1
|
Nemoto W, Yamagata R, Nakagawasai O, Hoshi T, Kobayashi R, Watanabe M, Tan-No K. Spinal ADAM17 contributes to the pathogenesis of painful diabetic neuropathy in leptin receptor-deficient mice. Biochem Pharmacol 2025; 233:116780. [PMID: 39880314 DOI: 10.1016/j.bcp.2025.116780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/10/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
The pathogenesis of painful diabetic neuropathy (PDN) is complicated and remains not fully understood. A disintegrin and metalloprotease 17 (ADAM17) is an enzyme that is responsible for the degradation of membrane proteins. ADAM17 is known to be activated under diabetes, but its involvement in PDN is ill defined. Thus, we studied the role of spinal ADAM17 in PDN. Leptin receptor-deficient db/db mice were used as a mouse model of type 2 diabetes. To inhibit ADAM17, we used DNA-modified siRNA against ADAM17 (siADAM17) or TAPI-1, an ADAM17 inhibitor. The number of ADAM17-positive neurons was increased in the spinal dorsal horn (lamina I-V) in db/db mice, while ADAM17-positive microglia were increased only in lamina I-II. Inhibition of spinal ADAM17 by siADAM17 or TAPI-1 significantly attenuated PDN observed in db/db mice. Among several substrates of ADAM17, angiotensin (Ang)-converting enzyme 2 (ACE2) expression was significantly decreased in the spinal plasma membrane of db/db mice. Intrathecal administration of Ang (1-7), a peptide generated by ACE2, to db/db mice produced an anti-hyperalgesic effect, which was abolished by the MAS1 receptor antagonist A779. Our findings reveal a critical role for spinal ADAM17 in the pathogenesis of PDN mediated by the degradation of ACE2, and suggest a novel pain control mechanism acting through the degradation of plasma membrane proteins in the cause of pathological pain.
Collapse
Affiliation(s)
- Wataru Nemoto
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan.
| | - Ryota Yamagata
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan
| | - Osamu Nakagawasai
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan
| | - Tomohiro Hoshi
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan
| | - Ruka Kobayashi
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan
| | - Mizuki Watanabe
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan
| | - Koichi Tan-No
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan
| |
Collapse
|
2
|
Hayashi T, Kanno SI, Watanabe C, Scuteri D, Agatsuma Y, Hara A, Bagetta G, Sakurada T, Sakurada S. Role of Spinal Cholecystokinin Octapeptide, Nociceptin/Orphanin FQ, and Hemokinin-1 in Diabetic Allodynia. Biomedicines 2024; 12:1332. [PMID: 38927539 PMCID: PMC11202074 DOI: 10.3390/biomedicines12061332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
A complication of diabetes is neuropathic pain, which is difficult to control with medication. We have confirmed that neuropathic pain due to mechanical allodynia in diabetic mice is mediated by a characteristic neuropeptide in the spinal cord. We evaluated the strength of mechanical allodynia in mice using von Frey filaments. When mice were intravenously injected with streptozotocin, mechanical allodynia appeared 3 days later. Antibodies of representative neuropeptides were intrathecally (i.t.) administered to allodynia-induced mice 7 days after the intravenous administration of streptozotocin, and allodynia was reduced by anti-cholecystokinin octapeptide antibodies, anti-nociceptin/orphanin FQ antibodies, and anti-hemokinin-1 antibodies. In contrast, i.t.-administered anti-substance P antibodies, anti-somatostatin antibodies, and anti-angiotensin II antibodies did not affect streptozotocin-induced diabetic allodynia mice. Mechanical allodynia was attenuated by the i.t. administration of CCK-B receptor antagonists and ORL-1 receptor antagonists. The mRNA level of CCK-B receptors in streptozotocin-induced diabetic allodynia mice increased in the spinal cord, but not in the dorsal root ganglion. These results indicate that diabetic allodynia is caused by cholecystokinin octapeptide, nociceptin/orphanin FQ, and hemokinin-1 released from primary afferent neurons in the spinal cord that transmit pain to the brain via the spinal dorsal horn.
Collapse
Affiliation(s)
- Takafumi Hayashi
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan; (T.H.); (Y.A.)
| | - Syu-ichi Kanno
- Division of Clinical Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan; (S.-i.K.); (A.H.)
| | - Chizuko Watanabe
- Division of Physiology and Anatomy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan;
| | - Damiana Scuteri
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Yasuyuki Agatsuma
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan; (T.H.); (Y.A.)
| | - Akiyoshi Hara
- Division of Clinical Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan; (S.-i.K.); (A.H.)
| | - Giacinto Bagetta
- Pharmacotechnology Documentation & Transfer Unit, Department of Pharmacy, Preclinical & Translational Pharmacology, Health & Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Tsukasa Sakurada
- Faculty of Pharmacy, Daiichi University of Pharmacy, Fukuoka 815-8511, Japan;
| | - Shinobu Sakurada
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| |
Collapse
|
3
|
Elsayed HRH, Ali EMT, Rabei MR, El Nashar EM, Alghamdi MA, Al-Zahrani NS, Alshehri SH, Aldahhan RA, Morsy AI. Angiotensin II Type 1 receptor blockade attenuates the neuropathological changes in the spinal cords of diabetic rats with modulation of nuclear factor erythroid 2-related factor 2/ heme oxygenase 1 system. Tissue Cell 2024; 88:102420. [PMID: 38795506 DOI: 10.1016/j.tice.2024.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Peripheral and central neuropathies frequently complicate worldwide diabetes. Compared to peripheral neuropathy, central neuropathy didn`t gain a major research interest. Angiotensin II is reported to be involved in diabetic neuropathic pain but its role in the central pathological changes in the spinal cord is not clear. Here, we study the role of Losartan; an Angiotensin II receptor 1 (AT1) antagonist in suppression of the diabetes-induced changes in the spinal cord. Three groups of rats were applied; a negative control group, a streptozotocin (STZ) diabetic group, and a group receiving STZ and Losartan. After two months, the pathological alteration in the spinal cord was investigated, and an immunohistochemical study was performed for neuronal, astrocytic, and microglial markers; nuclear protein (NeuN), Glial fibrillary acidic protein (GFAP), and Ionized calcium-binding adaptor molecule 1 (Iba1), respectively, and for an apoptosis marker; caspase-3, and the inflammatory marker; nuclear factor kappa B (NF-kB) signaling, heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2); physiological antioxidant system. The results showed that Losartan caused recovery of spinal cord changes, by inhibiting the microglial and astrocytic activation, suppressing neuronal apoptosis and NF-kB expression with activation of Nrf2/HO-1 (P<0.0005). It is suggested, herein, that Losartan can suppress diabetes-induced glial activation, inflammation, neuronal apoptosis, and oxidative stress in the spinal cord; the mechanisms that may underlie the role of AT1 antagonism in suppressing diabetic neuropathic pain.
Collapse
Affiliation(s)
- Hassan Reda Hassan Elsayed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Anatomy and Neurobiology, College of Medicine & Health Sciences, National University of Science and Technology, Sohar, Oman.
| | - Eyad Mohamed Tolba Ali
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Anatomy, Faculty of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Mohammed Rami Rabei
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Basic Medical Sciences, Faculty of Medicine, Ibn Sina University for Medical Sciences, Amman, Jordan
| | | | - Mansour Abdullah Alghamdi
- Department of Anatomy, College Medicine, King Khalid University, Abha, Saudi Arabia; Genomics and Personalized Medicine Unit, The Center for Medical and Health Research, King Khalid University, Abha, Saudi Arabia
| | - Norah Saeed Al-Zahrani
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Shaker Hassan Alshehri
- Department of Orthopedics, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Rashid A Aldahhan
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Amira Ibrahim Morsy
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Liu Y, Lu CY, Zheng Y, Zhang YM, Qian LL, Li KL, Tse G, Wang RX, Liu T. Role of angiotensin receptor-neprilysin inhibitor in diabetic complications. World J Diabetes 2024; 15:867-875. [PMID: 38766431 PMCID: PMC11099356 DOI: 10.4239/wjd.v15.i5.867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/31/2023] [Accepted: 03/25/2024] [Indexed: 05/10/2024] Open
Abstract
Diabetes mellitus is a prevalent disorder with multi-system manifestations, causing a significant burden in terms of disability and deaths globally. Angio-tensin receptor-neprilysin inhibitor (ARNI) belongs to a class of medications for treating heart failure, with the benefits of reducing hospitalization rates and mortality. This review mainly focuses on the clinical and basic investigations related to ARNI and diabetic complications, discussing possible physiological and molecular mechanisms, with insights for future applications.
Collapse
Affiliation(s)
- Ying Liu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Cun-Yu Lu
- Department of Cardiology, Xuzhou No. 1 Peoples Hospital, Xuzhou 221005, Jiangsu Province, China
| | - Yi Zheng
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yu-Min Zhang
- Department of Cardiology, Wuxi 9th People’s Hospital Affiliated to Soochow University, Wuxi 214062, Jiangsu Province, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214023, Jiangsu Province, China
| | - Ku-Lin Li
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214023, Jiangsu Province, China
| | - Gary Tse
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
- School of Nursing and Health Studies, Metropolitan University, Hong Kong 999077, China
- Kent and Medway Medical School, Kent CT2 7NT, Canterbury, United Kingdom
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214023, Jiangsu Province, China
| | - Tong Liu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
5
|
Iwane S, Nemoto W, Miyamoto T, Hayashi T, Tanaka M, Uchitani K, Muranaka T, Fujitani M, Koizumi Y, Hirata A, Tsubota M, Sekiguchi F, Tan-No K, Kawabata A. Clinical and preclinical evidence that angiotensin-converting enzyme inhibitors and angiotensin receptor blockers prevent diabetic peripheral neuropathy. Sci Rep 2024; 14:1039. [PMID: 38200077 PMCID: PMC10781693 DOI: 10.1038/s41598-024-51572-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024] Open
Abstract
Given possible involvement of the central and peripheral angiotensin system in pain processing, we conducted clinical and preclinical studies to test whether pharmacological inhibition of the angiotensin system would prevent diabetic peripheral neuropathy (DPN) accompanying type 2 diabetes mellitus (T2DM). In the preclinical study, the nociceptive sensitivity was determined in leptin-deficient ob/ob mice, a T2DM model. A clinical retrospective cohort study was conducted, using the medical records of T2DM patients receiving antihypertensives at three hospitals for nearly a decade. In the ob/ob mice, daily treatment with perindopril, an angiotensin-converting enzyme inhibitor (ACEI), or telmisartan, an angiotensin receptor blocker (ARB), but not amlodipine, an L-type calcium channel blocker (CaB), significantly inhibited DPN development without affecting the hyperglycemia. In the clinical study, the enrolled 7464 patients were divided into three groups receiving ACEIs, ARBs and the others (non-ACEI, non-ARB antihypertensives). Bonferroni's test indicated significantly later DPN development in the ARB and ACEI groups than the others group. The multivariate Cox proportional analysis detected significant negative association of the prescription of ACEIs or ARBs and β-blockers, but not CaBs or diuretics, with DPN development. Thus, our study suggests that pharmacological inhibition of the angiotensin system is beneficial to prevent DPN accompanying T2DM.
Collapse
Affiliation(s)
- Shiori Iwane
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
- Department of Pharmacy, Kansai Medical University Hospital, Hirakata, 573-1191, Japan
| | - Wataru Nemoto
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558, Japan
| | - Tomoyoshi Miyamoto
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
- School of Pharmacy, Hyogo Medical University, Kobe, 650-8530, Japan
| | - Tomonori Hayashi
- Department of Pharmacy, Kindai University Nara Hospital, Ikoma, 630-0293, Japan
| | - Masayuki Tanaka
- Department of Pharmacy, Kansai Medical University Hospital, Hirakata, 573-1191, Japan
| | - Kazuki Uchitani
- Department of Pharmacy, Kansai Medical University Hospital, Hirakata, 573-1191, Japan
| | - Tatsuya Muranaka
- Department of Pharmacy, Kansai Medical University Hospital, Hirakata, 573-1191, Japan
| | - Masanori Fujitani
- Department of Pharmacy, Seichokai Fuchu Hospital, Izumi, 594-0076, Japan
| | - Yuichi Koizumi
- Department of Pharmacy, Seichokai Fuchu Hospital, Izumi, 594-0076, Japan
| | - Atsushi Hirata
- Department of Pharmacy, Kindai University Nara Hospital, Ikoma, 630-0293, Japan
| | - Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Koichi Tan-No
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan.
| |
Collapse
|
6
|
Park KD, Son JY, Kim HK, Kim YM, Ju JS, Jo MJ, Park MK, Lee MK, Ahn DK. Differential Regulation of Intracisternally Injected Angiotensin II-Induced Mechanical Allodynia and Thermal Hyperalgesia in Rats. Biomedicines 2023; 11:3279. [PMID: 38137500 PMCID: PMC10741042 DOI: 10.3390/biomedicines11123279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The present study examined the underlying mechanisms of mechanical allodynia and thermal hyperalgesia induced by the intracisternal injection of angiotensin (Ang) II. Intracisternal Ang II injection decreased the air puff threshold and head withdrawal latency. To determine the operative receptors for each distinct type of pain behavior, we intracisternally injected Ang II receptor antagonists 2 h after Ang II injection. Losartan, an Ang II type 1 receptor (AT1R) antagonist, alleviated mechanical allodynia. Conversely, PD123319, an Ang II type 1 receptor (AT2R) antagonist, blocked only thermal hyperalgesia. Immunofluorescence analyses revealed the co-localization of AT1R with the astrocyte marker GFAP in the trigeminal subnucleus caudalis and co-localization of AT2R with CGRP-positive neurons in the trigeminal ganglion. Intracisternal pretreatment with minocycline, a microglial inhibitor, did not affect Ang II-induced mechanical allodynia, whereas L-α-aminoadipate, an astrocyte inhibitor, significantly inhibited Ang II-induced mechanical allodynia. Furthermore, subcutaneous pretreatment with botulinum toxin type A significantly alleviated Ang II-induced thermal hyperalgesia, but not Ang II-induced mechanical allodynia. These results indicate that central Ang II-induced nociception is differentially regulated by AT1R and AT2R. Thus, distinct therapeutic targets must be regulated to overcome pain symptoms caused by multiple underlying mechanisms.
Collapse
Affiliation(s)
- Ki-Don Park
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (K.-D.P.); (J.-Y.S.); (H.-K.K.); (Y.-M.K.); (J.-S.J.); (M.-J.J.)
| | - Jo-Young Son
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (K.-D.P.); (J.-Y.S.); (H.-K.K.); (Y.-M.K.); (J.-S.J.); (M.-J.J.)
| | - Hak-Kyun Kim
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (K.-D.P.); (J.-Y.S.); (H.-K.K.); (Y.-M.K.); (J.-S.J.); (M.-J.J.)
| | - Yu-Mi Kim
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (K.-D.P.); (J.-Y.S.); (H.-K.K.); (Y.-M.K.); (J.-S.J.); (M.-J.J.)
| | - Jin-Sook Ju
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (K.-D.P.); (J.-Y.S.); (H.-K.K.); (Y.-M.K.); (J.-S.J.); (M.-J.J.)
| | - Min-Jeong Jo
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (K.-D.P.); (J.-Y.S.); (H.-K.K.); (Y.-M.K.); (J.-S.J.); (M.-J.J.)
| | - Min-Kyoung Park
- Department of Dental Hygiene, Kyung-Woon University, Gumi 39160, Republic of Korea;
| | - Min-Kyung Lee
- Department of Dental Hygiene, Dong-Eui University, Busan 47340, Republic of Korea;
| | - Dong-Kuk Ahn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (K.-D.P.); (J.-Y.S.); (H.-K.K.); (Y.-M.K.); (J.-S.J.); (M.-J.J.)
| |
Collapse
|
7
|
Nemoto W, Yamagata R, Nakagawasai O, Tan-No K. Angiotensin-Related Peptides and Their Role in Pain Regulation. BIOLOGY 2023; 12:biology12050755. [PMID: 37237567 DOI: 10.3390/biology12050755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
Angiotensin (Ang)-generating system has been confirmed to play an important role in the regulation of fluid balance and blood pressure and is essential for the maintenance of biological functions. Ang-related peptides and their receptors are found throughout the body and exhibit diverse physiological effects. Accordingly, elucidating novel physiological roles of Ang-generating system has attracted considerable research attention worldwide. Ang-generating system consists of the classical Ang-converting enzyme (ACE)/Ang II/AT1 or AT2 receptor axis and the ACE2/Ang (1-7)/MAS1 receptor axis, which negatively regulates AT1 receptor-mediated responses. These Ang system components are expressed in various tissues and organs, forming a local Ang-generating system. Recent findings indicate that changes in the expression of Ang system components under pathological conditions are involved in the development of neuropathy, inflammation, and their associated pain. Here, we summarized the effects of changes in the Ang system on pain transmission in various organs and tissues involved in pain development process.
Collapse
Affiliation(s)
- Wataru Nemoto
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Ryota Yamagata
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Osamu Nakagawasai
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Koichi Tan-No
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| |
Collapse
|
8
|
Karádi DÁ, Galambos AR, Lakatos PP, Apenberg J, Abbood SK, Balogh M, Király K, Riba P, Essmat N, Szűcs E, Benyhe S, Varga ZV, Szökő É, Tábi T, Al-Khrasani M. Telmisartan Is a Promising Agent for Managing Neuropathic Pain and Delaying Opioid Analgesic Tolerance in Rats. Int J Mol Sci 2023; 24:7970. [PMID: 37175678 PMCID: PMC10178315 DOI: 10.3390/ijms24097970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Despite the large arsenal of analgesic medications, neuropathic pain (NP) management is not solved yet. Angiotensin II receptor type 1 (AT1) has been identified as a potential target in NP therapy. Here, we investigate the antiallodynic effect of AT1 blockers telmisartan and losartan, and particularly their combination with morphine on rat mononeuropathic pain following acute or chronic oral administration. The impact of telmisartan on morphine analgesic tolerance was also assessed using the rat tail-flick assay. Morphine potency and efficacy in spinal cord samples of treated neuropathic animals were assessed by [35S]GTPγS-binding assay. Finally, the glutamate content of the cerebrospinal fluid (CSF) was measured by capillary electrophoresis. Oral telmisartan or losartan in higher doses showed an acute antiallodynic effect. In the chronic treatment study, the combination of subanalgesic doses of telmisartan and morphine ameliorated allodynia and resulted in a leftward shift in the dose-response curve of morphine in the [35S]GTPγS binding assay and increased CSF glutamate content. Telmisartan delayed morphine analgesic-tolerance development. Our study has identified a promising combination therapy composed of telmisartan and morphine for NP and opioid tolerance. Since telmisartan is an inhibitor of AT1 and activator of PPAR-γ, future studies are needed to analyze the effect of each component.
Collapse
Affiliation(s)
- David Á. Karádi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
| | - Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
| | - Péter P. Lakatos
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (P.P.L.); (É.S.); (T.T.)
| | - Joost Apenberg
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
| | - Sarah K. Abbood
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
| | - Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, Faculty of Science and Engineering, University of Groningen, 9700 AD Groningen, The Netherlands
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
| | - Pál Riba
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
| | - Nariman Essmat
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
| | - Edina Szűcs
- Biological Research Center, Institute of Biochemistry, Temesvári krt. 62, H-6726 Szeged, Hungary; (E.S.); (S.B.)
| | - Sándor Benyhe
- Biological Research Center, Institute of Biochemistry, Temesvári krt. 62, H-6726 Szeged, Hungary; (E.S.); (S.B.)
| | - Zoltán V. Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
| | - Éva Szökő
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (P.P.L.); (É.S.); (T.T.)
| | - Tamás Tábi
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (P.P.L.); (É.S.); (T.T.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
| |
Collapse
|
9
|
Sun Y, Liu X, Wang L, Li L, Quan X, Shi H, Wang T, Mei L, Chen Y, Zhang Y, Li J, Meng R, Wang J, Dai F. Losartan attenuates acetic acid enema-induced visceral hypersensitivity by inhibiting the ACE1/Ang II/AT1 receptor axis in enteric glial cells. Eur J Pharmacol 2023; 946:175650. [PMID: 36907262 DOI: 10.1016/j.ejphar.2023.175650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Enteric glial cells (EGCs) play an important role in visceral hypersensitivity associated with irritable bowel syndrome (IBS). Losartan (Los) is known to reduce pain; however, its function in IBS is unclear. The present study aimed to investigate Los's therapeutic effect on visceral hypersensitivity in IBS rats. Thirty rats were randomly divided into control, acetic acid enema (AA), AA + Los low, medium and high dose groups in vivo. EGCs were treated with lipopolysaccharide (LPS) and Los in vitro. The molecular mechanisms were explored by assessing the expression of EGC activation markers, pain mediators, inflammatory factors and angiotensin-converting enzyme 1(ACE1)/angiotensin II (Ang II)/Ang II type 1 (AT1) receptor axis molecules in colon tissue and EGCs. The results showed that the rats in the AA group showed significantly higher visceral hypersensitivity than the control rats, which was alleviated by different doses of Los. The expression of GFAP, S100β, substance P (SP), calcitonin gene-related peptide (CGRP), transient receptor potential vanilloid 1 (TRPV1), tumor necrosis factor (TNF), interleukin-1β (IL-1β) and interleukin-6 (IL-6) was considerably increased in colonic tissues of AA group rats and LPS-treated EGCs compared with control rats and EGCs, and reduced by Los. In addition, Los reversed ACE1/Ang II/AT1 receptor axis upregulation in AA colon tissues and LPS-treated EGCs. These results show that Los inhibits ACE1/Ang II/AT1 receptor axis upregulation by suppressing EGC activation, resulting in reduced expression of pain mediators and inflammatory factors, thereby alleviating visceral hypersensitivity.
Collapse
Affiliation(s)
- Yating Sun
- Department of Gastroenterology, Second Affifiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Xiaohui Liu
- Department of Bone and Joint Surgery, Second Affifiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Lianli Wang
- Department of Gastroenterology, Second Affifiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Laifu Li
- Department of Gastroenterology, Second Affifiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Xiaojing Quan
- Department of Gastroenterology, Second Affifiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Haitao Shi
- Department of Gastroenterology, Second Affifiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Ting Wang
- Department of Gastroenterology, Second Affifiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Lin Mei
- Department of Gastroenterology, Second Affifiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Yindi Chen
- Department of Gastroenterology, Xi'an People's Hospital, Xi'an, China.
| | - Yue Zhang
- Department of Gastroenterology, Second Affifiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Jingyao Li
- Department of Gastroenterology, Second Affifiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Ruiting Meng
- Department of Gastroenterology, Second Affifiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Jinhai Wang
- Department of Gastroenterology, Second Affifiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Fei Dai
- Department of Gastroenterology, Second Affifiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
10
|
Clinical Characteristics, Treatment Effectiveness, and Predictors of Response to Pharmacotherapeutic Interventions Among Patients with Herpetic-Related Neuralgia: A Retrospective Analysis. Pain Ther 2021; 10:1511-1522. [PMID: 34510386 PMCID: PMC8586103 DOI: 10.1007/s40122-021-00303-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The treatment for herpetic-related neuralgia focuses on symptom control by use of antiviral drugs, anticonvulsants, and tricyclic antidepressants. We aimed to explore the clinical characteristics associated with medication responsiveness, and to build a classifier for identification of patients who have risk of inadequate pain management. METHODS We recruited herpetic-related neuralgia patients during a 3-year period. Patients were stratified into a medication-resistant pain (MRP) group when the pain decrease in the visual analogue scale (VAS) is < 3 points, and otherwise a medication-sensitive pain (MSP) group. Multivariate logistic regression was performed to determine the factors associated with MRP. We fitted four machine learning (ML) models, namely logistic regression, random forest, supporting vector machines (SVM), and naïve Bayes with clinical characteristics gathered at admission to identify patients with MRP. RESULTS A total of 213 patients were recruited, and 132 (61.97%) patients were diagnosed with MRP. Subacute herpes zoster (HZ) (vs. acute, OR 8.95, 95% CI 3.15-29.48, p = 0.0001), severe lesion (vs. mild lesion, OR 3.84, 95% CI 1.44-10.81, p = 0.0084), depressed mood (unit increase OR 1.10, 95% CI 1.00-1.20, p = 0.0447), and hypertension (hypertension, vs. no hypertension, OR 0.36, 95% CI 0.14-0.87, p = 0.0266) were significantly associated with MRP. Among four ML models, SVM had the highest accuracy (0.917) and receiver operating characteristic-area under the curve (0.918) to discriminate MRP from MSP. Phase of disease is the most important feature when fitting ML models. CONCLUSIONS Clinical characteristics collected before treatment could be adopted to identify patients with MRP.
Collapse
|
11
|
Echeverría-Rodríguez O, Godínez-Chaparro B, Gómez-García MV, Mata-Bermúdez A, Del Valle-Mondragón L, Gallardo-Ortíz IA, Villalobos-Molina R. Participation of angiotensin-(1-7) in exercise-induced analgesia in rats with neuropathic pain. Peptides 2021; 146:170670. [PMID: 34634392 DOI: 10.1016/j.peptides.2021.170670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/21/2021] [Accepted: 10/02/2021] [Indexed: 11/29/2022]
Abstract
Exercise reduces neuropathic pain in animals and humans. Recent studies indicate that training exercise favors the synthesis and action of angiotensin-(1-7) (Ang-(1-7)), a vasoactive peptide of the renin-angiotensin system (RAS), in various tissues. Interestingly, Ang-(1-7) also relieves neuropathic pain; however, it remains to be elucidated whether exercise mitigates this type of pain through Ang-(1-7). In this study, we investigated the role of Ang-(1-7) in exercise-induced analgesia in a neuropathic pain model. Male Wistar rats were ligated of lumbar spinal nerves (L5 and L6) or sham-operated. Then, they were subjected to acute (2-h) or chronic (4-week) exercise protocols. Tactile allodynia was evaluated before and after each exercise intervention. Microosmotic pumps were implanted subcutaneously for the release of Ang-(1-7) or A779 (selective Mas receptor (MasR; Ang-(1-7) receptor) antagonist). Plasma levels of Ang II and Ang-(1-7) were quantified by HPLC. Spinal nerve ligation (SNL) produced tactile allodynia. Both acute and chronic exercise reversed this neuropathic behavior. A779 treatment prevented the antiallodynic effect induced by each exercise protocol. SNL increased the plasma Ang II/Ang-(1-7) ratio; however, exercise did not modify it. Acute treatment with Ang-(1-7) via MasR mimicked exercise-mediated antinociception. Collectively, these results suggest that activation of the Ang-(1-7)/MasR axis of the RAS represents a potential novel mechanism by which exercise attenuates neuropathic pain in rats.
Collapse
Affiliation(s)
- Omar Echeverría-Rodríguez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, Mexico; Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Xochimilco, Coyoacán, Ciudad de México, Mexico.
| | - Beatriz Godínez-Chaparro
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Xochimilco, Coyoacán, Ciudad de México, Mexico
| | - María V Gómez-García
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Xochimilco, Coyoacán, Ciudad de México, Mexico
| | - Alfonso Mata-Bermúdez
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Xochimilco, Coyoacán, Ciudad de México, Mexico
| | - Leonardo Del Valle-Mondragón
- Departamento de Farmacología, Instituto Nacional de Cardiología "Ignacio Chávez", Tlalpan, Ciudad de México, Mexico
| | - Itzell A Gallardo-Ortíz
- Unidad de Investigación en Biomedicina y Carrera de Enfermería, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Rafael Villalobos-Molina
- Unidad de Investigación en Biomedicina y Carrera de Enfermería, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
12
|
Király K, Karádi DÁ, Zádor F, Mohammadzadeh A, Galambos AR, Balogh M, Riba P, Tábi T, Zádori ZS, Szökő É, Fürst S, Al-Khrasani M. Shedding Light on the Pharmacological Interactions between μ-Opioid Analgesics and Angiotensin Receptor Modulators: A New Option for Treating Chronic Pain. Molecules 2021; 26:6168. [PMID: 34684749 PMCID: PMC8537077 DOI: 10.3390/molecules26206168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
The current protocols for neuropathic pain management include µ-opioid receptor (MOR) analgesics alongside other drugs; however, there is debate on the effectiveness of opioids. Nevertheless, dose escalation is required to maintain their analgesia, which, in turn, contributes to a further increase in opioid side effects. Finding novel approaches to effectively control chronic pain, particularly neuropathic pain, is a great challenge clinically. Literature data related to pain transmission reveal that angiotensin and its receptors (the AT1R, AT2R, and MAS receptors) could affect the nociception both in the periphery and CNS. The MOR and angiotensin receptors or drugs interacting with these receptors have been independently investigated in relation to analgesia. However, the interaction between the MOR and angiotensin receptors has not been excessively studied in chronic pain, particularly neuropathy. This review aims to shed light on existing literature information in relation to the analgesic action of AT1R and AT2R or MASR ligands in neuropathic pain conditions. Finally, based on literature data, we can hypothesize that combining MOR agonists with AT1R or AT2R antagonists might improve analgesia.
Collapse
MESH Headings
- Analgesics/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Chronic Pain/drug therapy
- Humans
- Neuralgia/drug therapy
- Nociception/drug effects
- Pain Management/methods
- Proto-Oncogene Mas
- Receptors, Angiotensin/drug effects
- Receptors, Angiotensin/metabolism
- Receptors, Opioid/agonists
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Dávid Á. Karádi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Ferenc Zádor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (T.T.); (É.S.)
| | - Amir Mohammadzadeh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Pál Riba
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Tamás Tábi
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (T.T.); (É.S.)
| | - Zoltán S. Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Éva Szökő
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (T.T.); (É.S.)
| | - Susanna Fürst
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| |
Collapse
|
13
|
Bakalkin G, Kahle A, Sarkisyan D, Watanabe H, Lukoyanov N, Carvalho LS, Galatenko V, Hallberg M, Nosova O. Coordinated expression of the renin-angiotensin genes in the lumbar spinal cord: Lateralization and effects of unilateral brain injury. Eur J Neurosci 2021; 54:5560-5573. [PMID: 34145943 DOI: 10.1111/ejn.15360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/29/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022]
Abstract
In spite of its apparent symmetry, the spinal cord is asymmetric in its reflexes and gene expression patterns including leftward expression bias of the opioid and glutamate genes. To examine whether this is a general phenomenon for neurotransmitter and neurohormonal genes, we here characterized expression and co-expression (transcriptionally coordinated) patterns of genes of the renin-angiotensin system (RAS) that is involved in neuroprotection and pathological neuroplasticity in the left and right lumbar spinal cord. We also tested whether the RAS expression patterns were affected by unilateral brain injury (UBI) that rewired lumbar spinal neurocircuits. The left and right halves of the lumbar spinal cord were analysed in intact rats, and rats with left- or right-sided unilateral cortical injury, and left- or right-sided sham surgery. The findings were (i) lateralized expression of the RAS genes Ace, Agtr2 and Ren with higher levels on the left side; (ii) the asymmetry in coordination of the RAS gene expression that was stronger on the right side; (iii) the decay in coordination of co-expression of the RAS and neuroplasticity-related genes induced by the right-side but not left-side sham surgery and UBI; and (iv) the UBI-induced shift to negative regulatory interactions between RAS and neuroplasticity-related genes on the contralesional spinal side. Thus, the RAS genes may be a part of lateralized gene co-expression networks and have a role in a side-specific regulation of spinal neurocircuits.
Collapse
Affiliation(s)
- Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Anika Kahle
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Daniil Sarkisyan
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Hiroyuki Watanabe
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Nikolay Lukoyanov
- Departamento de Biomedicina, Faculdade de Medicina; Instituto de Investigação e Inovação em Saúde; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Liliana S Carvalho
- Departamento de Biomedicina, Faculdade de Medicina; Instituto de Investigação e Inovação em Saúde; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Vladimir Galatenko
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia.,Evotec International GmbH, Göttingen, Germany
| | - Mathias Hallberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Olga Nosova
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Hong Y, Wu W, Wang S, Hao Q, Zheng H, Li S, Zhang X, Sun R. Angiotensin II type 1 receptor blockade attenuates posttraumatic stress disorder-related chronic pain by inhibiting glial activation in the spinal cord. Neuropharmacology 2021; 196:108704. [PMID: 34252405 DOI: 10.1016/j.neuropharm.2021.108704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/01/2021] [Accepted: 07/05/2021] [Indexed: 12/28/2022]
Abstract
Clinically, posttraumatic stress disorder (PTSD) and chronic pain are highly comorbid conditions, but the underlying mechanisms of and therapeutic strategies against PTSD-related pain remain unclear. Our previous studies suggested that dysregulation of neuroinflammation contributes to the development of stress-induced hyperalgesia. Recent studies reported that angiotensin II was a 'stress-related hormone', and could induce glial activation by stimulating the type 1 receptor (AT1R). In the present study, we aimed to investigate whether AT1R blockade could attenuate mechanical allodynia induced by PTSD-like stress. Adult male rats were exposed to single prolonged stress (SPS) to establish a model of PTSD-pain comorbidity. Our results showed that SPS exposure increased the levels of angiotensin II in the hippocampus, prefrontal cortex (PFC) and spinal cord; intraperitoneal injection of losartan attenuated SPS-induced mechanical allodynia, and suppressed SPS-induced glial activation (both microglia and astrocytes) and proinflammatory cytokine expression in the PFC and spinal cord, but not in the hippocampus. We further showed that intrathecal injection of losartan also exerted anti-hyperalgesic effect and suppressed SPS-induced glial activation and proinflammatory cytokine expression in the spinal cord. These results indicated that AT1R blockade by losartan attenuated mechanical allodynia induced by PTSD-like stress, and this may be attributed to the suppression of glial activation and proinflammatory cytokine expression in the spinal cord. Although further research is warranted to verify our findings in female rodents and to assess pharmacological effects of AT1R blockade in PFC and hippocampus, our study suggested the therapeutic potential of targeting AT1R in the treatment of PTSD-related chronic pain.
Collapse
Affiliation(s)
- Yishun Hong
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenyao Wu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quanshui Hao
- Department of Anesthesiology, Huanggang Central Hospital, Huanggang, China
| | - Hua Zheng
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Rao Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
15
|
Epigenetic modification of BDNF mediates neuropathic pain via miR-30a-3p/EP300 axis in CCI rats. Biosci Rep 2021; 40:226778. [PMID: 33103739 PMCID: PMC7670569 DOI: 10.1042/bsr20194442] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 09/08/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Recent investigation of microRNAs on chronic pain has developed a breakthrough in neuropathic pain management. In the present study, decreased expression of miR-30a-3p was reported using qRT-PCR analysis and loss of miR-30a-3p promoted neuropathic pain progression in sciatic nerve chronic constrictive injury rats through determining the pain threshold. We predicted miR-30a-3p could target E-cadherin transcriptional activator (EP300) via bioinformatics analysis. Meanwhile, we found that brain-derived neurotrophic factor (BDNF) is involved in neuropathic pain. Here, we exhibited that EP300 epigenetically up-regulated BDNF via enhancing acetylated histone H3 and H4 on the promoter. For another, miR-30a-3p was able to modify the level of BDNF and acetylated histone H3 and H4. Loss of miR-30a-3p enhanced EP300 and BDNF colocalization in CCI rats. Subsequently, it was shown that increased EP300 induced neuropathic pain by an enhancement of neuronal BDNF level in vivo. To sum up, it was revealed that epigenetic modification of BDNF promoted neuropathic pain via EP300 induced by miR-30a-3p in CCI rats.
Collapse
|
16
|
Abstract
Growing evidence implicates the renin-angiotensin system (RAS) in multiple facets of neuropathic pain (NP). This narrative review focuses primarily on the major bioactive RAS peptide, Angiotensin II (Ang II), and its receptors, namely type 1 (AT1R) and type 2 (AT2R). Both receptors are involved in the development of NP and represent potential therapeutic targets. We first discuss the potential role of Ang II receptors in modulation of NP in the central nervous system. Ang II receptor expression is widespread in circuits associated with the perception and modulation of pain, but more studies are required to fully characterize receptor distribution, downstream signaling, and therapeutic potential of targeting the central nervous system RAS in NP. We then describe the peripheral neuronal and nonneuronal distribution of the RAS, and its contribution to NP. Other RAS modulators (such as Ang (1-7)) are briefly reviewed as well. AT1R antagonists are analgesic across different pain models, including NP. Several studies show neuronal protection and outgrowth downstream of AT2R activation, which may lead to the use of AT2R agonists in NP. However, blockade of AT2R results in analgesia. Furthermore, expression of the RAS in the immune system and a growing appreciation of neuroimmune crosstalk in NP add another layer of complexity and therapeutic potential of targeting this pathway. A growing number of human studies also hint at the analgesic potential of targeting Ang II signaling. Altogether, Ang II receptor signaling represents a promising, far-reaching, and novel strategy to treat NP.
Collapse
|
17
|
Zanata GC, Pinto LG, da Silva NR, Lopes AHP, de Oliveira FFB, Schivo IRS, Cunha FQ, McNaughton P, Cunha TM, Silva RL. Blockade of bradykinin receptors or angiotensin II type 2 receptor prevents paclitaxel-associated acute pain syndrome in mice. Eur J Pain 2021; 25:189-198. [PMID: 32965065 DOI: 10.1002/ejp.1660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Paclitaxel (PCX) is the first-line choice for the treatment of several types of cancer, including breast, ovarian, and lung cancers. However, patients who receive even a single dose with PCX commonly develop mechanical and cold allodynia, a symptom known as PCX-associated acute pain syndrome (P-APS). Here, we assessed possible involvement of kinin-kallikrein and renin-angiotensin systems in P-APS in mice. METHODS Male mice C57Bl/6 wild type (WT) and knockouts for bradykinin receptors, B1 (B1-/- ) and B2 (B2-/- ), were used. Mechanical and cold allodynia were evaluated by using von Frey filaments and acetone test, respectively. P-APS was induced by administration of PCX 4 mg/kg, i.v.. ACE inhibitors (captopril and enalapril), antagonists for angiotensin II type 1 (losartan) and type 2 ([AT2R]; PD123319 and EMA 401) receptors were administrated prior the treatment with PCX. RT-PCR was used to analyse the expression of mRNA for B1, B2 and AT2R receptors. RESULTS Administration of PCX in B1-/- and B2-/- mice induced lower mechanical and cold allodynia compared to the WT. However, the pre-treatment with ACE inhibitors reduced the development of mechanical and cold allodynia in P-APS. Surprisingly, we found that mice pre-treatment with the PD123319 or EMA401, but not losartan, prevented the development of mechanical and cold allodynia induced by PCX. CONCLUSION Our results demonstrated the involvement of bradykinin receptors B1 and B2 as well as AT2R in the induction of P-APS in mice, and suggest the use of AT2R antagonists as a potential therapy for the prevention of P-APS in humans. SIGNIFICANCE Kinin-kallikrein and renin-angiotensin systems, through B1, B2 and AT2 receptors, potentiates paclitaxel-associated acute pain syndrome (P-APS) in mice. Antagonists for AT2R are potential alternatives to prevent P-APS.
Collapse
Affiliation(s)
- Graziele C Zanata
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
- Barão de Maua University Center, Ribeirão Preto, Brazil
| | - Larissa G Pinto
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Nicole R da Silva
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Alexandre H P Lopes
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Francisco F B de Oliveira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Ieda R S Schivo
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Peter McNaughton
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Rangel L Silva
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
18
|
Sha NN, Zhang JL, Poon CCW, Li WX, Li Y, Wang YF, Shi W, Lin FH, Lin WP, Wang YJ, Zhang Y. Differential responses of bone to angiotensin II and angiotensin(1-7): beneficial effects of ANG(1-7) on bone with exposure to high glucose. Am J Physiol Endocrinol Metab 2021; 320:E55-E70. [PMID: 33103451 DOI: 10.1152/ajpendo.00158.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Osteoporosis, diabetes, and hypertension are common concurrent chronic disorders. This study aimed to explore the respective effects of angiotensin II (ANG II) and angiotensin(1-7) [ANG(1-7)], active peptides in the renin-angiotensin system, on osteoblasts and osteoclasts under high-glucose level, as well as to investigate the osteo-preservative effects of ANG II type 1 receptor (AT1R) blocker and ANG(1-7) in diabetic spontaneously hypertensive rats (SHR). ANG II and ANG(1-7), respectively, decreased and increased the formation of calcified nodules and alkaline phosphatase activity in MC3T3-E1 cells under high-glucose level, and respectively stimulated and inhibited the number of matured osteoclasts and pit resorptive area in RANKL-induced bone marrow macrophages. Olmesartan and Mas receptor antagonist A779 could abolish those effects. ANG II and ANG(1-7), respectively, downregulated and upregulated the expressions of osteogenesis factors in MC3T3-E1 cells. ANG II promoted the expressions of cathepsin K and MMP9 in RAW 264.7 cells, whereas ANG(1-7) repressed these osteoclastogenesis factors. ANG II rapidly increased the phosphorylation of Akt and p38 in RAW 264.7 cells, whereas ANG(1-7) markedly reduced the phosphorylation of p38 and ERK under high-glucose condition. After treatments of diabetic SHR with valsartan and ANG(1-7), a significant increase in trabecular bone area, bone mineral density, and mechanical strength was only found in the ANG(1-7)-treated group. Treatment with ANG(1-7) significantly suppressed the increase in renin expression and ANG II content in the bone of SHR. Taken together, ANG II/AT1R and ANG(1-7)/Mas distinctly regulated the differentiation and functions of osteoblasts and osteoclasts upon exposure to high-glucose condition. ANG(1-7) could protect SHR from diabetes-induced osteoporosis.
Collapse
Affiliation(s)
- Nan-Nan Sha
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Jia-Li Zhang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Christina Chui-Wa Poon
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, China
| | - Wen-Xiong Li
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Li
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Fei Wang
- National TCM Clinical Research Base of Hypertension, the affiliated Hospital of Shandong University of TCM, Jinan, China
| | - Wei Shi
- National TCM Clinical Research Base of Hypertension, the affiliated Hospital of Shandong University of TCM, Jinan, China
| | - Fu-Hui Lin
- Department of Orthopaedic, Shenzhen Pingle Orthopaedic Hospital, Shenzhen, China
| | - Wen-Ping Lin
- Department of Orthopaedic, Shenzhen Pingle Orthopaedic Hospital, Shenzhen, China
| | - Yong-Jun Wang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Yan Zhang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| |
Collapse
|
19
|
Muñoz N, Pedreañez A, Mosquera J. Angiotensin II Induces Increased Myocardial Expression of Receptor for Advanced Glycation End Products, Monocyte/Macrophage Infiltration and Circulating Endothelin-1 in Rats With Experimental Diabetes. Can J Diabetes 2020; 44:651-656. [PMID: 32654973 DOI: 10.1016/j.jcjd.2020.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES It is known that the receptor for advanced glycation end products (RAGE) activation is involved in the pathogenesis of cardiovascular disease in diabetes. Previous studies have shown the presence of angiotensin II (Ang II) in diabetes, suggesting a role for this hormone during the disease. However, the association between RAGE and Ang II during pathologic cardiac remodelling after streptozotocin (STZ)-induced diabetes remains unclear. Because Ang II is capable of inducing pro-inflammatory events, blocking its production (enalapril), and its action on its receptor (losartan) could decrease inflammatory events in the myocardium in this experimental model of diabetes. Thus, the aim of this study was to assess the association between RAGE expression, inflammatory events and Ang II in the myocardium during STZ-induced diabetes. METHODS Diabetes was induced by intravenous injection of STZ in Sprague-Dawley rats. Myocardial expressions of RAGE, monocyte/macrophage (ED-1-positive cells) infiltration and the intercellular adhesion molecule-1 were determined by histochemical methods. Levels of circulating endothelin-1 (ET-1) were determined by enzyme-linked immunoassay. Effects of Ang II included blocking using losartan (15 mg/kg body weight per day by gastric gavage) or enalapril (18 mg/kg body weight per day by gastric gavage). RESULTS Increased expression of both RAGE and ED-1 was seen in the myocardium, but expression of myocardial vascular intercellular adhesion molecule-1 remained unchanged. Circulating levels of ET-1 in STZ rats were increased. Renin‒angiotensin system inhibition decreased expression of myocardial RAGE, ED-1 and ET-1. CONCLUSIONS The present findings suggest a role for Ang II in myocardial inflammation in STZ-induced diabetes mediated by RAGE and ET-1.
Collapse
Affiliation(s)
- Nelson Muñoz
- Facultad de Ciencias de la Salud, Universidad Nacional de Chimborazo, Carrera de Medicina, Riobamba, Ecuador
| | - Adriana Pedreañez
- Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Jesús Mosquera
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette," Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela.
| |
Collapse
|
20
|
Pechlivanova D, Krumova E, Kostadinova N, Mitreva-Staleva J, Grozdanov P, Stoynev A. Protective effects of losartan on some type 2 diabetes mellitus-induced complications in Wistar and spontaneously hypertensive rats. Metab Brain Dis 2020; 35:527-538. [PMID: 31997264 DOI: 10.1007/s11011-020-00534-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 01/17/2020] [Indexed: 01/13/2023]
Abstract
Diabetes mellitus type 2 (T2DM) is characterized by resistance of insulin receptors and/or inadequate insulin secretion resulting in metabolic and structural complications including vascular diseases, arterial hypertension and different behavioral alterations. We aimed to study the effects of the antihypertensive angiotensin AT1 receptor antagonist losartan on the T2DM-induced changes of exploratory behavior, anxiety, nociception and short term memory in normotensive Wistar and spontaneously hypertensive rats (SHRs). The experimental model of T2DM induced by a combination of high fat diet and streptozotocin, decreased exploratory activity and increased the level of carbonylated proteins in selected brain structures in both strains; as well it increased corticosterone level, pain threshold, anxiety-like behavior, and decline short term memory only in SHRs. Losartan treatment alleviated some of the T2DM- induced metabolic complications, abolished the T2DM-induced hypo activity, and normalized the corticosterone level, carbonylated proteins in brain, nociception and memory. Losartan did not exert effect on the anxiety behavior in both strains. We showed that T2DM exerted more pronounced negative effects on the rats with comorbid hypertension as compared to normotensive rats. Overall effects on the studied behavioral parameters are related to decreased exploration of the new environment, increased anxiety-like behavior, and decline in short-term memory. The systemic sub-chronic treatment with an angiotensin AT1 receptor antagonist losartan ameliorated most of these complications.
Collapse
Affiliation(s)
- Daniela Pechlivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria.
| | - Ekaterina Krumova
- Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria
| | - Nedelina Kostadinova
- Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria
| | - Jeny Mitreva-Staleva
- Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria
| | - Petar Grozdanov
- Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria
| | - Alexander Stoynev
- Department of Pathophysiology, Medical University-Sofia, St. Georgi Sofiyski Str. 1, 1431, Sofia, Bulgaria
| |
Collapse
|
21
|
Combating atherosclerosis with targeted Diosmin nanoparticles-treated experimental diabetes. Invest New Drugs 2020; 38:1303-1315. [PMID: 32048108 DOI: 10.1007/s10637-020-00905-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
Abstract
Diabetes with poor glycemic control is accompanying with an increased risk of disease namely atherosclerotic cardiovascular. Diosmin (DSN), which is obtained from citrus fruit used to assist the treatment of hemorrhoids or chronic venous atherosclerosis diseases, has an antioxidant, anti-hyperglycemic and anti-inflammatory effect. DSN is characterized by poor water solubility which limits its absorption by the gastrointestinal tract. To overcome this limitation, this study was designed to increase DSN bioavailability and solubility, through its loading on polymeric matrix; hydroxypropyl starch (HPS) and Poly lactide-glycolide-chitin (PLGA/chitin) to prepare Diosmin nanoparticles (DSN-NPs). Two methods were used to prepare DSN- NPs; Emulsion-solvent evaporation and Acid-base neutralization followed by further assessment on diabetes induced atherosclerosis The study was conducted on 50 animals assigned into 5 groups with 10 animals in each group: Group I: Normal rats received only normal saline, Group II: Diabetic rats, Group III: diabetic rats received oral DSN, Group IV: diabetic rats received DSN loaded HPS, Group V: diabetic rats received DSN loaded PLGA/chitin. Levels of total cholesterol, triglycerides, HDL-cholesterol, insulin, MDA and NO. plasminogen activator inhibitor-1 PAI-1), Paraoxonase-1(PON1), transforming growth factor-β1 (TGF-β1), NF-ҡB and Ang II were estimated. Our study revealed that, there was statistically significant difference between DSN treated group compared with DSN loaded HPS treated group and DSN loaded PLGA/chitin. Furthermore, the results obtained clearly disclosed no statistically significant difference between DSN loaded PLGA/chitin and control group exhibited DSN loaded PLGA/chitin has the higher ability to counteract the atherosclerosis factors induced by diabetes in all rats.
Collapse
|
22
|
Nemoto W, Yamagata R, Nakagawasai O, Nakagawa K, Hung WY, Fujita M, Tadano T, Tan-No K. Effect of spinal angiotensin-converting enzyme 2 activation on the formalin-induced nociceptive response in mice. Eur J Pharmacol 2020; 872:172950. [PMID: 31987711 DOI: 10.1016/j.ejphar.2020.172950] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 12/30/2022]
Abstract
We have previously demonstrated that the phosphorylation of p38 MAPK, through spinal AT1 receptor activation, is involved in formalin-induced nociception and follows accompanied by the increase in spinal angiotensin (Ang) II levels. We have also found that Ang (1-7), an N-terminal fragment of Ang II generated by ACE2, prevents the Ang II-induced nociceptive behavior via spinal MAS1 and the inhibition of p38 MAPK phosphorylation. Here, we examined whether the ACE2 activator diminazene aceturate (DIZE) can prevent the formalin-induced nociception in mice. The i.t. administration of DIZE attenuated the second, but not the first phase of formalin-induced nociceptive response. An increase in the activity of spinal ACE2 was measured following DIZE administration. The inhibitory effect of DIZE on nociception was abolished by the i.t. co-administration of the MAS1 antagonist A779. The i.t. administration of Ang (1-7) showed a similar effect on the second phase of the response which was also attenuated by A779. Furthermore, DIZE and Ang (1-7) each inhibited the formalin-induced phosphorylation of p38 MAPK on the dorsal lumbar spinal cord. This inhibition was again prevented by A779. ACE2 was expressed in neurons and microglia but absent from astrocytes in the superficial dorsal horn. Our data show that the i.t.-administered DIZE attenuates the second phase of the formalin-induced nociception which is accompanied by the inhibition of p38 MAPK phosphorylation. They also suggest the involvement of MAS1 activation on spinal neurons and microglia in response to the increase in Ang (1-7) following ACE2 activation.
Collapse
Affiliation(s)
- Wataru Nemoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan.
| | - Ryota Yamagata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Osamu Nakagawasai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Koharu Nakagawa
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Wan-Yi Hung
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Maho Fujita
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Takeshi Tadano
- Complementary and Alternative Medicine Clinical Research and Development, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Koichi Tan-No
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| |
Collapse
|
23
|
Yamagata R, Nemoto W, Nakagawasai O, Takahashi K, Tan-No K. Downregulation of spinal angiotensin converting enzyme 2 is involved in neuropathic pain associated with type 2 diabetes mellitus in mice. Biochem Pharmacol 2020; 174:113825. [PMID: 31987854 DOI: 10.1016/j.bcp.2020.113825] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/22/2020] [Indexed: 12/30/2022]
Abstract
We have previously reported that the spinal angiotensin (Ang) system is involved in the modulation of streptozotocin (STZ)-induced diabetic neuropathic pain in mice. An important drawback of this model however is the fact that the neuropathic pain is independent of hyperglycemia and produced by the direct stimulation of peripheral nerves. Here, using the leptin deficient ob/ob mouse as a type 2 diabetic model, we examined whether the spinal Ang system was involved in naturally occuring diabetic neuropathic pain. Blood glucose levels were increased in ob/ob mice at 5-15 weeks of age. Following the hyperglycemia, persistent tactile and thermal hyperalgesia were observed at 11-14 and 9-15 weeks of age, respectively, which was ameliorated by insulin treatment. At 12 weeks of age, the expression of Ang-converting enzyme (ACE) 2 in the spinal plasma membrane fraction was decreased in ob/ob mice. Spinal ACE2 was expressed in neurons and microglia but the number of NeuN-positive neurons was decreased in ob/ob mice. In addition, the intrathecal administration of Ang (1-7) and SB203580, a p38 MAPK inhibitor, attenuated hyperalgesia in ob/ob mice. The phosphorylation of spinal p38 MAPK was also attenuated by Ang (1-7) in ob/ob mice. These inhibitory effects of Ang (1-7) were prevented by A779, a Mas receptor antagonist. In conclusion, we revealed that the Ang (1-7)-generating system is downregulated in ob/ob mice and is accompanied by a loss of ACE2-positive neurons. Furthermore, Ang (1-7) decreased the diabetic neuropathic pain through inhibition of p38 MAPK phosphorylation via spinal Mas receptors.
Collapse
Affiliation(s)
- Ryota Yamagata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Wataru Nemoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | - Osamu Nakagawasai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Kohei Takahashi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Koichi Tan-No
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| |
Collapse
|
24
|
Losartan, an Angiotensin II Type 1 Receptor Antagonist, Alleviates Mechanical Hyperalgesia in a Rat Model of Chemotherapy-Induced Neuropathic Pain by Inhibiting Inflammatory Cytokines in the Dorsal Root Ganglia. Mol Neurobiol 2019; 56:7408-7419. [PMID: 31037647 DOI: 10.1007/s12035-019-1616-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) adversely impacts quality of life and a challenge to treat with existing drugs used for neuropathic pain. Losartan, an angiotensin II type 1 receptor (AT1R) antagonist widely used to treat hypertension, has been reported to have analgesic effects in several pain models. In this study, we assessed losartan's analgesic effect on paclitaxel-induced neuropathic pain (PINP) in rats and its mechanism of action in dorsal root ganglion (DRG). Rats received intraperitoneal injections of 2 mg/kg paclitaxel on days 0, 2, 4, and 6 and received single or multiple intraperitoneal injections of losartan potassium dissolved in phosphate-buffered saline at various times. The mechanical thresholds, protein levels of inflammatory cytokines, and cellular location of AT1R and interleukin 1β (IL-1β) in the DRG were assessed with behavioral testing, Western blotting, and immunohistochemistry, respectively. Data were analyzed by two-way repeated-measures analysis of variance for the behavioral test or the Mann-Whitney U test for the Western blot analysis and immunohistochemistry. Single and multiple injections of losartan ameliorated PINP, and losartan delayed the development of PINP. Paclitaxel significantly increased, and losartan subsequently decreased, the expression levels of inflammatory cytokines, including IL-1β and tumor necrosis factor α (TNF-α), in the lumbar DRG. AT1R and IL-1β were expressed in both neurons and satellite cells and losartan decreased the intensity of IL-1β in the DRG. Losartan ameliorates PINP by decreasing inflammatory cytokines including IL-1β and TNF-α in the DRG. Our findings provide a new or add-on therapy for CIPN patients.
Collapse
|
25
|
Losartan treatment attenuates the development of neuropathic thermal hyperalgesia induced by peripheral nerve injury in rats. Life Sci 2019; 220:147-155. [DOI: 10.1016/j.lfs.2019.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/25/2019] [Accepted: 02/02/2019] [Indexed: 12/19/2022]
|
26
|
Ogata Y, Nemoto W, Yamagata R, Nakagawasai O, Shimoyama S, Furukawa T, Ueno S, Tan‐No K. Anti‐hypersensitive effect of angiotensin (1‐7) on streptozotocin‐induced diabetic neuropathic pain in mice. Eur J Pain 2018; 23:739-749. [DOI: 10.1002/ejp.1341] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Yoshiki Ogata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences Tohoku Medical and Pharmaceutical University Aoba‐ku, Sendai Japan
- Department of Neurophysiology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Wataru Nemoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences Tohoku Medical and Pharmaceutical University Aoba‐ku, Sendai Japan
| | - Ryota Yamagata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences Tohoku Medical and Pharmaceutical University Aoba‐ku, Sendai Japan
| | - Osamu Nakagawasai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences Tohoku Medical and Pharmaceutical University Aoba‐ku, Sendai Japan
| | - Shuji Shimoyama
- Department of Neurophysiology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Tomonori Furukawa
- Department of Neurophysiology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Shinya Ueno
- Department of Neurophysiology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Koichi Tan‐No
- Department of Pharmacology, Faculty of Pharmaceutical Sciences Tohoku Medical and Pharmaceutical University Aoba‐ku, Sendai Japan
| |
Collapse
|
27
|
Yamagata R, Nemoto W, Nakagawasai O, Hung WY, Shima K, Endo Y, Tan-No K. Etidronate attenuates tactile allodynia by spinal ATP release inhibition in mice with partial sciatic nerve ligation. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:349-357. [PMID: 30515539 DOI: 10.1007/s00210-018-1593-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022]
Abstract
Etidronate is widely used as a therapeutic agent for osteoporosis. We have recently shown that intrathecal administration of etidronate into mice produces an analgesic effect against the capsaicin-induced nociceptive behavior. However, the effect of etidronate on neuropathic pain at the spinal level remains unknown. Therefore, we examined whether etidronate attenuates pain after partial sciatic nerve ligation (PSNL). We evaluated tactile allodynia 7 days after PSNL by measuring paw withdrawal with the von Frey filament test. The mRNA and protein levels of SLC17A9 in the ipsilateral lumbar dorsal spinal cord of PSNL-operated mice were determined using real-time PCR and western blotting, respectively. PSNL-induced tactile allodynia was attenuated by oral and intrathecal administration of etidronate, with maximum efficiency at 90 and 60 min after injection, respectively. The anti-allodynic effect of intrathecally administered etidronate was completely inhibited by an intrathecal administration of adenosine triphosphate (ATP). The solute carrier family, SLC17, mediates the transport of pain transmitters, like ATP and glutamate. Indeed, we detected several members of the SLC17 family in the mouse dorsal lumbar spinal cord. Among the detected mRNAs, only Slc17a9, encoding for neuronal vesicular ATP transporter, was significantly increased upon PSNL. SLC17A9 protein levels were also significantly increased. In mice subjected to PSNL, SLC17A9 was present in neurons and microglia, but not in astrocytes of the lumbar superficial dorsal horn. Collectively, our results suggest that etidronate produces its anti-allodynic effects by inhibiting SLC17A9-dependent exocytotic ATP release from the dorsal horn in mice subjected to PSNL.
Collapse
Affiliation(s)
- Ryota Yamagata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Wataru Nemoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Osamu Nakagawasai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Wan-Yi Hung
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Kazuhiro Shima
- Division of Oral Molecular Regulation, Graduate School of Dentistry, Tohoku University, 4-1 Seiryocho, Aoba-ku, Sendai, 980-8575, Japan
| | - Yasuo Endo
- Division of Oral Molecular Regulation, Graduate School of Dentistry, Tohoku University, 4-1 Seiryocho, Aoba-ku, Sendai, 980-8575, Japan
| | - Koichi Tan-No
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan.
| |
Collapse
|
28
|
Nemoto W. Behavioral and Molecular Pharmacological Study of the Role of Angiotensin II in Spinal Pain Transmission. YAKUGAKU ZASSHI 2018; 138:1235-1240. [DOI: 10.1248/yakushi.18-00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Wataru Nemoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
29
|
Dewanjee S, Das S, Das AK, Bhattacharjee N, Dihingia A, Dua TK, Kalita J, Manna P. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol 2018; 833:472-523. [DOI: 10.1016/j.ejphar.2018.06.034] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023]
|
30
|
Pechlivanova D, Petrov K, Grozdanov P, Nenchovska Z, Tchekalarova J, Stoynev A. Intracerebroventricular infusion of angiotensin AT2 receptor agonist novokinin aggravates some diabetes-mellitus-induced alterations in Wistar rats. Can J Physiol Pharmacol 2018; 96:471-478. [PMID: 29028440 DOI: 10.1139/cjpp-2017-0428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Cumulative data suggest the significant role of the renin-angiotensin system in the development of the pathological consequences of diabetes mellitus (DM). Newly synthesized AT2 receptor agonists gained importance as a target for creating new antihypertensives. The aim of the present work was to study the effects of peptide AT2 agonist novokinin, infused intracerebroventricularly, on the consequences of the streptozotocin-induced type 1 DM (T1DM) in Wistar rats. Food and water consumption, body mass, urine excretion (metabolic cages), motor activity (open-field test), anxiety (elevated plus maze), nociception (paw pressure analgesimeter test), spatial memory (T-maze alternation test), and plasma levels of glucose and corticosterone (ELISA) were assessed 2 weeks after the T1DM induction. Novokinin increased water and food consumption, as well as urine output, and reduced mass gain in the control rats. Diabetic rats demonstrated hyperalgesia, increased level of plasma corticosterone, decreased motor and exploratory activity, and impaired spatial memory. Novokinin infusion increased water intake, diuresis, and mortality rate, decreased food intake, exacerbated diabetes-induced hyperalgesia, and provoked anxiety-like behavior but improved spatial memory in diabetic rats. These initial data suggest that angiotensin AT2 receptors participate in the pathogenesis of T1DM-induced complications in the function of the nervous system.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Corticosterone/metabolism
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Drinking/drug effects
- Exploratory Behavior/drug effects
- Infusions, Intraventricular
- Male
- Memory, Short-Term/drug effects
- Nociception/drug effects
- Oligopeptides/administration & dosage
- Oligopeptides/pharmacology
- Rats
- Rats, Wistar
- Receptor, Angiotensin, Type 2/agonists
Collapse
Affiliation(s)
- D Pechlivanova
- a Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - K Petrov
- b Department of Pathophysiology, Medical University-Sofia, 1 Georgi Sofiiski Str., 1431 Sofia, Bulgaria
| | - P Grozdanov
- c Institute of Microbiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Z Nenchovska
- a Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - J Tchekalarova
- a Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - A Stoynev
- b Department of Pathophysiology, Medical University-Sofia, 1 Georgi Sofiiski Str., 1431 Sofia, Bulgaria
| |
Collapse
|
31
|
Nemoto W, Yamagata R, Ogata Y, Nakagawasai O, Tadano T, Tan-No K. Inhibitory effect of angiotensin (1-7) on angiotensin III-induced nociceptive behaviour in mice. Neuropeptides 2017; 65:71-76. [PMID: 28559062 DOI: 10.1016/j.npep.2017.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/24/2017] [Accepted: 05/21/2017] [Indexed: 12/14/2022]
Abstract
We have previously demonstrated that the intrathecal (i.t.) administration of angiotensin (Ang) II into mice produces a nociceptive behaviour consisting of scratching, biting and licking accompanied by the phosphorylation of p38 MAPK in the spinal cord, which was mediated through AT1 receptors. Both the p38 MAPK phosphorylation and subsequent nociceptive behaviour were attenuated by the i.t. co-administration of Ang (1-7), an N-terminal fragment of Ang II, that acted via Mas receptors. On the other hand, a C-terminal fragment of Ang II, namely Ang III, was also shown to induce a nociceptive behaviour by acting upon AT1 receptors on spinal astrocytes and neurons, and was found to be more potent than Ang II. However, the inhibitory effect of Ang (1-7) on the Ang III-induced nociceptive behaviour remains unclear. Thus, here we examined whether Ang (1-7) can attenuate the Ang III-induced nociceptive behaviour and activation of spinal p38 MAPK. The i.t. administration of Ang (1-7) (1-100fmol) dose-dependently attenuated the Ang III (1pmol)-induced nociceptive behaviour in mice. Moreover, the inhibitory effect of Ang (1-7) at a dose of 100fmol was prevented by A779 (30fmol), a Mas receptor antagonist. Western blot analysis showed that the phosphorylation of p38 MAPK induced by the i.t. administration of Ang III (1pmol) was also attenuated by Ang (1-7) (100fmol), and this inhibition was prevented by A779 (30fmol). Furthermore, we showed that in the lumbar superficial dorsal horn, Mas receptors are expressed in neurons and microglia but absent from astrocytes. Together, these results suggest that the i.t. administration of Ang (1-7) attenuates the nociceptive behaviour and accompanying p38 MAPK phosphorylation induced by Ang III, and that this effect is likely mediated through Mas receptors on spinal neurons.
Collapse
Affiliation(s)
- Wataru Nemoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Ryota Yamagata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Yoshiki Ogata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Osamu Nakagawasai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Takeshi Tadano
- Department of Health Care Medical Research, Venture Business Laboratory, Kanazawa University, Kanazawa 920-1192, Japan
| | - Koichi Tan-No
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| |
Collapse
|
32
|
Papanas N, Ziegler D. Emerging drugs for diabetic peripheral neuropathy and neuropathic pain. Expert Opin Emerg Drugs 2016; 21:393-407. [DOI: 10.1080/14728214.2016.1257605] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|