Xianning Medical College, Hubei University
of Science and Technology, No. 88, Xianning Avenue, Xianning City, Hubei Province 437100, China
| | - Jing Huang
- Pharmacy
College, Xianning Medical College, Hubei
University of Science and Technology, No. 88, Xianning Avenue, Xianning City, Hubei Province 437100, China
- Hubei Key
Laboratory of Diabetes and Angiopathy, Medical Research Institute,
Xianning Medical College, Hubei University
of Science and Technology, No. 88, Xianning Avenue, Xianning City, Hubei Province 437100, China
| | - Qingjie Chen
- Pharmacy
College, Xianning Medical College, Hubei
University of Science and Technology, No. 88, Xianning Avenue, Xianning City, Hubei Province 437100, China
- Hubei Key
Laboratory of Diabetes and Angiopathy, Medical Research Institute,
Xianning Medical College, Hubei University
of Science and Technology, No. 88, Xianning Avenue, Xianning City, Hubei Province 437100, China
| | - Xiufen Liu
- Pharmacy
College, Xianning Medical College, Hubei
University of Science and Technology, No. 88, Xianning Avenue, Xianning City, Hubei Province 437100, China
- Hubei Key
Laboratory of Diabetes and Angiopathy, Medical Research Institute,
Xianning Medical College, Hubei University
of Science and Technology, No. 88, Xianning Avenue, Xianning City, Hubei Province 437100, China
| | - Changhan Ouyang
- Pharmacy
College, Xianning Medical College, Hubei
University of Science and Technology, No. 88, Xianning Avenue, Xianning City, Hubei Province 437100, China
| | - Xiaosong Yang
- Pharmacy
College, Xianning Medical College, Hubei
University of Science and Technology, No. 88, Xianning Avenue, Xianning City, Hubei Province 437100, China
- Hubei Key
Laboratory of Diabetes and Angiopathy, Medical Research Institute,
Xianning Medical College, Hubei University
of Science and Technology, No. 88, Xianning Avenue, Xianning City, Hubei Province 437100, China
| | - Min Lei
- Pharmacy
College, Xianning Medical College, Hubei
University of Science and Technology, No. 88, Xianning Avenue, Xianning City, Hubei Province 437100, China
- Hubei Key
Laboratory of Diabetes and Angiopathy, Medical Research Institute,
Xianning Medical College, Hubei University
of Science and Technology, No. 88, Xianning Avenue, Xianning City, Hubei Province 437100, China
| |
Collapse
|
17
|
Na D, Zhang Z, Meng M, Li M, Gao J, Kong J, Zhang G, Guo Y. Energy Metabolism and Brain Aging: Strategies to Delay Neuronal Degeneration. Cell Mol Neurobiol 2025; 45:38. [PMID: 40259102 PMCID: PMC12011708 DOI: 10.1007/s10571-025-01555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/09/2025] [Indexed: 04/23/2025]
Abstract
Aging is characterized by a gradual decline in physiological functions, with brain aging being a major risk factor for numerous neurodegenerative diseases. Given the brain's high energy demands, maintaining an adequate ATP supply is crucial for its proper function. However, with advancing age, mitochondria dysfunction and a deteriorating energy metabolism lead to reduced overall energy production and impaired mitochondrial quality control (MQC). As a result, promoting healthy aging has become a key focus in contemporary research. This review examines the relationship between energy metabolism and brain aging, highlighting the connection between MQC and energy metabolism, and proposes strategies to delay brain aging by targeting energy metabolism.
Collapse
Affiliation(s)
- Donghui Na
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China
| | - Zechen Zhang
- Mudi Meng Honors College, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Meng Meng
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China
| | - Meiyu Li
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China
- Department of Pathology, Hebei North University, Zhangjiakou, Hebei, China
| | - Junyan Gao
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada.
| | - Guohui Zhang
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China.
| | - Ying Guo
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China.
- Department of Pathology, Hebei North University, Zhangjiakou, Hebei, China.
- Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou, Hebei, China.
| |
Collapse
|
18
|
Mutwalli H, Keeler JL, Chung R, Dalton B, Patsalos O, Hodsoll J, Schmidt U, Breen G, Treasure J, Himmerich H. Metabolic Signalling Peptides and Their Relation to Clinical and Demographic Characteristics in Acute and Recovered Females with Anorexia Nervosa. Nutrients 2025; 17:1341. [PMID: 40284205 PMCID: PMC12030328 DOI: 10.3390/nu17081341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Recent research has established that metabolic factors may increase the vulnerability to develop anorexia nervosa (AN). The aim of this study was to explore the serum concentrations of leptin, insulin-like growth factor-1 (IGF-1), insulin and insulin receptor substrate (IRS-1) as possible state or trait biomarkers for AN in the acute and recovery (recAN) phases. Our secondary aim was to test associations between the tested markers and demographic and clinical characteristics. Methods: This cross-sectional study included data from 56 participants with AN, 24 recAN participants and 51 healthy controls (HCs). Enzyme-linked immunosorbent assays (ELISAs) were used to quantify serum concentrations of leptin, IGF-1, insulin and IRS-1. An analysis of covariance (ANCOVA) and linear regression models were utilised to test our results. Results: There were significant differences with a large effect size between the groups for serum leptin (p < 0.001; d = 0.80), whereby people with AN had lower leptin than those with recAN (p = 0.023; d = 0.35) and HCs (p < 0.001; d = 0.74). The between-group comparison of IGF-1 did not reach significance, although the effect size was moderate (d = 0.6) and was driven by lower levels of IGF-1 in people with acute AN compared to HCs (p = 0.036; d = 0.53). Serum insulin and IRS-1 did not differ between groups. Conclusions: Low leptin levels seen in individuals with AN may be due to starvation leading to fatty tissue depletion. Understanding the regulation of IGF-1 and insulin signalling over the course of the disorder requires further investigation.
Collapse
Affiliation(s)
- Hiba Mutwalli
- Centre for Research in Eating and Weight Disorders (CREW), Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK (O.P.); (H.H.)
- Department of Clinical Nutrition, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34221, Saudi Arabia
| | - Johanna L. Keeler
- Centre for Research in Eating and Weight Disorders (CREW), Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK (O.P.); (H.H.)
| | - Raymond Chung
- NIHR BioResource Centre Maudsley, London WC2R 2LS, UK
- NIHR Maudsley Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust (SLaM), London SE5 8AF, UK
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AB, UK
| | - Bethan Dalton
- Centre for Research in Eating and Weight Disorders (CREW), Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK (O.P.); (H.H.)
| | - Olivia Patsalos
- Centre for Research in Eating and Weight Disorders (CREW), Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK (O.P.); (H.H.)
| | - John Hodsoll
- Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Ulrike Schmidt
- Centre for Research in Eating and Weight Disorders (CREW), Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK (O.P.); (H.H.)
- Adult Eating Disorders Service, South London and Maudsley NHS Foundation Trust (SLaM), London SE6 4RU, UK
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Janet Treasure
- Centre for Research in Eating and Weight Disorders (CREW), Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK (O.P.); (H.H.)
- Adult Eating Disorders Service, South London and Maudsley NHS Foundation Trust (SLaM), London SE6 4RU, UK
| | - Hubertus Himmerich
- Centre for Research in Eating and Weight Disorders (CREW), Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK (O.P.); (H.H.)
- Adult Eating Disorders Service, South London and Maudsley NHS Foundation Trust (SLaM), London SE6 4RU, UK
| |
Collapse
|
19
|
Polini B, Ricardi C, Di Lupo F, Runfola M, Bacci A, Rapposelli S, Bizzarri R, Scalese M, Saponaro F, Chiellini G. Novel Thyroid Hormone Receptor-β Agonist TG68 Exerts Anti-Inflammatory, Lipid-Lowering and Anxiolytic Effects in a High-Fat Diet (HFD) Mouse Model of Obesity. Cells 2025; 14:580. [PMID: 40277905 PMCID: PMC12026167 DOI: 10.3390/cells14080580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/04/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Recent advances in drug development allowed for the identification of THRβ-selective thyromimetic TG68 as a very promising lipid lowering and anti-amyloid agent. In the current study, we first investigated the neuroprotective effects of TG68 on in vitro human models of neuroinflammation and β-amyloid neurotoxicity in order to expand our knowledge of the therapeutic potential of this novel thyromimetic. Subsequently, we examined metabolic and inflammatory profiles, along with cognitive changes, using a high-fat diet (HFD) mouse model of obesity. Our data demonstrated that TG68 was able to prevent either LPS/TNFα-induced inflammatory response or β-amyloid-induced cytotoxicity in human microglial (HMC3) cells. Next, we demonstrated that in HFD-fed mice, treatment with TG68 (10 mg/kg/day; 2 weeks) significantly reduced anxiety-like behavior in stretch-attend posture (SAP) tests while producing a 12% BW loss and a significant decrease in blood glucose and lipid levels. Notably, these data highlight a close relationship between improved serum metabolic parameters and a reduction of anxious behavior. Moreover, TG68 administration was observed to efficiently counteract HFD-altered central and peripheral expressions in mice with selected biomarkers of metabolic dysfunction, inflammation, and neurotoxicity, revealing promising neuroprotective effects. In conclusion, our work provides preliminary evidence that TG68 may represent a novel therapeutic opportunity for the treatment of interlinked diseases such as obesity and neurodegenerative diseases.
Collapse
Affiliation(s)
- Beatrice Polini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Roma 56, 56126 Pisa, Italy; (B.P.); (C.R.); (F.D.L.); (R.B.)
| | - Caterina Ricardi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Roma 56, 56126 Pisa, Italy; (B.P.); (C.R.); (F.D.L.); (R.B.)
| | - Francesca Di Lupo
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Roma 56, 56126 Pisa, Italy; (B.P.); (C.R.); (F.D.L.); (R.B.)
| | - Massimiliano Runfola
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (M.R.); (A.B.); (S.R.)
| | - Andrea Bacci
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (M.R.); (A.B.); (S.R.)
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (M.R.); (A.B.); (S.R.)
| | - Ranieri Bizzarri
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Roma 56, 56126 Pisa, Italy; (B.P.); (C.R.); (F.D.L.); (R.B.)
| | - Marco Scalese
- Institute of Clinical Physiology, Italian National Research Council, 56124 Pisa, Italy;
| | - Federica Saponaro
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Roma 56, 56126 Pisa, Italy; (B.P.); (C.R.); (F.D.L.); (R.B.)
| | - Grazia Chiellini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Roma 56, 56126 Pisa, Italy; (B.P.); (C.R.); (F.D.L.); (R.B.)
| |
Collapse
|
20
|
Querfurth HW, Lemere C, Ciola J, Havas D, Xia W, Lee HK. Target Validation Studies of PS48, a PDK-1 Allosteric Agonist, for the Treatment of Alzheimer's Disease Phenotype in APP/PS1 Transgenic Mice. Int J Mol Sci 2025; 26:3473. [PMID: 40331945 PMCID: PMC12027031 DOI: 10.3390/ijms26083473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 05/08/2025] Open
Abstract
The Alzheimer's disease (AD)-affected brain is known to be deficient in the utilization of glucose, its main energy substrate, and systemic diabetes is a significant risk factor for AD. In the course of biochemical and molecular investigations into this puzzling relationship, it has been shown that resistance to insulin action is a prominent feature of early stages of AD in the brain, thereby contributing to an energy failure state and a decline in synaptic function. In one AD-like cellular model, we found that β-amyloid (Aβ) accumulation inhibited insulin signaling and cell viability through an alteration of the PI3K/PDK-1/Akt signal pathway, an effect overcome by mTORC2 stimulation. A PDK-1 allosteric agonist, PS48, as well as newly synthesized analogs, were also found to reverse the metabolic defects caused by intracellular Aβ42 accumulation. In vivo, we previously showed that oral dosing of PS48 significantly improves learning and memory in APP/PS1 transgenic mice. Herein, we present evidence using unbiased immunohistological quantification and Western blot analyses demonstrating that ingested PS48 crosses into brain tissue where it targeted Akt and GSK3-β activities. Beneficial effects on neuronal number and Tau phosphorylation were found. Not unexpectedly, Aβ levels remained unchanged. These results support a path toward a future therapeutic trial of this untested strategy and agent in humans.
Collapse
Affiliation(s)
- Henry W. Querfurth
- Tufts Medical Center, Department of Neurology and Tufts University School of Medicine, Department of Neuroscience, 800 Washington St., and 136 Harrison Ave., Boston, MA 02111, USA
| | - Cynthia Lemere
- Brigham and Women’s Hospital, ARCND, 60 Fenwood Rd., Hale Bldg. for Transformative Medicine, Boston, MA 02115, USA; (C.L.); (J.C.)
| | - Jason Ciola
- Brigham and Women’s Hospital, ARCND, 60 Fenwood Rd., Hale Bldg. for Transformative Medicine, Boston, MA 02115, USA; (C.L.); (J.C.)
| | - Daniel Havas
- Psychogenics Inc., 215 College Rd., Paramus, NJ 07652, USA;
| | - Weiming Xia
- Chobanian and Avedisian School of Medicine, Department of Pharmacology, Physiology and Biophysics, Boston University, 72 E. Concord St., Boston, MA 02118, USA;
| | - Han Kyu Lee
- Tufts Medical Center, Department of Neurology, 800 Washington St., Boston, MA 02111, USA;
| |
Collapse
|
21
|
Dunacka J, Grembecka B, Majkutewicz I, Wrona D. Central Insulin-like Growth Factor-1 Treatment Enhances Working and Reference Memory by Reducing Neuroinflammation and Amyloid Beta Deposition in a Rat Model of Sporadic Alzheimer's Disease. Pharmaceuticals (Basel) 2025; 18:527. [PMID: 40283962 PMCID: PMC12030085 DOI: 10.3390/ph18040527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Brain insulin resistance is a potential causal factor for dementia in Alzheimer's disease (AD). Insulin-like growth factor-1 (IGF-1), a neurotrophin, plays a key role in central insulin signaling and neuroprotection. Intracerebrovenitricular (ICV) administration of streptozotocin (STZ) disrupts insulin signal transduction, leading to brain insulin resistance, which may mimic the early pathophysiological changes in sporadic AD (sAD). In this study, we investigated whether restoring insulin signaling through ICV injection of IGF-1 could ameliorate spatial memory deficits during sAD progression in a rat model induced by ICV STZ injection. Methods: Male Wistar rats (n = 40) were subjected to double ICV injections of STZ (0.75 mg/kg/ventricle, days 2 and 4) and IGF-1 (1 μg/single injection, days 1 and 3), and placed at the Morris water maze (MWM) at baseline, 7, 45 and 90 days after injections. Reference (days 1-3 and day 4 MWM)) and working (days 5-8 MWM) memory, microglia activation (CD68+ cells), and amyloid β (Aβ) deposition (immunohistochemistry) were measured. Results: We found that ICVIGF-1 administration protected working memory demonstrated as (1) reduced latency to reach the platform, and reduced swimming distance in trials 3 (p < 0.05) and 4 (p < 0.01) on days 45 and 90 post-injection and (2) a short-term (up to 45 days post-injection) enhancement of reference memory, manifested by a reduction in swimming distance and latency (p < 0.05). Furthermore, IGF-1 treatment reduced neuroinflammation in CA2 (p < 0.05) and Aβ deposition in CA1(p < 0.01) of the hippocampus. Conclusions: Central IGF-1 attenuates spatial memory deficits in the ICVSTZ-induced sAD model by reducing neuroinflammation and Aβ accumulation in the hippocampus.
Collapse
Affiliation(s)
| | | | | | - Danuta Wrona
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 59 Wita Stwosza Str, 80-308 Gdansk, Poland; (J.D.); (B.G.); (I.M.)
| |
Collapse
|
22
|
Asimakidou E, Saipuljumri EN, Lo CH, Zeng J. Role of metabolic dysfunction and inflammation along the liver-brain axis in animal models with obesity-induced neurodegeneration. Neural Regen Res 2025; 20:1069-1076. [PMID: 38989938 PMCID: PMC11438328 DOI: 10.4103/nrr.nrr-d-23-01770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/26/2024] [Indexed: 07/12/2024] Open
Abstract
The interaction between metabolic dysfunction and inflammation is central to the development of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Obesity-related conditions like type 2 diabetes and non-alcoholic fatty liver disease exacerbate this relationship. Peripheral lipid accumulation, particularly in the liver, initiates a cascade of inflammatory processes that extend to the brain, influencing critical metabolic regulatory regions. Ceramide and palmitate, key lipid components, along with lipid transporters lipocalin-2 and apolipoprotein E, contribute to neuroinflammation by disrupting blood-brain barrier integrity and promoting gliosis. Peripheral insulin resistance further exacerbates brain insulin resistance and neuroinflammation. Preclinical interventions targeting peripheral lipid metabolism and insulin signaling pathways have shown promise in reducing neuroinflammation in animal models. However, translating these findings to clinical practice requires further investigation into human subjects. In conclusion, metabolic dysfunction, peripheral inflammation, and insulin resistance are integral to neuroinflammation and neurodegeneration. Understanding these complex mechanisms holds potential for identifying novel therapeutic targets and improving outcomes for neurodegenerative diseases.
Collapse
Affiliation(s)
- Evridiki Asimakidou
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Eka Norfaishanty Saipuljumri
- School of Applied Science, Republic Polytechnic, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jialiu Zeng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
23
|
Zhang J, Tang X, Qi H, Li Z, He X. A new near-infrared fluorescence probe for highly selective and sensitive detection and imaging of Butyrylcholinesterase in Alzheimer's disease mice. Talanta 2025; 285:127377. [PMID: 39706039 DOI: 10.1016/j.talanta.2024.127377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/25/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Butylcholinesterase (BChE) is a key enzyme in living system, closely related to liver and neurological diseases. It is very challenge to develop near-infrared (NIR) fluorescence probe methods for highly selective and sensitive detection of BChE in vivo. Based on the differences in active sites and spatial pockets between acetylcholinesterase (AChE) and BChE, a new NIR BChE-responsive fluorescence probe Probe-BChE (λex/λem = 600 nm/676 nm) was designed and synthesized by introducing dimethyl carbamate group as recognizing moiety to a NIR fluorophore hemicyanine skeleton. It was found that Probe-BChE specifically binds with BChE, rather than AChE, since BChE has a big cavity and strong intermolecular forces with Probe-BChE, which was supported by the molecular docking scores. The fluorescence method for the determination of BChE was developed with a detection limit of 0.14 U/mL BChE and high selectivity as well as short reaction time (∼3 s). The fluorescence imaging method using Probe-BChE efficiently image the levels of endogenous BChE in brains and main organs (heart, liver, spleen, lung and kidney) of Alzheimer's disease (AD) mice. The results reveal that the levels of endogenous BChE in old AD mice is higher than that in young AD mice, and endogenous BChE is enriched in the liver of AD mice. This work demonstrates that Probe-BChE is a promising fluorescence probe for imaging of endogenous BChE in AD mice. The design of NIR fluorescence probes for endogenous BChE in this work will promote to design NIR fluorescence probes for endogenous cholinesterase.
Collapse
Affiliation(s)
- Jian Zhang
- The School of Information Sciences and Technology, Northwest University, Xi'an, 710127, China
| | - Xiaojie Tang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710062, China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710062, China.
| | - Xiaowei He
- The School of Information Sciences and Technology, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
24
|
Tong H, Petyuk VA, Sendtner M, Sood A, Bennett DA, Capuano AW, Arvanitakis Z. Alzheimer's disease-related cortical proteins modify the association of brain insulin signaling with cognitive decline. J Alzheimers Dis 2025; 104:667-677. [PMID: 40183406 PMCID: PMC12124455 DOI: 10.1177/13872877251319463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
BackgroundBrain insulin signaling has been associated with both Alzheimer's disease (AD) pathology and cognitive decline, but the mechanisms remain unclear.ObjectiveTo examine whether AD-related cortically-expressed proteins modify the association of brain insulin signaling and cognitive decline.MethodsParticipants included 116 autopsied members of the Religious Orders Study (58 with diabetes matched to 58 without, by age at death, sex, and education) who had both postmortem brain (prefrontal cortex) insulin signaling (by ELISA and immunohistochemistry, including RAC-alpha serine/threonine-protein kinase or AKT1) and AD-related cortical protein measurements. Levels of five AD-related proteins including insulin-like growth factor-binding protein-5 (IGFBP-5) and inositol-tetrakisphosphate 1-kinase (ITPK1) were measured using quantitative proteomics. We conducted adjusted linear mixed model analyses to examine associations of insulin signaling measures and AD-related proteins with longitudinally assessed cognitive function.ResultsHigher levels of IGFBP-5 and lower levels of ITPK1 were each associated with higher levels of AKT1 phosphorylation (pT308AKT1 /total AKT1). Additionally, higher levels of AKT1 phosphorylation were associated with faster decline in global cognition and most cognitive domains. IGFBP-5 partially mediated the association of AKT1 phosphorylation with the decline rate of global cognition and cognitive domains including perceptual speed and visuospatial abilities. Further, ITPK1 had an interaction with AKT1 phosphorylation on decline of global cognition and domains including episodic memory, perceptual speed, and visuospatial abilities.ConclusionsAD-related proteins IGFBP-5 and ITPK1 are each associated with insulin signaling AKT1 phosphorylation in the postmortem human brain. Moreover, IGFBP-5 mediates, while ITPK1 moderates, the association between AKT1 phosphorylation and late-life cognitive decline.
Collapse
Affiliation(s)
- Han Tong
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ajay Sood
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Ana W Capuano
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
25
|
Massaro A, Calvi P, Restivo I, Giardina M, Mulè F, Tesoriere L, Amato A, Nuzzo D, Picone P, Terzo S, Allegra M. Kumquat Fruit Administration Counteracts Dysmetabolism-Related Neurodegeneration and the Associated Brain Insulin Resistance in the High-Fat Diet-Fed Mice. Int J Mol Sci 2025; 26:3077. [PMID: 40243721 PMCID: PMC11988715 DOI: 10.3390/ijms26073077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Metabolic disorders and brain insulin resistance (IR) are major risk factors for the development of neurodegenerative conditions. Kumquat fruit (KF) administration has demonstrated significant anti-dysmetabolic effects, improving peripheral IR in murine models of metabolic syndrome. Along these lines, this study evaluated the neuroprotective effects of KF supplementation in a model of dysmetabolism-induced neuronal damage and its ability to counteract the disruption of brain insulin signalling. To this end, biochemical and histological analysis assessed neuroapoptosis, disruption of brain insulin signalling and neuroinflammation in a model of high-fat diet (HFD)-induced neuronal damage. Our findings demonstrate, for the first time, that KF supplementation significantly counteracts HFD-induced neuroapoptosis downregulating pro-apoptotic genes (FAS-L, BIM and P27) and upregulating the anti-apoptotic ones (BDNF and BCL-2). Coherently, KF positively influenced the expression of selected genes related to Alzheimer's Disease. Relevantly, these effects were associated to KF ability to restore brain insulin signalling by increasing insulin receptor expression, reducing IRS-1 serine phosphorylation, enhancing both AKT activation and GSK-3β inactivation. Accordingly, KF suppressed HFD-neuroinflammation, counteracting the overexpression of NF-κB and its downstream enzymatic products, iNOS and COX-2. Collectively, these findings demonstrate the neuroprotective benefits of KF administration, supporting its potential as a dietary intervention for dysmetabolic-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Alessandro Massaro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (P.C.); (I.R.); (M.G.); (F.M.); (L.T.); (A.A.); (M.A.)
| | - Pasquale Calvi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (P.C.); (I.R.); (M.G.); (F.M.); (L.T.); (A.A.); (M.A.)
| | - Ignazio Restivo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (P.C.); (I.R.); (M.G.); (F.M.); (L.T.); (A.A.); (M.A.)
| | - Marta Giardina
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (P.C.); (I.R.); (M.G.); (F.M.); (L.T.); (A.A.); (M.A.)
| | - Flavia Mulè
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (P.C.); (I.R.); (M.G.); (F.M.); (L.T.); (A.A.); (M.A.)
| | - Luisa Tesoriere
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (P.C.); (I.R.); (M.G.); (F.M.); (L.T.); (A.A.); (M.A.)
| | - Antonella Amato
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (P.C.); (I.R.); (M.G.); (F.M.); (L.T.); (A.A.); (M.A.)
| | - Domenico Nuzzo
- Institute for Biomedical Research and Innovation—IRIB, 90146 Palermo, Italy; (D.N.); (P.P.)
| | - Pasquale Picone
- Institute for Biomedical Research and Innovation—IRIB, 90146 Palermo, Italy; (D.N.); (P.P.)
| | - Simona Terzo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (P.C.); (I.R.); (M.G.); (F.M.); (L.T.); (A.A.); (M.A.)
| | - Mario Allegra
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (P.C.); (I.R.); (M.G.); (F.M.); (L.T.); (A.A.); (M.A.)
| |
Collapse
|
26
|
He W, Loganathan N, Belsham DD. IGF1 Signaling Regulates Neuropeptide Expression in Hypothalamic Neurons Under Physiological and Pathological Conditions. Endocrinology 2025; 166:bqaf051. [PMID: 40105689 PMCID: PMC11949690 DOI: 10.1210/endocr/bqaf051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/28/2025] [Accepted: 03/17/2025] [Indexed: 03/20/2025]
Abstract
Insulin-like growth factor 1 (IGF1) plays a critical role in metabolism and aging, but its role in the brain remains unclear. This study examined whether hypothalamic neurons respond to IGF1 and how its actions are modulated. RT-qPCR and single-cell RNA sequencing indicated that Igf1r mRNA is expressed in neuropeptide Y/Agouti-related peptide (NPY/AgRP) neurons but has higher expression in pro-opiomelanocortin (POMC) neurons. IGF1 binding proteins Igfbp3 and Igfbp5 were significantly expressed, whereby Igfbp5 levels were modulated by fasting, nutrient availability, and circadian rhythms, implying that IGF1 signaling can be controlled by multiple mechanisms. In mouse and human models, IGF1 regulated Agrp, Npy, Pomc, Cartpt, Spx, Gal, and Fam237b expression, producing an overall anorexigenic profile. Hyperinsulinemia induced IGF1 resistance, accompanied by reduced IGF1R protein, as well as Igf1r and Irs2 mRNA expression via over-activation of phosphoinositide 3-kinase/forkhead box O1 (PI3K-FOXO1) signaling. Thus, hypothalamic neurons respond to IGF1 under physiological conditions, and hyperinsulinemia is a novel mechanism that drives cellular IGF1 resistance.
Collapse
Affiliation(s)
- Wenyuan He
- Department of Physiology, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Neruja Loganathan
- Department of Physiology, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, ON, Canada M5S 1A8
- Department of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada M5S 1A8
| |
Collapse
|
27
|
Stout J, Anderson RJ, Mahzarnia A, Han ZY, Beck K, Browndyke J, Johnson K, O'Brien RJ, Badea A. Mapping the impact of age and APOE risk factors for late onset Alzheimer's disease on long range brain connections through multiscale bundle analysis. Brain Struct Funct 2025; 230:45. [PMID: 40108015 DOI: 10.1007/s00429-025-02905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Alzheimer's disease currently has no cure and is usually detected too late for interventions to be effective. In this study we have focused on cognitively normal subjects to study the impact of risk factors on their long-range brain connections. To detect vulnerable connections, we devised a multiscale, hierarchical method for spatial clustering of the whole brain tractogram and examined the impact of age and APOE allelic variation on cognitive abilities and bundle properties including texture e.g., mean fractional anisotropy, variability, and geometric properties including streamline length, volume, shape, as well as asymmetry. We found that the third level subdivision in the bundle hierarchy provided the most sensitive ability to detect age and genotype differences associated with risk factors. Our results indicate that frontal bundles were a major age predictor, while the occipital cortex and cerebellar connections were important risk predictors that were heavily genotype dependent, and showed accelerated decline in fractional anisotropy, shape similarity, and increased asymmetry. Cognitive metrics related to olfactory memory were mapped to bundles, providing possible early markers of neurodegeneration. In addition, physiological metrics associated with cardiovascular disease risk were associated with changes in white matter tracts. Our novel method for a data driven analysis of sensitive changes in tractography may differentiate populations at risk for AD and isolate specific vulnerable networks.
Collapse
Affiliation(s)
- Jacques Stout
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Robert J Anderson
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ali Mahzarnia
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Zay Yar Han
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kate Beck
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jeffrey Browndyke
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kim Johnson
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Richard J O'Brien
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Alexandra Badea
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
28
|
Mehta RI, Capuano AW, Biswas R, Bennett DA, Arvanitakis Z. Permutations of cerebrovascular pathologies in older adults with and without diabetes. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2025; 8:100381. [PMID: 40206712 PMCID: PMC11979427 DOI: 10.1016/j.cccb.2025.100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Permutations of cerebrovascular pathologies (CVP) in persons with diabetes mellitus (DM) have not been comprehensively investigated. Here, we examine diverse postmortem CVP outcomes, including permutations of single or mixed CVP, in 2163 older adults with or without DM who were followed in longitudinal studies of aging. Annual clinical evaluations included data to classify DM status by medical history (DM diagnosis), direct medication inspection (anti-diabetic therapy), and hemoglobin A1C level (≥6.5 %). Upon death, neuropathological examinations were performed and included evaluation for CVP (considering vessel pathologies and brain infarcts) and Alzheimer's disease neuropathologic change (AD-NC). Among all participants [mean age, 89.49 ± 6.89 years (SD)], single CVP were more common than mixed CVP. Logistic regression was used to analyze the association of DM with CVP permutations, controlling for age at death, sex, education, and AD-NC, and revealed increased odds of microinfarcts alone (odds ratio, 1.56 [95 %CI, 1.03-2.35]) and mixed microinfarcts and macroinfarcts (odds ratio, 1.90 [95 %CI, 1.16-3.13]). These associations remained after adjusting for demographic factors and cohort or vascular comorbidities including stroke, heart disease, hypertension, claudication, smoking, and systolic blood pressure. Furthermore, after controlling for demographic factors as well as AD-NC and APOE type, mixed microinfarcts and macroinfarcts were associated with approximate threefold increased risk of dementia (odds ratio, 2.95 [95 %CI, 1.13-7.70]) in participants with DM. Evidence suggests that older adults living with DM have higher odds of microinfarcts and mixed microinfarcts and macroinfarcts in the absence of intracranial vessel pathologies that cannot be explained by vascular comorbidities, and in this population mixed microinfarcts and macroinfarcts are associated with higher odds of dementia.
Collapse
Affiliation(s)
- Rupal I. Mehta
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ana W. Capuano
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Roshni Biswas
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - David A. Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
29
|
Conover CA, Oxvig C. The IGF System and Aging. Endocr Rev 2025; 46:214-223. [PMID: 39418083 PMCID: PMC11894535 DOI: 10.1210/endrev/bnae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/20/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
There is strong evidence that IGF signaling is involved in fundamental aspects of the aging process. However, the extracellular part of the IGF system is complex with various receptors, ligand effectors, high-affinity IGF-binding proteins, proteinases, and endogenous inhibitors that all, along with their biological context, must be considered. The IGF system components are evolutionarily conserved, underscoring the importance of understanding this system in physiology and pathophysiology. This review will briefly describe the different components of the IGF system and then discuss past and current literature regarding IGF and aging, with a focus on cellular senescence, model organisms of aging, centenarian genetics, and 3 age-related diseases-pulmonary fibrosis, Alzheimer disease, and macular degeneration-in appropriate murine models and in humans. Commonalities in mechanism suggest conditions where IGF system components may be disease drivers and potential targets in promoting healthy aging in humans.
Collapse
Affiliation(s)
- Cheryl A Conover
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
30
|
Ruskin DN, Martinez LA, Masino SA. Ketogenic diet, adenosine, and dopamine in addiction and psychiatry. Front Nutr 2025; 12:1492306. [PMID: 40129664 PMCID: PMC11932665 DOI: 10.3389/fnut.2025.1492306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/11/2025] [Indexed: 03/26/2025] Open
Abstract
Adhering to the ketogenic diet can reduce or stop seizures, even when other treatments fail, via mechanism(s) distinct from other available therapies. These results have led to interest in the diet for treating conditions such as Alzheimer's disease, depression and schizophrenia. Evidence points to the neuromodulator adenosine as a key mechanism underlying therapeutic benefits of a ketogenic diet. Adenosine represents a unique and direct link among cell energy, neuronal activity, and gene expression, and adenosine receptors form functional heteromers with dopamine receptors. The importance of the dopaminergic system is established in addiction, as are the challenges of modulating the dopamine system directly. A mediator that could antagonize dopamine's effects would be useful, and adenosine is such a mediator due to its function and location. Studies report that the ketogenic diet improves cognition, sociability, and perseverative behaviors, and might improve depression. Many of the translational opportunities based on the ketogenic diet/adenosine link have come to the fore, including addiction, autism spectrum disorder, painful conditions, and a range of hyperdopaminergic disorders.
Collapse
|
31
|
Chouinard VA, Feizi W, Chen X, Ren B, Lewandowski KE, Anderson J, Prete S, Tusuzian E, Cuklanz K, Zhou S, Bolton P, Stein A, Cohen BM, Du F, Öngür D. Intranasal Insulin Increases Brain Glutathione and Enhances Antioxidant Capacity in Healthy Participants but Not in Those With Early Psychotic Disorders. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:286-294. [PMID: 39617344 DOI: 10.1016/j.bpsc.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 02/05/2025]
Abstract
BACKGROUND We examined the acute effects of intranasal insulin on cognitive function and brain glutathione (GSH), a central factor in resistance to oxidative stress, in both participants with early psychosis and healthy control (HC) participants. METHODS Twenty-one patients with early-stage psychotic disorders and 18 HC participants underwent magnetic resonance spectroscopy (MRS) scans and cognitive assessments before and after administration of intranasal insulin 40 IU. We conducted proton MRS (1H-MRS) in the prefrontal cortex at 4T to measure GSH and glutamate metabolites. We assessed cognition using the Brief Assessment of Cognition in Schizophrenia symbol coding, digit sequencing, and verbal fluency tasks, in addition to the Stroop task. RESULTS The mean (SD) age of participants was 25.7 (4.6) years; 51.3% were female. There were no significant group differences at baseline in age, sex, body mass index, homeostatic model assessment of insulin resistance (HOMA-IR), or cognition. Patients had higher baseline GSH (p < .001) and glutamate (p = .007). After insulin administration, GSH increased in HC participants (mean change, 0.15; 95% CI 0.03 to 0.26; p = .015), but not in patients. Symbol coding improved in both patients (0.74; 95% CI 0.37 to 1.11; p < .001) and HC participants (0.83; 95% CI 0.58 to 1.09; p < .001), and verbal fluency improved in HC participants (0.43; 95% CI 0.14 to 0.72; p = .006). Lower baseline HOMA-IR was associated with greater change in GSH (coefficient -0.22; 95% CI -0.40 to -0.04; p = .017). CONCLUSIONS Intranasal insulin increased brain GSH in HC participants, but not in patients with early psychotic disorders. These novel findings demonstrate that intranasal insulin enhances antioxidant capacity and resilience to oxidative stress in HC individuals in contrast to an absent antioxidant response in those with early psychotic disorders.
Collapse
Affiliation(s)
- Virginie-Anne Chouinard
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| | - Wirya Feizi
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Xi Chen
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Boyu Ren
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Department of Biostatistics, McLean Hospital, Belmont, Massachusetts
| | - Kathryn E Lewandowski
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Jacey Anderson
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts
| | - Steven Prete
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts
| | - Emma Tusuzian
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts
| | - Kyle Cuklanz
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts
| | - Shuqin Zhou
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Paula Bolton
- Psychiatric Neurotherapeutics Program, McLean Hospital, Boston, Massachusetts
| | - Abigail Stein
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts
| | - Bruce M Cohen
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
32
|
Booranasuksakul U, Guan Z, Macdonald IA, Tsintzas K, Stephan BCM, Siervo M. Sarcopenic obesity and brain health: A critical appraisal of the current evidence. NUTR BULL 2025; 50:30-43. [PMID: 39799465 DOI: 10.1111/nbu.12725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 01/15/2025]
Abstract
Sarcopenic obesity (SO) is a body composition phenotype derived from the simultaneous presence in the same individual of an increase in fat mass and a decrease in skeletal muscle mass and/or function. Several protocols for the diagnosis of SO have been proposed in the last two decades making prevalence and disease risk estimates of SO heterogeneous and challenging to interpret. Dementia is a complex neurological disorder that significantly impacts patients, carers and healthcare systems. The identification of risk factors for early cognitive impairment and dementia is key to mitigating the forecasted trends of a 2-fold increase in dementia case numbers over the next two decades worldwide. Excess adiposity and sarcopenia have both been independently associated with risk of cognitive impairment and dementia. Whether SO is associated with a greater risk of cognitive impairment and dementia is currently uncertain. This review critically appraises the current evidence on the association between SO with cognitive outcomes and dementia risk. It also discusses some of the putative biological mechanisms that may link the SO phenotype with alteration of brain functions.
Collapse
Affiliation(s)
- Uraiporn Booranasuksakul
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Zhongyang Guan
- Curtin School of Population Health, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Ian A Macdonald
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Kostas Tsintzas
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Blossom C M Stephan
- Dementia Centre of Excellence, enAble Institute, Curtin University, Bentley, WA, Australia
| | - Mario Siervo
- Curtin School of Population Health, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
- Dementia Centre of Excellence, enAble Institute, Curtin University, Bentley, WA, Australia
| |
Collapse
|
33
|
Kullmann S, Wagner L, Hauffe R, Kühnel A, Sandforth L, Veit R, Dannecker C, Machann J, Fritsche A, Stefan N, Preissl H, Kroemer NB, Heni M, Kleinridders A, Birkenfeld AL. A short-term, high-caloric diet has prolonged effects on brain insulin action in men. Nat Metab 2025; 7:469-477. [PMID: 39984682 PMCID: PMC11946887 DOI: 10.1038/s42255-025-01226-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 01/30/2025] [Indexed: 02/23/2025]
Abstract
Brain insulin responsiveness is linked to long-term weight gain and unhealthy body fat distribution. Here we show that short-term overeating with calorie-rich sweet and fatty foods triggers liver fat accumulation and disrupted brain insulin action that outlasted the time-frame of its consumption in healthy weight men. Hence, brain response to insulin can adapt to short-term changes in diet before weight gain and may facilitate the development of obesity and associated diseases.
Collapse
Affiliation(s)
- Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - Lore Wagner
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Robert Hauffe
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Nutritional Science, Department of Molecular and Experimental Nutritional Medicine, University of Potsdam, Nuthetal, Germany
- German Institute of Human Nutrition, Junior Research Group Central Regulation of Metabolism, Nuthetal, Germany
| | - Anne Kühnel
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Leontine Sandforth
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Corinna Dannecker
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jürgen Machann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Section on Experimental Radiology, Department of Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Nobert Stefan
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Nils B Kroemer
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
| | - Martin Heni
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- Division of Endocrinology and Diabetology, Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | - André Kleinridders
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Nutritional Science, Department of Molecular and Experimental Nutritional Medicine, University of Potsdam, Nuthetal, Germany
- German Institute of Human Nutrition, Junior Research Group Central Regulation of Metabolism, Nuthetal, Germany
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
34
|
Miao J, Zhang Y, Su C, Zheng Q, Guo J. Insulin-Like Growth Factor Signaling in Alzheimer's Disease: Pathophysiology and Therapeutic Strategies. Mol Neurobiol 2025; 62:3195-3225. [PMID: 39240280 PMCID: PMC11790777 DOI: 10.1007/s12035-024-04457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia among the elderly population, posing a significant public health challenge due to limited therapeutic options that merely delay cognitive decline. AD is associated with impaired energy metabolism and reduced neurotrophic signaling. The insulin-like growth factor (IGF) signaling pathway, crucial for central nervous system (CNS) development, metabolism, repair, cognition, and emotion regulation, includes IGF-1, IGF-2, IGF-1R, IGF-2R, insulin receptor (IR), and six insulin-like growth factor binding proteins (IGFBPs). Research has identified abnormalities in IGF signaling in individuals with AD and AD models. Dysregulated expression of IGFs, receptors, IGFBPs, and disruptions in downstream phosphoinositide 3-kinase-protein kinase B (PI3K/AKT) and mitogen-activated protein kinase (MAPK) pathways collectively increase AD susceptibility. Studies suggest modulating the IGF pathway may ameliorate AD pathology and cognitive decline. This review explores the CNS pathophysiology of IGF signaling in AD progression and assesses the potential of targeting the IGF system as a novel therapeutic strategy. Further research is essential to elucidate how aberrant IGF signaling contributes to AD development, understand underlying molecular mechanisms, and evaluate the safety and efficacy of IGF-based treatments.
Collapse
Affiliation(s)
- Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanli Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Department of Neurology, Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan, 030001, Shanxi, China
| | - Chen Su
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qiandan Zheng
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
35
|
Wang Y, Liu H, Ye Y, Fang W, Lin A, Dai X, Ye Q, Chen X, Zhang J. ApoE2 affects insulin signaling in the hippocampus and spatial cognition of aged mice in a sex-dependent manner. Cell Commun Signal 2025; 23:112. [PMID: 40011916 PMCID: PMC11866816 DOI: 10.1186/s12964-025-02093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/08/2025] [Indexed: 02/28/2025] Open
Abstract
Apolipoprotein E (APOE) has garnered significant attention as one of the most influential genetic risk factors for Alzheimer's disease (AD). While the pathogenic role of APOE4 in sporadic AD has been extensively studied, research on the protective effects of the APOE2 genotype and its underlying mechanisms remains limited. Additionally, the existence of sex differences in the protective effects of ApoE2 continues to be a topic of debate. In this study, we utilized humanized ApoE2- and ApoE3- target replacement mice to examine the sex-specific effects of ApoE2 on cognition. Compared with female ApoE3 mice, we found significantly lower spatial cognitive ability and impaired hippocampal synaptic ultrastructure in aged female ApoE2 mice, accompanied by reduced insulin signaling of the hippocampus. Further analyses by target metabolomics and transcriptomic analyses revealed that female ApoE2 mice exhibit an age-related decline in hippocampal inositol levels, and that alterations in inositol levels lower insulin signaling. Importantly, inositol supplementation was found to alleviate peripheral glucose intolerance, enhance insulin signaling, and ultimately improve cognitive function. Interestingly, these differences were not observed between male ApoE2 and ApoE3 mice. The research findings not only provide new insights into the impact of ApoE2 on cognition but also offer a new strategy for cognitive improvement through inositol supplementation in older women.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neurology, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Hanchen Liu
- Department of Neurology, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yijuan Ye
- Department of Neurology, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Wenting Fang
- Department of Neurology, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Anlan Lin
- Department of Neurology, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaoman Dai
- Department of Neurology, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Qinyong Ye
- Department of Neurology, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China.
| | - Jing Zhang
- Department of Neurology, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
36
|
Ozer EA, Keskin A, Berrak YH, Cankara F, Can F, Gursoy-Ozdemir Y, Keskin O, Gursoy A, Yapici-Eser H. Shared interactions of six neurotropic viruses with 38 human proteins: a computational and literature-based exploration of viral interactions and hijacking of human proteins in neuropsychiatric disorders. DISCOVER MENTAL HEALTH 2025; 5:18. [PMID: 39987419 PMCID: PMC11846830 DOI: 10.1007/s44192-025-00128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/09/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Viral infections may disrupt the structural and functional integrity of the nervous system, leading to acute conditions such as encephalitis, and neuropsychiatric conditions as mood disorders, schizophrenia, and neurodegenerative diseases. Investigating viral interactions of human proteins may reveal mechanisms underlying these effects and offer insights for therapeutic interventions. This study explores molecular interactions of virus and human proteins that may be related to neuropsychiatric disorders. METHODS Herpes Simplex Virus-1 (HSV-1), Cytomegalovirus (CMV), Epstein-Barr Virus (EBV), Influenza A virus (IAV) (H1N1, H5N1), and Human Immunodeficiency Virus (HIV1&2) were selected as key viruses. Protein structures for each virus were accessed from the Protein Data Bank and analyzed using the HMI-Pred web server to detect interface mimicry between viral and human proteins. The PANTHER classification system was used to categorize viral-human protein interactions based on function and cellular localization. RESULTS Energetically favorable viral-human protein interactions were identified for HSV-1 (467), CMV (514), EBV (495), H1N1 (3331), H5N1 (3533), and HIV 1&2 (62425). Besides immune and apoptosis-related pathways, key neurodegenerative pathways, including those associated with Parkinson's and Huntington's diseases, were frequently interacted. A total of 38 human proteins, including calmodulin 2, Ras-related botulinum toxin substrate 1 (Rac1), PDGF-β, and vimentin, were found to interact with all six viruses. CONCLUSION The study indicates a substantial number of energetically favorable interactions between human proteins and selected viral proteins, underscoring the complexity and breadth of viral strategies to hijack host cellular mechanisms. Further in vivo and in vitro validation is required to understand the implications of these interactions.
Collapse
Affiliation(s)
| | - Aleyna Keskin
- School of Medicine, Koç University, Istanbul, Turkey
| | | | - Fatma Cankara
- Graduate School of Sciences and Engineering, Computational Sciences and Engineering, Koç University, Istanbul, Turkey
| | - Fusun Can
- Department of Microbiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Yasemin Gursoy-Ozdemir
- Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, College of Engineering, Koç University, Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Science and Engineering, College of Engineering, Koç University, Istanbul, Turkey.
| | - Hale Yapici-Eser
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey.
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|
37
|
Alves SS, Servilha-Menezes G, Rossi L, de Oliveira JAC, Grigorio-de-Sant'Ana M, Sebollela A, da Silva-Junior RMP, Garcia-Cairasco N. Insulin signaling disruption exacerbates memory impairment and seizure susceptibility in an epilepsy model with Alzheimer's disease-like pathology. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02896-1. [PMID: 39987343 DOI: 10.1007/s00702-025-02896-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/10/2025] [Indexed: 02/24/2025]
Abstract
Alzheimer's disease (AD) and epilepsy exhibit a complex bidirectional relationship. Curiously, diabetes as a comorbidity increases the risk of epilepsy among AD patients. Recently, we reported that the Wistar audiogenic rat (WAR) strain, a genetic model of epilepsy, displays a partial AD-like phenotype, including brain insulin resistance. We also assessed seizure susceptibility in an AD model created through intracerebroventricular injections of streptozotocin (icv-STZ), which induces AD features via brain insulin resistance. Our goal was to explore how disrupted brain insulin signaling influences AD-like features and seizure susceptibility in the WAR strain. Adult male WARs received a single intracerebroventricular injection of streptozotocin (icv-STZ) (1.5 mg/kg) or vehicle (saline). Two weeks post-injection, spatial memory was assessed using the Barnes Maze (BM) test. Three weeks later, the rats underwent an audiogenic kindling (AuK) protocol (20 acoustic stimuli, 2 per day) to evaluate seizure frequency and severity. Seizures were analyzed using the Categorized Severity Index and Racine's scale and Western blot analysis was performed on hippocampal tissue. Our findings revealed that icv-STZ significantly worsened memory performance, increased seizure frequency, and reduced seizure onset relative to vehicle. Furthermore, icv-STZ decreased Akt activation and increased Glycogen Synthase Kinase-3 (GSK3) phosphorylation, indicating disrupted insulin signaling. Notably, icv-STZ decreased tau phosphorylation without altering amyloid β precursor protein (AβPP) levels. In conclusion, a low-dose icv-STZ injection exacerbates memory deficits and seizure susceptibility in the WAR strain by disturbing downstream proteins involved in insulin signaling. This highlights the implications of brain insulin resistance in both AD and epilepsy.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Av. Dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Letícia Rossi
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Av. Dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - José Antonio Cortes de Oliveira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Av. Dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Mariana Grigorio-de-Sant'Ana
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Av. Dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Adriano Sebollela
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | | | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil.
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Av. Dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
38
|
Ramasamy VS, Nathan ABP, Choi MC, Kim SH, Ohn T. Aβ 42 induces stress granule formation via PACT/PKR pathway. Sci Rep 2025; 15:5829. [PMID: 39966464 PMCID: PMC11836309 DOI: 10.1038/s41598-025-88380-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
Stress granule (SG) formation has been linked to several neurodegenerative disorders, such as Alzheimer's disease (AD). Amyloid-β42 (Aβ42) is a key player in the pathogenesis of AD and is known to trigger various stress-related signaling pathways. However, the impact of Aβ on SG formation has not been fully understood. The primary aim of this study is to analyze the SG-inducing properties of Aβ42 and to uncover the molecular mechanisms underlying this process. Our results revealed that exposure to 20 μM Aβ42 led to a significant SG formation in neuroblastoma-derived (SH-SY5Y) and glioma-derived (U87) cell lines. Interestingly, we observed elevated levels of p-eIF2α, while overall protein translation levels remained unchanged. Monomeric and oligomeric forms of Aβ42 exhibited a 4-5 times stronger ability to induce SG formation compared to fibrillar forms. Additionally, treatment with familial mutants of Aβ42 (Dutch and Flemish) showed distinct effects on SG induction. Moreover, our findings using eIF2α kinases knockout (KO) cell lines demonstrated that Aβ-induced SG formation is primarily dependent on Protein Kinase R (PKR). Subsequent proximity ligation assay (PLA) analysis revealed a close proximity of PACT and PKR in Aβ-treated cells and in AD mouse hippocampus. Taken together, our study suggests that Aβ42 promotes SG formation through PKR kinase activation, which in turn requires PACT involvement.
Collapse
Affiliation(s)
- Vijay Sankar Ramasamy
- Department of Cellular and Molecular Medicine, College of Medicine, Chosun University, Gwangju, 61452, Republic of Korea.
| | | | - Moon-Chang Choi
- Department of Cellular and Molecular Medicine, College of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Sung-Hak Kim
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Takbum Ohn
- Department of Cellular and Molecular Medicine, College of Medicine, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
39
|
Li L, Li C, Zhu J. The relationship between estimated glucose disposal rate and cognitive function in older individuals. Sci Rep 2025; 15:5874. [PMID: 39966445 PMCID: PMC11836112 DOI: 10.1038/s41598-025-89623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
The estimated glucose disposal rate (eGDR) serves as a novel indicator of insulin resistance, which has been shown to correlate with cardiovascular disease risk; however, its relationship with cognitive function remains unclear.This article describes a cross-sectional study design based on data from the 2011-2014 National Health and Nutrition Examination Survey (NHANES). The Weighted logistic regression and the restricted cubic spline were employed to examine the relationship between eGDR and cognitive ability.The subjects were divided into two categories: the normal group and the cognitive function decline (CFD) group, based on their cognitive scores. There were significant differences in eGDR levels between the two groups(P = 0.001).After adjusting for relevant covariates, notable differences were found between eGDR and cognitive function when eGDR was expressed in both continuous and categorical data forms (P < 0.05). The stability of these findings was further confirmed through sensitivity analyses.This difference persisted in subgroups, including women, individuals with education beyond high school, moderate drinkers, and those who had not been diagnosed with stroke (P < 0.05). A restricted cubic spline revealed a non-linear relationship with an inflection point between the two (P-for-non-linear < 0.05, P-overall < 0.001). This study contributes to the understanding of the relationship between eGDR and cognitive performance by identifying a potential non-linear association.
Collapse
Affiliation(s)
- Li Li
- Department of Neurology, Affiliated Hospital of Chengde Medical College, Hebei, China.
| | - Chengbo Li
- Department of Neurology, Affiliated Hospital of Chengde Medical College, Hebei, China
| | - Jiang Zhu
- Department of Neurology, Affiliated Hospital of Chengde Medical College, Hebei, China
| |
Collapse
|
40
|
Meng X, Zhang H, Zhao Z, Li S, Zhang X, Guo R, Liu H, Yuan Y, Li W, Song Q, Liu J. Type 3 diabetes and metabolic reprogramming of brain neurons: causes and therapeutic strategies. Mol Med 2025; 31:61. [PMID: 39966707 PMCID: PMC11834690 DOI: 10.1186/s10020-025-01101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Abnormal glucose metabolism inevitably disrupts normal neuronal function, a phenomenon widely observed in Alzheimer's disease (AD). Investigating the mechanisms of metabolic adaptation during disease progression has become a central focus of research. Considering that impaired glucose metabolism is closely related to decreased insulin signaling and insulin resistance, a new concept "type 3 diabetes mellitus (T3DM)" has been coined. T3DM specifically refers to the brain's neurons becoming unresponsive to insulin, underscoring the strong link between diabetes and AD. Recent studies reveal that during brain insulin resistance, neurons exhibit mitochondrial dysfunction, reduced glucose metabolism, and elevated lactate levels. These findings suggest that impaired insulin signaling caused by T3DM may lead to a compensatory metabolic shift in neurons toward glycolysis. Consequently, this review aims to explore the underlying causes of T3DM and elucidate how insulin resistance drives metabolic reprogramming in neurons during AD progression. Additionally, it highlights therapeutic strategies targeting insulin sensitivity and mitochondrial function as promising avenues for the successful development of AD treatments.
Collapse
Affiliation(s)
- Xiangyuan Meng
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Hui Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, 130021, China
| | - Zhenhu Zhao
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Siyao Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xin Zhang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Ruihan Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Huimin Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yiling Yuan
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Wanrui Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Qi Song
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
41
|
Huang Y, Huang W, Ma X, Zhao G, Kang J, Li H, Li J, Sheng S, Qian F. Nomogram for predicting mild cognitive impairment in Chinese elder CSVD patients based on Boruta algorithm. Front Aging Neurosci 2025; 17:1431421. [PMID: 39963470 PMCID: PMC11830805 DOI: 10.3389/fnagi.2025.1431421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Background The number of patients with cerebral small vessel disease is increasing, especially among the elderly population. With the continuous improvement of detection techniques, the positivity rate keeps increasing. Our goal is to develop a nomogram for early identification of PSCI and PSCID in stroke patients. Methods In a retrospective cohort, chained data imputation was performed to ensure no statistical differences from the original dataset. Subsequently, Boruta algorithm was utilized for variable selection based on their importance, followed by logistic regression employing backward stepwise regression. Finally, the regression results were visualized as a Nomogram. Results The nomogram chart in this study achieves clinical utility in a concise and user-friendly manner, passing the Hosmer-Lemeshow goodness-of-fit test. ROC and calibration curves indicate its high discriminative ability. Conclusion While CSVD is prevalent among middle-aged and older individuals, cognitive decline trajectories differ. Endocrine metabolic indicators like IGF-1 offer early predictive value. This study has produced a succinct nomogram integrating demographic and clinical indicators for medical application.
Collapse
Affiliation(s)
- Yanzi Huang
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wendie Huang
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaoming Ma
- Department of Neurology of Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Guoyin Zhao
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jingwen Kang
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Huajie Li
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jingwei Li
- Department of Neurology of Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Institute of Brain Sciences, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neurology Clinic Medical Center, Nanjing, China
| | - Shiying Sheng
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Fengjuan Qian
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
42
|
Biswas R, Capuano AW, Mehta RI, Bennett DA, Arvanitakis Z. Association of late-life variability in hemoglobin A1C with postmortem neuropathologies. Alzheimers Dement 2025; 21:e14471. [PMID: 39968681 PMCID: PMC11863718 DOI: 10.1002/alz.14471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/25/2024] [Accepted: 11/19/2024] [Indexed: 02/20/2025]
Abstract
INTRODUCTION To study the relationship of late-life hemoglobin A1C (A1C) with postmortem neuropathology in older adults with and without diabetes mellitus (DM). METHODS A total of 990 participants from five cohort studies of aging and dementia with at least two annually-collected A1C measures, who had autopsy. Neuropathologic evaluations documented cerebrovascular disease, Alzheimer's disease (AD), and other pathologies. To evaluate the association of A1C mean and variability (standard deviation [SD]) with neuropathology, we used a series of adjusted regression models. RESULTS Participants (mean age at death = 90.8 years; education = 15.8 years; 76% women) had six A1C measurements on average. Mean A1C was associated with greater odds of macroinfarcts (estimate = 0.14; p = 0.04) and subcortical infarcts (estimate = 0.16; p = 0.02). A1C variability was not associated with cerebrovascular pathology. A1C mean and variability were inversely associated with AD pathology. DISCUSSION The A1C average over time was associated with infarcts, and the A1C average and variability were inversely associated with AD pathology. Future studies should explore the underlying mechanisms linking A1C to dementia-related neuropathologies. HIGHLIGHTS Hemoglobin A1C (A1C), a measure of peripheral insulin resistance, is used to assess glycemic control. Higher A1C mean was associated with greater odds of macroscopic subcortical infarcts. A1C variability was not associated with cerebrovascular pathology. Both A1C mean and variability had inverse associations with AD pathology. None of the associations varied by diabetes mellitus status.
Collapse
Affiliation(s)
- Roshni Biswas
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Ana W. Capuano
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Rupal I. Mehta
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
43
|
Hou KC, Chen YC, Chen TF, Sun Y, Wen LL, Yip PK, Chu YM, Chiou JM, Chen JH. Coffee and tea consumption and dementia risk: The role of sex and vascular comorbidities. J Formos Med Assoc 2025; 124:178-185. [PMID: 38714417 DOI: 10.1016/j.jfma.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/04/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Coffee and tea consumption has been linked to dementia. However, it remained unknown how sex and vascular risk factors modify the association. We aimed to investigate the association of coffee and tea consumption with dementia and whether sex and vascular comorbidities modified the association. METHODS We included 278 elderly patients with Alzheimer's disease (AD) and 102 patients with vascular dementia (VaD) from three hospitals; controls (N = 468) were recruited during the same period. We collected the frequency and amount of coffee and tea consumption and the presence of vascular comorbidities. The multinomial logistic regression model was utilized to evaluate the association of coffee and tea consumption with dementia, stratified by sex and vascular comorbidities. RESULTS Different combinations and quantities of coffee and tea consumption protected against AD and VaD. Consumption of ≥3 cups of coffee or tea per day was protective against AD [adjusted odds ratio (aOR) = 0.42; 95% confidence interval (CI) = 0.22-0.78)] and VaD (aOR = 0.42; 95% CI = 0.19-0.94). Stratified analyses showed that the protective effects of a higher quantity of coffee and tea against AD were more pronounced among females and individuals with hypertension. Consumption of either coffee or tea was associated with a decreased risk of VaD among diabetic participants (aOR = 0.23; 95% CI = 0.06-0.98). Hyperlipidemia modified the association of coffee or tea consumption on the risk of AD and VaD (both Pinteraction < 0.01). CONCLUSION The risk of AD and VaD was lower with increased consumption of coffee and tea; the impact differed by sex and vascular comorbidities including hypertension, hyperlipidemia, and diabetes.
Collapse
Affiliation(s)
- Kuan-Chu Hou
- Department of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yen-Ching Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| | - Yu Sun
- Department of Neurology, En Chu Kong Hospital, Taipei, Taiwan.
| | - Li-Li Wen
- Department of Laboratory Medicine, En Chu Kong Hospital, Taipei, Taiwan.
| | - Ping-Keung Yip
- Center of Neurological Medicine, Cardinal Tien Hospital, Taipei, Taiwan; School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan.
| | - Yi-Min Chu
- Department of Laboratory Medicine, Cardinal Tien Hospital, Taipei, Taiwan.
| | - Jeng-Min Chiou
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.
| | - Jen-Hau Chen
- Department of Geriatrics and Gerontology, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taiwan.
| |
Collapse
|
44
|
Cleary JA, Kumar A, Craft S, Deep G. Neuron-derived extracellular vesicles as a liquid biopsy for brain insulin dysregulation in Alzheimer's disease and related disorders. Alzheimers Dement 2025; 21:e14497. [PMID: 39822132 PMCID: PMC11848159 DOI: 10.1002/alz.14497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/24/2024] [Accepted: 12/01/2024] [Indexed: 01/19/2025]
Abstract
Extracellular vesicles (EVs) have emerged as novel blood-based biomarkers for various pathologies. The development of methods to enrich cell-specific EVs from biofluids has enabled us to monitor difficult-to-access organs, such as the brain, in real time without disrupting their function, thus serving as liquid biopsy. Burgeoning evidence indicates that the contents of neuron-derived EVs (NDEs) in blood reveal dynamic alterations that occur during neurodegenerative pathogenesis, including Alzheimer's disease (AD), reflecting a disease-specific molecular signature. Among these AD-specific molecular changes is brain insulin-signaling dysregulation, which cannot be assessed clinically in a living patient and remains an unexplained co-occurrence during AD pathogenesis. This review is focused on delineating how NDEs in the blood may begin to close the gap between identifying molecular changes associated with brain insulin dysregulation reliably in living patients and its connection to AD. This approach could lead to the identification of novel early and less-invasive diagnostic molecular biomarkers for AD. HIGHLIGHTS: Neuron-derived extracellular vesicles (NDEs) could be isolated from peripheral blood. NDEs in blood reflect the molecular signature of Alzheimer's disease (AD). Brain insulin-signaling dysregulation plays a critical role in AD. NDEs in blood could predict brain insulin-signaling dysregulation. NDEs offer novel early and less-invasive diagnostic biomarkers for AD.
Collapse
Affiliation(s)
- Jacob Alexander Cleary
- Department of Internal Medicine‐Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Ashish Kumar
- Department of Internal Medicine‐Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Suzanne Craft
- Department of Internal Medicine‐Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Sticht Center for Healthy Aging and Alzheimer's PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Gagan Deep
- Department of Internal Medicine‐Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Sticht Center for Healthy Aging and Alzheimer's PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Atrium Health Wake Forest Baptist Comprehensive Cancer CenterWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
45
|
Capuano AW, Sarsani V, Tasaki S, Mehta RI, Li J, Ahima R, Arnold S, Bennett DA, Petyuk V, Liang L, Arvanitakis Z. Brain phosphoproteomic analysis identifies diabetes-related substrates in Alzheimer's disease pathology in older adults. Alzheimers Dement 2025; 21:e14460. [PMID: 39732516 PMCID: PMC11848201 DOI: 10.1002/alz.14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/07/2024] [Accepted: 11/13/2024] [Indexed: 12/30/2024]
Abstract
INTRODUCTION Type 2 diabetes increases the risk of Alzheimer's disease (AD) dementia. Insulin signaling dysfunction exacerbates tau protein phosphorylation, a hallmark of AD pathology. However, the comprehensive impact of diabetes on patterns of AD-related phosphoprotein in the human brain remains underexplored. METHODS We performed tandem mass tag-based phosphoproteome profiling in post mortem human brain prefrontal cortex samples from 191 deceased older adults with and without diabetes and pathologic AD. RESULTS Among 7874 quantified phosphosites, microtubule-associated protein tau (MAPT) phosphorylated at T529 and T534 (isoform 8 T212 and T217) were more abundant in AD and showed differential associations with diabetes. Network analysis of co-abundance patterns uncovered synergistic interactions between AD and diabetes, with one module exhibiting higher MAPT phosphorylation (15 MAPT phosphosites) and another displaying lower MAP1B phosphorylation (22 MAP1B phosphosites). DISCUSSION This study offers phosphoproteomics insights into AD in diabetes, shedding light on mechanisms that can inform the development of therapeutics for dementia. HIGHLIGHTS The risk of Alzheimer's disease (AD) dementia is increased among older adults living with diabetes. The patterns of AD-related phosphoprotein in the human brain in older adults are differential among older adults living with diabetes. Microtubule-associated protein tau phosphorylated at T529 and T534 (isoform 8 T212 and T217) showed differential associations with diabetes. Phosphosite co-abundance networks of synergistic interactions between AD and diabetes were identified.
Collapse
Affiliation(s)
- Ana W. Capuano
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
- Department of EpidemiologyHarvard T. H. Chan School of Public HealthBostonMassachusettsUSA
| | - Vishal Sarsani
- Department of EpidemiologyHarvard T. H. Chan School of Public HealthBostonMassachusettsUSA
| | - Shinya Tasaki
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Rupal I. Mehta
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of PathologyRush University Medical CenterChicagoIllinoisUSA
| | - Jun Li
- Division of Preventive MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Rexford Ahima
- Division of EndocrinologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Steven Arnold
- Harvard Medical SchoolHarvard UniversityBostonMassachusettsUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Vladislav Petyuk
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Liming Liang
- Department of EpidemiologyHarvard T. H. Chan School of Public HealthBostonMassachusettsUSA
- Department of BiostatisticsHarvard T. H. Chan School of Public HealthBostonMassachusettsUSA
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
46
|
Song M, Bai Y, Song F. High-fat diet and neuroinflammation: The role of mitochondria. Pharmacol Res 2025; 212:107615. [PMID: 39842474 DOI: 10.1016/j.phrs.2025.107615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/28/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
In recent years, increasing evidence has supported that high-fat diet (HFD) can induce the chronic, low-grade neuroinflammation in the brain, which is closely associated with the impairment of cognitive function. As the key organelles responsible for energy metabolism in the cell, mitochondria are believed to involved in the pathogenesis of a variety of neurological disorders. This review summarizes the current progress in the field of the relationship between HFD exposure and neurodegenerative diseases, and outline the major routines of HFD induced neuroinflammation and its pathological significance in the pathogenesis of neurodegenerative diseases. Furthermore, the article highlights the pivotal role of mitochondrial dysfunction in driving the neuroinflammation in the setting of HFD. Danger-associated molecular patterns (DAMPs) from damaged mitochondria can activate innate immune signaling pathways, while mitochondrial dysfunction itself can lead to metabolic remodeling of inflammatory cells, thus inducing neuroinflammation. More importantly, mitochondrial damage, neuroinflammation, and insulin resistance caused by HFD form a mutually reinforcing vicious cycle, ultimately leading to the death of neurons and promoting the progression of neurodegenerative diseases. Thus, in-depth elucidation of the role and underlying mechanisms of mitochondrial dysfunction in HFD-induced metabolic disorders may not only expand our understanding of the mechanistic linkages between HFD and etiology of neurodegenerative diseases, but also help develop the specific strategies for the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mingxue Song
- Department of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China.
| | - Yao Bai
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Fuyong Song
- Department of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China.
| |
Collapse
|
47
|
Pietilä E, Löyttyniemi E, Koskinen S, Lehtisalo J, Viitanen M, Rinne JO, Jula A, Ekblad LL. Enhancing dementia prediction: A 19-year validation of the CAIDE risk score with insulin resistance and APOE ε4 integration in a population-based cohort. J Prev Alzheimers Dis 2025; 12:100034. [PMID: 39863319 DOI: 10.1016/j.tjpad.2024.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 12/08/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND Dementia is a significant cause of disability and dependency. Persons with high dementia risk but intact cognition will benefit from preventive interventions. OBJECTIVES The aim was to validate dementia risk score Cardiovascular Risk Factors, Aging and Incidence of Dementia (CAIDE) in a national population-based cohort with data on age, education, hypertension, obesity, hyperlipidemia and physical activity. Secondly, we examined if substituting obesity item with Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) would improve predictive value of CAIDE risk score. DESIGN Longitudinal, population-based cohort study. SETTING General population, Finland PARTICIPANTS: Representative sample of Finnish adult population aged over 30 years from Health 2000 Survey (n = 5,806). MEASUREMENTS CAIDE dementia risk score and substituting BMI with HOMA-IR. RESULTS Dementia was diagnosed in 571 (9.8 %) participants during the 19 years follow-up. CAIDE risk score predicted dementia well: AUC (area under curve) ROC (receiver-operating characteristic) was 0.78 (95 % CI from 0.76 to 0.79). Secondly, replacing obesity with HOMA-IR in CAIDE risk score generated similar results: ROC AUC 0.78 (95 % CI from 0.76 to 0.80). Adding APOE ε4 status further improved predictive value of risk score: ROC AUC 0.81 (95 % CI from 0.80 to 0.83). CONCLUSIONS CAIDE dementia risk score predicts dementia well in a national population-based cohort. Adding APOE ε4 genotype improved predictive value of risk score. Insulin resistance measured by HOMA-IR is comparable to obesity as part of CAIDE risk score. These findings imply that CAIDE risk score is applicable for assessing risk of dementia and highlight importance of modifiable risk factors of dementia.
Collapse
Affiliation(s)
- Elina Pietilä
- Turku PET Centre, University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital, Turku, Finland.
| | - Eliisa Löyttyniemi
- Department of Biostatistics, University of Turku and Turku University Hospital, Finland
| | - Seppo Koskinen
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Matti Viitanen
- Department of Geriatrics, Turku University Hospital, Wellbeing services county of Southwestern Finland, Finland; Division of Clinical Geriatrics, NVS, Karolinska Institutet, Stockholm, Sweden
| | - Juha O Rinne
- Turku PET Centre, University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Antti Jula
- Finnish Institute for Health and Welfare, Turku, Finland
| | - Laura L Ekblad
- Turku PET Centre, University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital, Turku, Finland; Department of Geriatrics, Turku University Hospital, Wellbeing services county of Southwestern Finland, Finland
| |
Collapse
|
48
|
Xu F, Wu S, Gao S, Li X, Huang C, Chen Y, Zhu P, Liu G. Causal association between insulin sensitivity index and Alzheimer's disease. J Neurochem 2025; 169:e16254. [PMID: 39479764 DOI: 10.1111/jnc.16254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 02/11/2025]
Abstract
Evidence from observational and Mendelian randomization (MR) studies suggested that insulin resistance (IR) was associated with Alzheimer's disease (AD). However, the causal effects of different indicators of IR on AD remain inconsistent. Here, we aim to assess the causal association between the insulin sensitivity index (ISI), a measure of post-prandial IR, and the risk of AD. We first conducted primary and secondary univariable MR analyses. We selected 8 independent genome-wide significant (p < 5E-08, primary analyses) and 61 suggestive (p < 1E-05, secondary analyses) ISI genetic variants from large-scale genome-wide association studies (GWAS; N = 53 657), respectively, and extracted their corresponding GWAS summary statistics from AD GWAS, including IGAP2019 (N = 63 926) and FinnGen_G6_AD_WIDE (N = 412 181). We selected five univariable MR methods and used heterogeneity, horizontal pleiotropy test, and leave-one-out sensitivity analysis to confirm the stability of MR estimates. Finally, we conducted a meta-analysis to combine MR estimates from two non-overlapping AD GWAS datasets. We further performed multivariable MR (MVMR) to assess the potential mediating role of type 2 diabetes (T2D) on the association between ISI and AD using two MVMR methods. In univariable MR, utilizing 8 genetic variants in primary analyses, we found a significant causal association of genetically increased ISI with decreased risk of AD (OR = 0.79, 95% CI: 0.68-0.92, p = 0.003). Utilizing 61 genetic variants in secondary analyses, we found consistent findings of a causal effect of genetically increased ISI on the decreased risk of AD (OR = 0.89, 95% CI: 0.82-0.96, p = 0.003). Heterogeneity, horizontal pleiotropy test, and leave-one-out sensitivity analysis ensured the reliability of the MR estimates. In MVMR, we found no causal relationship between ISI and AD after adjusting for T2D (p > 0.05). We provide genetic evidence that increased ISI is significantly and causally associated with reduced risk of AD, which is mediated by T2D. These findings may inform prevention strategies directed toward IR-associated T2D and AD.
Collapse
Affiliation(s)
- Fang Xu
- Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Shiyang Wu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Shan Gao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Xuan Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Chen Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Yan Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu, Anhui, China
| | - Ping Zhu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Guiyou Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu, Anhui, China
- Brain Hospital, Shengli Oilfield Central Hospital, Dongying, China
- Beijing Key Laboratory of Hypoxia Translational Medicine, National Engineering Laboratory of Internet Medical Diagnosis and Treatment Technology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
49
|
Ma M, Jing G, Tian Y, Yin R, Zhang M. Ferroptosis in Cognitive Impairment Associated with Diabetes and Alzheimer's Disease: Mechanistic Insights and New Therapeutic Opportunities. Mol Neurobiol 2025; 62:2435-2449. [PMID: 39112768 PMCID: PMC11772472 DOI: 10.1007/s12035-024-04417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/30/2024] [Indexed: 01/28/2025]
Abstract
Cognitive impairment associated with diabetes and Alzheimer's disease has become a major health issue affecting older individuals, with morbidity rates growing acutely each year. Ferroptosis is a novel form of cell death that is triggered by iron-dependent lipid peroxidation. A growing body of evidence suggests a strong correlation between the progression of cognitive impairment and diabetes, Alzheimer's disease, and ferroptosis. The pharmacological modulation of ferroptosis could be a promising therapeutic intervention for cognitive impairment associated with diabetes and Alzheimer's disease. In this review, we summarize evidence on ferroptosis in the context of cognitive impairment associated with diabetes and Alzheimer's disease and provide detailed insights into the function and potential action pathways of ferroptosis. Furthermore, we discuss the therapeutic importance of natural ferroptosis products in improving the cognitive impairment associated with diabetes and Alzheimer's disease and provide new insights for clinical treatment.
Collapse
Affiliation(s)
- Mei Ma
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Guangchan Jing
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yue Tian
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ruiying Yin
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Mengren Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
50
|
Counts SE, Beck JS, Maloney B, Malek‐Ahmadi M, Ginsberg SD, Mufson EJ, Lahiri DK. Posterior cingulate cortex microRNA dysregulation differentiates cognitive resilience, mild cognitive impairment, and Alzheimer's disease. Alzheimers Dement 2025; 21:e70019. [PMID: 40008917 PMCID: PMC11863362 DOI: 10.1002/alz.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 02/27/2025]
Abstract
INTRODUCTION MicroRNA (miRNA) activity is increasingly appreciated as a key regulator of pathophysiologic pathways in Alzheimer's disease (AD). However, the role of miRNAs during the progression of AD, including resilience and prodromal syndromes such as mild cognitive impairment (MCI), remains underexplored. METHODS We performed miRNA-sequencing on samples of posterior cingulate cortex (PCC) obtained post mortem from Rush Religious Orders Study participants diagnosed ante mortem with no cognitive impairment (NCI), MCI, or AD. NCI subjects were subdivided as low pathology (Braak stage I/II) or high pathology (Braak stage III/IV), suggestive of resilience. Bioinformatics approaches included differential expression, messenger RNA (mRNA) target prediction, interactome modeling, functional enrichment, and AD risk modeling. RESULTS We identified specific miRNA groups, mRNA targets, and signaling pathways distinguishing AD, MCI, resilience, ante mortem neuropsychological test performance, post mortem neuropathological burden, and AD risk. DISCUSSION These findings highlight the potential of harnessing miRNA activity to manipulate disease-modifying pathways in AD, with implications for precision medicine. HIGHLIGHTS MicroRNA (MiRNA) dysregulation is a well-established feature of Alzheimer's disease (AD). Novel miRNAs also distinguish subjects with mild cognitive impairment and putative resilience. MiRNAs correlate with cognitive performance and neuropathological burden. Select miRNAs are associated with AD risk with age as a significant covariate. MiRNA pathways include insulin, prolactin, kinases, and neurite plasticity.
Collapse
Affiliation(s)
- Scott E. Counts
- Department of Translational NeuroscienceMichigan State University College of Human MedicineGrand RapidsMichiganUSA
- Department of Family MedicineMichigan State University College of Human MedicineGrand RapidsMichiganUSA
| | - John S. Beck
- Department of Translational NeuroscienceMichigan State University College of Human MedicineGrand RapidsMichiganUSA
| | - Bryan Maloney
- Departments of Psychiatry and Medical and Molecular GeneticsIndiana Alzheimer’s Disease Research Center, Indiana University School of MedicineIndianapolisIndianaUSA
| | - Michael Malek‐Ahmadi
- Banner Alzheimer's InstitutePhoenixArizonaUSA
- Department of Biomedical InformaticsUniversity of Arizona College of Medicine‐PhoenixPhoenixArizonaUSA
| | - Stephen D. Ginsberg
- Center for Dementia ResearchNathan Kline InstituteOrangeburgNew YorkUSA
- Departments of PsychiatryNeuroscience & Physiology, and the NYU Neuroscience Institute, New York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Elliott J. Mufson
- Departments of Translational Neuroscience and NeurologyBarrow Neurological InstituteSt. Joseph's Hospital and Medical CenterPhoenixArizonaUSA
| | - Debomoy K. Lahiri
- Departments of Psychiatry and Medical and Molecular GeneticsIndiana Alzheimer’s Disease Research Center, Indiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|