1
|
Xue X, Zhao Z, Zhao LB, Gao YH, Xu WH, Cai WM, Chen SH, Li TJ, Nie TY, Rui D, Ma Y, Qian XS, Lin JL, Liu L. U-Shaped Relationship Between MSpO 2 Levels and the Incidence of Frailty in Elderly OSA Patients: Findings from a Multicenter Cohort Study. Clin Interv Aging 2024; 19:2109-2119. [PMID: 39687032 PMCID: PMC11648552 DOI: 10.2147/cia.s489962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Background Previous studies have demonstrated a significant correlation between obstructive sleep apnea (OSA) and frailty. However, the association of mean pulse oxygen saturation (MSpO2) with frailty among OSA patients remains unconfirmed. This study aimed to explore this potential association using data from a multicenter, prospective cohort. Methods A total of 1006 elderly patients diagnosed with OSA through polysomnography (PSG) from January 2015 to October 2017 were enrolled. Patients were stratified into four groups according to their MSpO2 levels to assess differences in frailty onset. Multivariate Cox regression analysis, Kaplan-Meier curves, restricted cubic splines, and subgroup analyses were employed to evaluate variations in frailty onset across different MSpO2 levels. Results Over a median follow-up period of 52 months, 275 patients developed frailty. Analysis using restricted cubic splines revealed a U-shaped trend between MSpO2 and frailty risk (non-linear p-value = 0.028). Patients in the lowest quartile (MSpO2 < 91.6%) exhibited a higher risk of frailty (hazard ratio [HR] = 1.43, 95% confidence interval [CI] 1.03-1.97, P = 0.029) compared to those in the third quartile (MSpO2 93-95%). Subgroup and sensitivity analyses confirmed the robustness of the U-shaped relationship. Conclusion There is a U-shaped association between MSpO2 and frailty among patients with OSA. Enhancing MSpO2 levels may mitigate the risk of frailty and improve prognosis in this population.
Collapse
Affiliation(s)
- Xin Xue
- Department of Pulmonary and Critical Care Medicine of the Second Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Zhe Zhao
- Department of Vasculocardiology, Second Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Li-Bo Zhao
- Department of Vasculocardiology, Second Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Ying-Hui Gao
- PKU-Upenn Sleep Center, Peking University International Hospital, Beijing, People’s Republic of China
| | - Wei-Hao Xu
- Department of Geriatrics, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, People’s Republic of China
| | - Wei-Meng Cai
- Department of Pulmonary and Critical Care Medicine, Second Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Shao-Hua Chen
- Department of Pulmonary and Critical Care Medicine, Second Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Tian-Jiao Li
- Medical College, Yan’ an University, Yan’ an, People’s Republic of China
| | - Ting-Yu Nie
- Medical College, Yan’ an University, Yan’ an, People’s Republic of China
| | - Dong Rui
- Department of Pulmonary and Critical Care Medicine, Second Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yao Ma
- Department of Pulmonary and Critical Care Medicine, Second Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Xiao-Shun Qian
- Department of Pulmonary and Critical Care Medicine of the Second Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Jun-Ling Lin
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, People’s Republic of China
| | - Lin Liu
- Department of Pulmonary and Critical Care Medicine of the Second Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Allsopp GL, Britto FA, Wright CR, Deldicque L. The Effects of Normobaric Hypoxia on the Acute Physiological Responses to Resistance Training: A Narrative Review. J Strength Cond Res 2024; 38:2001-2011. [PMID: 39178049 DOI: 10.1519/jsc.0000000000004909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
ABSTRACT Allsopp, GL, Britto, FA, Wright, CR, and Deldicque, L. The effects of normobaric hypoxia on the acute physiological responses to resistance training: a narrative review. J Strength Cond Res 38(11): 2001-2011, 2024-Athletes have used altitude training for many years as a strategy to improve endurance performance. The use of resistance training in simulated altitude (normobaric hypoxia) is a growing strategy that aims to improve the hypertrophy and strength adaptations to training. An increasing breadth of research has characterized the acute physiological responses to resistance training in hypoxia, often with the goal to elucidate the mechanisms by which hypoxia may improve the training adaptations. There is currently no consensus on the overall effectiveness of hypoxic resistance training for strength and hypertrophy adaptations, nor the underlying biochemical pathways involved. There are, however, numerous interesting physiological responses that are amplified by performing resistance training in hypoxia. These include potential changes to the energy system contribution to exercise and alterations to the level of metabolic stress, hormone and cytokine production, autonomic regulation, and other hypoxia-induced cellular pathways. This review describes the foundational exercise physiology underpinning the acute responses to resistance training in normobaric hypoxia, potential applications to clinical populations, including training considerations for athletic populations. The review also presents a summary of the ideal training parameters to promote metabolic stress and associated training adaptations. There are currently many gaps in our understanding of the physiological responses to hypoxic resistance training, partly caused by the infancy of the research field and diversity of hypoxic and training parameters.
Collapse
Affiliation(s)
- Giselle L Allsopp
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Victoria, Australia
| | | | - Craig R Wright
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Victoria, Australia
| | - Louise Deldicque
- Institute of Neuroscience, UC Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Janssen Daalen JM, Meinders MJ, Mathur S, van Hees HWH, Ainslie PN, Thijssen DHJ, Bloem BR. Randomized controlled trial of intermittent hypoxia in Parkinson's disease: study rationale and protocol. BMC Neurol 2024; 24:212. [PMID: 38909201 PMCID: PMC11193237 DOI: 10.1186/s12883-024-03702-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/31/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease for which no disease-modifying therapies exist. Preclinical and clinical evidence suggest that repeated exposure to intermittent hypoxia might have short- and long-term benefits in PD. In a previous exploratory phase I trial, we demonstrated that in-clinic intermittent hypoxia exposure is safe and feasible with short-term symptomatic effects on PD symptoms. The current study aims to explore the safety, tolerability, feasibility, and net symptomatic effects of a four-week intermittent hypoxia protocol, administered at home, in individuals with PD. METHODS/DESIGN This is a two-armed double-blinded randomized controlled trial involving 40 individuals with mild to moderate PD. Participants will receive 45 min of normobaric intermittent hypoxia (fraction of inspired oxygen 0.16 for 5 min interspersed with 5 min normoxia), 3 times a week for 4 weeks. Co-primary endpoints include nature and total number of adverse events, and a feasibility-tolerability questionnaire. Secondary endpoints include Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part II and III scores, gait tests and biomarkers indicative of hypoxic dose and neuroprotective pathway induction. DISCUSSION This trial builds on the previous phase I trial and aims to investigate the safety, tolerability, feasibility, and net symptomatic effects of intermittent hypoxia in individuals with PD. Additionally, the study aims to explore induction of relevant neuroprotective pathways as measured in plasma. The results of this trial could provide further insight into the potential of hypoxia-based therapy as a novel treatment approach for PD. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05948761 (registered June 20th, 2023).
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Radboud University Medical Center, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands.
- Radboud University Medical Center, Department of Medical BioSciences, Nijmegen, The Netherlands.
| | - Marjan J Meinders
- Radboud University Medical Center, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| | | | - Hieronymus W H van Hees
- Radboud University Medical Center, Department of Pulmonary Diseases, Nijmegen, The Netherlands
| | - Philip N Ainslie
- University of British Columbia, Center for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, Kelowna, Canada
| | - Dick H J Thijssen
- Radboud University Medical Center, Department of Medical BioSciences, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Radboud University Medical Center, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Pleticosic-Ramírez Y, Mecías-Calvo M, Arufe-Giráldez V, Navarro-Patón R. Incidence of a Multicomponent Physical Exercise Program on Body Composition in Overweight or Obese People Aged 60 Years or Older from Chile. J Funct Morphol Kinesiol 2024; 9:81. [PMID: 38804447 PMCID: PMC11130836 DOI: 10.3390/jfmk9020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
This research aimed to explore the changes produced in body mass index (BMI), fat mass percentage (FMP), muscle mass percentage (MMP), and visceral fat percentage (VFP) in 60-year-old or over overweight or obese people after a multicomponent exercise program. This quasi-experimental study involved 70 overweight or obese older people between 60 and 86 years old (M = 73.15; SD = 5.94) who were randomly assigned to a control group (CG, n = 35) and an experimental group (EG, n = 35). At the beginning and at the end of the intervention program, anthropometric and body composition data were collected. The results showed an increase in BMI after the intervention in the CG (p = 0.010) and a decrease in the EG (p < 0.001). The results regarding the FMP indicate a significant decrease in the EG (p < 0.001) after the intervention, as occurs with the VFP (p = 0.003). The MMP increased in the EG (p < 0.001) after the intervention program. Regarding gender, statistically significant differences were found in the MMP after the intervention (p = 0.025), with higher percentages in men in the EG. VFP decreased in both men (p = 0.005) and women (p = 0.019) in the EG. From the results obtained, we can say that a 6-month multicomponent program produces a decrease in BMI, FMP, and VFP and an increase in MMP in its participants. This type of intervention seems to produce a greater increase in muscle mass in men than in women and a decrease in VFP in both genders.
Collapse
Affiliation(s)
- Yazmina Pleticosic-Ramírez
- Departamento de Salud, Universidad Internacional Iberoamericana, Campeche 24560, Mexico;
- Facultad de Educación, Pedagogía en Educación Física, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile
| | - Marcos Mecías-Calvo
- Facultade de Formación do Profesorado, Universidade de Santiago de Compostela, 27001 Lugo, Spain; (M.M.-C.); (R.N.-P.)
| | - Víctor Arufe-Giráldez
- Facultad de Ciencias de la Educación, Universidad de A Coruña, 15008 A Coruña, Spain
| | - Rubén Navarro-Patón
- Facultade de Formación do Profesorado, Universidade de Santiago de Compostela, 27001 Lugo, Spain; (M.M.-C.); (R.N.-P.)
| |
Collapse
|
5
|
Su R, Peng P, Zhang W, Huang J, Fan J, Zhang D, He J, Ma H, Li H. Dose-effect of exercise intervention on heart rate variability of acclimatized young male lowlanders at 3,680 m. Front Physiol 2024; 15:1331693. [PMID: 38606008 PMCID: PMC11007668 DOI: 10.3389/fphys.2024.1331693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/14/2024] [Indexed: 04/13/2024] Open
Abstract
This study investigated whether exercise could improve the reduced HRV in an environment of high altitude. A total of 97 young, healthy male lowlanders living at 3,680 m for >1 year were recruited. They were randomized into four groups, of which three performed-low-, moderate-, and high-intensity (LI, MI, HI) aerobic exercise for 4 weeks, respectively. The remaining was the control group (CG) receiving no intervention. For HI, compared to other groups, heart rate (p = 0.002) was significantly decreased, while standard deviation of RR intervals (p < 0.001), SD2 of Poincaré plot (p = 0.046) and the number of successive RR interval pairs that differ by > 50 ms divided by total number of RR (p = 0.032), were significantly increased after intervention. For MI, significantly increase of trigonometric interpolation in NN interval (p = 0.016) was observed after exercise. Further, a decrease in systolic blood pressure (SBP) after high-intensity exercise was found significantly associated with an increase in SD2 (r = - 0.428, p = 0.042). These results indicated that there was a dose effect of different intensities of aerobic exercise on the HRV of acclimatized lowlanders. Moderate and high-intensity aerobic exercise would change the status of the autonomic nervous system (ANS) and decrease the blood pressure of acclimatized lowlanders exposed to high altitude.
Collapse
Affiliation(s)
- Rui Su
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Ping Peng
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Wenrui Zhang
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Jie Huang
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Jing Fan
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Delong Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jiayuan He
- National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Manufacturing, Sichuan University, Chengdu, Sichuan, China
| | - Hailin Ma
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Hao Li
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| |
Collapse
|
6
|
Janssen Daalen JM, Koopman WJH, Saris CGJ, Meinders MJ, Thijssen DHJ, Bloem BR. The Hypoxia Response Pathway: A Potential Intervention Target in Parkinson's Disease? Mov Disord 2024; 39:273-293. [PMID: 38140810 DOI: 10.1002/mds.29688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder for which only symptomatic treatments are available. Both preclinical and clinical studies suggest that moderate hypoxia induces evolutionarily conserved adaptive mechanisms that enhance neuronal viability and survival. Therefore, targeting the hypoxia response pathway might provide neuroprotection by ameliorating the deleterious effects of mitochondrial dysfunction and oxidative stress, which underlie neurodegeneration in PD. Here, we review experimental studies regarding the link between PD pathophysiology and neurophysiological adaptations to hypoxia. We highlight the mechanistic differences between the rescuing effects of chronic hypoxia in neurodegeneration and short-term moderate hypoxia to improve neuronal resilience, termed "hypoxic conditioning". Moreover, we interpret these preclinical observations regarding the pharmacological targeting of the hypoxia response pathway. Finally, we discuss controversies with respect to the differential effects of hypoxia response pathway activation across the PD spectrum, as well as intervention dosing in hypoxic conditioning and potential harmful effects of such interventions. We recommend that initial clinical studies in PD should focus on the safety, physiological responses, and mechanisms of hypoxic conditioning, as well as on repurposing of existing pharmacological compounds. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Christiaan G J Saris
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan J Meinders
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Timón R, González-Custodio A, Gusi N, Olcina G. Effects of intermittent hypoxia and whole-body vibration training on health-related outcomes in older adults. Aging Clin Exp Res 2024; 36:6. [PMID: 38280022 PMCID: PMC10821964 DOI: 10.1007/s40520-023-02655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/07/2023] [Indexed: 01/29/2024]
Abstract
BACKGROUND Aging is associated with a health impairment and an increase of the vulnerability of the older people. Strength training under intermittent hypoxic conditions has been shown to have therapeutic effects on individual's health. AIMS The aim of this study was to investigate the effects of a combined intermittent hypoxia (IH) and whole-body vibration (WBV) training program on health-related outcomes in older people. METHODS A total of 60 adults (over the age of 65) voluntarily participated in an intervention that lasted 20 weeks (three 30-min sessions per week). The participants were divided into four experimental groups subjected to different environmental conditions (IH vs normoxia) and exercise (non-exercise vs WBV). Functional fitness, body composition, metabolic parameters, inflammatory biomarkers, and bone turnover were evaluated before and after the intervention. A multifactorial ANOVA with repeated measures was performed to explore differences within and between groups. RESULTS The results showed that IH and WBV had a positive synergistic effect on inflammatory parameters (CRP and IL-10), bone formation biomarker (PINP), and body composition (muscle and bone mass). CONCLUSION In conclusion, a combined IH and WVB training could be a useful tool to prevent the deterioration of health-related outcomes associated with aging. Clinical trial registration NCT04281264. https://clinicaltrials.gov/ .
Collapse
Affiliation(s)
- Rafael Timón
- Facultad de ciencias del deporte, Universidad de Extremadura, Av/Universidad s/n, 10003, Cáceres, Spain.
| | - Adrián González-Custodio
- Facultad de ciencias del deporte, Universidad de Extremadura, Av/Universidad s/n, 10003, Cáceres, Spain
| | - Narcis Gusi
- Facultad de ciencias del deporte, Universidad de Extremadura, Av/Universidad s/n, 10003, Cáceres, Spain
| | - Guillermo Olcina
- Facultad de ciencias del deporte, Universidad de Extremadura, Av/Universidad s/n, 10003, Cáceres, Spain
| |
Collapse
|
8
|
Okawara H, Iwasawa Y, Sawada T, Sugai K, Daigo K, Seki Y, Ichihara G, Nakashima D, Sano M, Nakamura M, Sato K, Fukuda K, Katsumata Y. Anaerobic threshold using sweat lactate sensor under hypoxia. Sci Rep 2023; 13:22865. [PMID: 38129473 PMCID: PMC10739691 DOI: 10.1038/s41598-023-49369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
We aimed to investigate the reliability and validity of sweat lactate threshold (sLT) measurement based on the real-time monitoring of the transition in sweat lactate levels (sLA) under hypoxic exercise. In this cross-sectional study, 20 healthy participants who underwent exercise tests using respiratory gas analysis under hypoxia (fraction of inspired oxygen [FiO2], 15.4 ± 0.8%) in addition to normoxia (FiO2, 20.9%) were included; we simultaneously monitored sLA transition using a wearable lactate sensor. The initial significant elevation in sLA over the baseline was defined as sLT. Under hypoxia, real-time dynamic changes in sLA were successfully visualized, including a rapid, continual rise until volitionary exhaustion and a progressive reduction in the recovery phase. High intra- and inter-evaluator reliability was demonstrated for sLT's repeat determinations (0.782 [0.607-0.898] and 0.933 [0.841-0.973]) as intraclass correlation coefficients [95% confidence interval]. sLT correlated with ventilatory threshold (VT) (r = 0.70, p < 0.01). A strong agreement was found in the Bland-Altman plot (mean difference/mean average time: - 15.5/550.8 s) under hypoxia. Our wearable device enabled continuous and real-time lactate assessment in sweat under hypoxic conditions in healthy participants with high reliability and validity, providing additional information to detect anaerobic thresholds in hypoxic conditions.
Collapse
Affiliation(s)
- Hiroki Okawara
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuji Iwasawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Tomonori Sawada
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kazuhisa Sugai
- Institute for Integrated Sports Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kyohei Daigo
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuta Seki
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Genki Ichihara
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Nakashima
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kazuki Sato
- Institute for Integrated Sports Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshinori Katsumata
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
- Institute for Integrated Sports Medicine, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
9
|
Guo H, Cheng L, Duolikun D, Yao Q. Aerobic Exercise Training Under Normobaric Hypoxic Conditions to Improve Glucose and Lipid Metabolism in Overweight and Obese Individuals: A Systematic Review and Meta-Analysis. High Alt Med Biol 2023; 24:312-320. [PMID: 38127802 DOI: 10.1089/ham.2022.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Guo, Hai, Linjie Cheng, Dilihumaier Duolikun, and Qiaoling Yao. Aerobic exercise training under normobaric hypoxic conditions to improve glucose and lipid metabolism in overweight and obese individuals: a systematic review and meta-analysis. High Alt Med Biol. 24:312-320, 2023. Background: Obesity is a critical public health issue around the world, reaching epidemic proportions in some countries. However, only a few studies have examined the effects of hypoxic training on metabolic parameters in an obese population. This systematic review and meta-analysis aimed to determine the effects of aerobic exercise training under normobaric hypoxic conditions versus normoxic training in improving glucose and lipid metabolism in obese individuals. Methods: A systematic search of PubMed, EMBASE, Web of Science, and Wan Fang databases (up to August 2021) was performed to identify randomized controlled trials (RCTs) of overweight or obese human subjects eligible for inclusion. Main study endpoints were changes in body mass index (BMI), waist/hip (W/H) ratio, leptin, blood glucose and insulin levels, as well as blood lipids between hypoxic and normoxic conditioning. Results: Fourteen RCTs with a total of 413 subjects qualified for inclusion. Pooled analyses revealed that BMI (d = 0.38), W/H ratio (d = 0), blood glucose (d = 0.01), and triglyceride (d = -2.27) were not significantly different between aerobic exercise training under hypoxic and normoxic conditions. However, significant differences were found in heart rate at rest (d = -4.50) between aerobic exercise training under hypoxic versus normoxic conditions. Conclusions: In conclusion, no significant benefits were noted in aerobic exercise training under hypoxic conditions over normoxic conditions in overweight or obese individuals. However, the maximum training heart rate mm was significantly higher under hypoxic conditions than under normoxic conditions. Future studies with larger samples controlling for exercise-related parameters, and addressing the potential modifying effects of level of hypoxia, sex, or age on the role of hypoxic exercise training are warranted. PROSPERO registration number: CRD42020221680.
Collapse
Affiliation(s)
- Hai Guo
- Department of Physiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Perioperative Organ Protection Laboratory, Urumqi, China
| | - Linjie Cheng
- Department of Physiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Dilihumaier Duolikun
- Department of Physiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Qiaoling Yao
- Department of Physiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| |
Collapse
|
10
|
Park HY, Jung K, Jung WS, Kim SW, Kim J, Lim K. Effects of Online Pilates and Face-to-Face Pilates Intervention on Body Composition, Muscle Mechanical Properties, Cardiometabolic Parameters, Mental Health, and Physical Fitness in Middle-Aged Women with Obesity. Healthcare (Basel) 2023; 11:2768. [PMID: 37893842 PMCID: PMC10606084 DOI: 10.3390/healthcare11202768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
With the emergence of coronavirus disease 2019, individuals have been participating in online exercises to maintain their health while avoiding infection. Among these online exercises, Pilates intervention is a popular modality. This study aimed to examine the differences between online and face-to-face Pilates interventions in terms of various physiological parameters and included 30 middle-aged individuals (age 43.3 ± 5.5 years) with obesity. These individuals were randomly divided into a face-to-face Pilates group (FPG), an online Pilates group (OPG), and a control group (CG). The FPG and OPG performed a 60-min mat Pilates program with a Borg scale of 11-17, three times a week for 12 weeks. The participants in the CG maintained their daily routines. Body composition, mechanical muscle properties, cardiometabolic parameters, mental health, and physical fitness were assessed before and after 12 weeks of intervention. No significant differences in body composition or cardiometabolic parameters were observed between groups. However, the FPG and OPG showed greater improvements than the CG in terms of muscle mechanical properties, cardiometabolic parameters, mental health, and physical fitness. In addition, the FPG showed greater improvement than the OPG. In conclusion, face-to-face Pilates is a more effective modality than online Pilates, although both modalities improve health-related parameters.
Collapse
Affiliation(s)
- Hun-Young Park
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.-Y.P.); (S.-W.K.); (J.K.)
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
| | - Kyounghwa Jung
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
- Department of Physical Education, Konkuk University, Seoul 05029, Republic of Korea
| | - Won-Sang Jung
- Department of Senior Exercise Prescription, Dongseo University, Busan 47011, Republic of Korea;
| | - Sung-Woo Kim
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.-Y.P.); (S.-W.K.); (J.K.)
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
| | - Jisu Kim
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.-Y.P.); (S.-W.K.); (J.K.)
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
| | - Kiwon Lim
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.-Y.P.); (S.-W.K.); (J.K.)
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
- Department of Physical Education, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
11
|
He Z, Qiang L, Liu Y, Gao W, Feng T, Li Y, Yan B, Girard O. Effect of Hypoxia Conditioning on Body Composition in Middle-Aged and Older Adults: A Systematic Review and Meta-Analysis. SPORTS MEDICINE - OPEN 2023; 9:89. [PMID: 37747653 PMCID: PMC10519915 DOI: 10.1186/s40798-023-00635-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND The effects of hypoxia conditioning, which involves recurrent exposure to hypoxia combined with exercise training, on improving body composition in the ageing population have not been extensively investigated. OBJECTIVE This meta-analysis aimed to determine if hypoxia conditioning, compared to similar training near sea level, maximizes body composition benefits in middle-aged and older adults. METHODS A literature search of PubMed, EMBASE, Web of Science, Scopus and CNKI (China National Knowledge Infrastructure) databases (up to 27th November 2022) was performed, including the reference lists of relevant papers. Three independent reviewers extracted study characteristics and health outcome measures. Search results were limited to original studies of the effects of hypoxia conditioning on body composition in middle-aged and older adults. RESULTS Twelve studies with a total of 335 participants were included. Hypoxia conditioning induced greater reductions in body mass index (MD = -0.92, 95%CI: -1.28 to -0.55, I2 = 0%, p < 0.00001) and body fat (SMD = -0.38, 95%CI: -0.68 to -0.07, I2 = 49%, p = 0.01) in middle-aged and older adults compared with normoxic conditioning. Hypoxia conditioning improved lean mass with this effect not being larger than equivalent normoxic interventions in either middle-aged or older adults (SMD = 0.07, 95%CI -0.12 to 0.25, I2 = 0%, p = 0.48). Subgroup analysis showed that exercise in moderate hypoxia (FiO2 > 15%) had larger effects than more severe hypoxia (FiO2 ≤ 15%) for improving body mass index in middle-aged and older adults. Hypoxia exposure of at least 60 min per session resulted in larger benefits for both body mass index and body fat. CONCLUSION Hypoxia conditioning, compared to equivalent training in normoxia, induced greater body fat and body mass index improvements in middle-aged and older adults. Adding hypoxia exposure to exercise interventions is a viable therapeutic solution to effectively manage body composition in ageing population.
Collapse
Affiliation(s)
- Zhijian He
- China Institute of Sport and Health Science, Beijing Sport University, No. 48 Xinxi Road, Haidian District, Beijing, 100084, China
- Department of Sports Teaching and Research, Lanzhou University, Lanzhou, China
| | - Lijun Qiang
- China Institute of Sport and Health Science, Beijing Sport University, No. 48 Xinxi Road, Haidian District, Beijing, 100084, China
- Ningxia Vocational College of Sports, Ningxia, China
| | - Yusheng Liu
- China Institute of Sport and Health Science, Beijing Sport University, No. 48 Xinxi Road, Haidian District, Beijing, 100084, China
- Tsinghua University High School (Guanghua), Beijing, China
| | - Wenfeng Gao
- Department of Sports Teaching and Research, Lanzhou University, Lanzhou, China
| | - Tao Feng
- Department of Sports Teaching and Research, Lanzhou University, Lanzhou, China
| | - Yang Li
- Department of Sports Teaching and Research, Lanzhou University, Lanzhou, China
| | - Bing Yan
- China Institute of Sport and Health Science, Beijing Sport University, No. 48 Xinxi Road, Haidian District, Beijing, 100084, China.
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
12
|
Khalafi M, Sakhaei MH, Symonds ME, Noori Mofrad SR, Liu Y, Korivi M. Impact of Exercise in Hypoxia on Inflammatory Cytokines in Adults: A Systematic Review and Meta-analysis. SPORTS MEDICINE - OPEN 2023; 9:50. [PMID: 37382855 DOI: 10.1186/s40798-023-00584-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/15/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Both acute exercise and environmental hypoxia may elevate inflammatory cytokines, but the inflammatory response in the hypoxic exercise is remaining unknown. OBJECTIVE We performed this systematic review and meta-analysis to examine the effect of exercise in hypoxia on inflammatory cytokines, including IL-6, TNF-α and IL-10. METHODS PubMed, Scopus and Web of Science were searched to identify the original articles that compared the effect of exercise in hypoxia with normoxia on IL-6, TNF-α and IL-10 changes, published up to March 2023. Standardized mean differences and 95% confidence intervals (CIs) were calculated using a random effect model to (1) determine the effect of exercise in hypoxia, (2) determine the effect of exercise in normoxia and (3) compare the effect of exercise in hypoxia with normoxia on IL-6, TNF-α and IL-10 responses. RESULTS Twenty-three studies involving 243 healthy, trained and athlete subjects with a mean age range from 19.8 to 41.0 years were included in our meta-analysis. On comparing exercise in hypoxia with normoxia, no differences were found in the response of IL-6 [0.17 (95% CI - 0.08 to 0.43), p = 0.17] and TNF-α [0.17 (95% CI - 0.10 to 0.46), p = 0.21] between the conditions. Exercise in hypoxia significantly increased IL-10 concentration [0.60 (95% CI 0.17 to 1.03), p = 0.006] compared with normoxia. In addition, exercise during both hypoxia and normoxia increased IL-6 and IL-10, whereas TNF-α was increased only in hypoxic exercise condition. CONCLUSION Overall, exercise in both hypoxia and normoxia increased inflammatory cytokines; however, hypoxic exercise may lead to a greater inflammatory response in adults.
Collapse
Affiliation(s)
- Mousa Khalafi
- Department of Physical Education and Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran
| | - Mohammad Hossein Sakhaei
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Guilan, Iran
| | - Michael E Symonds
- Centre for Perinatal Research, Academic Unit of Population and Lifespan Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Saeid Reza Noori Mofrad
- Department of Physical Education and Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran
| | - Yubo Liu
- Institute of Human Movement and Sports Engineering, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua City, 321004, Zhejiang, China.
| | - Mallikarjuna Korivi
- Institute of Human Movement and Sports Engineering, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua City, 321004, Zhejiang, China.
| |
Collapse
|
13
|
Timon R, Martinez-Guardado I, Brocherie F. Effects of Intermittent Normobaric Hypoxia on Health-Related Outcomes in Healthy Older Adults: A Systematic Review. SPORTS MEDICINE - OPEN 2023; 9:19. [PMID: 36843041 PMCID: PMC9968673 DOI: 10.1186/s40798-023-00560-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/05/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Aging is a degenerative process that is associated with an increased risk of diseases. Intermittent hypoxia has been investigated in reference to performance and health-related functions enhancement. This systematic review aimed to summarize the effect of either passive or active intermittent normobaric hypoxic interventions compared with normoxia on health-related outcomes in healthy older adults. METHODS Relevant studies were searched from PubMed and Web of Science databases in accordance with PRISMA guidelines (since their inceptions up until August 9, 2022) using the following inclusion criteria: (1) randomized controlled trials, clinical trials and pilot studies; (2) Studies involving humans aged > 50 years old and without any chronic diseases diagnosed; (3) interventions based on in vivo intermittent systemic normobaric hypoxia exposure; (4) articles focusing on the analysis of health-related outcomes (body composition, metabolic, bone, cardiovascular, functional fitness or quality of life). Cochrane Collaboration recommendations were used to assess the risk of bias. RESULTS From 509 articles initially found, 17 studies were included. All interventions were performed in moderate normobaric hypoxia, with three studies using passive exposure, and the others combining intermittent hypoxia with training protocols (i.e., using resistance-, whole body vibration- or aerobic-based exercise). CONCLUSIONS Computed results indicate a limited effect of passive/active intermittent hypoxia (ranging 4-24 weeks, 2-4 days/week, 16-120 min/session, 13-16% of fraction of inspired oxygen or 75-85% of peripheral oxygen saturation) compared to similar intervention in normoxia on body composition, functional fitness, cardiovascular and bone health in healthy older (50-75 years old) adults. Only in specific settings (i.e., intermediate- or long-term interventions with high intensity/volume training sessions repeated at least 3 days per week), may intermittent hypoxia elicit beneficial effects. Further research is needed to determine the dose-response of passive/active intermittent hypoxia in the elderly. TRIAL REGISTRATION SYSTEMATIC REVIEW REGISTRATION PROSPERO 2022 CRD42022338648.
Collapse
Affiliation(s)
- Rafael Timon
- Sport Sciences Faculty, Universidad de Extremadura, Av/ Universidad s/n, 10004, Cáceres, Spain.
| | - Ismael Martinez-Guardado
- grid.464701.00000 0001 0674 2310BRABE Group. Faculty of Life and Nature Sciences, Universidad de Nebrija, Madrid, Spain
| | - Franck Brocherie
- grid.418501.90000 0001 2163 2398Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France
| |
Collapse
|
14
|
Tee CCL, Cooke MB, Chong MC, Yeo WK, Camera DM. Mechanisms for Combined Hypoxic Conditioning and Divergent Exercise Modes to Regulate Inflammation, Body Composition, Appetite, and Blood Glucose Homeostasis in Overweight and Obese Adults: A Narrative Review. Sports Med 2023; 53:327-348. [PMID: 36441492 PMCID: PMC9877079 DOI: 10.1007/s40279-022-01782-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 11/29/2022]
Abstract
Obesity is a major global health issue and a primary risk factor for metabolic-related disorders. While physical inactivity is one of the main contributors to obesity, it is a modifiable risk factor with exercise training as an established non-pharmacological treatment to prevent the onset of metabolic-related disorders, including obesity. Exposure to hypoxia via normobaric hypoxia (simulated altitude via reduced inspired oxygen fraction), termed hypoxic conditioning, in combination with exercise has been increasingly shown in the last decade to enhance blood glucose regulation and decrease the body mass index, providing a feasible strategy to treat obesity. However, there is no current consensus in the literature regarding the optimal combination of exercise variables such as the mode, duration, and intensity of exercise, as well as the level of hypoxia to maximize fat loss and overall body compositional changes with hypoxic conditioning. In this narrative review, we discuss the effects of such diverse exercise and hypoxic variables on the systematic and myocellular mechanisms, along with physiological responses, implicated in the development of obesity. These include markers of appetite regulation and inflammation, body conformational changes, and blood glucose regulation. As such, we consolidate findings from human studies to provide greater clarity for implementing hypoxic conditioning with exercise as a safe, practical, and effective treatment strategy for obesity.
Collapse
Affiliation(s)
- Chris Chow Li Tee
- Division of Research and Innovation, National Sports Institute of Malaysia, Kuala Lumpur, Malaysia
- Sport and Exercise Medicine Group, Swinburne University, Room SPW224, Mail H21, PO Box 218, Hawthorn, VIC, 3122, Australia
| | - Matthew B Cooke
- Sport and Exercise Medicine Group, Swinburne University, Room SPW224, Mail H21, PO Box 218, Hawthorn, VIC, 3122, Australia
| | - Mee Chee Chong
- Sport and Exercise Medicine Group, Swinburne University, Room SPW224, Mail H21, PO Box 218, Hawthorn, VIC, 3122, Australia
| | - Wee Kian Yeo
- Division of Research and Innovation, National Sports Institute of Malaysia, Kuala Lumpur, Malaysia
| | - Donny M Camera
- Sport and Exercise Medicine Group, Swinburne University, Room SPW224, Mail H21, PO Box 218, Hawthorn, VIC, 3122, Australia.
| |
Collapse
|
15
|
Kim SW, Park HY, Jung WS, Lim K. Effects of Twenty-Four Weeks of Resistance Exercise Training on Body Composition, Bone Mineral Density, Functional Fitness and Isokinetic Muscle Strength in Obese Older Women: A Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192114554. [PMID: 36361434 PMCID: PMC9656451 DOI: 10.3390/ijerph192114554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 05/27/2023]
Abstract
Resistance exercise effectively improves bone mineral density (BMD) and muscle quality (e.g., muscle mass and muscle strength). The present study aimed to examine the effect of a 24-week resistance exercise training (RT) program on body composition, BMD, functional fitness, and isokinetic muscle strength in obese older women. Forty obese older women were initially enrolled. Among them, 30 participants (age: 80.55 ± 4.94 years; body fat percentage: 36.25 ± 3.44%) completed the study. The participants were randomly assigned into two groups: the RT group (n = 15) and the control (CON) group (n = 15). The RT group participated in the exercise for 60 min per session and two sessions per week for 24 weeks. Pre-test and post-test body composition, BMD, functional fitness, and isokinetic muscle strength were evaluated. The RT group increased significantly in functional fitness (hand grip strength: 1.70 kg, p < 0.01, and lower body strength: 3.87 n, p < 0.001), and isokinetic muscle strength (non-dominant leg extensor peak torque %BW at 60°/s: 13.20%, p < 0.05, dominant leg (DL) flexor peak torque at 60°/s: 3.87 Nm, p < 0.05, and DL flexor peak torque %BW at 60°/s: 7.60%, p < 0.05). However, the CON group showed negative changes in body composition (fat mass: 1.15 kg, p < 0.001, body fat percentage: 1.59%, p < 0.001, and fat-free mass: -0.58 kg, p < 0.05), BMD (whole-body: -0.01 g/cm2, p < 0.001 and forearm: -0.01 g/cm2, p < 0.05), functional fitness (lower body flexibility: -3.23 cm, p < 0.01, upper body strength: -2.06 n, p < 0.01, and agility and dynamic balance: 0.54 s, p < 0.01), and isokinetic muscle strength at 60°/s and 180°/s (all peak torque % body weight variables: -7.31--1.50, p < 0.05). Our findings show that the CON group negatively affects body composition, BMD, functional fitness, and isokinetic muscle strength in obese older women for 24 weeks.
Collapse
Affiliation(s)
- Sung-Woo Kim
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Hun-Young Park
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Won-Sang Jung
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Kiwon Lim
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
- Department of Physical Education, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
16
|
Effects of Acute Moderate Hypoxia versus Normoxia on Metabolic and Cardiac Function and Skeletal Muscle Oxygenation during Endurance Exercise at the Same Heart Rate Level. Metabolites 2022; 12:metabo12100975. [PMID: 36295877 PMCID: PMC9609186 DOI: 10.3390/metabo12100975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 01/24/2023] Open
Abstract
This study aimed to investigate the effects of acute moderate hypoxia (HYP), compared with those of normoxia (NORM), during endurance exercise with the same HR level on metabolic function, skeletal muscle oxygenation, and cardiac function. Twelve healthy men (aged 25.1 ± 2.3 years) completed 30 min of endurance exercise using a cycle ergometer with the same HR level (136.5 ± 1.5 bpm) corresponding to 70% maximal heart rate (HRmax) under NORM (760 mmHg) and HYP (526 mmHg, simulated 3000 m altitude) after a 30 min exposure in the respective environments on different days, in random order. Exercise load, rating of perceived exertion (RPE), metabolic function (saturation of percutaneous oxygen; SpO2, minute ventilation; oxygen uptake; VO2, carbon dioxide excretion; respiratory exchange ratio; RER, and oxygen pulse), skeletal muscle oxygen profiles (oxyhemoglobin, oxhb, deoxyhemoglobin, dxhb, total hemoglobin, and tissue oxygenation index; StO2), and cardiac function (heart rate, stroke volume, cardiac output, end-diastolic volume, end-systolic volume, and ejection fraction) were measured during endurance exercise. HYP showed a lower exercise load with the same RPE during exercise than did NORM. In addition, HYP showed a lower SpO2, VO2, oxygen pulse, oxhb, and StO2, and a higher RER and dxhb during exercise than NORM. We found that HYP showed lower exercise load and VO2 at the same RPE than NORM and also confirmed a higher anaerobic metabolism and oxygen inflow into skeletal muscle tissue due to the limitation of oxygen delivery capacity.
Collapse
|
17
|
Galicia Ernst I, Torbahn G, Schwingshackl L, Knüttel H, Kob R, Kemmler W, Sieber CC, Batsis JA, Villareal DT, Stroebele-Benschop N, Visser M, Volkert D, Kiesswetter E, Schoene D. Outcomes addressed in randomized controlled lifestyle intervention trials in community-dwelling older people with (sarcopenic) obesity-An evidence map. Obes Rev 2022; 23:e13497. [PMID: 35891613 DOI: 10.1111/obr.13497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
Obesity and sarcopenic obesity (SO) are characterized by excess body fat with or without low muscle mass affecting bio-psycho-social health, functioning, and subsequently quality of life in older adults. We mapped outcomes addressed in randomized controlled trials (RCTs) on lifestyle interventions in community-dwelling older people with (sarcopenic) obesity. Systematic searches in Medline, Embase, Cochrane Central, CINAHL, PsycInfo, Web of Science were conducted. Two reviewers independently performed screening and extracted data on outcomes, outcome domains, assessment methods, units, and measurement time. A bubble chart and heat maps were generated to visually display results. Fifty-four RCTs (7 in SO) reporting 464 outcomes in the outcome domains: physical function (n = 42), body composition/anthropometry (n = 120), biomarkers (n = 190), physiological (n = 30), psychological (n = 47), quality of life (n = 14), pain (n = 4), sleep (n = 2), medications (n = 3), and risk of adverse health events (n = 5) were included. Heterogeneity in terms of outcome definition, assessment methods, measurement units, and measurement times was found. Psychological and quality of life domains were investigated in a minority of studies. There is almost no information beyond 52 weeks. This evidence map is the first step of a harmonization process to improve comparability of RCTs in older people with (sarcopenic) obesity and facilitate the derivation of evidence-based clinical decisions.
Collapse
Affiliation(s)
- Isabel Galicia Ernst
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| | - Gabriel Torbahn
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany.,Department of Pediatrics, Paracelsus Medical University, Klinikum Nürnberg, Universitätsklinik der Paracelsus Medizinischen Privatuniversität Nürnberg, Nuremberg, Germany
| | - Lukas Schwingshackl
- Institute for Evidence in Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Helge Knüttel
- University Library, University of Regensburg, Regensburg, Germany
| | - Robert Kob
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| | - Wolfgang Kemmler
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Cornel C Sieber
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany.,Department of Medicine, Kantonsspital Winterthur, Winterthur, Switzerland
| | - John A Batsis
- Division of Geriatric Medicine, School of Medicine and Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dennis T Villareal
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, Texas, USA
| | - Nanette Stroebele-Benschop
- Department of Nutritional Psychology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Marjolein Visser
- Department of Health Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Dorothee Volkert
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| | - Eva Kiesswetter
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany.,Institute for Evidence in Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Daniel Schoene
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Institute for Exercise and Public Health, University of Leipzig, Leipzig, Germany
| |
Collapse
|
18
|
Chen S, Su H, Liu X, Li Q, Yao Y, Cai J, Gao Y, Ma Q, Shi Y. Effects of exercise training in hypoxia versus normoxia on fat-reducing in overweight and/or obese adults: A systematic review and meta-analysis of randomized clinical trials. Front Physiol 2022; 13:940749. [PMID: 36082216 PMCID: PMC9447682 DOI: 10.3389/fphys.2022.940749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: Fat loss theory under various oxygen conditions has been disputed, and relevant systematic review studies are limited. This study is a systematic review and meta-analysis to assess whether hypoxic exercise training (HET) leads to superior fat-reducing compared with normoxic exercise training (NET). Methods: We searched PubMed, Web of Science, CNKI, ProQuest, Google Scholar, Cochrane Library, and EBSCOhost from inception to June 2022 for articles comparing the effects of hypoxic and normoxic exercise on body composition indicators, glycometabolism, and lipometabolism indicators in obese and overweight adults. Only randomized controlled trials (RCTs) were included. The effect sizes were expressed as standardized mean difference (SMD) and 95% confidence intervals (CI). Between-study heterogeneity was examined using the I2 test and evaluated publication bias via Egger’s regression test. The risk of bias assessment was performed for each included trial using Cochrane Evaluation Tool second generation. The meta-analysis was performed by using R 4.1.3 and RevMan 5.3 analytic tools. Results: A total of 19 RCTs with 444 subjects were analyzed according to the inclusion and exclusion criteria. Among them, there were 14 English literature and five Chinese literature. No significant difference in body composition (SMD -0.10, 95% CI -0.20 to -0.01), glycometabolism and lipid metabolism (SMD -0.01, 95% CI -0.13 to -0.10) has been observed when comparing the HET and NET groups. We only found low heterogeneity among trials assessing glycometabolism and lipometabolism (I2 = 20%, p = 0.09), and no publication bias was detected. Conclusion: The effects of HET and NET on fat loss in overweight or obese people are the same. The application and promotion of HET for fat reduction need further exploration.
Collapse
|
19
|
Park HY, Jung WS, Kim SW, Jung K, Lim K. Comparison of Vascular Function, Cardiometabolic Parameters, Hemorheological Function, and Cardiorespiratory Fitness Between Middle-Aged Korean Women With and Without Obesity—A Pilot Study. Front Physiol 2022; 13:809029. [PMID: 35422707 PMCID: PMC9002013 DOI: 10.3389/fphys.2022.809029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to compare vascular function, cardiometabolic parameters, hemorheological function, and cardiorespiratory fitness in middle-aged Korean women according to obesity defined using body mass index (BMI). A total of 32 Korean women aged between 34 and 60 years (16 without obesity, mean age 46.31 ± 7.49 years and 16 with obesity, mean age 49.68 ± 6.69 years) participated in this study. Obesity was defined as BMI ≥ 25 kg/m2. The body composition, vascular function, cardiometabolic parameters, hemorheological function, and cardiorespiratory fitness of all participants were measured. Statistical differences in the dependent parameters between individuals with and without obesity were analyzed, and the correlations between BMI and the dependent variables were verified. The obese group showed significantly worse results (p < 0.05) for body composition (significantly higher weight, BMI, fat mass, and percent body fat), vascular function [significantly higher branchial ankle pulse wave velocity (baPWV) and lower flow-mediated vasodilation (FMD)], cardiometabolic parameters [significantly higher insulin and homeostatic model assessment for insulin resistance (HOMA-IR)], hemorheological function (significantly lower erythrocyte deformability and higher aggregation), and cardiorespiratory fitness [significantly lower maximal oxygen uptake (VO2max)] compared to the non-obese group. In addition, BMI showed a significant positive correlation (p < 0.05) with baPWV (r = 0.430); total cholesterol (r = 0.376), triglyceride (r = 0.411), low-density lipoprotein cholesterol (r = 0.462), and insulin (r = 0.477) levels; HOMA-IR (r = 0.443); and erythrocyte aggregation (r = 0.406), and a significant negative correlation (p < 0.05) with VO2max (r = −0.482) and FMD (r = −0.412). Our study confirmed that obesity is a major determinant for deterioration of vascular function, cardiometabolic parameters, hemorheological function, and cardiorespiratory fitness.
Collapse
Affiliation(s)
- Hun-Young Park
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul, South Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, South Korea
| | - Won-Sang Jung
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, South Korea
| | - Sung-Woo Kim
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, South Korea
| | - Kyounghwa Jung
- Department of Physical Education, Konkuk University, Seoul, South Korea
| | - Kiwon Lim
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul, South Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, South Korea
- Department of Physical Education, Konkuk University, Seoul, South Korea
- *Correspondence: Kiwon Lim,
| |
Collapse
|
20
|
Park HY, Jung WS, Kim SW, Lim K. Effects of Interval Training Under Hypoxia on the Autonomic Nervous System and Arterial and Hemorheological Function in Healthy Women. Int J Womens Health 2022; 14:79-90. [PMID: 35140525 PMCID: PMC8818981 DOI: 10.2147/ijwh.s344233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/15/2022] [Indexed: 12/27/2022] Open
Abstract
Purpose The present study verified the effects of interval training under hypoxia, a novel exercise modality for health promotion, on the autonomic nervous system (ANS) and arterial and hemorheological function in healthy women. Methods Twenty healthy Korean women (age: 19–29 [24.85 ± 3.84] years) were equally assigned to interval normoxic training (INT, n = 10; residing and training under normoxia) and interval hypoxic training (IHT, n = 10; residing under normoxia and training under 526 mmHg hypobaric hypoxia) groups. All participants performed 90-min of training sessions composed of 15-min of warm-up, 60-min of interval training, and 15-min of cool-down. The interval training sessions composed of 10 repetitions of interval exercise using a treadmill (5 min of exercise corresponding to 90–95% maximal heart rate [HR] and 1 min of rest). The training was performed 3 days per week for 6 weeks. All participants underwent body composition, HR variability, brachial-ankle pulse wave velocity, flow-mediated dilation (FMD), red blood cell (RBC) deformability and aggregation, and maximal oxygen uptake (VO2max) measurements before and after training. Results There were no significant differences in body composition between the groups. The IHT group showed a significant improvement in the ANS function (root mean square of successive differences, high frequency, and low frequency/high frequency ratio), arterial stiffness, arterial endothelial function (FMD), hemorheological function (RBC deformability and aggregation), and aerobic performance (VO2max) compared with the INT (all p < 0.05). Conclusion In comparison with the interval training under normoxia, the interval training under hypoxia is a novel and effective exercise modality for promoting aerobic performance with the ANS and arterial and hemorheological function in healthy women.
Collapse
Affiliation(s)
- Hun-Young Park
- Department of Sports Medicine and Science, Graduated School, Konkuk University, Seoul, Republic of Korea.,Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea
| | - Won-Sang Jung
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea
| | - Sung-Woo Kim
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea
| | - Kiwon Lim
- Department of Sports Medicine and Science, Graduated School, Konkuk University, Seoul, Republic of Korea.,Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea.,Department of Physical Education, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Timon R, Camacho-Cardeñosa M, González-Custodio A, Olcina G, Gusi N, Camacho-Cardeñosa A. Effect of hypoxic conditioning on functional fitness, balance and fear of falling in healthy older adults: a randomized controlled trial. Eur Rev Aging Phys Act 2021; 18:25. [PMID: 34852758 PMCID: PMC8903602 DOI: 10.1186/s11556-021-00279-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/19/2021] [Indexed: 11/21/2022] Open
Abstract
Background Hypoxic conditioning has been proposed as a new tool to mitigate the sarcopenia and enhance health-related function, but decrements in standing balance have been observed during hypoxia exposure. The aim of the study was to evaluate the effect of a hypoxic conditioning training on functional fitness, balance and fear of falling in healthy older adults. Methods A total of 54 healthy older adults (aged 65–75 years), who voluntarily participated in the study, were randomly divided into three groups: the control group (CON), the normoxia training group (NT) that performed strength training in normoxia, and the hypoxia training group (HT) that trained under moderate hypoxic conditions at a simulated altitude of 2500 m asl. The training programme that was performed during 24 weeks was similar in both experimental groups and consisted of a full-body workout with elastic bands and kettlebells (three sets × 12–15 reps). The Senior Fitness Test (SFT), the Single Leg Stance test (SLS) and the Short Falls Efficacy Scale-International (FES-I) were assessed before and after the intervention. Results Results showed that after training, either in normoxia or in hypoxia, the participants increased upper and lower body strength, and the aerobic endurance, and decreased the fear of falling. Conclusions The moderate hypoxic conditioning seems to be a useful tool to increase the functional capacity in healthy older adults without observing a decline in balance. Trial registration ClinicalTrials.gov NCT04281264. Registered February 9, 2019-Retrospectively registered.
Collapse
Affiliation(s)
- Rafael Timon
- Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain.
| | | | | | - Guillermo Olcina
- Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain
| | - Narcis Gusi
- Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain
| | | |
Collapse
|
22
|
Kim SW, Jung WS, Chung S, Park HY. Exercise intervention under hypoxic condition as a new therapeutic paradigm for type 2 diabetes mellitus: A narrative review. World J Diabetes 2021; 12:331-343. [PMID: 33889283 PMCID: PMC8040082 DOI: 10.4239/wjd.v12.i4.331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/25/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
This review aims to summarize the health benefits of exposure to hypoxic conditions during exercise in patients with type 2 diabetes mellitus (T2DM). Exposure to hypoxic conditions during exercise training positively changes the physiological response in healthy subjects. Exposure to hypoxic conditions during exercise could markedly increase skeletal muscle glucose uptake compared to that in normoxic conditions. Furthermore, post-exercise insulin sensitivity of T2DM patients increases more when exercising under hypoxic than under normoxic conditions. Regular exercise under short-term hypoxic conditions can improve blood glucose control at lower workloads than in normoxic conditions. Additionally, exercise training under short-term hypoxic conditions can maximize weight loss in overweight and obese patients. Previous studies on healthy subjects have reported that regular exercise under hypoxic conditions had a more positive effect on vascular health than exercising under normoxic conditions. However, currently, evidence indicating that exposure to hypoxic conditions could positively affect T2DM patients in the long-term is lacking. Therefore, further evaluations of the beneficial effects of exercise under hypoxic conditions on the human body, considering different cycle lengths, duration of exposures, sessions per day, and the number of days, are necessary. In this review, we conclude that there is evidence that exercise under hypoxic conditions can yield health benefits, which is potentially valuable in terms of clinical care as a new intervention for T2DM patients.
Collapse
Affiliation(s)
- Sung-Woo Kim
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, South Korea
| | - Won-Sang Jung
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, South Korea
| | - Sochung Chung
- Department of Pediatrics, Konkuk University Medical Center, Research Institute of Medical Science, Konkuk University, School of Medicine, Seoul 05029, South Korea
| | - Hun-Young Park
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, South Korea
- Department of Sports Science and Medicine, Konkuk University, Seoul 05029, South Korea
| |
Collapse
|
23
|
Kim SW, Jung WS, Kim JW, Nam SS, Park HY. Aerobic Continuous and Interval Training under Hypoxia Enhances Endurance Exercise Performance with Hemodynamic and Autonomic Nervous System Function in Amateur Male Swimmers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18083944. [PMID: 33918616 PMCID: PMC8068973 DOI: 10.3390/ijerph18083944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/03/2022]
Abstract
Hypoxic training is often performed by competitive swimmers to enhance their performance in normoxia. However, the beneficial effects of aerobic continuous and interval training under hypoxia on hemodynamic function, autonomic nervous system (ANS) function, and endurance exercise performance remain controversial. Here we investigated whether six weeks of aerobic continuous and interval training under hypoxia can improve hematological parameters, hemodynamic function, ANS function, and endurance exercise performance versus normoxia in amateur male swimmers. Twenty amateur male swimmers were equally assigned to the hypoxic training group or normoxic training group and evaluated before and after six weeks of training. Aerobic continuous and interval training in the hypoxia showed a more significantly improved hemodynamic function (heart rate, −653.4 vs. −353.7 beats/30 min; oxygen uptake, −62.45 vs. −16.22 mL/kg/30 min; stroke volume index, 197.66 vs. 52.32 mL/30 min) during submaximal exercise, ANS function (root mean square of successive differences, 10.15 vs. 3.32 ms; total power, 0.72 vs. 0.20 ms2; low-frequency/high-frequency ratio, −0.173 vs. 0.054), and endurance exercise performance (maximal oxygen uptake, 5.57 vs. 2.26 mL/kg/min; 400-m time trial record, −20.41 vs. −7.91 s) than in the normoxia. These indicate that hypoxic training composed of aerobic continuous and interval exercise improves the endurance exercise performance of amateur male swimmers with better hemodynamic function and ANS function.
Collapse
Affiliation(s)
- Sung-Woo Kim
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (S.-W.K.); (W.-S.J.)
| | - Won-Sang Jung
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (S.-W.K.); (W.-S.J.)
| | - Jeong-Weon Kim
- Graduate School of Professional Therapy, Gachon University, 1332 Seongnam-daero, Sujeong-gu, Seongnam-si 13306, Korea;
| | - Sang-Seok Nam
- Taekwondo Research Institute of Kukkiwon, 32 Teheran7gil, Gangnam-gu, Seoul 06130, Korea;
| | - Hun-Young Park
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (S.-W.K.); (W.-S.J.)
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-2049-6035
| |
Collapse
|
24
|
The Use of Artificial Hypoxia in Endurance Training in Patients after Myocardial Infarction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041633. [PMID: 33572082 PMCID: PMC7915043 DOI: 10.3390/ijerph18041633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 12/12/2022]
Abstract
The presence of a well-developed collateral circulation in the area of the artery responsible for the infarction improves the prognosis of patients and leads to a smaller area of infarction. One of the factors influencing the formation of collateral circulation is hypoxia, which induces angiogenesis and arteriogenesis, which in turn cause the formation of new vessels. The aim of this study was to assess the effect of endurance training conducted under normobaric hypoxia in patients after myocardial infarction at the level of exercise tolerance and hemodynamic parameters of the left ventricle. Thirty-five patients aged 43–74 (60.48 ± 4.36) years who underwent angioplasty with stent implantation were examined. The program included 21 training units lasting about 90 min. A statistically significant improvement in exercise tolerance assessed with the cardiopulmonary exercise test (CPET) was observed: test duration (p < 0.001), distance covered (p < 0.001), HRmax (p = 0.039), maximal systolic blood pressure (SBPmax) (p = 0.044), peak minute ventilation (VE) (p = 0.004) and breathing frequency (BF) (p = 0.044). Favorable changes in left ventricular hemodynamic parameters were found for left ventricular end-diastolic dimension LVEDD (p = 0.002), left ventricular end-systolic dimension LVESD (p = 0.015), left ventricular ejection fraction (LVEF) (p = 0.021), lateral e’ (p < 0.001), septal e’ (p = 0.001), and E/A (p = 0.047). Endurance training conducted in hypoxic conditions has a positive effect on exercise tolerance and the hemodynamic indicators of the left ventricle.
Collapse
|
25
|
Chacaroun S, Borowik A, Vega-Escamilla Y Gonzalez I, Doutreleau S, Wuyam B, Belaidi E, Tamisier R, Pepin JL, Flore P, Verges S. Hypoxic Exercise Training to Improve Exercise Capacity in Obese Individuals. Med Sci Sports Exerc 2021; 52:1641-1649. [PMID: 32102058 DOI: 10.1249/mss.0000000000002322] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Combining exercise training with hypoxic exposure has been recently proposed as a new therapeutic strategy to improve health status of obese individuals. Whether hypoxic exercise training (HET) provides greater benefits regarding body composition and cardiometabolic parameters than normoxic exercise training (NET) remains, however, unclear. We hypothesized that HET would induce greater improvement in exercise capacity and health status than NET in overweight and obese individuals. METHODS Twenty-three subjects were randomized into 8-wk HET (11 men and 1 woman; age, 52 ± 12 yr; body mass index, 31.2 ± 2.4 kg·m) or NET (eight men and three women; age, 56 ± 11 yr; body mass index, 31.8 ± 3.2 kg·m) programs (three sessions per week; constant-load cycling at 75% of maximal heart rate; target arterial oxygen saturation for HET 80%, FiO2 ~0.13, i.e., ~3700 m a.s.l.). Before and after the training programs, the following evaluations were performed: incremental maximal and submaximal cycling tests, measurements of pulse-wave velocity, endothelial function, fasting glucose, insulin and lipid profile, blood NO metabolites and oxidative stress, and determination of body composition by magnetic resonance imaging. RESULTS Peak oxygen consumption and maximal power output increased significantly after HET only (peak oxygen consumption HET + 10% ± 11% vs NET + 1% ± 10% and maximal power output HET + 11% ± 7% vs NET + 3% ± 10%, P < 0.05). Submaximal exercise responses improved similarly after HET and NET. Except diastolic blood pressure which decreased significantly after both HET and NET, no change in vascular function, metabolic status and body composition was observed after training. Hypoxic exercise training only increased nitrite and reduced superoxide dismutase concentrations. CONCLUSIONS Combining exercise training and hypoxic exposure may provide some additional benefits to standard NET for obese individual health status.
Collapse
Affiliation(s)
- Samarmar Chacaroun
- Université Grenoble Alpes, Inserm, Grenoble Alpes University Hospital, Grenoble, FRANCE
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Resistance Training in Hypoxia as a New Therapeutic Modality for Sarcopenia-A Narrative Review. Life (Basel) 2021; 11:life11020106. [PMID: 33573198 PMCID: PMC7912455 DOI: 10.3390/life11020106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
Hypoxic training is believed to be generally useful for improving exercise performance in various athletes. Nowadays, exercise intervention in hypoxia is recognized as a new therapeutic modality for health promotion and disease prevention or treatment based on the lower mortality and prevalence of people living in high-altitude environments than those living in low-altitude environments. Recently, resistance training in hypoxia (RTH), a new therapeutic modality combining hypoxia and resistance exercise, has been attempted to improve muscle hypertrophy and muscle function. RTH is known to induce greater muscle size, lean mass, increased muscle strength and endurance, bodily function, and angiogenesis of skeletal muscles than traditional resistance exercise. Therefore, we examined previous studies to understand the clinical and physiological aspects of sarcopenia and RTH for muscular function and hypertrophy. However, few investigations have examined the combined effects of hypoxic stress and resistance exercise, and as such, it is difficult to make recommendations for implementing universal RTH programs for sarcopenia based on current understanding. It should also be acknowledged that a number of mechanisms proposed to facilitate the augmented response to RTH remain poorly understood, particularly the role of metabolic, hormonal, and intracellular signaling pathways. Further RTH intervention studies considering various exercise parameters (e.g., load, recovery time between sets, hypoxic dose, and intervention period) are strongly recommended to reinforce knowledge about the adaptational processes and the effects of this type of resistance training for sarcopenia in older people.
Collapse
|
27
|
De Groote E, Deldicque L. Is Physical Exercise in Hypoxia an Interesting Strategy to Prevent the Development of Type 2 Diabetes? A Narrative Review. Diabetes Metab Syndr Obes 2021; 14:3603-3616. [PMID: 34413663 PMCID: PMC8370110 DOI: 10.2147/dmso.s322249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/10/2021] [Indexed: 12/13/2022] Open
Abstract
Impaired metabolism is becoming one of the main causes of mortality and the identification of strategies to cure those diseases is a major public health concern. A number of therapies are being developed to treat type 2 diabetes mellitus (T2DM), but few of them focus on situations prior to diabetes. Obesity, aging and insulin resistance are all risk factors, which fortunately can be reversed to some extent. Non-drug interventions, such as exercise, are interesting strategies to prevent the onset of diabetes, but it remains to determine the optimal dose and conditions. In the search of optimizing the effects of physical exercise to prevent T2DM, hypoxic training has emerged as an interesting and original strategy. Several recent studies have chosen to look at the effects of hypoxic training in people at risk of developing T2DM. Therefore, the purpose of this narrative review is to give an overview of all original articles having tested the effects of a single exercise or exercise training in hypoxia on glucose metabolism and other health-related parameters in people at risk of developing T2DM. Taken together, the data on the effects of hypoxic training on glucose metabolism, insulin sensitivity and the health status of people at risk of T2DM are inconclusive. Some studies show that hypoxic training can improve glucose metabolism and the health status to a greater extent than normoxic training, while others do not corroborate the latter. When an additional benefit of hypoxic vs normoxic training is found, it still remains to determine which signaling pathways and molecular mechanisms are involved.
Collapse
Affiliation(s)
- Estelle De Groote
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Louise Deldicque
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Correspondence: Louise Deldicque Institute of Neuroscience, Université catholique de Louvain, Place Pierre de Coubertin, 1 Box L08.10.01, Louvain-la-Neuve, 1348, BelgiumTel +32 10 47 44 43 Email
| |
Collapse
|
28
|
Jung K, Kim J, Park HY, Jung WS, Lim K. Hypoxic Pilates Intervention for Obesity: A Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197186. [PMID: 33008106 PMCID: PMC7579144 DOI: 10.3390/ijerph17197186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
This study examined the effect of Pilates training under hypoxia, a novel treatment method, for obesity. Thirty-two Korean women with obesity (age: 34–60 (47.5 ± 7.5) years) were randomly assigned to control (CON; n = 10), normoxic Pilates training (NPTG; n = 10), and hypoxic Pilates training groups (HPTG; n = 12). The NPTG and HPTG performed 50 min of Pilates training using a tubing band for 12 weeks (3 days/week) in their respective environmental conditions (NPTG: normoxic condition, inspired oxygen fraction (FiO2) = 20.9%; HPTG: moderate hypoxic condition, FiO2 = 14.5%). The CON maintained their daily lifestyle without intervention. All subjects underwent body composition, blood pressure, arterial stiffness, vascular endothelial function, cardiometabolic biomarker, hemorheological function, and aerobic performance measurements before and after the intervention. The HPTG showed a significant improvement in diastolic blood pressure, total cholesterol and triglyceride concentrations, flow-mediated dilation, and erythrocyte deformability and aggregation (all p < 0.05) compared with the CON and NPTG. However, compared with the CON and NPTG, the HPTG did not show improvement in other parameters. Hypoxic Pilates intervention is a novel and successful method for promoting endothelial and hemorheological functions in women with obesity.
Collapse
Affiliation(s)
- Kyounghwa Jung
- Department of Physical Education, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea;
| | - Jisu Kim
- Physical Activity and Performance Institute (PAPI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (J.K.); (H.-Y.P.); (W.-S.J.)
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Hun-Young Park
- Physical Activity and Performance Institute (PAPI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (J.K.); (H.-Y.P.); (W.-S.J.)
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Won-Sang Jung
- Physical Activity and Performance Institute (PAPI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (J.K.); (H.-Y.P.); (W.-S.J.)
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Kiwon Lim
- Department of Physical Education, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea;
- Physical Activity and Performance Institute (PAPI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (J.K.); (H.-Y.P.); (W.-S.J.)
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2450-3949
| |
Collapse
|
29
|
Wang X, Lu Y, Zhu L, Zhang H, Feng L. Inhibition of miR-27b Regulates Lipid Metabolism in Skeletal Muscle of Obese Rats During Hypoxic Exercise by Increasing PPARγ Expression. Front Physiol 2020; 11:1090. [PMID: 32982800 PMCID: PMC7489097 DOI: 10.3389/fphys.2020.01090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Hypoxic exercise may represent a novel therapeutic strategy to reduce and prevent obesity through the regulation of lipid metabolism. During hypoxic exercise, the targeting of peroxisome proliferator-activated receptor gamma (PPARγ) by miR-27b has been proposed to be one of the mechanisms involved in the modulation of lipid metabolism. We have previously shown that miR-27b can repress PPARγ and lipid metabolism-associated factors, thereby affecting lipid metabolism during hypoxic exercise in a rat model of obesity. In the current study, we aimed to confirm the role of miR-27b in the regulation of lipid metabolism. First, miR-27b expression was either upregulated or downregulated through the injection of adeno-associated virus (AAV) 9 containing a miR-27b expression cassette or miR-27b-3p inhibitor, respectively, into the right gastrocnemius muscle of obese rats. The rats were then subjected to a 4-week program of hypoxic exercise, and a series of parameters related to lipid metabolism were systematically evaluated, including body composition, blood lipid levels, miR-27b RNA levels, and mRNA and protein levels of PPARγ and those of its downstream lipid metabolism-associated factors. No significant differences were found in body composition between rats expressing different levels of miR-27b. However, regarding blood lipids, miR-27b overexpression led to increased concentrations of triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and free fatty acids (FFAs), while inhibition of miR-27b decreased the total cholesterol (TC) level and increased that of high-density lipoprotein cholesterol (HDL-C). At the mRNA level, miR-27b overexpression downregulated the expression of Pparγ, but upregulated that of lipid metabolism-associated factors such as heart-type fatty acid-binding protein (H-FABP), fatty acid transport protein 1 (FATP1), adipose triglyceride lipase (ATGL), and lipoprotein lipase (LPL), whereas miR-27b inhibition elicited the opposite effect; however, inhibition of miR-27b led to elevated cholesterol 7 alpha-hydroxylase (CYP7A1) and fatty acid translocase 36 (CD36) levels. Similarly, at the protein level, miR-27b overexpression promoted a decrease in the concentration of PPARγ, whereas miR-27b inhibition led to an increase in PPARγ levels, as well as those of CYP7A1, CD36, ATGL, and LPL. Overall, our results indicated that hypoxic exercise regulates lipid metabolism via the miR-27b/PPARγ pathway and modulates ATGL and LPL expression through inducing their post-transcriptional modifications.
Collapse
Affiliation(s)
- Xuebing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,College of Physical Education, Guangxi University, Nanning, China
| | - Yingli Lu
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| | - Lei Zhu
- School of Sports Science, Qufu Normal University, Qufu, China
| | - Haibo Zhang
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| | - Lianshi Feng
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
30
|
Ndemba PBA, Ayina CNA, Guessogo WR, Ndongo JM, Kamnang ROG, Lele CEB, Mandengue SH, Etoundi-Ngoa LS, Temfemo A. Effect of a 12-week training program on the anthropometric and physiological profiles of some participants registered in a fitness center in Douala, Cameroon. J Exerc Rehabil 2020; 16:369-376. [PMID: 32913843 PMCID: PMC7463069 DOI: 10.12965/jer.2040340.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/16/2020] [Indexed: 12/03/2022] Open
Abstract
Fitness centers are remarkably abundant in Cameroon. The aim of this work was to assess the effects of a 12-week training program on the anthropometric and physiological profiles of some participants in a fitness center. A total of 86 participants (40 from the experimental group and 46 from the control group) with age ranging from 17 to 53 years were subjected to pre- and posttraining assessments of, anthropometric parameters, physiological parameters, and performance. Anthropometric parameters (weight, height, body mass index [BMI], waist circumference [WC]) and blood pressure (diastolic blood pressure, systolic blood pressure [SBP]) were measured according to standard protocols. Heart rate was recorded using a heart rate monitor. Cardiorespiratory fitness (maximal oxygen uptake or VO2peak) was estimated by the 20-multistage shuttle run test. All the data was collected twice within 12 weeks. Weight, BMI, and WC did not show any significant variation (P>0.05) after a 12-week training program. VO2peak increase was insignificant (P>0.05) higher in men (7.5%, P=0.06), compared to women (5.4%, P=0.4). We noticed a significant reduction (P=0.002) in the SBP of men. Significant increase of HR max was found in women. There was an improvement of 13.7% in the VO2peak of the participants who did not consume alcohol. These results demonstrate the slight benefits of a 12-week training program on health. The weight characteristics of the participants and lifestyle may play an important role in these interactions.
Collapse
Affiliation(s)
- Peguy Brice Assomo Ndemba
- Exercise and Sport Physiology Unit, Faculty of Sciences, University of Douala, Douala, Cameroon.,Department of Physiology, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde, Cameroon
| | | | | | - Jerson Mekoulou Ndongo
- Exercise and Sport Physiology Unit, Faculty of Sciences, University of Douala, Douala, Cameroon
| | | | - Claude Elysée Bika Lele
- Exercise and Sport Physiology Unit, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Samuel Honoré Mandengue
- Exercise and Sport Physiology Unit, Faculty of Sciences, University of Douala, Douala, Cameroon.,Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
| | - Laurent Serge Etoundi-Ngoa
- Department of Physiology, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Abdou Temfemo
- Exercise and Sport Physiology Unit, Faculty of Sciences, University of Douala, Douala, Cameroon.,Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
| |
Collapse
|
31
|
Effects of an Acute Pilates Program under Hypoxic Conditions on Vascular Endothelial Function in Pilates Participants: A Randomized Crossover Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072584. [PMID: 32283854 PMCID: PMC7178013 DOI: 10.3390/ijerph17072584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022]
Abstract
This study aimed to compare the effects of an acute Pilates program under hypoxic vs. normoxic conditions on the metabolic, cardiac, and vascular functions of the participants. Ten healthy female Pilates experts completed a 50-min tubing Pilates program under normoxic conditions (N trial) and under 3000 m (inspired oxygen fraction = 14.5%) hypobaric hypoxia conditions (H trial) after a 30-min exposure in the respective environments on different days. Blood pressure, branchial ankle pulse wave velocity, and flow-mediated dilation (FMD) in the branchial artery were measured before and after the exercise. Metabolic parameters and cardiac function were assessed every minute during the exercise. Both trials showed a significant increase in FMD; however, the increase in FMD was significantly higher after the H trial than that after the N trial. Furthermore, FMD before exercise was significantly higher in the H trial than in the N trial. In terms of metabolic parameters, minute ventilation, carbon dioxide excretion, respiratory exchange ratio, and carbohydrate oxidation were significantly higher but fat oxidation was lower during the H trial than during the N trial. In terms of cardiac function, heart rate was significantly increased during the H trial than during the N trial. Our results suggested that, compared to that under normoxic conditions, Pilates exercise under hypoxic conditions led to greater metabolic and cardiac responses and also elicited an additive effect on vascular endothelial function.
Collapse
|
32
|
Jung WS, Kim SW, Park HY. Interval Hypoxic Training Enhances Athletic Performance and Does Not Adversely Affect Immune Function in Middle- and Long-Distance Runners. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17061934. [PMID: 32188027 PMCID: PMC7143158 DOI: 10.3390/ijerph17061934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023]
Abstract
This study evaluated the effects of intermittent interval training in hypoxic conditions for six weeks compared with normoxic conditions, on hemodynamic function, autonomic nervous system (ANS) function, immune function, and athletic performance in middle- and long-distance runners. Twenty athletes were divided into normoxic training (normoxic training group (NTG); n = 10; residing and training at sea level) and hypoxic training (hypoxic training group (HTG); n = 10; residing at sea level but training in 526-mmHg hypobaric hypoxia) groups. All dependent variables were measured before, and after, training. The training frequency was 90 min, 3 d per week for six weeks. Body composition showed no significant difference between the two groups. However, the HTG showed more significantly improved athletic performance (e.g., maximal oxygen uptake). The hemodynamic function (e.g., oxygen uptake, oxygen pulse, and cardiac output) during submaximal exercise and ANS function (e.g., standard deviation and root mean square of successive differences, high frequency, and low/high frequency) improved more in the HTG. Immune function parameters were stable within the normal range before and after training in both groups. Therefore, hypoxic training was more effective in enhancing athletic performance, and improving hemodynamic and ANS function; further, it did not adversely affect immune function in competitive runners.
Collapse
Affiliation(s)
- Won-Sang Jung
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (W.-S.J.); (S.-W.K.)
| | - Sung-Woo Kim
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (W.-S.J.); (S.-W.K.)
| | - Hun-Young Park
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (W.-S.J.); (S.-W.K.)
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
- Correspondence: ; Tel.: +(82)-2-2049-6035
| |
Collapse
|
33
|
Park HY, Kim S, Kim Y, Park S, Nam SS. Effects of exercise training at lactate threshold and detraining for 12 weeks on body composition, aerobic performance, and stress related variables in obese women. J Exerc Nutrition Biochem 2019; 23:22-28. [PMID: 31743978 PMCID: PMC6823647 DOI: 10.20463/jenb.2019.0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 11/22/2022] Open
|