1
|
Stentebjerg LL, Madsen LR, Støving RK, Hartmann B, Holst JJ, Vinter C, Juhl CB, Hojlund K, Jensen DM. Altered postprandial glucose metabolism and enteropancreatic hormone responses during pregnancy following Roux-en-Y gastric bypass: a prospective cohort study. BMJ Open Diabetes Res Care 2025; 13:e004672. [PMID: 40113260 PMCID: PMC11931895 DOI: 10.1136/bmjdrc-2024-004672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/08/2025] [Indexed: 03/22/2025] Open
Abstract
INTRODUCTION Roux-en-Y gastric bypass (RYGB) increases the risk of postprandial hypoglycemia, whereas pregnancy decreases insulin sensitivity, which could be expected to counteract hypoglycemia. We examined if RYGB performed prior to pregnancy altered the postprandial glucose metabolism and enteropancreatic hormone responses to a mixed meal test (MMT). RESEARCH DESIGN AND METHODS Twenty-three women with RYGB and 23 women matched on prepregnancy body mass index and parity underwent a 4-hour MMT in the first and third trimester of pregnancy with measurement of circulating levels of glucose, insulin, C-peptide, glucose-dependent insulin peptide (GIP), glucagon-like peptide 1 (GLP-1), glucagon, free fatty acids, and lactate. Biochemical hypoglycemia was defined as plasma glucose <3.5 mmol/L. RESULTS Women with RYGB had earlier and higher peak glucose, lower nadir glucose levels, and a higher frequency of biochemical hypoglycemia compared with women without RYGB in both the first and third trimester. The lower glucose levels were preceded by markedly elevated total GLP-1 and insulin levels in women with RYGB, whereas total GIP levels were unaltered. The glucagon levels were lower in women with RYGB. In the first trimester MMT, peak and area under the curve of total plasma GLP-1 and serum insulin levels were negatively associated with nadir plasma glucose, while the early postmeal response of plasma glucagon was positively associated with nadir plasma glucose in the third trimester. CONCLUSIONS These results provide novel insights into the combined effects of RYGB and pregnancy on postmeal glucose metabolism and enteropancreatic hormone responses during pregnancy, and how these changes associate with an increased risk of postprandial hypoglycemia. TRIAL REGISTRATION NUMBER NCT03713060.
Collapse
Affiliation(s)
- Louise Laage Stentebjerg
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lene Ring Madsen
- Steno Diabetes Center Aarhus, Aarhus Universitetshospital Skejby, Aarhus, Denmark
- Danish Diabetes Academy, Odense University Hospital, Odense, Denmark
| | - René Klinkby Støving
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Bolette Hartmann
- Novo Nordisk Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Vinter
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Gynecology and Obstetrics, Odense University Hospital, Odense, Denmark
| | - Claus Bogh Juhl
- Department of Endocrinology, University Hospital of Southern Denmark, Esbjerg, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Kurt Hojlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Dorte Møller Jensen
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Gynecology and Obstetrics, Odense University Hospital, Odense, Denmark
| |
Collapse
|
2
|
Hindsø M, Lundsgaard A, Marinkovic B, Jensen MH, Hedbäck N, Svane MS, Dirksen C, Jørgensen NB, London A, Jeppesen PB, Hvistendahl MK, Christoffersen C, Siebner HR, Kiens B, Holst JJ, Madsbad S, van Hall G, Bojsen-Møller KN. Fat absorption and metabolism after Roux-en-Y gastric bypass surgery. Metabolism 2025; 167:156189. [PMID: 40074057 DOI: 10.1016/j.metabol.2025.156189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/28/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Triacylglycerol (TAG) plasma excursions after a high-fat meal are blunted after Roux-en-Y gastric bypass (RYGB), but underlying mechanisms are poorly understood. We studied TAG absorption and metabolism in 12 RYGB-operated individuals and 12 unoperated controls (CON) matched on sex, age, and BMI. METHODS Participants followed a 7-day controlled diet and on day 4 underwent 1H-MR Spectroscopy of liver TAG and a high-fat liquid meal with oral and intravenous labeled stable isotope metabolites, subcutaneous abdominal fat biopsies, and indirect calorimetry. Subsequently, participants collected stool for 96 h. RESULTS Overall fat absorption from the controlled diet was moderately lower in RYGB than CON (88 % versus 93 %, P < 0.01), without indication of greater specific malabsorption of fat from the high-fat test meal (recovery of TAG and labeled TAG in 96-h stool samples). After an overnight fast, plasma TAG concentrations and incorporation of plasma fatty acids (IV tracer) into TAG did not differ between groups. The postprandial 6-h iAUC of plasma TAG plasma concentrations was markedly lower in RYGB than CON (15 versus 70 mmol/L × min, P = 0.03). The postprandial chylomicron (CM) particle response (plasma ApoB48) was initially higher in RYGB, but with lower CM-TAG plasma concentrations and appearance of labeled palmitate from the oral tripalmitin tracer over the 6 h. CONCLUSION Fat absorption is only moderately lower after RYGB compared with unoperated matched controls. Nevertheless, postprandial TAG and CM plasma kinetics after a high-fat meal are markedly altered after RYGB with substantially lower TAG and CM-TAG concentrations despite a faster CM particle release.
Collapse
Affiliation(s)
- Morten Hindsø
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Denmark.
| | - Annemarie Lundsgaard
- Department of Nutrition, Exercise and Sports, The August Krogh Section for Molecular Physiology, University of Copenhagen, Denmark
| | - Bojan Marinkovic
- Department of Nutrition, Exercise and Sports, The August Krogh Section for Molecular Physiology, University of Copenhagen, Denmark
| | | | - Nora Hedbäck
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Denmark
| | - Maria Saur Svane
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Denmark; Department of Surgical Gastroenterology, Copenhagen University Hospital Hvidovre, Denmark
| | - Carsten Dirksen
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | - Amalie London
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Denmark; Department of Nutrition, Exercise and Sports, The August Krogh Section for Molecular Physiology, University of Copenhagen, Denmark
| | | | | | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Bente Kiens
- Department of Nutrition, Exercise and Sports, The August Krogh Section for Molecular Physiology, University of Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Gerrit van Hall
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Clinical Metabolomics Core Facility, Department of Clinical Biochemistry, Rigshospitalet, Denmark
| | - Kirstine Nyvold Bojsen-Møller
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
3
|
Wang Y, Pan Y, Xiao Y, Yang J, Wu H, Chen Y. Effectiveness of Roux-en-Y Gastric Bypass in Patients with Type 2 Diabetes: A Meta-analysis of Randomized Controlled Trials. Obes Surg 2025; 35:1109-1122. [PMID: 39891839 DOI: 10.1007/s11695-025-07698-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/03/2025]
Abstract
This meta-analysis aimed to evaluate the effectiveness of Roux-en-Y gastric bypass (RYGB) in people living with type 2 diabetes mellitus (T2DM). A comprehensive search was conducted in the PubMed database up to January 2024. A random-effects model was used to calculate the pooled standard mean differences (SMDs) and odds ratios (ORs). Ten studies were included in our review. The RYGB group demonstrated significantly better outcomes compared to the non-surgical group in multiple measures. These included higher triple criteria compliance rates (OR 9.04, 95% CI 3.22-25.36), complete T2DM remission (OR 15.37, 95% CI 4.42-53.41), and partial T2DM remission (OR 11.49, 95% CI 3.57-37.03). Additionally, improvements were observed in glycated hemoglobin A1c (HbA1c) levels (SMD - 1.41, 95% CI - 2.22 to - 0.61), with HbA1c < 6.0% (OR 8.54, 95% CI 3.38-21.62) and HbA1c < 7.0% (OR 5.62, 95% CI 3.20-9.86). Fasting blood glucose (FBG) levels also showed improvement (SMD - 0.43, 95% CI - 0.71 to - 0.14), with a higher proportion achieving FBG < 100 mg/dl (OR 11.83, 95% CI 4.75-29.43). Other notable outcomes included significant percentage of total weight loss (%TWL: SMD 1.88, 95% CI 1.39-2.37), reductions in body mass index (BMI: SMD - 2.28, 95% CI - 3.52 to - 1.04), and improvements in lipid profiles, including low-density lipoprotein (LDL) levels (SMD - 1.01, 95% CI - 1.91 to - 0.11) and LDL < 2.59 mmol/L (OR 3.65, 95% CI 1.94-6.87). In addition, high-density lipoprotein (HDL) levels increased (SMD 1.30, 95% CI 0.55-2.05), while triglycerides (SMD - 1.11, 95% CI - 1.70 to - 0.52), systolic blood pressure (SBP: SMD - 0.38, 95% CI - 0.70 to - 0.06), and diastolic blood pressure (DBP: SMD - 0.41, 95% CI - 0.63 to - 0.18) decreased. A greater proportion of patients in the RYGB group achieved SBP < 130 mmHg (OR 3.15, 95% CI 1.61-6.13). Moreover, reductions were noted in insulin use (OR 0.25, 95% CI 0.14-0.46), diabetes medication use (SMD - 1.95, 95% CI - 3.32 to - 0.57), and peripheral neuropathy (OR 0.13, 95% CI 0.02-0.79). However, no significant differences were observed in hypertension medication use or retinopathy between the two groups. RYGB was found to be effective in improving glycemic control, promoting weight loss, enhancing lipid profiles, and managing blood pressure. It also significantly reduced the need for postoperative diabetes medications and the incidence of diabetic peripheral neuropathy in people living with T2DM.
Collapse
Affiliation(s)
- Yao Wang
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China.
| | - Yan Pan
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - Yibo Xiao
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - Jingxian Yang
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - Haoming Wu
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - Yingying Chen
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| |
Collapse
|
4
|
Müller TD, Adriaenssens A, Ahrén B, Blüher M, Birkenfeld AL, Campbell JE, Coghlan MP, D'Alessio D, Deacon CF, DelPrato S, Douros JD, Drucker DJ, Figueredo Burgos NS, Flatt PR, Finan B, Gimeno RE, Gribble FM, Hayes MR, Hölscher C, Holst JJ, Knerr PJ, Knop FK, Kusminski CM, Liskiewicz A, Mabilleau G, Mowery SA, Nauck MA, Novikoff A, Reimann F, Roberts AG, Rosenkilde MM, Samms RJ, Scherer PE, Seeley RJ, Sloop KW, Wolfrum C, Wootten D, DiMarchi RD, Tschöp MH. Glucose-dependent insulinotropic polypeptide (GIP). Mol Metab 2025; 95:102118. [PMID: 40024571 PMCID: PMC11931254 DOI: 10.1016/j.molmet.2025.102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic polypeptide (GIP) was the first incretin identified and plays an essential role in the maintenance of glucose tolerance in healthy humans. Until recently GIP had not been developed as a therapeutic and thus has been overshadowed by the other incretin, glucagon-like peptide 1 (GLP-1), which is the basis for several successful drugs to treat diabetes and obesity. However, there has been a rekindling of interest in GIP biology in recent years, in great part due to pharmacology demonstrating that both GIPR agonism and antagonism may be beneficial in treating obesity and diabetes. This apparent paradox has reinvigorated the field, led to new lines of investigation, and deeper understanding of GIP. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GIP biology and discuss the therapeutic implications of GIPR signal modification on various diseases. MAJOR CONCLUSIONS Following its classification as an incretin hormone, GIP has emerged as a pleiotropic hormone with a variety of metabolic effects outside the endocrine pancreas. The numerous beneficial effects of GIPR signal modification render the peptide an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, drug-induced nausea and both bone and neurodegenerative disorders.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Germany.
| | - Alice Adriaenssens
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Bo Ahrén
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen 72076, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Matthew P Coghlan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - David D'Alessio
- Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Carolyn F Deacon
- School of Biomedical Sciences, Ulster University, Coleraine, UK; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefano DelPrato
- Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, Pisa, Italy
| | | | - Daniel J Drucker
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, and the Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Natalie S Figueredo Burgos
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Brian Finan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Fiona M Gribble
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Matthew R Hayes
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Hölscher
- Neurodegeneration Research Group, Henan Academy of Innovations in Medical Science, Xinzheng, China
| | - Jens J Holst
- Department of Biomedical Sciences and the Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Patrick J Knerr
- Indianapolis Biosciences Research Institute, Indianapolis, IN, USA
| | - Filip K Knop
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine M Kusminski
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arkadiusz Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France; CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, Angers, France
| | | | - Michael A Nauck
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany
| | - Frank Reimann
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Anna G Roberts
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Ricardo J Samms
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Philip E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kyle W Sloop
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | - Matthias H Tschöp
- Helmholtz Munich, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
5
|
He X, Zhao W, Li P, Zhang Y, Li G, Su H, Lu B, Pang Z. Research progress of GLP-1RAs in the treatment of type 2 diabetes mellitus. Front Pharmacol 2025; 15:1483792. [PMID: 39902077 PMCID: PMC11788294 DOI: 10.3389/fphar.2024.1483792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/23/2024] [Indexed: 02/05/2025] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a 30-amino acid intestinal insulin-stimulating factor, which is mainly secreted by L cells in the distal ileum and colon. It has various physiological functions, such as promoting insulin secretion and synthesis, stimulating β-cell proliferation, inducing islet regeneration, inhibiting β-cell apoptosis and glucagon release, delaying gastric emptying and controlling appetite, etc. It plays a role through a specific GLP-1 receptor (GLP-1R) distributed in many organs or tissues and participates in the regulation of glucose homeostasis in the body. GLP-1 receptor agonists (GLP-1RAs) has the similar physiological function of GLP-1. Because of its structural difference from natural GLP-1, it is not easy to be degraded by dipeptidyl peptidase-4 (DPP-4), thus prolonging the action time. GLP-1RAs have been recognized as a new type of hypoglycemic drugs and widely used in the treatment of type 2 diabetes mellitus (T2DM). Compared with other non-insulin hypoglycemic drugs, it can not only effectively reduce blood glucose and glycosylated hemoglobin (HbA1c), but also protect cardiovascular system, nervous system and kidney function without causing hypoglycemia and weight gain. Therefore, GLP-1RAs has good application prospects and potential for further development.
Collapse
Affiliation(s)
- Xu He
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
- Pharmacy Department, People’s Hospital of Dali Bai Autonomous Prefecture, Dali, China
| | - Wei Zhao
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - PeiHang Li
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - YinJiang Zhang
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - GuoHua Li
- Pharmacy Department, People’s Hospital of Dali Bai Autonomous Prefecture, Dali, China
| | - HongYu Su
- Graduate School, Chengde Medical College, Chengde, China
| | - BiNan Lu
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - ZongRan Pang
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| |
Collapse
|
6
|
Shahid Tanweer A, Shaheen MH, Alshamsi BA, Almazrouei MA, Almasri RM, Shahid Tanveer A, Rajeh JM. Endocrine Dysfunction Following Bariatric Surgery: A Systematic Review of Postoperative Changes in Major Endocrine Hormones. Cureus 2025; 17:e77756. [PMID: 39981480 PMCID: PMC11842000 DOI: 10.7759/cureus.77756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Bariatric surgery (BS) is an effective intervention for obesity and related metabolic disorders, significantly improving metabolic health and alleviating hormonal imbalances. However, it induces complex endocrine changes that can lead to dysfunctions, impacting the somatotropic, gonadal, thyroid, pancreatic, and adrenal axes. This review highlights the dual effects of BS on the endocrine system. A comprehensive review of peer-reviewed studies using PRISMA guidelines was conducted, focusing on human research evaluating pre and postoperative endocrine parameters. Studies were selected for their relevance and quality in elucidating the endocrine consequences of BS. BS restores growth hormone secretion and improves fertility but may disrupt insulin-like growth factor-1 recovery and sex hormone balance, leading to bone loss and catabolic states. Postprandial insulin hypersecretion can result in hyperinsulinemic hypoglycemia, with impaired counter-regulatory hormone responses. Secondary hyperparathyroidism and reduced bone density highlight additional risks. Changes in thyroid hormone levels have implications for both hypothyroid and euthyroid patients. These findings underscore the interplay between improved metabolic control and potential endocrine dysfunctions. The current evidence predominantly comprises association studies that may not be of quality for safe clinical decision-making, highlighting the need for high-quality research to establish causality and refine therapeutic strategies. Bridging knowledge gaps in the mechanisms underlying these changes is crucial to optimizing BS outcomes. A holistic approach integrating preoperative screening, individualized postoperative care, and targeted therapies is essential to mitigate complications while maximizing benefits.
Collapse
Affiliation(s)
- Ammar Shahid Tanweer
- Internal Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, ARE
| | - Majd H Shaheen
- Internal Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, ARE
| | - Bashayer A Alshamsi
- Internal Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, ARE
| | - Mahra A Almazrouei
- Internal Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, ARE
| | - Rama M Almasri
- Internal Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, ARE
| | | | - Jana M Rajeh
- Internal Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, ARE
| |
Collapse
|
7
|
Alcaino C, Reimann F, Gribble FM. Incretin hormones and obesity. J Physiol 2024:10.1113/JP286293. [PMID: 39576749 PMCID: PMC7617301 DOI: 10.1113/jp286293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024] Open
Abstract
The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) play critical roles in co-ordinating postprandial metabolism, including modulation of insulin secretion and food intake. They are secreted from enteroendocrine cells in the intestinal epithelium following food ingestion, and act at multiple target sites including pancreatic islets and the brain. With the recent development of agonists targeting GLP-1 and GIP receptors for the treatment of type 2 diabetes and obesity, and the ongoing development of new incretin-based drugs with improved efficacy, there is great interest in understanding the physiology and pharmacology of these hormones.
Collapse
Affiliation(s)
- Constanza Alcaino
- Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0QQ, UK
| | - Frank Reimann
- Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0QQ, UK
| | - Fiona M Gribble
- Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0QQ, UK
| |
Collapse
|
8
|
Kim MK, Kwon HS, Baek KH, Song KH. Bile acids, fibroblast growth factor-19, and glucagon-like peptide-1 levels in the long term after bariatric surgery. Asian J Surg 2024:S1015-9584(24)02313-3. [PMID: 39424505 DOI: 10.1016/j.asjsur.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/28/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024] Open
Abstract
OBJECTIVES Glucagon-like peptide-1(GLP-1) is a hormone often measured in the short-term following Roux-en-Y gastric bypass (RYGB) due to its elevation and association with improvement of glucose metabolism. We examined the durability of this effect in patients with type 2 diabetes mellitus (DM) in the long term after RYGB. METHODS Obese patients with type 2 DM who had received RYGB 10 years ago (n = 10) were enrolled and a meal tolerance test (MTT) was performed. A matched control group with type 2 DM (n = 5) underwent MTT. RESULTS Glucose levels during the MTT did not differ between patients with RYGB and the nonsurgical group. Insulin, C-peptide and GLP-1 levels during MTT were significantly higher in patients with RYGB compared with the nonsurgical group (Area under the curve [AUC] of insulin; 57.4 ± 22.9 vs. 27.7 ± 11.1 mIU/L•hr, P = 0.008; AUC of total GLP-1; 189.4 ± 74.72 vs. 52.13 ± 10.23 pM •hr, P = 0.002), and in particular, peak insulin, C-peptide and GLP-1 levels observed 30-45 min after eating were markedly different from those in the nonsurgical group. Bile acids (BAs) and fibroblast growth factor 19 (FGF-19) levels during MTT were higher in patients with RYGB compared with the nonsurgical group. Peak BAs and FGF-19 levels tended to be higher in the RYGB. CONCLUSIONS An enhanced GLP-1 response was noted 10 years after RYGB, strongly suggesting a durability of this effect. BAs and FGF-19 were increased in the RYGB group, but not as much as the pronounced increase in GLP-1 secretion.
Collapse
Affiliation(s)
- Mee Kyoung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 07345, South Korea
| | - Hyuk-Sang Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 07345, South Korea
| | - Ki-Hyun Baek
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 07345, South Korea
| | - Ki-Ho Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 07345, South Korea.
| |
Collapse
|
9
|
McRae AN, Ticho AL, Liu Y, Ricardo-Silgado ML, Mangena NN, Jassir FF, Gonzalez-Izundegui D, Calderon G, Rohakhtar FR, Simon V, Li Y, Leggett C, Hurtado D, LaRusso N, Acosta AJ. Regulator of G-protein signaling expression in human intestinal enteroendocrine cells and potential role in satiety hormone secretion in health and obesity. EBioMedicine 2024; 107:105283. [PMID: 39142076 PMCID: PMC11367526 DOI: 10.1016/j.ebiom.2024.105283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Gut L-type enteroendocrine cells (EECs) are intestinal chemosensory cells that secrete satiety hormones GLP-1 and PYY in response to activation of G-protein coupled receptors (GPCRs) by luminal components of nutrient digestion and microbial fermentation. Regulator of G-protein Signaling (RGS) proteins are negative regulators of GPCR signaling. The expression profile of RGS in EECs, and their potential role in satiety hormone secretion and obesity is unknown. METHODS Transcriptomic profiling of RGS was completed in native colonic EECs was completed using single-cell RNA sequencing (scRNA-Seq) in lean and obesity, and human jejunal EECs with data obtained from a publicly available RNAseq dataset (GSE114853). RGS validation studies were completed using whole mucosal intestinal tissue obtained during endoscopy in 61 patients (n = 42 OB, n = 19 Lean); a subset of patients' postprandial plasma was assayed for GLP-1 and PYY. Ex vivo human intestinal cultures and in vitro NCI-H716 cells overexpressing RGS9 were exposed to GLP-1 secretagogues in conjunction with a nonselective RGS-inhibitor and assayed for GLP-1 secretion. FINDINGS Transcriptomic profiling of colonic and jejunal enteroendocrine cells revealed a unique RGS expression profile in EECs, and further within GLP-1+ L-type EECs. In obesity the RGS expression profile was altered in colonic EECs. Human gut RGS9 expression correlated positively with BMI and negatively with postprandial GLP-1 and PYY. RGS inhibition in human intestinal cultures increased GLP-1 release from EECs ex vivo. NCI-H716 cells overexpressing RGS9 displayed defective nutrient-stimulated GLP-1 secretion. INTERPRETATION This study introduces the expression profile of RGS in human EECs, alterations in obesity, and suggests a role for RGS proteins as modulators of GLP-1 and PYY secretion from intestinal EECs. FUNDING AA is supported by the NIH(C-Sig P30DK84567, K23 DK114460), a Pilot Award from the Mayo Clinic Center for Biomedical Discovery, and a Translational Product Development Fund from The Mayo Clinic Center for Clinical and Translational Science Office of Translational Practice in partnership with the University of Minnesota Clinical and Translational Science Institute.
Collapse
Affiliation(s)
- Alison N McRae
- Precision Medicine for Obesity Program and Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Alexander L Ticho
- Precision Medicine for Obesity Program and Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Yuanhang Liu
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Maria Laura Ricardo-Silgado
- Precision Medicine for Obesity Program and Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Nothando N Mangena
- Precision Medicine for Obesity Program and Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Fauzi Feris Jassir
- Precision Medicine for Obesity Program and Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Daniel Gonzalez-Izundegui
- Precision Medicine for Obesity Program and Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Gerardo Calderon
- Precision Medicine for Obesity Program and Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | - Vernadette Simon
- Center for Individualized Medicine (CIM), Mayo Clinic, Rochester, MN, USA
| | - Ying Li
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Cadman Leggett
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Daniela Hurtado
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition Mayo Clinic, Jacksonville, FL, USA
| | - Nicholas LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Andres J Acosta
- Precision Medicine for Obesity Program and Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
10
|
Holst JJ, Madsbad S, Bojsen-Møller KN, Dirksen C, Svane M. New Lessons from the gut: Studies of the role of gut peptides in weight loss and diabetes resolution after gastric bypass and sleeve gastrectomy. Peptides 2024; 176:171199. [PMID: 38552903 DOI: 10.1016/j.peptides.2024.171199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
It has been known since 2005 that the secretion of several gut hormones changes radically after gastric bypass operations and, although more moderately, after sleeve gastrectomy but not after gastric banding. It has therefore been speculated that increased secretion of particularly GLP-1 and Peptide YY (PYY), which both inhibit appetite and food intake, may be involved in the weight loss effects of surgery and for improvements in glucose tolerance. Experiments involving inhibition of hormone secretion with somatostatin, blockade of their actions with antagonists, or blockade of hormone formation/activation support this notion. However, differences between results of bypass and sleeve operations indicate that distinct mechanisms may also be involved. Although the reductions in ghrelin secretion after sleeve gastrectomy would seem to provide an obvious explanation, experiments with restoration of ghrelin levels pointed towards effects on insulin secretion and glucose tolerance rather than on food intake. It seems clear that changes in GLP-1 secretion are important for insulin secretion after bypass and appear to be responsible for postbariatric hypoglycemia in glucose-tolerant individuals; however, with time the improvements in insulin sensitivity, which in turn are secondary to the weight loss, may be more important. Changes in bile acid metabolism do not seem to be of particular importance in humans.
Collapse
Affiliation(s)
- Jens Juul Holst
- The NovoNordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Denmark.
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Denmark
| | | | - Carsten Dirksen
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Denmark
| | - Maria Svane
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Denmark
| |
Collapse
|
11
|
Ali MM, Parveen S, Williams V, Dons R, Uwaifo GI. Cardiometabolic comorbidities and complications of obesity and chronic kidney disease (CKD). J Clin Transl Endocrinol 2024; 36:100341. [PMID: 38616864 PMCID: PMC11015524 DOI: 10.1016/j.jcte.2024.100341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
Obesity and chronic kidney disease are two ongoing progressive clinical pandemics of major public health and clinical care significance. Because of their growing prevalence, chronic indolent course and consequent complications both these conditions place significant burden on the health care delivery system especially in developed countries like the United States. Beyond the chance coexistence of both of these conditions in the same patient based on high prevalence it is now apparent that obesity is associated with and likely has a direct causal role in the onset, progression and severity of chronic kidney disease. The causes and underlying pathophysiology of this are myriad, complicated and multi-faceted. In this review, continuing the theme of this special edition of the journal on " The Cross roads between Endocrinology and Nephrology" we review the epidemiology of obesity related chronic kidney disease (ORCKD), and its various underlying causes and pathophysiology. In addition, we delve into the consequent comorbidities and complications associated with ORCKD with particular emphasis on the cardio metabolic consequences and then review the current body of evidence for available strategies for chronic kidney disease modulation in ORCKD as well as the potential unique role of weight reduction and management strategies in its improvement and risk reduction.
Collapse
Affiliation(s)
- Mariam M. Ali
- Southern Illinois School of Medicine, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, 751 North Rutledge Street, Moy Building, Suite 1700, Springfield, Il 62702, United States
| | - Sanober Parveen
- Southern Illinois School of Medicine, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, 751 North Rutledge Street, Moy Building, Suite 1700, Springfield, Il 62702, United States
| | - Vanessa Williams
- Southern Illinois School of Medicine, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, 751 North Rutledge Street, Moy Building, Suite 1700, Springfield, Il 62702, United States
| | - Robert Dons
- Southern Illinois School of Medicine, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, 751 North Rutledge Street, Moy Building, Suite 1700, Springfield, Il 62702, United States
| | - Gabriel I. Uwaifo
- Section of Endocrinology, Dept of Medicine, SIU School of Medicine, 751 N Rutledge St, Moy Building, Suite 1700, Room #1813, Springfield, Il 62702, United States
| |
Collapse
|
12
|
Simoneau M, McKay B, Brooks E, Doucet É, Baillot A. Gut peptides before and following Roux-En-Y gastric bypass: A systematic review and meta-analysis. Obes Rev 2024; 25:e13702. [PMID: 38327045 DOI: 10.1111/obr.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024]
Abstract
A systematic search was conducted in Medline Ovid, Embase, Scopus, and Cochrane Central Register of Controlled Trials up until March 2021 following PRISMA guidelines. Studies included evaluated ghrelin, GLP-1, PYY or appetite sensation via visual analogue scales (VASs) before and after Roux-en-Y gastric bypass (RYGB) in adults. A multilevel model with random effects for study and follow-up time points nested in study was fit to the data. The model included kcal consumption as a covariate and time points as moderators. Among the 2559 articles identified, k = 47 were included, among which k = 19 evaluated ghrelin, k = 40 GLP-1, k = 22 PYY, and k = 8 appetite sensation. Our results indicate that fasting ghrelin levels are decreased 2 weeks post-RYGB (p = 0.005) but do not differ from baseline from 6 weeks to 1-year post-RYGB. Postprandial ghrelin and fasting GLP-1 levels were not different from pre-surgical values. Postprandial levels of GLP-1 increased significantly from 1 week (p < 0.001) to 2 years post-RYGB (p < 0.01) compared with pre-RYGB. Fasting PYY increased at 6 months (p = 0.034) and 1 year (p = 0.029) post-surgery; also, postprandial levels increased up to 1 year (p < 0.01). Insufficient data on appetite sensation were available to be meta-analyzed.
Collapse
Affiliation(s)
- Mylène Simoneau
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Brad McKay
- Department of kinesiology, University of McMaster, Hamilton, Ontario, Canada
| | - Emma Brooks
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Éric Doucet
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Aurélie Baillot
- Department of nursing, University of Québec en Outaouais, Gatineau, Quebec, Canada
| |
Collapse
|
13
|
Patil M, Casari I, Warne LN, Falasca M. G protein-coupled receptors driven intestinal glucagon-like peptide-1 reprogramming for obesity: Hope or hype? Biomed Pharmacother 2024; 172:116245. [PMID: 38340396 DOI: 10.1016/j.biopha.2024.116245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
'Globesity' is a foremost challenge to the healthcare system. The limited efficacy and adverse effects of available oral pharmacotherapies pose a significant obstacle in the fight against obesity. The biology of the leading incretin hormone glucagon-like-peptide-1 (GLP-1) has been highly captivated during the last decade owing to its multisystemic pleiotropic clinical outcomes beyond inherent glucoregulatory action. That fostered a pharmaceutical interest in synthetic GLP-1 analogues to tackle type-2 diabetes (T2D), obesity and related complications. Besides, mechanistic insights on metabolic surgeries allude to an incretin-based hormonal combination strategy for weight loss that emerged as a forerunner for the discovery of injectable 'unimolecular poly-incretin-agonist' therapies. Physiologically, intestinal enteroendocrine L-cells (EECs) are the prominent endogenous source of GLP-1 peptide. Despite comprehending the potential of various G protein-coupled receptors (GPCRs) to stimulate endogenous GLP-1 secretion, decades of translational GPCR research have failed to yield regulatory-approved endogenous GLP-1 secretagogue oral therapy. Lately, a dual/poly-GPCR agonism strategy has emerged as an alternative approach to the traditional mono-GPCR concept. This review aims to gain a comprehensive understanding by revisiting the pharmacology of a few potential GPCR-based complementary avenues that have drawn attention to the design of orally active poly-GPCR agonist therapy. The merits, challenges and recent developments that may aid future poly-GPCR drug discovery are critically discussed. Subsequently, we project the mechanism-based therapeutic potential and limitations of oral poly-GPCR agonism strategy to augment intestinal GLP-1 for weight loss. We further extend our discussion to compare the poly-GPCR agonism approach over invasive surgical and injectable GLP-1-based regimens currently in clinical practice for obesity.
Collapse
Affiliation(s)
- Mohan Patil
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Ilaria Casari
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Leon N Warne
- Little Green Pharma, West Perth, Western Australia 6872, Australia
| | - Marco Falasca
- University of Parma, Department of Medicine and Surgery, Via Volturno 39, 43125 Parma, Italy.
| |
Collapse
|
14
|
Kong X, Feng L, Yan D, Li B, Yang Y, Ma X. FXR-mediated epigenetic regulation of GLP-1R expression contributes to enhanced incretin effect in diabetes after RYGB. J Cell Mol Med 2024; 28:e16339. [PMID: 33611845 PMCID: PMC10941525 DOI: 10.1111/jcmm.16339] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 01/07/2023] Open
Abstract
In this study, we investigated how Roux-en-Y gastric bypass (RYGB) enhances glucagon-like peptide 1 (GLP-1) response in GK rats and explored the potential link between RYGB-stimulated BAs/FXR signalling and GLP-1R-linked signalling in β-cells, a key pathway that regulates glucose-stimulated insulin secretion (GSIS). Here we show that RYGB restores GLP-1R expression in GK rat islets. This involves increased total BAs as well as chenodeoxycholic acid (CDCA), leading to FXR activation, increasing FXR binding to the promoter of Glp-1r and enhancing occupancy of histone acetyltransferase steroid receptor coactivator-1 (SRC1), thus increasing histone H3 acetylation at the promoter. These coordinated events bring about increased GLP-1R expression, resulting in greater GLP-1 response in β-cells. Moreover, ablation of FXR suppressed the stimulatory effects of GLP-1. Thus, this study unravels the crucial role of the BAs/FXR/SRC1 axis-controlled GLP-1R expression in β-cells, which results in enhanced incretin effect and normalized blood glucose of GK rats after RYGB.
Collapse
Affiliation(s)
- Xiangchen Kong
- Shenzhen University Diabetes InstituteSchool of MedicineShenzhen UniversityShenzhenChina
| | - Linxian Feng
- Shenzhen University Diabetes InstituteSchool of MedicineShenzhen UniversityShenzhenChina
| | - Dan Yan
- Shenzhen University Diabetes InstituteSchool of MedicineShenzhen UniversityShenzhenChina
| | - Bingfeng Li
- Shenzhen University Diabetes InstituteSchool of MedicineShenzhen UniversityShenzhenChina
| | - Yanhui Yang
- Shenzhen University Diabetes InstituteSchool of MedicineShenzhen UniversityShenzhenChina
| | - Xiaosong Ma
- Shenzhen University Diabetes InstituteSchool of MedicineShenzhen UniversityShenzhenChina
| |
Collapse
|
15
|
Rossini G, Risi R, Monte L, Sancetta B, Quadrini M, Ugoccioni M, Masi D, Rossetti R, D'Alessio R, Mazzilli R, Defeudis G, Lubrano C, Gnessi L, Watanabe M, Manfrini S, Tuccinardi D. Postbariatric surgery hypoglycemia: Nutritional, pharmacological and surgical perspectives. Diabetes Metab Res Rev 2024; 40:e3750. [PMID: 38018334 DOI: 10.1002/dmrr.3750] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/09/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023]
Abstract
Post-bariatric hypoglycaemia (PBH) is a metabolic complication of bariatric surgery (BS), consisting of low post-prandial glucose levels in patients having undergone bariatric procedures. While BS is currently the most effective and relatively safe treatment for obesity and its complications, the development of PBH can significantly impact patients' quality of life and mental health. The diagnosis of PBH is still challenging, considering the lack of definitive and reliable diagnostic tools, and the fact that this condition is frequently asymptomatic. However, PBH's prevalence is alarming, involving up to 88% of the post-bariatric population, depending on the diagnostic tool, and this may be underestimated. Given the prevalence of obesity soaring, and an increasing number of bariatric procedures being performed, it is crucial that physicians are skilled to diagnose PBH and promptly treat patients suffering from it. While the milestone of managing this condition is nutritional therapy, growing evidence suggests that old and new pharmacological approaches may be adopted as adjunct therapies for managing this complex condition.
Collapse
Affiliation(s)
- Giovanni Rossini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| | - Renata Risi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lavinia Monte
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| | - Biagio Sancetta
- Department of Medicine, Unit of Neurology, Neurophysiology, Neurobiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Maria Quadrini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| | - Massimiliano Ugoccioni
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| | - Davide Masi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Rebecca Rossetti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Rossella Mazzilli
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Defeudis
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| | - Carla Lubrano
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucio Gnessi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Mikiko Watanabe
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Manfrini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| | - Dario Tuccinardi
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| |
Collapse
|
16
|
Kong X, Lin C, Yang C, Wang X, Li B, Yan D, Yang Y, Hu A, Chen Y, Xu X, Ma X. GLP-1 signaling-regulated SNAP25 is involved in improved insulin secretion in diabetic GK rats after Roux-en-Y gastric bypass surgery. Mol Biol Rep 2024; 51:123. [PMID: 38227062 DOI: 10.1007/s11033-023-09165-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Roux-en-Y gastric bypass surgery (RYGB) improves glucose-stimulated insulin secretion (GSIS) in type 2 diabetes (T2D) patients. SNAP25 plays an essential role in GSIS. Clinical studies indicate that enhanced GLP-1 signaling is an important contributor to the improved β-cell function in T2D. We aimed to explore whether GLP-1-regulated SNAP25 is involved in the enhanced secretory function of β-cells in diabetic Goto-Kakizaki (GK) rats after RYGB. METHODS AND RESULTS RYGB or sham surgery was conducted in GK rats. mRNA and protein expression of SNAP25 was assessed by qPCR and Western blot, respectively. Occupancy of CREB and acetyltransferase CBP and acetylation of histone H3 (ACH3) at the Snap25 promoter were determined using ChIP assay. RYGB led to increased SNAP25 expression and CREB phosphorylation in islets from GK rats. Increased SNAP25 improved GSIS in β-cells cultured in high glucose conditions. Consistent with increased plasma GLP-1 after RYGB, GLP-1R agonist exendin4 increased SNAP25 expression and CREB phosphorylation in β-cells. Mechanistically, exendin4 promoted the recruitment of CREB and CBP, thereby increasing ACH3 at the Snap25 promoter. Consistently, inhibition of CBP attenuated the effect of exendin4 on SNAP25 expression. Furthermore, the knockdown of SNAP25 diminished the increase of GSIS potentiated by chronic GLP-1 culture in INS-1 832/13 cells. CONCLUSIONS Our findings unravel the novel mechanisms of RYGB-enhanced SNAP25 expression in β-cells, and SNAP25 may contribute to the improved β-cell secretory function induced by RYGB.
Collapse
Affiliation(s)
- Xiangchen Kong
- School of Medicine, Shenzhen University Diabetes Institute, Shenzhen University, Shenzhen, 518060, China.
| | - Chao Lin
- School of Medicine, Shenzhen University Diabetes Institute, Shenzhen University, Shenzhen, 518060, China
| | - Chenxi Yang
- School of Medicine, Shenzhen University Diabetes Institute, Shenzhen University, Shenzhen, 518060, China
| | - Xin Wang
- School of Medicine, Shenzhen University Diabetes Institute, Shenzhen University, Shenzhen, 518060, China
| | - Bingfeng Li
- School of Medicine, Shenzhen University Diabetes Institute, Shenzhen University, Shenzhen, 518060, China
| | - Dan Yan
- School of Medicine, Shenzhen University Diabetes Institute, Shenzhen University, Shenzhen, 518060, China
| | - Yanhui Yang
- School of Medicine, Shenzhen University Diabetes Institute, Shenzhen University, Shenzhen, 518060, China
| | - Anyi Hu
- School of Medicine, Shenzhen University Diabetes Institute, Shenzhen University, Shenzhen, 518060, China
| | - Yanyin Chen
- School of Medicine, Shenzhen University Diabetes Institute, Shenzhen University, Shenzhen, 518060, China
| | - Xiaohui Xu
- Shenzhen University General Hospital, Shenzhen, 518055, China
| | - Xiaosong Ma
- School of Medicine, Shenzhen University Diabetes Institute, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
17
|
Cao Y, Luo P, Tang H, Li P, Wang G, Li W, Song Z, Su Z, Sun X, Yi X, Fu Z, Cui B, Zhu S, Zhu L. Insulin resistance levels predicted metabolic improvement and weight loss after metabolic surgery in Chinese patients with type 2 diabetes. Surg Obes Relat Dis 2024; 20:80-90. [PMID: 37739868 DOI: 10.1016/j.soard.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/12/2023] [Accepted: 08/05/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND The causes for failure of metabolic improvement and inadequate weight loss after metabolic surgery (MS) in Chinese patients with type 2 diabetes (T2D) have not been fully elucidated. The effect of insulin resistance (IR) on the outcome of T2D, hypertension, hyperlipidemia, and obesity after MS in Chinese patients with T2D and a body mass index (BMI) of 25-32.5 kg/m2 warrants further study. OBJECTIVES Patients with T2D and a BMI of 25-32.5 kg/m2 who underwent MS between July 2019 and June 2021 were included. SETTING University hospital, China. METHODS IR levels were evaluated with the glucose disposal rate (GDR). Improvement of T2D, hypertension, and hyperlipidemia was assessed with the composite triple endpoint (CTEP), and weight loss was assessed with the percent of total weight loss (%TWL). Partial correlation analysis, binary logistic regression analysis, multiple linear regression analysis, receiver operating characteristic curve (ROC) analysis, and subgroup analysis were used to analyze the relationship between the CTEP, %TWL at 1 year postoperative, and GDR preoperative. RESULTS This study analyzed the data of 51 patients with T2D and a BMI of 25-32.5 kg/m2 (30 men and 21 women) with a mean preoperative GDR of 3.72 ± 1.48 mg/kg/min. Partial correlation coefficients between CTEP, %TWL, and GDR were .303 (P = .041) and .449 (P = .001), respectively. The preoperative GDR was significantly positively correlated with CTEP (OR = 1.610, P = .024) and %TWL (β = 1.38, P = .003). The preoperative GDR predicted cutoff values of 4.36 and 5.35 mg/kg/min for CTEP attainment and %TWL ≥ 20%, respectively. CONCLUSION IR levels predicted metabolic improvement and weight loss 1 year after MS in Chinese patients with T2D and a BMI of 25-32.5 kg/m2.
Collapse
Affiliation(s)
- Yaoquan Cao
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ping Luo
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Haibo Tang
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Pengzhou Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Guohui Wang
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Weizheng Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhihong Su
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xulong Sun
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xianhao Yi
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhibing Fu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Beibei Cui
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Shaihong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Liyong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
18
|
Bjerkan KK, Sandvik J, Nymo S, Johnsen G, Hyldmo ÅA, Kulseng BE, Salater S, Høydal KL, Hoff DAL. Postbariatric hypoglycemia, abdominal pain and gastrointestinal symptoms after Roux-en-Y gastric bypass explored by continuous glucose monitoring. Obes Res Clin Pract 2024; 18:9-14. [PMID: 38402034 DOI: 10.1016/j.orcp.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Abdominal pain and postbariatric hypoglycemia (PBH) are common after bariatric surgery. OBJECTIVES This study aimed to explore the potential relationship between abdominal pain, gastrointestinal symptoms, and PBH more than a decade after Roux-en-Y gastric bypass (RYGB) and whether continuous glucose monitoring (CGM) with dietary intervention has an educational role in reducing symptoms. SUBJECTS At two public hospitals in Norway (one University Hospital) 22 of 46 invited patients who reported abdominal pain more than weekly took part. Recruited from a prospective follow-up study of 546 patients 14.5 years after RYGB. METHODS They used a CGM for two 14-day periods, with a dietary intervention between periods. The Gastrointestinal Symptom Rating Scale (GSRS) and the Dumping Severity Score (DSS) questionnaires were completed at the start and end of the study. RESULTS The 22 women had preoperative age 39.6 ± 7.7 years and body mass index (BMI) 42.0 ± 4.0 kg/m2, present age 54.6 ± 7.7 years and BMI 29.8 ± 4.8 kg/m2. The total GSRS score and DSS of early dumping decreased after the diet intervention. The number of events with Level 1 (<3.9 mmol/L) or Level 2 (<3.0 mmol/L) hypoglycemia did not change in the second period. Half of the patients had fewer, three had unchanged, and eight had more frequent events with Level 1 hypoglycemia after the intervention. Ten patients had Level 2 hypoglycemia. CONCLUSION Though inconclusive findings, a personalized dietary intervention reduces GSRS. This intervention was accompanied by lower mean absolute glucose in patients with recurrent abdominal pain after bariatric surgery. However, further studies are needed to explore the benefits of CGM in this setting.
Collapse
Affiliation(s)
- Kirsti K Bjerkan
- Faculty of Social Science and History, Volda University College, Volda, Norway; Department of Surgery, Møre and Romsdal Hospital Trust, Ålesund, Norway.
| | - Jorunn Sandvik
- Department of Surgery, Møre and Romsdal Hospital Trust, Ålesund, Norway; Centre for Obesity Research, Clinic of Surgery, St. Olav's University Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Siren Nymo
- Centre for Obesity Research, Clinic of Surgery, St. Olav's University Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Surgery, Namsos Hospital, Nord-Trøndelag Hospital Trust, Norway
| | - Gjermund Johnsen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Norwegian National Advisory Unit on Advanced Laparoscopic Surgery, Clinic of Surgery, St.Olav's University Hospital, Trondheim, Norway
| | - Åsne A Hyldmo
- Centre for Obesity Research, Clinic of Surgery, St. Olav's University Hospital, Trondheim, Norway; Department of Clinical Studies, Møre and Romsdal Hospital Trust, Ålesund, Norway
| | - Bård Eirik Kulseng
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sissel Salater
- Centre for Obesity Research, Clinic of Surgery, St. Olav's University Hospital, Trondheim, Norway
| | - Kjetil Laurits Høydal
- Department of Physical Education, Faculty of Arts and Physical Education, Volda University College, Volda, Norway
| | - Dag Arne L Hoff
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Clinical Studies, Møre and Romsdal Hospital Trust, Ålesund, Norway; Department of Health Sciences, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Ålesund, Norway
| |
Collapse
|
19
|
Bany Bakar R, Reimann F, Gribble FM. The intestine as an endocrine organ and the role of gut hormones in metabolic regulation. Nat Rev Gastroenterol Hepatol 2023; 20:784-796. [PMID: 37626258 DOI: 10.1038/s41575-023-00830-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Gut hormones orchestrate pivotal physiological processes in multiple metabolically active tissues, including the pancreas, liver, adipose tissue, gut and central nervous system, making them attractive therapeutic targets in the treatment of obesity and type 2 diabetes mellitus. Most gut hormones are derived from enteroendocrine cells, but bioactive peptides that are derived from other intestinal epithelial cell types have also been implicated in metabolic regulation and can be considered gut hormones. A deeper understanding of the complex inter-organ crosstalk mediated by the intestinal endocrine system is a prerequisite for designing more effective drugs that are based on or target gut hormones and their receptors, and extending their therapeutic potential beyond obesity and diabetes mellitus. In this Review, we present an overview of gut hormones that are involved in the regulation of metabolism and discuss their action in the gastrointestinal system and beyond.
Collapse
Affiliation(s)
- Rula Bany Bakar
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Frank Reimann
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Fiona M Gribble
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Cambridge, UK.
| |
Collapse
|
20
|
Visentin R, Brodersen K, Richelsen B, Møller N, Dalla Man C, Pedersen AK, Abrahamsen J, Holst JJ, Nielsen MF. Increased Insulin Secretion and Glucose Effectiveness in Obese Patients with Type 2 Diabetes following Bariatric Surgery. J Diabetes Res 2023; 2023:7127426. [PMID: 38020201 PMCID: PMC10663093 DOI: 10.1155/2023/7127426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background β-cell dysfunction and insulin resistance are the main mechanisms causing glucose intolerance in type 2 diabetes (T2D). Bariatric surgeries, i.e., sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB), are procedures both known to induce weight loss, increase insulin action, and enhance β-cell function, but hepatic insulin extraction and glucose effectiveness may also play a role. Methods To determine the contribution of these regulators on glucose tolerance after bariatric surgery, an oral glucose tolerance test (OGTT) was performed before and 2 months after surgery in 9 RYGB and 7 SG subjects. Eight healthy subjects served as metabolic controls. Plasma glucose, insulin, C-peptide, GLP-1, and GIP were measured during each OGTT. Insulin sensitivity and secretion, glucose effectiveness, and glucose rate of appearance were determined via oral minimal models. Results RYGB and SG resulted in similar weight reductions (13%, RYGB (p < 0.01); 14%, SG (p < 0.05)). Two months after surgery, insulin secretion (p < 0.05) and glucose effectiveness both improved equally in the two groups (11%, RYGB (p < 0.01); 8%, SG (p > 0.05)), whereas insulin sensitivity remained virtually unaltered. Bariatric surgery resulted in a comparable increase in the GLP-1 response during the OGTT, whereas GIP concentrations remained unaltered. Following surgery, oral glucose intake resulted in a comparable increase in hepatic insulin extraction, the response in both RYGB and SG patients significantly exceeding the response observed in the control subjects. Conclusions These results demonstrate that the early improvement in glucose tolerance in obese T2D after RYGB and SG surgeries is attributable mainly to increased insulin secretion and glucose effectiveness, while insulin sensitivity seems to play only a minor role. This trial is registered with NCT02713555.
Collapse
Affiliation(s)
- Roberto Visentin
- Department of Information Engineering, University of Padova, Padova, Italy
| | | | - Bjørn Richelsen
- Steno Diabetes Center Aarhus, Aarhus University Hospital & Clinical Medicine, Aarhus University, Denmark
| | - Niels Møller
- Steno Diabetes Center Aarhus, Aarhus University Hospital & Clinical Medicine, Aarhus University, Denmark
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| | | | - Jan Abrahamsen
- Department of Radiology, Viborg General Hospital, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation, Center of Basic Metabolic Research and Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Denmark
| | | |
Collapse
|
21
|
Salehi M, Peterson R, Tripathy D, Pezzica S, DeFronzo R, Gastaldelli A. Differential effect of gastric bypass versus sleeve gastrectomy on insulinotropic action of endogenous incretins. Obesity (Silver Spring) 2023; 31:2774-2785. [PMID: 37853989 PMCID: PMC10593483 DOI: 10.1002/oby.23872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVE Prandial hyperinsulinemia after Roux-en-Y gastric bypass surgery (GB), and to lesser degree after sleeve gastrectomy (SG), has been attributed to rapid glucose flux from the gut and increased insulinotropic gut hormones. However, β-cell sensitivity to exogenous incretin is reduced after GB. This study examines the effect of GB versus SG on prandial glycemia and β-cell response to increasing concentrations of endogenous incretins. METHODS Glucose kinetics, insulin secretion rate (ISR), and incretin responses to 50-g oral glucose ingestion were compared between ten nondiabetic participants with GB versus nine matched individuals with SG and seven nonoperated normal glucose tolerant control individuals (CN) with and without administration of 200 mg of sitagliptin. RESULTS Fasting glucose and hormonal levels were similar among three groups. Increasing plasma concentrations of endogenous incretins by two- to three-fold diminished prandial glycemia and increased β-cell secretion in all three groups (p < 0.05), but insulin secretion per insulin sensitivity (i.e., disposition index) was increased only in GB (p < 0.05 for interaction). However, plot of the slope of ISR (from premeal to peak values) versus plasma glucagon-like peptide-1 concentration was smaller after GB compared with SG and CN. CONCLUSIONS After GB, increasing incretin activity augments prandial β-cell response whereas the β-cell sensitivity to increasing plasma concentrations of endogenous incretin is diminished.
Collapse
Affiliation(s)
- Marzieh Salehi
- Division of Diabetes, University of Texas at San Antonio, San Antonio, TX, United States
- STVHCS, Audie Murphy Hospital, San Antonio, TX, United States
| | - Richard Peterson
- Department of Surgery, University of Texas at San Antonio, San Antonio, TX, United States
| | - Devjit Tripathy
- Division of Diabetes, University of Texas at San Antonio, San Antonio, TX, United States
| | - Samantha Pezzica
- Cardiometabolic Risk Unit, CNR Institute of Clinical Physiology, Pisa, Italy
| | - Ralph DeFronzo
- Division of Diabetes, University of Texas at San Antonio, San Antonio, TX, United States
| | - Amalia Gastaldelli
- Division of Diabetes, University of Texas at San Antonio, San Antonio, TX, United States
- Cardiometabolic Risk Unit, CNR Institute of Clinical Physiology, Pisa, Italy
| |
Collapse
|
22
|
Behrooznia Z, Jangjoo A, Qoorchi Moheb Seraj F, Khadem-Rezaiyan M, Zandbaf T, Hassani S. Diabetic Markers, Five Years after Bariatric Surgery. Middle East J Dig Dis 2023; 15:270-276. [PMID: 38523888 PMCID: PMC10955987 DOI: 10.34172/mejdd.2023.357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/18/2023] [Indexed: 03/26/2024] Open
Abstract
Background: Bariatric surgery delivers substantial weight loss for obese patients with comorbidities like diabetes mellitus. We aimed to investigate the impacts of bariatric surgery on diabetic markers after 5 years of follow-up. Methods: This is a retrospective study on patients with diabetes and a history of bariatric surgery between 2016-2017. The diabetic markers before and 5 years following surgery, including a lipid profile, glucose level, and the required antidiabetic medications, were evaluated. Results: 34 consecutive patients were included, 30 (88.2%) women, with a mean age of 52.71±8.53 years. The majority (65%) of surgeries were Roux-en-Y gastric bypass (RYGB), and the remaining were one anastomosis gastric bypass (OAGB) and sleeve gastrectomy (SG). The serum levels of diabetic markers reduced during follow-up (P=0.001), except for high-density lipoprotein levels and serum total cholesterol, which increased (P=0.011, P=0.838). Low-density lipoprotein levels reduced, but it was insignificant (P=0.194). Surgery types had affected the changes of diabetic markers (P>0.05). Demand for oral medication was reduced significantly, but insulin injection reduction was not significant (P=0.006 and P=0.099, respectively). Conclusion: Our study showed favorable bariatric surgery results on patients with diabetes in long-term follow-up. However, dyslipidemia is still a concern.
Collapse
Affiliation(s)
- Zahra Behrooznia
- Department of Internal Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Jangjoo
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farid Qoorchi Moheb Seraj
- Neurosurgical Department, NeuroVascular Section, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khadem-Rezaiyan
- Department of Community Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tooraj Zandbaf
- Department of General surgery, School of medicine, Mashhad Azad university of medical sciences, Mashhad, Iran
| | - Solmaz Hassani
- Endocrine Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Alsayed Hasan M, Schwartz S, McKenna V, Ing R. An Imbalance of Pathophysiologic Factors in Late Postprandial Hypoglycemia Post Bariatric Surgery: A Narrative Review. Obes Surg 2023; 33:2927-2937. [PMID: 37530920 DOI: 10.1007/s11695-023-06758-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
With a rise in obesity and more patients opting for bariatric surgery, it becomes crucial to understand associated complications like postprandial hypoglycemia (PPH). After bariatric surgery, significant changes are seen in insulin sensitivity, beta cell function, glucagon-like peptide 1 (GLP-1) levels, the gut microbiome, and bile acid metabolism. And in a small subset of patients, exaggerated imbalances in these functional and metabolic processes lead to insulin-glucose mismatch and hypoglycemia. The main treatment for PPH involves dietary modifications. For those that do not respond, medications or surgical interventions are considered to reverse some of the imbalances. We present a few case reports of patients that safely tolerated GLP-1 agonists. However, larger randomized control trials are needed to further characterize PPH and understand its treatment.
Collapse
Affiliation(s)
- Marah Alsayed Hasan
- Department of Internal Medicine, Main Line Health System/Lankenau Medical Center, 100 E Lancaster Ave, Wynnewood, PA, 19096, USA.
| | - Stanley Schwartz
- Affiliate, Main Line Health System, Emeritus, University of Pennsylvania, 100 E Lancaster Ave, Wynnewood, PA, 19096, USA
| | - Victoria McKenna
- Main Line Health Bariatric Surgery - Bryn Mawr, 830 Old Lancaster Road Suite 300, Bryn Mawr, PA, 19010, USA
| | - Richard Ing
- Bariatric Center of Bryn Mawr Hospital, Main Line Health System, Bryn Mawr Medical Building North, 830 Old Lancaster Road, Bryn Mawr, PA, 19010, USA
| |
Collapse
|
24
|
Bottino R, Carbone A, Formisano T, D'Elia S, Orlandi M, Sperlongano S, Molinari D, Castaldo P, Palladino A, Barbareschi C, Tolone S, Docimo L, Cimmino G. Cardiovascular Effects of Weight Loss in Obese Patients with Diabetes: Is Bariatric Surgery the Additional Arrow in the Quiver? Life (Basel) 2023; 13:1552. [PMID: 37511927 PMCID: PMC10381712 DOI: 10.3390/life13071552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Obesity is an increasingly widespread disease worldwide because of lifestyle changes. It is associated with an increased risk of cardiovascular disease, primarily type 2 diabetes mellitus, with an increase in major cardiovascular adverse events. Bariatric surgery has been shown to be able to reduce the incidence of obesity-related cardiovascular disease and thus overall mortality. This result has been shown to be the result of hormonal and metabolic effects induced by post-surgical anatomical changes, with important effects on multiple hormonal and molecular axes that make this treatment more effective than conservative therapy in determining a marked improvement in the patient's cardiovascular risk profile. This review, therefore, aimed to examine the surgical techniques currently available and how these might be responsible not only for weight loss but also for metabolic improvement and cardiovascular benefits in patients undergoing such procedures.
Collapse
Affiliation(s)
- Roberta Bottino
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia 2, 80138 Napoli, Italy
| | - Andreina Carbone
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia 2, 80138 Napoli, Italy
| | - Tiziana Formisano
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia 2, 80138 Napoli, Italy
| | - Saverio D'Elia
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia 2, 80138 Napoli, Italy
| | - Massimiliano Orlandi
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia 2, 80138 Napoli, Italy
| | - Simona Sperlongano
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia 2, 80138 Napoli, Italy
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Daniele Molinari
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia 2, 80138 Napoli, Italy
| | - Pasquale Castaldo
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia 2, 80138 Napoli, Italy
| | - Alberto Palladino
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia 2, 80138 Napoli, Italy
| | - Consiglia Barbareschi
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia 2, 80138 Napoli, Italy
| | - Salvatore Tolone
- Department of Medical, Surgical, Neurologic, Metabolic and Aging Sciences, General, Mini-Invasive and Obesity Surgery Unit, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Ludovico Docimo
- Department of Medical, Surgical, Neurologic, Metabolic and Aging Sciences, General, Mini-Invasive and Obesity Surgery Unit, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Giovanni Cimmino
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia 2, 80138 Napoli, Italy
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| |
Collapse
|
25
|
Mittendorfer B, Patterson BW, Magkos F, Yoshino M, Bradley DP, Eagon JC, Klein S. β Cell function after Roux-en-Y gastric bypass surgery or reduced energy intake alone in people with obesity. JCI Insight 2023; 8:e170307. [PMID: 37166995 PMCID: PMC10371232 DOI: 10.1172/jci.insight.170307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/08/2023] [Indexed: 05/12/2023] Open
Abstract
BackgroundThe effects of diet-induced weight loss (WL) and WL after Roux-en-Y gastric bypass (RYGB) surgery on β cell function (BCF) are unclear because of conflicting results from different studies, presumably because of differences in the methods used to measure BCF, the amount of WL between treatment groups, and baseline BCF. We evaluated the effect of WL after RYGB surgery or reduced energy intake alone on BCF in people with obesity with and without type 2 diabetes.MethodsBCF (insulin secretion in relationship to plasma glucose) was assessed before and after glucose or mixed-meal ingestion before and after (a) progressive amounts (6%, 11%, 16%) of WL induced by a low-calorie diet (LCD) in people with obesity without diabetes, (b) ~20% WL after RYGB surgery or laparoscopic adjustable gastric banding (LAGB) in people with obesity without diabetes, and (c) ~20% WL after RYGB surgery or LCD alone in people with obesity and diabetes.ResultsDiet-induced progressive WL in people without diabetes progressively decreased BCF. Marked WL after LAGB or RYGB in people without diabetes did not alter BCF. Marked WL after LCD or RYGB in people with diabetes markedly increased BCF, without a difference between groups.ConclusionMarked WL increases BCF in people with obesity and diabetes but not in people with obesity without diabetes. The effect of RYGB-induced WL on BCF is not different from the effect of matched WL after LAGB or LCD alone.trial registrationNCT00981500, NCT02207777, NCT01299519.FundingNIH grants R01 DK037948, P30 DK056341, P30 DK020579, UL1 TR002345.
Collapse
|
26
|
Pannu PR, Chukwudi C, Wang J, Yang P, Esfahani FN, Saeidi N. Physical properties of food or bile redirection do not contribute to the intestinal adaptations after Roux-en-Y Gastric Bypass in rats. Obes Sci Pract 2023; 9:274-284. [PMID: 37287514 PMCID: PMC10242252 DOI: 10.1002/osp4.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 06/09/2023] Open
Abstract
Objective Metabolic and morphological adaptations of the intestine have been suggested to play a role in the various therapeutic benefits of Roux-en-Y Gastric Bypass (RYGB) surgery. However, the precise underlying mechanisms remain unclear. In this study, the effects of physical properties of ingested food and redirection of biliopancreatic secretions on intestinal remodeling were investigated in RYGB operated rats. Methods RYGB employing two different Roux Limb (RL) lengths was performed on high fat diet induced obese rats. Post-operatively, rats were fed either Solid or isocaloric Liquid diets. Metabolic and morphological remodeling of intestine was compared across both diet forms (Solid and Liquid diets) and surgical models (Short RL and Long RL). Results RYGB surgery in rats induced weight loss and improved glucose tolerance which was independent of physical properties of ingested food and biliopancreatic secretions. Intestinal glucose utilization after RYGB was not determined by either food form or biliopancreatic secretions. The GLUT-1 expression in RL was not influenced by physical properties of food. Furthermore, both physical properties of food and biliopancreatic secretions showed no effects on intestinal morphological adaptations after RYGB. Conclusion Results of this study demonstrate that physical properties of food and bile redirection are not major determinants of intestinal remodeling after RYGB in rats.
Collapse
Affiliation(s)
- Prabh R. Pannu
- Division of General and Gastrointestinal SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Engineering in Medicine and SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Shriners Children's Hospital BostonBostonMassachusettsUSA
| | - Chijioke Chukwudi
- Division of General and Gastrointestinal SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Engineering in Medicine and SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Shriners Children's Hospital BostonBostonMassachusettsUSA
| | - Jianxun Wang
- Division of General and Gastrointestinal SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Engineering in Medicine and SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Shriners Children's Hospital BostonBostonMassachusettsUSA
| | - Po‐Jen Yang
- Division of General and Gastrointestinal SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Engineering in Medicine and SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Shriners Children's Hospital BostonBostonMassachusettsUSA
- Department of SurgeryNational Taiwan University HospitalTaipeiTaiwan
| | - Farid Nasr Esfahani
- Division of General and Gastrointestinal SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Engineering in Medicine and SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Shriners Children's Hospital BostonBostonMassachusettsUSA
| | - Nima Saeidi
- Division of General and Gastrointestinal SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Engineering in Medicine and SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Shriners Children's Hospital BostonBostonMassachusettsUSA
| |
Collapse
|
27
|
Salehi M, Peterson R, Tripathy D, Pezzica S, DeFronzo R, Gastaldelli A. Insulinotropic effect of endogenous incretins is greater after gastric bypass than sleeve gastrectomy despite diminished beta-cell sensitivity to plasma incretins. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.28.23287755. [PMID: 37034666 PMCID: PMC10081422 DOI: 10.1101/2023.03.28.23287755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
BACKGROUND/AIMS Prandial hyperinsulinemia after Roux-en Y gastric bypass surgery (GB), and to lesser degree after sleeve gastrectomy (SG), has been attributed to rapid glucose flux from the gut and increased insulinotropic gut hormones. However, β-cell sensitivity to exogenous incretin is markedly reduced after GB. This study examines the effect of GB versus SG on prandial glycemia and β-cell response to increasing concentrations of endogenous incretins. METHODS Glucose kinetics, insulin secretion rate (ISR), and incretin responses to 50-gram oral glucose ingestion were compared between 10 non-diabetic subjects with GB versus 9 matched individuals with SG and 7 non-operated normal glucose tolerant controls (CN) on two days with and without administration of 200 mg sitagliptin. RESULTS Fasting glucose and hormonal levels were similar among 3 groups. Increasing plasma concentrations of endogenous incretins by 2-3-fold diminished post-OGTT glycemia and increased β-cell secretion in all 3 groups (p<0.05), but insulin secretion per insulin sensitivity (i.e., disposition index) was increased only in GB (p<0.05 for interaction). As a result, sitagliptin administration led to hypoglycemia in 3 of 10 GB. Yet, plot of the slope of ISR versus the increase in endogenous incretin concentration was smaller after GB compared to both SG and CN. CONCLUSION Augmented glycemic-induced β-cell response caused by enhanced incretin activity is unique to GB and not shared with SG. However, the β-cell sensitivity to increasing concentrations of endogenous incretin is smaller after bariatric surgery, particularly after GB, compared to non-operated controls, indicating a long-term adaptation of gut-pancreas axis after these procedures. HIGHLIGHTS What is known?: Glycemic effects of gastric bypass (GB) and sleeve gastrectomy (SG) is attributed to rapid nutrient flux and enhanced insulinotropic effects of gut hormones but β-cell sensitivity to exogenous GLP-1 or GIP is diminished after GB. What the present findings add?: Post-OGTT β-cell sensitivity to enhanced endogenous incretins by DPP4i is markedly reduced in bariatric subjects versus non-operated controls, and yet insulin secretory response (disposition index) is increased leading to hypoglycemia in GB and not SG. Significance?: Blunted sensitivity to GLP-1 may represent β-cell adaptation to massive elevation in GLP-1 secretion following bariatric surgery to protect against hypoglycemia.The differential effect of enhanced concentrations of incretins on post-OGTT insulin response (disposition index) among GB versus SG highlights a distinct adaptive process among the two procedures.Augmented insulinotropic effects of gut hormones on postprandial insulin secretory response after GB despite a reduced beta-cell sensitivity to plasma concentrations of GLP-1 makes a case for non-hormonal mechanisms of GLP-1 action after GB.Better understanding of long-term effects of bariatric surgery on gut-pancreas axis activity is critical in development of GLP-1-based strategies to address glucose abnormalities (both hyperglycemia and hypoglycemia) in these settings.
Collapse
|
28
|
Ferk F, Mišík M, Ernst B, Prager G, Bichler C, Mejri D, Gerner C, Bileck A, Kundi M, Langie S, Holzmann K, Knasmueller S. Impact of Bariatric Surgery on the Stability of the Genetic Material, Oxidation, and Repair of DNA and Telomere Lengths. Antioxidants (Basel) 2023; 12:antiox12030760. [PMID: 36979008 PMCID: PMC10045389 DOI: 10.3390/antiox12030760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Obesity causes genetic instability, which plays a key-role in the etiology of cancer and aging. We investigated the impact of bariatric surgery (BS) on DNA repair, oxidative DNA damage, telomere lengths, alterations of antioxidant enzymes and, selected proteins which reflect inflammation. The study was realized with BS patients (n = 35). DNA damage, base oxidation, BER, and NER were measured before and 1 month and 6 months after surgery with the single-cell gel electrophoresis technique. SOD and GPx were quantified spectrophotometrically, malondealdehyde (MDA) was quantified by HPLC. Telomere lengths were determined with qPCR, and plasma proteome profiling was performed with high-resolution mass spectrophotometry. Six months after the operations, reduction of body weight by 27.5% was observed. DNA damage decreased after this period, this effect was paralleled by reduced formation of oxidized DNA bases, a decline in the MDA levels and of BER and NER, and an increase in the telomere lengths. The activities of antioxidant enzymes were not altered. Clear downregulation of certain proteins (CRP, SAA1) which reflect inflammation and cancer risks was observed. Our findings show that BS causes reduced oxidative damage of DNA bases, possibly as a consequence of reduction of inflammation and lipid peroxidation, and indicate that the surgery has beneficial long-term health effects.
Collapse
Affiliation(s)
- Franziska Ferk
- Center of Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Miroslav Mišík
- Center of Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Benjamin Ernst
- Center of Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Gerhard Prager
- Department of Surgery, Medical University Vienna, 1090 Vienna, Austria
| | - Christoph Bichler
- Department of Surgery, Medical University Vienna, 1090 Vienna, Austria
| | - Doris Mejri
- Center of Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Joint Metabolome Facility, University and Medical University Vienna, 1090 Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Joint Metabolome Facility, University and Medical University Vienna, 1090 Vienna, Austria
| | - Michael Kundi
- Department for Environmental Health, Center of Public Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Sabine Langie
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Klaus Holzmann
- Center of Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Siegfried Knasmueller
- Center of Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| |
Collapse
|
29
|
Zhu J, Han J, Liu L, Liu Y, Xu W, Li X, Yang L, Gu Y, Tang W, Shi Y, Ye S, Hua F, Xiang G, Liu M, Sun Z, Su Q, Li X, Li Y, Li Y, Li H, Li Y, Yang T, Yang J, Shi L, Yu X, Chen L, Shao J, Liang J, Han X, Xue Y, Ma J, Zhu D, Mu Y. Clinical expert consensus on the assessment and protection of pancreatic islet β-cell function in type 2 diabetes mellitus. Diabetes Res Clin Pract 2023; 197:110568. [PMID: 36738836 DOI: 10.1016/j.diabres.2023.110568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/08/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Islet β-cell dysfunction is a basic pathophysiological characteristic of type 2 diabetes mellitus (T2DM). Appropriate assessment of islet β-cell function is beneficial to better management of T2DM. Protecting islet β-cell function is vital to delay the progress of type 2 diabetes mellitus. Therefore, the Pancreatic Islet β-cell Expert Panel of the Chinese Diabetes Society and Endocrinology Society of Jiangsu Medical Association organized experts to draft the "Clinical expert consensus on the assessment and protection of pancreatic islet β-cell function in type 2 diabetes mellitus." This consensus suggests that β-cell function can be clinically assessed using blood glucose-based methods or methods that combine blood glucose and endogenous insulin or C-peptide levels. Some measures, including weight loss and early and sustained euglycemia control, could effectively protect islet β-cell function, and some newly developed drugs, such as Sodium-glucose cotransporter-2 inhibitor and Glucagon-like peptide-1 receptor agonists, could improve islet β-cell function, independent of glycemic control.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junfeng Han
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Liehua Liu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Liu
- Endocrinology Department, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Xu
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaomu Li
- Department of Endocrine and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yong Gu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Tang
- Department of Endocrinology, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Yongquan Shi
- Department of Endocrinology, Changzheng Hospital, The Navy Military Medical University, Shanghai, China
| | - Shandong Ye
- Department of Endocrinology, Anhui Provincial Hospital, Hefei, China
| | - Fei Hua
- Department of Endocrinology, The First People's Hospital of Changzhou, Changzhou, China
| | - Guangda Xiang
- Department of Endocrinology, General Hospital of Central Theater Command of Chinese People' s Liberation Army, Wuhan, China
| | - Ming Liu
- Department of Endocrinology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoying Li
- Department of Endocrine and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuxiu Li
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong Li
- Department of Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yiming Li
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tao Yang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Lixin Shi
- Department of Endocrinology, Guiqian International General Hospital, Guiyang 550018, China
| | - Xuefeng Yu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaqing Shao
- Department of Endocrinology, the Affiliated Jinling Hospital of Nanjing Medical University, General Hospital of Eastern Theater Command, Nanjing, China
| | - Jun Liang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Yaomin Xue
- The First Clinical Medical Institute, Southern Medical University, Guangzhou, China
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China.
| | - Yiming Mu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
30
|
Hindsø M, Hedbäck N, Svane MS, Møller A, Martinussen C, Jørgensen NB, Dirksen C, Gasbjerg LS, Kristiansen VB, Hartmann B, Rosenkilde MM, Holst JJ, Madsbad S, Bojsen-Møller KN. The Importance of Endogenously Secreted GLP-1 and GIP for Postprandial Glucose Tolerance and β-Cell Function After Roux-en-Y Gastric Bypass and Sleeve Gastrectomy Surgery. Diabetes 2023; 72:336-347. [PMID: 36478039 DOI: 10.2337/db22-0568] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Enhanced secretion of glucagon-like peptide 1 (GLP-1) seems to be essential for improved postprandial β-cell function after Roux-en-Y gastric bypass (RYGB) but is less studied after sleeve gastrectomy (SG). Moreover, the role of the other major incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), is relatively unexplored after bariatric surgery. We studied the effects of separate and combined GLP-1 receptor (GLP-1R) and GIP receptor (GIPR) blockade during mixed-meal tests in unoperated (CON), SG-operated, and RYGB-operated people with no history of diabetes. Postprandial GLP-1 concentrations were highest after RYGB but also higher after SG compared with CON. In contrast, postprandial GIP concentrations were lowest after RYGB. The effect of GLP-1R versus GIPR blockade differed between groups. GLP-1R blockade reduced β-cell glucose sensitivity and increased or tended to increase postprandial glucose responses in the surgical groups but had no effect in CON. GIPR blockade reduced β-cell glucose sensitivity and increased or tended to increase postprandial glucose responses in the CON and SG groups but had no effect in the RYGB group. Our results support that GIP is the most important incretin hormone in unoperated people, whereas GLP-1 and GIP are equally important after SG, and GLP-1 is the most important incretin hormone after RYGB.
Collapse
Affiliation(s)
- Morten Hindsø
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Nora Hedbäck
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Maria S Svane
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Surgical Gastroenterology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Andreas Møller
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | | | - Nils B Jørgensen
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Carsten Dirksen
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Lærke S Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Viggo B Kristiansen
- Department of Surgical Gastroenterology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | | |
Collapse
|
31
|
Watkins JD, Carter S, Atkinson G, Koumanov F, Betts JA, Holst JJ, Gonzalez JT. Glucagon-like peptide-1 secretion in people with versus without type 2 diabetes: a systematic review and meta-analysis of cross-sectional studies. Metabolism 2023; 140:155375. [PMID: 36502882 DOI: 10.1016/j.metabol.2022.155375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS The aim of this systematic review was to synthesise the study findings on whether GLP-1 secretion in response to a meal tolerance test is affected by the presence of type 2 diabetes (T2D). The influence of putative moderators such as age, sex, meal type, meal form, and assay type were also explored. METHODS A literature search identified 32 relevant studies. The sample mean and SD for fasting GLP-1TOTAL and GLP-1TOTAL iAUC were extracted and used to calculate between-group standardised mean differences (SMD), which were meta-analysed using a random-effects model to derive pooled estimates of Hedges' g and 95 % prediction intervals (PI). RESULTS Pooled across 18 studies, the overall SMD in GLP-1TOTAL iAUC between individuals with T2D (n = 270, 1047 ± 930 pmol·L-1·min) and individuals without T2D (n = 402, 1204 ± 937 pmol·L-1·min) was very small, not statistically significant and heterogenous across studies (g = -0.15, p = 0.43, PI: -1.53, 1.23). Subgroup analyses demonstrated an effect of assay type whereby Hedges' g for GLP-1 iAUC was greater in individuals with, versus those without T2D when using ELISA or Mesoscale (g = 0.67 [moderate], p = 0.009), but not when using RIA (g = -0.30 [small], p = 0.10). Pooled across 30 studies, the SMD in fasting GLP-1TOTAL between individuals with T2D (n = 580, 16.2 ± 6.9 pmol·L-1) versus individuals without T2D (n = 1363, 12.4 ± 5.7 pmol·L-1) was small and heterogenous between studies (g = 0.24, p = 0.21, PI: -1.55, 2.02). CONCLUSIONS Differences in fasting GLP-1TOTAL and GLP-1TOTAL iAUC between individuals with, versus those without T2D were generally small and inconsistent between studies. Factors influencing study heterogeneity such as small sample sizes and poor matching of groups may help to explain the wide prediction intervals observed. Considerations to improve comparisons of GLP-1 secretion in T2D and potential mediating factors more important than T2D diagnosis per se are outlined. PROSPERO ID CRD42020195612.
Collapse
Affiliation(s)
- J D Watkins
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK.
| | - S Carter
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK
| | - G Atkinson
- Liverpool John Moores University, Liverpool, UK
| | - F Koumanov
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK
| | - J A Betts
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK
| | - J J Holst
- Biomedical Sciences, Endocrinology Research Section, University of Copenhagen, Denmark
| | - J T Gonzalez
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, UK.
| |
Collapse
|
32
|
Liu T, Zou X, Ruze R, Xu Q. Bariatric Surgery: Targeting pancreatic β cells to treat type II diabetes. Front Endocrinol (Lausanne) 2023; 14:1031610. [PMID: 36875493 PMCID: PMC9975540 DOI: 10.3389/fendo.2023.1031610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
Pancreatic β-cell function impairment and insulin resistance are central to the development of obesity-related type 2 diabetes mellitus (T2DM). Bariatric surgery (BS) is a practical treatment approach to treat morbid obesity and achieve lasting T2DM remission. Traditionally, sustained postoperative glycemic control was considered a direct result of decreased nutrient intake and weight loss. However, mounting evidence in recent years implicated a weight-independent mechanism that involves pancreatic islet reconstruction and improved β-cell function. In this article, we summarize the role of β-cell in the pathogenesis of T2DM, review recent research progress focusing on the impact of Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG) on pancreatic β-cell pathophysiology, and finally discuss therapeutics that have the potential to assist in the treatment effect of surgery and prevent T2D relapse.
Collapse
Affiliation(s)
- Tiantong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Xi Zou
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiang Xu
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
33
|
Sinatra VJ, Lin B, Parikh M, Berger JS, Fisher EA, Heffron SP. Bariatric surgery normalizes diabetes risk index by one month post-operation. Acta Diabetol 2023; 60:265-271. [PMID: 36350383 PMCID: PMC10868715 DOI: 10.1007/s00592-022-02002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
AIM The Diabetes risk index (DRI) is a composite of NMR-measured lipoproteins and branched chain amino acids predictive of diabetes mellitus development. Bariatric surgery is indicated in patients with severe obesity, many of whom are at high-risk for developing diabetes. Substantial weight loss occurs following bariatric surgery and sustained weight loss likely contributes to reductions in the development of diabetes and cardiovascular disease. However, some evidence suggests that bariatric surgical procedures themselves may contribute to reducing risk of these conditions independent of weight loss. We aimed to investigate DRI and its association with reductions in body weight and adiposity over one year following bariatric surgery. METHODS We examined 51 severely obese premenopausal women without diabetes. DRI, BMI, body weight and waist measurements were made before and at 1, 6 and 12 months after Roux-en-Y Gastric Bypass (RYGB) or Sleeve Gastrectomy. Values were compared to healthy women with normal BMI (18.5-24.9 kg/m2; n = 15). RESULTS Non-diabetic women with severe obesity (BMI 44.7 ± 6.2 kg/m2) exhibited significantly elevated DRI scores prior to surgery versus controls (35 [26, 39] vs 12 [1, 20]; p < 0.0001). At 1 month after surgery, BMI decreased 5.1 ± 1.1 kg/m2, but DRI decreased so that it no longer differed from that of normal BMI controls (1.9 [1, 17] vs control 12 [1, 20]; p = 0.35). Subjects continued to lose weight, whereas DRI remained similar, throughout follow-up with DRI 1.0 [1, 7] at 12 months. Changes in DRI did not correlate with changes in BMI, body weight or waist circumference at any time during follow-up. There was no difference in change in DRI between surgical procedures or pre-operative metabolic syndrome status. CONCLUSIONS Our analysis of DRI scores supports the capacity of bariatric surgery to reduce risk of developing diabetes in severely obese individuals. Our findings suggest that bariatric surgical techniques may have inherent effects that improve cardiometabolic risk independent of reductions in body weight or adiposity.
Collapse
Affiliation(s)
- Vincent J Sinatra
- Leon H Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, 435 East 30Th St. #515, New York, NY, 10016, USA
| | - BingXue Lin
- Leon H Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, 435 East 30Th St. #515, New York, NY, 10016, USA
| | - Manish Parikh
- Department of Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Jeffrey S Berger
- Leon H Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, 435 East 30Th St. #515, New York, NY, 10016, USA
- NYU Center for the Prevention of Cardiovascular Disease, NYU Grossman School of Medicine, New York, NY, USA
- Division of Vascular Surgery, Department of Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Edward A Fisher
- Leon H Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, 435 East 30Th St. #515, New York, NY, 10016, USA
- NYU Center for the Prevention of Cardiovascular Disease, NYU Grossman School of Medicine, New York, NY, USA
| | - Sean P Heffron
- Leon H Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, 435 East 30Th St. #515, New York, NY, 10016, USA.
- NYU Center for the Prevention of Cardiovascular Disease, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
34
|
Llewellyn DC, Logan Ellis H, Aylwin SJB, Oštarijaš E, Green S, Sheridan W, Chew NWS, le Roux CW, Miras AD, Patel AG, Vincent RP, Dimitriadis GK. The efficacy of GLP-1RAs for the management of postprandial hypoglycemia following bariatric surgery: a systematic review. Obesity (Silver Spring) 2023; 31:20-30. [PMID: 36502288 PMCID: PMC10107620 DOI: 10.1002/oby.23600] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/06/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Postprandial hyperinsulinemic hypoglycemia with neuroglycopenia is an increasingly recognized complication of Roux-en-Y gastric bypass and gastric sleeve surgery that may detrimentally affect patient quality of life. One likely causal factor is glucagon-like peptide-1 (GLP-1), which has an exaggerated rise following ingestion of carbohydrates after bariatric surgery. This paper sought to assess the role of GLP-1 receptor agonists (GLP-1RAs) in managing postprandial hypoglycemia following bariatric surgery. METHODS MEDLINE, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), ClinicalTrials.gov, and Scopus were systematically and critically appraised for all peer-reviewed publications that suitably fulfilled the inclusion criteria established a priori. This systematic review was developed according to the Preferred Reporting Items for Systematic Review and Meta-Analyses Protocols (PRISMA-P). It followed methods outlined in the Cochrane Handbook for Systematic Reviews of Interventions and is registered with PROSPERO (International Prospective Register of Systematic Reviews; identifier CRD420212716429). RESULTS AND CONCLUSIONS Postprandial hyperinsulinemic hypoglycemia remains a notoriously difficult to manage metabolic complication of bariatric surgery. This first, to the authors' knowledge, systematic review presents evidence suggesting that use of GLP-1RAs does not lead to an increase of hypoglycemic episodes, and, although this approach may appear counterintuitive, the findings suggest that GLP-1RAs could reduce the number of postprandial hypoglycemic episodes and improve glycemic variability.
Collapse
Affiliation(s)
- David C. Llewellyn
- Department of EndocrinologyKing's College Hospital NHS Foundation TrustLondonUK
| | - Hugh Logan Ellis
- Department of EndocrinologyKing's College Hospital NHS Foundation TrustLondonUK
| | - Simon J. B. Aylwin
- Department of EndocrinologyKing's College Hospital NHS Foundation TrustLondonUK
| | - Eduard Oštarijaš
- Institute for Translational MedicineUniversity of Pécs Medical School, University of PécsPécsHungary
| | - Shauna Green
- Department of Acute MedicineLewisham and Greenwich NHS Foundation Trust, Queen Elizabeth HospitalLondonUK
| | - William Sheridan
- Faculty of Life Sciences and MedicineSchool of Life Course Sciences, King's College LondonLondonUK
| | - Nicholas W. S. Chew
- Department of CardiologyNational University Heart Centre, National University HospitalSingaporeSingapore
| | - Carel W. le Roux
- Diabetes Complication Research Centre, School of Medicine and Medical ScienceUCD Conway Institute, University College DublinBelfieldIreland
| | - Alexander D. Miras
- Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Ameet G. Patel
- Department of Minimal Access SurgeryKing's College Hospital NHS Foundation TrustLondonUK
| | - Royce P. Vincent
- Faculty of Life Sciences and MedicineSchool of Life Course Sciences, King's College LondonLondonUK
- Department of Clinical BiochemistryKing's College Hospital NHS Foundation TrustLondonUK
| | - Georgios K. Dimitriadis
- Department of EndocrinologyKing's College Hospital NHS Foundation TrustLondonUK
- Faculty of Life Sciences and Medicine, School of Cardiovascular Medicine and Sciences, Obesity, Type 2 Diabetes and Immunometabolism Research GroupKing's College LondonLondonUK
- Division of Reproductive Health, Warwick Medical SchoolUniversity of WarwickCoventryUK
| |
Collapse
|
35
|
Buser A, Joray C, Schiavon M, Kosinski C, Minder B, Nakas CT, Man CD, Muka T, Herzig D, Bally L. Effects of Roux-en-Y Gastric Bypass and Sleeve Gastrectomy on β-Cell Function at 1 Year After Surgery: A Systematic Review. J Clin Endocrinol Metab 2022; 107:3182-3197. [PMID: 35895383 PMCID: PMC9681618 DOI: 10.1210/clinem/dgac446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/19/2022]
Abstract
Bariatric surgery is a highly effective obesity treatment resulting in substantial weight loss and improved glucose metabolism. We hereby aimed to summarize available evidence of the effect of the 2 most common bariatric surgery procedures, Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), on dynamic measures of β-cell function (BCF). A systematic search of the literature was conducted in 3 bibliographic databases for studies reporting effects of RYGB and/or SG on BCF assessed using dynamic metabolic perturbation (oral or intravenous bolus stimulation), performed before and 1 year (±3 months) after surgery. Twenty-seven unique studies (6 randomized controlled trials and 21 observational studies), involving a total of 1856 obese adults, were included for final analysis. Twenty-five and 9 studies report effects of RYGB and SG on BCF, respectively (7 studies compared the 2 procedures). Seven studies report results according to presurgical diabetes status. Owing to variable testing procedures and BCF indices reported, no meta-analysis was feasible, and data were summarized qualitatively. For both surgical procedures, most studies suggest an increase in BCF and disposition index, particularly when using oral stimulation, with a more pronounced increase in diabetic than nondiabetic individuals. Additionally, limited indications for greater effects after RYGB versus SG were found. The quality of the included studies was, in general, satisfactory. The considerable heterogeneity of test protocols and outcome measures underscore the need for a harmonization of BCF testing in future research.
Collapse
Affiliation(s)
| | | | - Michele Schiavon
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Christophe Kosinski
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Beatrice Minder
- Public Health & Primary Care Library, University Library of Bern, University of Bern, Switzerland
| | - Christos T Nakas
- Laboratory of Biometry, School of Agriculture, University of Thessaly, Nea Ionia-Volos, Magnesia, Greece
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Taulant Muka
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | | | - Lia Bally
- Correspondence: Lia Bally, MD, PhD, Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Bern University Hospital, Freiburgstrasse 15, 3010 Bern, Switzerland.
| |
Collapse
|
36
|
Vasdeki D, Koufakis T, Tsamos G, Busetto L, Zebekakis P, Kotsa K. Remission as an Emerging Therapeutic Target in Type 2 Diabetes in the Era of New Glucose-Lowering Agents: Benefits, Challenges, and Treatment Approaches. Nutrients 2022; 14:4801. [PMID: 36432488 PMCID: PMC9695991 DOI: 10.3390/nu14224801] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a progressive disease with a growing prevalence, associated with an increased risk of complications. The introduction of new classes of antidiabetic drugs into clinical practice has dramatically changed the landscape of diabetes therapy. However, despite the progress made in the pharmacotherapy of T2DM, mitigating the burden of the disease on individuals, societies and health care systems remains a challenge. Remission has recently emerged as a therapeutic target in T2DM, achievable through a wide range of interventions. Recent studies have shown that extensive lifestyle changes, such as weight reduction, bariatric surgery, and intensive glucose lowering therapy, can prompt the remission of diabetes, but some unanswered questions remain regarding its long-term effects on diabetic complications. Metabolic surgery and novel classes of glucose-lowering medications are currently the most effective interventions to induce weight loss and by extension remission in patients with diabetes; however, the ideal strategy to achieve the long-term maintenance of remission remains doubtful. In this narrative review, we discuss the available therapeutic approaches to target the remission of diabetes through personalized multimodal care, based on the latest evidence.
Collapse
Affiliation(s)
- Dimitra Vasdeki
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Georgios Tsamos
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Luca Busetto
- Department of Medicine, University of Padova, 35121 Padova, Italy
| | - Pantelis Zebekakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| |
Collapse
|
37
|
Shah A, Prasad M, Mark V, Holst JJ, Laferrère B. Glucagon-like peptide-1 effect on β-cell function varies according to diabetes remission status after Roux-en-Y gastric bypass. Diabetes Obes Metab 2022; 24:2081-2089. [PMID: 35676799 PMCID: PMC9595602 DOI: 10.1111/dom.14793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/20/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Abstract
AIMS The contribution of endogenous glucagon-like peptide (GLP)-1 to β-cell function after Roux-en-Y gastric bypass surgery (RYGB) is well established in normoglycaemic individuals, but not in those with postoperative hyperglycaemia. We, therefore, studied the effect of GLP-1 on β-cell function in individuals with varying degrees of type 2 diabetes mellitus (T2D) control after RYGB. MATERIALS AND METHODS Glucose, insulin secretion rates, β-cell glucose sensitivity and glucagon were measured during an oral glucose tolerance test before (saline only) and at 3, 12 and 24 months after RYGB with and without infusion of the GLP-1 receptor blocker exendin9-39 (EX9). The cohort was retrospectively classified based on T2D remission (REM) status at the latest study time point: REM (n = 5), persistent T2D (n = 8), or impaired glucose tolerance (n = 16). RESULTS EX9 blunted the increase in β-cell glucose sensitivity at 3 months (-44.1%, p < .001) and 12 months (-43.3%, p < .001), but not at 24 months (-12.4%, p = .243). EX9 enhanced postprandial glucagon concentrations by 62.0% at 3 months (p = .008), 46.5% at 12 months (p = .055), and 30.4% at 24 months (p = .017). EX9 counterintuitively decreased glucose concentrations at 3 months in the entire cohort (p < .001) but had no effect on glycaemia at 12 and 24 months in persistent T2D and impaired glucose tolerance; it minimally worsened glycaemia in REM at 12 months. CONCLUSIONS GLP-1 blockade reversed the improvement in β-cell function observed after RYGB, but this effect varied temporally and by REM status. GLP-1 blockade transiently and minimally worsened glycaemia only in REM, and lowered postprandial glucose values at 3 months, regardless of REM status.
Collapse
Affiliation(s)
- Ankit Shah
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Malini Prasad
- New York Obesity Nutrition Research Center, Division of Endocrinology. Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Victoria Mark
- New York Obesity Nutrition Research Center, Division of Endocrinology. Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Blandine Laferrère
- Division of Endocrinology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
38
|
Lee CJ, Clark JM, Egan JM, Carlson OD, Schweitzer M, Langan S, Brown T. Comparison of Hormonal Response to a Mixed-Meal Challenge in Hypoglycemia After Sleeve Gastrectomy vs Gastric Bypass. J Clin Endocrinol Metab 2022; 107:e4159-e4166. [PMID: 35914520 PMCID: PMC9516126 DOI: 10.1210/clinem/dgac455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Exaggerated postprandial incretin and insulin responses are well documented in postbariatric surgery hypoglycemia (PBH) after Roux-en-Y gastric bypass (RYGB). However, less is known about PBH after sleeve gastrectomy (SG). OBJECTIVE We sought to compare meal-stimulated hormonal response in those with PBH after SG vs RYGB. METHODS We enrolled 23 post-SG (12 with and 11 without PBH) and 20 post-RYGB (7 with and 13 without PBH) individuals who underwent bariatric surgery at our institution. PBH was defined as plasma glucose less than 60 mg/dL on 4-hour mixed-meal tolerance test (MTT). Islet and incretin hormones were compared across the 4 groups. RESULTS Participants (N = 43) were on average 5 years post surgery, with a mean age of 48 years, mean preoperative body mass index of 48.4, 81% female, 61% White, and 53% post SG. Regardless of PBH, the SG group showed lower glucose, glucagon, and glucagon-like peptide 1 (GLP-1) responses to MTT and similar insulin and glucose-dependent insulinotropic polypeptide (GIP) responses compared to the RYGB group. Among those with PBH, the SG group following the MTT showed a lower peak glucose (P = .02), a similar peak insulin (90.3 mU/L vs 171mU/L; P = .18), lower glucagon (P < .01), early GLP-1 response (AUC0-60 min; P = .01), and slower time to peak GIP (P = .02) compared to PBH after RYGB. CONCLUSION Among individuals with PBH, those who underwent SG were significantly different compared to RYGB in meal-stimulated hormonal responses, including lower glucagon and GLP-1 responses, but similar insulin and GIP responses. Future studies are needed to better understand the differential contribution of insulin and non-insulin-mediated mechanisms behind PBH after SG vs RYGB.
Collapse
Affiliation(s)
- Clare J Lee
- Correspondence: Clare J. Lee, MD, MHS, Division of Endocrinology and Metabolism, The Johns Hopkins University, 1830 E Monument St, Ste 333, Baltimore, MD 21287, USA.
| | - Jeanne M Clark
- Division of General Internal Medicine, Department of Medicine, The Johns Hopkins University, Baltimore, Maryland 21287, USA
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21287, USA
| | - Josephine M Egan
- National Institute On Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Olga D Carlson
- National Institute On Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Michael Schweitzer
- Department of Surgery, The Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Susan Langan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Todd Brown
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The Johns Hopkins University, Baltimore, Maryland 21287, USA
| |
Collapse
|
39
|
Sridhar A, Khan D, Abdelaal M, Elliott JA, Naughton V, Flatt PR, Le Roux CW, Docherty NG, Moffett CR. Differential effects of RYGB surgery and best medical treatment for obesity-diabetes on intestinal and islet adaptations in obese-diabetic ZDSD rats. PLoS One 2022; 17:e0274788. [PMID: 36137097 PMCID: PMC9499270 DOI: 10.1371/journal.pone.0274788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
Modification of gut-islet secretions after Roux-En-Y gastric bypass (RYBG) surgery contributes to its metabolic and anti-diabetic benefits. However, there is limited knowledge on tissue-specific hormone distribution post-RYGB surgery and how this compares with best medical treatment (BMT). In the present study, pancreatic and ileal tissues were excised from male Zucker-Diabetic Sprague Dawley (ZDSD) rats 8-weeks after RYGB, BMT (daily oral dosing with metformin 300mg/kg, fenofibrate 100mg/kg, ramipril 1mg/kg, rosuvastatin 10mg/kg and subcutaneous liraglutide 0.2mg/kg) or sham operation (laparotomy). Insulin, glucagon, somatostatin, PYY, GLP-1 and GIP expression patterns were assessed using immunocytochemistry and analyzed using ImageJ. After RYGB and BMT, body weight and plasma glucose were decreased. Intestinal morphometry was unaltered by RYGB, but crypt depth was decreased by BMT. Intestinal PYY cells were increased by both interventions. GLP-1- and GIP-cell counts were unchanged by RYGB but BMT increased ileal GLP-1-cells and decreased those expressing GIP. The intestinal contents of PYY and GLP-1 were significantly enhanced by RYGB, whereas BMT decreased ileal GLP-1. No changes of islet and beta-cell area or proliferation were observed, but the extent of beta-cell apoptosis and islet integrity calculated using circularity index were improved by both treatments. Significantly decreased islet alpha-cell areas were observed in both groups, while beta- and PYY-cell areas were unchanged. RYGB also induced a decrease in islet delta-cell area. PYY and GLP-1 colocalization with glucagon in islets was significantly decreased in both groups, while co-staining of PYY with glucagon was decreased and that with somatostatin increased. These data characterize significant cellular islet and intestinal adaptations following RYGB and BMT associated with amelioration of obesity-diabetes in ZDSD rats. The differential responses observed and particularly those within islets, may provide important clues to the unique ability of RYGB to cause diabetes remission.
Collapse
Affiliation(s)
- Ananyaa Sridhar
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Dawood Khan
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
- * E-mail:
| | - Mahmoud Abdelaal
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Jessie A. Elliott
- Department of Surgery, Trinity Centre for Health Sciences and St. James’s Hospital, Dublin, Ireland
| | - Violetta Naughton
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Peter R. Flatt
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Carel W. Le Roux
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Neil G. Docherty
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Charlotte R. Moffett
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| |
Collapse
|
40
|
Salehi M, DeFronzo R, Gastaldelli A. Altered Insulin Clearance after Gastric Bypass and Sleeve Gastrectomy in the Fasting and Prandial Conditions. Int J Mol Sci 2022; 23:ijms23147667. [PMID: 35887007 PMCID: PMC9324232 DOI: 10.3390/ijms23147667] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The liver has the capacity to regulate glucose metabolism by altering the insulin clearance rate (ICR). The decreased fasting insulin concentrations and enhanced prandial hyperinsulinemia after Roux-en-Y gastric-bypass (GB) surgery and sleeve gastrectomy (SG) are well documented. Here, we investigated the effect of GB or SG on insulin kinetics in the fasting and fed states. Method: ICR was measured (i) during a mixed-meal test (MMT) in obese non-diabetic GB (n = 9) and SG (n = 7) subjects and (ii) during a MMT combined with a hyperinsulinemic hypoglycemic clamp in the same GB and SG subjects. Five BMI-matched and non-diabetic subjects served as age-matched non-operated controls (CN). Results: The enhanced ICR during the fasting state after GB and SC compared with CN (p < 0.05) was mainly attributed to augmented hepatic insulin clearance rather than non-liver organs. The dose-response slope of the total insulin extraction rate (InsExt) of exogenous insulin per circulatory insulin value was greater in the GB and SG subjects than in the CN subjects, despite the similar peripheral insulin sensitivity among the three groups. Compared to the SG or the CN subjects, the GB subjects had greater prandial insulin secretion (ISR), independent of glycemic levels. The larger post-meal ISR following GB compared with SG was associated with a greater InsExt until it reached a plateau, leading to a similar reduction in meal-induced ICR among the GB and SG subjects. Conclusions: GB and SG alter ICR in the presence or absence of meal stimulus. Further, altered ICR after bariatric surgery results from changes in hepatic insulin clearance and not from a change in peripheral insulin sensitivity.
Collapse
Affiliation(s)
- Marzieh Salehi
- Division of Diabetes, University of Texas Health at San Antonio, San Antonio, TX 78229, USA;
- South Texas Veteran Health Care System, Audie Murphy Hospital, San Antonio, TX 78229, USA
- Correspondence: (M.S.); (A.G.); Tel.: +1-(210)-450-8560 (M.S.)
| | - Ralph DeFronzo
- Division of Diabetes, University of Texas Health at San Antonio, San Antonio, TX 78229, USA;
| | - Amalia Gastaldelli
- Division of Diabetes, University of Texas Health at San Antonio, San Antonio, TX 78229, USA;
- Cardiometabolic Risk Unit, CNR Institute of Clinical Physiology, 56124 Pisa, Italy
- Correspondence: (M.S.); (A.G.); Tel.: +1-(210)-450-8560 (M.S.)
| |
Collapse
|
41
|
Suleiman M, Marselli L, Cnop M, Eizirik DL, De Luca C, Femia FR, Tesi M, Del Guerra S, Marchetti P. The Role of Beta Cell Recovery in Type 2 Diabetes Remission. Int J Mol Sci 2022; 23:7435. [PMID: 35806437 PMCID: PMC9267061 DOI: 10.3390/ijms23137435] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes (T2D) has been considered a relentlessly worsening disease, due to the progressive deterioration of the pancreatic beta cell functional mass. Recent evidence indicates, however, that remission of T2D may occur in variable proportions of patients after specific treatments that are associated with recovery of beta cell function. Here we review the available information on the recovery of beta cells in (a) non-diabetic individuals previously exposed to metabolic stress; (b) T2D patients following low-calorie diets, pharmacological therapies or bariatric surgery; (c) human islets isolated from non-diabetic organ donors that recover from "lipo-glucotoxic" conditions; and (d) human islets isolated from T2D organ donors and exposed to specific treatments. The improvement of insulin secretion reported by these studies and the associated molecular traits unveil the possibility to promote T2D remission by directly targeting pancreatic beta cells.
Collapse
Affiliation(s)
- Mara Suleiman
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.S.); (L.M.); (C.D.L.); (M.T.); (S.D.G.)
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.S.); (L.M.); (C.D.L.); (M.T.); (S.D.G.)
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1050 Brussels, Belgium; (M.C.); (D.L.E.)
- Division of Endocrinology, ULB Erasmus Hospital, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1050 Brussels, Belgium; (M.C.); (D.L.E.)
| | - Carmela De Luca
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.S.); (L.M.); (C.D.L.); (M.T.); (S.D.G.)
| | - Francesca R. Femia
- Departmental Section of Endocrinology and Metabolism of Transplantation, AOUP Cisanello Hospital, 56124 Pisa, Italy;
| | - Marta Tesi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.S.); (L.M.); (C.D.L.); (M.T.); (S.D.G.)
| | - Silvia Del Guerra
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.S.); (L.M.); (C.D.L.); (M.T.); (S.D.G.)
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.S.); (L.M.); (C.D.L.); (M.T.); (S.D.G.)
- Departmental Section of Endocrinology and Metabolism of Transplantation, AOUP Cisanello Hospital, 56124 Pisa, Italy;
| |
Collapse
|
42
|
Gao Z, Yang J, Liang Y, Yang S, Zhang T, Gong Z, Li M. Changes in Gastric Inhibitory Polypeptide (GIP) After Roux-en-Y Gastric Bypass in Obese Patients: a Meta-analysis. Obes Surg 2022; 32:2706-2716. [PMID: 35597875 DOI: 10.1007/s11695-022-05959-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 01/19/2023]
Abstract
This meta-analysis aimed to evaluate changes in GIP after RYGB in obese patients. We searched PubMed, EMBASE, and CENTRAL for relevant studies from database inception through July 2021. Articles were eligible for inclusion if they reported pre-operative and post-operative fasting GIP levels. We found fasting GIP levels had a decreasing tendency. The decrease in fasting glucose and postprandial GIP levels was also observed. Subgroup analysis indicated diabetic subjects tended to have a more obvious fasting GIP reduction compared to non-diabetic individuals. Meta-regression showed that the amount of weight loss (% total body weight), gastric pouch volume, alimentary limb length, and biliopancreatic limb length were not related to fasting GIP decrease. Fasting GIP levels decreased significantly after RYGB in obese people, especially in diabetic patients.
Collapse
Affiliation(s)
- Zhiguang Gao
- Department of Gastrointestinal Surgery, The affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, 523320, China.
| | - Jingge Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuzhi Liang
- Department of Medical Imaging, The affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, 523320, China
| | - Sen Yang
- Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Tao Zhang
- Department of Gastrointestinal Surgery, The affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, 523320, China
| | - Zuyuan Gong
- Department of Gastrointestinal Surgery, The affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, 523320, China
| | - Min Li
- Department of Gastrointestinal Surgery, The affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, 523320, China
| |
Collapse
|
43
|
Enteroendocrine System and Gut Barrier in Metabolic Disorders. Int J Mol Sci 2022; 23:ijms23073732. [PMID: 35409092 PMCID: PMC8998765 DOI: 10.3390/ijms23073732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
With the continuous rise in the worldwide prevalence of obesity and type 2 diabetes, developing therapies regulating body weight and glycemia has become a matter of great concern. Among the current treatments, evidence now shows that the use of intestinal hormone analogs (e.g., GLP1 analogs and others) helps to control glycemia and reduces body weight. Indeed, intestinal endocrine cells produce a large variety of hormones regulating metabolism, including appetite, digestion, and glucose homeostasis. Herein, we discuss how the enteroendocrine system is affected by local environmental and metabolic signals. These signals include those arising from unbalanced diet, gut microbiota, and the host metabolic organs and their complex cross-talk with the intestinal barrier integrity.
Collapse
|
44
|
Fatima F, Hjelmesæth J, Birkeland KI, Gulseth HL, Hertel JK, Svanevik M, Sandbu R, Småstuen MC, Hartmann B, Holst JJ, Hofsø D. Gastrointestinal Hormones and β-Cell Function After Gastric Bypass and Sleeve Gastrectomy: A Randomized Controlled Trial (Oseberg). J Clin Endocrinol Metab 2022; 107:e756-e766. [PMID: 34463768 DOI: 10.1210/clinem/dgab643] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 02/04/2023]
Abstract
CONTEXT Whether Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) differentially affect postprandial gastrointestinal hormones and β-cell function in type 2 diabetes remains unclear. OBJECTIVE We aimed to compare gastrointestinal hormones and β-cell function, assessed by an oral glucose tolerance test (OGTT) 5 weeks and 1 year after surgery, hypothesizing higher glucagon-like peptide-1 (GLP-1) levels and greater β-cell response to glucose after RYGB than after SG. METHODS This study was a randomized, triple-blind, single-center trial at a tertiary care center in Norway. The primary outcomes were diabetes remission and IVGTT-derived β-cell function. Participants with obesity and type 2 diabetes were allocated (1:1) to RYGB or SG. We measured gastrointestinal hormone profiles and insulin secretion as β-cell glucose sensitivity (β-GS) derived from 180-minute OGTTs. RESULTS Participants were 106 patients (67% women), mean (SD) age 48 (10) years. Diabetes remission rates at 1 year were higher after RYGB than after SG (77% vs 48%; P = 0.002). Incremental area under the curve (iAUC0-180) GLP-1 and β-GS increased more after RYGB than after SG, with 1-year between-group difference 1173 pmol/L*min (95% CI, 569-1776; P = 0.0010) and 0.45 pmol/kg/min/mmol (95% CI, 0.15-0.75; P = 0.0032), respectively. After surgery, fasting and postprandial ghrelin levels were higher and decremental AUC0-180 ghrelin, iAUC0-180 glucose-dependent insulinotropic polypeptide, and iAUC0-60 glucagon were greater after RYGB than after SG. Diabetes remission at 1 year was associated with higher β-GS and higher GLP-1 secretion. CONCLUSION RYGB was associated with greater improvement in β-cell function and higher postprandial GLP-1 levels than SG.
Collapse
Affiliation(s)
- Farhat Fatima
- Morbid Obesity Centre, Vestfold Hospital Trust, 3103 Tønsberg, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
| | - Jøran Hjelmesæth
- Morbid Obesity Centre, Vestfold Hospital Trust, 3103 Tønsberg, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway
| | - Kåre Inge Birkeland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
- Department of Transplantation, Oslo University Hospital, 0424 Oslo, Norway
| | - Hanne Løvdal Gulseth
- Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, 0213 Oslo, Norway
| | | | - Marius Svanevik
- Morbid Obesity Centre, Vestfold Hospital Trust, 3103 Tønsberg, Norway
- Department of Surgery, Vestfold Hospital Trust, 3103 Tønsberg, Norway
| | - Rune Sandbu
- Morbid Obesity Centre, Vestfold Hospital Trust, 3103 Tønsberg, Norway
- Department of Surgery, Vestfold Hospital Trust, 3103 Tønsberg, Norway
| | - Milada Cvancarova Småstuen
- Morbid Obesity Centre, Vestfold Hospital Trust, 3103 Tønsberg, Norway
- Department of Nutrition and Management, Oslo Metropolitan University, 0130 Oslo, Norway
| | - Bolette Hartmann
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Juul Holst
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Dag Hofsø
- Morbid Obesity Centre, Vestfold Hospital Trust, 3103 Tønsberg, Norway
| |
Collapse
|
45
|
Fernández-Millán E, Guillén C. Multi-Organ Crosstalk with Endocrine Pancreas: A Focus on How Gut Microbiota Shapes Pancreatic Beta-Cells. Biomolecules 2022; 12:biom12010104. [PMID: 35053251 PMCID: PMC8773909 DOI: 10.3390/biom12010104] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes (T2D) results from impaired beta-cell function and insufficient beta-cell mass compensation in the setting of insulin resistance. Current therapeutic strategies focus their efforts on promoting the maintenance of functional beta-cell mass to ensure appropriate glycemic control. Thus, understanding how beta-cells communicate with metabolic and non-metabolic tissues provides a novel area for investigation and implicates the importance of inter-organ communication in the pathology of metabolic diseases such as T2D. In this review, we provide an overview of secreted factors from diverse organs and tissues that have been shown to impact beta-cell biology. Specifically, we discuss experimental and clinical evidence in support for a role of gut to beta-cell crosstalk, paying particular attention to bacteria-derived factors including short-chain fatty acids, lipopolysaccharide, and factors contained within extracellular vesicles that influence the function and/or the survival of beta cells under normal or diabetogenic conditions.
Collapse
Affiliation(s)
- Elisa Fernández-Millán
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, 28040 Madrid, Spain
| | - Carlos Guillén
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
46
|
Oh JH, Kang CW, Wang EK, Nam JH, Lee S, Park KH, Lee EJ, Cho A, Ku CR. Altered Glucose Metabolism and Glucose Transporters in Systemic Organs After Bariatric Surgery. Front Endocrinol (Lausanne) 2022; 13:937394. [PMID: 35909546 PMCID: PMC9329688 DOI: 10.3389/fendo.2022.937394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
The Roux-en-Y gastric bypass (RYGB) is highly effective in the remission of obesity and associated diabetes. The mechanisms underlying obesity and type 2 diabetes mellitus remission after RYGB remain unclear. This study aimed to evaluate the changes in continuous dynamic FDG uptake patterns after RYGB and examine the correlation between glucose metabolism and its transporters in variable endocrine organs using 18F-fluoro-2-deoxyglucose positron emission tomography images. Increased glucose metabolism in specific organs, such as the small intestine and various fat tissues, is closely associated with improved glycemic control after RYGB. In Otsuka Long-Evans Tokushima Fatty rats fed with high-fat diets, RYGB operation increases intestine glucose transporter expression and various fat tissues' glucose transporters, which are not affected by insulin. The fasting glucose decrement was significantly associated with RYGB, sustained weight loss, post-RYGB oral glucose tolerance test (OGTT) area under the curve (AUC), glucose transporter, or glycolytic enzymes in the small bowel and various fat tissues. High intestinal glucose metabolism and white adipose tissue-dependent glucose metabolism correlated with metabolic benefit after RYGB. These findings suggest that the newly developed glucose biodistribution accompanied by increased glucose transporters is a mechanism associated with the systemic effect of RYGB.
Collapse
Affiliation(s)
- Ju Hun Oh
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Chan Woo Kang
- Department of Internal Medicine, Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Kyung Wang
- Department of Internal Medicine, Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Ho Nam
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Soohyun Lee
- Department of Internal Medicine, Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyeong Hye Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, South Korea
| | - Eun Jig Lee
- Department of Internal Medicine, Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Arthur Cho
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Cheol Ryong Ku, ; Arthur Cho,
| | - Cheol Ryong Ku
- Department of Internal Medicine, Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Cheol Ryong Ku, ; Arthur Cho,
| |
Collapse
|
47
|
An Z, Wang H, Mokadem M. Role of the Autonomic Nervous System in Mechanism of Energy and Glucose Regulation Post Bariatric Surgery. Front Neurosci 2021; 15:770690. [PMID: 34887725 PMCID: PMC8649921 DOI: 10.3389/fnins.2021.770690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/15/2021] [Indexed: 01/06/2023] Open
Abstract
Even though lifestyle changes are the mainstay approach to address obesity, Sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB) are the most effective and durable treatments facing this pandemic and its associated metabolic conditions. The traditional classifications of bariatric surgeries labeled them as “restrictive,” “malabsorptive,” or “mixed” types of procedures depending on the anatomical rearrangement of each one of them. This conventional categorization of bariatric surgeries assumed that the “restrictive” procedures induce their weight loss and metabolic effects by reducing gastric content and therefore having a smaller reservoir. Similarly, the “malabsorptive” procedures were thought to induce their main energy homeostatic effects from fecal calorie loss due to intestinal malabsorption. Observational data from human subjects and several studies from rodent models of bariatric surgery showed that neither of those concepts is completely true, at least in explaining the multiple metabolic changes and the alteration in energy balance that those two surgeries induce. Rather, neuro-hormonal mechanisms have been postulated to underly the physiologic effects of those two most performed bariatric procedures. In this review, we go over the role the autonomic nervous system plays- through its parasympathetic and sympathetic branches- in regulating weight balance and glucose homeostasis after SG and RYGB.
Collapse
Affiliation(s)
- Zhibo An
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| | - Haiying Wang
- Department of Physiology, Basic Medical School of Jining Medical University, Jining, China
| | - Mohamad Mokadem
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States.,Fraternal Order of Eagles Diabetes Research Center, The University of Iowa, Iowa City, IA, United States.,Obesity Research and Education Initiative, The University of Iowa, Iowa City, IA, United States.,Iowa City Veterans Affairs Health Care System, Iowa City, IA, United States
| |
Collapse
|
48
|
Oppenländer L, Palit S, Stemmer K, Greisle T, Sterr M, Salinno C, Bastidas-Ponce A, Feuchtinger A, Böttcher A, Ansarullah, Theis FJ, Lickert H. Vertical sleeve gastrectomy triggers fast β-cell recovery upon overt diabetes. Mol Metab 2021; 54:101330. [PMID: 34500108 PMCID: PMC8487975 DOI: 10.1016/j.molmet.2021.101330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The effectiveness of bariatric surgery in restoring β-cell function has been described in type-2 diabetes (T2D) patients and animal models for years, whereas the mechanistic underpinnings are largely unknown. The possibility of vertical sleeve gastrectomy (VSG) to rescue far-progressed, clinically-relevant T2D and to promote β-cell recovery has not been investigated on a single-cell level. Nevertheless, characterization of the heterogeneity and functional states of β-cells after VSG is a fundamental step to understand mechanisms of glycaemic recovery and to ultimately develop alternative, less-invasive therapies. METHODS We performed VSG in late-stage diabetic db/db mice and analyzed the islet transcriptome using single-cell RNA sequencing (scRNA-seq). Immunohistochemical analyses and quantification of β-cell area and proliferation complement our findings from scRNA-seq. RESULTS We report that VSG was superior to calorie restriction in late-stage T2D and rapidly restored normoglycaemia in morbidly obese and overt diabetic db/db mice. Single-cell profiling of islets of Langerhans showed that VSG induced distinct, intrinsic changes in the β-cell transcriptome, but not in that of α-, δ-, and PP-cells. VSG triggered fast β-cell redifferentiation and functional improvement within only two weeks of intervention, which is not seen upon calorie restriction. Furthermore, VSG expanded β-cell area by means of redifferentiation and by creating a proliferation competent β-cell state. CONCLUSION Collectively, our study reveals the superiority of VSG in the remission of far-progressed T2D and presents paths of β-cell regeneration and molecular pathways underlying the glycaemic benefits of VSG.
Collapse
Affiliation(s)
- Lena Oppenländer
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, 81675, Munich, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Subarna Palit
- Institute of Computational Biology, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, TUM School of Life Sciences Weihenstephan, 85354, Freising, Germany
| | - Kerstin Stemmer
- Institute of Diabetes and Obesity, Helmholtz Center Munich, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany; Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, 35392, Giessen, Germany
| | - Tobias Greisle
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, 81675, Munich, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Ciro Salinno
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, 81675, Munich, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, 81675, Munich, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Annette Feuchtinger
- Core Facility Pathology and Tissue Analytics, Helmholtz Center Munich, 85764, Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Ansarullah
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, 85764, Neuherberg, Germany; Department of Mathematics, Technical University of Munich, 85748, Garching, Germany; Technical University of Munich, TUM School of Life Sciences Weihenstephan, 85354, Freising, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, 81675, Munich, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany; Department of Medicine, Technical University of Munich, 81675, Munich, Germany.
| |
Collapse
|
49
|
Khalid SI, Thomson KB, Becerra AZ, Omotosho P, Spagnoli A, Torquati A. Rates, Risks, and Time to Fracture in Patients Undergoing Laparoscopic Vertical Sleeve Gastrectomy versus Roux-en-Y Gastric Bypass. ANNALS OF SURGERY OPEN 2021; 2:e099. [PMID: 37637884 PMCID: PMC10455321 DOI: 10.1097/as9.0000000000000099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022] Open
Abstract
Objective To assess the rates, risks, and time to fracture in patients undergoing laparoscopic vertical sleeve gastrectomy (VSG) versus those undergoing Roux-en-Y gastric bypass (RYGB). Summary Background Data Metabolic and bariatric surgery has been implicated in significant bone loss and may increase fracture risk. Preoperative patient characteristics that might impact fracture risk and the time to fractures have not been established. Furthermore, the patient characteristics that might impact fracture risk and the time to fractures by surgical approach are unknown. Methods This population-based retrospective cohort analysis used Humana claims data from January 1, 2007 to March 31, 2017, and included 4073 patients undergoing laparoscopic RYGB and VSG as a first surgical intervention for weight loss. The primary outcomes were the incidence of fractures (Humeral, Radial or Ulnar, Pelvic, Hip, and Vertebral) within 48 months after laparoscopic VSG versus RYGB and days to these fractures. Results An analysis of total fractures (odds ratio [OR] 0.53; 95% confidence interval [CI], 0.38-0.73), vertebral fractures (OR 0.61; 95% CI, 0.38-0.99), hip fractures (OR 0.36; 95% CI, 0.15-0.84), and humeral fractures (OR 0.44; 95% CI, 0.22-0.90) demonstrated a reduction in fracture risk in patients undergoing VSG versus RYGB. Furthermore, postmenopausal status was independently associated with increased odds of total fractures and hip fractures (OR 2.18; 95% CI, 1.06-4.50; OR 5.83; 95% CI, 1.16-29.27; respectively). Likewise, osteoporosis at the time of surgery was associated with increased odds of total fractures (OR 1.61; 95% CI, 1.09-2.37), vertebral fractures (OR 2.01; 95% CI, 1.19-3.39), and hip fractures (OR 2.38; 95% CI, 1.19-4.77). Except for a significantly decreased odds of vertebral fractures in osteoporotic patients undergoing VSG versus RYGB (OR 0.41; 95% CI, 0.18-0.95), osteoporotic or postmenopausal status at the time of surgery was not found to increase odds of fracture depending on surgical intervention. However, time to fracture (total) and for all site-specific fractures, except for pelvic fractures, was significantly reduced in postmenopausal women undergoing RYGB versus VSG. Time to fracture (total) and for all site-specific fractures except pelvic and radial or ulnar fractures was significantly reduced in osteoporotic patients undergoing RYGB versus VSG. Conclusions and Relevance Though bariatric surgery is associated with several health-related benefits, increased fracture risk is an important factor to discuss with patients undergoing bariatric surgery. Bariatric surgery strategy, RYGB versus VSG, carries a differential risk of fracture, with RYGB carrying a higher risk of fracture and decreased time to fracture. Furthermore, patients who are postmenopausal or osteoporotic at the time of surgery carry an increased risk of total fractures, independent of bariatric surgery strategy. Being mindful of patient-specific fracture risk after bariatric surgery may help anticipate, identify, and prevent fractures.
Collapse
Affiliation(s)
- Syed I. Khalid
- From the Department of Surgery, Rush University Medical Center, Chicago, IL
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL
| | | | - Adan Z. Becerra
- From the Department of Surgery, Rush University Medical Center, Chicago, IL
| | - Philip Omotosho
- From the Department of Surgery, Rush University Medical Center, Chicago, IL
| | - Anna Spagnoli
- From the Department of Surgery, Rush University Medical Center, Chicago, IL
| | - Alfonso Torquati
- From the Department of Surgery, Rush University Medical Center, Chicago, IL
| |
Collapse
|
50
|
Dreyfuss JM, Yuchi Y, Dong X, Efthymiou V, Pan H, Simonson DC, Vernon A, Halperin F, Aryal P, Konkar A, Sebastian Y, Higgs BW, Grimsby J, Rondinone CM, Kasif S, Kahn BB, Foster K, Seeley R, Goldfine A, Djordjilović V, Patti ME. High-throughput mediation analysis of human proteome and metabolome identifies mediators of post-bariatric surgical diabetes control. Nat Commun 2021; 12:6951. [PMID: 34845204 PMCID: PMC8630169 DOI: 10.1038/s41467-021-27289-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 11/11/2021] [Indexed: 12/13/2022] Open
Abstract
To improve the power of mediation in high-throughput studies, here we introduce High-throughput mediation analysis (Hitman), which accounts for direction of mediation and applies empirical Bayesian linear modeling. We apply Hitman in a retrospective, exploratory analysis of the SLIMM-T2D clinical trial in which participants with type 2 diabetes were randomized to Roux-en-Y gastric bypass (RYGB) or nonsurgical diabetes/weight management, and fasting plasma proteome and metabolome were assayed up to 3 years. RYGB caused greater improvement in HbA1c, which was mediated by growth hormone receptor (GHR). GHR's mediation is more significant than clinical mediators, including BMI. GHR decreases at 3 months postoperatively alongside increased insulin-like growth factor binding proteins IGFBP1/BP2; plasma GH increased at 1 year. Experimental validation indicates (1) hepatic GHR expression decreases in post-bariatric rats; (2) GHR knockdown in primary hepatocytes decreases gluconeogenic gene expression and glucose production. Thus, RYGB may induce resistance to diabetogenic effects of GH signaling.Trial Registration: Clinicaltrials.gov NCT01073020.
Collapse
Affiliation(s)
- Jonathan M Dreyfuss
- Bioinformatics and Biostatistics Core, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Biomedical Engineering, Boston University, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yixing Yuchi
- Harvard Medical School, Boston, MA, USA
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Vertex Pharmaceuticals, Boston, MA, USA
| | - Xuehong Dong
- Harvard Medical School, Boston, MA, USA
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Endocrinology, Diabetes & Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Vissarion Efthymiou
- Harvard Medical School, Boston, MA, USA
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Hui Pan
- Bioinformatics and Biostatistics Core, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Biomedical Engineering, Boston University, Boston, MA, USA
| | - Donald C Simonson
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ashley Vernon
- Harvard Medical School, Boston, MA, USA
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Florencia Halperin
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Form Health, Boston, MA, USA
| | - Pratik Aryal
- Harvard Medical School, Boston, MA, USA
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Anish Konkar
- MedImmune, Gaithersburg, MD, USA
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | - Joseph Grimsby
- MedImmune, Gaithersburg, MD, USA
- AstraZeneca, Gaithersburg, MD, USA
| | | | - Simon Kasif
- Biomedical Engineering, Boston University, Boston, MA, USA
| | - Barbara B Kahn
- Harvard Medical School, Boston, MA, USA
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kathleen Foster
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Randy Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Allison Goldfine
- Harvard Medical School, Boston, MA, USA
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Novartis Institute for Biomedical Research, Cambridge, MA, USA
| | - Vera Djordjilović
- Department of Economics, Ca' Foscari University of Venice, Venice, Italy
| | - Mary Elizabeth Patti
- Harvard Medical School, Boston, MA, USA.
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA, USA.
| |
Collapse
|