1
|
Jeznach A, Sidor-Dzitkowska K, Bandyszewska M, Grzanka M, Popławski P, Marszalik A, Domagała-Kulawik J, Stachowiak R, Hoser G, Skirecki T. Sepsis-induced inflammasome impairment facilitates development of secondary A. baumannii pneumonia. Emerg Microbes Infect 2025; 14:2492206. [PMID: 40202049 PMCID: PMC12016274 DOI: 10.1080/22221751.2025.2492206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/07/2025] [Accepted: 04/07/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Acinetobacter baumannii has become one of the most critical pathogens causing nosocomial pneumonia. Existing animal models of A. baumannii pneumonia are not relevant to the majority of critical care patients. We aimed to develop a novel model of secondary A. baumannii pneumonia in post-sepsis mice. METHODS A two-hit model of sepsis induced by cecal ligation and puncture followed by A. baumannii pneumonia on day 5 was established. In addition, the two-hit model was established in humanized mice. A period of 2 h of mechanical ventilation followed by observation was used in additional experiments. Lung histopathology, bacterial cultures, and cellular infiltration were analysed as well as markers of the inflammasome activity in vivo and ex vivo. RESULTS A. baumannii infection caused mortality and loss of body weight and temperature in post-sepsis mice. Increased lung bacterial burden and dissemination together with signs of enhanced inflammatory injury were observed in post-sepsis mice but not control mice that were challenged with A. baumannii. Post-sepsis mice were unable to mount inflammasome activation in response to secondary pneumonia to the level of control mice. Transfer of wild-type but not capsase-1 KO alveolar macrophages was able to restore the pulmonary protection against A. baumannii. Mechanical ventilation exacerbated the pathological response to pneumonia in post-sepsis mice but enhanced inflammasome signalling in non-sepsis mice with pneumonia. CONCLUSIONS We established a novel model of A. baumannii pneumonia that revealed sepsis-induced impairment of inflammasome activation in alveolar macrophages is critical for the control of secondary A. baumannii pneumonia.
Collapse
Affiliation(s)
- Aldona Jeznach
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Karolina Sidor-Dzitkowska
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Magdalena Bandyszewska
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Małgorzata Grzanka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Piotr Popławski
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Anna Marszalik
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Radosław Stachowiak
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Grażyna Hoser
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
2
|
Wu Y, Huang S, Zhang K, Shen Y, Zhang S, Xia H, Pu J, Shen C, Chen C, Zeng J. Transcriptomic profiling reveals RetS-mediated regulation of type VI secretion system and host cell responses in Pseudomonas aeruginosa infections. Front Cell Infect Microbiol 2025; 15:1582339. [PMID: 40557319 PMCID: PMC12185982 DOI: 10.3389/fcimb.2025.1582339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 05/21/2025] [Indexed: 06/28/2025] Open
Abstract
Pseudomonas aeruginosa is a major opportunistic pathogen that causes chronic infections, particularly in patients with cystic fibrosis and chronic obstructive pulmonary disease (COPD). The type VI secretion system (T6SS) is a primary virulence factor of P. aeruginosa in chronic infections. The objective of this study was to elucidate the regulatory mechanisms and pathogenic effects of the T6SS during P. aeruginosa infection, utilizing transcriptome sequencing and functional assays. We found that T6SS expression is elevated in P. aeruginosa isolated from chronically infected patients. Deletion of the retS gene activates P. aeruginosa PAO1 T6SS while repressing T3SS in vitro. Bacterial and cellular transcriptome sequencing analyses showed that T6SS genes were upregulated, while T3SS genes were downregulated in the ΔretS mutant. Additionally, the expression levels of the fimbriae gene cupC, the histidine phosphotransfer protein hptC (PA0033), and the transcription factor PA0034 were significantly increased. Subsequent experiments revealed that adhesion mediated by cupC enhances the contact-killing activity of the T6SS. Deletion of the hptC-PA0034 operon results in the down-regulation of cupC expression. The ΔretSΔcupC and ΔretSΔhptC-PA0034 mutants exhibited reduced cytotoxicity compared to the ΔretS mutant, similar to the ΔretSΔclpV1ΔclpV2 mutant. The ΔretS infection increased cell death, inflammatory factors (IL-1β, IL-6, TNF-α), and reactive oxygen species compared to a T6SS-inactive strain. Importantly, our study demonstrates that the T6SS activates the PDE4C pathway in epithelial cells, leading to significant cellular alterations. The application of PDE inhibitors effectively mitigates cell damage and inflammatory responses. These findings highlight the critical role of T6SS in modulating host cell signaling and suggest potential therapeutic strategies for conditions associated with T6SS-mediated inflammation.
Collapse
Affiliation(s)
- Yinglin Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine (TCM), The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shan Huang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine (TCM), The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai Zhang
- School of Laboratory Medicine, Guangzhou Health Science College,
Guangzhou, China
| | - Yangcheng Shen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine (TCM), The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shebin Zhang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine (TCM), The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haining Xia
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine (TCM), The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jieying Pu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine (TCM), The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cong Shen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine (TCM), The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cha Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine (TCM), The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianming Zeng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine (TCM), The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Lv X, Yang J, Wang L, Tong L, Ding F. The association between the practice of oral care and the incidence of hospital-acquired pneumonia in intensive care medicine. Infect Control Hosp Epidemiol 2025:1-6. [PMID: 40394877 DOI: 10.1017/ice.2025.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
BACKGROUND Hospital-acquired pneumonia (HAP) represents one of the most common nosocomial infections in intensive care units (ICUs), accounting for 25% of all hospital-acquired infections. While oral care is recommended as a preventive measure, the relationship between standardized oral care practices and HAP incidence remains incompletely characterized. OBJECTIVE To evaluate the association between oral care practice compliance and HAP incidence in ICU patients, and to identify specific aspects of oral care delivery that influence outcomes. METHODS We conducted a prospective mixed-methods observational cohort study from May 2021 across seven ICUs in a tertiary hospital in China. The study utilized a two-phase approach: (1) systematic assessment of oral care implementation through structured observation of nursing staff (n = 58), and (2) prospective evaluation of HAP outcomes in patients (n = 142). Primary outcomes included oral care compliance metrics and HAP incidence. HAP was defined according to standardized clinical criteria and confirmed by two independent physicians. RESULTS Among 142 unique patients, 63 (44.37%) received oral care orders. The oral care completion rate was 61.93%, and the qualification rate was 54.13%. In our analysis, HAP (including both ventilator-associated pneumonia [VAP] and non-ventilator hospital-acquired pneumonia [NVHAP]) occurred in 15/63 (23.81%) patients receiving oral care and 22/79 (27.85%) patients without oral care. Multivariate analysis revealed that incomplete oral care (adjusted OR 2.47, [95% CI, 1.15-4.45], P = 0.009), non-qualified care techniques (adjusted OR 3.17, [95% CI, 1.45-6.35], P = 0.002), and inadequate item qualification (adjusted OR 3.33, [95% CI, 1.47-6.55], P = 0.001) were independently associated with increased HAP risk, after adjusting for confounders. Stratified analysis showed similar associations in both VAP and NVHAP subgroups. CONCLUSION Our investigation demonstrated that suboptimal oral care practices were associated with increased HAP risk in ICU patients. Implementation of evidence-based standardized protocols and improved adherence strategies may help reduce HAP incidence.
Collapse
Affiliation(s)
- Xiaoqiang Lv
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Yang
- Department of General Practice, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Tong
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fu Ding
- Department of Nursing, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Ye F, Li L, Wang J, Yang H. Advances in gut-lung axis research: clinical perspectives on pneumonia prevention and treatment. Front Immunol 2025; 16:1576141. [PMID: 40330490 PMCID: PMC12052896 DOI: 10.3389/fimmu.2025.1576141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
In recent years, the study of the interaction between gut microbiota and distant organs such as the heart, lungs, brain, and liver has become a hot topic in the field of gut microbiology. With a deeper understanding of its immune regulation and mechanisms of action, these findings have increasingly highlighted their guiding value in clinical practice. The gut is not only the largest digestive organ in the human body but also the habitat for most microorganisms. Imbalances in gut microbial communities have been associated with various lung diseases, such as allergic asthma and cystic fibrosis. Furthermore, gut microbial communities have significant impacts on metabolic function and immune responses. Their metabolites not only regulate gastrointestinal immune systems but may also affect distant organs such as the lungs and brain. As one of the most common types of respiratory system diseases worldwide, pulmonary infections have high morbidity and mortality rates. Pulmonary infections caused by immune dysfunction can lead to gastrointestinal problems like diarrhea, further resulting in imbalances within complex interactions that are associated with abnormal manifestations under disequilibrium conditions. Meanwhile, clinical interventions can significantly modulate the composition of gut microbiota, and alteration in gut microbiota may subsequently indicate susceptibility to pulmonary infections and even contribute to the prevention or regulation of their progression. This review delves into the interaction between gut microbiota and pulmonary infections, elucidating the latest advancements in gut-lung axis research and providing a fresh perspective for the treatment and prevention of pneumonia.
Collapse
Affiliation(s)
| | | | | | - Hongfeng Yang
- Department of Critical Care Medicine, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
5
|
Rademacher J, Ewig S, Grabein B, Nachtigall I, Abele-Horn M, Deja M, Gaßner M, Gatermann S, Geffers C, Gerlach H, Hagel S, Heußel CP, Kluge S, Kolditz M, Kramme E, Kühl H, Panning M, Rath PM, Rohde G, Schaaf B, Salzer HJF, Schreiter D, Schweisfurth H, Unverzagt S, Weigand MA, Welte T, Pletz MW. [Epidemiology, diagnosis and treatment of adult patients with nosocomial pneumonia]. Pneumologie 2025. [PMID: 40169124 DOI: 10.1055/a-2541-9872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
BACKGROUND Nosocomial pneumonia, encompassing hospital-acquired (HAP) and ventilator-associated pneumonia (VAP), remains a major cause of morbidity and mortality in hospitalized adults. In response to evolving pathogen profiles and emerging resistance patterns, this updated S3 guideline (AWMF Register No. 020-013) provides an evidence-based framework to enhance the diagnosis, risk stratification, and treatment of nosocomial pneumonia. METHODS The guideline update was developed by a multidisciplinary panel representing key German professional societies. A systematic literature review was conducted with subsequent critical appraisal using the GRADE methodology. Structured consensus conferences and external reviews ensured that the recommendations were clinically relevant, methodologically sound, and aligned with current antimicrobial stewardship principles. RESULTS For the management of nosocomial pneumonia patients should be divided in those with and without risk factors for multidrug-resistant pathogens and/or Pseudomonas aeruginosa. Bacterial multiplex-polymerase chain reaction (PCR) should not be used routinely. Bronchoscopic diagnosis is not considered superior to non-bronchoscopic sampling in terms of main outcomes. Combination antibiotic therapy is now reserved for patients in septic shock and high risk for multidrug-resistant pathogens, while select patients may be managed with monotherapy (e. g., meropenem). In clinically stabilized patients, antibiotic therapy should be de-escalated and focused, as well as duration shortened to 7-8 days. In critically ill patients, prolonged application of suitable beta-lactam antibiotics should be preferred. Patients on the intensive care unit (ICU) are at risk for invasive pulmonary aspergillosis (IPA). Diagnostics for Aspergillus should be performed with an antigen test from bronchial lavage fluid. CONCLUSION This updated S3 guideline offers a comprehensive, multidisciplinary approach to the management of nosocomial pneumonia in adults. By integrating novel diagnostic modalities and refined therapeutic strategies, it aims to standardize care, improve patient outcomes, and enhance antimicrobial stewardship to curb the emergence of resistant pathogens.
Collapse
Affiliation(s)
- Jessica Rademacher
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Santiago Ewig
- Thoraxzentrum Ruhrgebiet, Department of Respiratory and Infectious Diseases, EVK Herne and Augusta-Kranken-Anstalt Bochum, Bochum, Germany
| | - Béatrice Grabein
- LMU Hospital, Clinical Microbiology and Hospital Hygiene, Munich, Germany
| | - Irit Nachtigall
- Division of Infectious Diseases and Infection Prevention, Helios Hospital Emil-Von-Behring, Berlin, Germany
| | - Marianne Abele-Horn
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Maria Deja
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Berlin, Lübeck, Germany
| | - Martina Gaßner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anaesthesiology and Intensive Care Medicine, Berlin, Germany
| | - Sören Gatermann
- National Reference Centre for multidrug-resistant Gram-negative bacteria, Department of Medical Microbiology, Ruhr-University Bochum, Bochum, Germany
| | - Christine Geffers
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Hygiene and Environmental Medicine, Berlin, Germany
| | - Herwig Gerlach
- Department for Anaesthesia, Intensive Care Medicine and Pain Management, Vivantes-Klinikum Neukoelln, Berlin, Germany
| | - Stefan Hagel
- Jena University Hospital-Friedrich Schiller University Jena, Institute for Infectious Diseases and Infection Control, Jena, Germany
| | - Claus Peter Heußel
- Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Kluge
- Department of Intensive Care, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Kolditz
- Medical Department 1, Division of Pulmonology, University Hospital of TU Dresden, Dresden, Germany
| | - Evelyn Kramme
- Department of Infectious Diseases and Microbiology, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Hilmar Kühl
- Department of Radiology, St. Bernhard-Hospital Kamp-Lintfort, Kamp-Lintfort, Germany
| | - Marcus Panning
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter-Michael Rath
- Institute for Medical Microbiology, University Medicine Essen, Essen, Germany
| | - Gernot Rohde
- Department of Respiratory Medicine, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Bernhard Schaaf
- Department of Respiratory Medicine and Infectious Diseases, Klinikum Dortmund, Dortmund, Germany
| | - Helmut J F Salzer
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine-Pneumology, Kepler University Hospital, Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Dierk Schreiter
- Helios Park Clinic, Department of Intensive Care Medicine, Leipzig, Germany
| | | | - Susanne Unverzagt
- Institute of General Practice and Family Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Markus A Weigand
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Germany
| | - Tobias Welte
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Mathias W Pletz
- Jena University Hospital-Friedrich Schiller University Jena, Institute for Infectious Diseases and Infection Control, Jena, Germany
| |
Collapse
|
6
|
Recanatini C, van Werkhoven CH, van der Schalk TE, Paling F, Hazard D, Timbermont L, Torrens G, DiGiandomenico A, Esser MT, Wolkewitz M, Sifakis F, Goossens H, Bonten M, Oliver A, Malhotra-Kumar S, Kluytmans J. Impact of Pseudomonas aeruginosa carriage on intensive care unit-acquired pneumonia: a European multicentre prospective cohort study. Clin Microbiol Infect 2025; 31:433-440. [PMID: 39532190 DOI: 10.1016/j.cmi.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Pseudomonas aeruginosa (PA) is a common causative pathogen of pneumonia acquired in the intensive care unit (ICU). The aim of this study was to determine the incidence of PA ICU pneumonia (PAIP) and to quantify its independent association with PA colonization at different body sites. METHODS Adult patients on mechanical ventilation at ICU admission were prospectively enrolled across 30 European ICUs. PA colonization in the perianal area and in the lower respiratory tract was assessed within 72 hours after ICU admission and twice weekly until ICU discharge. PAIP development was evaluated daily. Competing risk models with colonization as a time-varying exposure and ICU death and discharge as competing events were fitted and adjusted for confounders to investigate the association between PA carriage and PAIP. RESULTS A total of 1971 subjects were enrolled. The colonization prevalence with PA in the first 72 hours of ICU admission was 10.4% (179 perianal and 51 respiratory), whereas the acquisition incidence during the ICU stay was 7.0% (158 perianal and 47 respiratory). Of the 43 (1.8%) patients who developed PAIP, 11 (25.6%) were PA colonized on admission and 9 (20.9%) acquired colonization before PAIP onset. Both perianal (adjusted subdistribution hazard ratio, 4.4; 95% CI, 1.7-11.6) and respiratory colonization (adjusted subdistribution hazard ratio: 4.6, 95% CI, 1.9-11.1) were independently associated with PAIP development. DISCUSSION PAIP incidence was higher in PA colonized vs. non-colonized patients. Colonization of both the rectum and of the respiratory tract was associated with development of PAIP. The increased risk of PA colonization for subsequent infection provides an opportunity for targeted preventive interventions.
Collapse
Affiliation(s)
- C Recanatini
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - C H van Werkhoven
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - T E van der Schalk
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - F Paling
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - D Hazard
- Institute for Medical Biometry and Statistics, University Medical Centre Freiburg, Freiburg, Germany
| | - L Timbermont
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - G Torrens
- Servicio de Microbiología, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Centro de Investigación Biomédica en Red - Enfermedades Infecciosas (CIBERINFEC), Palma de Mallorca, Spain
| | - A DiGiandomenico
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - M T Esser
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - M Wolkewitz
- Institute for Medical Biometry and Statistics, University Medical Centre Freiburg, Freiburg, Germany
| | - F Sifakis
- AstraZeneca PLC, Department of US Medical Affairs, Gaithersburg, MD, USA; Department of Real-World Evidence, Gilead Sciences, Foster City, CA, USA
| | - H Goossens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - M Bonten
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; European Clinical Research Alliance on Infectious Diseases, Utrecht, the Netherlands
| | - A Oliver
- Servicio de Microbiología, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Centro de Investigación Biomédica en Red - Enfermedades Infecciosas (CIBERINFEC), Palma de Mallorca, Spain
| | - S Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - J Kluytmans
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
7
|
Azam AR, Haidri FR, Nadeem A, Imran S, Arain N, Fahim M. Comparing mini bronchoalveolar lavage and endotracheal aspirate in diagnosing bacterial pneumonia in the intensive care unit. IJID REGIONS 2025; 14:100518. [PMID: 39886040 PMCID: PMC11780946 DOI: 10.1016/j.ijregi.2024.100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 02/01/2025]
Abstract
Objectives Pneumonia is a major cause of morbidity and mortality among patients in the intensive care unit (ICU). Timely and accurate diagnosis is crucial for effective treatment, but lower respiratory tract sampling techniques vary in sensitivity and specificity. This study aims to compare the diagnostic accuracy of endotracheal aspirate (ETA) with mini bronchoalveolar lavage (mBAL) in detecting bacterial pneumonia in intubated patients, assessing sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of ETA against mBAL, the gold standard. Methods A cross-sectional comparative study was conducted at the ICU of Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan, over 7 months. Adult patients on mechanical ventilation with suspected or confirmed pneumonia were included. Both mBAL and ETA samples were collected under strict aseptic conditions. Results Out of 120 patients, 112 paired samples were analyzed. ETA exhibited a sensitivity of 81.1%, specificity of 92.1%, PPV of 95.2%, and NPV of 71.4%, with an overall accuracy of 84.8%. The most commonly isolated pathogens were Acinetobacter and Klebsiella. No serious adverse events occurred. Conclusion ETA is a cost-effective and reliable alternative to mBAL for diagnosing bacterial pneumonia in intubated ICU patients, but clinicians should carefully interpret negative results.
Collapse
Affiliation(s)
- Abdul Rehman Azam
- Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | - Fakhir Raza Haidri
- Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | - Ali Nadeem
- Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | - Sumera Imran
- Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | - Nazia Arain
- Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | - Maheen Fahim
- Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| |
Collapse
|
8
|
Santamarina-Fernández R, Fuentes-Valverde V, Silva-Rodríguez A, García P, Moscoso M, Bou G. Pseudomonas aeruginosa Vaccine Development: Lessons, Challenges, and Future Innovations. Int J Mol Sci 2025; 26:2012. [PMID: 40076637 PMCID: PMC11900337 DOI: 10.3390/ijms26052012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen with a multidrug-resistant profile that has become a critical threat to global public health. It is one of the main causes of severe nosocomial infections, including ventilator-associated pneumonia, chronic infections in patients with cystic fibrosis, and bloodstream infections in immunosuppressed individuals. Development of vaccines against P. aeruginosa is a major challenge owing to the high capacity of this bacterium to form biofilms, its wide arsenal of virulence factors (including secretion systems, lipopolysaccharides, and outer membrane proteins), and its ability to evade the host immune system. This review provides a comprehensive historical overview of vaccine development efforts targeting this pathogen, ranging from early attempts in the 1970s to recent advancements, including vaccines based on novel proteins and emerging technologies such as nanoparticles and synthetic conjugates. Despite numerous promising preclinical developments, very few candidates have progressed to clinical trials, and none have achieved final approval. This panorama highlights the significant scientific efforts undertaken and the inherent complexity of successfully developing an effective vaccine against P. aeruginosa.
Collapse
Affiliation(s)
- Rebeca Santamarina-Fernández
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
| | - Víctor Fuentes-Valverde
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Área de Medicamentos Biológicos, Agencia Española de Medicamentos y Productos Sanitarios (AEMPS), 28022 Madrid, Spain
| | - Alis Silva-Rodríguez
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
| | - Patricia García
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miriam Moscoso
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Germán Bou
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Universidad de A Coruña, 15006 A Coruña, Spain
| |
Collapse
|
9
|
Codru IR, Vintilă BI, Bereanu AS, Sava M, Popa LM, Birlutiu V. Antimicrobial Resistance Patterns and Biofilm Analysis via Sonication in Intensive Care Unit Patients at a County Emergency Hospital in Romania. Pharmaceuticals (Basel) 2025; 18:161. [PMID: 40005975 PMCID: PMC11858300 DOI: 10.3390/ph18020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/06/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Ventilator-associated pneumonia (VAP) remains a critical challenge in ICU settings, often driven by the biofilm-mediated bacterial colonization of endotracheal tubes (ETTs). This study investigates antimicrobial resistance patterns and biofilm dynamics in ICU patients, focusing on microbial colonization and resistance trends in tracheal aspirates and endotracheal tube biofilms at a county emergency hospital in Romania. Methods: We conducted a longitudinal analysis of ICU patients requiring mechanical ventilation for more than 48 h. Tracheal aspirates and ETT biofilms were collected at three key time points: T1 (baseline), T2 (48 h post-intubation with ETT replacement), and T3 (92-100 h post-T2); these were analyzed using sonication and microbiological techniques to assess microbial colonization and antimicrobial resistance patterns. Results: In a total of 30 patients, bacteria from the ESKAPEE group (e.g., Klebsiella pneumoniae, Acinetobacter baumannii, Staphylococcus aureus) dominated the microbiota, increasing their prevalence over time. Resistance to carbapenems, colistin, and vancomycin was notably observed, particularly among K. pneumoniae and A. baumannii. Biofilm analysis revealed high persistence rates and the emergence of multidrug-resistant strains, underscoring the role of ETTs as reservoirs for resistant pathogens. The replacement of ETTs at T2 correlated with a shift in microbial composition and reduced biofilm-associated contamination. Conclusions: This study highlights the temporal evolution of antimicrobial resistance and biofilm-associated colonization in a limited number of ICU patients (30 patients). The findings support implementing routine ETT management strategies, including scheduled replacements and advanced biofilm-disruption techniques, to mitigate VAP risk and improve patient outcomes.
Collapse
Affiliation(s)
- Ioana Roxana Codru
- Faculty of Medicine, Lucian Blaga University, 2A, Lucian Blaga Str., 550169 Sibiu, Romania; (I.R.C.); (A.S.B.); (M.S.); (L.M.P.); (V.B.)
- County Clinical Emergency Hospital, 2–4, Corneliu Coposu Bld., 550245 Sibiu, Romania
| | - Bogdan Ioan Vintilă
- Faculty of Medicine, Lucian Blaga University, 2A, Lucian Blaga Str., 550169 Sibiu, Romania; (I.R.C.); (A.S.B.); (M.S.); (L.M.P.); (V.B.)
- County Clinical Emergency Hospital, 2–4, Corneliu Coposu Bld., 550245 Sibiu, Romania
| | - Alina Simona Bereanu
- Faculty of Medicine, Lucian Blaga University, 2A, Lucian Blaga Str., 550169 Sibiu, Romania; (I.R.C.); (A.S.B.); (M.S.); (L.M.P.); (V.B.)
- County Clinical Emergency Hospital, 2–4, Corneliu Coposu Bld., 550245 Sibiu, Romania
| | - Mihai Sava
- Faculty of Medicine, Lucian Blaga University, 2A, Lucian Blaga Str., 550169 Sibiu, Romania; (I.R.C.); (A.S.B.); (M.S.); (L.M.P.); (V.B.)
- County Clinical Emergency Hospital, 2–4, Corneliu Coposu Bld., 550245 Sibiu, Romania
| | - Livia Mirela Popa
- Faculty of Medicine, Lucian Blaga University, 2A, Lucian Blaga Str., 550169 Sibiu, Romania; (I.R.C.); (A.S.B.); (M.S.); (L.M.P.); (V.B.)
- County Clinical Emergency Hospital, 2–4, Corneliu Coposu Bld., 550245 Sibiu, Romania
| | - Victoria Birlutiu
- Faculty of Medicine, Lucian Blaga University, 2A, Lucian Blaga Str., 550169 Sibiu, Romania; (I.R.C.); (A.S.B.); (M.S.); (L.M.P.); (V.B.)
- County Clinical Emergency Hospital, 2–4, Corneliu Coposu Bld., 550245 Sibiu, Romania
| |
Collapse
|
10
|
Bustos IG, Martinez-Lemus LF, Reyes LF, Martin-Loeches I. Transforming Microbiological Diagnostics in Nosocomial Lower Respiratory Tract Infections: Innovations Shaping the Future. Diagnostics (Basel) 2025; 15:265. [PMID: 39941194 PMCID: PMC11817361 DOI: 10.3390/diagnostics15030265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction: Nosocomial lower respiratory tract infections (nLRTIs), including hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP), remain significant challenges due to high mortality, morbidity, and healthcare costs. Implementing accurate and timely diagnostic strategies is pivotal for guiding optimized antimicrobial therapy and addressing the growing threat of antimicrobial resistance. Areas Covered: This review examines emerging microbiological diagnostic methods for nLRTIs. Although widely utilized, traditional culture-based techniques are hindered by prolonged processing times, limiting their clinical utility in timely decision-making. Advanced molecular tools, such as real-time PCR and multiplex PCR, allow rapid pathogen identification but are constrained by predefined panels. Metagenomic next-generation sequencing (mNGS) provides comprehensive pathogen detection and resistance profiling yet faces cost, complexity, and interpretation challenges. Non-invasive methods, including exhaled breath analysis using electronic nose (e-nose) technology, gene expression profiling, and biomarker detection, hold promise for rapid and bedside diagnostics but require further validation to establish clinical applicability. Expert Opinion: Integrating molecular, metagenomic, biomarker-associated, and traditional diagnostics is essential for overcoming limitations. Continued technological refinements and cost reductions will enable broader clinical implementation. These innovations promise to enhance diagnostic accuracy, facilitate targeted therapy, and improve patient outcomes while contributing to global efforts to mitigate antimicrobial resistance.
Collapse
Affiliation(s)
- Ingrid G. Bustos
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chia 250001, Colombia; (I.G.B.); (L.F.R.)
| | | | - Luis Felipe Reyes
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chia 250001, Colombia; (I.G.B.); (L.F.R.)
- Clinica Universidad de La Sabana, Chia 250001, Colombia;
- Pandemic Sciences Institute, University of Oxford, Oxford OX1 2JD, UK
| | - Ignacio Martin-Loeches
- Multidisciplinary Intensive Care Research Organization (MICRO), St James’s Hospital, D08 NHY Dublin, Ireland
| |
Collapse
|
11
|
Kany AM, Fries F, Seyfert CE, Porten C, Deckarm S, Chacón Ortiz M, Dubarry N, Vaddi S, Große M, Bernecker S, Sandargo B, Müller AV, Bacqué E, Stadler M, Herrmann J, Müller R. In Vivo Activity Profiling of Biosynthetic Darobactin D22 against Critical Gram-Negative Pathogens. ACS Infect Dis 2024; 10:4337-4346. [PMID: 39565008 DOI: 10.1021/acsinfecdis.4c00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
In recent years, naturally occurring darobactins have emerged as a promising compound class to combat infections caused by critical Gram-negative pathogens. In this study, we describe the in vivo evaluation of derivative D22, a non-natural biosynthetic darobactin analogue with significantly improved antibacterial activity. We found D22 to be active in vivo against key critical Gram-negative human pathogens, as demonstrated in murine models of Pseudomonas aeruginosa thigh infection, Escherichia coli peritonitis/sepsis, and urinary tract infection (UTI). Furthermore, we observed the restored survival of Acinetobacter baumannii-infected embryos in a zebrafish infection model. These in vivo proof-of-concept (PoC) in diverse models of infection against highly relevant pathogens, including drug-resistant isolates, highlight the versatility of darobactins in the treatment of bacterial infections and show superiority of D22 over the natural darobactin A. Together with a favorable safety profile, these findings pave the way for further optimization of the darobactin scaffold toward the development of a novel antibiotic.
Collapse
Affiliation(s)
- Andreas M Kany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | - Franziska Fries
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) e.V., Braunschweig 38124, Germany
| | - Carsten E Seyfert
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | - Christoph Porten
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) e.V., Braunschweig 38124, Germany
| | - Selina Deckarm
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) e.V., Braunschweig 38124, Germany
| | - María Chacón Ortiz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | | | | | - Miriam Große
- Helmholtz Centre for Infection Research (HZI), Department Microbial Drugs, Braunschweig 38124, Germany
| | - Steffen Bernecker
- Helmholtz Centre for Infection Research (HZI), Department Microbial Drugs, Braunschweig 38124, Germany
| | - Birthe Sandargo
- Helmholtz Centre for Infection Research (HZI), Department Microbial Drugs, Braunschweig 38124, Germany
| | - Alison V Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) e.V., Braunschweig 38124, Germany
| | | | - Marc Stadler
- Helmholtz Centre for Infection Research (HZI), Department Microbial Drugs, Braunschweig 38124, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) e.V., Braunschweig 38124, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) e.V., Braunschweig 38124, Germany
- Helmholtz International Lab for Anti-infectives, Saarbrücken 66123, Germany
| |
Collapse
|
12
|
Oke MT, Martz K, Mocăniță M, Knezevic S, D'Costa VM. Analysis of Acinetobacter P-type type IV secretion system-encoding plasmid diversity uncovers extensive secretion system conservation and diverse antibiotic resistance determinants. Antimicrob Agents Chemother 2024; 68:e0103824. [PMID: 39494882 PMCID: PMC11619351 DOI: 10.1128/aac.01038-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Acinetobacter baumannii is globally recognized as a multi-drug-resistant pathogen of critical concern due to its capacity for horizontal gene transfer and resistance to antibiotics. Phylogenetically diverse Acinetobacter species mediate human infection, including many considered as important emerging pathogens. While globally recognized as a pathogen of concern, pathogenesis mechanisms are poorly understood. P-type type IV secretion systems (T4SSs) represent important drivers of pathogen evolution, responsible for horizontal gene transfer and secretion of proteins that mediate host-pathogen interactions, contributing to pathogen survival, antibiotic resistance, virulence, and biofilm formation. Genes encoding a P-type T4SS were previously identified on plasmids harboring the carbapenemase gene blaNDM-1 in several clinically problematic Acinetobacter; however, their prevalence among the genus, geographical distribution, the conservation of T4SS proteins, and full capacity for resistance genes remain unclear. Using systematic analyses, we show that these plasmids belong to a group of 53 P-type T4SS-encoding plasmids in 20 established Acinetobacter species, the majority of clinical relevance, including diverse A. baumannii sequence types and one strain of Providencia rettgeri. The strains were globally distributed in 14 countries spanning five continents, and the conjugative operon's T4SS proteins were highly conserved in most plasmids. A high proportion of plasmids harbored resistance genes, with 17 different genes spanning seven drug classes. Collectively, this demonstrates that P-type T4SS-encoding plasmids are more widespread among the Acinetobacter genus than previously anticipated, including strains of both clinical and environmental importance. This research provides insight into the spread of resistance genes among Acinetobacter and highlights a group of plasmids of importance for future surveillance.
Collapse
Affiliation(s)
- Mosopefoluwa T. Oke
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Kailey Martz
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Mădălina Mocăniță
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Sara Knezevic
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Vanessa M. D'Costa
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Oliveira VDC, Soler-Comas A, Rocha AC, Silva-Lovato CH, Watanabe E, Torres A, Fernández-Barat L. The synergistic effect between phages and Ceftolozane/Tazobactam in Pseudomonas aeruginosa endotracheal tube biofilm. Emerg Microbes Infect 2024; 13:2420737. [PMID: 39530158 PMCID: PMC11571741 DOI: 10.1080/22221751.2024.2420737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/26/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Although an increased effectiveness has been suggested when phages and antibiotics are combined, this approach has not been tested against a mature biofilm on an endotracheal tube (ETT) surface. This study evaluated the effect of short- and long-term combined phage-antibiotic therapy in a control of a mature biofilm on an ETT surface. Pseudomonas aeruginosa strains, including susceptible and resistant clinical samples, were used to develop the ETT biofilm. Biofilm was treated with 108PFU/mL of phage_2, phage_18 or 5 μg/mL of ceftolozane/tazobactam, alone or in combination with phages. The sequential combination of the two different phages and ceftolozane/tazobactam was also tested. Biofilm viability was assessed after short (2, 4, 24 h) and long-(48, 72 h) term treatment exposure using colony forming unit measurement. For long-term exposition, a new treatment shot was added every 24 h. In the sequential combination, the phage type was switched at 24 h of treatment. Regarding the susceptible strains, the treatments had limited antibiofilm effect after 2, 4 and 24 h. After 48 and 72 h, administering phages alone had no effect on biofilm viability, indicating the emergence of phage-resistant phenotypes. Nonetheless, the combined phage-antibiotic treatment reduced the biofilm viability in about 5-log, whilst antibiotic alone reduced in about 3-log. The sequential combination of phages and antibiotic reduced the biofilm viability in about 6-log. With respect to the resistant strains, no antibiofilm activity was observed regarding the treatment arms. The combination of phages and ceftolozane/tazobactam showed a synergism strain-dependent, being more apparent in susceptible strains.
Collapse
Affiliation(s)
- Viviane de C. Oliveira
- Department of Dental Materials and Prostheses, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
- Human Exposome and Infectious Diseases Network – HEID, School of Nursing of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Alba Soler-Comas
- Institut d’Investigacions Biomèdiques August Pi i Sunyer – IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red de enfermedades respiratorias (Ciberes) – Hospital Clinic de Barcelona, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Amanda C.S.D. Rocha
- Human Exposome and Infectious Diseases Network – HEID, School of Nursing of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Cláudia H. Silva-Lovato
- Department of Dental Materials and Prostheses, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Evandro Watanabe
- Human Exposome and Infectious Diseases Network – HEID, School of Nursing of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Antoni Torres
- Institut d’Investigacions Biomèdiques August Pi i Sunyer – IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red de enfermedades respiratorias (Ciberes) – Hospital Clinic de Barcelona, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Laia Fernández-Barat
- Institut d’Investigacions Biomèdiques August Pi i Sunyer – IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red de enfermedades respiratorias (Ciberes) – Hospital Clinic de Barcelona, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Nasser F, Gaudreau A, Lubega S, Zaker A, Xia X, Mer AS, D'Costa VM. Characterization of the diversity of type IV secretion system-encoding plasmids in Acinetobacter. Emerg Microbes Infect 2024; 13:2320929. [PMID: 38530969 DOI: 10.1080/22221751.2024.2320929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/14/2024] [Indexed: 03/28/2024]
Abstract
The multi-drug resistant pathogen Acinetobacter baumannii has gained global attention as an important clinical challenge. Owing to its ability to survive on surfaces, its capacity for horizontal gene transfer, and its resistance to front-line antibiotics, A. baumannii has established itself as a successful pathogen. Bacterial conjugation is a central mechanism for pathogen evolution. The epidemic multidrug-resistant A. baumannii ACICU harbours a plasmid encoding a Type IV Secretion System (T4SS) with homology to the E. coli F-plasmid, and plasmids with homologous gene clusters have been identified in several A. baumannii sequence types. However the genetic and host strain diversity, global distribution, and functional ability of this group of plasmids is not fully understood. Using systematic analysis, we show that pACICU2 belongs to a group of almost 120 T4SS-encoding plasmids within four different species of Acinetobacter and one strain of Klebsiella pneumoniae from human and environmental origin, and globally distributed across 20 countries spanning 4 continents. Genetic diversity was observed both outside and within the T4SS-encoding cluster, and 47% of plasmids harboured resistance determinants, with two plasmids harbouring eleven. Conjugation studies with an extensively drug-resistant (XDR) strain showed that the XDR plasmid could be successfully transferred to a more divergent A. baumanii, and transconjugants exhibited the resistance phenotype of the plasmid. Collectively, this demonstrates that these T4SS-encoding plasmids are globally distributed and more widespread among Acinetobacter than previously thought, and that they represent an important potential reservoir for future clinical concern.
Collapse
Affiliation(s)
- Farah Nasser
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Avery Gaudreau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Shareefah Lubega
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Arvin Zaker
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Xuhua Xia
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
- Department of Biology, University of Ottawa, Ottawa, Canada
| | - Arvind S Mer
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Vanessa M D'Costa
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| |
Collapse
|
15
|
Reyes LF, Serrano-Mayorga CC, Zhang Z, Tsuji I, De Pascale G, Prieto VE, Mer M, Sheehan E, Nasa P, Zangana G, Avanti K, Tabah A, Shrestha GS, Bracht H, Fatoni AZ, Abidi K, Bin Sulaiman H, Eshwara VK, De Bus L, Hayashi Y, Korkmaz P, Ait Hssain A, Buetti N, Goh QY, Kwizera A, Koulenti D, Nielsen ND, Povoa P, Ranzani O, Rello J, Conway Morris A. D-PRISM: a global survey-based study to assess diagnostic and treatment approaches in pneumonia managed in intensive care. Crit Care 2024; 28:381. [PMID: 39578900 PMCID: PMC11585090 DOI: 10.1186/s13054-024-05180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Pneumonia remains a significant global health concern, particularly among those requiring admission to the intensive care unit (ICU). Despite the availability of international guidelines, there remains heterogeneity in clinical management. The D-PRISM study aimed to develop a global overview of how pneumonias (i.e., community-acquired (CAP), hospital-acquired (HAP), and Ventilator-associated pneumonia (VAP)) are diagnosed and treated in the ICU and compare differences in clinical practice worldwide. METHODS The D-PRISM study was a multinational, survey-based investigation to assess the diagnosis and treatment of pneumonia in the ICU. A self-administered online questionnaire was distributed to intensive care clinicians from 72 countries between September to November 2022. The questionnaire included sections on professional profiles, current clinical practice in diagnosing and managing CAP, HAP, and VAP, and the availability of microbiology diagnostic tests. Multivariable analysis using multiple regression analysis was used to assess the relationship between reported antibiotic duration and organisational variables collected in the study. RESULTS A total of 1296 valid responses were collected from ICU clinicians, spread between low-and-middle income (LMIC) and high-income countries (HIC), with LMIC respondents comprising 51% of respondents. There is heterogeneity across the diagnostic processes, including clinical assessment, where 30% (389) did not consider radiological evidence essential to diagnose pneumonia, variable collection of microbiological samples, and use and practice in bronchoscopy. Microbiological diagnostics were least frequently available in low and lower-middle-income nation settings. Modal intended antibiotic treatment duration was 5-7 days for all types of pneumonia. Shorter durations of antibiotic treatment were associated with antimicrobial stewardship (AMS) programs, high national income status, and formal intensive care training. CONCLUSIONS This study highlighted variations in clinical practice and diagnostic capabilities for pneumonia, particularly issues with access to diagnostic tools in LMICs were identified. There is a clear need for improved adherence to existing guidelines and standardized approaches to diagnosing and treating pneumonia in the ICU. Trial registration As a survey of current practice, this study was not registered. It was reviewed and endorsed by the European Society of Intensive Care Medicine.
Collapse
Affiliation(s)
- Luis Felipe Reyes
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chia, Colombia
- Clinica Universidad de La Sabana, Chia, Colombia
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Cristian C Serrano-Mayorga
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chia, Colombia
- Clinica Universidad de La Sabana, Chia, Colombia
- PhD Biosciences Program, Engineering School, Universidad de La Sabana, Chia, Colombia
| | - Zhongheng Zhang
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Isabela Tsuji
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Gennaro De Pascale
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Mervyn Mer
- Divisions of Critical Care and Pulmonology, Department of Medicine, Charlotte Maxeke Johannesburg Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Elyce Sheehan
- Division of Pulmonary, Critical Care and Sleep Medicine, University of New Mexico School of Medicine, Albuquerque, USA
| | - Prashant Nasa
- Critical Care Medicine NMC Specialty Hospital Dubai, Dubai, UAE
- Internal Medicine, College of Medicine and Health Sciences, Al Ain, UAE
| | - Goran Zangana
- Department of Acute and General Medicine, Royal Infirmary of Edinburgh, Edinburgh, Scotland, UK
| | - Kostoula Avanti
- Intensive Care Medicine, Papageorgiou Hospital, Thessaloníki, Greece
| | - Alexis Tabah
- Queensland University of Technology, Brisbane, QLD, Australia
- Intensive Care Unit, Redcliffe Hospital, Metro North Hospital and Health Services, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Gentle Sunder Shrestha
- Department of Critical Care Medicine, Tribhuvan University Teaching Hospital, Maharajgunj, Kathmandu, Nepal
| | - Hendrik Bracht
- Department of Anesthesiology, Intensive Care, Emergency Medicine, Transfusion Medicine, and Pain Therapy, Protestant Hospital of the Bethel Foundation, University Hospital of Bielefeld, Campus Bielefeld-Bethel, Bielefeld, Germany
| | - Arie Zainul Fatoni
- Department of Anesthesiology and Intensive Therapy, Saiful Anwar General Hospital - Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Khalid Abidi
- Ibn Sina University Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Helmi Bin Sulaiman
- Infectious Diseases Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vandana Kalwaje Eshwara
- Department of Microbiology Kasturba Medical College, Manipal Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Liesbet De Bus
- Department of Intensive Care Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Yoshiro Hayashi
- Department of Intensive Care Medicine, Kameda Medical Center, Kamogawa, Japan
| | - Pervin Korkmaz
- Pulmonary Disease Department, Ege University School of Medicine, Izmir, Turkey
| | - Ali Ait Hssain
- Medical Intensive Care Unit, Hamad General Hospital, Doha, Qatar
| | - Niccolò Buetti
- Infection Control Program, Geneva University Hospitals and Faculty of Medicine, World Health Organization Collaborating Centre, Geneva, Switzerland
- IAME UMR 1137, INSERM, Université Paris-Cité, Paris, France
| | - Qing Yuan Goh
- Division of Anaesthesiology and Perioperative Medicine, Department of Surgical Intensive Care, Singapore General Hospital, Singapore, Singapore
| | - Arthur Kwizera
- Department of Anaesthesia, Makerere University, Kampala, Uganda
| | - Despoina Koulenti
- Department of Critical Care, King's College Hospital NHS Foundation Trust, London, UK
- Antibiotic Optimisation Group, UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Nathan D Nielsen
- Division of Pulmonary, Critical Care and Sleep Medicine, University of New Mexico School of Medicine, Albuquerque, USA
- Section of Transfusion Medicine and Therapeutic Pathology, University of New Mexico School of Medicine, Albuquerque, USA
| | - Pedro Povoa
- Faculdade de Ciências Médicas, NOVA Medical School, NOVA University of Lisbon, Lisbon, Portugal
- Center for Clinical Epidemiology and Research Unit of Clinical Epidemiology, OUH Odense University Hospital, Odense, Denmark
- Department of Intensive Care, Hospital de São Francisco Xavier, ULSLO, Lisbon, Portugal
| | - Otavio Ranzani
- Barcelona Institute for Global Health, ISGlobal, Hospital Clinic-Universitat de Barcelona, Barcelona, Spain
- Pulmonary Division, Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
| | - Jordi Rello
- Vall d'Hebron Institute of Research, Barcelona, Spain
- Pormation, Recherche & Évaluation (FOREVA), CHU Nîmes, Nîmes, France
- Centro de Investigación Biomédica en Red (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Andrew Conway Morris
- Division of Perioperative, Acute, Critical Care and Emergency Medicine, Department of Medicine, University of Cambridge, Level 4, Addenbrooke's Hospital, Hills Road, Cambridge, UK.
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK.
- John V Farman Intensive Care Unit, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
16
|
Liu C, Cui C, Tan X, Miao J, Wang W, Ren H, Wu H, Zheng C, Ren H, Kang W. pH-mediated potentiation of gallium nitrate against Pseudomonas aeruginosa. Front Microbiol 2024; 15:1464719. [PMID: 39380683 PMCID: PMC11458400 DOI: 10.3389/fmicb.2024.1464719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
The emergence of multidrug-resistant Pseudomonas aeruginosa isolates is a growing concern for public health, necessitating new therapeutic strategies. Gallium nitrate [Ga(NO3)3], a medication for cancer-related hypercalcemia, has attracted great attention due to its ability to inhibit P. aeruginosa growth and biofilm formation by disrupting iron metabolism. However, the antibacterial efficacy of Ga(NO3)3 is not always satisfactory. It is imperative to investigate the factors that affect the bactericidal effects of Ga(NO3)3 and to identify new ways to enhance its efficacy. This study focused on the impact of pH on P. aeruginosa resistance to Ga(NO3)3, along with the underlying mechanism. The results indicate that acidic conditions could increase the effectiveness of Ga(NO3)3 against P. aeruginosa by promoting the production of pyochelin and gallium uptake. Subsequently, using glutamic acid, a clinically compatible acidic amino acid, the pH was significantly lowered and enhanced the bactericidal and inhibitory efficacy of Ga(NO3)3 against biofilm formation by P. aeruginosa, including a reference strain PA14 and several multidrug-resistant clinical isolates. Furthermore, we used an abscess mouse model to evaluate this combination in vivo; the results show that the combination of glutamic acid and Ga(NO3)3 significantly improved P. aeruginosa clearance. Overall, the present study demonstrates that acidic conditions can increase the sensitivity of P. aeruginosa to Ga(NO3)3. Combining glutamic acid and Ga(NO3)3 is a potential strategy for the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Chang Liu
- School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Chenxuan Cui
- School of Public Health, Hebei Medical University, Shijiazhuang, China
- Shijiazhuang Qiaoxi Distinct Center for Disease Control and Prevention, Shijiazhuang, China
| | - Xiaoxin Tan
- School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Junjie Miao
- School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Wei Wang
- School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Han Ren
- Clinical Laboratory, Xinle Traditional Chinese Medicine Hospital, Shijiazhuang, China
| | - Hua Wu
- Clinical Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Cuiying Zheng
- Clinical Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huan Ren
- School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Weijun Kang
- School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| |
Collapse
|
17
|
Rando E, Novy E, Sangiorgi F, De Pascale G, Fantoni M, Murri R, Roberts JA, Cotta MO. A Systematic Review of the Pharmacokinetics and Pharmacodynamics of Novel Beta-Lactams and Beta-Lactam with Beta-Lactamase Inhibitor Combinations for the Treatment of Pneumonia Caused by Carbapenem-Resistant Gram-Negative Bacteria. Int J Antimicrob Agents 2024; 64:107266. [PMID: 38971203 DOI: 10.1016/j.ijantimicag.2024.107266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Novel beta-lactams show activity against many multidrug-resistant Gram-negative bacteria that cause severe lung infections. Understanding pharmacokinetic/pharmacodynamic characteristics of these agents may help optimise outcomes in the treatment of pneumonia. OBJECTIVES To describe and appraise studies that report pulmonary pharmacokinetic and pharmacodynamic data of cefiderocol, ceftazidime/avibactam, ceftolozane/tazobactam, imipenem/cilastatin/relebactam and meropenem/vaborbactam. METHODS MEDLINE (PubMed), Embase, Web of Science and Scopus libraries were used for the literature search. Pulmonary population pharmacokinetic and pharmacokinetic/pharmacodynamic studies on adult patients receiving cefiderocol, ceftazidime/avibactam, ceftolozane/tazobactam, imipenem/cilastatin/relebactam, and meropenem/vaborbactam published in peer-reviewed journals were included. Two independent authors screened, reviewed and extracted data from included articles. A reporting guideline for clinical pharmacokinetic studies (ClinPK statement) was used for bias assessment. Relevant outcomes were included, such as population pharmacokinetic parameters and probability of target attainment of dosing regimens. RESULTS Twenty-four articles were included. There was heterogeneity in study methods and reporting of results, with diversity across studies in adhering to the ClinPK statement checklist. Ceftolozane/tazobactam was the most studied agent. Only two studies collected epithelial lining fluid samples from patients with pneumonia. All the other phase I studies enrolled healthy subjects. Significant population heterogeneity was evident among available population pharmacokinetic models. Probabilities of target attainment rates above 90% using current licensed dosing regiments were reported in most studies. CONCLUSIONS Although lung pharmacokinetics was rarely described, this review observed high target attainment using plasma pharmacokinetic data for all novel beta-lactams. Future studies should describe lung pharmacokinetics in patient populations at risk of carbapenem-resistant pathogen infections.
Collapse
Affiliation(s)
- Emanuele Rando
- Dipartimento di Sicurezza e Bioetica - Sezione di Malattie Infettive, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Emmanuel Novy
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Department of Anaesthesiology, Critical Care and Perioperative Medicine, Nancy University Hospital, Nancy, France; SIMPA, Université de Lorraine, Vandoeuvre les Nancy, France
| | - Flavio Sangiorgi
- Dipartimento di Sicurezza e Bioetica - Sezione di Malattie Infettive, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gennaro De Pascale
- Dipartimento di Scienza dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimo Fantoni
- Dipartimento di Sicurezza e Bioetica - Sezione di Malattie Infettive, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Rita Murri
- Dipartimento di Sicurezza e Bioetica - Sezione di Malattie Infettive, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Jason A Roberts
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia; Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia; Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Menino Osbert Cotta
- Department of Anaesthesiology, Critical Care and Perioperative Medicine, Nancy University Hospital, Nancy, France; Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia
| |
Collapse
|
18
|
Yu XL, Zhou LY, Huang X, Li XY, Pan QQ, Wang MK, Yang JS. Urgent call for attention to diabetes-associated hospital infections. World J Diabetes 2024; 15:1683-1691. [PMID: 39192868 PMCID: PMC11346093 DOI: 10.4239/wjd.v15.i8.1683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/14/2024] [Accepted: 06/07/2024] [Indexed: 07/25/2024] Open
Abstract
In this editorial, we discuss the recent article by Zhao et al published in the World Journal of Diabetes, which highlights the importance of recognizing the risk indicators associated with diabetes mellitus (DM). Given the severe implications of healthcare-associated infections (HAIs) in hospitalized individuals- such as heightened mortality rates, prolonged hospitalizations, and increased costs- we focus on elucidating the connection between DM and nosocomial infections. Diabetic patients are susceptible to pathogenic bacterial invasion and subsequent infection, with some already harboring co-infections upon admission. Notably, DM is an important risk factor for nosocomial urinary tract infections and surgical site infections, which may indirectly affect the occurrence of nosocomial bloodstream infections, especially in patients with DM with poor glycemic control. Although evidence regarding the impact of DM on healthcare-associated pneumonias remains inconclusive, attention to this potential association is warranted. Hospitalized patients with DM should prioritize meticulous blood glucose management, adherence to standard operating procedures, hand hygiene pra-ctices, environmental disinfection, and rational use of drugs during hospitalization. Further studies are imperative to explore the main risk factors of HAIs in patients with DM, enabling the development of preventative measures and mitigating the occurrence of HAIs in these patients.
Collapse
Affiliation(s)
- Xue-Lu Yu
- Department of Disease Control and Prevention, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Li-Yun Zhou
- Department of Disease Control and Prevention, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Xiao Huang
- Department of Disease Control and Prevention, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Xin-Yue Li
- Department of Disease Control and Prevention, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Qing-Qing Pan
- Department of Disease Control and Prevention, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Ming-Ke Wang
- Department of Disease Control and Prevention, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Ji-Shun Yang
- Medical Care Center, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| |
Collapse
|
19
|
Chen Y, Zhang Y, Nie S, Ning J, Wang Q, Yuan H, Wu H, Li B, Hu W, Wu C. Risk assessment and prediction of nosocomial infections based on surveillance data using machine learning methods. BMC Public Health 2024; 24:1780. [PMID: 38965513 PMCID: PMC11223322 DOI: 10.1186/s12889-024-19096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Nosocomial infections with heavy disease burden are becoming a major threat to the health care system around the world. Through long-term, systematic, continuous data collection and analysis, Nosocomial infection surveillance (NIS) systems are constructed in each hospital; while these data are only used as real-time surveillance but fail to realize the prediction and early warning function. Study is to screen effective predictors from the routine NIS data, through integrating the multiple risk factors and Machine learning (ML) methods, and eventually realize the trend prediction and risk threshold of Incidence of Nosocomial infection (INI). METHODS We selected two representative hospitals in southern and northern China, and collected NIS data from 2014 to 2021. Thirty-nine factors including hospital operation volume, nosocomial infection, antibacterial drug use and outdoor temperature data, etc. Five ML methods were used to fit the INI prediction model respectively, and to evaluate and compare their performance. RESULTS Compared with other models, Random Forest showed the best performance (5-fold AUC = 0.983) in both hospitals, followed by Support Vector Machine. Among all the factors, 12 indicators were significantly different between high-risk and low-risk groups for INI (P < 0.05). After screening the effective predictors through importance analysis, prediction model of the time trend was successfully constructed (R2 = 0.473 and 0.780, BIC = -1.537 and -0.731). CONCLUSIONS The number of surgeries, antibiotics use density, critical disease rate and unreasonable prescription rate and other key indicators could be fitted to be the threshold predictions of INI and quantitative early warning.
Collapse
Affiliation(s)
- Ying Chen
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518003, PR China
| | - Yonghong Zhang
- Department of Medical Affairs, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750004, PR China
| | - Shuping Nie
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518003, PR China
| | - Jie Ning
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518003, PR China
| | - Qinjin Wang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518003, PR China
| | - Hanmei Yuan
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518003, PR China
| | - Hui Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518003, PR China
| | - Bin Li
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518003, PR China
| | - Wenbiao Hu
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| | - Chao Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518003, PR China.
| |
Collapse
|
20
|
Fois M, De Vito A, Cherchi F, Ricci E, Pontolillo M, Falasca K, Corti N, Comelli A, Bandera A, Molteni C, Piconi S, Colucci F, Maggi P, Boscia V, Fugooah A, Benedetti S, De Socio GV, Bonfanti P, Madeddu G. Efficacy and Safety of Ceftazidime-Avibactam Alone versus Ceftazidime-Avibactam Plus Fosfomycin for the Treatment of Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia: A Multicentric Retrospective Study from the SUSANA Cohort. Antibiotics (Basel) 2024; 13:616. [PMID: 39061297 PMCID: PMC11273729 DOI: 10.3390/antibiotics13070616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Hospital-acquired pneumonia (HAP) and ventilation-associated pneumonia (VAP) are challenging clinical conditions due to the challenging tissue penetrability of the lung. This study aims to evaluate the potential role of fosfomycin (FOS) associated with ceftazidime/avibactam (CZA) in improving the outcome in this setting. We performed a retrospective study including people with HAP or VAP treated with CZA or CZA+FOS for at least 72 h. Clinical data were collected from the SUSANA study, a multicentric cohort to monitor the efficacy and safety of the newer antimicrobial agents. A total of 75 nosocomial pneumonia episodes were included in the analysis. Of these, 34 received CZA alone and 41 in combination with FOS (CZA+FOS). People treated with CZA alone were older, more frequently male, received a prolonged infusion more frequently, and were less frequently affected by carbapenem-resistant infections (p = 0.01, p = 0.06, p < 0.001, p = 0.03, respectively). No difference was found in terms of survival at 28 days from treatment start between CZA and CZA+FOS at the multivariate analysis (HR = 0.32; 95% CI = 0.07-1.39; p = 0.128), while prolonged infusion showed a lower mortality rate at 28 days (HR = 0.34; 95% CI = 0.14-0.96; p = 0.04). Regarding safety, three adverse events (one acute kidney failure, one multiorgan failure, and one urticaria) were reported. Our study found no significant association between combination therapy and mortality. Further investigations, with larger and more homogeneous samples, are needed to evaluate the role of combination therapy in this setting.
Collapse
Affiliation(s)
- Marco Fois
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (M.F.); (F.C.)
| | - Andrea De Vito
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (M.F.); (F.C.)
| | - Francesca Cherchi
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (M.F.); (F.C.)
| | - Elena Ricci
- Fondazione ASIA Onlus, 20090 Buccinasco, Italy;
| | - Michela Pontolillo
- Clinic of Infectious Diseases, Department of Medicine and Science of Aging, G. D’Annunzio University, Chieti-Pescara, 66100 Chieti, Italy (K.F.)
| | - Katia Falasca
- Clinic of Infectious Diseases, Department of Medicine and Science of Aging, G. D’Annunzio University, Chieti-Pescara, 66100 Chieti, Italy (K.F.)
| | - Nicolò Corti
- Infectious Disease Unit, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (N.C.); (P.B.)
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Agnese Comelli
- Infectious Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.C.); (A.B.)
| | - Alessandra Bandera
- Infectious Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.C.); (A.B.)
| | - Chiara Molteni
- Unit of Infectious Diseases, “A. Manzoni” Hospital, 23900 Lecco, Italy; (C.M.); (S.P.)
| | - Stefania Piconi
- Unit of Infectious Diseases, “A. Manzoni” Hospital, 23900 Lecco, Italy; (C.M.); (S.P.)
| | - Francesca Colucci
- Infectious Diseases Unit, AORN Sant’Anna e San Sebastiano, 81100 Caserta, Italy; (F.C.); (P.M.)
| | - Paolo Maggi
- Infectious Diseases Unit, AORN Sant’Anna e San Sebastiano, 81100 Caserta, Italy; (F.C.); (P.M.)
| | - Vincenzo Boscia
- Unit of Infectious Diseases, Garibaldi Hospital, 95124 Catania, Italy; (V.B.)
| | - Aakash Fugooah
- Unit of Infectious Diseases, Garibaldi Hospital, 95124 Catania, Italy; (V.B.)
| | - Sara Benedetti
- Unit of Infectious Diseases, Santa Maria Hospital, 06129 Perugia, Italy; (S.B.); (G.V.D.S.)
| | | | - Paolo Bonfanti
- Infectious Disease Unit, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (N.C.); (P.B.)
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Giordano Madeddu
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (M.F.); (F.C.)
| |
Collapse
|
21
|
Quarton S, Livesey A, Pittaway H, Adiga A, Grudzinska F, McNally A, Dosanjh D, Sapey E, Parekh D. Clinical challenge of diagnosing non-ventilator hospital-acquired pneumonia and identifying causative pathogens: a narrative review. J Hosp Infect 2024; 149:189-200. [PMID: 38621512 DOI: 10.1016/j.jhin.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 04/17/2024]
Abstract
Non-ventilated hospital-acquired pneumonia (NV-HAP) is associated with a significant healthcare burden, arising from high incidence and associated morbidity and mortality. However, accurate identification of cases remains challenging. At present, there is no gold-standard test for the diagnosis of NV-HAP, requiring instead the blending of non-specific signs and investigations. Causative organisms are only identified in a minority of cases. This has significant implications for surveillance, patient outcomes and antimicrobial stewardship. Much of the existing research in HAP has been conducted among ventilated patients. The paucity of dedicated NV-HAP research means that conclusions regarding diagnostic methods, pathology and interventions must largely be extrapolated from work in other settings. Progress is also limited by the lack of a widely agreed definition for NV-HAP. The diagnosis of NV-HAP has large scope for improvement. Consensus regarding a case definition will allow meaningful research to improve understanding of its aetiology and the heterogeneity of outcomes experienced by patients. There is potential to optimize the role of imaging and to incorporate novel techniques to identify likely causative pathogens. This would facilitate both antimicrobial stewardship and surveillance of an important healthcare-associated infection. This narrative review considers the utility of existing methods to diagnose NV-HAP, with a focus on the significance and challenge of identifying pathogens. It discusses the limitations in current techniques, and explores the potential of emergent molecular techniques to improve microbiological diagnosis and outcomes for patients.
Collapse
Affiliation(s)
- S Quarton
- National Institute for Health Research Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK.
| | - A Livesey
- National Institute for Health Research/Wellcome Trust Clinical Research Facility, University Hospitals Birmingham, Birmingham, UK
| | - H Pittaway
- Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham, Birmingham, UK
| | - A Adiga
- Warwick Hospital, South Warwickshire University NHS Foundation Trust, Warwick, UK
| | - F Grudzinska
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - A McNally
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - D Dosanjh
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - E Sapey
- National Institute for Health Research Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK; National Institute for Health Research Midlands Patient Safety Research Collaboration, University of Birmingham, Birmingham, UK; National Institute for Health Research Midlands Applied Research Collaborative, University of Birmingham, Birmingham, UK
| | - D Parekh
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
22
|
Sleziak J, Pilarczyk K, Matysiak M, Duszynska W. Pneumonia Characteristics in an Intensive Care Unit Setting during and after the COVID-19 Pandemic-A Single-Center Prospective Study. J Clin Med 2024; 13:2824. [PMID: 38792365 PMCID: PMC11121790 DOI: 10.3390/jcm13102824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Background: During and after the COVID-19 pandemic, there was a suspicion of varying rates of respiratory tract infections (RTIs), particularly pneumonia (PN). Methods: This research evaluated epidemiological indicators of community-acquired pneumonia (CAP) and hospital-acquired pneumonia (HAP) in the COVID-19 pandemic and post-pandemic period, including pathogens, ventilator-associated pneumonia (VAP), selected risk factors, and PN mortality. Results: At 1740 patients, throughout the 22,774 patient-days (Pt-D) and 18,039 ventilation days (Vt-D), there were 681 PN cases (39.14%): CAP 336 (19.31%) and HAP 345 (19.83%). CAP caused by SARS-CoV-2 was diagnosed in 257/336 (76.49%) patients. The clinical manifestations of PNs were CAP with 336/681 (49.34%), VAP with 232/681 (34.07%), and non-ventilator HAP (NV-HAP) with 113/681 cases (16.59%). The incidence rate of CAP/1000 Pt-D has been over 3 times higher in the pandemic period of 2020-2021 (20.25) than in the post-pandemic period of 2022 (5.86), p = 0.000. Similarly, higher incidence rates of VAP/1000 Pt-D were found in the pandemic period (p = 0.050). For NV-HAP, this difference was not statistically significant (p = 0.585). VAP occurred more frequently in the group of patients with PN in the course of COVID-19 compared to patients without COVID-19 (52/234 [22.2%] vs. 180/1506 [11.95%]); (p = 0.000). The most common CAP pathogen (during the pandemic) was SARS CoV-2 234/291 (80.4%), followed by MSSA/MRSA 8/291 (2.75%), whereas the most common VAP/NV-HAP pathogen was Acinetobacter baumannii XDR/MDR. The highest PN mortality was found in the patients with CAP caused by SARS-CoV-2 159/257 (61.87%). Conclusions: Pneumonias were diagnosed in nearly 40% of Intensive Care Unit (ICU) patients. Surveillance of pneumonias during the specific observation period was beneficial in the epidemiological and microbiological analysis of the ICU patients.
Collapse
Affiliation(s)
- Jakub Sleziak
- The Students Scientific Association by Department and Clinic of Anaesthesiology and Intensive Therapy, Wroclaw Medical University, L. Pasteura Street 1, 50-367 Wroclaw, Poland; (J.S.); (K.P.); (M.M.)
| | - Katarzyna Pilarczyk
- The Students Scientific Association by Department and Clinic of Anaesthesiology and Intensive Therapy, Wroclaw Medical University, L. Pasteura Street 1, 50-367 Wroclaw, Poland; (J.S.); (K.P.); (M.M.)
| | - Michal Matysiak
- The Students Scientific Association by Department and Clinic of Anaesthesiology and Intensive Therapy, Wroclaw Medical University, L. Pasteura Street 1, 50-367 Wroclaw, Poland; (J.S.); (K.P.); (M.M.)
| | - Wieslawa Duszynska
- Department and Clinic of Anaesthesiology and Intensive Therapy, Wroclaw Medical University, L. Pasteura Street 1, 50-367 Wroclaw, Poland
| |
Collapse
|
23
|
Rapsinski GJ, Michaels LA, Hill M, Yarrington KD, Haas AL, D’Amico EJ, Armbruster CR, Zemke A, Limoli D, Bomberger JM. Pseudomonas aeruginosa senses and responds to epithelial potassium flux via Kdp operon to promote biofilm. PLoS Pathog 2024; 20:e1011453. [PMID: 38820569 PMCID: PMC11168685 DOI: 10.1371/journal.ppat.1011453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/12/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
Mucosa-associated biofilms are associated with many human disease states, but the host mechanisms promoting biofilm remain unclear. In chronic respiratory diseases like cystic fibrosis (CF), Pseudomonas aeruginosa establishes chronic infection through biofilm formation. P. aeruginosa can be attracted to interspecies biofilms through potassium currents emanating from the biofilms. We hypothesized that P. aeruginosa could, similarly, sense and respond to the potassium efflux from human airway epithelial cells (AECs) to promote biofilm. Using respiratory epithelial co-culture biofilm imaging assays of P. aeruginosa grown in association with CF bronchial epithelial cells (CFBE41o-), we found that P. aeruginosa biofilm was increased by potassium efflux from AECs, as examined by potentiating large conductance potassium channel, BKCa (NS19504) potassium efflux. This phenotype is driven by increased bacterial attachment and increased coalescence of bacteria into aggregates. Conversely, biofilm formation was reduced when AECs were treated with a BKCa blocker (paxilline). Using an agar-based macroscopic chemotaxis assay, we determined that P. aeruginosa chemotaxes toward potassium and screened transposon mutants to discover that disruption of the high-sensitivity potassium transporter, KdpFABC, and the two-component potassium sensing system, KdpDE, reduces P. aeruginosa potassium chemotaxis. In respiratory epithelial co-culture biofilm imaging assays, a KdpFABCDE deficient P. aeruginosa strain demonstrated reduced biofilm growth in association with AECs while maintaining biofilm formation on abiotic surfaces. Furthermore, we determined that the Kdp operon is expressed in vivo in people with CF and the genes are conserved in CF isolates. Collectively, these data suggest that P. aeruginosa biofilm formation can be increased by attracting bacteria to the mucosal surface and enhancing coalescence into microcolonies through aberrant AEC potassium efflux sensed by the KdpFABCDE system. These findings suggest host electrochemical signaling can enhance biofilm, a novel host-pathogen interaction, and potassium flux could be a therapeutic target to prevent chronic infections in diseases with mucosa-associated biofilms, like CF.
Collapse
Affiliation(s)
- Glenn J. Rapsinski
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
- Division of Infectious Disease, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Lia A. Michaels
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Madison Hill
- Department of Biology, Saint Vincent College, Latrobe, Pennsylvania, United States of America
| | - Kaitlin D. Yarrington
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Allison L. Haas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
| | - Emily J. D’Amico
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
| | - Catherine R. Armbruster
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
| | - Anna Zemke
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Dominique Limoli
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
| |
Collapse
|
24
|
Hammoudi Halat D, Ayoub Moubareck C. Hospital-acquired and ventilator-associated pneumonia caused by multidrug-resistant Gram-negative pathogens: Understanding epidemiology, resistance patterns, and implications with COVID-19. F1000Res 2024; 12:92. [PMID: 38915769 PMCID: PMC11195619 DOI: 10.12688/f1000research.129080.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 06/26/2024] Open
Abstract
The ongoing spread of antimicrobial resistance has complicated the treatment of bacterial hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP). Gram-negative pathogens, especially those with multidrug-resistant profiles, including Escherichia coli, Klebsiella pneumoniae, Enterobacter spp., Pseudomonas aeruginosa, and Acinetobacter spp., are important culprits in this type of infections. Understanding the determinants of resistance in pathogens causing pneumonia is ultimately stressing, especially in the shadows of the COVID-19 pandemic, when bacterial lung infections are considered a top priority that has become urgent to revise. Globally, the increasing prevalence of these pathogens in respiratory samples represents a significant infection challenge, with major limitations of treatment options and poor clinical outcomes. This review will focus on the epidemiology of HAP and VAP and will present the roles and the antimicrobial resistance patterns of implicated multidrug-resistant (MDR) Gram-negative pathogens like carbapenem-resistant Acinetobacter baumannii (CRAB), carbapenem-resistant Pseudomonas aeruginosa (CRPA), carbapenem-resistant Enterobacterales (CRE), as well as colistin-resistant Gram-negative pathogens and extended-spectrum β-lactamase (ESBL)-producing Enterobacterales. While emerging from the COVID-19 pandemic, perspectives and conclusions are drawn from findings of HAP and VAP caused by MDR Gram-negative bacteria in patients with COVID-19.
Collapse
|
25
|
Mergulhão P, Pereira JG, Fernandes AV, Krystopchuk A, Ribeiro JM, Miranda D, Castro H, Eira C, Morais J, Lameirão C, Gomes S, Leal D, Duarte J, Pássaro L, Froes F, Martin-Loeches I. Epidemiology and Burden of Ventilator-Associated Pneumonia among Adult Intensive Care Unit Patients: A Portuguese, Multicenter, Retrospective Study (eVAP-PT Study). Antibiotics (Basel) 2024; 13:290. [PMID: 38666966 PMCID: PMC11047600 DOI: 10.3390/antibiotics13040290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024] Open
Abstract
Ventilator-associated pneumonia (VAP) is a prevailing nosocomial infection in critically ill patients requiring invasive mechanical ventilation (iMV). The impact of VAP is profound, adversely affecting patient outcomes and placing a significant burden on healthcare resources. This study assessed for the first time the contemporary VAP epidemiology in Portugal and its burden on the healthcare system and clinical outcomes. Additionally, resource consumption (duration of iMV, intensive care unit (ICU), hospital length of stay (LOS)) and empirical antimicrobial therapy were also evaluated. This multicenter, retrospective study included patients admitted to the hospital between July 2016 and December 2017 in a participating ICU, who underwent iMV for at least 48 h. Patients with a VAP diagnosis were segregated for further analysis (n = 197). Control patients, ventilated for >48 h but without a VAP diagnosis, were also included in a 1:1 ratio. Cumulative VAP incidence was computed. All-cause mortality was assessed at 28, 90, and 365 days after ICU admission. Cumulative VAP incidence was 9.2% (95% CI 8.0-10.5). The all-cause mortality rate in VAP patients was 24.9%, 34.0%, and 40.6%, respectively, and these values were similar to those observed in patients without VAP diagnosis. Further, patients with VAP had significantly longer ICU (27.5 vs. 11.0 days, p < 0.001) and hospital LOS (61 vs. 35.9 days, p < 0.001), more time under iMV (20.7 vs. 8.0 days, p < 0.001) and were more often subjected to tracheostomy (36.5 vs. 14.2%; p < 0.001). Patients with VAP who received inappropriate empirical antimicrobials had higher 28-day mortality, 34.3% vs. 19.5% (odds ratio 2.16, 95% CI 1.10-4.23), although the same was not independently associated with 1-year all-cause mortality (p = 0.107). This study described the VAP impact and burden on the Portuguese healthcare system, with approximately 9% of patients undergoing iMV for >48 h developing VAP, leading to increased resource consumption (longer ICU and hospital LOS). An unexpectedly high incidence of inappropriate, empirical antimicrobial therapy was also noted, being positively associated with a higher mortality risk of these patients. Knowledge of the Portuguese epidemiology characterization of VAP and its multidimensional impact is essential for efficient treatment and optimized long-term health outcomes of these patients.
Collapse
Affiliation(s)
- Paulo Mergulhão
- Intensive Care Unit, Hospital Lusíadas Porto, 4050-115 Porto, Portugal;
| | - João Gonçalves Pereira
- Intensive Care Unit, Hospital de Vila Franca de Xira, 2600-009 Vila Franca de Xira, Portugal;
| | | | - Andriy Krystopchuk
- Intensive Care Unit, Centro Hospitalar Universitário do Algarve, 8000-386 Faro, Portugal;
| | - João Miguel Ribeiro
- Intensive Care Unit, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-035 Lisbon, Portugal;
| | - Daniel Miranda
- Intensive Care Unit, Centro Hospitalar Vila Nova de Gaia e Espinho, 4434-502 Vila Nova de Gaia, Portugal;
| | - Heloísa Castro
- Intensive Care Unit, Hospital de Santo António, Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal;
| | - Carla Eira
- Intensive Care Unit, Centro Hospitalar Tondela Viseu, 3504-509 Viseu, Portugal;
| | - Juvenal Morais
- Intensive Care Unit, Hospital São Francisco Xavier, Centro Hospitalar Lisboa Ocidental, 1449-005 Lisbon, Portugal;
| | - Cristina Lameirão
- Intensive Care Unit, Centro Hospitalar Trás-os-Montes e Alto Douro, 5000-508 Vila Real, Portugal;
| | - Sara Gomes
- Intensive Care Unit, Hospital Prof. Doutor Fernando Fonseca, 2720-276 Amadora, Portugal;
| | - Dina Leal
- Intensive Care Unit, Hospital de Braga, 4710-243 Braga, Portugal;
| | - Joana Duarte
- Medical Affairs Department, MSD Portugal, 2770-192 Oeiras, Portugal; (J.D.); (L.P.)
| | - Leonor Pássaro
- Medical Affairs Department, MSD Portugal, 2770-192 Oeiras, Portugal; (J.D.); (L.P.)
| | - Filipe Froes
- Intensive Care Unit, Hospital Pulido Valente, Centro Hospitalar Universitário Lisboa Norte, 1769-001 Lisbon, Portugal;
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James’ Hospital, D08NYH1 Dublin, Ireland
| |
Collapse
|
26
|
Shi Q, Zeng S, Yu R, Li M, Shen C, Zhang X, Zhao C, Zeng J, Huang B, Pu J, Chen C. The small RNA PrrH aggravates Pseudomonas aeruginosa-induced acute lung injury by regulating the type III secretion system activator ExsA. Microbiol Spectr 2024; 12:e0062623. [PMID: 38289930 PMCID: PMC10913731 DOI: 10.1128/spectrum.00626-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes acute and chronic infections in immunocompromised individuals. Small regulatory RNAs (sRNAs) regulate multiple bacterial adaptations to environmental changes, especially virulence. Our previous study showed that sRNA PrrH negatively regulates the expression of a number of virulence factors, such as pyocyanin, rhamnolipid, biofilm, and elastase in the P. aeruginosa strain PAO1. However, previous studies have shown that the prrH-deficient mutant attenuates virulence in an acute murine lung infection model. All ΔprrH-infected mice survived the entire 28-day course of the experiment, whereas all mice inoculated with the wild-type or the complemented mutant succumbed to lung infection within 4 days of injection, but the specific mechanism is unclear. Herein, we explored how PrrH mediates severe lung injury by regulating the expression of virulence factors. In vivo mouse and in vitro cellular assays demonstrated that PrrH enhanced the pathogenicity of PAO1, causing severe lung injury. Mechanistically, PrrH binds to the coding sequence region of the mRNA of exsA, which encodes the type III secretion system master regulatory protein. We further demonstrated that PrrH mediates a severe inflammatory response and exacerbates the apoptosis of A549 cells. Overall, our results revealed that PrrH positively regulates ExsA, enhances the pathogenicity of P. aeruginosa, and causes severe lung injury. IMPORTANCE Pseudomonas aeruginosa is a Gram-negative bacterium and the leading cause of nosocomial pneumonia. The pathogenicity of P. aeruginosa is due to the secretion of many virulence factors. Small regulatory RNAs (sRNAs) regulate various bacterial adaptations, especially virulence. Therefore, understanding the mechanism by which sRNAs regulate virulence is necessary for understanding the pathogenicity of P. aeruginosa and the treatment of the related disease. In this study, we demonstrated that PrrH enhances the pathogenicity of P. aeruginosa by binding to the coding sequence regions of the ExsA, the master regulatory protein of type III secretion system, causing severe lung injury and exacerbating the inflammatory response and apoptosis. These findings revealed that PrrH is a crucial molecule that positively regulates ExsA. Type III-positive strains are often associated with a high mortality rate in P. aeruginosa infections in clinical practice. Therefore, this discovery may provide a new target for treating P. aeruginosa infections, especially type III-positive strains.
Collapse
Affiliation(s)
- Qixuan Shi
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shenghe Zeng
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruiqi Yu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mo Li
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cong Shen
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuan Zhang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chanjing Zhao
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianming Zeng
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Huang
- Department of Laboratory Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jieying Pu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cha Chen
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
27
|
Farrington N, Dubey V, Johnson A, Horner I, Stevenson A, Unsworth J, Jimenez-Valverde A, Schwartz J, Das S, Hope W, Darlow CA. Molecular pharmacodynamics of meropenem for nosocomial pneumonia caused by Pseudomonas aeruginosa. mBio 2024; 15:e0316523. [PMID: 38236031 PMCID: PMC10865990 DOI: 10.1128/mbio.03165-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Hospital-acquired pneumonia (HAP) is a leading cause of morbidity and mortality, commonly caused by Pseudomonas aeruginosa. Meropenem is a commonly used therapeutic agent, although emergent resistance occurs during treatment. We used a rabbit HAP infection model to assess the bacterial kill and resistance pharmacodynamics of meropenem. Meropenem 5 mg/kg administered subcutaneously (s.c.) q8h (±amikacin 3.33-5 mg/kg q8h administered intravenously[i.v.]) or meropenem 30 mg/kg s.c. q8h regimens were assessed in a rabbit lung infection model infected with P. aeruginosa, with bacterial quantification and phenotypic/genotypic characterization of emergent resistant isolates. The pharmacokinetic/pharmacodynamic output was fitted to a mathematical model, and human-like regimens were simulated to predict outcomes in a clinical context. Increasing meropenem monotherapy demonstrated a dose-response effect to bacterial kill and an inverted U relationship with emergent resistance. The addition of amikacin to meropenem suppressed the emergence of resistance. A network of porin loss, efflux upregulation, and increased expression of AmpC was identified as the mechanism of this emergent resistance. A bridging simulation using human pharmacokinetics identified meropenem 2 g i.v. q8h as the licensed clinical regimen most likely to suppress resistance. We demonstrate an innovative experimental platform to phenotypically and genotypically characterize bacterial emergent resistance pharmacodynamics in HAP. For meropenem, we have demonstrated the risk of resistance emergence during therapy and identified two mitigating strategies: (i) regimen intensification and (ii) use of combination therapy. This platform will allow pre-clinical assessment of emergent resistance risk during treatment of HAP for other antimicrobials, to allow construction of clinical regimens that mitigate this risk.IMPORTANCEThe emergence of antimicrobial resistance (AMR) during antimicrobial treatment for hospital-acquired pneumonia (HAP) is a well-documented problem (particularly in pneumonia caused by Pseudomonas aeruginosa) that contributes to the wider global antimicrobial resistance crisis. During drug development, regimens are typically determined by their sufficiency to achieve bactericidal effect. Prevention of the emergence of resistance pharmacodynamics is usually not characterized or used to determine the regimen. The innovative experimental platform described here allows characterization of the emergence of AMR during the treatment of HAP and the development of strategies to mitigate this. We have demonstrated this specifically for meropenem-a broad-spectrum antibiotic commonly used to treat HAP. We have characterized the antimicrobial resistance pharmacodynamics of meropenem when used to treat HAP, caused by initially meropenem-susceptible P. aeruginosa, phenotypically and genotypically. We have also shown that intensifying the regimen and using combination therapy are both strategies that can both treat HAP and suppress the emergence of resistance.
Collapse
Affiliation(s)
- Nicola Farrington
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Vineet Dubey
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Adam Johnson
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Iona Horner
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Adam Stevenson
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Jennifer Unsworth
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Ana Jimenez-Valverde
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | | | - Shampa Das
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - William Hope
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Christopher A. Darlow
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| |
Collapse
|
28
|
Saunders H, Khadka S, Shrestha R, Balavenkataraman A, Hochwald A, Ball C, Helgeson SA. The Association between Non-Invasive Ventilation and the Rate of Ventilator-Associated Pneumonia. Diseases 2023; 11:151. [PMID: 37987262 PMCID: PMC10660719 DOI: 10.3390/diseases11040151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
Ventilator-associated pneumonia (VAP) has significant effects on patient outcomes, including prolonging the duration of both mechanical ventilation and stay in the intensive care unit (ICU). The aim of this study was to assess the association between non-invasive ventilation/oxygenation (NIVO) prior to intubation and the rate of subsequent VAP. This was a multicenter retrospective cohort study of adult patients who were admitted to the medical ICU from three tertiary care academic centers in three distinct regions. NIVO was defined as continuous positive airway pressure (CPAP), bilevel positive airway pressure (BiPAP), or high-flow nasal cannula (HFNC) for any duration during the hospitalization prior to intubation. The primary outcome variable was VAP association with NIVO. A total of 17,302 patients were included. VAP developed in 2.6% of the patients (444/17,302), 2.3% (285/12,518) of patients among those who did not have NIVO, 1.6% (30/1879) of patients who had CPAP, 2.5% (17/690) of patients who had HFNC, 8.1% (16/197) of patients who had BiPAP, and 4.8% (96/2018) of patients who had a combination of NIVO types. Compared to those who did not have NIVO, VAP was more likely to develop among those who had BiPAP (adj OR 3.11, 95% CI 1.80-5.37, p < 0.001) or a combination of NIVO types (adj OR 1.91, 95% CI 1.49-2.44, p < 0.001) after adjusting for patient demographics and comorbidities. The use of BiPAP or a combination of NIVO types significantly increases the odds of developing VAP once receiving IMV.
Collapse
Affiliation(s)
- Hollie Saunders
- Department of Pulmonary and Critical Care, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA; (S.K.); (R.S.); (A.B.)
| | - Subekshya Khadka
- Department of Pulmonary and Critical Care, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA; (S.K.); (R.S.); (A.B.)
| | - Rabi Shrestha
- Department of Pulmonary and Critical Care, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA; (S.K.); (R.S.); (A.B.)
| | - Arvind Balavenkataraman
- Department of Pulmonary and Critical Care, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA; (S.K.); (R.S.); (A.B.)
| | - Alexander Hochwald
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Colleen Ball
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Scott A. Helgeson
- Department of Pulmonary and Critical Care, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA; (S.K.); (R.S.); (A.B.)
| |
Collapse
|
29
|
Xue-Meng C, Gao-Wang L, Xiao-Mei L, Fan-Fang Z, Jin-Fang X. Effect of mechanical ventilation under intubation on respiratory tract change of bacterial count and alteration of bacterial flora. Exp Lung Res 2023; 49:165-177. [PMID: 37789686 DOI: 10.1080/01902148.2023.2264947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023]
Abstract
Background: The most common 'second strike' in mechanically ventilated patients is a pulmonary infection caused by the ease with which bacteria can invade and colonize the lungs due to mechanical ventilation. At the same time, metastasis of lower airway microbiota may have significant implications in developing intubation mechanical ventilation lung inflammation. Thus, we establish a rat model of tracheal intubation with mechanical ventilation and explore the effects of mechanical ventilation on lung injury and microbiological changes in rats. To provide a reference for preventing and treating bacterial flora imbalance and pulmonary infection injury caused by mechanical ventilation of tracheal intubation. Methods: Sprague-Dawley rats were randomly divided into Control, Mechanical ventilation under intubation (1, 3, 6 h) groups, and Spontaneously breathing under intubation (1, 3, 6 h). Lung histopathological injury scores were evaluated. 16SrDNA sequencing was performed to explore respiratory microbiota changes, especially, changes of bacterial count and alteration of bacterial flora. Results: Compared to groups C and SV, critical pathological changes in pulmonary lesions occurred in the MV group after 6 h (p < 0.05). The Alpha diversity and Beta diversity of lower respiratory tract microbiota in MV6, SV6, and C groups were statistically significant (p < 0.05). The main dominant bacterial phyla in the respiratory tract of rats were Proteobacteria, Firmicutes, Bacteroidetes, and Cyanobacteria. Acinetobacter radioresistens in group C was significant, Megaonas in group MV6 was significantly increased, and Parvibacter in group SV6 was significantly increased. Anaerobic, biofilm formation, and Gram-negative bacteria-related functional genes were altered during mechanical ventilation with endotracheal intubation. Conclusion: Mechanical ventilation under intubation may cause dysregulation of lower respiratory microbiota in rats.
Collapse
Affiliation(s)
- Chen Xue-Meng
- Department of Anesthesiology, Deyang People's Hospital, Deyang, Sichuan, China
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liu Gao-Wang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ling Xiao-Mei
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Zeng Fan-Fang
- Department of Anesthesiology, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Jin-Fang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
Ture Z, Güner R, Alp E. Antimicrobial stewardship in the intensive care unit. JOURNAL OF INTENSIVE MEDICINE 2023; 3:244-253. [PMID: 37533805 PMCID: PMC10391567 DOI: 10.1016/j.jointm.2022.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 08/04/2023]
Abstract
High resistance rates to antimicrobials continue to be a global health threat. The incidence of multidrug-resistant (MDR) microorganisms in intensive care units (ICUs) is quite high compared to in the community and other units in the hospital because ICU patients are generally older, have higher numbers of co-morbidities and immune-suppressed; moreover, the typically high rates of invasive procedures performed in the ICU increase the risk of infection by MDR microorganisms. Antimicrobial stewardship (AMS) refers to the implementation of coordinated interventions to improve and track the appropriate use of antibiotics while offering the best possible antibiotic prescription (according to dose, duration, and route of administration). Broad-spectrum antibiotics are frequently preferred in ICUs because of greater infection severity and colonization and infection by MDR microorganisms. For this reason, a number of studies on AMS in ICUs have increased in recent years. Reducing the use of broad-spectrum antibiotics forms the basis of AMS. For this purpose, parameters such as establishing an AMS team, limiting the use of broad-spectrum antimicrobials, terminating treatments early, using early warning systems, pursuing infection control, and providing education and feedback are used. In this review, current AMS practices in ICUs are discussed.
Collapse
Affiliation(s)
- Zeynep Ture
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri 38039,Turkey
| | - Rahmet Güner
- Department of Infectious Diseases and Clinical Microbiology, Yıldırım Beyazıt University, Ankara 06800, Turkey
| | - Emine Alp
- Department of Infectious Diseases and Clinical Microbiology, Yıldırım Beyazıt University, Ankara 06800, Turkey
| |
Collapse
|
31
|
Jahanshir M, Nobahar M, Ghorbani R, Malek F. Effect of clove mouthwash on the incidence of ventilator-associated pneumonia in intensive care unit patients: a comparative randomized triple-blind clinical trial. Clin Oral Investig 2023; 27:3589-3600. [PMID: 36961592 PMCID: PMC10036978 DOI: 10.1007/s00784-023-04972-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/19/2023] [Indexed: 03/25/2023]
Abstract
OBJECTIVES Ventilator-associated pneumonia (VAP) is one of the most common nosocomial infections in intensive care units (ICUs), and the use of mouthwash is the most widely used method to prevent its incidence. The aim of this study was to investigate effect of clove mouthwash on the incidence of VAP in the ICU. MATERIALS AND METHODS This comparative, randomized, triple-blind, clinical trial was conducted on 168 eligible ICU patients at Kosar Hospital in Semnan, Iran, during 2021-2022, who were divided into intervention and control groups using random blocks. The intervention group received clove extract mouthwash at 6.66% concentration, and the control group received chlorhexidine 0.2% twice a day for 5 days (routine care). Data were collected using a demographic questionnaire, and disease severity was measured based on the Acute Physiology and Chronic Health Evaluation II (APACHE II) score, oral health status was examined using the Beck Oral Assessment Scale (BOAS), and VAP diagnosis was made based on the Modified Clinical Pulmonary Infection Score (MCPIS). RESULTS Before the intervention, there was no significant difference in disease severity (p = 0.412) and oral health status (p = 0.239) between the patients in the two groups. After the intervention, 20.2% of the patients in the intervention group and 41.7% of those in the control group acquired VAP. The risk of VAP was 2.06 times higher in the control group than in the intervention group (p = 0.005, 95% CI: 1.26-3.37, RR = 2.06), but the severity of VAP did not differ significantly between the patients in the two groups (p = 0.557). CONCLUSION The findings showed that clove mouthwash reduces the incidence of VAP significantly. CLINICAL RELEVANCE Clove mouthwash can be used as a simple and low-cost method to prevent VAP in ICU patients.
Collapse
Affiliation(s)
- Mojgan Jahanshir
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Monir Nobahar
- Nursing Care Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Nursing, Faculty of Nursing and Midwifery, Semnan University of Medical Sciences, Semnan, Postal Code: 3513138111 Iran
| | - Raheb Ghorbani
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Farhad Malek
- Department of Internal Medicine, Kosar Hospital, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
32
|
Pichon M, Cremniter J, Burucoa C. French national epidemiology of bacterial superinfections in ventilator-associated pneumonia in patients infected with COVID-19: the COVAP study. Ann Clin Microbiol Antimicrob 2023; 22:50. [PMID: 37381046 DOI: 10.1186/s12941-023-00603-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Description and comparison of bacterial characteristics of ventilator-associated pneumonia (VAP) between critically ill intensive care unit (ICU) patients with COVID-19-positive, COVID + ; and non-COVID-19, COVID-. METHODS Retrospective, observational, multicenter study that focused on French patients during the first wave of the pandemic (March-April 2020). RESULTS 935 patients with identification of at least one bacteriologically proven VAP were included (including 802 COVID +). Among Gram-positive bacteria, S. aureus accounted for more than two-thirds of the bacteria involved, followed by Streptococcaceae and enterococci without difference between clinical groups regarding antibiotic resistance. Among Gram-negative bacteria, Klebsiella spp. was the most frequently observed bacterial genus in both groups, with K. oxytoca overrepresented in the COVID- group (14.3% vs. 5.3%; p < 0.05). Cotrimoxazole-resistant bacteria were over-observed in the COVID + group (18.5% vs. 6.1%; p <0.05), and after stratification for K. pneumoniae (39.6% vs. 0%; p <0.05). In contrast, overrepresentation of aminoglycoside-resistant strains was observed in the COVID- group (20% vs. 13.9%; p < 0.01). Pseudomonas sp. was more frequently isolated from COVID + VAPs (23.9% vs. 16.7%; p <0.01) but in COVID- showed more carbapenem resistance (11.1% vs. 0.8%; p <0.05) and greater resistance to at least two aminoglycosides (11.8% vs. 1.4%; p < 0.05) and to quinolones (53.6% vs. 7.0%; p <0.05). These patients were more frequently infected with multidrug-resistant bacteria than COVID + (40.1% vs. 13.8%; p < 0.01). CONCLUSIONS The present study demonstrated that the bacterial epidemiology and antibiotic resistance of VAP in COVID + is different from that of COVID- patients. These features call for further study to tailor antibiotic therapies in VAP patients.
Collapse
Affiliation(s)
- Maxime Pichon
- CHU Poitiers , Infectious Agents Department. Bacteriology and Infection Control Laboratory, 2 rue de la Milétrie, 86021, Poitiers, France.
- Université de Poitiers, INSERM. U1070 Pharmacology of Antimicrobial Agents and Antibiotic Resistance, Medicine and Pharmacy University, Poitiers, France.
| | - Julie Cremniter
- CHU Poitiers , Infectious Agents Department. Bacteriology and Infection Control Laboratory, 2 rue de la Milétrie, 86021, Poitiers, France
- Université de Poitiers, INSERM. U1070 Pharmacology of Antimicrobial Agents and Antibiotic Resistance, Medicine and Pharmacy University, Poitiers, France
| | - Christophe Burucoa
- CHU Poitiers , Infectious Agents Department. Bacteriology and Infection Control Laboratory, 2 rue de la Milétrie, 86021, Poitiers, France
- Université de Poitiers, INSERM. U1070 Pharmacology of Antimicrobial Agents and Antibiotic Resistance, Medicine and Pharmacy University, Poitiers, France
| |
Collapse
|
33
|
Alnimr A. Antimicrobial Resistance in Ventilator-Associated Pneumonia: Predictive Microbiology and Evidence-Based Therapy. Infect Dis Ther 2023:10.1007/s40121-023-00820-2. [PMID: 37273072 DOI: 10.1007/s40121-023-00820-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Ventilator-associated pneumonia (VAP) is a serious intensive care unit (ICU)-related infection in mechanically ventilated patients that is frequent, as more than half of antibiotics prescriptions in ICU are due to VAP. Various risk factors and diagnostic criteria for VAP have been referred to in different settings. The estimated attributable mortality of VAP can go up to 50%, which is higher in cases of antimicrobial-resistant VAP. When the diagnosis of pneumonia in a mechanically ventilated patient is made, initiation of effective antimicrobial therapy must be prompt. Microbiological diagnosis of VAP is required to optimize timely therapy since effective early treatment is fundamental for better outcomes, with controversy continuing regarding optimal sampling and testing. Understanding the role of antimicrobial resistance in the context of VAP is crucial in the era of continuously evolving antimicrobial-resistant clones that represent an urgent threat to global health. This review is focused on the risk factors for antimicrobial resistance in adult VAP and its novel microbiological tools. It aims to summarize the current evidence-based knowledge about the mechanisms of resistance in VAP caused by multidrug-resistant bacteria in clinical settings with focus on Gram-negative pathogens. It highlights the evidence-based antimicrobial management and prevention of drug-resistant VAP. It also addresses emerging concepts related to predictive microbiology in VAP and sheds lights on VAP in the context of coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Amani Alnimr
- Department of Microbiology, College of Medicine, King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia.
| |
Collapse
|
34
|
Zhao X, Ge Y, Zhang Y, Zhang W, Hu H, Li L, Sha T, Zeng Z, Wu F, Chen Z. Pathogen Diagnosis Value of Nanopore Sequencing in Severe Hospital-Acquired Pneumonia Patients. Infect Drug Resist 2023; 16:3293-3303. [PMID: 37260782 PMCID: PMC10228525 DOI: 10.2147/idr.s410593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
Background Next-generation sequencing of the metagenome (mNGS) is increasingly used in pathogen diagnosis for infectious diseases due to its short detection time. The time for Oxford Nanopore Technologies (ONT) sequencing-based etiology detection is further shortened compared with that of mNGS, but only a few studies have verified the time advantage and accuracy of ONT sequencing for etiology diagnosis. In 2022, a study confirmed that there was no significant difference in sensitivity and specificity between ONT and mNGS in suspected community-acquired pneumonia patients, which there was no clinical study verified in patients with SHAP. Methods From October 24 to November 20, 2022, 10 patients with severe hospital-acquired pneumonia (SHAP) in the Nanfang Hospital intensive care unit (ICU) were prospectively enrolled. Bronchoalveolar lavage fluid (BALF) was collected for ONT sequencing, mNGS, and traditional culture. The differences in pathogen detection time and diagnostic agreement among ONT sequencing, mNGS, traditional culture method, and clinical composite diagnosis were compared. Results Compared with mNGS and the traditional culture method, ONT sequencing had a significant advantage in pathogen detection time (9.6±0.7 h versus 24.7±2.7 h versus 132±58 h, P <0.05). The agreement rate between ONT sequencing and the clinical composite diagnosis was 73.3% (kappa value=0.737, P <0.05). Conclusion ONT sequencing has a potential advantage for rapidly identifying pathogens.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- The First Clinical Medical School, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yue Ge
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Department of School of Nursing, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yuan Zhang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - WenJie Zhang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - HongBin Hu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - LuLan Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Tong Sha
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - ZhenHua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Feng Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - ZhongQing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
35
|
Laakmann K, Eckersberg JM, Hapke M, Wiegand M, Bierwagen J, Beinborn I, Preußer C, Pogge von Strandmann E, Heimerl T, Schmeck B, Jung AL. Bacterial extracellular vesicles repress the vascular protective factor RNase1 in human lung endothelial cells. Cell Commun Signal 2023; 21:111. [PMID: 37189117 DOI: 10.1186/s12964-023-01131-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Sepsis is one of the leading causes of death worldwide and characterized by blood stream infections associated with a dysregulated host response and endothelial cell (EC) dysfunction. Ribonuclease 1 (RNase1) acts as a protective factor of vascular homeostasis and is known to be repressed by massive and persistent inflammation, associated to the development of vascular pathologies. Bacterial extracellular vesicles (bEVs) are released upon infection and may interact with ECs to mediate EC barrier dysfunction. Here, we investigated the impact of bEVs of sepsis-related pathogens on human EC RNase1 regulation. METHODS bEVs from sepsis-associated bacteria were isolated via ultrafiltration and size exclusion chromatography and used for stimulation of human lung microvascular ECs combined with and without signaling pathway inhibitor treatments. RESULTS bEVs from Escherichia coli, Klebsiella pneumoniae and Salmonella enterica serovar Typhimurium significantly reduced RNase1 mRNA and protein expression and activated ECs, while TLR2-inducing bEVs from Streptococcus pneumoniae did not. These effects were mediated via LPS-dependent TLR4 signaling cascades as they could be blocked by Polymyxin B. Additionally, LPS-free ClearColi™ had no impact on RNase1. Further characterization of TLR4 downstream pathways involving NF-кB and p38, as well as JAK1/STAT1 signaling, revealed that RNase1 mRNA regulation is mediated via a p38-dependent mechanism. CONCLUSION Blood stream bEVs from gram-negative, sepsis-associated bacteria reduce the vascular protective factor RNase1, opening new avenues for therapeutical intervention of EC dysfunction via promotion of RNase1 integrity. Video Abstract.
Collapse
Affiliation(s)
- Katrin Laakmann
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Jorina Mona Eckersberg
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Moritz Hapke
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Marie Wiegand
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Jeff Bierwagen
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Isabell Beinborn
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Christian Preußer
- Institute for Tumor Immunology and Core Facility - Extracellular Vesicles, Philipps-University Marburg, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology and Core Facility - Extracellular Vesicles, Philipps-University Marburg, Marburg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany
- Department of Pulmonary and Critical Care Medicine, Philipps-University Marburg, Marburg, Germany
- Member of the German Center for Infectious Disease Research (DZIF), Marburg, Germany
| | - Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany.
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
36
|
Ventilator-Associated Pneumonia in Immunosuppressed Patients. Antibiotics (Basel) 2023; 12:antibiotics12020413. [PMID: 36830323 PMCID: PMC9952186 DOI: 10.3390/antibiotics12020413] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Immunocompromised patients-including patients with cancer, hematological malignancies, solid organ transplants and individuals receiving immunosuppressive therapies for autoimmune diseases-account for an increasing proportion of critically-ill patients. While their prognosis has improved markedly in the last decades, they remain at increased risk of healthcare- and intensive care unit (ICU)-acquired infections. The most frequent of these are ventilator-associated lower respiratory tract infections (VA-LTRI), which include ventilator-associated pneumonia (VAP) and tracheobronchitis (VAT). Recent studies have shed light on some of the specific features of VAP and VAT in immunocompromised patients, which is the subject of this narrative review. Contrary to previous belief, the incidence of VAP and VAT might actually be lower in immunocompromised than non-immunocompromised patients. Further, the relationship between immunosuppression and the incidence of VAP and VAT related to multidrug-resistant (MDR) bacteria has also been challenged recently. Etiological diagnosis is essential to select the most appropriate treatment, and the role of invasive sampling, specifically bronchoscopy with bronchoalveolar lavage, as well as new molecular syndromic diagnostic tools will be discussed. While bacteria-especially gram negative bacteria-are the most commonly isolated pathogens in VAP and VAT, several opportunistic pathogens are a special concern among immunocompromised patients, and must be included in the diagnostic workup. Finally, the impact of immunosuppression on VAP and VAT outcomes will be examined in view of recent papers using improved statistical methodologies and treatment options-more specifically empirical antibiotic regimens-will be discussed in light of recent findings on the epidemiology of MDR bacteria in this population.
Collapse
|
37
|
Shen Y, Kuti JL. Optimizing antibiotic dosing regimens for nosocomial pneumonia: a window of opportunity for pharmacokinetic and pharmacodynamic modeling. Expert Opin Drug Metab Toxicol 2023; 19:13-25. [PMID: 36786064 DOI: 10.1080/17425255.2023.2178896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
INTRODUCTION Determining antibiotic exposure in the lung and the threshold(s) needed for effective antibacterial killing is paramount during development of new antibiotics for the treatment of nosocomial pneumonia, as these exposures directly affect clinical outcomes and resistance development. The use of pharmacokinetic and pharmacodynamic modeling is recommended by regulatory agencies to evaluate antibiotic pulmonary exposure and optimize dosage regimen selection. This process has been implemented in newer antibiotic development. AREAS COVERED This review will discuss the basis for conducting pharmacokinetic and pharmacodynamic studies to support dosage regimen selection and optimization for the treatment of nosocomial pneumonia. Pharmacokinetic/pharmacodynamic data that supported recent hospital-acquired bacterial pneumonia/ventilator-associated bacterial pneumonia indications for ceftolozane/tazobactam, ceftazidime/avibactam, imipenem/cilastatin/relebactam, and cefiderocol will be reviewed. EXPERT OPINION Optimal drug development requires the integration of preclinical pharmacodynamic studies, healthy volunteers and ideally patient bronchoalveolar lavage pharmacokinetic studies, Monte-Carlo simulation, and clinical trials. Currently, plasma exposure has been successfully used as a surrogate for lung exposure threshold. Future studies are needed to identify the value of lung pharmacodynamic thresholds in nosocomial pneumonia antibiotic dosage optimization.
Collapse
Affiliation(s)
- Yuwei Shen
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT USA
| | - Joseph L Kuti
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT USA
| |
Collapse
|
38
|
Li M, Bai W, Wang Y, Song L, Zhang S, Zhao J, Wu C, Li M, Tian X, Zeng X. Infection in systemic lupus erythematosus-associated diffuse alveolar hemorrhage: a potential key to improve outcomes. Clin Rheumatol 2023; 42:1573-1584. [PMID: 36797549 DOI: 10.1007/s10067-023-06517-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/21/2022] [Accepted: 01/17/2023] [Indexed: 02/18/2023]
Abstract
OBJECTIVES This study aimed to investigate the clinical characteristics, outcomes, and associated factors of patients with systemic lupus erythematosus-associated diffusive alveolar hemorrhage (SLE-DAH) stratified by infection status in a national representative cohort. METHODS This single-center retrospective study included 124 consecutive patients with SLE-DAH in a tertiary care center between 2006 and 2021. The diagnosis of DAH was made based on a comprehensive evaluation of clinical manifestations, laboratory and radiologic findings, and bronchoalveolar lavage. Demographics, clinical features, and survival curves were compared between patients with bacterial, non-bacterial, and non-infection groups. Univariate and multivariate logistic regression analyses were performed to determine the factors independently associated with bacterial infection in SLE-DAH. RESULTS Fifty-eight patients with SLE-DAH developed bacterial infection after DAH occurrence, thirty-two patients developed fungal and/or viral infection, and thirty-four patients were categorized as non-infection. The bacterial infection group have a worse prognosis (OR 3.059, 95%CI 1.469-6.369, p = 0.002) compared with the other two groups, with a mortality rate of 60.3% within 180 days after DAH occurrence. Factors independently associated with bacterial infections in SLE-DAH included hematuria (OR 4.523, 95%CI 1.068-19.155, p = 0.040), hemoglobin drop in the first 24 h after DAH occurred (OR 1.056, 95%CI 1.001-1.115, p = 0.049), and anti-Smith antibody (OR 0.167, 95%CI 0.052-0.535, p = 0.003). Glucocorticoid pulse therapy and cyclophosphamide were administered in more than 50% of patients regardless of their infectious status. According to clinical experience at our hospital and in previous studies, we recommended a comprehensive management algorithm for SLE-DAH based on infection stratification. CONCLUSION Infection, especially bacterial infection, is a severe complication and prognostic factor of SLE-DAH. Comprehensive management strategies, including diagnosis, evaluation, treatment, and monitoring, based on infection stratification may fundamentally improve outcomes of patients with SLE-DAH. Key Points • Bacterial infection is an important, but neglected, prognosis factor of systemic lupus erythematosus (SLE)-associated diffusive alveolar hemorrhage (DAH). • Hematuria, hemoglobin drop, and anti-Smith antibody can independently predict bacterial infections in SLE-DAH. • We put forward a comprehensive management algorithm based on infection stratification for SLE-DAH.
Collapse
Affiliation(s)
- Mucong Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Wei Bai
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Yanhong Wang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100730, China
| | - Lan Song
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Shangzhu Zhang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Chanyuan Wu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China.
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| |
Collapse
|
39
|
Muacevic A, Adler JR, Alghamdi R, Alsharif R, Kurdi L, Kamfar S, Alzahrani F, Maimani L. Risk Factors of Hospital-Acquired Pneumonia Among Hospitalized Patients With Cardiac Diseases. Cureus 2023; 15:e34253. [PMID: 36726767 PMCID: PMC9886362 DOI: 10.7759/cureus.34253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2023] [Indexed: 01/28/2023] Open
Abstract
Background To our knowledge, no studies have been done in Saudi Arabia to determine the risk factors of hospital-acquired pneumonia (HAP) among hospitalized cardiac patients. This study aimed to assess these risk factors. Methods A retrospective study was done at King Abdulaziz University Hospital (KAUH), Jeddah, Saudi Arabia. Five hundred hospitalized patients diagnosed with pre-existing cardiovascular disease (CVD) were included. A checklist was used to collect data about patients' demographic characteristics; BMI; smoking and alcohol abuse; type of cardiac disease; other chronic diseases; exposure to immunosuppressives; chemotherapy and radiotherapy in the last six months; glucocorticoid use; application of ventilator; initial, follow-up chest X-ray results; pneumonia vaccination status; nasogastric tube use; general anesthesia received; use of loop diuretics; presence of pulmonary diseases; levels of WBC, erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP); results of blood and respiratory cultures; number of hospitalizations and intensive care unit (ICU) admissions in the last six months; and Richmond Agitation and Sedation Scale (RASS) score. Results The prevalence of pneumonia was 7%. Females; patients with autoimmune diseases who were exposed to immunosuppressives or glucocorticoids; those with an initial or second abnormal chest X-ray; patients who used nasogastric tube, had pulmonary disease, and had high levels of WBC, ESR, or CRP; and patients hospitalized for more than two times had a significantly higher percentage of having pneumonia. Abnormal second chest X-ray, high ESR, and more than two times of hospitalization within the last six months were the risk factors of pneumonia on multivariate logistic regression analysis. Conclusion Better prevention and intervention programs are needed to assess the risk factors of pneumonia among admitted cardiac patients.
Collapse
|
40
|
Xiang Y, Ren X, Xu Y, Cheng L, Cai H, Hu T. Anti-Inflammatory and Anti-Bacterial Effects of Mouthwashes in Intensive Care Units: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:733. [PMID: 36613055 PMCID: PMC9819176 DOI: 10.3390/ijerph20010733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Mouthwashes are used as oral care for critical care patients to prevent infections. However, there are conflicting data concerning whether mouthwashes are needed as a part of daily oral care for critical care patients. This study aimed to evaluate the anti-inflammatory and anti-bacterial effects of mouthwashes for critical care patients. The PubMed, EMBASE, CENTRAL, and grey literature databases were searched by descriptors combining population (intensive care unit patients) and intervention (mouthwashes). After the screening, only randomized controlled trials (RCTs) evaluating the anti-inflammatory and anti-bacterial effects of mouthwashes in patient critical care were included. From the 1531 articles, 16 RCTs satisfied the eligibility criteria for systematic review and 10 were included in the meta-analyses. A significant difference was found in the incidence of ventilator associated pneumonia (VAP) (odds ratio [OR] 0.53, 95% confidential interval [95% CI] 0.33 to 0.86) between the mouthwash and placebo groups, while no significant difference was found in the mortality (OR 1.49, 95%CI 0.92 to 2.40); the duration of mechanical ventilation (weighted mean difference [WMD] -0.10, 95%CI -2.01 to 1.81); and the colonization of Staphylococcus aureus (OR 0.88, 95%CI 0.34 to 2.30), Escherichia coli (OR 1.19, 95%CI 0.50 to 2.82), and Pseudomonas aeruginosa (OR 1.16, 95%CI 0.27 to 4.91) between the two groups. In conclusion, mouthwashes were effective in decreasing the incidence of VAP. Thus, mouthwashes can be used as part of daily oral care for critical care patients.
Collapse
Affiliation(s)
| | | | | | | | - He Cai
- Correspondence: (H.C.); (T.H.); Tel.: +86-028-8550-3486 (H.C.); +86-028-8550-3486 (T.H.)
| | - Tao Hu
- Correspondence: (H.C.); (T.H.); Tel.: +86-028-8550-3486 (H.C.); +86-028-8550-3486 (T.H.)
| |
Collapse
|
41
|
Buterakos R, Jenkins PM, Cranford J, Haake RS, Maxson M, Moon J, Rice B, Sachwani-Daswani GR. An in-depth look at ventilator-associated pneumonia in trauma patients and efforts to increase bundle compliance, education and documentation in a surgical trauma critical care unit. Am J Infect Control 2022; 50:1333-1338. [PMID: 35131347 DOI: 10.1016/j.ajic.2022.01.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Ventilator-associated pneumonia (VAP) is considered the most common hospital acquired infection seen in critical care settings and leading cause of death in Intensive Care Units (ICU). The objective of this study was to assess whether specimen collection impacted diagnosis and if implementation of a VAP bundle would decrease rates at our center. METHODS This single center study design is a retrospective chart review from 2017 to 2020 utilizing the electronic medical record. A pre-/postintervention comparison was performed following implementation of a unit wide VAP bundle and nursing education. Descriptive statistics and continuous variables were analyzed with independent group t -tests, and categorical variables were analyzed with chi-squared tests. RESULTS Ventilator-associated pneumonia rates decreased in the postimplementation time (20.8%, n = 74 vs 12.2%, n = 15; P = .03). There were no significant differences in the patient profile of those who acquired VAP (ie, males 79.7% vs 86.7%, blunt injuries 63.5% vs 86.7% and severity scores 24.8 vs 25.1, pre vs postimplementation, respectively, all P-values greater than .05). DISCUSSION/CONCLUSIONS Reduction in VAP rates were achieved by implementing a standardized, evidence based, prevention protocol. Further research is warranted as studies have noted that patients requiring mechanical ventilation are at greater risk for VAP than other ICU patients due to the nature of their injuries and increased risk of prolonged mechanical ventilation ≥ 21 days.
Collapse
Affiliation(s)
- Roxanne Buterakos
- Department of Trauma and Acute Care Surgery, Hurley Medical Center, Flint, MI; School of Nursing, University of Michigan Flint, Flint, MI
| | - Phillip M Jenkins
- Department of Trauma and Acute Care Surgery, Hurley Medical Center, Flint, MI.
| | - James Cranford
- Department of Trauma and Acute Care Surgery, Hurley Medical Center, Flint, MI; Department of Emergency Medicine, University of Michigan Ann Arbor, Ann Arbor, MI
| | | | - Michelle Maxson
- Department of Trauma and Acute Care Surgery, Hurley Medical Center, Flint, MI
| | - Jihye Moon
- School of Nursing, University of Michigan Flint, Flint, MI
| | - Brittney Rice
- School of Nursing, University of Michigan Flint, Flint, MI
| | | |
Collapse
|
42
|
Novel agents in development for multidrug-resistant Gram-negative infections: potential new options facing multiple challenges. Curr Opin Infect Dis 2022; 35:589-594. [PMID: 36206150 DOI: 10.1097/qco.0000000000000885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW To review novel antiinfective agents in development for multidrug-resistant (MDR) Gram-negative bacterial infections. RECENT FINDINGS Four novel agents are in various phases of development (tebipenem, durlobactam-sulbactam, cefepime-taniborbactam, and xeruborbactam). Tebpipenem is an oral carbapenem with a recently completed phase III trial for complicated urinary tract infections while durlobactam-sulbactam represents a potential alternative for drug-resistant Acinetobacter baumannii . Cefepime-taniborbactam possesses in-vitro potency against a range of troubling pathogens and we await further information on a recently completed study on complicated urinary tract infection. Finally, xeruborbactam is an ultrabroad beta-lactamase inhibitor that can be paired with a range of intravenous and oral agents. It exhibits enhanced in-vitro activity against many MDR pathogens, including those resistant to newer, broader spectrum options. Data in humans with xeruborbactam are limited. SUMMARY Each of the newer options reviewed possesses a unique range of in-vitro activity against select, challenging pathogens with some narrowly tailored and other broader in activity. Several have both oral and intravenous formulations. Two agents have presented data from recent phase III trials, whereas two are not as advanced in their clinical programs.
Collapse
|
43
|
Otterbeck A, Skorup P, Hanslin K, Larsson A, Stålberg J, Hjelmqvist H, Lipcsey M. Intravenous anti- P. aeruginosa IgY-antibodies do not decrease pulmonary bacterial concentrations in a porcine model of ventilator-associated pneumonia. Innate Immun 2022; 28:224-234. [PMID: 36373663 PMCID: PMC9900256 DOI: 10.1177/17534259221114217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 11/15/2022] Open
Abstract
Ventilator associated pneumonia (VAP) caused by P. aeruginosa is a cause of morbidity and mortality in critically ill patients. The spread of pathogens with anti-microbial resistance mandates the investigation of novel therapies. Specific polyclonal anti-P. aeruginosa IgY-antibodies (Pa-IgY) might be effective for VAP caused by P. aeruginosa. The objective of this study was to investigate if intravenous Pa-IgY decreases the lower airway concentration of P. aeruginosa in VAP. We used a double blind randomized placebo controlled porcine model of VAP caused by P. aeruginosa. Eighteen pigs were randomized to either receive intravenous Pa-IgY or placebo. Repeated registration of physiological parameters and sampling was performed for 27 h. Concentration of P. aeruginosa in BAL-cultures was similar in both groups with 104.97 ± 102.09 CFU/mL in the intervention group vs 104.37 ± 102.62 CFU/mL in the control group at the end of the experiment. The intervention group had higher heart rate, cardiac index, oxygen delivery and arterial oxygen tension/fraction of inspired oxygen-ratio, but lower plasma lactate and blood hemoglobin levels than the control group. In summary, in an anesthetized and mechanically ventilated porcine model of VAP, Pa-IgY at the dose used did not decrease concentrations of P. aeruginosa in the lower airways.
Collapse
Affiliation(s)
- A. Otterbeck
- Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - P. Skorup
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - K. Hanslin
- Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - A. Larsson
- Section of Clinical Chemistry, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - J. Stålberg
- Section of Clinical Chemistry, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - H. Hjelmqvist
- Anesthesiology and Intensive Care, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - M. Lipcsey
- Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Hedenstierna laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
44
|
Agyeman WY, Bisht A, Gopinath A, Cheema AH, Chaludiya K, Khalid M, Nwosu M, Konka S, Khan S. A Systematic Review of Antibiotic Resistance Trends and Treatment Options for Hospital-Acquired Multidrug-Resistant Infections. Cureus 2022; 14:e29956. [PMID: 36381838 PMCID: PMC9635809 DOI: 10.7759/cureus.29956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
Antimicrobial resistance is a major public health challenge described by the World Health Organization as one of the top 10 public health challenges worldwide. Drug-resistant microbes contribute significantly to morbidity and mortality in the hospital, especially in the critical care unit. The primary etiology of increasing antibiotic resistance is inappropriate and excessive use of antibiotics. The alarming rise of drug-resistant microbes worldwide threatens to erode our ability to treat infections with our current armamentarium of antibiotics. Unfortunately, the pace of development of new antibiotics by the pharmaceutical industry has not kept up with rising resistance to expand our options to treat microbial infections. The costs of antibiotic resistance include death and disability, extended hospital stays due to prolonged sickness, need for expensive therapies, rising healthcare expenditure, reduced productivity from time out of the workforce, and rising penury. This review sums up the common mechanisms, trends, and treatment options for hospital-acquired multidrug-resistant microbes.
Collapse
Affiliation(s)
- Walter Y Agyeman
- Internal Medicine, Piedmont Athens Regional Medical Center, Georgia, USA
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aakash Bisht
- Internal Medicine, Government Medical College, Amritsar, Amritsar, IND
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ankit Gopinath
- Internal Medicine, Kasturba Medical College, Manipal, Manipal, IND
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ameer Haider Cheema
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Keyur Chaludiya
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Maham Khalid
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Marcellina Nwosu
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Srujana Konka
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
45
|
Huang Y, Wang W, Huang Q, Wang Z, Xu Z, Tu C, Wan D, He M, Yang X, Xu H, Wang H, Zhao Y, Tu M, Zhou Q. Clinical Efficacy and In Vitro Drug Sensitivity Test Results of Azithromycin Combined With Other Antimicrobial Therapies in the Treatment of MDR P. aeruginosa Ventilator-Associated Pneumonia. Front Pharmacol 2022; 13:944965. [PMID: 36034783 PMCID: PMC9399346 DOI: 10.3389/fphar.2022.944965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: The aim of the research was to study the effect of azithromycin (AZM) in the treatment of MDR P. aeruginosa VAP combined with other antimicrobial therapies. Methods: The clinical outcomes were retrospectively collected and analyzed to elucidate the efficacy of different combinations involving azithromycin in the treatment of MDR-PA VAP. The minimal inhibitory concentration (MIC) of five drugs was measured by the agar dilution method against 27 isolates of MDR-PA, alone or in combination. Results: The incidence of VAP has increased approximately to 10.4% (961/9245) in 5 years and 18.4% (177/961) caused by P. aeruginosa ranking fourth. A total of 151 cases of MDR P. aeruginosa were included in the clinical retrospective study. Clinical efficacy results are as follows: meropenem + azithromycin (MEM + AZM) was 69.2% (9/13), cefoperazone/sulbactam + azithromycin (SCF + AZM) was 60% (6/10), and the combination of three drugs containing AZM was 69.2% (9/13). The curative effect of meropenem + amikacin (MEM + AMK) was better than that of the meropenem + levofloxacin (MEM + LEV) group, p = 0.029 (p < 0.05). The curative effect of cefoperazone/sulbactam + amikacin (SCF + AMK) was better than that of the cefoperazone/sulbactam + levofloxacin (SCF + LEV) group, p = 0.025 (p < 0.05). There was no significant difference between combinations of two or three drugs containing AZM, p > 0.05 (p = 0.806). From the MIC results, the AMK single drug was already very sensitive to the selected strains. When MEM or SCF was combined with AZM, the sensitivity of them to strains can be significantly increased. When combined with MEM and AZM, the MIC50 and MIC90 of MEM decreased to 1 and 2 ug/mL from 8 to 32 ug/mL. When combined with SCF + AZM, the MIC50 of SCF decreased to 16 ug/mL, and the curve shifted obviously. However, for the combination of SCF + LEV + AZM, MIC50 and MIC90 could not achieve substantive changes. From the FIC index results, the main actions of MEM + AZM were additive effects, accounting for 72%; for the combination of SCF + AZM, the additive effect was 40%. The combination of AMK or LEV with AZM mainly showed unrelated effects, and the combination of three drugs could not improve the positive correlation between LEV and AZM. Conclusion: AZM may increase the effect of MEM or SCF against MDR P. aeruginosa VAP. Based on MEM or SCF combined with AMK or AZM, we can achieve a good effect in the treatment of MDR P. aeruginosa VAP.
Collapse
Affiliation(s)
- Yuqin Huang
- Intensive Care Unit, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Wenguo Wang
- Intensive Care Unit, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Qiang Huang
- Intensive Care Unit, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Zhengyan Wang
- Department of Respiratory Medicine, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Zhuanzhuan Xu
- Department of Respiratory Medicine, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Chaochao Tu
- Department of Respiratory Medicine, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Dongli Wan
- Intensive Care Unit, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Miaobo He
- Intensive Care Unit, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Xiaoyi Yang
- Department of Medicine, First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Huaqiang Xu
- Intensive Care Unit, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
- *Correspondence: Huaqiang Xu, ; Hanqin Wang, ; Ying Zhao, ; Mingli Tu, ; Quan Zhou,
| | - Hanqin Wang
- Center for Translational Medicine, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
- *Correspondence: Huaqiang Xu, ; Hanqin Wang, ; Ying Zhao, ; Mingli Tu, ; Quan Zhou,
| | - Ying Zhao
- Department of Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Huaqiang Xu, ; Hanqin Wang, ; Ying Zhao, ; Mingli Tu, ; Quan Zhou,
| | - Mingli Tu
- Department of Respiratory Medicine, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
- *Correspondence: Huaqiang Xu, ; Hanqin Wang, ; Ying Zhao, ; Mingli Tu, ; Quan Zhou,
| | - Quan Zhou
- Intensive Care Unit, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
- *Correspondence: Huaqiang Xu, ; Hanqin Wang, ; Ying Zhao, ; Mingli Tu, ; Quan Zhou,
| |
Collapse
|
46
|
Wang R, Feng R, Xia C, Ruan F, Luo P, Guo J. Early detection of gram‑negative bacteria using metagenomic next‑generation sequencing in acute respiratory distress syndrome: A case report. Exp Ther Med 2022; 24:573. [PMID: 35949316 PMCID: PMC9353542 DOI: 10.3892/etm.2022.11510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022] Open
Abstract
Metagenomic next-generation sequencing (mNGS) is an effective method that can be used for the identification of early pathogens in patients with suspected severe pneumonia. However, the potential of mNGS for evaluating the prognosis of acute respiratory distress syndrome (ARDS) in patients with severe pneumonia remains unclear. In the present report, hospital-acquired gram-negative bacteria infections were detected in a case using metagenomic next-generation sequencing (mNGS) in a sample of bronchoalveolar fluid. This was obtained from a 58-year-old male patient with traumatic wet lung after a neurosurgery. According to the results, of which the profiles of the resistance genes were detected by mNGS, drugs designed to control infection were adjusted, namely to polymyxin B (500,000 U/12 h), azithromycin (0.5 g/24 h) and ganciclovir (0.25 g/12 h). Following adjusting treatment for 8 days, the symptoms of lung infection and hypoxemia were markedly improved, resulting in the patient being transferred out of the intensive care unit 15 days after treatment. To conclude, observations from the present report suggest that mNGS is a useful method for the early identification of pathogens in patients with pneumonia caused by ARDS. However, further studies are required to identify the complementary role of mNGS in supporting conventional microbiological methods in routine clinical practice.
Collapse
Affiliation(s)
- Rong Wang
- Department of Critical Medicine, Union Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430100, P.R. China
| | - Rong Feng
- Shanghai Topgen Biomedical Technology Co., Ltd., Shanghai 201318, P.R. China
| | - Chaoran Xia
- Shanghai Topgen Biomedical Technology Co., Ltd., Shanghai 201318, P.R. China
| | - Fangying Ruan
- Shanghai Topgen Biomedical Technology Co., Ltd., Shanghai 201318, P.R. China
| | - Peng Luo
- Shanghai Topgen Biomedical Technology Co., Ltd., Shanghai 201318, P.R. China
| | - Jun Guo
- Department of Critical Medicine, Union Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430100, P.R. China
| |
Collapse
|
47
|
Santos AP, Gonçalves LC, Oliveira ACC, Queiroz PHP, Ito CRM, Santos MO, Carneiro LC. Bacterial Co-Infection in Patients with COVID-19 Hospitalized (ICU and Not ICU): Review and Meta-Analysis. Antibiotics (Basel) 2022; 11:antibiotics11070894. [PMID: 35884147 PMCID: PMC9312179 DOI: 10.3390/antibiotics11070894] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023] Open
Abstract
The prevalence of patients hospitalized in ICUs with COVID-19 and co-infected by pathogenic bacteria is relevant in this study, considering the integrality of treatment. This systematic review assesses the prevalence of co-infection in patients admitted to ICUs with SARS-CoV-2 infection, using the PRISMA guidelines. We examined the results of the PubMed, Embase, and SciELO databases, searching for published English literature from December 2019 to December 2021. A total of 542 rec ords were identified, but only 38 were eligible and, and of these only 10 were included. The tabulated studies represented a sample group of 1394 co-infected patients. In total, 35%/138 of the patients were co-infected with Enterobacter spp., 27% (17/63) were co-infected with methicillin-sensitive Staphylococ cus aureus, 21% (84/404) were co-infected with Klebsiella spp., 16% (47/678) of patients were co-infected with coagulase-negative Staphylococcus, 13% (10/80) co-infected with Escherichia coli (ESBL), and 3% (30/1030) of patients were co-infected with Pseudomonas aeruginosa. The most common co-infections were related to blood flow; although in the urinary and respiratory tracts of patients Streptococcus pneumoniae was found in 57% (12/21) of patients, coagulase negative Staphylococcus in 44% (7/16) of patients, and Escherichia coli was found in 37% (11/29) of patients. The present research demonstrated that co-infections caused by bacteria in patients with COVID-19 are a concern.
Collapse
Affiliation(s)
- Adailton P. Santos
- Medicine College, Federal University of Goiás, 235 Street, Goiânia 74690-900, Brazil; (A.P.S.); (L.C.G.); (A.C.C.O.); (P.H.P.Q.); (M.O.S.)
| | - Lucas C. Gonçalves
- Medicine College, Federal University of Goiás, 235 Street, Goiânia 74690-900, Brazil; (A.P.S.); (L.C.G.); (A.C.C.O.); (P.H.P.Q.); (M.O.S.)
| | - Ana C. C. Oliveira
- Medicine College, Federal University of Goiás, 235 Street, Goiânia 74690-900, Brazil; (A.P.S.); (L.C.G.); (A.C.C.O.); (P.H.P.Q.); (M.O.S.)
| | - Pedro H. P. Queiroz
- Medicine College, Federal University of Goiás, 235 Street, Goiânia 74690-900, Brazil; (A.P.S.); (L.C.G.); (A.C.C.O.); (P.H.P.Q.); (M.O.S.)
| | - Célia R. M. Ito
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, 235 Street, Goiânia 74605-050, Brazil;
| | - Mônica O. Santos
- Medicine College, Federal University of Goiás, 235 Street, Goiânia 74690-900, Brazil; (A.P.S.); (L.C.G.); (A.C.C.O.); (P.H.P.Q.); (M.O.S.)
| | - Lilian C. Carneiro
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, 235 Street, Goiânia 74605-050, Brazil;
- Correspondence: ; Tel.: +55-(62)-32096528
| |
Collapse
|
48
|
Shen S, Hou N. Adverse Drug Reactions Caused by Antimicrobials Treatment for Ventilator-Associated Pneumonia. Front Pharmacol 2022; 13:921307. [PMID: 35712710 PMCID: PMC9197493 DOI: 10.3389/fphar.2022.921307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Shan Shen
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ning Hou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
49
|
Pathogenesis of pneumonia and acute lung injury. Clin Sci (Lond) 2022; 136:747-769. [PMID: 35621124 DOI: 10.1042/cs20210879] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022]
Abstract
Pneumonia and its sequelae, acute lung injury, present unique challenges for pulmonary and critical care healthcare professionals, and these challenges have recently garnered global attention due to the ongoing Sars-CoV-2 pandemic. One limitation to translational investigation of acute lung injury, including its most severe manifestation (acute respiratory distress syndrome, ARDS) has been heterogeneity resulting from the clinical and physiologic diagnosis that represents a wide variety of etiologies. Recent efforts have improved our understanding and approach to heterogeneity by defining sub-phenotypes of ARDS although significant gaps in knowledge remain. Improving our mechanistic understanding of acute lung injury and its most common cause, infectious pneumonia, can advance our approach to precision targeted clinical interventions. Here, we review the pathogenesis of pneumonia and acute lung injury, including how respiratory infections and lung injury disrupt lung homoeostasis, and provide an overview of respiratory microbial pathogenesis, the lung microbiome, and interventions that have been demonstrated to improve outcomes-or not-in human clinical trials.
Collapse
|
50
|
Velásquez-Garcia L, Mejia-Sanjuanelo A, Viasus D, Carratalà J. Causative Agents of Ventilator-Associated Pneumonia and Resistance to Antibiotics in COVID-19 Patients: A Systematic Review. Biomedicines 2022; 10:biomedicines10061226. [PMID: 35740246 PMCID: PMC9220146 DOI: 10.3390/biomedicines10061226] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Patients with coronavirus disease 2019 (COVID-19) have an increased risk of ventilator-associated pneumonia (VAP). This systematic review updates information on the causative agents of VAP and resistance to antibiotics in COVID-19 patients. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), PubMed/MEDLINE, and LILACS databases from December 2019 to December 2021. Studies that described the frequency of causative pathogens associated with VAP and their antibiotic resistance patterns in critically ill COVID-19 adult patients were included. The Newcastle-Ottawa Quality Assessment Scale was used for critical appraisal. The data are presented according to the number or proportions reported in the studies. A total of 25 articles were included, involving 2766 VAP cases in COVID-19 patients (range 5–550 VAP cases). Most of the studies included were carried out in France (32%), Italy (20%), Spain (12%) and the United States (8%). Gram-negative bacteria were the most frequent causative pathogens of VAP (range of incidences in studies: P. aeruginosa 7.5–72.5%, K. pneumoniae 6.9–43.7%, E. cloacae 1.6–20% and A. baumannii 1.2–20%). S. aureus was the most frequent Gram-positive pathogen, with a range of incidence of 3.3–57.9%. The median incidence of Aspergillus spp. was 6.4%. Few studies have recorded susceptibility patterns among Gram-negative causative pathogens and have mainly reported extended-spectrum beta-lactamase (ESBL), AmpC, and carbapenem resistance. The median frequency of methicillin resistance among S. aureus isolates was 44.4%. Our study provides the first comprehensive description of the causative agents and antibiotic resistance in COVID-19 patients with VAP. Gram-negative bacteria were the most common pathogens causing VAP. Data on antibiotic resistance patterns in the published medical literature are limited, as well as information about VAP from low- and middle-income countries.
Collapse
Affiliation(s)
- Larry Velásquez-Garcia
- Department of Medicine, Division of Health Sciences, Universidad del Norte and Hospital Universidad del Norte, Barranquilla 081001, Colombia; (L.V.-G.); (A.M.-S.); (D.V.)
| | - Ana Mejia-Sanjuanelo
- Department of Medicine, Division of Health Sciences, Universidad del Norte and Hospital Universidad del Norte, Barranquilla 081001, Colombia; (L.V.-G.); (A.M.-S.); (D.V.)
| | - Diego Viasus
- Department of Medicine, Division of Health Sciences, Universidad del Norte and Hospital Universidad del Norte, Barranquilla 081001, Colombia; (L.V.-G.); (A.M.-S.); (D.V.)
| | - Jordi Carratalà
- Department of Infectious Diseases, Bellvitge University Hospital—Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, 08907 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|