1
|
Carbone F, Després JP, Ioannidis JPA, Neeland IJ, Garruti G, Busetto L, Liberale L, Ministrini S, Vilahur G, Schindler TH, Macedo MP, Di Ciaula A, Krawczyk M, Geier A, Baffy G, Faienza MF, Farella I, Santoro N, Frühbeck G, Yárnoz-Esquiroz P, Gómez-Ambrosi J, Chávez-Manzanera E, Vázquez-Velázquez V, Oppert JM, Kiortsis DN, Sbraccia P, Zoccali C, Portincasa P, Montecucco F. Bridging the gap in obesity research: A consensus statement from the European Society for Clinical Investigation. Eur J Clin Invest 2025:e70059. [PMID: 40371883 DOI: 10.1111/eci.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/12/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Most forms of obesity are associated with chronic diseases that remain a global public health challenge. AIMS Despite significant advancements in understanding its pathophysiology, effective management of obesity is hindered by the persistence of knowledge gaps in epidemiology, phenotypic heterogeneity and policy implementation. MATERIALS AND METHODS This consensus statement by the European Society for Clinical Investigation identifies eight critical areas requiring urgent attention. Key gaps include insufficient long-term data on obesity trends, the inadequacy of body mass index (BMI) as a sole diagnostic measure, and insufficient recognition of phenotypic diversity in obesity-related cardiometabolic risks. Moreover, the socio-economic drivers of obesity and its transition across phenotypes remain poorly understood. RESULTS The syndemic nature of obesity, exacerbated by globalization and environmental changes, necessitates a holistic approach integrating global frameworks and community-level interventions. This statement advocates for leveraging emerging technologies, such as artificial intelligence, to refine predictive models and address phenotypic variability. It underscores the importance of collaborative efforts among scientists, policymakers, and stakeholders to create tailored interventions and enduring policies. DISCUSSION The consensus highlights the need for harmonizing anthropometric and biochemical markers, fostering inclusive public health narratives and combating stigma associated with obesity. By addressing these gaps, this initiative aims to advance research, improve prevention strategies and optimize care delivery for people living with obesity. CONCLUSION This collaborative effort marks a decisive step towards mitigating the obesity epidemic and its profound impact on global health systems. Ultimately, obesity should be considered as being largely the consequence of a socio-economic model not compatible with optimal human health.
Collapse
Affiliation(s)
- Federico Carbone
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Genoa, Italy
| | - Jean-Pierre Després
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Québec, Canada
- VITAM - Centre de Recherche en santé Durable, Centre intégré Universitaire de santé et de Services Sociaux de la Capitale-Nationale, Québec, Québec, Canada
| | - John P A Ioannidis
- Department of Medicine, Stanford Cardiovascular Institute, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
- Department of Epidemiology and Population Health, Stanford Cardiovascular Institute, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
- Department of Biomedical Science, Stanford Cardiovascular Institute, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
| | - Ian J Neeland
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Cardiovascular Disease, Harrington Heart and Vascular Institute, Cleveland, Ohio, USA
| | - Gabriella Garruti
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Luca Busetto
- Department of Medicine, University of Padua, Padua, Italy
| | - Luca Liberale
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Genoa, Italy
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Cardiology Department, Luzerner Kantonspital, Lucerne, Switzerland
| | - Gemma Vilahur
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, IIB-Sant Pau, Barcelona, Spain
- CiberCV, Institute Carlos III, Madrid, Spain
| | - Thomas H Schindler
- Washington University in St. Louis, Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, Cardiovascular Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maria Paula Macedo
- APDP - Diabetes Portugal, Education and Research Center, Lisbon, Portugal
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Agostino Di Ciaula
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Marcin Krawczyk
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Andreas Geier
- Interdisciplinary Amyloidosis Center of Northern Bavaria, University Hospital of Würzburg, Würzburg, Germany
- Department of Internal Medicine II, Hepatology, University Hospital of Würzburg, Würzburg, Germany
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Ilaria Farella
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
| | - Nicola Santoro
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Medicine and Health Sciences, "V. Tiberio" University of Molise, Campobasso, Italy
| | - Gema Frühbeck
- Department of Endocrinology and Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Yárnoz-Esquiroz
- Department of Endocrinology and Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Gómez-Ambrosi
- Department of Endocrinology and Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Emma Chávez-Manzanera
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Jean-Michel Oppert
- Department of Nutrition, Pitié-Salpêtrière Hospital (AP-HP), Human Nutrition Research Center Ile-de-France (CRNH IdF), Sorbonne University, Paris, France
| | - Dimitrios N Kiortsis
- Atherothrombosis Research Centre, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Paolo Sbraccia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, New York, USA
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy
- Associazione Ipertensione Nefrologia Trapianto Renale (IPNET), c/o Nefrologia, Grande Ospedale Metropolitano, Reggio Calabria, Italy
| | - Piero Portincasa
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Genoa, Italy
| |
Collapse
|
2
|
Aggarwal K, Bansal V, Mahmood R, Kanagala SG, Jain R. Asthma and Cardiovascular Diseases: Uncovering Common Ground in Risk Factors and Pathogenesis. Cardiol Rev 2025; 33:219-226. [PMID: 37594265 DOI: 10.1097/crd.0000000000000600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Asthma and cardiovascular diseases (CVDs) are the 2 common and complex health problems with a substantial global impact. Epidemiological studies indicate that asthma and CVDs are common, with evidence supporting their cooccurrence. Inflammation, oxidative stress, obesity, metabolic syndrome, smoking, secondhand smoke exposure, physical inactivity, and environmental exposures are all risk factors for asthma and CVDs. In addition, inflammatory and immunological pathways, autonomic dysfunction, endothelial dysfunction, thrombosis, coagulation, and common genetic risk factors contribute to the asthma-CVD relationship. Asthmatic individuals have higher morbidity and mortality rates related to CVDs and high-risk factors. Techniques such as screening for CVDs in asthma patients, pharmaceutical therapy, and lifestyle changes are critical for effectively managing these comorbid illnesses. Understanding the link between asthma and CVD is necessary for integrated and clinical management approaches to enhance patient outcomes and lessen the burden of these related diseases.
Collapse
Affiliation(s)
| | - Vasu Bansal
- From the Dayanand Medical College and Hospital, Ludhiana, India
| | - Ramsha Mahmood
- Avalon University School of Medicine, Willemstad, Curacao
| | | | - Rohit Jain
- Penn State Health Milton S. Hershey Medical Center, PA
| |
Collapse
|
3
|
Zhang SJ, Wang SW, Liu SY, Li P, Huang DL, Zeng XX, Lan T, Ruan YP, Shi HJ, Zhang X. Epicardial adipose tissue: a new link between type 2 diabetes and heart failure-a comprehensive review. Heart Fail Rev 2025; 30:477-491. [PMID: 39730926 DOI: 10.1007/s10741-024-10478-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
Diabetic cardiomyopathy is a unique cardiomyopathy that is common in diabetic patients, and it is also a diabetic complication for which no effective treatment is currently available. Moreover, relevant studies have revealed that a link exists between type 2 diabetes and heart failure and that abnormal thickening of EAT is inextricably linked to the development of diabetic heart failure. Numerous clinical studies have demonstrated that EAT is implicated in the pathophysiologic process of diabetic myocardial disease. In this overview, we will introduce the physiology, pathophysiology of the disease and potential therapeutic strategies, knowledge gaps, and future directions of the role of epicardial adipose tissue in type 2 diabetes mellitus and heart failure to promote the development of novel therapeutic approaches to improve the prognosis of patients with diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Si-Jia Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
| | - Si-Wei Wang
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
- Laboratory Animal Resources Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Shi-Yu Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
| | - Ping Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
| | - De-Lian Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
| | - Xi-Xi Zeng
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Tian Lan
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
- Laboratory Animal Resources Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Ye-Ping Ruan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
- Chinese Medicine Plant Essential Oil Zhejiang Engineering Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hai-Jiao Shi
- The Third Department of Cardiology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Liaoning, 116600, China.
| | - Xin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China.
- Chinese Medicine Plant Essential Oil Zhejiang Engineering Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
4
|
Pop ASK, Dănilă MD, Giuchici S, Buriman DG, Lolescu BM, Sturza A, Muntean DM, Lascu A. Epicardial adipose tissue as target of the incretin-based therapies in cardio-metabolic pathologies: a narrative review. Can J Physiol Pharmacol 2025; 103:182-192. [PMID: 40048723 DOI: 10.1139/cjpp-2024-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
The epicardial adipose tissue (EAT) serves in physiological conditions as a mechanical and thermal myocardial protective layer, as well as a readily available lipid-storage unit. In pathological conditions, EAT expansion becomes deleterious and is currently recognized as an independent risk factor for the progression of cardiovascular diseases. The EAT phenotypic shift from protective to pro-inflammatory/pro-oxidant is facilitated by the presence of metabolic diseases (obesity, metabolic syndrome, and diabetes), which further increase its expansion and dysregulation, favor the occurrence of complications (mainly atrial fibrillation), and promote progression towards heart failure. Glucagon-like peptide-1 (GLP-1) receptor agonists are novel antidiabetic medications belonging to the incretin class that have demonstrated efficacy beyond glycemic control, in terms of weight reduction and cardiorenal protection in patients with type 2 diabetes mellitus. The GLP-1 receptors and glucose-dependent insulinotropic polypeptide (GIP) receptors are expressed in the human EAT and are targeted by an increasing number of pharmacological agonists, with pleiotropic protective effects on EAT structure and function. Herein we review the literature characterizing the benefits of GLP-1 and GIP receptors activation by single and dual agonists with particular emphasis on their effects on EAT and highlight the role of incretin-based therapy for the management of cardiometabolic pathologies.
Collapse
Affiliation(s)
- Andrea S K Pop
- Doctoral School Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Maria D Dănilă
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department of Functional Sciences - Chair of Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Silvia Giuchici
- Doctoral School Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department of Functional Sciences - Chair of Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Darius G Buriman
- Doctoral School Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department of Functional Sciences - Chair of Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Bogdan M Lolescu
- Doctoral School Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Adrian Sturza
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department of Functional Sciences - Chair of Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Danina M Muntean
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department of Functional Sciences - Chair of Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Ana Lascu
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department of Functional Sciences - Chair of Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Institute of Cardiovascular Diseases, Timișoara, Romania
| |
Collapse
|
5
|
Hara T, Sata M. Pericoronary adipose tissue: potential for pathological diagnosis and therapeutic applications. Cardiovasc Interv Ther 2025:10.1007/s12928-025-01126-5. [PMID: 40185991 DOI: 10.1007/s12928-025-01126-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
Excessive accumulation of epicardial adipose tissue (EAT) is known to be a risk factor for coronary artery disease and heart failure. In particular, it is thought that inflammation of pericoronary adipose tissue (PCAT) affects the pathology of various coronary artery diseases (CAD). EAT and PCAT are thought to be new therapeutic targets for preventing cardiovascular disease. Although there are no established drugs that specifically reduce inflammation of EAT or PCAT, the basic approach is to improve lifestyle-related diseases through exercise and diet, and to use metabolic improvement drugs and anti-inflammatory drugs as soft support. Potential candidates include statins, SGLT2 inhibitors, and GLP- 1 receptor agonists. In addition to conventional treatments that target substances within blood vessels, treatments that target EAT and PCAT by directly enveloping the coronary arteries and myocardium from outside the body are expected to further suppress cardiovascular events.
Collapse
Affiliation(s)
- Tomoya Hara
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3 - 18 - 15, Kuramoto-cho, Tokushima, 770 - 8503, Japan.
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3 - 18 - 15, Kuramoto-cho, Tokushima, 770 - 8503, Japan
| |
Collapse
|
6
|
Li M, Kou X, Zheng X, Guo X, Qi W, Li C, Chen J. Effects of Anthracyclines on Pericardial Adipose Tissue Assessed by Magnetic Resonance Imaging - An Animal Experiment. Circ J 2025:CJ-24-0794. [PMID: 40128948 DOI: 10.1253/circj.cj-24-0794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
BACKGROUND Anthracyclines are widely used in cancer treatment, yet their potential for anthracycline-induced cardiotoxicity (AIC) limits their clinical utility. Despite the significant anatomical relevance of pericardial adipose tissue (PeAT) to cardiovascular disease, its response to anthracycline exposure remains poorly understood. METHODS AND RESULTS Male New Zealand White rabbits (n=17) received weekly doxorubicin injections and underwent magnetic resonance imaging (MRI) scans biweekly for 10 weeks. PeAT volumes (total, left paraventricular, right paraventricular) were measured together with ventricular function. Histopathological evaluations were also conducted. A mixed linear model identified the earliest timeframe for detectable changes in PeAT volume and left ventricular function. Total PeAT volume decreased from the 6th week (1.17±0.06, P<0.05) and continued to decrease until the 8th week (0.96±0.06, P<0.05) and left paraventricular adipose tissue volume decreased significantly, but no changes were observed in right paraventricular adipose tissue volume. The volume of PeAT exhibited a positive correlation with left ventricular ejection fraction (LVEF) (r=0.43, P<0.05), which declined below 50% by the 8th week, and a negative correlation with myocardial cell injury scores (r=-0.595, P<0.05). CONCLUSIONS Anthracycline administration led to an early reduction in PeAT volume, particularly in the left paraventricular region, detectable by MRI as early as the 6th week. Changes in PeAT volume preceded alterations in LVEF and were associated with declines in cardiac function and myocardial cell damage.
Collapse
Affiliation(s)
- Mengxi Li
- School of Clinical Medicine, Southwest Medical University
| | - Xingyuan Kou
- Department of Radiology, The Affiliated Hospital, Southwest Medical University
| | - Xue Zheng
- Department of Radiology, The Affiliated Hospital, Southwest Medical University
| | - Xi Guo
- Department of Radiology, The Affiliated Hospital, Southwest Medical University
| | - Wanyin Qi
- Department of Radiology, The Affiliated Hospital, Southwest Medical University
| | - Cao Li
- Department of Radiology, The Affiliated Hospital, Southwest Medical University
| | - Jing Chen
- Department of Radiology, The Affiliated Hospital, Southwest Medical University
| |
Collapse
|
7
|
Abbassi M, Besbes B, Elkadri N, Hachicha S, Boudiche S, Daly F, Ben Halima M, Jebberi Z, Ouali S, Mghaieth F. Characterization of epicardial adipose tissue thickness and structure by ultrasound radiomics in acute and chronic coronary patients. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2025; 41:477-488. [PMID: 39915372 DOI: 10.1007/s10554-025-03329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/01/2025] [Indexed: 03/06/2025]
Abstract
We hypothesize that epicardial adipose tissue (EAT) structure differs between patients with coronary disease and healthy individuals and that EAT may undergo changes during an acute coronary syndrome (ACS). This study aimed to investigate EAT thickness (EATt) and structure using ultrasound radiomics in patients with ACS, patients with chronic coronary syndrome (CCS), and controls and compare the findings between the three groups. This prospective monocentric comparative cohort study included three patient groups: ACS, CCS, and asymptomatic controls. EATt was assessed using transthoracic echocardiography. Geometrical features (as mean gray value and raw integrated density) and texture features (as angular second moment, contrast and correlation) were computed from grayscale Tagged Image File Format biplane images using ImageJ software. EATt did not significantly differ between the ACS group (8.14 ± 3.17 mm) and the control group (6.92 ± 2.50 mm), whereas CCS patients (9.96 ± 3.19 mm) had significantly thicker EAT compared to both the ACS group (p = 0.025) and the control group (p < 0.001). Radiomics analysis revealed differences in geometrical parameters with discriminatory capabilities between both ACS group and controls and CCS group and controls. A multivariate analysis comparing ACS and CCS patients revealed that differences in EAT characteristics were significant only in patients with a body mass index below 26.25 kg/m². In this subgroup, patients older than 68 exhibited a higher modal gray value (p = 0.016), whereas those younger than 68 had a lower minimum gray value (p = 0.05). Radiomic analysis highlights its potential in developing imaging biomarkers for early diagnosis and coronary artery disease progression monitoring.
Collapse
Affiliation(s)
- Manel Abbassi
- Department of Cardiology, The Rabta Teaching Hospital, University of Medicine, Tunis, Tunisia.
- University of Medicine, Tunis, Tunisia.
| | - Bouthaina Besbes
- Department of Cardiology, The Rabta Teaching Hospital, University of Medicine, Tunis, Tunisia
| | | | - Salmen Hachicha
- Department of Cardiology, The Rabta Teaching Hospital, University of Medicine, Tunis, Tunisia
| | - Selim Boudiche
- Department of Cardiology, The Rabta Teaching Hospital, University of Medicine, Tunis, Tunisia
| | - Foued Daly
- Department of Cardiology, The Rabta Teaching Hospital, University of Medicine, Tunis, Tunisia
- University of Medicine, Tunis, Tunisia
| | - Manel Ben Halima
- Department of Cardiology, The Rabta Teaching Hospital, University of Medicine, Tunis, Tunisia
- University of Medicine, Tunis, Tunisia
| | - Zeynab Jebberi
- Department of Cardiology, The Rabta Teaching Hospital, University of Medicine, Tunis, Tunisia
- University of Medicine, Tunis, Tunisia
| | - Sana Ouali
- Department of Cardiology, The Rabta Teaching Hospital, University of Medicine, Tunis, Tunisia
- University of Medicine, Tunis, Tunisia
| | - Fathia Mghaieth
- Department of Cardiology, The Rabta Teaching Hospital, University of Medicine, Tunis, Tunisia
- University of Medicine, Tunis, Tunisia
| |
Collapse
|
8
|
Lorusso G, Maggialetti N, De Marco L, Guerra S, Villanova I, Greco S, Morelli C, Lucarelli NM, Mariano M, Stabile Ianora AA. Evaluating Epicardial Fat Density Using ROI-Based Analysis: A Feasibility Study. J Cardiovasc Dev Dis 2025; 12:81. [PMID: 40137079 PMCID: PMC11942633 DOI: 10.3390/jcdd12030081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/06/2025] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
Epicardial fat density (EFD) is implicated in cardiovascular diseases. This study aimed to assess the regional variability of epicardial fat density (EFD) using coronary computed tomography (CCT) and evaluate the feasibility of ROI-based measurements as an alternative to full segmentation. A retrospective analysis was conducted on 171 patients undergoing coronary CCT. EFD was measured on non-contrast scans acquired globally and in three predefined regions of interest (ROIs) for coronary calcium scoring: the aortic bulb, right posterolateral wall, and cardiac apex. Global EFD was quantified using semi-automated segmentation software (3D Slicer 5.6.2), while regional EFD values were manually determined. Statistical analyses were performed to compare global and regional EFD measurements. Global EFD averaged -83.92 ± 5.19 HU, while regional EFD showed significant variability. The aortic bulb had lower EFD values (-97.54 ± 12.80 HU) compared to the apex (-93.42 ± 18.94 HU) and right posterolateral wall (-94.99 ± 12.16 HU). Paired t-tests confirmed statistically significant differences between global and regional EFD values (p < 0.000). This study highlights significant regional variability in EFD across specific cardiac regions, suggesting that ROI-based assessments may not reliably reflect global EFD characteristics.
Collapse
Affiliation(s)
| | | | - Luca De Marco
- Section of Radiology and Radiation Oncology, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy (N.M.); (S.G.); (I.V.); (S.G.); (C.M.); (N.M.L.); (M.M.); (A.A.S.I.)
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Shahid I, Zakaria F, Chang R, Javed U, Amin ZM, Al-Kindi S, Nasir K, Javed Z. Obesity and Atherosclerotic Cardiovascular Disease: A Review of Social and Biobehavioral Pathways. Methodist Debakey Cardiovasc J 2025; 21:23-34. [PMID: 39990759 PMCID: PMC11843985 DOI: 10.14797/mdcvj.1528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 02/25/2025] Open
Abstract
In the United States, two out of every five adults have obesity. The obesity epidemic is a significant public health concern and a major risk factor for atherosclerotic cardiovascular disease (ASCVD), contributing to its development through a complex interplay of social, biologic and behavioral mechanisms. It exacerbates traditional cardiovascular risk factors such as dyslipidemia, hypertension, and type 2 diabetes, while visceral and epicardial fat deposition promotes inflammation and insulin resistance, thereby accelerating atherosclerosis. Beyond traditional pathophysiologic pathways, social determinants of health (SDoH) significantly contribute to obesity-related disparities, particularly among racial and ethnic minorities. SDoH factors such as socioeconomic status, access to health care, and limited availability of nutritious food and safe spaces for physical activity not only increase obesity prevalence but also exacerbate its psychological toll, including stress and anxiety, which further elevate cardiovascular risk. Environmental factors, such as limited green spaces and air pollution, further promote obesogenic behaviors and worsen cardiovascular outcomes. In this review, we explore the association between obesity and ASCVD and key mediating pathways including the role of SDoH and environmental risk factors. We also discuss potential strategies-including patient education, community engagement to address SDoH, and establishment of dedicated cardiometabolic and cardiovascular prevention clinics-to mitigate the population burden of obesity and improve downstream cardiovascular outcomes.
Collapse
Affiliation(s)
- Izza Shahid
- Houston Methodist Academic Institute, Houston, TX, US
| | | | - Ryan Chang
- Baylor College of Medicine, Houston, TX, US
| | - Umair Javed
- University of Health Sciences, Lahore, Pakistan
| | - Zahir Malik Amin
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, US
| | - Sadeer Al-Kindi
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX, US
| | - Khurram Nasir
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX, US
| | - Zulqarnain Javed
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX, US
| |
Collapse
|
10
|
Ke Y, Cao Z, Wang X, Liu D, Fu Y, Chen H, Cheng Y, Guo K, Li Y, Long X, Yang M, Zhao Q. K Ca3.1 Promotes the Migration of Macrophages From Epicardial Adipose Tissue to Induce Vulnerability to Atrial Fibrillation During Rapid Pacing. Can J Cardiol 2025; 41:195-209. [PMID: 39147322 DOI: 10.1016/j.cjca.2024.08.266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND The relationship between local epicardial adipose tissue (EAT) macrophages and atrial fibrillation (AF) remains unclear. The purpose of this study was to investigate the role of KCa3.1 in the migration of macrophages from EAT to adjacent atrial tissue during rapid pacing. METHODS Part 1: Eighteen beagles were randomly divided into the sham group, pacing group, and pacing + clodronate liposome (CL) group. Part 2: Eighteen beagles were randomly divided into the sham group, pacing group, and pacing + TRAM-34 group. HL-1 cells and RAW264.7 cells were co-cultured to explore the specific migratory mechanism of macrophages. RESULTS Depleting EAT macrophages significantly reduced macrophage infiltration in the adjacent atrium and the induction of AF in canines with rapid atrial pacing. TRAM-34 significantly inhibited the migration of macrophages from EAT to the adjacent atrium and electrical remodelling in canines with rapid atrial pacing. Compared with those of the control HL-1 cells, the secretion of CCL2 and the number of migrating macrophages in pacing HL-1 cells was significantly increased, which could be reversed by TRAM-34. Further in vitro experiments showed that KCa3.1 regulated CCL2 secretion through the p65/STAT3 signalling pathway. CONCLUSIONS Inhibiting myocardial KCa3.1 reduced the migration of EAT macrophages to adjacent atrial muscles caused by rapid atrial pacing, thereby decreasing vulnerability to AF. The mechanism by which KCa3.1 regulates CCL2 may be related to the p65/STAT3 signalling pathway.
Collapse
Affiliation(s)
- Yuanjia Ke
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Zhen Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Xuewen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Dishiwen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Yuntao Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Huiyu Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Yanni Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Kexin Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Yajia Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Xiaojian Long
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China.
| |
Collapse
|
11
|
Hara T, Sata M. Roles of perivascular adipose tissue in the pathogenesis of atherosclerosis - an update on recent findings. Front Physiol 2025; 15:1522471. [PMID: 39835204 PMCID: PMC11744021 DOI: 10.3389/fphys.2024.1522471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
Lifestyle-related diseases, such as atherosclerosis and diabetes, are now considered to be a series of diseases caused by chronic inflammation. Adipose tissue is considered to be an endocrine organ that not only plays a role in lipid storage, heat production, and buffering, but also produces physiologically active substances and is involved in chronic inflammation. Perivascular adipose tissue (PVAT) surrounding blood vessels similarly produces inflammatory and anti-inflammatory physiologically active substances that act on blood vessels either directly or via the bloodstream. Epicardial adipose tissue (EAT), which is in direct contact with the coronary arteries inside the pericardium, is thought to have a direct effect on the coronary arteries as well. The presence and inflammatory status of these adipose tissues can be evaluated by imaging tests, and has been shown to be associated with the presence of current cardiovascular disease (CVD) and to be a prognostic factor. It is also expected to become a new diagnostic and therapeutic target for CVD.
Collapse
Affiliation(s)
- Tomoya Hara
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | | |
Collapse
|
12
|
Paterek A, Załęska-Kocięcka M, Wojdyńska Z, Kalisz M, Litwiniuk A, Leszek P, Mączewski M. Epicardial fat in heart failure-Friend, foe, or bystander. Obes Rev 2024; 25:e13820. [PMID: 39187402 DOI: 10.1111/obr.13820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024]
Abstract
Epicardial adipose tissue (EAT) is a fat depot covering the heart. No physical barrier separates EAT from the myocardium, so EAT can easily affect the underlying cardiac muscle. EAT can participate in the development and progression of heart failure with preserved (HFpEF) and reduced ejection fraction (HFrEF). In healthy humans, excess EAT is associated with impaired cardiac function and worse outcomes. In HFpEF, this trend continues: EAT amount is usually increased, and excess EAT correlates with worse function/outcomes. However, in HFrEF, the opposite is true: reduced EAT amount correlates with worse cardiac function/outcomes. Surprisingly, although EAT has beneficial effects on cardiac function, it aggravates ventricular arrhythmias. Here, we dissect these phenomena, trying to explain these paradoxical findings to find a target for novel heart failure therapies aimed at EAT rather than the myocardium itself. However, the success of this approach depends on a thorough understanding of interactions between EAT and the myocardium.
Collapse
Affiliation(s)
- Aleksandra Paterek
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Marta Załęska-Kocięcka
- Heart Failure and Transplantology Department, Mechanical Circulatory Support and Transplant Department, National Institute of Cardiology, Warsaw, Poland
| | - Zuzanna Wojdyńska
- Heart Failure and Transplantology Department, Mechanical Circulatory Support and Transplant Department, National Institute of Cardiology, Warsaw, Poland
| | - Małgorzata Kalisz
- Department of Clinical Neuroendocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Anna Litwiniuk
- Department of Clinical Neuroendocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Przemysław Leszek
- Heart Failure and Transplantology Department, Mechanical Circulatory Support and Transplant Department, National Institute of Cardiology, Warsaw, Poland
| | - Michał Mączewski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
13
|
Chen Z, Zhang M, Xu Q, Lu P, Liu M, Yin R, Liu X, Dai Y, Gao X, Gong J, Zhang S, Wang X. Huangqi-Danshen decoction improves heart failure by regulating pericardial adipose tissue derived extracellular vesicular miR-27a-3p to activate AMPKα2 mediated mitophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156187. [PMID: 39488874 DOI: 10.1016/j.phymed.2024.156187] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Huangqi-Danshen decoction (HDD) is a classic traditional Chinese medicine for treating heart failure. Pericardial adipose tissue (PAT) has recently gained increasing attention in cardiovascular diseases. PURPOSE This study aimed to investigate the effect of pericardial adipose tissue-derived extracellular vesicles on heart failure, the protective effect of HDD on myocardial remodel in heart failure rats, and identify the potential molecular mechanisms involved. METHODS UPLC-MS/MS identified active components of HDD. Extracellular vesicles (EVs) from pericardial adipose tissue of sham-operated and HF rats were identified through transmission electron microscopy, nanoparticle tracking analysis and western blot. EVs were co-cultured with H9c2 cardiomyocytes in order to examine their uptake and effects. MicroRNA sequencing, dual-luciferase reporter assay and PCR were conducted for exploring specific mechanisms of EVs on hypertrophic cardiomyocytes. In vivo, heart failure was modeled in rats via transverse aortic constriction (TAC). In vitro, the hypertrophic cardiomyocyte model were established using Ang II-induced H9c2 cardiomyocytes. RESULTS UPLC-MS/MS identified 11 active components in serum of HDD administrated rats. Echocardiography showed HDD improved cardiac function in TAC model rats. HE and Masson staining indicated HDD ameliorated myocardial hypertrophy and fibrosis. MicroRNA sequencing found that HDD treatment resulted in 37 differentially expressed miRNAs (DMEs) (p < 0.05 and |log2FC| ≥ 1). KEGG analysis revealed that DEMs were enriched in the AMPK signaling pathway. PCR identified miR-27a-3p with the greatest difference in AMPK-related DMEs. Dual-luciferase reporter assay and Targetscan website were utilized to identify the target relationship between miR-27a-3p and PRKAA2 (AMPKα2). The miR-27a-3p negatively regulated AMPKα2 to inhibit mitophagy mediated by PINK1/Parkin pathway. HDD inhibited miR-27a-3p secretion from failing heart pericardial adipose tissue-derived extracellular vesicles, thereby improving inflammation, cardiac function, and myocardial remodeling through above pathways. CONCLUSION HDD inhibited the PAT-derived extracellular vesicular miR-27a-3p in failing hearts to activate AMPK/PINK1/Parkin signaling-mediated mitophagy, which improved cardiomyocyte energy metabolism, myocardial remodeling and heart failure.
Collapse
Affiliation(s)
- Zhaoyang Chen
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China
| | - Meng Zhang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qiyao Xu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China
| | - Pengyu Lu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China
| | - Min Liu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China
| | - Rui Yin
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China
| | - Xuan Liu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China
| | - Yang Dai
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China
| | - Xin Gao
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Juexiao Gong
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Sujie Zhang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Xindong Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
14
|
Aitken-Buck HM, Moore MK, Bingham KT, Coffey S, Tse RD, Lamberts RR. Association of epicardial adipose tissue volume with heart weight in post-mortem cases. Forensic Sci Med Pathol 2024; 20:1251-1260. [PMID: 38713332 PMCID: PMC11790810 DOI: 10.1007/s12024-024-00788-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 05/08/2024]
Abstract
Epicardial adipose tissue (EAT) deposition has been long associated with heart weight. However, recent research has failed to replicate this association. We aimed to determine the association of EAT volume with heart weight in post-mortem cases and identify potential confounding variables. EAT volume derived from post-mortem computed tomography (PMCT) and heart weight were measured in post-mortem cases (N = 87, age: 56 ± 16 years, 28% female). Cases with hypertrophied heart weights (N = 44) were determined from reference tables. Univariable associations were tested using Spearman correlation and simple linear regression. Independence was determined with stepwise regression. In the total cohort, EAT volume (median 66 ± 45 cm3) was positively associated with heart weight (median 435 ± 132 g) at the univariable level (r = 0.6, P < 0.0001) and after adjustment for age, female sex, and various body size metrics (R2 adjusted = 0.41-0.57). Median EAT volume was 1.9-fold greater in cases with hypertrophic hearts (P < 0.0001) but with considerably greater variability, especially in cases with extreme EAT volume or heart weight. As such, EAT volume was not associated with heart weight in hypertrophic cases, while a robust independent association was found in non-hypertrophic cases (R2 adjusted = 0.62-0.86). EAT mass estimated from EAT volume found that EAT comprised approximately 13% of overall heart mass in the total cases. This was significantly greater in cases with hypertrophy (median 15.5%; range, 3.6-36.6%) relative to non-hypertrophied cases (12.5%, 3.3-24.3%) (P = 0.04). EAT volume is independently and positively associated with heart weight in post-mortem cases. Excessive heart weight significantly confounded this association.
Collapse
Affiliation(s)
- Hamish M Aitken-Buck
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Matthew K Moore
- Department of Medicine, HeartOtago, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Kyra T Bingham
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Sean Coffey
- Department of Medicine, HeartOtago, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Department of Cardiology, Dunedin Hospital, Te Whatu Ora, Dunedin, New Zealand
| | - Rexson D Tse
- Department of Forensic Pathology, LabPLUS, Auckland City Hospital, Auckland, New Zealand
- Griffith University School of Medicine, Southport, QLD, Australia
- Queensland Public Health and Scientific Services, Coopers Plains, QLD, Australia
| | - Regis R Lamberts
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
15
|
Al-Regaiey K. Crosstalk between adipogenesis and aging: role of polyphenols in combating adipogenic-associated aging. Immun Ageing 2024; 21:76. [PMID: 39511615 PMCID: PMC11542427 DOI: 10.1186/s12979-024-00481-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
In the last forty years, the number of people over 60 years of age has increased significantly owing to better nutrition and lower rates of infectious diseases in developing countries. Aging significantly impacts adipose tissue, which plays crucial role in hormone regulation and energy storage. This can lead to imbalances in glucose, and overall energy homeostasis within the body. Aging is irreversible phenomena and potentially causing lipid infiltration in other organs, leading to systemic inflammation, metabolic disorders. This review investigates various pathways contributing to aging-related defects in adipogenesis, such as changes in adipose tissue function and distribution. Polyphenols, a diverse group of natural compounds, can mitigate aging effects via free radicals, oxidative stress, inflammation, senescence, and age-related diseases. Polyphenols like resveratrol, quercetin and EGCG exhibit distinct mechanisms and regulate crucial pathways, such as the TGF-β, AMPK, Wnt, PPAR-γ, and C/EBP transcription factors, and influence epigenetic modifications, such as DNA methylation and histone modification. This review highlights the critical importance of understanding the intricate relationship between aging and adipogenesis for optimizing well-being with increasing age. These findings highlight the therapeutic potential of polyphenols like quercetin and resveratrol in enhancing adipose tissue function and promoting healthy aging.
Collapse
Affiliation(s)
- Khalid Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
16
|
Yerra VG, Connelly KA. Extrarenal Benefits of SGLT2 Inhibitors in the Treatment of Cardiomyopathies. Physiology (Bethesda) 2024; 39:0. [PMID: 38888433 DOI: 10.1152/physiol.00008.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have emerged as pivotal medications for heart failure, demonstrating remarkable cardiovascular benefits extending beyond their glucose-lowering effects. The unexpected cardiovascular advantages have intrigued and prompted the scientific community to delve into the mechanistic underpinnings of these novel actions. Preclinical studies have generated many mechanistic theories, ranging from their renal and extrarenal effects to potential direct actions on cardiac muscle cells, to elucidate the mechanisms linking these drugs to clinical cardiovascular outcomes. Despite the strengths and limitations of each theory, many await validation in human studies. Furthermore, whether SGLT2 inhibitors confer therapeutic benefits in specific subsets of cardiomyopathies akin to their efficacy in other heart failure populations remains unclear. By examining the shared pathological features between heart failure resulting from vascular diseases and other causes of cardiomyopathy, certain specific molecular actions of SGLT2 inhibitors (particularly those targeting cardiomyocytes) would support the concept that these medications will yield therapeutic benefits across a broad range of cardiomyopathies. This article aims to discuss the important mechanisms of SGLT2 inhibitors and their implications in hypertrophic and dilated cardiomyopathies. Furthermore, we offer insights into future research directions for SGLT2 inhibitor studies, which hold the potential to further elucidate the proposed biological mechanisms in greater detail.
Collapse
Affiliation(s)
- Veera Ganesh Yerra
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| |
Collapse
|
17
|
Braescu L, Sturza A, Sosdean R, Aburel OM, Lazar MA, Muntean D, Luca CT, Brie DM, Feier H, Crisan S, Mornos C. Echocardiographic assessment of epicardial adipose tissue thickness as independent predictor in coronary artery disease. Can J Physiol Pharmacol 2024; 102:648-660. [PMID: 39226407 DOI: 10.1139/cjpp-2024-0188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
This study aimed to assess the utility of echocardiography-measured epicardial adipose tissue (EAT) thickness (EATT) as an independent predictor for coronary artery disease (CAD), examining its correlation with oxidative stress levels in epicardial tissue and the complexity of the disease in patients undergoing open-heart surgery. This study included a total of 25 patients referred for cardiac surgery with 14 in the CAD group and 11 in the non-CAD group. Epicardial fat was sampled from patients subjected to open-heart surgery. EATT was higher in the CAD group compared to the non-CAD group (8.15 ± 2.09 mm vs. 5.12 ± 1.8 mm, p = 0.001). The epicardial reactive oxygen species level was higher in the CAD group compared to the non-CAD group (21.4 ± 2.47 nmol H2O2/g tisssue/h vs. 15.7 ± 1.55 nmol H2O2/g tisssue/h, p < 0.001). EATT greater than 6.05 mm was associated with CAD, with a sensitivity of 86% and specificity of 73%. Echocardiographically measured EATT is a significant, independent predictor of CAD. Its relationship with increased EAT oxidative stress levels suggests a potential mechanistic link between EATT and CAD pathogenesis. These findings highlight the importance of EATT as a diagnostic tool in assessing the complexity of CAD in patients undergoing cardiac surgery.
Collapse
Affiliation(s)
- Laurentiu Braescu
- Department VI Cardiology - Cardiovascular Surgery Clinic, Institute for Cardiovascular Diseases of Timișoara, "Victor Babeș" University of Medicine and Pharmacy from Timișoara, E. Murgu Sq. No.2, 300041 Timișoara, Romania
- Doctoral School Medicine-Pharmacy, "Victor Babeș" University of Medicine and Pharmacy from Timișoara, E. Murgu Sq. No.2, 300041 Timișoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Adrian Sturza
- Department III Functional Sciences - Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy from Timișoara, E. Murgu Sq. No.2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy from Timișoara, E. Murgu Sq. No.2, 300041 Timișoara, Romania
| | - Raluca Sosdean
- Department VI Cardiology - Cardiovascular Surgery Clinic, Institute for Cardiovascular Diseases of Timișoara, "Victor Babeș" University of Medicine and Pharmacy from Timișoara, E. Murgu Sq. No.2, 300041 Timișoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Department VI Cardiology - Cardiology Clinic, Institute for Cardiovascular Diseases of Timișoara, "Victor Babeș" University of Medicine and Pharmacy from Timișoara, E. Murgu Sq. No.2, 300041 Timișoara, Romania
| | - Oana Maria Aburel
- Department III Functional Sciences - Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy from Timișoara, E. Murgu Sq. No.2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy from Timișoara, E. Murgu Sq. No.2, 300041 Timișoara, Romania
| | - Mihai Andrei Lazar
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Department VI Cardiology - Cardiology Clinic, Institute for Cardiovascular Diseases of Timișoara, "Victor Babeș" University of Medicine and Pharmacy from Timișoara, E. Murgu Sq. No.2, 300041 Timișoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timișoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Danina Muntean
- Department III Functional Sciences - Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy from Timișoara, E. Murgu Sq. No.2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy from Timișoara, E. Murgu Sq. No.2, 300041 Timișoara, Romania
| | - Constantin Tudor Luca
- Department VI Cardiology - Cardiovascular Surgery Clinic, Institute for Cardiovascular Diseases of Timișoara, "Victor Babeș" University of Medicine and Pharmacy from Timișoara, E. Murgu Sq. No.2, 300041 Timișoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Department VI Cardiology - Cardiology Clinic, Institute for Cardiovascular Diseases of Timișoara, "Victor Babeș" University of Medicine and Pharmacy from Timișoara, E. Murgu Sq. No.2, 300041 Timișoara, Romania
| | - Daniel Miron Brie
- Department VI Cardiology - Cardiovascular Surgery Clinic, Institute for Cardiovascular Diseases of Timișoara, "Victor Babeș" University of Medicine and Pharmacy from Timișoara, E. Murgu Sq. No.2, 300041 Timișoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Department VI Cardiology - Cardiology Clinic, Institute for Cardiovascular Diseases of Timișoara, "Victor Babeș" University of Medicine and Pharmacy from Timișoara, E. Murgu Sq. No.2, 300041 Timișoara, Romania
| | - Horea Feier
- Department VI Cardiology - Cardiovascular Surgery Clinic, Institute for Cardiovascular Diseases of Timișoara, "Victor Babeș" University of Medicine and Pharmacy from Timișoara, E. Murgu Sq. No.2, 300041 Timișoara, Romania
- Department VI Cardiology - Cardiology Clinic, Institute for Cardiovascular Diseases of Timișoara, "Victor Babeș" University of Medicine and Pharmacy from Timișoara, E. Murgu Sq. No.2, 300041 Timișoara, Romania
| | - Simina Crisan
- Department VI Cardiology - Cardiovascular Surgery Clinic, Institute for Cardiovascular Diseases of Timișoara, "Victor Babeș" University of Medicine and Pharmacy from Timișoara, E. Murgu Sq. No.2, 300041 Timișoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Department VI Cardiology - Cardiology Clinic, Institute for Cardiovascular Diseases of Timișoara, "Victor Babeș" University of Medicine and Pharmacy from Timișoara, E. Murgu Sq. No.2, 300041 Timișoara, Romania
| | - Cristian Mornos
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Department VI Cardiology - Cardiology Clinic, Institute for Cardiovascular Diseases of Timișoara, "Victor Babeș" University of Medicine and Pharmacy from Timișoara, E. Murgu Sq. No.2, 300041 Timișoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timișoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| |
Collapse
|
18
|
Nogajski Ł, Mazuruk M, Kacperska M, Kurpias M, Mączewski M, Nowakowski M, Mączewski M, Michałowska I, Leszek P, Paterek A. Epicardial fat density obtained with computed tomography imaging - more important than volume? Cardiovasc Diabetol 2024; 23:389. [PMID: 39472958 PMCID: PMC11523889 DOI: 10.1186/s12933-024-02474-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Epicardial adipose tissue (EAT) is a unique fat depot located between the myocardium and the visceral layer of pericardium. It can be further subdivided into pericoronary (PCAT), periatrial (PAAT) and periventricular adipose tissue (PVentAT), each of them exhibiting specific characteristics and association with the underlying tissue. Since no physical barrier separates EAT from the myocardium, this fat tissue can easily interact with the underlying cardiac structure. EAT can be visualized using various imaging modalities. Computed tomography provides not only information on EAT volume, but also on its density. Indeed, EAT density reflected by the recently developed fat attenuation index (FAI) is emerging as a useful index of PCAT inflammation, PAAT inflammation and fibrosis, while the relevance of density of PVentAT is much less known. The emerging data indicates that FAI can be an important diagnostic and prognostic tool in both coronary artery disease and atrial fibrillation. Future studies will demonstrate if it also could be used as a marker of efficacy of therapies and whether FAI PVentAT could indicate ventricular pathologies, such as heart failure. The aim of the review is to present computed tomography derived FAI as an important tool both to study and better understand the epicardial fat and as a potential predictive marker in cardiovascular disorders.
Collapse
Affiliation(s)
- Łukasz Nogajski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Student's Cardiovascular Scientific Club "Kardioplegia", Medical University of Warsaw, Warsaw, Poland
| | - Maciej Mazuruk
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Student's Cardiovascular Scientific Club "Kardioplegia", Medical University of Warsaw, Warsaw, Poland
| | - Marta Kacperska
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Student's Cardiovascular Scientific Club "Kardioplegia", Medical University of Warsaw, Warsaw, Poland
| | - Mikołaj Kurpias
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Student's Cardiovascular Scientific Club "Kardioplegia", Medical University of Warsaw, Warsaw, Poland
| | - Maciej Mączewski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Student's Cardiovascular Scientific Club "Kardioplegia", Medical University of Warsaw, Warsaw, Poland
| | - Maksymilian Nowakowski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Student's Cardiovascular Scientific Club "Kardioplegia", Medical University of Warsaw, Warsaw, Poland
| | - Michał Mączewski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Ilona Michałowska
- Department of Radiology, National Institute of Cardiology, Warsaw, Poland
| | - Przemysław Leszek
- Heart Failure and Transplantology Department, Mechanical Circulatory Support and Transplant Department, National Institute of Cardiology, Warsaw, Poland
| | - Aleksandra Paterek
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland.
| |
Collapse
|
19
|
Ogilvie LM, Delfinis LJ, Coyle-Asbil B, Vudatha V, Alshamali R, Garlisi B, Pereira M, Matuszewska K, Garibotti MC, Gandhi S, Brunt KR, Wood GA, Trevino JG, Perry CGR, Petrik J, Simpson JA. Cardiac Atrophy, Dysfunction, and Metabolic Impairments: A Cancer-Induced Cardiomyopathy Phenotype. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1823-1843. [PMID: 39032600 DOI: 10.1016/j.ajpath.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/03/2024] [Accepted: 06/10/2024] [Indexed: 07/23/2024]
Abstract
Muscle atrophy and weakness are prevalent features of cancer. Although extensive research has characterized skeletal muscle wasting in cancer cachexia, limited studies have investigated how cardiac structure and function are affected by therapy-naive cancer. Herein, orthotopic, syngeneic models of epithelial ovarian cancer and pancreatic ductal adenocarcinoma, and a patient-derived pancreatic xenograft model, were used to define the impact of malignancy on cardiac structure, function, and metabolism. Tumor-bearing mice developed cardiac atrophy and intrinsic systolic and diastolic dysfunction, with arterial hypotension and exercise intolerance. In hearts of ovarian tumor-bearing mice, fatty acid-supported mitochondrial respiration decreased, and carbohydrate-supported respiration increased-showcasing a substrate shift in cardiac metabolism that is characteristic of heart failure. Epithelial ovarian cancer decreased cytoskeletal and cardioprotective gene expression, which was paralleled by down-regulation of transcription factors that regulate cardiomyocyte size and function. Patient-derived pancreatic xenograft tumor-bearing mice show altered myosin heavy chain isoform expression-also a molecular phenotype of heart failure. Markers of autophagy and ubiquitin-proteasome system were upregulated by cancer, providing evidence of catabolic signaling that promotes cardiac wasting. Together, two cancer types were used to cross-validate evidence of the structural, functional, and metabolic cancer-induced cardiomyopathy, thus providing translational evidence that could impact future medical management strategies for improved cancer recovery in patients.
Collapse
Affiliation(s)
- Leslie M Ogilvie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Luca J Delfinis
- School of Kinesiology & Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Bridget Coyle-Asbil
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Vignesh Vudatha
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Razan Alshamali
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Bianca Garlisi
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Madison Pereira
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kathy Matuszewska
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Madison C Garibotti
- School of Kinesiology & Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Shivam Gandhi
- School of Kinesiology & Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Keith R Brunt
- Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada; IMPART Investigator Team, Saint John, New Brunswick, Canada
| | - Geoffrey A Wood
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Jose G Trevino
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Christopher G R Perry
- School of Kinesiology & Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; IMPART Investigator Team, Saint John, New Brunswick, Canada.
| |
Collapse
|
20
|
Kaleta K, Krupa J, Suchy W, Sopel A, Korkosz M, Nowakowski J. Endothelial dysfunction and risk factors for atherosclerosis in psoriatic arthritis: overview and comparison with rheumatoid arthritis. Rheumatol Int 2024; 44:1587-1606. [PMID: 38522049 PMCID: PMC11343792 DOI: 10.1007/s00296-024-05556-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/05/2024] [Indexed: 03/25/2024]
Abstract
Endothelial dysfunction (ED) is defined as an impairment in the vasodilatory, anti-thrombotic, and anti-inflammatory properties of the cells that make up the lining of blood vessels. ED is considered a key step in the development of atherosclerotic cardiovascular disease. The association between ED and systemic inflammatory diseases is well established. However, the prevalence and clinical significance of ED in psoriatic arthritis (PsA) have been investigated to a lesser extent. This review aims to explore the link between ED and PsA, including ED in macro- and microcirculation, as well as risk factors for its occurrence in PsA and its relationship with atherosclerosis in PsA. Furthermore, the ED in PsA was compared with that of rheumatoid arthritis (RA). Regarding ED in the microcirculation, the coronary flow reserve was found to be significantly reduced in individuals with PsA. The relationship between PsA and macrovascular ED is more pronounced, along with more advanced atherosclerosis detected in patients with PsA. These results are consistent with those obtained in RA studies. On the other hand, arterial stiffness and signs of vascular remodeling were found more frequently in RA than in PsA, with the potential role of efficient anti-TNF treatment in patients with PsA and psoriasis explaining this finding. The impact of ED on cardiovascular diseases and the burden of this risk caused independently by PsA have not yet been precisely established, however, this group of patients requires special attention with regard to cardiovascular events.
Collapse
Affiliation(s)
- Konrad Kaleta
- Students' Scientific Group at the Department of Rheumatology and Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Julia Krupa
- Students' Scientific Group at the Department of Rheumatology and Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Wiktoria Suchy
- Students' Scientific Group at the Department of Rheumatology and Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Sopel
- Students' Scientific Group at the Department of Rheumatology and Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Mariusz Korkosz
- Department of Rheumatology and Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Jarosław Nowakowski
- Department of Rheumatology and Immunology, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
21
|
Dhore-Patil A, Urina-Jassir D, Samson R, Le Jemtel TH, Oparil S. Epicardial Adipose Tissue Thickness and Preserved Ejection Fraction Heart Failure. Curr Hypertens Rep 2024; 26:381-388. [PMID: 38642285 PMCID: PMC11324708 DOI: 10.1007/s11906-024-01302-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE OF THE REVIEW Preserved ejection fraction heart failure and obesity frequently coexist. Whether obesity plays a consistent role in the pathogenesis of preserved ejection fraction heart failure is unclear. Accumulation of visceral adiposity underlies the pathogenic aftermaths of obesity. However, visceral adiposity imaging is assessed by computed tomography or magnetic resonance and thus not routinely available. In contrast, epicardial adiposity thickness is assessed by echocardiography and thus routinely available. We review the rationale for assessing epicardial adiposity thickness in patients with preserved ejection fraction heart failure and elevated body mass index. RECENT FINDINGS Body mass index correlates poorly with visceral, and epicardial adiposity. Visceral and epicardial adiposity enlarges as preserved ejection fraction heart failure progresses. Epicardial adiposity may hasten the progression of coronary artery disease and impairs left ventricular sub-endocardial perfusion and diastolic function. Epicardial adiposity thickness may help monitor the therapeutic response in patients with preserved ejection failure heart failure and elevated body mass index.
Collapse
Affiliation(s)
- Aneesh Dhore-Patil
- Division of Cardiovascular Imaging, Weill Cornell Medical College, Houston Methodist DeBakey Heart & Vascular Center, 6505 Fanin St., Houston, TX, 77030, USA
| | - Daniela Urina-Jassir
- Section of Cardiology, John W. Deming Department of Medicine, Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Rohan Samson
- Advanced Heart Failure Therapies Program, University of Louisville Health-Heart Hospital, 201Abraham Flexner Way, Suite 1001, Louisville, KY, 40202, USA
| | - Thierry H Le Jemtel
- Section of Cardiology, John W. Deming Department of Medicine, Tulane Avenue, SL-48, New Orleans, LA, 70112, USA.
| | - Suzanne Oparil
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
22
|
Galeone A, Annicchiarico A, Buccoliero C, Barile B, Luciani GB, Onorati F, Nicchia GP, Brunetti G. Diabetic Cardiomyopathy: Role of Cell Death, Exosomes, Fibrosis and Epicardial Adipose Tissue. Int J Mol Sci 2024; 25:9481. [PMID: 39273428 PMCID: PMC11395197 DOI: 10.3390/ijms25179481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents one of the typical complications associated with diabetes. It has been described as anomalies in heart function and structure, with consequent high morbidity and mortality. DCM development can be described by two stages; the first is characterized by left ventricular hypertrophy and diastolic dysfunction, and the second by heart failure (HF) with systolic dysfunction. The proposed mechanisms involve cardiac inflammation, advanced glycation end products (AGEs) and angiotensin II. Furthermore, different studies have focused their attention on cardiomyocyte death through the different mechanisms of programmed cell death, such as apoptosis, autophagy, necrosis, pyroptosis and ferroptosis. Exosome release, adipose epicardial tissue and aquaporins affect DCM development. This review will focus on the description of the mechanisms involved in DCM progression and development.
Collapse
Affiliation(s)
- Antonella Galeone
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Alessia Annicchiarico
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Cinzia Buccoliero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Giovanni Battista Luciani
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Francesco Onorati
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
23
|
Simantiris S, Pappa A, Papastamos C, Korkonikitas P, Antoniades C, Tsioufis C, Tousoulis D. Perivascular Fat: A Novel Risk Factor for Coronary Artery Disease. Diagnostics (Basel) 2024; 14:1830. [PMID: 39202318 PMCID: PMC11353828 DOI: 10.3390/diagnostics14161830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Perivascular adipose tissue (PVAT) interacts with the vascular wall and secretes bioactive factors which regulate vascular wall physiology. Vice versa, vascular wall inflammation affects the adjacent PVAT via paracrine signals, which induce cachexia-type morphological changes in perivascular fat. These changes can be quantified in pericoronary adipose tissue (PCAT), as an increase in PCAT attenuation in coronary computed tomography angiography images. Fat attenuation index (FAI), a novel imaging biomarker, measures PCAT attenuation around coronary artery segments and is associated with coronary artery disease presence, progression, and plaque instability. Beyond its diagnostic capacity, PCAT attenuation can also ameliorate cardiac risk stratification, thus representing an innovative prognostic biomarker of cardiovascular disease (CVD). However, technical, biological, and anatomical factors are weakly related to PCAT attenuation and cause variation in its measurement. Thus, to integrate FAI, a research tool, into clinical practice, a medical device has been designed to provide FAI values standardized for these factors. In this review, we discuss the interplay of PVAT with the vascular wall, the diagnostic and prognostic value of PCAT attenuation, and its integration as a CVD risk marker in clinical practice.
Collapse
Affiliation(s)
- Spyridon Simantiris
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.S.)
| | - Aikaterini Pappa
- Cardiology Department, Konstantopouleio General Hospital, 14233 Nea Ionia, Greece
| | - Charalampos Papastamos
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.S.)
| | | | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX1 3QT, UK
| | - Constantinos Tsioufis
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.S.)
| | - Dimitris Tousoulis
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.S.)
| |
Collapse
|
24
|
Meyer HJ, Dermendzhiev T, Kirsten H, Hetz M, Kleber C, Denecke T, Metze M, Werdehausen R, Hempel G, Struck MF. Epicardial adipose tissue defined by initial polytrauma CT of mechanically ventilated trauma patients: retrospective single-center cohort study to predict short-term outcomes. Emerg Radiol 2024; 31:499-506. [PMID: 38872046 PMCID: PMC11289144 DOI: 10.1007/s10140-024-02242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE Epicardial adipose tissue (EAT) detected by computed tomography (CT) is associated with morbidity and mortality in patients with COVID-19 and other critical care patient cohorts, whereas their prognostic relevance in trauma patients remains unclear. The present study explored associations with four potential short-term outcomes in trauma patients. METHODS All consecutive trauma patients requiring emergency tracheal intubation and mechanical ventilation before initial whole-body CT imaging at a level-1 trauma center over a 12-year period (2008-2019) were reanalyzed for this study. EAT was measured semiquantitatively in initial CT and analyzed regarding associations with 24-hour and 30-day mortality using Cox proportional hazard models. In survivors, associations of EAT with intensive care unit length of stay (ICU LOS) and mechanical ventilation duration were analyzed using linear regression analyses. RESULTS Four hundred fifty-five patients (74.7% male) with a median age of 49 years, and a median injury severity score (ISS) of 26 points were analyzed. In univariable analysis, EAT index was significantly associated with 24-hour and 30-day mortality (p = 0.007, and p = 0.013, respectively). After adjustment for significant predictors age, body mass index, and ISS, no significant associations were confirmed (p = 0.622, and p = 0.903, respectively). In a subanalysis of 353 survivors, EAT index was significantly associated with ICU LOS and mechanical ventilation duration in univariable analyses (p = 0.031, and p = 0.014, respectively), but not in multivariable analyses (p = 0.81 and p = 0.46, respectively). CONCLUSION EAT index was associated with short-term outcomes in severely injured trauma patients, which not remained significant in multivariable analysis, suggesting that its prognostic capability is limited.
Collapse
Affiliation(s)
- Hans-Jonas Meyer
- Department of Diagnostic and Interventional Radiology, University Hospital Leipzig, Liebigstr.20, 04103, Leipzig, Germany.
| | - Tihomir Dermendzhiev
- Department of Diagnostic and Interventional Radiology, University Hospital Leipzig, Liebigstr.20, 04103, Leipzig, Germany
| | - Holger Kirsten
- Institute for Medical Informatics Statistics and Biometry, University of Leipzig, Härtelstr 16-18, 04107, Leipzig, Germany
| | - Michael Hetz
- Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - Christian Kleber
- Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - Timm Denecke
- Department of Diagnostic and Interventional Radiology, University Hospital Leipzig, Liebigstr.20, 04103, Leipzig, Germany
| | - Michael Metze
- Department of Cardiology, Medical Department IV, University Hospital Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - Robert Werdehausen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Leipzig, Liebigstr.20, 04103, Leipzig, Germany
| | - Gunther Hempel
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Leipzig, Liebigstr.20, 04103, Leipzig, Germany
| | - Manuel F Struck
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Leipzig, Liebigstr.20, 04103, Leipzig, Germany
| |
Collapse
|
25
|
Krüger P, Hartinger R, Djabali K. Navigating Lipodystrophy: Insights from Laminopathies and Beyond. Int J Mol Sci 2024; 25:8020. [PMID: 39125589 PMCID: PMC11311807 DOI: 10.3390/ijms25158020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Recent research into laminopathic lipodystrophies-rare genetic disorders caused by mutations in the LMNA gene-has greatly expanded our knowledge of their complex pathology and metabolic implications. These disorders, including Hutchinson-Gilford progeria syndrome (HGPS), Mandibuloacral Dysplasia (MAD), and Familial Partial Lipodystrophy (FPLD), serve as crucial models for studying accelerated aging and metabolic dysfunction, enhancing our understanding of the cellular and molecular mechanisms involved. Research on laminopathies has highlighted how LMNA mutations disrupt adipose tissue function and metabolic regulation, leading to altered fat distribution and metabolic pathway dysfunctions. Such insights improve our understanding of the pathophysiological interactions between genetic anomalies and metabolic processes. This review merges current knowledge on the phenotypic classifications of these diseases and their associated metabolic complications, such as insulin resistance, hypertriglyceridemia, hepatic steatosis, and metabolic syndrome, all of which elevate the risk of cardiovascular disease, stroke, and diabetes. Additionally, a range of published therapeutic strategies, including gene editing, antisense oligonucleotides, and novel pharmacological interventions aimed at addressing defective adipocyte differentiation and lipid metabolism, will be explored. These therapies target the core dysfunctional lamin A protein, aiming to mitigate symptoms and provide a foundation for addressing similar metabolic and genetic disorders.
Collapse
Affiliation(s)
| | | | - Karima Djabali
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany; (P.K.); (R.H.)
| |
Collapse
|
26
|
Kasperova BJ, Mraz M, Svoboda P, Hlavacek D, Kratochvilova H, Modos I, Vrzackova N, Ivak P, Janovska P, Kobets T, Mahrik J, Riecan M, Steiner Mrazova L, Stranecky V, Netuka I, Cajka T, Kuda O, Melenovsky V, Stemberkova Hubackova S, Haluzik M. Sodium-glucose cotransporter 2 inhibitors induce anti-inflammatory and anti-ferroptotic shift in epicardial adipose tissue of subjects with severe heart failure. Cardiovasc Diabetol 2024; 23:223. [PMID: 38943140 PMCID: PMC11214218 DOI: 10.1186/s12933-024-02298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/05/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Sodium-glucose cotransporter 2 inhibitors (SGLT-2i) are glucose-lowering agents used for the treatment of type 2 diabetes mellitus, which also improve heart failure and decrease the risk of cardiovascular complications. Epicardial adipose tissue (EAT) dysfunction was suggested to contribute to the development of heart failure. We aimed to elucidate a possible role of changes in EAT metabolic and inflammatory profile in the beneficial cardioprotective effects of SGLT-2i in subjects with severe heart failure. METHODS 26 subjects with severe heart failure, with reduced ejection fraction, treated with SGLT-2i versus 26 subjects without treatment, matched for age (54.0 ± 2.1 vs. 55.3 ± 2.1 years, n.s.), body mass index (27.8 ± 0.9 vs. 28.8 ± 1.0 kg/m2, n.s.) and left ventricular ejection fraction (20.7 ± 0.5 vs. 23.2 ± 1.7%, n.s.), who were scheduled for heart transplantation or mechanical support implantation, were included in the study. A complex metabolomic and gene expression analysis of EAT obtained during surgery was performed. RESULTS SGLT-2i ameliorated inflammation, as evidenced by the improved gene expression profile of pro-inflammatory genes in adipose tissue and decreased infiltration of immune cells into EAT. Enrichment of ether lipids with oleic acid noted on metabolomic analysis suggests a reduced disposition to ferroptosis, potentially further contributing to decreased oxidative stress in EAT of SGLT-2i treated subjects. CONCLUSIONS Our results show decreased inflammation in EAT of patients with severe heart failure treated by SGLT-2i, as compared to patients with heart failure without this therapy. Modulation of EAT inflammatory and metabolic status could represent a novel mechanism behind SGLT-2i-associated cardioprotective effects in patients with heart failure.
Collapse
Affiliation(s)
- Barbora Judita Kasperova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
- First Faculty of Medicine, Charles University in Prague, Katerinska 1660/32, 121 08, Prague, Czech Republic
| | - Milos Mraz
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 499/2, 128 08, Prague, Czech Republic
| | - Petr Svoboda
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague, Czech Republic
| | - Daniel Hlavacek
- Department of Cardiac Surgery, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
- Third Faculty of Medicine, Charles University in Prague, Ruska 87, 100 00, Prague, Czech Republic
| | - Helena Kratochvilova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
| | - Istvan Modos
- Department of Informatics, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
| | - Nikola Vrzackova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague, Czech Republic
| | - Peter Ivak
- Department of Cardiac Surgery, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
- Third Faculty of Medicine, Charles University in Prague, Ruska 87, 100 00, Prague, Czech Republic
| | - Petra Janovska
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Tatyana Kobets
- Department of Metabolomics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Jakub Mahrik
- First Faculty of Medicine, Charles University in Prague, Katerinska 1660/32, 121 08, Prague, Czech Republic
- Department of Cardiac Anesthesia, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
| | - Martin Riecan
- Department of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Lenka Steiner Mrazova
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, 128 08, Prague, Czech Republic
| | - Viktor Stranecky
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, 128 08, Prague, Czech Republic
| | - Ivan Netuka
- Department of Cardiac Surgery, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
| | - Tomas Cajka
- Department of Metabolomics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Ondrej Kuda
- Department of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Vojtech Melenovsky
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
| | - Sona Stemberkova Hubackova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic.
| | - Martin Haluzik
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic.
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 499/2, 128 08, Prague, Czech Republic.
| |
Collapse
|
27
|
Zhang S, Huang Y, Zheng C, Wang L, Zhou Y, Chen W, Duan Y, Shan T. Leucine improves the growth performance, carcass traits, and lipid nutritional quality of pork in Shaziling pigs. Meat Sci 2024; 210:109435. [PMID: 38246121 DOI: 10.1016/j.meatsci.2024.109435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/03/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
Leucine is involved in promoting fatty acid oxidation and lipolysis, mediating lipid metabolism and energy homeostasis, thus it has been widely used in livestock production. However, the effects of leucine on fat deposition and nutrition in Shaziling pigs remain unclear. A total of 72 Shaziling pigs (150 days old, weight 35.00 ± 1.00 kg) were randomly divided into 2 groups and fed with basal diet (control group) or basal diet containing 1% leucine (leucine group) for 60 days. The results showed that leucine significantly increased the average daily feed intake but decreased the ratio of feed to gain (P < 0.05), increased the loin muscle area and serum glucose content (P < 0.05) of Shaziling pigs. Besides, leucine regulated the re-distribution of fatty acids from adipose tissue to muscle as it significantly increased the contents of C18:1n-9 and C22:6n-3 (DHA) in the longissimus thoracis while decreased the contents of C22:5n-3 (DPA), C20:5n-3 (EPA), and DHA in the adipose tissue of Shaziling pigs (P < 0.05). Lipidomic analysis showed that the contents of phosphatidylethanolamines (PEs), cardiolipins (CLs), and phosphatidylglycerols (PGs) in the longissimus thoracis and the contents of lysophosphatidylethanolamines (LPEs), ceramides (Cers), phosphatidylinositols (PIs) in adipose tissue of Shaziling pigs were decreased in leucine group (P < 0.05). Collectively, this study clarified that dietary addition of 1% leucine have a better effect on growth performance and the deposition of beneficial fatty acids in the muscle of Shaziling pigs, which is conductive to the production of high quality and healthy pork. In addition, leucine altered the lipid composition of muscle and fat in Shaziling pigs. The related results provide a theoretical basis and application guidance for regulating fat deposition in Shaziling pigs, which is important for the healthy breeding of Shaziling pigs.
Collapse
Affiliation(s)
- Shu Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Yuqin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Changbing Zheng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Yanbing Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Wentao Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Yehui Duan
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
28
|
Milyukov VE, Bryukhanov VA, Nguyen CC. [Morphofunctional Analysis of the Role of Epicardial Adipose Tissue in the Formation of the Obesity Paradox in Chronic Heart Failure]. KARDIOLOGIIA 2024; 64:72-80. [PMID: 38597765 DOI: 10.18087/cardio.2024.3.n2469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 04/11/2024]
Abstract
Based on the available modern medical literature, the article summarizes data on the morpho-functional significance of epicardial adipose tissue (EAT) in health and heart failure, analyzes the likelihood and reliability of the formation of the obesity paradox, and also discusses its possible morpho-functional mechanisms. The authors reviewed and analyzed the consequences of the obesity paradox in the aspect of the normal EAT phenotype protectivity. The review proposed ways of further research in this direction aimed at a deep anatomical and physiological analysis and at determining the morpho-functional role of EAT in the adaptive mechanisms of myocardial trophic provision, which may be an important part of the pathogenetic connection between obesity and CHF and, therefore, can improve outcomes in such patients.
Collapse
Affiliation(s)
- V E Milyukov
- Pirogov Russian National Research Medical University
| | | | | |
Collapse
|
29
|
Kotha S, Plein S, Greenwood JP, Levelt E. Role of epicardial adipose tissue in diabetic cardiomyopathy through the lens of cardiovascular magnetic resonance imaging - a narrative review. Ther Adv Endocrinol Metab 2024; 15:20420188241229540. [PMID: 38476217 PMCID: PMC10929063 DOI: 10.1177/20420188241229540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/14/2024] [Indexed: 03/14/2024] Open
Abstract
Accumulating evidence suggests that ectopic/visceral adiposity may play a key role in the pathogenesis of nonischaemic cardiovascular diseases associated with type 2 diabetes. Epicardial adipose tissue (EAT) is a complex visceral fat depot, covering 80% of the cardiac surface with anatomical and functional contiguity to the myocardium and coronary arteries. EAT interacts with the biology of the underlying myocardium by secreting a wide range of adipokines. Magnetic resonance imaging (MRI) is the reference modality for structural and functional imaging of the heart. The technique is now also emerging as the reference imaging modality for EAT quantification. With this narrative review, we (a) surveyed contemporary clinical studies that utilized cardiovascular MRI to characterize EAT (studies published 2010-2023); (b) listed the clinical trials monitoring the response to treatment in EAT size as well as myocardial functional and structural parameters and (c) discussed the potential pathophysiological role of EAT in the development of diabetic cardiomyopathy. We concluded that increased EAT quantity and its inflammatory phenotype correlate with early signs of left ventricle dysfunction and may have a role in the pathogenesis of cardiac disease in diabetes with and without coronary artery disease.
Collapse
Affiliation(s)
- Sindhoora Kotha
- Department of Biomedical Imaging Science, Multidisciplinary Cardiovascular Research Centre, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- Department of Cardiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Sven Plein
- Department of Biomedical Imaging Science, Multidisciplinary Cardiovascular Research Centre, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- Department of Cardiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - John P. Greenwood
- Department of Biomedical Imaging Science, Multidisciplinary Cardiovascular Research Centre, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- Department of Cardiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Eylem Levelt
- Department of Biomedical Imaging Science, Multidisciplinary Cardiovascular Research Centre, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
- Department of Cardiology, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
| |
Collapse
|
30
|
Cundari G, Marchitelli L, Pambianchi G, Catapano F, Conia L, Stancanelli G, Catalano C, Galea N. Imaging biomarkers in cardiac CT: moving beyond simple coronary anatomical assessment. LA RADIOLOGIA MEDICA 2024; 129:380-400. [PMID: 38319493 PMCID: PMC10942914 DOI: 10.1007/s11547-024-01771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024]
Abstract
Cardiac computed tomography angiography (CCTA) is considered the standard non-invasive tool to rule-out obstructive coronary artery disease (CAD). Moreover, several imaging biomarkers have been developed on cardiac-CT imaging to assess global CAD severity and atherosclerotic burden, including coronary calcium scoring, the segment involvement score, segment stenosis score and the Leaman-score. Myocardial perfusion imaging enables the diagnosis of myocardial ischemia and microvascular damage, and the CT-based fractional flow reserve quantification allows to evaluate non-invasively hemodynamic impact of the coronary stenosis. The texture and density of the epicardial and perivascular adipose tissue, the hypodense plaque burden, the radiomic phenotyping of coronary plaques or the fat radiomic profile are novel CT imaging features emerging as biomarkers of inflammation and plaque instability, which may implement the risk stratification strategies. The ability to perform myocardial tissue characterization by extracellular volume fraction and radiomic features appears promising in predicting arrhythmogenic risk and cardiovascular events. New imaging biomarkers are expanding the potential of cardiac CT for phenotyping the individual profile of CAD involvement and opening new frontiers for the practice of more personalized medicine.
Collapse
Affiliation(s)
- Giulia Cundari
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Livia Marchitelli
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Giacomo Pambianchi
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Federica Catapano
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 4, Pieve Emanuele, 20090, Milano, Italy
- Humanitas Research Hospital IRCCS, Via Alessandro Manzoni, 56, Rozzano, 20089, Milano, Italy
| | - Luca Conia
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Giuseppe Stancanelli
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Nicola Galea
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
31
|
Guldberg E, Diederichsen SZ, Haugan KJ, Brandes A, Graff C, Krieger D, Olesen MS, Højberg S, Køber L, Vejlstrup N, Bertelsen L, Svendsen JH. Epicardial adipose tissue and subclinical incident atrial fibrillation as detected by continuous monitoring: a cardiac magnetic resonance imaging study. Int J Cardiovasc Imaging 2024; 40:591-599. [PMID: 38245893 PMCID: PMC10951027 DOI: 10.1007/s10554-023-03029-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024]
Abstract
Epicardial adipose tissue (EAT) has endocrine and paracrine functions and has been associated with metabolic and cardiovascular disease. This study aimed to investigate the association between EAT, determined by cardiac magnetic resonance imaging (CMR), and incident atrial fibrillation (AF) following long-term continuous heart rhythm monitoring by implantable loop recorder (ILR). This study is a sub-study of the LOOP study. In total, 203 participants without a history of AF received an ILR and underwent advanced CMR. All participants were at least 70 years of age at inclusion and had at least one of the following conditions: hypertension, diabetes, previous stroke, or heart failure. Volumetric measurements of atrial- and ventricular EAT were derived from CMR and the time to incident AF was subsequently determined. A total of 78 participants (38%) were diagnosed with subclinical AF during a median of 40 (37-42) months of continuous monitoring. In multivariable Cox regression analyses adjusted for age, sex, and various comorbidities, we found EAT indexed to body surface area to be independently associated with the time to AF with hazard ratios (95% confidence intervals) up to 2.93 (1.36-6.34); p = 0.01 when analyzing the risk of new-onset AF episodes lasting ≥ 24 h. Atrial EAT assessed by volumetric measurements on CMR images was significantly associated with the incident AF episodes as detected by ILR.
Collapse
Affiliation(s)
- Eva Guldberg
- Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Inge Lehmanns Vej 7, 2100, Copenhagen, Denmark.
| | - Søren Zöga Diederichsen
- Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Inge Lehmanns Vej 7, 2100, Copenhagen, Denmark
| | - Ketil Jørgen Haugan
- Department of Cardiology, Zealand University Hospital - Roskilde, Roskilde, Denmark
| | - Axel Brandes
- Department of Cardiology, Odense University Hospital, Odense, Denmark
- Faculty of Health Sciences, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Cardiology, Esbjerg Hospital - University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Claus Graff
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Derk Krieger
- Mohammed Bin Rashid University, Mediclinic Parkview Hospital, Dubai, UAE
| | - Morten Salling Olesen
- Laboratory for Molecular Cardiology, Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Højberg
- Department of Cardiology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Lars Køber
- Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Inge Lehmanns Vej 7, 2100, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Niels Vejlstrup
- Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Inge Lehmanns Vej 7, 2100, Copenhagen, Denmark
| | - Litten Bertelsen
- Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Inge Lehmanns Vej 7, 2100, Copenhagen, Denmark
| | - Jesper Hastrup Svendsen
- Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Inge Lehmanns Vej 7, 2100, Copenhagen, Denmark
- Laboratory for Molecular Cardiology, Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Fujisawa N, Matsushita T, Matsuo S, Hiranuma M, Azabu H, Saito R, Komatsu SI, Kato A, Toyota N, Taketo J, Suzuki H. Effects of two weeks of food restriction on toxicological parameters in cynomolgus monkeys. Exp Anim 2024; 73:73-82. [PMID: 37648485 PMCID: PMC10877149 DOI: 10.1538/expanim.23-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023] Open
Abstract
Animals frequently eat less after a test-article treatment in nonclinical toxicological studies, and it can be difficult to distinguish test article-derived toxicities from secondary changes related to this reduced food intake. Therefore, in this study, we restricted the food intake of cynomolgus monkeys (Cambodian, male, n=2 or 3, 48 ± 3 months old) to 25% of the control for two weeks and evaluated the effects on toxicological parameters (general conditions, body weight, electrocardiography, urinalysis, hematology, blood chemistry, bone marrow analysis, pathological examination). After 2 weeks, the monkeys exhibited decreases in bone marrow erythropoiesis (e.g., decreases in reticulocytes and bone marrow erythrocytes), as well as glycogenesis induction (e.g., increase in aspartate aminotransferase (AST)) and malnutrition (e.g., decrease in triglyceride and systemic adipocytes atrophy). Additionally, histopathological analysis revealed granuloma and inflammatory cell infiltration in coronary fat, which had never been found in previous food restriction studies using other animal species. These findings will enable researchers to more accurately evaluate the toxicological risks of test articles that simultaneously induce food intake reduction.
Collapse
Affiliation(s)
- Nozomi Fujisawa
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Tomochika Matsushita
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Saori Matsuo
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Mayumi Hiranuma
- Chugai Research Institute for Medical Science, Inc., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Hiroko Azabu
- Chugai Research Institute for Medical Science, Inc., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Ryota Saito
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Shun-Ichiro Komatsu
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Atsuhiko Kato
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Naoto Toyota
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Junko Taketo
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Hiromi Suzuki
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| |
Collapse
|
33
|
Polkinghorne MD, West HW, Antoniades C. Adipose Tissue in Cardiovascular Disease: From Basic Science to Clinical Translation. Annu Rev Physiol 2024; 86:175-198. [PMID: 37931169 DOI: 10.1146/annurev-physiol-042222-021346] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The perception of adipose tissue as a metabolically quiescent tissue, primarily responsible for lipid storage and energy balance (with some endocrine, thermogenic, and insulation functions), has changed. It is now accepted that adipose tissue is a crucial regulator of metabolic health, maintaining bidirectional communication with other organs including the cardiovascular system. Additionally, adipose tissue depots are functionally and morphologically heterogeneous, acting not only as sources of bioactive molecules that regulate the physiological functioning of the vasculature and myocardium but also as biosensors of the paracrine and endocrine signals arising from these tissues. In this way, adipose tissue undergoes phenotypic switching in response to vascular and/or myocardial signals (proinflammatory, profibrotic, prolipolytic), a process that novel imaging technologies are able to visualize and quantify with implications for clinical prognosis. Furthermore, a range of therapeutic modalities have emerged targeting adipose tissue metabolism and altering its secretome, potentially benefiting those at risk of cardiovascular disease.
Collapse
Affiliation(s)
- Murray D Polkinghorne
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom;
- Acute Multidisciplinary Imaging and Interventional Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Henry W West
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom;
- Acute Multidisciplinary Imaging and Interventional Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Central Clinical School, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom;
- Acute Multidisciplinary Imaging and Interventional Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Mundt P, Hertel A, Tharmaseelan H, Nörenberg D, Papavassiliu T, Schoenberg SO, Froelich MF, Ayx I. Analysis of Epicardial Adipose Tissue Texture in Relation to Coronary Artery Calcification in PCCT: The EAT Signature! Diagnostics (Basel) 2024; 14:277. [PMID: 38337793 PMCID: PMC10854976 DOI: 10.3390/diagnostics14030277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
(1) Background: Epicardial adipose tissue influences cardiac biology in physiological and pathological terms. As it is suspected to be linked to coronary artery calcification, identifying improved methods of diagnostics for these patients is important. The use of radiomics and the new Photon-Counting computed tomography (PCCT) may offer a feasible step toward improved diagnostics in these patients. (2) Methods: In this retrospective single-centre study epicardial adipose tissue was segmented manually on axial unenhanced images. Patients were divided into three groups, depending on the severity of coronary artery calcification. Features were extracted using pyradiomics. Mean and standard deviation were calculated with the Pearson correlation coefficient for feature correlation. Random Forest classification was applied for feature selection and ANOVA was performed for group comparison. (3) Results: A total of 53 patients (32 male, 21 female, mean age 57, range from 21 to 80 years) were enrolled in this study and scanned on the novel PCCT. "Original_glrlm_LongRunEmphasis", "original_glrlm_RunVariance", "original_glszm_HighGrayLevelZoneEmphasis", and "original_glszm_SizeZoneNonUniformity" were found to show significant differences between patients with coronary artery calcification (Agatston score 1-99/≥100) and those without. (4) Conclusions: Four texture features of epicardial adipose tissue are associated with coronary artery calcification and may reflect inflammatory reactions of epicardial adipose tissue, offering a potential imaging biomarker for atherosclerosis detection.
Collapse
Affiliation(s)
- Peter Mundt
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany; (P.M.); (A.H.); (H.T.); (D.N.); (S.O.S.); (M.F.F.)
| | - Alexander Hertel
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany; (P.M.); (A.H.); (H.T.); (D.N.); (S.O.S.); (M.F.F.)
| | - Hishan Tharmaseelan
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany; (P.M.); (A.H.); (H.T.); (D.N.); (S.O.S.); (M.F.F.)
| | - Dominik Nörenberg
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany; (P.M.); (A.H.); (H.T.); (D.N.); (S.O.S.); (M.F.F.)
| | - Theano Papavassiliu
- First Department of Internal Medicine-Cardiology, University Medical Centre Mannheim, and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Stefan O. Schoenberg
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany; (P.M.); (A.H.); (H.T.); (D.N.); (S.O.S.); (M.F.F.)
| | - Matthias F. Froelich
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany; (P.M.); (A.H.); (H.T.); (D.N.); (S.O.S.); (M.F.F.)
| | - Isabelle Ayx
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany; (P.M.); (A.H.); (H.T.); (D.N.); (S.O.S.); (M.F.F.)
| |
Collapse
|
35
|
Tang C, Li Q, Wang X, Yu Z, Ping X, Qin Y, Liu Y, Zheng L. Cardiac Timeless Trans-Organically Regulated by miR-276 in Adipose Tissue Modulates Cardiac Function. FUNCTION 2023; 5:zqad064. [PMID: 38058384 PMCID: PMC10696634 DOI: 10.1093/function/zqad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023] Open
Abstract
The interconnection between cardiac function and circadian rhythms is of great importance. While the role of the biological clock gene Timeless (Tim) in circadian rhythm has been extensively studied, its impact on cardiac function remains largely been unexplored. Previous research has provided experimental evidence for the regulation of the heart by adipose tissue and the targeting of miR-276a/b on Timeless. However, the extent to which adipose tissue regulates cardiac Timeless genes trans-organically through miR-276a/b, and subsequently affects cardiac function, remains uncertain. Therefore, the objective of this study was to investigate the potential trans-organ modulation of the Timeless gene in the heart by adipose tissue through miR-276a/b. We found that cardiac-specific Timeless knockdown and overexpression resulted in a significant increase in heart rate (HR) and a significant decrease in Heart period (HP), diastolic intervals (DI), systolic intervals (SI), diastolic diameter (DD), and systolic diameter (SD). miR-276b systemic knockdown resulted in a significant increase in DI, arrhythmia index (AI), and fractional shortening (FS) significantly increased and SI, DD and SD significantly decreased. Adipose tissue-specific miR-276a/b knockdown and miR-276a overexpression resulted in a significant increase in HR and a significant decrease in DI and SI, which were improved by exercise intervention. This study presents a novel finding that highlights the significance of the heart circadian clock gene Timeless in heart function. Additionally, it demonstrates that adipose tissue exerts trans-organ modulation on the expression of the heart Timeless gene via miR-276a/b.
Collapse
Affiliation(s)
- Chao Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, 410012 Changsha, China
| | - Qiufang Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, 410012 Changsha, China
| | - Xiaoya Wang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, 410012 Changsha, China
| | - Zhengwen Yu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, 410012 Changsha, China
| | - Xu Ping
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, 410012 Changsha, China
| | - yi Qin
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, 410012 Changsha, China
| | - Yang Liu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, 410012 Changsha, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, 410012 Changsha, China
| |
Collapse
|
36
|
Antoniades C, Tousoulis D, Vavlukis M, Fleming I, Duncker DJ, Eringa E, Manfrini O, Antonopoulos AS, Oikonomou E, Padró T, Trifunovic-Zamaklar D, De Luca G, Guzik T, Cenko E, Djordjevic-Dikic A, Crea F. Perivascular adipose tissue as a source of therapeutic targets and clinical biomarkers. Eur Heart J 2023; 44:3827-3844. [PMID: 37599464 PMCID: PMC10568001 DOI: 10.1093/eurheartj/ehad484] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/03/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Obesity is a modifiable cardiovascular risk factor, but adipose tissue (AT) depots in humans are anatomically, histologically, and functionally heterogeneous. For example, visceral AT is a pro-atherogenic secretory AT depot, while subcutaneous AT represents a more classical energy storage depot. Perivascular adipose tissue (PVAT) regulates vascular biology via paracrine cross-talk signals. In this position paper, the state-of-the-art knowledge of various AT depots is reviewed providing a consensus definition of PVAT around the coronary arteries, as the AT surrounding the artery up to a distance from its outer wall equal to the luminal diameter of the artery. Special focus is given to the interactions between PVAT and the vascular wall that render PVAT a potential therapeutic target in cardiovascular diseases. This Clinical Consensus Statement also discusses the role of PVAT as a clinically relevant source of diagnostic and prognostic biomarkers of vascular function, which may guide precision medicine in atherosclerosis, hypertension, heart failure, and other cardiovascular diseases. In this article, its role as a 'biosensor' of vascular inflammation is highlighted with description of recent imaging technologies that visualize PVAT in clinical practice, allowing non-invasive quantification of coronary inflammation and the related residual cardiovascular inflammatory risk, guiding deployment of therapeutic interventions. Finally, the current and future clinical applicability of artificial intelligence and machine learning technologies is reviewed that integrate PVAT information into prognostic models to provide clinically meaningful information in primary and secondary prevention.
Collapse
Affiliation(s)
- Charalambos Antoniades
- Acute Multidisciplinary Imaging and Interventional Centre, RDM Division of Cardiovascular Medicine, University of Oxford, Headley Way, Headington, Oxford OX39DU, UK
| | - Dimitris Tousoulis
- 1st Cardiology Department, National and Kapodistrian University of Athens, Greece
| | - Marija Vavlukis
- Medical Faculty, University Clinic for Cardiology, University Ss’ Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre of Molecular Medicine, Goethe University, Frankfurt, Germany
| | - Dirk J Duncker
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Etto Eringa
- Cardiovascular-Program ICCC, Research Institute—Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Olivia Manfrini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Alexios S Antonopoulos
- Acute Multidisciplinary Imaging and Interventional Centre, RDM Division of Cardiovascular Medicine, University of Oxford, Headley Way, Headington, Oxford OX39DU, UK
- 1st Cardiology Department, National and Kapodistrian University of Athens, Greece
| | - Evangelos Oikonomou
- 1st Cardiology Department, National and Kapodistrian University of Athens, Greece
| | - Teresa Padró
- Cardiovascular Program-ICCC, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CiberCV, Institute Carlos III, Madrid, Spain
| | | | - Giuseppe De Luca
- Division of Cardiology, AOU Policlinico G. Martino, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- Cardiologia Ospedaliera, Nuovo Galeazzi-Sant’Ambrogio, Milan, Italy
| | - Tomasz Guzik
- Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, UK
- Department of Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - Edina Cenko
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Ana Djordjevic-Dikic
- Medical Faculty, Cardiology Clinic, University Clinical Center, University of Belgrade, Serbia
| | - Filippo Crea
- Department of Cardiology and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
37
|
Antonopoulos AS, Papastamos C, Cokkinos DV, Tsioufis K, Tousoulis D. Epicardial Adipose Tissue in Myocardial Disease: From Physiology to Heart Failure Phenotypes. Curr Probl Cardiol 2023; 48:101841. [PMID: 37244513 DOI: 10.1016/j.cpcardiol.2023.101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Epicardial adipose tissue (EAT) is increasingly being recognized as a determinant of myocardial biology. The EAT-heart crosstalk suggests causal links between dysfunctional EAT and cardiomyocyte impairment. Obesity promotes EAT dysfunction and shifts in secreted adipokines which adversely affect cardiac metabolism, induce cardiomyocyte inflammation, redox imbalance and myocardial fibrosis. Thus, EAT determines cardiac phenotype via effects on cardiac energetics, contractility, diastolic function, and atrial conduction. Vice-versa the EAT is altered in heart failure (HF), and such phenotypic changes can be detected by noninvasive imaging or incorporated in Artificial Intelligence-enhanced tools to aid the diagnosis, subtyping or risk prognostication of HF. In the present article, we summarize the links between EAT and the heart, explaining how the study of epicardial adiposity can improve the understanding of cardiac disease, serve as a source of diagnostic and prognostic biomarkers, and as a potential therapeutic target in HF to improve clinical outcomes.
Collapse
Affiliation(s)
- Alexios S Antonopoulos
- 1st Cardiology Department, National and Kapodistrian University of Athens, Athens, Greece; Clinical, Experimental Surgery and Translational Research Centre, Biomedical Research Foundation Academy of Athens, Athens, Greece.
| | - Charalampos Papastamos
- 1st Cardiology Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Dennis V Cokkinos
- Clinical, Experimental Surgery and Translational Research Centre, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Konstantinos Tsioufis
- 1st Cardiology Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Department, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
38
|
Daou D, Gillette TG, Hill JA. Inflammatory Mechanisms in Heart Failure with Preserved Ejection Fraction. Physiology (Bethesda) 2023; 38:0. [PMID: 37013947 PMCID: PMC10396273 DOI: 10.1152/physiol.00004.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is now the most common form of heart failure and a significant public health concern for which limited effective therapies exist. Inflammation triggered by comorbidity burden is a critical element of HFpEF pathophysiology. Here, we discuss evidence for comorbidity-driven systemic and myocardial inflammation and the mechanistic role of inflammation in pathological myocardial remodeling in HFpEF.
Collapse
Affiliation(s)
- Daniel Daou
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Thomas G Gillette
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
39
|
Mukherjee AG, Renu K, Gopalakrishnan AV, Jayaraj R, Dey A, Vellingiri B, Ganesan R. Epicardial adipose tissue and cardiac lipotoxicity: A review. Life Sci 2023; 328:121913. [PMID: 37414140 DOI: 10.1016/j.lfs.2023.121913] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Epicardial adipose tissue (EAT) has morphological and physiological contiguity with the myocardium and coronary arteries, making it a visceral fat deposit with some unique properties. Under normal circumstances, EAT exhibits biochemical, mechanical, and thermogenic cardioprotective characteristics. Under clinical processes, epicardial fat can directly impact the heart and coronary arteries by secreting proinflammatory cytokines via vasocrine or paracrine mechanisms. It is still not apparent what factors affect this equilibrium. Returning epicardial fat to its physiological purpose may be possible by enhanced local vascularization, weight loss, and focused pharmacological therapies. This review centers on EAT's developing physiological and pathophysiological dimensions and its various and pioneering clinical utilities.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India.
| | - Rama Jayaraj
- Jindal Institute of Behavioral Sciences (JIBS), Jindal Global Institution of Eminence Deemed to Be University, 28, Sonipat 131001, India; Director of Clinical Sciences, Northern Territory Institute of Research and Training, Darwin, NT 0909, Australia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
40
|
Soghomonian A, Gaborit B, Carbone F, Castinetti F, Dutour A. Editorial: Cardiac fat in metabolic and endocrine diseases. Front Endocrinol (Lausanne) 2023; 14:1271565. [PMID: 37727453 PMCID: PMC10506075 DOI: 10.3389/fendo.2023.1271565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Affiliation(s)
- Astrid Soghomonian
- Aix-Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Endocrinology, Metabolic Diseases and Nutrition Department, AP-HM, Marseille, France
| | - Bénédicte Gaborit
- Aix-Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Endocrinology, Metabolic Diseases and Nutrition Department, AP-HM, Marseille, France
| | - Federico Carbone
- First Clinic of internal Medicine, Department of Internal Medicine, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova – Italian Cardiovascular Network, Genova, Italy
| | - Frédéric Castinetti
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Marseille, France
- Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares Hypophysaires HYPO, AP-HM, Marseille, France
| | - Anne Dutour
- Aix-Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Endocrinology, Metabolic Diseases and Nutrition Department, AP-HM, Marseille, France
| |
Collapse
|
41
|
Kaewmong P, Jongjit P, Boonkasemsanti A, Kittiwattanawong K, Kongtueng P, Matchimakul P, Tangphokhanon W, Pirintr P, Khonmee J, Buddhasiri S, Piboon P, Umsumarng S, Mektrirat R, Nganvongpanit K, Pongkan W. Histological study of seventeen organs from dugong ( Dugong dugon). PeerJ 2023; 11:e15859. [PMID: 37663296 PMCID: PMC10473042 DOI: 10.7717/peerj.15859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023] Open
Abstract
Background Dugongs are marine mammals with a crescent-shaped tail fluke and a concave trailing margin that belong to the family Dugongidae., They are distributed widely in the warm coastal waters of the Indo-Pacific region. Importantly, the population of dugongs has decreased over the past decades as they have been classified as rare marine mammals. Previous studies have investigated the habitat and genetic diversity of dugongs. However, a comprehensive histological investigation of their tissue has not yet been conducted. This study provides unique insight into the organs of dugongs and compares them with other mammal species. Methods Tissue sections were stained with Harris's hematoxylin and eosin Y. The histological structure of 17 organ tissues obtained from eight systems was included in this study. Tissue sections were obtained from the urinary system (kidney), muscular system (striated skeletal muscle and smooth muscle), cardiovascular system (cardiac muscle (ventricle), coronary artery, and coronary vein), respiratory system (trachea and lung), gastrointestinal system (esophagus, stomach, small intestine, liver, and pancreas), reproductive system (testis), lymphatic system (spleen and thymus), and endocrine system (pancreas). Results While most structures were similar to those of other mammal species, there were some differences in the tissue sections of dugongs when compared with other mammalian species and manatees. These include the kidneys of dugongs, which were non-lobular and had a smooth, elongated exterior resulting in a long medullary crest, whereas the dugong pyloric epithelium did not have overlying stratified squamous cells and was noticably different from the Florida manatee. Discussion Histological information obtained from various organs of the dugong can serve as an essential foundation of basal data for future microanatomical studies. This information can also be used as high-value data in the diagnosis and pathogenesis of sick dugongs or those with an unknown cause of death.
Collapse
Affiliation(s)
| | | | | | | | - Piyamat Kongtueng
- Central Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center for Veterinary Biosciences and Veterinary Public Health, Chiang Mai University, Chiang Mai, Thailand
| | - Pitchaya Matchimakul
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wasan Tangphokhanon
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prapawadee Pirintr
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jaruwan Khonmee
- Research Center for Veterinary Biosciences and Veterinary Public Health, Chiang Mai University, Chiang Mai, Thailand
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Songphon Buddhasiri
- Research Center for Veterinary Biosciences and Veterinary Public Health, Chiang Mai University, Chiang Mai, Thailand
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Promporn Piboon
- Research Center for Veterinary Biosciences and Veterinary Public Health, Chiang Mai University, Chiang Mai, Thailand
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sonthaya Umsumarng
- Research Center for Veterinary Biosciences and Veterinary Public Health, Chiang Mai University, Chiang Mai, Thailand
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Raktham Mektrirat
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Korakot Nganvongpanit
- Research Center for Veterinary Biosciences and Veterinary Public Health, Chiang Mai University, Chiang Mai, Thailand
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wanpitak Pongkan
- Research Center for Veterinary Biosciences and Veterinary Public Health, Chiang Mai University, Chiang Mai, Thailand
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
42
|
Lother A, Kohl P. The heterocellular heart: identities, interactions, and implications for cardiology. Basic Res Cardiol 2023; 118:30. [PMID: 37495826 PMCID: PMC10371928 DOI: 10.1007/s00395-023-01000-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
The heterocellular nature of the heart has been receiving increasing attention in recent years. In addition to cardiomyocytes as the prototypical cell type of the heart, non-myocytes such as endothelial cells, fibroblasts, or immune cells are coming more into focus. The rise of single-cell sequencing technologies enables identification of ever more subtle differences and has reignited the question of what defines a cell's identity. Here we provide an overview of the major cardiac cell types, describe their roles in homeostasis, and outline recent findings on non-canonical functions that may be of relevance for cardiology. We highlight modes of biochemical and biophysical interactions between different cardiac cell types and discuss the potential implications of the heterocellular nature of the heart for basic research and therapeutic interventions.
Collapse
Affiliation(s)
- Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
- Interdisciplinary Medical Intensive Care, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany.
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University Heart Center, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
43
|
Rämö JT, Kany S, Hou CR, Friedman SF, Roselli C, Nauffal V, Koyama S, Karjalainen J, Maddah M, Palotie A, Ellinor PT, Pirruccello JP. The Cardiovascular Impact and Genetics of Pericardial Adiposity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.16.23292729. [PMID: 37502935 PMCID: PMC10371191 DOI: 10.1101/2023.07.16.23292729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background While previous studies have reported associations of pericardial adipose tissue (PAT) with cardiovascular diseases such as atrial fibrillation and coronary artery disease, they have been limited in sample size or drawn from selected populations. Additionally, the genetic determinants of PAT remain largely unknown. We aimed to evaluate the association of PAT with prevalent and incident cardiovascular disease and to elucidate the genetic basis of PAT in a large population cohort. Methods A deep learning model was trained to quantify PAT area from four-chamber magnetic resonance images in the UK Biobank using semantic segmentation. Cross-sectional and prospective cardiovascular disease associations were evaluated, controlling for sex and age. A genome-wide association study was performed, and a polygenic score (PGS) for PAT was examined in 453,733 independent FinnGen study participants. Results A total of 44,725 UK Biobank participants (51.7% female, mean [SD] age 64.1 [7.7] years) were included. PAT was positively associated with male sex (β = +0.76 SD in PAT), age (r = 0.15), body mass index (BMI; r = 0.47) and waist-to-hip ratio (r = 0.55) (P < 1×10-230). PAT was more elevated in prevalent heart failure (β = +0.46 SD units) and type 2 diabetes (β = +0.56) than in coronary artery disease (β = +0.22) or AF (β = +0.18). PAT was associated with incident heart failure (HR = 1.29 per +1 SD in PAT [95% CI 1.17-1.43]) and type 2 diabetes (HR = 1.63 [1.51-1.76]) during a mean 3.2 (±1.5) years of follow-up; the associations remained significant when controlling for BMI. We identified 5 novel genetic loci for PAT and implicated transcriptional regulators of adipocyte morphology and brown adipogenesis (EBF1, EBF2 and CEBPA) and regulators of visceral adiposity (WARS2 and TRIB2). The PAT PGS was associated with T2D, heart failure, coronary artery disease and atrial fibrillation in FinnGen (ORs 1.03-1.06 per +1 SD in PGS, P < 2×10-10). Conclusions PAT shares genetic determinants with abdominal adiposity and is an independent predictor of incident type 2 diabetes and heart failure.
Collapse
Affiliation(s)
- Joel T Rämö
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Shinwan Kany
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Cardiology, University Heart and Vascular Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cody R Hou
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | | | - Carolina Roselli
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Victor Nauffal
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Satoshi Koyama
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Juha Karjalainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mahnaz Maddah
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - James P Pirruccello
- Bakar Computation Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Cardiology, University of California San Francisco, San Francisco, California, USA, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
44
|
Valenzuela PL, Carrera-Bastos P, Castillo-García A, Lieberman DE, Santos-Lozano A, Lucia A. Obesity and the risk of cardiometabolic diseases. Nat Rev Cardiol 2023; 20:475-494. [PMID: 36927772 DOI: 10.1038/s41569-023-00847-5] [Citation(s) in RCA: 179] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 03/18/2023]
Abstract
The prevalence of obesity has reached pandemic proportions, and now approximately 25% of adults in Westernized countries have obesity. Recognized as a major health concern, obesity is associated with multiple comorbidities, particularly cardiometabolic disorders. In this Review, we present obesity as an evolutionarily novel condition, summarize the epidemiological evidence on its detrimental cardiometabolic consequences and discuss the major mechanisms involved in the association between obesity and the risk of cardiometabolic diseases. We also examine the role of potential moderators of this association, with evidence for and against the so-called 'metabolically healthy obesity phenotype', the 'fatness but fitness' paradox or the 'obesity paradox'. Although maintenance of optimal cardiometabolic status should be a primary goal in individuals with obesity, losing body weight and, particularly, excess visceral adiposity seems to be necessary to minimize the risk of cardiometabolic diseases.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Physical Activity and Health Research Group (PaHerg), Research Institute of Hospital 12 de Octubre ("i + 12"), Madrid, Spain.
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Spain.
| | - Pedro Carrera-Bastos
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | - Daniel E Lieberman
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Alejandro Santos-Lozano
- Physical Activity and Health Research Group (PaHerg), Research Institute of Hospital 12 de Octubre ("i + 12"), Madrid, Spain
- Department of Health Sciences, European University Miguel de Cervantes, Valladolid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.
| |
Collapse
|
45
|
Pugliese L, Ricci F, Sica G, Scaglione M, Masala S. Non-Contrast and Contrast-Enhanced Cardiac Computed Tomography Imaging in the Diagnostic and Prognostic Evaluation of Coronary Artery Disease. Diagnostics (Basel) 2023; 13:2074. [PMID: 37370969 DOI: 10.3390/diagnostics13122074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
In recent decades, cardiac computed tomography (CT) has emerged as a powerful non-invasive tool for risk stratification, as well as the detection and characterization of coronary artery disease (CAD), which remains the main cause of morbidity and mortality in the world. Advances in technology have favored the increasing use of cardiac CT by allowing better performance with lower radiation doses. Coronary artery calcium, as assessed by non-contrast CT, is considered to be the best marker of subclinical atherosclerosis, and its use is recommended for the refinement of risk assessment in low-to-intermediate risk individuals. In addition, coronary CT angiography (CCTA) has become a gate-keeper to invasive coronary angiography (ICA) and revascularization in patients with acute chest pain by allowing the assessment not only of the extent of lumen stenosis, but also of its hemodynamic significance if combined with the measurement of fractional flow reserve or perfusion imaging. Moreover, CCTA provides a unique incremental value over functional testing and ICA by imaging the vessel wall, thus allowing the assessment of plaque burden, composition, and instability features, in addition to perivascular adipose tissue attenuation, which is a marker of vascular inflammation. There exists the potential to identify the non-obstructive lesions at high risk of progression to plaque rupture by combining all of these measures.
Collapse
Affiliation(s)
- Luca Pugliese
- Radiology Unit, Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant'Andrea University Hospital, 00189 Rome, Italy
| | - Francesca Ricci
- Radiology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | - Giacomo Sica
- Radiology Unit, Monaldi Hospital, 80131 Napoli, Italy
| | - Mariano Scaglione
- Radiology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | - Salvatore Masala
- Radiology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
46
|
Leo S, Tremoli E, Ferroni L, Zavan B. Role of Epicardial Adipose Tissue Secretome on Cardiovascular Diseases. Biomedicines 2023; 11:1653. [PMID: 37371748 DOI: 10.3390/biomedicines11061653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Obesity and insulin resistance are associated with the inflamed and defective adipose tissue (AT) phenotype, and are established risk factors for cardiovascular diseases (CVDs). Extracellular vesicles (EVs) are a heterogeneous group of cell-derived lipid membrane vesicles involved in the onset and development of many pathologies, including insulin resistance, diabetes, and CVDs. The inflammation associated with overweight and obesity triggers the transition of the AT secretome from healthy to pathological, with a consequent increased expression of pro-inflammatory mediators. Epicardial adipose tissue (EAT) is a specialized fat depot that surrounds the heart, in direct contact with the myocardium. Recently, the role of EAT in regulating the physiopathology of many heart diseases has been increasingly explored. In particular, the EAT phenotype and derived EVs have been associated with the onset and exacerbation of CVDs. In this review, we will focus on the role of the AT secretome in the case of CVDs, and will discuss the beneficial effects of EVs released by AT as promising therapeutic candidates.
Collapse
Affiliation(s)
- Sara Leo
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy
| | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
47
|
Li C, Liu X, Adhikari BK, Chen L, Liu W, Wang Y, Zhang H. The role of epicardial adipose tissue dysfunction in cardiovascular diseases: an overview of pathophysiology, evaluation, and management. Front Endocrinol (Lausanne) 2023; 14:1167952. [PMID: 37260440 PMCID: PMC10229094 DOI: 10.3389/fendo.2023.1167952] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/21/2023] [Indexed: 06/02/2023] Open
Abstract
In recent decades, the epicardial adipose tissue (EAT) has been at the forefront of scientific research because of its diverse role in the pathogenesis of cardiovascular diseases (CVDs). EAT lies between the myocardium and the visceral pericardium. The same microcirculation exists both in the epicardial fat and the myocardium. Under physiological circumstances, EAT serves as cushion and protects coronary arteries and myocardium from violent distortion and impact. In addition, EAT acts as an energy lipid source, thermoregulator, and endocrine organ. Under pathological conditions, EAT dysfunction promotes various CVDs progression in several ways. It seems that various secretions of the epicardial fat are responsible for myocardial metabolic disturbances and, finally, leads to CVDs. Therefore, EAT might be an early predictor of CVDs. Furthermore, different non-invasive imaging techniques have been proposed to identify and assess EAT as an important parameter to stratify the CVD risk. We also present the potential therapeutic possibilities aiming at modifying the function of EAT. This paper aims to provide overview of the potential role of EAT in CVDs, discuss different imaging techniques to assess EAT, and provide potential therapeutic options for EAT. Hence, EAT may represent as a potential predictor and a novel therapeutic target for management of CVDs in the future.
Collapse
Affiliation(s)
- Cheng Li
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyu Liu
- School of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | | | - Liping Chen
- Department of Echocardiography, Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenyun Liu
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Changchun, Jilin, China
| | - Yonggang Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huimao Zhang
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Changchun, Jilin, China
| |
Collapse
|
48
|
Chong B, Jayabaskaran J, Ruban J, Goh R, Chin YH, Kong G, Ng CH, Lin C, Loong S, Muthiah MD, Khoo CM, Shariff E, Chan MY, Lajeunesse-Trempe F, Tchernof A, Chevli P, Mehta A, Mamas MA, Dimitriadis GK, Chew NWS. Epicardial Adipose Tissue Assessed by Computed Tomography and Echocardiography Are Associated With Adverse Cardiovascular Outcomes: A Systematic Review and Meta-Analysis. Circ Cardiovasc Imaging 2023; 16:e015159. [PMID: 37192298 DOI: 10.1161/circimaging.122.015159] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/11/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Epicardial adipose tissue (EAT) has garnered attention as a prognostic and risk stratification factor for cardiovascular disease. This study, via meta-analyses, evaluates the associations between EAT and cardiovascular outcomes stratified across imaging modalities, ethnic groups, and study protocols. METHODS Medline and Embase databases were searched without date restriction on May 2022 for articles that examined EAT and cardiovascular outcomes. The inclusion criteria were (1) studies measuring EAT of adult patients at baseline and (2) reporting follow-up data on study outcomes of interest. The primary study outcome was major adverse cardiovascular events. Secondary study outcomes included cardiac death, myocardial infarction, coronary revascularization, and atrial fibrillation. RESULTS Twenty-nine articles published between 2012 and 2022, comprising 19 709 patients, were included in our analysis. Increased EAT thickness and volume were associated with higher risks of cardiac death (odds ratio, 2.53 [95% CI, 1.17-5.44]; P=0.020; n=4), myocardial infarction (odds ratio, 2.63 [95% CI, 1.39-4.96]; P=0.003; n=5), coronary revascularization (odds ratio, 2.99 [95% CI, 1.64-5.44]; P<0.001; n=5), and atrial fibrillation (adjusted odds ratio, 4.04 [95% CI, 3.06-5.32]; P<0.001; n=3). For 1 unit increment in the continuous measure of EAT, computed tomography volumetric quantification (adjusted hazard ratio, 1.74 [95% CI, 1.42-2.13]; P<0.001) and echocardiographic thickness quantification (adjusted hazard ratio, 1.20 [95% CI, 1.09-1.32]; P<0.001) conferred an increased risk of major adverse cardiovascular events. CONCLUSIONS The utility of EAT as an imaging biomarker for predicting and prognosticating cardiovascular disease is promising, with increased EAT thickness and volume being identified as independent predictors of major adverse cardiovascular events. REGISTRATION URL: https://www.crd.york.ac.uk/prospero; Unique identifier: CRD42022338075.
Collapse
Affiliation(s)
- Bryan Chong
- Yong Loo Lin School of Medicine, National University of Singapore (B.C., J.J., J.R., R.G., Y.H.C., G.K., C.H.N., C.L., S.L., M.D.M., M.Y.C.)
| | - Jayanth Jayabaskaran
- Yong Loo Lin School of Medicine, National University of Singapore (B.C., J.J., J.R., R.G., Y.H.C., G.K., C.H.N., C.L., S.L., M.D.M., M.Y.C.)
| | - Jitesh Ruban
- Yong Loo Lin School of Medicine, National University of Singapore (B.C., J.J., J.R., R.G., Y.H.C., G.K., C.H.N., C.L., S.L., M.D.M., M.Y.C.)
| | - Rachel Goh
- Yong Loo Lin School of Medicine, National University of Singapore (B.C., J.J., J.R., R.G., Y.H.C., G.K., C.H.N., C.L., S.L., M.D.M., M.Y.C.)
| | - Yip Han Chin
- Yong Loo Lin School of Medicine, National University of Singapore (B.C., J.J., J.R., R.G., Y.H.C., G.K., C.H.N., C.L., S.L., M.D.M., M.Y.C.)
| | - Gwyneth Kong
- Yong Loo Lin School of Medicine, National University of Singapore (B.C., J.J., J.R., R.G., Y.H.C., G.K., C.H.N., C.L., S.L., M.D.M., M.Y.C.)
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University of Singapore (B.C., J.J., J.R., R.G., Y.H.C., G.K., C.H.N., C.L., S.L., M.D.M., M.Y.C.)
| | - Chaoxing Lin
- Yong Loo Lin School of Medicine, National University of Singapore (B.C., J.J., J.R., R.G., Y.H.C., G.K., C.H.N., C.L., S.L., M.D.M., M.Y.C.)
| | - Shaun Loong
- Yong Loo Lin School of Medicine, National University of Singapore (B.C., J.J., J.R., R.G., Y.H.C., G.K., C.H.N., C.L., S.L., M.D.M., M.Y.C.)
| | - Mark D Muthiah
- Yong Loo Lin School of Medicine, National University of Singapore (B.C., J.J., J.R., R.G., Y.H.C., G.K., C.H.N., C.L., S.L., M.D.M., M.Y.C.)
- Division of Gastroenterology and Hepatology, Department of Medicine (M.D.M.), National University Hospital, Singapore
- National University Centre for Organ Transplantation (M.D.M.), National University Health System, Singapore
| | - Chin Meng Khoo
- Division of Endocrinology, Department of Medicine (C.M.K.), National University Hospital, Singapore
| | - Ezman Shariff
- Universiti Teknologi MARA (UiTM) Sungai Buloh, Selangor, Malaysia (E.S.)
| | - Mark Y Chan
- Yong Loo Lin School of Medicine, National University of Singapore (B.C., J.J., J.R., R.G., Y.H.C., G.K., C.H.N., C.L., S.L., M.D.M., M.Y.C.)
- Department of Cardiology, National University Heart Centre (M.Y.C., N.W.S.C.), National University Health System, Singapore
| | - Fannie Lajeunesse-Trempe
- Quebec Heart and Lung Institute (F.L.-T., A.T.), Quebec City, Canada
- Department of Nutrition, Laval University (F.L.-T.), Quebec City, Canada
- Department of Endocrinology ASO/EASO COM, King's College Hospital NHS Foundation Trust, Denmark Hill, London, United Kingdom (F.L.-T., G.K.D.)
| | - Andre Tchernof
- Quebec Heart and Lung Institute (F.L.-T., A.T.), Quebec City, Canada
| | - Parag Chevli
- Section on Hospital Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC (P.C.)
| | - Anurag Mehta
- VCU Health Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond (A.M.)
| | - Mamas A Mamas
- Institute of Population Health, University of Manchester, United Kingdom (M.A.M.)
- Keele Cardiac Research Group, Centre for Prognosis Research, Keele University, Stoke-on-Trent (M.A.M.)
| | - Georgios K Dimitriadis
- Department of Endocrinology ASO/EASO COM, King's College Hospital NHS Foundation Trust, Denmark Hill, London, United Kingdom (F.L.-T., G.K.D.)
- Obesity, Type 2 Diabetes and Immunometabolism Research Group, Department of Diabetes, Faculty of Cardiovascular Medicine & Sciences, School of Life Course Sciences, King's College London, United Kingdom (G.K.D.)
| | - Nicholas W S Chew
- Department of Cardiology, National University Heart Centre (M.Y.C., N.W.S.C.), National University Health System, Singapore
| |
Collapse
|
49
|
Burrage MK, Lewis AJ, Miller JJJ. Functional and Metabolic Imaging in Heart Failure with Preserved Ejection Fraction: Promises, Challenges, and Clinical Utility. Cardiovasc Drugs Ther 2023; 37:379-399. [PMID: 35881280 PMCID: PMC10014679 DOI: 10.1007/s10557-022-07355-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is recognised as an increasingly prevalent, morbid and burdensome condition with a poor outlook. Recent advances in both the understanding of HFpEF and the technological ability to image cardiac function and metabolism in humans have simultaneously shone a light on the molecular basis of this complex condition of diastolic dysfunction, and the inflammatory and metabolic changes that are associated with it, typically in the context of a complex patient. This review both makes the case for an integrated assessment of the condition, and highlights that metabolic alteration may be a measurable outcome for novel targeted forms of medical therapy. It furthermore highlights how recent technological advancements and advanced medical imaging techniques have enabled the characterisation of the metabolism and function of HFpEF within patients, at rest and during exercise.
Collapse
Affiliation(s)
- Matthew K Burrage
- Oxford Centre for Clinical Cardiovascular Magnetic Resonance Research (OCMR); Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Andrew J Lewis
- Oxford Centre for Clinical Cardiovascular Magnetic Resonance Research (OCMR); Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK
| | - Jack J J. Miller
- Oxford Centre for Clinical Cardiovascular Magnetic Resonance Research (OCMR); Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK
- The PET Research Centre and The MR Research Centre, Aarhus University, Aarhus, Denmark
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, UK
| |
Collapse
|
50
|
Lu Y, Liu H, Zhu Z, Wang S, Liu Q, Qiu J, Xing W. Assessment of myocardial bridging and the pericoronary fat attenuation index on coronary computed tomography angiography: predicting coronary artery disease risk. BMC Cardiovasc Disord 2023; 23:145. [PMID: 36949394 PMCID: PMC10035163 DOI: 10.1186/s12872-023-03146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/24/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND The fat attenuation index (FAI) is a radiological parameter that represents pericoronary adipose tissue (PCAT) inflammation, along with myocardial bridging (MB), which leads to pathological shear stress in the coronary vessels; both are associated with coronary atherosclerosis. In the present study, we assessed the predictive value of FAI values and MB parameters through coronary computed tomography angiography (CCTA) for predicting the risk of coronary atherosclerosis and vulnerable plaque in patients with MB. METHODS We included 428 patients who underwent CCTA and were diagnosed with MB. FAI values, MB parameters, and high-risk coronary plaque (HRP) characteristics were recorded. The subjects were classified into two groups (A and B) according to the absence or presence of coronary plaque in the segment proximal to the MB. Group B was further divided into Groups B1 (HRP-positive) and B2 (HRP-negative) according to the HRP characteristic classification method. The differences among the groups were analysed. Multiple logistic regression analysis was performed to determine the independent correlation between FAI values and MB parameters and coronary atherosclerosis and vulnerable plaque risk. RESULTS Compared to the subjects in Group A, those in Group B presented greater MB lengths, MB depths and muscle index values, more severe MB systolic stenosis and higher FAIlesion values (all P < 0.05). In multivariate logistic analysis, age (OR 1.076, P < 0.001), MB systolic stenosis (OR 1.102, P < 0.001) and FAIlesion values (OR 1.502, P < 0.001) were independent risk factors for the occurrence of coronary atherosclerosis. Compared to subjects in Group B2, those in Group B1 presented greater MB lengths and higher FAI values (both P < 0.05). However, only the FAIlesion value was an independent factor for predicting HRP (OR 1.641, P < 0.001). CONCLUSION In patients with MB, MB systolic stenosis was associated with coronary plaque occurrence in the segment proximal to the MB. The FAI value was not only closely related to coronary atherosclerosis occurrence but also associated with plaque vulnerability. FAI values may provide more significant value in the prediction of coronary atherosclerosis than MB parameters in CCTA.
Collapse
Affiliation(s)
- Yang Lu
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, China
| | - Haifeng Liu
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, China
| | - Zuhui Zhu
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, China
| | - Siqi Wang
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, China
| | - Qi Liu
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, China
| | - Jianguo Qiu
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, China
| | - Wei Xing
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, China.
| |
Collapse
|