1
|
Sindzingre L, Bouaziz‐Amar E, Mouton‐Liger F, Cognat E, Dumurgier J, Götze K, Martinet M, Vrillon A, Paquet C, Lilamand M. Plasma adiponectin and biomarker-confirmed Alzheimer's disease in a tertiary memory clinic. J Neuroendocrinol 2025; 37:e13493. [PMID: 39842780 PMCID: PMC11975797 DOI: 10.1111/jne.13493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025]
Abstract
Alzheimer's disease (AD) is associated with early metabolic dysfunction and adiponectin, which may play a pathophysiological role. Adiponectin is implicated in the regulation of energy homeostasis, carbohydrate, and lipid metabolism, as well as in inflammation modulation. The aim of this study was to study whether plasma adiponectin levels were different between patients with AD confirmed by biomarkers and neurological control subjects. We performed a monocentric, retrospective, cross-sectional, observational study in AD patients and neurological controls recruited from daily clinical practice in a tertiary memory clinic. Plasma adiponectin levels were measured using a chemiluminescent enzyme immunoassay. We analyzed the relationship between adiponectin and AD using linear regression models including age, gender, and BMI. We also described the distribution of adiponectin concentrations, across age, and gender categories. Two hundred and six patients (142 AD patients and 64 neurological controls) were included, with mean age = 68.8 ± 10.0 years, and 56% were women. Higher adiponectin concentrations were observed in females and in older adults. Plasma adiponectin levels were significantly higher in AD patients (mean = 6.45 ± 3.42 μg/mL) than neurological controls (4.85 ± 3.54 μg/mL) (p < .001). This association was mediated by age, gender, and BMI, which were significantly and independently associated with plasma adiponectin levels (p < .01 for each), while adiponectin was no longer associated with AD in multivariate models. Patients with AD showed higher adiponectin levels, but this association was driven by older age, female gender, and lower BMI in the AD group. Further studies are needed to better characterize the hormonal signature of AD.
Collapse
Affiliation(s)
- Louise Sindzingre
- Université Paris Cité, UMRS 1144, INSERMParisFrance
- Centre de Neurologie Cognitive, AP‐HP.Nord, Site Lariboisière Fernand‐WidalParisFrance
| | - Elodie Bouaziz‐Amar
- Université Paris Cité, UMRS 1144, INSERMParisFrance
- Service de Biochimie, AP‐HP.Nord, Site Lariboisière Fernand‐WidalParisFrance
| | | | - Emmanuel Cognat
- Université Paris Cité, UMRS 1144, INSERMParisFrance
- Centre de Neurologie Cognitive, AP‐HP.Nord, Site Lariboisière Fernand‐WidalParisFrance
| | - Julien Dumurgier
- Université Paris Cité, UMRS 1144, INSERMParisFrance
- Centre de Neurologie Cognitive, AP‐HP.Nord, Site Lariboisière Fernand‐WidalParisFrance
| | - Karl Götze
- Université Paris Cité, UMRS 1144, INSERMParisFrance
- Département de Gériatrie, AP‐HP.Nord, Site BichatParisFrance
| | | | - Agathe Vrillon
- Université Paris Cité, UMRS 1144, INSERMParisFrance
- Centre de Neurologie Cognitive, AP‐HP.Nord, Site Lariboisière Fernand‐WidalParisFrance
| | - Claire Paquet
- Université Paris Cité, UMRS 1144, INSERMParisFrance
- Centre de Neurologie Cognitive, AP‐HP.Nord, Site Lariboisière Fernand‐WidalParisFrance
| | - Matthieu Lilamand
- Université Paris Cité, UMRS 1144, INSERMParisFrance
- Service de Gériatrie, AP‐HP.Nord, Site Lariboisière Fernand‐WidalParisFrance
| |
Collapse
|
2
|
Wang J, Liao M, Tong Z, Yuan S, Hu Z, Chen Z, Zeng F, Zou R, Chen D, Chen G, Wang Z, Liu W. Treadmill Exercise Modulates the Leptin/LepR/GSK-3β Signalling Pathway to Improve Leptin Sensitivity and Alleviate Neuroinflammation in High-Fat Diet-Fed APP/PS1 Mice. Mol Neurobiol 2025:10.1007/s12035-025-04853-1. [PMID: 40131695 DOI: 10.1007/s12035-025-04853-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/12/2025] [Indexed: 03/27/2025]
Abstract
Neuroinflammation plays a critical role in the development of Alzheimer's disease (AD) and is closely associated with obesity. In AD, the fat cell-secreted protein leptin crosses the blood-brain barrier and protects against nerve damage. However, obesity may induce leptin resistance, reduce leptin sensitivity, stimulate excessive glial cell activation, promote inflammatory factor production and exacerbate brain inflammation. Unfortunately, the mechanism of interaction among high-fat diets, obesity, neuroinflammation and neurodegenerative diseases remains unclear. We investigated the changes in neuroinflammation and leptin sensitivity in the brains of wild-type and high-fat-diet-fed APP/PS1 transgenic mice. We explored the effects of treadmill exercise for 12 weeks on the leptin/LepR/GSK-3β signalling pathway and memory. The body weights of the high-fat-diet-fed mice increased, and elevated levels of markers for leptin resistance, including suppressor of signalling 3 (SOCS3), protein tyrosine phosphatase 1B (PTP1B) and proinflammatory factors such as tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6), were observed. After 12 weeks of aerobic exercise, the leptin mRNA and protein levels increased, GSK-3β protein expression decreased and the mean fluorescence intensities of brain microglial (IBA-1) and neuron markers (NeuN) decreased, indicating that exercise may activate the leptin/LepR/GSK-3β signalling pathway, reducing glial cell activation and inflammation. Our study revealed that obesity induces and exacerbates the AD-related neuroinflammatory response. Aerobic exercise activates the leptin/LepR/GSK-3β pathway to relieve neuroinflammation and protect nerve cells, alleviating AD-associated memory loss. These promising outcomes could inform the development of nondrug-based aerobic exercise interventions for the treatment of AD and associated cognitive disorders.
Collapse
Affiliation(s)
- Juan Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Meiqing Liao
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Zhen Tong
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Shunling Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Zelin Hu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Zeyu Chen
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Fanqi Zeng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Ruihan Zou
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Dandan Chen
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Gan Chen
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China.
- Key Laboratory of Protein Chemistry and Developmental Biology, Ministry of Education, Physical Education College, Hunan Normal University, Yuelu District, No. 437, Lushan South Road, Changsha, 410081, China.
| | - Zhiyuan Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China.
- Key Laboratory of Protein Chemistry and Developmental Biology, Ministry of Education, Physical Education College, Hunan Normal University, Yuelu District, No. 437, Lushan South Road, Changsha, 410081, China.
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China.
- Key Laboratory of Protein Chemistry and Developmental Biology, Ministry of Education, Physical Education College, Hunan Normal University, Yuelu District, No. 437, Lushan South Road, Changsha, 410081, China.
| |
Collapse
|
3
|
Almutary AG, Begum MY, Kyada AK, Gupta S, Jyothi SR, Chaudhary K, Sharma S, Sinha A, Abomughaid MM, Imran M, Lakhanpal S, Babalghith AO, Abu-Seer EA, Avinash D, Alzahrani HA, Alhindi AA, Iqbal D, Kumar S, Jha NK, Alghamdi S. Inflammatory signaling pathways in Alzheimer's disease: Mechanistic insights and possible therapeutic interventions. Ageing Res Rev 2025; 104:102548. [PMID: 39419399 DOI: 10.1016/j.arr.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
The complex pathophysiology of Alzheimer's disease (AD) poses challenges for the development of therapies. Recently, neuroinflammation has been identified as a key pathogenic mechanism underlying AD, while inflammation has emerged as a possible target for the management and prevention of AD. Several prior studies have demonstrated that medications modulating neuroinflammation might lessen AD symptoms, mostly by controlling neuroinflammatory signaling pathways such as the NF-κB, MAPK, NLRP3, etc, and their respective signaling cascade. Moreover, targeting these inflammatory modalities with inhibitors, natural products, and metabolites has been the subject of intensive research because of their anti-inflammatory characteristics, with many studies demonstrating noteworthy pharmacological capabilities and potential clinical applications. Therefore, targeting inflammation is considered a promising strategy for treating AD. This review comprehensively elucidates the neuroinflammatory mechanisms underlying AD progression and the beneficial effects of inhibitors, natural products, and metabolites in AD treatment.
Collapse
Affiliation(s)
- Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ashish Kumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat 360003, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Swati Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Eman Adnan Abu-Seer
- Department of Epidemiology and Medical Statistic, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Makkah, Saudi Arabia
| | - D Avinash
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Hassan A Alzahrani
- Department of Respiratory Care, Medical Cities at the Minister of Interior, MCMOl, Riyadh, Saudi Arabia
| | | | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Sandeep Kumar
- School of Pharmacy, Sharda University, Greater Noida, India; DST-FIST Laboratory, Sharda University, Greater Noida, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Biosciences and Technology (SBT), Galgotias University, Greater Noida, India; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India.
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
4
|
Merle L, Rastelli M, Datiche F, Véjux A, Jacquin-Piques A, Bouret SG, Benani A. Maternal Diet and Vulnerability to Cognitive Impairment in Adulthood: Possible Link with Alzheimer's Disease? Neuroendocrinology 2025; 115:242-266. [PMID: 39799941 DOI: 10.1159/000543499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/15/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND Aging is the main risk factor for developing cognitive impairments and associated neurodegenerative diseases. However, environmental factors, including nutritional health, are likely to promote or reduce cognitive impairments and neurodegenerative pathologies. An intricate relationship exists between maternal nutrition and adult eating behavior, metabolic phenotype, and cognitive abilities. SUMMARY The objective of the present review was to collect available data, suggesting a link between maternal overnutrition and the latter impairment of cognitive functions in the progeny, and to relate this relationship with Alzheimer's disease (AD). Indeed, cognitive impairments are major behavioral signs of AD. We first reviewed studies showing an association between unbalanced maternal diet and cognitive impairments in the progeny in humans and rodent models. Then we looked for cellular and molecular hallmarks which could constitute a breeding ground for AD in those models. With this end, we focused on synaptic dysfunction, altered neurogenesis, neuroinflammation, oxidative stress, and pathological protein aggregation. Finally, we proposed an indirect mechanism linking maternal unbalanced diet and progeny's vulnerability to cognitive impairments and neurodegeneration through promoting metabolic diseases. We also discussed the involvement of progeny's gut microbiota in the maternal diet-induced vulnerability to metabolic and neurodegenerative diseases. KEY MESSAGES Further investigations are needed to fully decipher how maternal diet programs the fetus and infant brain. Addressing this knowledge gap would pave the way to precise nutrition and personalized medicine to better handle cognitive impairments in adulthood.
Collapse
Affiliation(s)
- Laetitia Merle
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Marialetizia Rastelli
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, Inserm UMR-S1172, CHU Lille, University of Lille, Lille, France
| | - Frédérique Datiche
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Anne Véjux
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Agnès Jacquin-Piques
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Department of Clinical Neurophysiology, INRAE, Institut Agro, Université de Bourgogne, CHU Dijon, Dijon, France
| | - Sébastien G Bouret
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, Inserm UMR-S1172, CHU Lille, University of Lille, Lille, France
| | - Alexandre Benani
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| |
Collapse
|
5
|
Obaideen M, Önel T, Yıldırım E, Yaba A. The role of leptin in the male reproductive system. J Turk Ger Gynecol Assoc 2024; 25:247-258. [PMID: 39658934 PMCID: PMC11632632 DOI: 10.4274/jtgga.galenos.2024.2023-7-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/08/2024] [Indexed: 12/12/2024] Open
Abstract
Leptin is a hormone produced from adipose tissue, targeting the hypothalamus and regulating energy expenditure, adipose tissue mass, and reproductive function. Leptin concentration reflects body weight and the amount of energy stored, as well as the level of reproductive hormones and male fertility. In this review, the aim was to focus on leptin signaling mechanisms and the significant influence of leptin on the male reproductive system and to summarize the current knowledge of clinical and experimental studies. The PubMed database was searched for studies on leptin and the male reproductive system to summarize the mechanism of leptin in the male reproductive system. Studies have shown that obesity-related, high leptin levels or leptin resistance negatively affects male reproductive functions. Leptin directly affects the testis by binding to the hypothalamic-pituitary-gonadal axis and the receptors of testicular cells, and thus the location of leptin receptors plays a key role in the regulation of the male reproductive system with the negative feedback mechanism between adipose tissue and hypothalamus. Based on the current evidence, leptin may totally inhibit male reproduction, and investigation of this role of leptin has established a potential interaction between obesity and male infertility. The mechanism of leptin in the male reproductive system should be further investigated and possible treatments for subfertility should be evaluated, supported by better understanding of leptin and associated signaling mechanisms.
Collapse
Affiliation(s)
- Melek Obaideen
- Department of Histology and Embryology Yeditepe University Faculty of Medicine, İstanbul, Turkey
| | - Tuğçe Önel
- Department of Histology and Embryology Yeditepe University Faculty of Medicine, İstanbul, Turkey
| | - Ecem Yıldırım
- Department of Histology and Embryology Yeditepe University Faculty of Medicine, İstanbul, Turkey
| | - Aylin Yaba
- Department of Histology and Embryology Yeditepe University Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
6
|
Perdaens O, van Pesch V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int J Mol Sci 2024; 25:12637. [PMID: 39684351 PMCID: PMC11641818 DOI: 10.3390/ijms252312637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient's care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself. Mitochondrial dysfunction, leading to energy deficiency and ion imbalance, plays a key role in neurodegeneration, and is partly caused by the oxidative stress generated by microglia and astrocytes. Nodal and paranodal disruption, with or without myelin alteration, is further involved. Myelin loss exposes the axons directly to the inflammatory and oxidative environment. Moreover, oligodendrocytes provide a singular metabolic and trophic support to axons, but do not emerge unscathed from the pathological events, by primary myelin defects and cell apoptosis or secondary to neuroinflammation or axonal damage. Hereby, trophic failure might be an overlooked contributor to neurodegeneration. Thus, a complex interplay between neuroinflammation, demyelination, and neurodegeneration, wherein each is primarily and secondarily involved, might offer a more comprehensive understanding of the pathogenesis and help establishing novel therapeutic strategies for many neurological diseases and beyond.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
7
|
Hsu CN, Kao CH, Yang CH, Cheng MT, Hsu YP, Hong SG, Yao CL, Chen YH. Leptin Promotes the Expression of Pro-inflammatory Mediator Genes but Does Not Alter Osteoclastogenesis and Early Stage Differentiation of Osteoblasts. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:355-363. [PMID: 39569657 DOI: 10.4103/ejpi.ejpi-d-24-00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/12/2024] [Indexed: 11/22/2024]
Abstract
ABSTRACT Leptin, a hormone secreted by adipose tissue, plays a pivotal role in maintaining energy metabolism and bone quality. Dysregulation of leptin can lead to the development of various pathological conditions. For example, the concentration of leptin is increased in individuals with obesity, and this increased concentration is positively correlated with higher bone mass. In addition, mice lacking leptin or the leptin receptor exhibit substantial bone loss, further highlighting the pivotal role of leptin in regulating bone metabolism. However, the precise mechanism through which leptin affects bone remodeling remains unclear. The present study investigated the effect of leptin on osteoclastogenesis and osteoblastogenesis. Osteoblasts derived from MC3T3-E1 cells and osteoclasts derived from RAW 264.7 cells were used. The findings revealed that leptin did not substantially affect osteoclastogenesis or osteoblastogenesis. Furthermore, leptin did not affect cell viability during osteoclast differentiation. The expression of inflammatory mediators was increased in differentiating RAW 264.7 cells. However, the expression of critical bone resorptive genes, including Ctsk and tartrate-resistant acid phosphatase, was not elevated following leptin stimulation. By contrast, leptin did not alter the expression of key osteogenic genes in preosteoblasts in the early stage of differentiation. These data demonstrate that leptin can stimulate the expression of pro-inflammatory mediators in differentiating osteoclasts. These changes do not affect osteoblastogenesis or osteoclastogenesis. Leptin may downregulate bone resorption and enhance mineralization to increase bone mass.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Chih-Hong Kao
- Department of Cardiovascular Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Chin-Hua Yang
- Department of Radiology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Te Cheng
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Sinwu Branch, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biomedical Engineering, Chung Yung Christian University, Taoyuan, Taiwan
| | - Yu-Pao Hsu
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Shinn-Gwo Hong
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Chao-Ling Yao
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Yu-Hsu Chen
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Department of Orthopedics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
8
|
Charisis S, Short MI, Bernal R, Kautz TF, Treviño HA, Mathews J, Dediós AGV, Muhammad JAS, Luckey AM, Aslam A, Himali JJ, Shipp EL, Habes M, Beiser AS, DeCarli C, Scarmeas N, Ramachandran VS, Seshadri S, Maillard P, Satizabal CL. Leptin bioavailability and markers of brain atrophy and vascular injury in the middle age. Alzheimers Dement 2024; 20:5849-5860. [PMID: 39132759 PMCID: PMC11497668 DOI: 10.1002/alz.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/01/2024] [Accepted: 03/24/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION We investigated the associations of leptin markers with cognitive function and magnetic resonance imaging (MRI) measures of brain atrophy and vascular injury in healthy middle-aged adults. METHODS We included 2262 cognitively healthy participants from the Framingham Heart Study with neuropsychological evaluation; of these, 2028 also had available brain MRI. Concentrations of leptin, soluble leptin receptor (sOB-R), and their ratio (free leptin index [FLI]), indicating leptin bioavailability, were measured using enzyme-linked immunosorbent assays. Cognitive and MRI measures were derived using standardized protocols. RESULTS Higher sOB-R was associated with lower fractional anisotropy (FA, β = -0.114 ± 0.02, p < 0.001), and higher free water (FW, β = 0.091 ± 0.022, p < 0.001) and peak-width skeletonized mean diffusivity (PSMD, β = 0.078 ± 0.021, p < 0.001). Correspondingly, higher FLI was associated with higher FA (β = 0.115 ± 0.027, p < 0.001) and lower FW (β = -0.096 ± 0.029, p = 0.001) and PSMD (β = -0.085 ± 0.028, p = 0.002). DISCUSSION Higher leptin bioavailability was associated with better white matter (WM) integrity in healthy middle-aged adults, supporting the putative neuroprotective role of leptin in late-life dementia risk. HIGHLIGHTS Higher leptin bioavailability was related to better preservation of white matter microstructure. Higher leptin bioavailability during midlife might confer protection against dementia. Potential benefits might be even stronger for individuals with visceral obesity. DTI measures might be sensitive surrogate markers of subclinical neuropathology.
Collapse
Affiliation(s)
- Sokratis Charisis
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Meghan I. Short
- Institute for Clinical Research and Health Policy StudiesTufts Medical CenterBostonMassachusettsUSA
| | - Rebecca Bernal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Tiffany F. Kautz
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Hector A. Treviño
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Julia Mathews
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | | | - Jazmyn A. S. Muhammad
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Alison M. Luckey
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Asra Aslam
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Jayandra J. Himali
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Eric L. Shipp
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Mohamad Habes
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Alexa S. Beiser
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Charles DeCarli
- Department of NeurologyUniversity of California, DavisSacramentoCaliforniaUSA
| | - Nikolaos Scarmeas
- 1st Department of NeurologyNational and Kapodistrian University of AthensAthensGreece
- Taub Institute for Research in Alzheimer's Disease and the Aging Brainthe Gertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
| | - Vasan S. Ramachandran
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Pauline Maillard
- Department of NeurologyUniversity of California, DavisSacramentoCaliforniaUSA
| | - Claudia L. Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| |
Collapse
|
9
|
Gutiérrez Rico E, Joseph P, Noutsos C, Poon K. Hypothalamic and hippocampal transcriptome changes in App NL-G-F mice as a function of metabolic and inflammatory dysfunction. Neuroscience 2024; 554:107-117. [PMID: 39002757 DOI: 10.1016/j.neuroscience.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 05/20/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The progression of Alzheimer's disease (AD) has a silent phase that predates characteristic cognitive decline and eventually leads to active cognitive deficits. Metabolism, diet, and obesity have been correlated to the development of AD but is poorly understood. The hypothalamus is a brain region that exerts homeostatic control on food intake and metabolism and has been noted to be impacted during the active phase of Alzheimer's disease. This study, in using an amyloid overexpression AppNL-G-F mouse model under normal metabolic conditions, examines blood markers in young and old male AppNL-G-F mice (n = 5) that corresponds to the silent and active phases of AD, and bulk gene expression changes in the hypothalamus and the hippocampus. The results show a large panel of inflammatory mediators, leptin, and other proteins that may be involved in weakening the blood brain barrier, to be increased in the young AppNL-G-F mice but not in the old AppNL-G-F mice. There were also several differentially expressed genes in both the hypothalamus and the hippocampus in the young AppNL-G-F mice prior to amyloid plaque formation and cognitive decline that persisted in the old AppNL-G-F mice, including GABRa2 receptor, Wdfy1, and several pseudogenes with unknown function. These results suggests that a larger panel of inflammatory mediators may be used as blood markers to detect silent AD, and that a change in leptin and gene expression in the hypothalamus exist prior to cognitive effects, suggesting a coupling of metabolism with amyloid plaque induced cognitive decline.
Collapse
Affiliation(s)
- Evelyn Gutiérrez Rico
- Tohoku University, Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
| | - Patricia Joseph
- SUNY Old Westbury, 223 Store Hill Rd, Old Westbury, NY 11568, USA
| | - Christos Noutsos
- SUNY Old Westbury, 223 Store Hill Rd, Old Westbury, NY 11568, USA
| | - Kinning Poon
- SUNY Old Westbury, 223 Store Hill Rd, Old Westbury, NY 11568, USA.
| |
Collapse
|
10
|
Peng Y, Yao SY, Chen Q, Jin H, Du MQ, Xue YH, Liu S. True or false? Alzheimer's disease is type 3 diabetes: Evidences from bench to bedside. Ageing Res Rev 2024; 99:102383. [PMID: 38955264 DOI: 10.1016/j.arr.2024.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Globally, Alzheimer's disease (AD) is the most widespread chronic neurodegenerative disorder, leading to cognitive impairment, such as aphasia and agnosia, as well as mental symptoms, like behavioral abnormalities, that place a heavy psychological and financial burden on the families of the afflicted. Unfortunately, no particular medications exist to treat AD, as the current treatments only impede its progression.The link between AD and type 2 diabetes (T2D) has been increasingly revealed by research; the danger of developing both AD and T2D rises exponentially with age, with T2D being especially prone to AD. This has propelled researchers to investigate the mechanism(s) underlying this connection. A critical review of the relationship between insulin resistance, Aβ, oxidative stress, mitochondrial hypothesis, abnormal phosphorylation of Tau protein, inflammatory response, high blood glucose levels, neurotransmitters and signaling pathways, vascular issues in AD and diabetes, and the similarities between the two diseases, is presented in this review. Grasping the essential mechanisms behind this detrimental interaction may offer chances to devise successful therapeutic strategies.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China.
| | - Shun-Yu Yao
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Quan Chen
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Hong Jin
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Miao-Qiao Du
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Ya-Hui Xue
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Shu Liu
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| |
Collapse
|
11
|
Abdalla MMI. Insulin resistance as the molecular link between diabetes and Alzheimer's disease. World J Diabetes 2024; 15:1430-1447. [PMID: 39099819 PMCID: PMC11292327 DOI: 10.4239/wjd.v15.i7.1430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 07/08/2024] Open
Abstract
Diabetes mellitus (DM) and Alzheimer's disease (AD) are two major health concerns that have seen a rising prevalence worldwide. Recent studies have indicated a possible link between DM and an increased risk of developing AD. Insulin, while primarily known for its role in regulating blood sugar, also plays a vital role in protecting brain functions. Insulin resistance (IR), especially prevalent in type 2 diabetes, is believed to play a significant role in AD's development. When insulin signalling becomes dysfunctional, it can negatively affect various brain functions, making individuals more susceptible to AD's defining features, such as the buildup of beta-amyloid plaques and tau protein tangles. Emerging research suggests that addressing insulin-related issues might help reduce or even reverse the brain changes linked to AD. This review aims to explore the rela-tionship between DM and AD, with a focus on the role of IR. It also explores the molecular mechanisms by which IR might lead to brain changes and assesses current treatments that target IR. Understanding IR's role in the connection between DM and AD offers new possibilities for treatments and highlights the importance of continued research in this interdisciplinary field.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Department of Human Biology, School of Medicine, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Harvey J. Novel Leptin-Based Therapeutic Strategies to Limit Synaptic Dysfunction in Alzheimer's Disease. Int J Mol Sci 2024; 25:7352. [PMID: 39000459 PMCID: PMC11242278 DOI: 10.3390/ijms25137352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Accumulation of hyper-phosphorylated tau and amyloid beta (Aβ) are key pathological hallmarks of Alzheimer's disease (AD). Increasing evidence indicates that in the early pre-clinical stages of AD, phosphorylation and build-up of tau drives impairments in hippocampal excitatory synaptic function, which ultimately leads to cognitive deficits. Consequently, limiting tau-related synaptic abnormalities may have beneficial effects in AD. There is now significant evidence that the hippocampus is an important brain target for the endocrine hormone leptin and that leptin has pro-cognitive properties, as activation of synaptic leptin receptors markedly influences higher cognitive processes including learning and memory. Clinical studies have identified a link between the circulating leptin levels and the risk of AD, such that AD risk is elevated when leptin levels fall outwith the physiological range. This has fuelled interest in targeting the leptin system therapeutically. Accumulating evidence supports this possibility, as numerous studies have shown that leptin has protective effects in a variety of models of AD. Recent findings have demonstrated that leptin has beneficial effects in the preclinical stages of AD, as leptin prevents the early synaptic impairments driven by tau protein and amyloid β. Here we review recent findings that implicate the leptin system as a potential novel therapeutic target in AD.
Collapse
Affiliation(s)
- Jenni Harvey
- Department of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
13
|
Campolim CM, Schimenes BC, Veras MM, Kim YB, Prada PO. Air pollution accelerates the development of obesity and Alzheimer's disease: the role of leptin and inflammation - a mini-review. Front Immunol 2024; 15:1401800. [PMID: 38933275 PMCID: PMC11199417 DOI: 10.3389/fimmu.2024.1401800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Air pollution is an urgent concern linked to numerous health problems in low- and middle-income countries, where 92% of air pollution-related deaths occur. Particulate matter 2.5 (PM2.5) is the most harmful component of air pollutants, increasing inflammation and changing gut microbiota, favoring obesity, type 2 diabetes, and Alzheimer's Disease (AD). PM2.5 contains lipopolysaccharides (LPS), which can activate the Toll-like receptor 4 (TLR4) signaling pathway. This pathway can lead to the release of pro-inflammatory markers, including interleukins, and suppressor of cytokine signaling-3 (SOCS3), which inhibits leptin action, a hormone that keeps the energy homeostasis. Leptin plays a role in preventing amyloid plaque deposition and hyperphosphorylation of tau-protein (p-tau), mechanisms involved in the neurodegeneration in AD. Approximately 50 million people worldwide are affected by dementia, with a significant proportion living in low-and middle-income countries. This number is expected to triple by 2050. This mini-review focuses on the potential impact of PM2.5 exposure on the TLR4 signaling pathway, its contribution to leptin resistance, and dysbiosis that exacerbates the link between obesity and AD.
Collapse
Affiliation(s)
- Clara Machado Campolim
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, United States
| | | | - Mariana Matera Veras
- Laboratory of Environmental and Experimental Pathology LIM05, Department of Pathology, School of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, United States
| | - Patricia Oliveira Prada
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, Campinas, SP, Brazil
- Department of Structural and Functional Biology, Institute of Biology (IB), University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
14
|
Mazuecos L, Artigas-Jerónimo S, Pintado C, Gómez O, Rubio B, Arribas C, Andrés A, Villar M, Gallardo N. Central leptin signaling deficiency induced by leptin receptor antagonist leads to hypothalamic proteomic remodeling. Life Sci 2024; 346:122649. [PMID: 38626868 DOI: 10.1016/j.lfs.2024.122649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
AIMS Leptin irresponsiveness, which is often associated with obesity, can have significant impacts on the hypothalamic proteome of individuals, including those who are lean. While mounting evidence on leptin irresponsiveness has focused on obese individuals, understanding the early molecular and proteomic changes associated with deficient hypothalamic leptin signaling in lean individuals is essential for early intervention and prevention of metabolic disorders. Leptin receptor antagonists block the binding of leptin to its receptors, potentially reducing its effects and used in cases where excessive leptin activity might be harmful. MATERIALS AND METHODS In this work, we blocked the central actions of leptin in lean male adult Wistar rat by chronically administering intracerebroventricularly the superactive leptin receptor antagonist (SLA) (D23L/L39A/D40A/F41A) and investigated its impact on the hypothalamic proteome using label-free sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) for quantitative proteomics. KEY FINDINGS Our results show an accumulation of proteins involved in mRNA processing, mRNA stability, and translation in the hypothalamus of SLA-treated rats. Conversely, hypothalamic leptin signaling deficiency reduces the representation of proteins implicated in energy metabolism, neural circuitry, and neurotransmitter release. SIGNIFICANCE The alterations in the adult rat hypothalamic proteome contribute to dysregulate appetite, metabolism, and energy balance, which are key factors in the development and progression of obesity and related metabolic disorders. Additionally, using bioinformatic analysis, we identified a series of transcription factors that are potentially involved in the upstream regulatory mechanisms responsible for the observed signature.
Collapse
Affiliation(s)
- Lorena Mazuecos
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Sara Artigas-Jerónimo
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Cristina Pintado
- Biochemistry Section, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Oscar Gómez
- Biochemistry Section, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Blanca Rubio
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Carmen Arribas
- Biochemistry Section, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Antonio Andrés
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Margarita Villar
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | - Nilda Gallardo
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain.
| |
Collapse
|
15
|
Patel V, Edison P. Cardiometabolic risk factors and neurodegeneration: a review of the mechanisms underlying diabetes, obesity and hypertension in Alzheimer's disease. J Neurol Neurosurg Psychiatry 2024; 95:581-589. [PMID: 38290839 PMCID: PMC11103343 DOI: 10.1136/jnnp-2023-332661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
A growing body of evidence suggests that cardiometabolic risk factors play a significant role in Alzheimer's disease (AD). Diabetes, obesity and hypertension are highly prevalent and can accelerate neurodegeneration and perpetuate the burden of AD. Insulin resistance and enzymes including insulin degrading enzymes are implicated in AD where breakdown of insulin is prioritised over amyloid-β. Leptin resistance and inflammation demonstrated by higher plasma and central nervous system levels of interleukin-6 (IL-6), IL-1β and tumour necrosis factor-α, are mechanisms connecting obesity and diabetes with AD. Leptin has been shown to ameliorate AD pathology and enhance long-term potentiation and hippocampal-dependent cognitive function. The renin-aldosterone angiotensin system, involved in hypertension, has been associated with AD pathology and neurotoxic reactive oxygen species, where angiotensin binds to specific angiotensin-1 receptors in the hippocampus and cerebral cortex. This review aims to consolidate the evidence behind putative processes stimulated by obesity, diabetes and hypertension, which leads to increased AD risk. We focus on how novel knowledge can be applied clinically to facilitate recognition of efficacious treatment strategies for AD.
Collapse
Affiliation(s)
- Vijay Patel
- Department of Brain Sciences, Imperial College London, London, UK
| | - Paul Edison
- Department of Brain Sciences, Imperial College London, London, UK
- Cardiff University, Cardiff, UK
| |
Collapse
|
16
|
Lee S, Byun MS, Yi D, Ahn H, Jung G, Jung JH, Chang YY, Kim K, Choi H, Choi J, Lee JY, Kang KM, Sohn CH, Lee YS, Kim YK, Lee DY. Plasma Leptin and Alzheimer Protein Pathologies Among Older Adults. JAMA Netw Open 2024; 7:e249539. [PMID: 38700863 PMCID: PMC11069086 DOI: 10.1001/jamanetworkopen.2024.9539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/01/2024] [Indexed: 05/06/2024] Open
Abstract
Importance Many epidemiologic studies have suggested that low levels of plasma leptin, a major adipokine, are associated with increased risk of Alzheimer disease (AD) dementia and cognitive decline. Nevertheless, the mechanistic pathway linking plasma leptin and AD-related cognitive decline is not yet fully understood. Objective To examine the association of plasma leptin levels with in vivo AD pathologies, including amyloid-beta (Aβ) and tau deposition, through both cross-sectional and longitudinal approaches among cognitively unimpaired older adults. Design, Setting, and Participants This was a longitudinal cohort study from the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer Disease. Data were collected from January 1, 2014, to December 31, 2020, and data were analyzed from July 11 to September 6, 2022. The study included a total of 208 cognitively unimpaired participants who underwent baseline positron emission tomography (PET) scans for brain Aβ deposition. For longitudinal analyses, 192 participants who completed both baseline and 2-year follow-up PET scans for brain Aβ deposition were included. Exposure Plasma leptin levels as assessed by enzyme-linked immunosorbent assay. Main Outcomes and Measures Baseline levels and longitudinal changes of global Aβ and AD-signature region tau deposition measured by PET scans. Results Among the 208 participants, the mean (SD) age was 66.0 (11.3) years, 114 were women (54.8%), and 37 were apolipoprotein E ε4 carriers (17.8%). Lower plasma leptin levels had a significant cross-sectional association with greater brain Aβ deposition (β = -0.04; 95% CI, -0.09 to 0.00; P = .046), while there was no significant association between plasma leptin levels and tau deposition (β = -0.02; 95% CI, -0.05 to 0.02; P = .41). In contrast, longitudinal analyses revealed that there was a significant association between lower baseline leptin levels and greater increase of tau deposition over 2 years (β = -0.06; 95% CI, -0.11 to -0.01; P = .03), whereas plasma leptin levels did not have a significant association with longitudinal change of Aβ deposition (β = 0.006; 95% CI, 0.00-0.02; P = .27). Conclusions and Relevance The present findings suggest that plasma leptin may be protective for the development or progression of AD pathology, including both Aβ and tau deposition.
Collapse
Affiliation(s)
- Seunghoon Lee
- Department of Psychiatry, Myongji Hospital, Hanyang University College of Medicine, Goyang, Republic of Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Hyejin Ahn
- Interdisciplinary Program of Cognitive Science, Seoul National University College of Humanities, Seoul, Republic of Korea
| | - Gijung Jung
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Joon Hyung Jung
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Yoon Young Chang
- Department of Psychiatry, Inje University, Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Kyungtae Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyeji Choi
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jeongmin Choi
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun-Young Lee
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program of Cognitive Science, Seoul National University College of Humanities, Seoul, Republic of Korea
| |
Collapse
|
17
|
Afsar A, Zhang L. Putative Molecular Mechanisms Underpinning the Inverse Roles of Mitochondrial Respiration and Heme Function in Lung Cancer and Alzheimer's Disease. BIOLOGY 2024; 13:185. [PMID: 38534454 DOI: 10.3390/biology13030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mitochondria are the powerhouse of the cell. Mitochondria serve as the major source of oxidative stress. Impaired mitochondria produce less adenosine triphosphate (ATP) but generate more reactive oxygen species (ROS), which could be a major factor in the oxidative imbalance observed in Alzheimer's disease (AD). Well-balanced mitochondrial respiration is important for the proper functioning of cells and human health. Indeed, recent research has shown that elevated mitochondrial respiration underlies the development and therapy resistance of many types of cancer, whereas diminished mitochondrial respiration is linked to the pathogenesis of AD. Mitochondria govern several activities that are known to be changed in lung cancer, the largest cause of cancer-related mortality worldwide. Because of the significant dependence of lung cancer cells on mitochondrial respiration, numerous studies demonstrated that blocking mitochondrial activity is a potent strategy to treat lung cancer. Heme is a central factor in mitochondrial respiration/oxidative phosphorylation (OXPHOS), and its association with cancer is the subject of increased research in recent years. In neural cells, heme is a key component in mitochondrial respiration and the production of ATP. Here, we review the role of impaired heme metabolism in the etiology of AD. We discuss the numerous mitochondrial effects that may contribute to AD and cancer. In addition to emphasizing the significance of heme in the development of both AD and cancer, this review also identifies some possible biological connections between the development of the two diseases. This review explores shared biological mechanisms (Pin1, Wnt, and p53 signaling) in cancer and AD. In cancer, these mechanisms drive cell proliferation and tumorigenic functions, while in AD, they lead to cell death. Understanding these mechanisms may help advance treatments for both conditions. This review discusses precise information regarding common risk factors, such as aging, obesity, diabetes, and tobacco usage.
Collapse
Affiliation(s)
- Atefeh Afsar
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Li Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
18
|
Sindzingre L, Bouaziz-Amar E, Mouton-Liger F, Cognat E, Dumurgier J, Vrillon A, Paquet C, Lilamand M. The role of adiponectin in Alzheimer's disease: A translational review. J Nutr Health Aging 2024; 28:100166. [PMID: 38280832 DOI: 10.1016/j.jnha.2024.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
Adiponectin is an adipokine playing a central role in the regulation of energy homeostasis, carbohydrate and lipid metabolism, as well as immunomodulation. The relationship between Alzheimer's disease (AD) and body composition has highlighted the bidirectional crosstalk between AD's pathophysiology and metabolic disorders. This review aimed to report the current state of knowledge about cellular and molecular mechanisms linking adiponectin and AD, in preclinical studies. Then, we reviewed human studies to assess the relationship between adiponectin levels and AD diagnosis. We also examined the risk of incident AD regarding the participants' baseline adiponectin level, as well as the relationship of adiponectin and cognitive decline in patients with AD. We conducted a systematic review, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses reporting guideline, of studies published over the last decade on MEDLINE and Cochrane databases. Overall, we reviewed 34 original works about adiponectin in AD, including 11 preclinical studies, two both preclinical and human studies and 21 human studies. Preclinical studies brought convincing evidence for the neuroprotective role of adiponectin on several key mechanisms of AD. Human studies showed conflicting results regarding the relationship between AD and adiponectin levels, as well as regarding the cross-sectional association between cognitive function and adiponectin levels. Adiponectin did not appear as a predictor of incident AD, nor as a predictor of cognitive decline in patients with AD. Despite solid preclinical evidence suggesting the protective role of adiponectin in AD, inconsistent results in humans supports the need for further research.
Collapse
Affiliation(s)
- Louise Sindzingre
- Université Paris Cité, UMRS 1144, INSERM, Paris, France; Cognitive Neurology Center, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France.
| | - Elodie Bouaziz-Amar
- Université Paris Cité, UMRS 1144, INSERM, Paris, France; Biochemistry Department, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France
| | | | - Emmanuel Cognat
- Université Paris Cité, UMRS 1144, INSERM, Paris, France; Cognitive Neurology Center, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Julien Dumurgier
- Université Paris Cité, UMRS 1144, INSERM, Paris, France; Cognitive Neurology Center, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Agathe Vrillon
- Université Paris Cité, UMRS 1144, INSERM, Paris, France; Cognitive Neurology Center, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Claire Paquet
- Université Paris Cité, UMRS 1144, INSERM, Paris, France; Cognitive Neurology Center, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Matthieu Lilamand
- Université Paris Cité, UMRS 1144, INSERM, Paris, France; Geriatrics Department, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France
| |
Collapse
|
19
|
Neto A, Fernandes A, Barateiro A. The complex relationship between obesity and neurodegenerative diseases: an updated review. Front Cell Neurosci 2023; 17:1294420. [PMID: 38026693 PMCID: PMC10665538 DOI: 10.3389/fncel.2023.1294420] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Obesity is a global epidemic, affecting roughly 30% of the world's population and predicted to rise. This disease results from genetic, behavioral, societal, and environmental factors, leading to excessive fat accumulation, due to insufficient energy expenditure. The adipose tissue, once seen as a simple storage depot, is now recognized as a complex organ with various functions, including hormone regulation and modulation of metabolism, inflammation, and homeostasis. Obesity is associated with a low-grade inflammatory state and has been linked to neurodegenerative diseases like multiple sclerosis (MS), Alzheimer's (AD), and Parkinson's (PD). Mechanistically, reduced adipose expandability leads to hypertrophic adipocytes, triggering inflammation, insulin and leptin resistance, blood-brain barrier disruption, altered brain metabolism, neuronal inflammation, brain atrophy, and cognitive decline. Obesity impacts neurodegenerative disorders through shared underlying mechanisms, underscoring its potential as a modifiable risk factor for these diseases. Nevertheless, further research is needed to fully grasp the intricate connections between obesity and neurodegeneration. Collaborative efforts in this field hold promise for innovative strategies to address this complex relationship and develop effective prevention and treatment methods, which also includes specific diets and physical activities, ultimately improving quality of life and health.
Collapse
Affiliation(s)
- Alexandre Neto
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Adelaide Fernandes
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Barateiro
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
20
|
Hamilton K, Morrow K, Markantoni E, Harvey J. Leptin prevents aberrant targeting of tau to hippocampal synapses via PI 3 kinase driven inhibition of GSK3β. J Neurochem 2023; 167:520-537. [PMID: 37822142 DOI: 10.1111/jnc.15980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Amyloid-β (Aβ) and hyper-phosphorylated tau are key hallmarks of Alzheimer's disease (AD), with an accumulation of both proteins linked to hippocampal synaptic dysfunction. Recent evidence indicates that Aβ drives mis-localisation of tau from axons to synapses, resulting in AMPA receptor (AMPAR) internalisation and impaired excitatory synaptic function. These tau-driven synaptic impairments are thought to underlie the cognitive deficits in AD. Consequently, limiting the synapto-toxic effects of tau may prevent AD-related cognitive deficits. Increasing evidence links leptin dysfunction with higher AD risk, and numerous studies have identified neuroprotective properties of leptin in AD models of Aβ-induced toxicity. However, it is unclear if leptin protects against tau-related synaptic dysfunction. Here we show that Aβ1-42 significantly increases dendritic and synaptic levels of tau and p-tau in hippocampal neurons, and these effects were blocked by leptin. In accordance with GSK-3β being involved in tau phosphorylation, the protective effects of leptin involve PI 3-kinase (PI3K) activation and inhibition of GSK-3β. Aβ1-42 -driven synaptic targeting of tau was associated with the removal of GluA1-containing AMPARs from synapses, which was also inhibited by leptin-driven inhibition of GSK-3β. Direct application of oligomeric tau to hippocampal neurons caused internalisation of GluA1-containing AMPARs and this effect was blocked by prior application of leptin. Similarly, leptin prevented the ability of tau to block induction of activity-dependent long-term potentiation (LTP) at hippocampal SC-CA1 synapses. These findings increase our understanding of the neuroprotective actions of leptin in the early pre-clinical stages of AD and further validate the leptin system as a therapeutic target in AD.
Collapse
Affiliation(s)
- Kirsty Hamilton
- Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Kate Morrow
- Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Ermione Markantoni
- Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Jenni Harvey
- Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
21
|
Ma J, Hou YH, Liao ZY, Ma Z, Zhang XX, Wang JL, Zhu YB, Shan HL, Wang PY, Li CB, Lv YL, Wei YL, Dou JZ. Neuroprotective Effects of Leptin on the APP/PS1 Alzheimer's Disease Mouse Model: Role of Microglial and Neuroinflammation. Degener Neurol Neuromuscul Dis 2023; 13:69-79. [PMID: 37905186 PMCID: PMC10613410 DOI: 10.2147/dnnd.s427781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/05/2023] [Indexed: 11/02/2023] Open
Abstract
Background Microglia are closely linked to Alzheimer's disease (AD) many years ago; however, the pathological mechanisms of AD remain unclear. The purpose of this study was to determine whether leptin affected microglia in the hippocampus of young and aged male APP/PS1 mice. Objective In a transgenic model of AD, we investigated the association between intraperitoneal injection of leptin and microglia. Methods We intraperitoneal injection of leptin (1mg/kg) every day for one week and analyzed inflammatory markers in microglia in the hippocampus of adult (6 months) and aged (12 months) APP/PS1 mice. Results In all leptin treatment group, the brain Aβ levels were decrease. We found increased levels of IL-1β, IL-6 and microglial activation in the hippocampus of adult mice. Using aged mice as an experimental model for chronic neuroinflammation and leptin resistance, the number of Iba-1+ microglia and the levels of IL-1β/IL-6 in the hippocampus were greatly increased as compared to the adult. But between the leptin treatment and un-treatment, there were no difference. Conclusion Leptin signaling would regulate the activation of microglia and the release of inflammatory factors, but it is not the only underlying mechanism in the neuroprotective effects of AD pathogenesis.
Collapse
Affiliation(s)
- Jing Ma
- Department of Neurology, Chengde Medical University Affiliated Hospital, Chengde Medical University, Chengde, People’s Republic of China
| | - Yi-Hui Hou
- Department of Neurology, Chengde Medical University Affiliated Hospital, School of Medicine, Chengde Medical University, Chengde, People’s Republic of China
| | - Zhe-Yan Liao
- Department of Neurology, Chengde Medical University Affiliated Hospital, School of Medicine, Chengde Medical University, Chengde, People’s Republic of China
| | - Zheng Ma
- Department of Neurology, Chengde Medical University Affiliated Hospital, Chengde Medical University, Chengde, People’s Republic of China
| | - Xiao-Xuan Zhang
- Department of Neurology, Chengde Medical University Affiliated Hospital, Chengde Medical University, Chengde, People’s Republic of China
| | - Jian-Li Wang
- Department of Hepatobiliary Surgery, Chengde Medical University Affiliated Hospital, Chengde Medical University, Chengde, People’s Republic of China
| | - Yun-Bo Zhu
- Department of Neurology, Chengde Medical University Affiliated Hospital, Chengde Medical University, Chengde, People’s Republic of China
| | - Hai-Lei Shan
- Department of Neurology, Chengde Medical University Affiliated Hospital, Chengde Medical University, Chengde, People’s Republic of China
| | - Ping-Yue Wang
- Department of Neurology, Chengde Medical University Affiliated Hospital, Chengde Medical University, Chengde, People’s Republic of China
| | - Cheng-Bo Li
- Department of Neurology, Chengde Medical University Affiliated Hospital, Chengde Medical University, Chengde, People’s Republic of China
| | - Ying-Lei Lv
- Department of Neurology, Chengde Medical University Affiliated Hospital, Chengde Medical University, Chengde, People’s Republic of China
| | - Yi-Lan Wei
- Department of Neurology, Chengde Medical University Affiliated Hospital, Chengde Medical University, Chengde, People’s Republic of China
| | - Jie-Zhi Dou
- Department of Neurology, Chengde Medical University Affiliated Hospital, Chengde Medical University, Chengde, People’s Republic of China
| |
Collapse
|
22
|
Olloquequi J, Ettcheto M, Cano A, Fortuna A, Bicker J, Sánchez-Lopez E, Paz C, Ureña J, Verdaguer E, Auladell C, Camins A. Licochalcone A: A Potential Multitarget Drug for Alzheimer's Disease Treatment. Int J Mol Sci 2023; 24:14177. [PMID: 37762479 PMCID: PMC10531537 DOI: 10.3390/ijms241814177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Licochalcone A (Lico-A) is a flavonoid compound derived from the root of the Glycyrrhiza species, a plant commonly used in traditional Chinese medicine. While the Glycyrrhiza species has shown promise in treating various diseases such as cancer, obesity, and skin diseases due to its active compounds, the investigation of Licochalcone A's effects on the central nervous system and its potential application in Alzheimer's disease (AD) treatment have garnered significant interest. Studies have reported the neuroprotective effects of Lico-A, suggesting its potential as a multitarget compound. Lico-A acts as a PTP1B inhibitor, enhancing cognitive activity through the BDNF-TrkB pathway and exhibiting inhibitory effects on microglia activation, which enables mitigation of neuroinflammation. Moreover, Lico-A inhibits c-Jun N-terminal kinase 1, a key enzyme involved in tau phosphorylation, and modulates the brain insulin receptor, which plays a role in cognitive processes. Lico-A also acts as an acetylcholinesterase inhibitor, leading to increased levels of the neurotransmitter acetylcholine (Ach) in the brain. This mechanism enhances cognitive capacity in individuals with AD. Finally, Lico-A has shown the ability to reduce amyloid plaques, a hallmark of AD, and exhibits antioxidant properties by activating the nuclear factor erythroid 2-related factor 2 (Nrf2), a key regulator of antioxidant defense mechanisms. In the present review, we discuss the available findings analyzing the potential of Lico-A as a neuroprotective agent. Continued research on Lico-A holds promise for the development of novel treatments for cognitive disorders and neurodegenerative diseases, including AD. Further investigations into its multitarget action and elucidation of underlying mechanisms will contribute to our understanding of its therapeutic potential.
Collapse
Affiliation(s)
- Jordi Olloquequi
- Departament of Biochemistry and Physiology, Physiology Section, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Av. Joan XXIII 27/31, 08028 Barcelona, Spain
- Laboratory of Cellular and Molecular Pathology, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Miren Ettcheto
- Departament of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain; (M.E.); (A.C.)
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (A.C.); (E.S.-L.); (J.U.); (E.V.); (C.A.)
- Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Reus, Spain
| | - Amanda Cano
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (A.C.); (E.S.-L.); (J.U.); (E.V.); (C.A.)
- Ace Alzheimer Center Barcelona, International University of Catalunya (UIC), 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ana Fortuna
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.F.); (J.B.)
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), 3000-548 Coimbra, Portugal
| | - Joana Bicker
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.F.); (J.B.)
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), 3000-548 Coimbra, Portugal
| | - Elena Sánchez-Lopez
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (A.C.); (E.S.-L.); (J.U.); (E.V.); (C.A.)
- Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Jesús Ureña
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (A.C.); (E.S.-L.); (J.U.); (E.V.); (C.A.)
- Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ester Verdaguer
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (A.C.); (E.S.-L.); (J.U.); (E.V.); (C.A.)
- Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Carme Auladell
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (A.C.); (E.S.-L.); (J.U.); (E.V.); (C.A.)
- Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Antoni Camins
- Departament of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain; (M.E.); (A.C.)
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (A.C.); (E.S.-L.); (J.U.); (E.V.); (C.A.)
- Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Reus, Spain
| |
Collapse
|
23
|
Gong Y, Luo H, Li Z, Feng Y, Liu Z, Chang J. Metabolic Profile of Alzheimer's Disease: Is 10-Hydroxy-2-decenoic Acid a Pertinent Metabolic Adjuster? Metabolites 2023; 13:954. [PMID: 37623897 PMCID: PMC10456792 DOI: 10.3390/metabo13080954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Alzheimer's disease (AD) represents a significant public health concern in modern society. Metabolic syndrome (MetS), which includes diabetes mellitus (DM) and obesity, represents a modifiable risk factor for AD. MetS and AD are interconnected through various mechanisms, such as mitochondrial dysfunction, oxidative stress, insulin resistance (IR), vascular impairment, inflammation, and endoplasmic reticulum (ER) stress. Therefore, it is necessary to seek a multi-targeted and safer approach to intervention. Thus, 10-hydroxy-2-decenoic acid (10-HDA), a unique hydroxy fatty acid in royal jelly, has shown promising anti-neuroinflammatory, blood-brain barrier (BBB)-preserving, and neurogenesis-promoting properties. In this paper, we provide a summary of the relationship between MetS and AD, together with an introduction to 10-HDA as a potential intervention nutrient. In addition, molecular docking is performed to explore the metabolic tuning properties of 10-HDA with associated macromolecules such as GLP-1R, PPARs, GSK-3, and TREM2. In conclusion, there is a close relationship between AD and MetS, and 10-HDA shows potential as a beneficial nutritional intervention for both AD and MetS.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Chang
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, 199 Ren’ai Road, Suzhou 215123, China; (Y.G.)
| |
Collapse
|
24
|
Nowell J, Blunt E, Gupta D, Edison P. Antidiabetic agents as a novel treatment for Alzheimer's and Parkinson's disease. Ageing Res Rev 2023; 89:101979. [PMID: 37328112 DOI: 10.1016/j.arr.2023.101979] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
Therapeutic strategies for neurodegenerative disorders have commonly targeted individual aspects of the disease pathogenesis to little success. Neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), are characterized by several pathological features. In AD and PD, there is an abnormal accumulation of toxic proteins, increased inflammation, decreased synaptic function, neuronal loss, increased astrocyte activation, and perhaps a state of insulin resistance. Epidemiological evidence has revealed a link between AD/PD and type 2 diabetes mellitus, with these disorders sharing some pathological commonalities. Such a link has opened up a promising avenue for repurposing antidiabetic agents in the treatment of neurodegenerative disorders. A successful therapeutic strategy for AD/PD would likely require a single or several agents which target the separate pathological processes in the disease. Targeting cerebral insulin signalling produces numerous neuroprotective effects in preclinical AD/PD brain models. Clinical trials have shown the promise of approved diabetic compounds in improving motor symptoms of PD and preventing neurodegenerative decline, with numerous further phase II trials and phase III trials underway in AD and PD populations. Alongside insulin signalling, targeting incretin receptors in the brain represents one of the most promising strategies for repurposing currently available agents for the treatment of AD/PD. Most notably, glucagon-like-peptide-1 (GLP-1) receptor agonists have displayed impressive clinical potential in preclinical and early clinical studies. In AD the GLP-1 receptor agonist, liraglutide, has been demonstrated to improve cerebral glucose metabolism and functional connectivity in small-scale pilot trials. Whilst in PD, the GLP-1 receptor agonist exenatide is effective in restoring motor function and cognition. Targeting brain incretin receptors reduces inflammation, inhibits apoptosis, prevents toxic protein aggregation, enhances long-term potentiation and autophagy as well as restores dysfunctional insulin signalling. Support is also increasing for the use of additional approved diabetic treatments, including intranasal insulin, metformin hydrochloride, peroxisome proliferator-activated nuclear receptor γ agonists, amylin analogs, and protein tyrosine phosphatase 1B inhibitors which are in the investigation for deployment in PD and AD treatment. As such, we provide a comprehensive review of several promising anti-diabetic agents for the treatment of AD and PD.
Collapse
Affiliation(s)
- Joseph Nowell
- Department of Brain Sciences, Imperial College London, London, UK
| | - Eleanor Blunt
- Department of Brain Sciences, Imperial College London, London, UK
| | - Dhruv Gupta
- Department of Brain Sciences, Imperial College London, London, UK
| | - Paul Edison
- Department of Brain Sciences, Imperial College London, London, UK; School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
25
|
Ferreira MJC, Soares Martins T, Alves SR, Rosa IM, Vogelgsang J, Hansen N, Wiltfang J, da Cruz E Silva OAB, Vitorino R, Henriques AG. Bioinformatic analysis of the SPs and NFTs proteomes unravel putative biomarker candidates for Alzheimer's disease. Proteomics 2023; 23:e2200515. [PMID: 37062942 DOI: 10.1002/pmic.202200515] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/23/2023] [Accepted: 03/31/2023] [Indexed: 04/18/2023]
Abstract
Aging is the main risk factor for the appearance of age-related neurodegenerative diseases, including Alzheimer's disease (AD). AD is the most common form of dementia, characterized by the presence of senile plaques (SPs) and neurofibrillary tangles (NFTs), the main histopathological hallmarks in AD brains. The core of these deposits are predominantly amyloid fibrils in SPs and hyperphosphorylated Tau protein in NFTs, but other molecular components can be found associated with these pathological lesions. Herein, an extensive literature review was carried out to obtain the SPs and NFTs proteomes, followed by a bioinformatic analysis and further putative biomarker validation. For SPs, 857 proteins were recovered, and, for NFTs, 627 proteins of which 375 occur in both groups and represent the common proteome. Gene Ontology (GO) enrichment analysis permitted the identification of biological processes and the molecular functions most associated with these lesions. Analysis of the SPs and NFTs common proteins unraveled pathways and molecular targets linking both histopathological events. Further, validation of a putative phosphotarget arising from the in silico analysis was performed in serum-derived extracellular vesicles from AD patients. This bioinformatic approach contributed to the identification of putative molecular targets, valuable for AD diagnostic or therapeutic intervention.
Collapse
Affiliation(s)
- Maria J Cardoso Ferreira
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Tânia Soares Martins
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Steven R Alves
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Ilka Martins Rosa
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Jonathan Vogelgsang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, Goettingen, Germany
- Translational Neuroscience Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, Goettingen, Germany
| | - Jens Wiltfang
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, Goettingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
| | - Odete A B da Cruz E Silva
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Ana Gabriela Henriques
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
26
|
Maccari R, Ottanà R. Can Allostery Be a Key Strategy for Targeting PTP1B in Drug Discovery? A Lesson from Trodusquemine. Int J Mol Sci 2023; 24:ijms24119621. [PMID: 37298571 DOI: 10.3390/ijms24119621] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is an enzyme crucially implicated in aberrations of various signaling pathways that underlie the development of different human pathologies, such as obesity, diabetes, cancer, and neurodegenerative disorders. Its inhibition can prevent these pathogenetic events, thus providing a useful tool for the discovery of novel therapeutic agents. The search for allosteric PTP1B inhibitors can represent a successful strategy to identify drug-like candidates by offering the opportunity to overcome some issues related to catalytic site-directed inhibitors, which have so far hampered the development of drugs targeting this enzyme. In this context, trodusquemine (MSI-1436), a natural aminosterol that acts as a non-competitive PTP1B inhibitor, appears to be a milestone. Initially discovered as a broad-spectrum antimicrobial agent, trodusquemine exhibited a variety of unexpected properties, ranging from antidiabetic and anti-obesity activities to effects useful to counteract cancer and neurodegeneration, which prompted its evaluation in several preclinical and clinical studies. In this review article, we provide an overview of the main findings regarding the activities and therapeutic potential of trodusquemine and their correlation with PTP1B inhibition. We also included some aminosterol analogues and related structure-activity relationships that could be useful for further studies aimed at the discovery of new allosteric PTP1B inhibitors.
Collapse
Affiliation(s)
- Rosanna Maccari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Rosaria Ottanà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
27
|
Nozari Y, Park C, Brietzke E, Iacobucci M, Gill H, McIntyre RS. Correlation between improved leptin signaling and cognitive function post bariatric surgery. J Affect Disord 2023; 326:225-231. [PMID: 36736790 DOI: 10.1016/j.jad.2023.01.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Determining whether changes in leptin signaling plays a role in the improvement of cognitive function post-bariatric surgery may aid in the understanding and development of novel therapeutic approaches targeting cognitive dysfunction through the greater understanding of processes connecting obesity and brain health. Several studies have explored the effects of cognition post bariatric surgery, and others have studied leptin and its changes post surgery. However the amalgamation of the effects of leptin signaling in relation to cognition post bariatric surgery have yet to be considered as key tools in the understanding of cognitive dysfunction in obese subjects with leptin resistance or insensitivity. This review serves to highlight the potential correlations, to further elucidate the effect of improved leptin signaling on cognition post bariatric surgery, and to propose a direct cause for the improvement of cognitive function via the amelioration of the leptin Janus kinase/Signal transducer and activator of transcription (JAK/STAT) signaling pathway as a result of the reversal of inflammatory processes involved in diseased individuals.
Collapse
Affiliation(s)
- Y Nozari
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, Toronto, ON, Canada; University of Toronto HBSc, Toronto, ON, Canada.
| | - C Park
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, Toronto, ON, Canada; University of Toronto MSc, Toronto, ON, Canada
| | - E Brietzke
- Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada; Centre for Neuroscience Studies (CNS), Queen's University, Kingston, ON, Canada
| | - M Iacobucci
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, Toronto, ON, Canada; University of Toronto HBSc, Toronto, ON, Canada
| | - H Gill
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - R S McIntyre
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| |
Collapse
|
28
|
Al-Kuraishy HM, Al-Gareeb AI, Alsayegh AA, Hakami ZH, Khamjan NA, Saad HM, Batiha GES, De Waard M. A Potential Link Between Visceral Obesity and Risk of Alzheimer's Disease. Neurochem Res 2023; 48:745-766. [PMID: 36409447 DOI: 10.1007/s11064-022-03817-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia characterized by the deposition of amyloid beta (Aβ) plaques and tau-neurofibrillary tangles in the brain. Visceral obesity (VO) is usually associated with low-grade inflammation due to higher expression of pro-inflammatory cytokines by adipose tissue. The objective of the present review was to evaluate the potential link between VO and the development of AD. Tissue hypoxia in obesity promotes tissue injury, production of adipocytokines, and release of pro-inflammatory cytokines leading to an oxidative-inflammatory loop with induction of insulin resistance. Importantly, brain insulin signaling is involved in the pathogenesis of AD and lower cognitive function. Obesity and enlargement of visceral adipose tissue are associated with the deposition of Aβ. All of this is consonant with VO increasing the risk of AD through the dysregulation of adipocytokines which affect the development of AD. The activated nuclear factor kappa B (NF-κB) pathway in VO might be a potential link in the development of AD. Likewise, the higher concentration of advanced glycation end-products in VO could be implicated in the pathogenesis of AD. Taken together, different inflammatory signaling pathways are activated in VO that all have a negative impact on the cognitive function and progression of AD except hypoxia-inducible factor 1 which has beneficial and neuroprotective effects in mitigating the progression of AD. In addition, VO-mediated hypoadiponectinemia and leptin resistance may promote the progression of Aβ formation and tau phosphorylation with the development of AD. In conclusion, VO-induced AD is mainly mediated through the induction of oxidative stress, inflammatory changes, leptin resistance, and hypoadiponectinemia that collectively trigger Aβ formation and neuroinflammation. Thus, early recognition of VO by visceral adiposity index with appropriate management could be a preventive measure against the development of AD in patients with VO.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Abdulrahman A Alsayegh
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan, 82817, Saudi Arabia
| | - Zaki H Hakami
- Medical Laboratory Technology Department Applied Medical Sciences College, Jazan University, Jazan, 82817, Saudi Arabia
| | - Nizar A Khamjan
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120, Saint-Egrève, France.,L'institut du thorax, INSERM, CNRS, UNIV NANTES, 44007, Nantes, France.,LabEx «Ion Channels, Science & Therapeutics», Université de Nice Sophia-Antipolis, 06560, Valbonne, France
| |
Collapse
|
29
|
Recent Advances in the Knowledge of the Mechanisms of Leptin Physiology and Actions in Neurological and Metabolic Pathologies. Int J Mol Sci 2023; 24:ijms24021422. [PMID: 36674935 PMCID: PMC9860943 DOI: 10.3390/ijms24021422] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Excess body weight is frequently associated with low-grade inflammation. Evidence indicates a relationship between obesity and cancer, as well as with other diseases, such as diabetes and non-alcoholic fatty liver disease, in which inflammation and the actions of various adipokines play a role in the pathological mechanisms involved in these disorders. Leptin is mainly produced by adipose tissue in proportion to fat stores, but it is also synthesized in other organs, where leptin receptors are expressed. This hormone performs numerous actions in the brain, mainly related to the control of energy homeostasis. It is also involved in neurogenesis and neuroprotection, and central leptin resistance is related to some neurological disorders, e.g., Parkinson's and Alzheimer's diseases. In peripheral tissues, leptin is implicated in the regulation of metabolism, as well as of bone density and muscle mass. All these actions can be affected by changes in leptin levels and the mechanisms associated with resistance to this hormone. This review will present recent advances in the molecular mechanisms of leptin action and their underlying roles in pathological situations, which may be of interest for revealing new approaches for the treatment of diseases where the actions of this adipokine might be compromised.
Collapse
|
30
|
Liu CC, Wang QH, Xin JY, Liu YH, Zeng F, Chen DW, Li HY, Yi X, Zeng GH, Wang YJ, Xiang Y, Chen Y. Association of Adipokines with Alzheimer's Disease in a Chinese Cohort. J Alzheimers Dis 2023; 96:523-533. [PMID: 37807776 DOI: 10.3233/jad-220860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND The correlation between plasma adipose factor levels and Alzheimer's patients is not entirely clear. OBJECTIVE We aimed to investigate associations between AD and plasma levels of three adipokines including plasma adiponectin, leptin, and resistin. METHODS A single-center, cross-sectional study recruited AD patients (n = 148) and cognitively normal (CN) controls (n = 110). The multivariate logistic regression analysis was applied to determine associations of adiponectin, leptin, and resistin with the presence of AD. The receiver operating characteristic (ROC) analysis was employed to determine the diagnostic power of adiponectin, leptin and resistin for AD. RESULTS After adjusted for the conventional risk factors, plasma levels of leptin (OR = 0.417, 95% CI: 0.272-0.638, p < 0.0001) and adiponectin (OR = 1.249, 95% CI: 1.151-1.354, p < 0.0001) were associated with the presence of AD. In total participants, the plasma adiponectin level was negatively correlated with MMSE scores (p < 0.0001) and was positively with CDR scores (p < 0.0001) and age (p < 0.0001). The plasma level of leptin was negatively correlated with CDR scores (p < 0.0001) and positively correlated with MMSE scores (p < 0.0001). Both adiponectin (p < 0. 0001) and leptin (p < 0. 0001) featured higher AUC than the random chance. CONCLUSIONS Plasma adiponectin and leptin were associated with the presence, symptomatic severity, and diagnostic power of AD, suggesting a potential role of adipokines in the pathogenesis of AD.
Collapse
Affiliation(s)
- Cheng-Chun Liu
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Qing-Hua Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Jia-Yan Xin
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Yu-Hao Liu
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Fan Zeng
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Dong-Wan Chen
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Hui-Yun Li
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Xu Yi
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Gui-Hua Zeng
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Yang Xiang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Chen
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| |
Collapse
|
31
|
Regensburger M, Rasul Chaudhry S, Yasin H, Zhao Y, Stadlbauer A, Buchfelder M, Kinfe T. Emerging roles of leptin in Parkinson's disease: Chronic inflammation, neuroprotection and more? Brain Behav Immun 2023; 107:53-61. [PMID: 36150585 DOI: 10.1016/j.bbi.2022.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/22/2022] [Accepted: 09/16/2022] [Indexed: 12/13/2022] Open
Abstract
An increasing body of experimental evidence implicates a relationship between immunometabolic deterioration and the progression of Parkinson's disease (PD) with a dysregulation of central and peripheral neuroinflammatory networks mediated by circulating adipokines, in particular leptin. We screened the current literature on the role of adipokines in PD. Hence, we searched known databases (PubMed, MEDLINE/OVID) and reviewed original and review articles using the following terms: "leptin/ObR", "Parkinson's disease", "immune-metabolism", "biomarkers" and "neuroinflammation". Focusing on leptin, we summarize and discuss the existing in vivo and in vitro evidence on how adipokines may be protective against neurodegeneration, but at the same time contribute to the progression of PD. These components of the adipose brain axis represent a hitherto underestimated pathway to study systemic influences on dopaminergic degeneration. In addition, we give a comprehensive update on the potential of adjunctive therapeutics in PD targeting leptin, leptin-receptors, and associated pathways. Further experimental and clinical trials are needed to elucidate the mechanisms of action and the value of central and peripheral adipose-immune-metabolism molecular phenotyping in order to develop and validate the differential roles of different adipokines as potential therapeutic target for PD patients.
Collapse
Affiliation(s)
- Martin Regensburger
- Department of Molecular Neurology, Friedrich-Alexander University (FAU), Erlangen-Nürnberg, 91054 Erlangen, Germany; Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, 91054 Erlangen, Germany
| | - Shafqat Rasul Chaudhry
- Obaid Noor Institute of Medical Sciences (ONIMS), Mianwali, Pakistan; Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, 44000 Islamabad, Pakistan
| | - Hammad Yasin
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, 44000 Islamabad, Pakistan
| | - Yining Zhao
- Department of Neurosurgery, Friedrich-Alexander University (FAU), Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Andreas Stadlbauer
- Department of Neurosurgery, Friedrich-Alexander University (FAU), Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Michael Buchfelder
- Department of Neurosurgery, Friedrich-Alexander University (FAU), Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas Kinfe
- Division of Functional Neurosurgery and Stereotaxy, Friedrich-Alexander University (FAU), Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
32
|
Čater M, Hölter SM. A Pathophysiological Intersection of Diabetes and Alzheimer's Disease. Int J Mol Sci 2022; 23:11562. [PMID: 36232867 PMCID: PMC9569835 DOI: 10.3390/ijms231911562] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 12/06/2022] Open
Abstract
Diabetes is among the most prevalent diseases of the modern world and is strongly linked to an increased risk of numerous neurodegenerative disorders, although the exact pathophysiological mechanisms are not clear yet. Insulin resistance is a serious pathological condition, connecting type 2 diabetes, metabolic syndrome, and obesity. Recently, insulin resistance has been proven to be connected also to cognitive decline and dementias, including the most prevalent form, Alzheimer's disease. The relationship between diabetes and Alzheimer's disease regarding pathophysiology is so significant that it has been proposed that some presentations of the condition could be termed type 3 diabetes.
Collapse
Affiliation(s)
- Maša Čater
- Chair of Genetics, Animal Biotechnology and Immunology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, 1230 Domžale, Slovenia
| | - Sabine M. Hölter
- Institute of Developmental Genetics, Helmholtz Munich, 85764 Neuherberg, Germany
- School of Life Sciences, Technical University Munich, 85354 Freising, Germany
| |
Collapse
|
33
|
Protein tyrosine phosphatase 1B (PTP1B) as a potential therapeutic target for neurological disorders. Biomed Pharmacother 2022; 155:113709. [PMID: 36126456 DOI: 10.1016/j.biopha.2022.113709] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a typical member of the PTP family, considered a direct negative regulator of several receptor and receptor-associated tyrosine kinases. This widely localized enzyme has been involved in the pathophysiology of several diseases. More recently, PTP1B has attracted attention in the field of neuroscience, since its activation in brain cells can lead to schizophrenia-like behaviour deficits, anxiety-like effects, neurodegeneration, neuroinflammation and depression. Conversely, PTP1B inhibition has been shown to prevent microglial activation, thus exerting a potent anti-inflammatory effect and has also shown potential to increase the cognitive process through the stimulation of hippocampal insulin, leptin and BDNF/TrkB receptors. Notwithstanding, most research on the clinical efficacy of targeting PTP1B has been developed in the field of obesity and type 2 diabetes mellitus (TD2M). However, despite the link existing between these metabolic alterations and neurodegeneration, no clinical trials assessing the neurological advantages of PTP1B inhibition have been performed yet. Preclinical studies, though, have provided strong evidence that targeting PTP1B could allow to reach different pathophysiological mechanisms at once. herefore, specific interventions or trials should be designed to modulate PTP1B activity in brain, since it is a promising strategy to decelerate or prevent neurodegeneration in aged individuals, among other neurological diseases. The present paper fails to include all neurological conditions in which PTP1B could have a role; instead, it focuses on those which have been related to metabolic alterations and neurodegenerative processes. Moreover, only preclinical data is discussed, since clinical studies on the potential of PTP1B inhibition for treating neurological diseases are still required.
Collapse
|
34
|
LC-MS/MS Insight into Vitamin C Restoration to Metabolic Disorder Evoked by Amyloid β in Caenorhabditis elegans CL2006. Metabolites 2022; 12:metabo12090841. [PMID: 36144245 PMCID: PMC9506573 DOI: 10.3390/metabo12090841] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The transitional expression and aggregation of amyloid β (Aβ) are the most important causative factors leading to the deterioration of Alzheimer’s disease (AD), a commonly occurring metabolic disease among older people. Antioxidant agents such as vitamin C (Vc) have shown potential effects against AD and aging. We applied an liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method and differential metabolites strategy to explore the metabolic disorders and Vc restoration in a human Aβ transgenic (Punc-54::Aβ1–42) nematode model CL2006. We combined the LC-MS/MS investigation with the KEGG and HMDB databases and the CFM-ID machine-learning model to identify and qualify the metabolites with important physiological roles. The differential metabolites responding to Aβ activation and Vc treatment were filtered out and submitted to enrichment analysis. The enrichment showed that Aβ mainly caused abnormal biosynthesis and metabolism pathways of phenylalanine, tyrosine and tryptophan biosynthesis, as well as arginine and proline metabolism. Vc reversed the abnormally changed metabolites tryptophan, anthranilate, indole and indole-3-acetaldehyde. Vc restoration affected the tryptophan metabolism and the biosynthesis of phenylalanine, tyrosine and tryptophan. Our findings provide supporting evidence for understanding the metabolic abnormalities in neurodegenerative diseases and the repairing effect of drug interventions.
Collapse
|
35
|
Heng S, Betin M, Limon I. [Obesity and central leptin resistance: Impact on Alzheimer's disease]. Med Sci (Paris) 2022; 38:746-478. [PMID: 36094251 DOI: 10.1051/medsci/2022116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Sylvie Heng
- M1 Biologie intégrative et physiologie (BIP), Parcours Nutrition, qualité et santé, Sorbonne Université, Campus Pierre et Marie Curie 75005 Paris, France
| | - Melody Betin
- M1 Biologie intégrative et physiologie (BIP), Parcours Nutrition, qualité et santé, Sorbonne Université, Campus Pierre et Marie Curie 75005 Paris, France
| | - Isabelle Limon
- Équipe Dynamique des signaux intracellulaires et cibles thérapeutiques, UMR 8256 Adaptation biologique et vieillissement, Institut de biologie Paris-Seine (IBPS), Paris, France
| |
Collapse
|
36
|
Vorn R, Mithani S, Devoto C, Meier TB, Lai C, Yun S, Broglio SP, McAllister TW, Giza CC, Kim HS, Huber D, Harezlak J, Cameron KL, McGinty G, Jackson J, Guskiewicz KM, Mihalik JP, Brooks A, Duma S, Rowson S, Nelson LD, Pasquina P, McCrea MA, Gill JM. Proteomic Profiling of Plasma Biomarkers Associated With Return to Sport Following Concussion: Findings From the NCAA and Department of Defense CARE Consortium. Front Neurol 2022; 13:901238. [PMID: 35928129 PMCID: PMC9343581 DOI: 10.3389/fneur.2022.901238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
Objective To investigate the plasma proteomic profiling in identifying biomarkers related to return to sport (RTS) following a sport-related concussion (SRC). Methods This multicenter, prospective, case-control study was part of a larger cohort study conducted by the NCAA-DoD Concussion Assessment, Research, and Education (CARE) Consortium, athletes (n = 140) with blood collected within 48 h of injury and reported day to asymptomatic were included in this study, divided into two groups: (1) recovery <14-days (n = 99) and (2) recovery ≥14-days (n = 41). We applied a highly multiplexed proteomic technique that uses DNA aptamers assay to target 1,305 proteins in plasma samples from concussed athletes with <14-days and ≥14-days. Results We identified 87 plasma proteins significantly dysregulated (32 upregulated and 55 downregulated) in concussed athletes with recovery ≥14-days relative to recovery <14-days groups. The significantly dysregulated proteins were uploaded to Ingenuity Pathway Analysis (IPA) software for analysis. Pathway analysis showed that significantly dysregulated proteins were associated with STAT3 pathway, regulation of the epithelial mesenchymal transition by growth factors pathway, and acute phase response signaling. Conclusion Our data showed the feasibility of large-scale plasma proteomic profiling in concussed athletes with a <14-days and ≥ 14-days recovery. These findings provide a possible understanding of the pathophysiological mechanism in neurobiological recovery. Further study is required to determine whether these proteins can aid clinicians in RTS decisions.
Collapse
Affiliation(s)
- Rany Vorn
- School of Nursing, Johns Hopkins University, Baltimore, MD, United States
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Sara Mithani
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
- School of Nursing, University of Texas Health Science Center San Antonio, San Antonio, TX, United States
| | - Christina Devoto
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Timothy B. Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chen Lai
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Sijung Yun
- Predictiv Care, Mountain View, CA, United States
| | - Steven P. Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, MI, United States
| | - Thomas W. McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Christopher C. Giza
- Departments of Pediatrics and Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hyung-Suk Kim
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Daniel Huber
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics School of Public Health-Bloomington, Indiana University, Bloomington, IN, United States
| | - Kenneth L. Cameron
- John A. Feagin Sports Medicine Fellowship, Keller Army Hospital, West Point, NY, United States
| | - Gerald McGinty
- United States Air Force Academy, Colorado Springs, CO, United States
| | - Jonathan Jackson
- United States Air Force Academy, Colorado Springs, CO, United States
| | - Kevin M. Guskiewicz
- Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jason P. Mihalik
- Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alison Brooks
- Department of Orthopedics, Division of Sports Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Stefan Duma
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Steven Rowson
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Lindsay D. Nelson
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Paul Pasquina
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Michael A. McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jessica M. Gill
- School of Nursing, Johns Hopkins University, Baltimore, MD, United States
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Jessica M. Gill
| |
Collapse
|
37
|
Harvey J. Food for Thought: Leptin and Hippocampal Synaptic Function. Front Pharmacol 2022; 13:882158. [PMID: 35784728 PMCID: PMC9247348 DOI: 10.3389/fphar.2022.882158] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
It is well documented that the endocrine hormone, leptin controls energy homeostasis by providing key signals to specific hypothalamic nuclei. However, our knowledge of leptin’s central actions has advanced considerably over the last 20 years, with the hippocampus now established as an important brain target for this hormone. Leptin receptors are highly localised to hippocampal synapses, and increasing evidence reveals that activation of synaptically located leptin receptors markedly impacts cognitive processes, and specifically hippocampal-dependent learning and memory. Here, we review the recent actions of leptin at hippocampal synapses and explore the consequences for brain health and disease.
Collapse
|
38
|
Flores-Cordero JA, Pérez-Pérez A, Jiménez-Cortegana C, Alba G, Flores-Barragán A, Sánchez-Margalet V. Obesity as a Risk Factor for Dementia and Alzheimer's Disease: The Role of Leptin. Int J Mol Sci 2022; 23:5202. [PMID: 35563589 PMCID: PMC9099768 DOI: 10.3390/ijms23095202] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity is a growing worldwide health problem, affecting many people due to excessive saturated fat consumption, lack of exercise, or a sedentary lifestyle. Leptin is an adipokine secreted by adipose tissue that increases in obesity and has central actions not only at the hypothalamic level but also in other regions and nuclei of the central nervous system (CNS) such as the cerebral cortex and hippocampus. These regions express the long form of leptin receptor LepRb, which is the unique leptin receptor capable of transmitting complete leptin signaling, and are the first regions to be affected by chronic neurocognitive deficits, such as mild cognitive impairment (MCI) and Alzheimer's Disease (AD). In this review, we discuss different leptin resistance mechanisms that could be implicated in increasing the risk of developing AD, as leptin resistance is frequently associated with obesity, which is a chronic low-grade inflammatory state, and obesity is considered a risk factor for AD. Key players of leptin resistance are SOCS3, PTP1B, and TCPTP whose signalling is related to inflammation and could be worsened in AD. However, some data are controversial, and it is necessary to further investigate the underlying mechanisms of the AD-causing pathological processes and how altered leptin signalling affects such processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Av. Sánchez Pizjuan 4, 41009 Sevilla, Spain; (J.A.F.-C.); (A.P.-P.); (C.J.-C.); (G.A.); (A.F.-B.)
| |
Collapse
|
39
|
Tian J, Wang T, Jia K, Guo L, Swerdlow RH, Du H. Nonobese Male Patients with Alzheimer's Disease Are Vulnerable to Decrease in Plasma Leptin. J Alzheimers Dis 2022; 88:1017-1027. [PMID: 35723107 PMCID: PMC9553411 DOI: 10.3233/jad-220447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Metabolic dysfunction links to cognitive deficits in Alzheimer's disease (AD). Leptin is an anti-obesity hormone that modulates energy homeostasis and memory function. Although leptin deregulation is implicated in mouse models of AD-like brain pathology, clinical studies have shown inconsistent results regarding an association of leptin with the development of this neurodegenerative disorder. OBJECTIVE We investigated the changes of plasma leptin and the correlation of sex-stratified circulating leptin with cognitive performance, AD-related biological markers, and metabolic status in patients with AD and cognitively unimpaired (CU) counterparts. METHODS We used nonobese AD patients and CU controls in a University of Kansas Medical Center (KUMC) cohort. Plasma leptin levels, circulating AD-related molecules and metabolic profiles were examined and analyzed. RESULTS In contrast to unchanged circulating leptin in females, male patients exhibited decreased plasma leptin levels compared with male CU counterparts. Moreover, plasma leptin showed no correlation with cognitive performance and AD blood biomarkers in patients with either sex. Of note, females but not males demonstrated an association of plasma leptin with body mass index, high density lipoprotein-cholesterol and its ratio with total cholesterol and triglycerides. CONCLUSION Our findings suggest that leptin deficiency is associated with nonobese male AD patients, supporting systemic dysmetabolism in the development of this neurodegenerative disorder in certain populations. Although plasma leptin may have limited capacity to reflect disease severity or progression, future mechanistic studies on the regulation of leptin in nonobese patients with AD would deepen our understanding of the sex-related disparity of AD etiopathogenesis.
Collapse
Affiliation(s)
- Jing Tian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Tienju Wang
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Kun Jia
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Lan Guo
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA
| | - Russell H. Swerdlow
- Department of Neurology, Alzheimer’s Disease Center, University of Kansas Medical Center, Lawrence, KS, USA
| | - Heng Du
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA
- Department of Neurology, Alzheimer’s Disease Center, University of Kansas Medical Center, Lawrence, KS, USA
| |
Collapse
|
40
|
Tournissac M, Leclerc M, Valentin-Escalera J, Vandal M, Bosoi CR, Planel E, Calon F. Metabolic determinants of Alzheimer's disease: A focus on thermoregulation. Ageing Res Rev 2021; 72:101462. [PMID: 34534683 DOI: 10.1016/j.arr.2021.101462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/09/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a complex age-related neurodegenerative disease, associated with central and peripheral metabolic anomalies, such as impaired glucose utilization and insulin resistance. These observations led to a considerable interest not only in lifestyle-related interventions, but also in repurposing insulin and other anti-diabetic drugs to prevent or treat dementia. Body temperature is the oldest known metabolic readout and mechanisms underlying its maintenance fail in the elderly, when the incidence of AD rises. This raises the possibility that an age-associated thermoregulatory deficit contributes to energy failure underlying AD pathogenesis. Brown adipose tissue (BAT) plays a central role in thermogenesis and maintenance of body temperature. In recent years, the modulation of BAT activity has been increasingly demonstrated to regulate energy expenditure, insulin sensitivity and glucose utilization, which could also provide benefits for AD. Here, we review the evidence linking thermoregulation, BAT and insulin-related metabolic defects with AD, and we propose mechanisms through which correcting thermoregulatory impairments could slow the progression and delay the onset of AD.
Collapse
|
41
|
Shinjyo N, Kita K. Infection and Immunometabolism in the Central Nervous System: A Possible Mechanistic Link Between Metabolic Imbalance and Dementia. Front Cell Neurosci 2021; 15:765217. [PMID: 34795562 PMCID: PMC8592913 DOI: 10.3389/fncel.2021.765217] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndromes are frequently associated with dementia, suggesting that the dysregulation of energy metabolism can increase the risk of neurodegeneration and cognitive impairment. In addition, growing evidence suggests the link between infections and brain disorders, including Alzheimer's disease. The immune system and energy metabolism are in an intricate relationship. Infection triggers immune responses, which are accompanied by imbalance in cellular and organismal energy metabolism, while metabolic disorders can lead to immune dysregulation and higher infection susceptibility. In the brain, the activities of brain-resident immune cells, including microglia, are associated with their metabolic signatures, which may be affected by central nervous system (CNS) infection. Conversely, metabolic dysregulation can compromise innate immunity in the brain, leading to enhanced CNS infection susceptibility. Thus, infection and metabolic imbalance can be intertwined to each other in the etiology of brain disorders, including dementia. Insulin and leptin play pivotal roles in the regulation of immunometabolism in the CNS and periphery, and dysfunction of these signaling pathways are associated with cognitive impairment. Meanwhile, infectious complications are often comorbid with diabetes and obesity, which are characterized by insulin resistance and leptin signaling deficiency. Examples include human immunodeficiency virus (HIV) infection and periodontal disease caused by an oral pathogen Porphyromonas gingivalis. This review explores potential interactions between infectious agents and insulin and leptin signaling pathways, and discuss possible mechanisms underlying the relationship between infection, metabolic dysregulation, and brain disorders, particularly focusing on the roles of insulin and leptin.
Collapse
Affiliation(s)
- Noriko Shinjyo
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Department of Host-Defense Biochemistry, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
42
|
Sanborn V, Preis SR, Ang A, Devine S, Mez J, DeCarli C, Au R, Alosco ML, Gunstad J. Association Between Leptin, Cognition, and Structural Brain Measures Among "Early" Middle-Aged Adults: Results from the Framingham Heart Study Third Generation Cohort. J Alzheimers Dis 2021; 77:1279-1289. [PMID: 32831199 DOI: 10.3233/jad-191247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND There is growing interest in the pathophysiological processes of preclinical Alzheimer's disease (AD), including the potential role of leptin. Human studies have shown that both low and high levels of leptin can be associated with worse neurocognitive outcomes, suggesting this relationship may be moderated by another risk factor. OBJECTIVE We examined the association between plasma leptin levels and both neuropsychological test performance and structural neuroimaging and assessed whether body mass index (BMI) is an effect modifier of these associations. METHODS Our study sample consisted of 2,223 adults from the Framingham Heart Study Third Generation Cohort (average age = 40 years, 53% women). RESULTS Among the entire sample, there was no association between leptin and any of the neuropsychological domain measures or any of the MRI brain volume measures, after adjustment for BMI, APOE4, and other clinical factors. However, we did observe that BMI category was an effect modifier for the association between leptin and verbal memory (p for interaction = 0.03), where higher levels of leptin were associated with better performance among normal weight participants (BMI 18.5-24.9) kg/m2 (beta = 0.12, p = 0.02). No association was observed between leptin level and verbal memory test performance among participants who were overweight or obese. CONCLUSION These findings suggest that the association between leptin and cognitive function is moderated by BMI category. Prospective examination of individuals transitioning from middle age to older adulthood will help to clarify the contribution of leptin to AD and other neurodegenerative conditions.
Collapse
Affiliation(s)
- Victoria Sanborn
- Department of Psychological Sciences, Kent State University, Kent, OH, USA
| | - Sarah R Preis
- Framingham Heart Study, Boston University School of Medicine, Boston, MA, USA.,Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Alvin Ang
- Framingham Heart Study, Boston University School of Medicine, Boston, MA, USA
| | - Sherral Devine
- Framingham Heart Study, Boston University School of Medicine, Boston, MA, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Jesse Mez
- Framingham Heart Study, Boston University School of Medicine, Boston, MA, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, USA.,Boston University Alzheimer's Disease Center and Boston University CTE Center, Boston University School of Medicine, Boston, MA, USA
| | - Charles DeCarli
- Department of Neurology, University of California at Davis Health System, Sacramento, CA, USA
| | - Rhoda Au
- Framingham Heart Study, Boston University School of Medicine, Boston, MA, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, USA.,Boston University Alzheimer's Disease Center and Boston University CTE Center, Boston University School of Medicine, Boston, MA, USA.,Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Michael L Alosco
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.,Boston University Alzheimer's Disease Center and Boston University CTE Center, Boston University School of Medicine, Boston, MA, USA
| | - John Gunstad
- Department of Psychological Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
43
|
Gadhave K, Kumar D, Uversky VN, Giri R. A multitude of signaling pathways associated with Alzheimer's disease and their roles in AD pathogenesis and therapy. Med Res Rev 2021; 41:2689-2745. [PMID: 32783388 PMCID: PMC7876169 DOI: 10.1002/med.21719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
The exact molecular mechanisms associated with Alzheimer's disease (AD) pathology continue to represent a mystery. In the past decades, comprehensive data were generated on the involvement of different signaling pathways in the AD pathogenesis. However, the utilization of signaling pathways as potential targets for the development of drugs against AD is rather limited due to the immense complexity of the brain and intricate molecular links between these pathways. Therefore, finding a correlation and cross-talk between these signaling pathways and establishing different therapeutic targets within and between those pathways are needed for better understanding of the biological events responsible for the AD-related neurodegeneration. For example, autophagy is a conservative cellular process that shows link with many other AD-related pathways and is crucial for maintenance of the correct cellular balance by degrading AD-associated pathogenic proteins. Considering the central role of autophagy in AD and its interplay with many other pathways, the finest therapeutic strategy to fight against AD is the use of autophagy as a target. As an essential step in this direction, this comprehensive review represents recent findings on the individual AD-related signaling pathways, describes key features of these pathways and their cross-talk with autophagy, represents current drug development, and introduces some of the multitarget beneficial approaches and strategies for the therapeutic intervention of AD.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Deepak Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| |
Collapse
|
44
|
Rojas M, Chávez-Castillo M, Pirela D, Parra H, Nava M, Chacín M, Angarita L, Añez R, Salazar J, Ortiz R, Durán Agüero S, Gravini-Donado M, Bermúdez V, Díaz-Camargo E. Metabolic Syndrome: Is It Time to Add the Central Nervous System? Nutrients 2021; 13:nu13072254. [PMID: 34208833 PMCID: PMC8308252 DOI: 10.3390/nu13072254] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/28/2022] Open
Abstract
Metabolic syndrome (MS) is a set of cardio-metabolic risk factors that includes central obesity, hyperglycemia, hypertension, and dyslipidemias. The syndrome affects 25% of adults worldwide. The definition of MS has evolved over the last 80 years, with various classification systems and criteria, whose limitations and benefits are currently the subject of some controversy. Likewise, hypotheses regarding the etiology of MS add more confusion from clinical and epidemiological points of view. The leading suggestion for the pathophysiology of MS is insulin resistance (IR). IR can affect multiple tissues and organs, from the classic “triumvirate” (myocyte, adipocyte, and hepatocyte) to possible effects on organs considered more recently, such as the central nervous system (CNS). Mild cognitive impairment (MCI) and Alzheimer’s disease (AD) may be clinical expressions of CNS involvement. However, the association between MCI and MS is not understood. The bidirectional relationship that seems to exist between these factors raises the questions of which phenomenon occurs first and whether MCI can be a precursor of MS. This review explores shared pathophysiological mechanisms between MCI and MS and establishes a hypothesis of a possible MCI role in the development of IR and the appearance of MS.
Collapse
Affiliation(s)
- Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.R.); (D.P.); (H.P.); (M.N.); (J.S.)
| | | | - Daniela Pirela
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.R.); (D.P.); (H.P.); (M.N.); (J.S.)
| | - Heliana Parra
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.R.); (D.P.); (H.P.); (M.N.); (J.S.)
| | - Manuel Nava
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.R.); (D.P.); (H.P.); (M.N.); (J.S.)
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 08002, Colombia;
| | - Lissé Angarita
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andrés Bello, Sede Concepción 4260000, Chile;
| | - Roberto Añez
- Departamento de Endocrinología y Nutrición, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain;
| | - Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.R.); (D.P.); (H.P.); (M.N.); (J.S.)
| | - Rina Ortiz
- Posgrado, Carrera de Medicina, Universidad Católica de Cuenca, Cantón de Cuenca 010101, Ecuador;
| | - Samuel Durán Agüero
- Facultad de Ciencias Para el Cuidado de la Salud, Universidad San Sebastián, Los Leones 8420524, Chile;
| | - Marbel Gravini-Donado
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080002, Colombia;
| | - Valmore Bermúdez
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Cúcuta 540006, Colombia;
| | - Edgar Díaz-Camargo
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Cúcuta 540006, Colombia;
- Correspondence:
| |
Collapse
|
45
|
Hamilton K, Harvey J. The Neuronal Actions of Leptin and the Implications for Treating Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:ph14010052. [PMID: 33440796 PMCID: PMC7827292 DOI: 10.3390/ph14010052] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
It is widely accepted that the endocrine hormone leptin controls food intake and energy homeostasis via activation of leptin receptors expressed on hypothalamic arcuate neurons. The hippocampal formation also displays raised levels of leptin receptor expression and accumulating evidence indicates that leptin has a significant impact on hippocampal synaptic function. Thus, cellular and behavioural studies support a cognitive enhancing role for leptin as excitatory synaptic transmission, synaptic plasticity and glutamate receptor trafficking at hippocampal Schaffer collateral (SC)-CA1 synapses are regulated by leptin, and treatment with leptin enhances performance in hippocampus-dependent memory tasks. Recent studies indicate that hippocampal temporoammonic (TA)-CA1 synapses are also a key target for leptin. The ability of leptin to regulate TA-CA1 synapses has important functional consequences as TA-CA1 synapses are implicated in spatial and episodic memory processes. Moreover, degeneration is initiated in the TA pathway at very early stages of Alzheimer's disease, and recent clinical evidence has revealed links between plasma leptin levels and the incidence of Alzheimer's disease (AD). Additionally, accumulating evidence indicates that leptin has neuroprotective actions in various AD models, whereas dysfunctions in the leptin system accelerate AD pathogenesis. Here, we review the data implicating the leptin system as a potential novel target for AD, and the evidence that boosting the hippocampal actions of leptin may be beneficial.
Collapse
|
46
|
Cecon E, Lhomme T, Maurice T, Luka M, Chen M, Silva A, Wauman J, Zabeau L, Tavernier J, Prévot V, Dam J, Jockers R. Amyloid Beta Peptide Is an Endogenous Negative Allosteric Modulator of Leptin Receptor. Neuroendocrinology 2021; 111:370-387. [PMID: 32335558 DOI: 10.1159/000508105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/23/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Metabolic dysfunction is now recognized as a pivotal component of Alzheimer's disease (AD), the most common dementia worldwide. However, the precise molecular mechanisms linking metabolic dysfunction to AD remain elusive. OBJECTIVE Here, we investigated the direct impact of soluble oligomeric amyloid beta (Aβ) peptides, the main molecular hallmark of AD, on the leptin system, a major component of central energy metabolism regulation. METHODS We developed a new time-resolved fluorescence resonance energy transfer-based Aβ binding assay for the leptin receptor (LepR) and studied the effect of Aβ on LepR function in several in vitro assays. The in vivo effect of Aβ on LepR function was studied in an Aβ-specific AD mouse model and in pro-opiomelanocortin (POMC) neurons of the hypothalamic arcuate nucleus. RESULTS We revealed specific and high-affinity (Ki = 0.1 nM) binding of Aβ to LepR. Pharmacological characterization of this interaction showed that Aβ binds allosterically to the extracellular domain of LepR and negatively affects receptor function. Negative allosteric modulation of LepR by Aβ was detected at the level of signaling pathways (STAT-3, AKT, and ERK) in vitroand in vivo. Importantly, the leptin-induced response of POMC neurons, key players in the regulation of metabolic function, was completely abolished in the presence of Aβ. CONCLUSION Our data indicate that Aβ is a negative allosteric modulator of LepR, resulting in impaired leptin action, and qualify LepR as a new and direct target of Aβ oligomers. Preventing the interaction of Aβ with LepR might improve both the metabolic and cognitive dysfunctions in AD condition.
Collapse
Affiliation(s)
- Erika Cecon
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Tori Lhomme
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, EGID, DistAlz, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, UMR_S1198, Montpellier, France
| | - Marine Luka
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Min Chen
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Anisia Silva
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Joris Wauman
- VIB Center for Medical Biotechnology, Department of Biomolecular Medicine, University of Ghent, Ghent, Belgium
| | - Lennart Zabeau
- VIB Center for Medical Biotechnology, Department of Biomolecular Medicine, University of Ghent, Ghent, Belgium
| | - Jan Tavernier
- VIB Center for Medical Biotechnology, Department of Biomolecular Medicine, University of Ghent, Ghent, Belgium
| | - Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, EGID, DistAlz, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
| | - Julie Dam
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Ralf Jockers
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France,
| |
Collapse
|
47
|
Leptin enhances adult neurogenesis and reduces pathological features in a transgenic mouse model of Alzheimer's disease. Neurobiol Dis 2020; 148:105219. [PMID: 33301880 DOI: 10.1016/j.nbd.2020.105219] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 01/19/2023] Open
Abstract
Alzheimer's disease (AD) is the most common dementia worldwide and is characterized by the presence of senile plaques by amyloid-beta (Aβ) and neurofibrillary tangles of hyperphosphorylated Tau protein. These changes lead to progressive neuronal degeneration and dysfunction, resulting in severe brain atrophy and cognitive deficits. With the discovery that neurogenesis persists in the adult mammalian brain, including brain regions affected by AD, studies of the use of neural stem cells (NSCs) for the treatment of neurodegenerative diseases to repair or prevent neuronal cell loss have increased. Here we demonstrate that leptin administration increases the neurogenic process in the dentate gyrus of the hippocampus as well as in the subventricular zone of lateral ventricles of adult and aged mice. Chronic treatment with leptin increased NSCs proliferation with significant effects on proliferation and differentiation of newborn cells. The expression of the long form of the leptin receptor, LepRb, was detected in the neurogenic niches by reverse qPCR and immunohistochemistry. Moreover, leptin modulated astrogliosis, microglial cell number and the formation of senile plaques. Additionally, leptin led to attenuation of Aβ-induced neurodegeneration and superoxide anion production as revealed by Fluoro-Jade B and dihydroethidium staining. Our study contributes to the understanding of the effects of leptin in the brain that may lead to the development of new therapies to treat Alzheimer's disease.
Collapse
|
48
|
Guo Y, Ma X, Li P, Dong S, Huang X, Ren X, Yuan L. High-fat diet induced discrepant peripheral and central nervous systems insulin resistance in APPswe/PS1dE9 and wild-type C57BL/6J mice. Aging (Albany NY) 2020; 13:1236-1250. [PMID: 33291072 PMCID: PMC7835010 DOI: 10.18632/aging.202262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022]
Abstract
This study was designed to examine whether AD pathological phenotype in APPswe/PS1dE9 (APP/PS1) mice exposed to continuous high-fat diet predispose these murine models to metabolic dysfunction and neuropathological impairments. One-month old male APP/PS1 and C57BL/6J mice were provided with 60% high-fat diet for 6.5 months. After dietary intervention, metabolic phenotyping, cognitive behaviors, AD-related brain pathological changes and insulin signaling were compared. high fat diet induced hyperglycemia, hypercholesterolemia, and aggravated inflammatory stress in both APP/PS1 and C57BL/6J mice. Compared with C57BL/6J control mice, APP/PS1 mice showed lower glucose transporter protein expression in liver, muscle, and brain. High-fat diet caused a decrease of glucose transporter protein expression in muscle and liver but increased cortical glucose transporter protein expression in APP/PS1 mice. High-fat diet-fed APP/PS1 mice demonstrated decreased cognitive function, as well as elevated cortical soluble amyloid-β levels and APP protein expression. Decrease in cortical IR, p-IR protein expression and p-GSK3β/GSK3β ratio were observed in high-fat diet-fed APP/PS1 mice. High-fat diet caused discrepant peripheral and central nervous system metabolic phenotype in APP/PS1 and C57BL/6J mice. AD pathological phenotype might accelerate metabolic changes and cognitive impairment in APP/PS1 mice treated with HFD.
Collapse
Affiliation(s)
- Yujie Guo
- School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Xiaojun Ma
- School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Pengfei Li
- School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Shengqi Dong
- School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Xiaochen Huang
- School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Xiuwen Ren
- School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Linhong Yuan
- School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
49
|
Pratap AA, Holsinger RMD. Altered Brain Leptin and Leptin Receptor Expression in the 5XFAD Mouse Model of Alzheimer's Disease. Pharmaceuticals (Basel) 2020; 13:E401. [PMID: 33218163 PMCID: PMC7698839 DOI: 10.3390/ph13110401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by the accumulation of amyloid plaques and neurofibrillary tangles. Interestingly, individuals with metabolic syndromes share some pathologies with those diagnosed with AD including neuroinflammation, insulin resistance and cognitive deficits. Leptin, an adipocyte-derived hormone, regulates metabolism, energy expenditure and satiety via its receptor, LepR. To investigate the possible involvement of leptin in AD, we examined the distribution of leptin and LepR in the brains of the 5XFAD mouse model of AD, utilizing immunofluorescent staining in young (10-12-weeks; n = 6) and old (48-52-weeks; n = 6) transgenic (Tg) mice, together with age-matched wild-type (WT) controls for both age groups (young-WT, n = 6; old-WT, n = 6). We also used double immunofluorescent staining to examine the distribution of leptin and leptin receptor expression in astrocytes. In young 5XFAD, young-WT and old-WT mice, we observed neuronal and endothelial expression of leptin and LepR throughout the brain. However, neuronal leptin and LepR expression in the old 5XFAD brain was significantly diminished. Reduced neuronal leptin and LepR expression was accompanied by plaque loading and neuroinflammation in the AD brain. A marked increase in astrocytic leptin and LepR was also observed in old 5XFAD mice compared to younger 5XFAD mice. We postulate that astrocytes may utilize LepR signalling to mediate and drive their metabolically active state when degrading amyloid in the AD brain. Overall, these findings provide evidence of impaired leptin and LepR signalling in the AD brain, supporting clinical and epidemiological studies performed in AD patients.
Collapse
Affiliation(s)
- Anishchal A. Pratap
- Brain and Mind Centre, Laboratory of Molecular Neuroscience and Dementia, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia;
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - R. M. Damian Holsinger
- Brain and Mind Centre, Laboratory of Molecular Neuroscience and Dementia, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia;
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
50
|
Xu Z, Lu W, Miao Y, Li H, Xie X, Zhang F. mRNA profiling reveals the potential mechanism of TIPE2 in attenuating cognitive deficits in APP/PS1 mice. Int Immunopharmacol 2020; 87:106792. [DOI: 10.1016/j.intimp.2020.106792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 01/08/2023]
|