1
|
Amaral GO, do Espirito Santo G, Avanzi IR, Parisi JR, de Souza A, Garcia-Motta H, Garcia LA, Achilles R, Ribeiro DA, de Oliveira F, Rennó ACM. Injectable hydrogels for treating skin injuries in diabetic animal models: a systematic review. J Diabetes Metab Disord 2025; 24:17. [PMID: 39712339 PMCID: PMC11659534 DOI: 10.1007/s40200-024-01510-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024]
Abstract
Purpose One of the main causes of chronic wounds is diabetes mellitus (DM), a metabolic disease characterized by chronic hyperglycemia. In this context, hydrogels have been used as a promising treatment for stimulating tissue ingrowth and healing in these injuries. This systematic review aimed to evaluate the findings of studies that investigated the effects of injectable hydrogels of various origins on skin wound healing using in vivo experimental models in diabetic rats. Methods This review was conducted in March 2023 using two databases, PubMed and Scopus, following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines and the SYRCLE (Systematic Review Centre for Laboratory Animal Experimentation). The following Medical Subject Headings (MeSH) descriptors were used: "hydrogels," "injectable," "in vivo," "diabetes mellitus," and "skin wound dressing." Results After the eligibility assessment, 12 studies were selected and analyzed from an initial 95 articles identified across databases. The studies demonstrated that a variety of injectable hydrogels showed biocompatibility and bioactivity, effectively interacting with skin tissue in diabetic wound models. These hydrogels were assessed for their compositions, structural properties, and in vivo effects on wound closure, inflammation reduction, and collagen deposition. Also, immunofluorescence analyses revealed increased expression of neoangiogenesis markers and reduced inflammatory factors in treated groups, highlighting the hydrogels potential for enhancing skin healing in diabetic wounds. Conclusion Injectable hydrogels show significant potential as an effective treatment for diabetic skin wounds, though further clinical studies are needed to fully assess their biological performance.
Collapse
Affiliation(s)
- Gustavo Oliva Amaral
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Giovanna do Espirito Santo
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Ingrid Regina Avanzi
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Júlia Risso Parisi
- Metropolitan University of Santos (UNIMES), 8 Francisco Glycerio Avenue, Santos, SP 11045002 Brazil
| | - Amanda de Souza
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Homero Garcia-Motta
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Livia Assis Garcia
- Scientific and Technological Institute, Brazil University, São Paulo, SP 08230-030 Brazil
| | - Rodrigo Achilles
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Flavia de Oliveira
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Ana Claudia Muniz Rennó
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| |
Collapse
|
2
|
Askari M, Keshavarz Zarjani A, Sayyahi A, Badpa R, Naghizadeh A. Chitosan Nanoparticles: A Promising Candidate in Wound Healing. INT J LOW EXTR WOUND 2025:15347346251325057. [PMID: 40096054 DOI: 10.1177/15347346251325057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The wound healing process is really interesting, dynamic, and complex, captivating researchers for a long time. With the growing worldwide concern regarding the prevalence of wounds and the associated healthcare challenges, efforts to expedite this natural process have intensified. Fortunately, with a particular focus on improving wound dressings, significant advancements have been made in wound care management including using of nanoparticle-based delivery systems. These nanoparticles, similar to molecular messengers, purchase vast promise for revolutionizing wound treatment. Among them, chitosan nanoparticles stand out as remarkable candidates. Their safety profile, biocompatibility, and bioactivity make them particularly appealing for wound care. In this article, we will delve into the intricacies of wound healing and then discuss the wound-healing properties of chitosan nanoparticles, supported by comprehensive study results. Current evidence highlights the wound-healing effects of chitosan nanoparticles, which can be considered independent agents for wound management. In conclusion, the utilization of chitosan nanoparticles for wound healing presents significant opportunities and potential.Graphical abstract [Formula: see text].
Collapse
Affiliation(s)
- Masoumeh Askari
- Department of Anatomy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhesam Keshavarz Zarjani
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Sayyahi
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Raziye Badpa
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Naghizadeh
- Department of Environmental Health Engineering, Faculty of Health, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
3
|
Bu F, Yu K, Wang J, Rong L, Li Q. Knowledge map and emerging trends of oxidative stress in wound healing: A bibliometric analysis from 2000 to 2023. Medicine (Baltimore) 2025; 104:e39970. [PMID: 40068035 PMCID: PMC11902982 DOI: 10.1097/md.0000000000039970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 03/14/2025] Open
Abstract
The skin's integrity is vulnerable to external elements that can induce injuries, leading to wound formation. It's crucial to comprehend wound healing processes to protect the body when this protective barrier is compromised. Over the last 2 decades, there has been considerable progress in understanding delayed wound healing, with a focus on the mechanisms and microenvironmental factors involved. The connection between oxidative stress and wound healing has recently gained attention, emphasizing the need for in-depth analysis to propel further advancements and interventions in this area. Despite these advancements, there remains a noticeable void in the literature concerning the application of scientometric methods to systematically examine the progression of wound healing research. Additionally, a comprehensive assessment of the research output and effectiveness of various researchers and institutions in this field is lacking. To address these gaps, we analyzed data from the Web of Science Core Collection from January 1, 2000, to December 31, 2023, utilizing relevant keywords. Using CiteSpace, we created visual maps that depict the evolution and structure of keyword clusters, and both CiteSpace and VOSviewer were used to evaluate the performance of research networks across different countries, institutions, and authors. This data was methodically analyzed. The leading institution in this field is the Chinese Academy of Medical Sciences. The key researchers are Bekeschus, Sander; Li, Yang; Bi, Yang; Fan, Daidi; and Zhang, Yu. Our software analysis reviewed 3025 studies, revealing 19 co-citation clusters that highlight current trends in research on oxidative stress and wound healing. Prominent journals, leading institutions, and key researchers were identified. Key emerging research directions include studying the mechanisms linking oxidative stress to wound healing, exploring the use of antioxidant substances in wound dressings, and investigating how nanomaterials in dressings can influence oxidative stress. These focal points emphasize the significance of understanding oxidative stress's impact on wound healing and investigating new methods to enhance therapeutic efficacy. This comprehensive approach not only fills a gap in the current literature but also sets the stage for future research endeavors in this crucial area of health science.
Collapse
Affiliation(s)
- Fan Bu
- Department of Otolaryngology, Head, Neck and Plastic Surgery, Honghui Hospital, Xi’an Jiaotong University, Xian, China
- Department of Plastic and Aesthetic Surgery, Honghui Hospital, Xi’an Jiaotong University, Xian, China
| | - Kai Yu
- Department of Plastic and Aesthetic Surgery, The First Hospital of Jilin University, Changchun, China
- Department of Urology, The First Hospital of Jilin University Changchun, Changchun, China
| | - Jinnan Wang
- China Department of Urology, The First Hospital of Jilin University, Changchun, China
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, China
| | - Li Rong
- China Department of Urology, The First Hospital of Jilin University, Changchun, China
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, China
| | - Qiaoyu Li
- Department of Otolaryngology, Head, Neck and Plastic Surgery, Honghui Hospital, Xi’an Jiaotong University, Xian, China
| |
Collapse
|
4
|
Moayedi M, Ahmadi T, Nekouie V, Dehaghani MT, Shojaei S, Benisi SZ, Bakhsheshi-Rad HR. Preparation and assessment of polylactic acid-curcumin nanofibrous wound dressing containing silver nanoparticles for burn wound treatment. Burns 2025; 51:107442. [PMID: 40088691 DOI: 10.1016/j.burns.2025.107442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 01/25/2025] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
This study aims to produce and evaluate nanofibrous wound dressings through the electrospinning method, utilizing polylactic acid (PLA), curcumin (Cur), and silver nanoparticles (AgNPs). For this purpose, five types of wound dressings with PLA, PLA+Cur, PLA+Cur+ 1 %AgNPs, PLA+Cur+ 2 %AgNPs and PLA+Cur+ 3 %AgNPs were produced using the electrospinning method. Analysis of the Fourier transform infrared spectroscopy and scanning electron microscopic observations indicated successful fabrication, with nanometer diameters achieved in all electrospun samples. Examination of water absorption of wound dressings revealed that over 40 h the electrospun samples had variable water absorption between 0 % and 0.25 %. The results of the curcumin release test over one week showed that the nanofibers with PLA+Cur+ 2 %AgNPs exhibited the lowest release rate, while those with PLA+Cur+ 3 %AgNPs showed the highest release. Assessment of mechanical properties revealed that the tensile strength of the nanofibers increased by adding curcumin to polylactic acid, while the addition of a high content of AgNPs led to a decrease in tensile strength. Also, the PLA+Cur dressing demonstrated 84.06 % and the PLA+Cur+ 3 %AgNPs dressing exhibited 99.12 % antibacterial properties. The cell culture test demonstrated that the incorporation of curcumin and AgNPs increasedboth the growth and proliferation, as well as the adhesion on the nanofibrous wound dressing. Thus, the PLA+Cur+ 1 %AgNPs nanofibrous scaffold, as a multipurpose dressing, presented considerable promise for wound healing and burn treatment.
Collapse
Affiliation(s)
- Mehri Moayedi
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Tahmineh Ahmadi
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Vahid Nekouie
- Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield S1 1WB, UK; Materials and Engineering Research Institute (MERI), Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Majid Taghian Dehaghani
- Department of Materials and Metallurgical Engineering, Abadeh Higher Education Centre, Shiraz University, Abadeh, Iran
| | - Shahrokh Shojaei
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Soheila Zamalui Benisi
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran; Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| |
Collapse
|
5
|
Sadeghi-Avalshahr A, Nazarnezhad S, Hassanzadeh H, Kazemi Noughabi M, Namaei-Ghasemnia N, Jalali M. Synergistic effects of incorporated additives in multifunctional dressings for chronic wound healing: An updated comprehensive review. Wound Repair Regen 2025; 33:e13238. [PMID: 39682073 DOI: 10.1111/wrr.13238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024]
Abstract
Detailed reviewing of the complicated process of wound healing reveals that it resembles an orchestrated symphony via a precise and calculated collaboration of relevant cells at the wound site. The domino-like function of various cytokines, chemokines, growth factors and small biological molecules such as antibacterial peptides all come together to successfully execute the wound healing process. Therefore, it appears that the use of a wound dressing containing only a single additive with specific properties and capabilities may not be particularly effective in treating the complex conditions that are usual in the environment of chronic wounds. The use of multifunctional dressings incorporating various additives has shown promising results in enhancing wound healing processes. This comprehensive review article explores the synergistic effects of integrated additives in such dressings, aiming to provide an updated understanding of their combined therapeutic potential. By analysing recent advancements and research findings, this review sheds light on the intricate interactions between different additives, their mechanisms of action and their cumulative impact on wound healing outcomes. Moreover, the review discusses the importance of utilising combined therapies in wound care and highlights the potential future directions and implications for research and clinical practice in the field of wound healing management.
Collapse
Affiliation(s)
- Alireza Sadeghi-Avalshahr
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Materials Research, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Halimeh Hassanzadeh
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Mahboubeh Kazemi Noughabi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Negar Namaei-Ghasemnia
- Department of Materials Research, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Mehdi Jalali
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Zhou G, Xu R, Groth T, Wang Y, Yuan X, Ye H, Dou X. The Combination of Bioactive Herbal Compounds with Biomaterials for Regenerative Medicine. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:607-630. [PMID: 38481114 DOI: 10.1089/ten.teb.2024.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Regenerative medicine aims to restore the function of diseased or damaged tissues and organs by cell therapy, gene therapy, and tissue engineering, along with the adjunctive application of bioactive molecules. Traditional bioactive molecules, such as growth factors and cytokines, have shown great potential in the regulation of cellular and tissue behavior, but have the disadvantages of limited source, high cost, short half-life, and side effects. In recent years, herbal compounds extracted from natural plants/herbs have gained increasing attention. This is not only because herbal compounds are easily obtained, inexpensive, mostly safe, and reliable, but also owing to their excellent effects, including anti-inflammatory, antibacterial, antioxidative, proangiogenic behavior and ability to promote stem cell differentiation. Such effects also play important roles in the processes related to tissue regeneration. Furthermore, the moieties of the herbal compounds can form physical or chemical bonds with the scaffolds, which contributes to improved mechanical strength and stability of the scaffolds. Thus, the incorporation of herbal compounds as bioactive molecules in biomaterials is a promising direction for future regenerative medicine applications. Herein, an overview on the use of bioactive herbal compounds combined with different biomaterial scaffolds for regenerative medicine application is presented. We first introduce the classification, structures, and properties of different herbal bioactive components and then provide a comprehensive survey on the use of bioactive herbal compounds to engineer scaffolds for tissue repair/regeneration of skin, cartilage, bone, neural, and heart tissues. Finally, we highlight the challenges and prospects for the future development of herbal scaffolds toward clinical translation. Overall, it is believed that the combination of bioactive herbal compounds with biomaterials could be a promising perspective for the next generation of regenerative medicine. Impact statement This article reviews the combination of bioactive herbal compounds with biomaterials in the promotion of skin, cartilage, bone, neural, and heart regeneration, due to the anti-inflammatory, antibacterial, antioxidative, and proangiogenic effects of the herbal compounds, but also their effects on the improvement of mechanic strength and stability of biomaterial scaffolds. This review provides a promising direction for the next generation of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Guoying Zhou
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruojiao Xu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Thomas Groth
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Yanying Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xingyu Yuan
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hua Ye
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
- Oxford Suzhou Centre for Advanced Research, University of Oxford, Suzhou, China
| | - Xiaobing Dou
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
7
|
Ahire JH, Wang Q, Rowley G, Chambrier I, Crack JC, Bao Y, Chao Y. Polyurethane infused with heparin capped silver nanoparticles dressing for wound healing application: Synthesis, characterization and antimicrobial studies. Int J Biol Macromol 2024; 282:136557. [PMID: 39426779 DOI: 10.1016/j.ijbiomac.2024.136557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Burn and diabetic wounds present significant challenges due to their complex nature, delayed healing, pain, and high susceptibility to bacterial infections. In this study, we developed and evaluated polyurethane (PU) nanofibers embedded with heparin-functionalized silver nanoparticles (hep-AgNPs) using an electrospinning technique. The choice to functionalize silver nanoparticles with heparin was based on heparin's established role in modulating inflammation and promoting angiogenesis. The electrospun nanofibers exhibited smooth, bead-free morphology with diameters ranging from 300 to 500 nm and demonstrated a sustained release of silver over seven days, offering continuous antimicrobial protection. Mechanical testing of the nanofibers revealed excellent strength and elasticity, making them well-suited for flexible wound dressings. The nanofibers also showed superior water absorption, fluid retention, and controlled water vapor transmission, essential for maintaining a moist wound environment conducive to healing. In vitro biocompatibility assays confirmed that the PU/hep-AgNPs bandages were non-toxic to keratinocytes and fibroblasts and significantly accelerated wound closure, as evidenced by scratch assays. The nanofibrous bandages also exhibited potent antibacterial activity against Staphylococcus aureus and Salmonella Typhimurium, two common wound pathogens. Overall, our findings demonstrate that PU/hep-AgNPs nanofibrous bandages are a promising candidate for chronic wound healing. They combine excellent biocompatibility, anti-inflammatory properties, and strong antimicrobial activity, which collectively contribute to faster wound healing and reduced risk of infection.
Collapse
Affiliation(s)
| | - Qi Wang
- Norwich Medical School, University of East Anglia, United Kingdom
| | - Gary Rowley
- School of Biological Sciences, University of East Anglia, United Kingdom
| | | | - Jason C Crack
- School of Chemistry, University of East Anglia, United Kingdom
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, United Kingdom
| | - Yimin Chao
- School of Chemistry, University of East Anglia, United Kingdom
| |
Collapse
|
8
|
Quiñones-Vico MI, Ubago-Rodríguez A, Fernández-González A, Sanabria-de la Torre R, Sierra-Sánchez Á, Montero-Vilchez T, Sánchez-Díaz M, Arias JL, Arias-Santiago S. Antibiotic Nanoparticles-Loaded Wound Dressings Against Pseudomonas aeruginosa's Skin Infection: A Systematic Review. Int J Nanomedicine 2024; 19:7895-7926. [PMID: 39108405 PMCID: PMC11302427 DOI: 10.2147/ijn.s469724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/07/2024] [Indexed: 01/29/2025] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a common nosocomial pathogen that can cause severe infections in critically ill patients. Due to its resistance to multiple drugs, it is challenging to treat, which can result in serious illness and death. Conventional treatments for infected wounds often involve the topical or systemic application of antibiotics, which can lead to systemic toxicity and the development of drug resistance. The combination of wound dressings that promote wound healing with nanoparticles (NPs) represents a revolutionary strategy for optimizing the safety and efficacy of antibiotics. This review assesses a systematic search to identify the latest approaches where the evaluation of wound dressings loaded with antibiotic NPs is conducted. The properties of NPs, the features of wound dressings, the antimicrobial activity and biocompatibility of the different strategies are analyzed. The results indicate that most research in this field is focused on dressings loaded with silver NPs (57.1%) or other inorganic materials (22.4%). Wound dressings loaded with polymeric NPs and carbon-based NPs represent 14.3% and 6.1% of the evaluated studies, respectively. Nevertheless, there are no clinical trials that have evaluated the efficacy of NPs-loaded wound dressings in patients. Further research is required to ensure the safety of these treatments and to translate the findings from the bench to the bedside.
Collapse
Affiliation(s)
- María I Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria Granada ibs.GRANADA, Granada, 18014, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Sevilla, 41092, Spain
- Medicine Department, School of Medicine, University of Granada, Granada, 18016, Spain
| | - Ana Ubago-Rodríguez
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria Granada ibs.GRANADA, Granada, 18014, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Sevilla, 41092, Spain
| | - Ana Fernández-González
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria Granada ibs.GRANADA, Granada, 18014, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Sevilla, 41092, Spain
| | - Raquel Sanabria-de la Torre
- Instituto de Investigación Biosanitaria Granada ibs.GRANADA, Granada, 18014, Spain
- Department of Biochemistry and Molecular Biology IIi and Immunology, School of Medicine, University of Granada, Granada, 18016, Spain
| | - Álvaro Sierra-Sánchez
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria Granada ibs.GRANADA, Granada, 18014, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Sevilla, 41092, Spain
- Department of Biochemistry and Molecular Biology IIi and Immunology, School of Medicine, University of Granada, Granada, 18016, Spain
| | - Trinidad Montero-Vilchez
- Instituto de Investigación Biosanitaria Granada ibs.GRANADA, Granada, 18014, Spain
- Dermatology Department, Virgen de las Nieves University Hospital, Granada, 18014, Spain
| | - Manuel Sánchez-Díaz
- Instituto de Investigación Biosanitaria Granada ibs.GRANADA, Granada, 18014, Spain
- Dermatology Department, Virgen de las Nieves University Hospital, Granada, 18014, Spain
| | - José L Arias
- Instituto de Investigación Biosanitaria Granada ibs.GRANADA, Granada, 18014, Spain
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Granada, 18071, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria Granada ibs.GRANADA, Granada, 18014, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Sevilla, 41092, Spain
- Medicine Department, School of Medicine, University of Granada, Granada, 18016, Spain
- Dermatology Department, Virgen de las Nieves University Hospital, Granada, 18014, Spain
| |
Collapse
|
9
|
Pramanik S, Aggarwal A, Kadi A, Alhomrani M, Alamri AS, Alsanie WF, Koul K, Deepak A, Bellucci S. Chitosan alchemy: transforming tissue engineering and wound healing. RSC Adv 2024; 14:19219-19256. [PMID: 38887635 PMCID: PMC11180996 DOI: 10.1039/d4ra01594k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Chitosan, a biopolymer acquired from chitin, has emerged as a versatile and favorable material in the domain of tissue engineering and wound healing. Its biocompatibility, biodegradability, and antimicrobial characteristics make it a suitable candidate for these applications. In tissue engineering, chitosan-based formulations have garnered substantial attention as they have the ability to mimic the extracellular matrix, furnishing an optimal microenvironment for cell adhesion, proliferation, and differentiation. In the realm of wound healing, chitosan-based dressings have revealed exceptional characteristics. They maintain a moist wound environment, expedite wound closure, and prevent infections. These formulations provide controlled release mechanisms, assuring sustained delivery of bioactive molecules to the wound area. Chitosan's immunomodulatory properties have also been investigated to govern the inflammatory reaction during wound healing, fostering a balanced healing procedure. In summary, recent progress in chitosan-based formulations portrays a substantial stride in tissue engineering and wound healing. These innovative approaches hold great promise for enhancing patient outcomes, diminishing healing times, and minimizing complications in clinical settings. Continued research and development in this field are anticipated to lead to even more sophisticated chitosan-based formulations for tissue repair and wound management. The integration of chitosan with emergent technologies emphasizes its potential as a cornerstone in the future of regenerative medicine and wound care. Initially, this review provides an outline of sources and unique properties of chitosan, followed by recent signs of progress in chitosan-based formulations for tissue engineering and wound healing, underscoring their potential and innovative strategies.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras Chennai 600036 Tamil Nadu India
| | - Akanksha Aggarwal
- Department of Biotechnology, Indian Institute of Technology Hyderabad Kandi Sangareddy Telangana 502284 India
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University New Delhi 110017 India
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University Chelyabinsk 454080 Russia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Kanchan Koul
- Department of Physiotherapy, Jain School of Sports Education and Research, Jain University Bangalore Karnataka 560069 India
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering Chennai Tamil Nadu 600128 India
| | - Stefano Bellucci
- 7INFN-Laboratori Nazionali di Frascati Via E. Fermi 54 00044 Frascati Italy
| |
Collapse
|
10
|
Ashrafi B, Chehelcheraghi F, Rashidipour M, Hadavand S, Beiranvand B, Taherikalani M, Soroush S. Electrospun Nanofibrous Biocomposite of Royal Jelly/Chitosan/Polyvinyl Alcohol (RJ/CS/PVA) Gel as a Biological Dressing for P. aeruginosa-Infected Burn Wound. Appl Biochem Biotechnol 2024; 196:3162-3183. [PMID: 37632660 DOI: 10.1007/s12010-023-04701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
Burn wounds are vulnerable to various infections due to damage to the tissue and changes in immune responses. Pseudomonas aeruginosa is a critical bacterium that can cause burn wound infections, which can be life-threatening and delay wound healing. Therefore, it is essential to develop an efficient strategy to prevent the spread of infection in burn wounds. The present study aims to investigate the effectiveness of electrospun nanofibers of royal jelly on a chitosan/polyvinyl alcohol polymer scaffold in repairing burn wounds infected with Pseudomonas aeruginosa. To achieve this, the researchers analyzed the morphology and physicochemical properties of the synthesized nanofibers using SEM, FTIR, BET, and TGA analyses. They also examined the antibacterial properties of the nanofibers using agar diffusion and spread plate techniques. In addition, hemolysis tests were carried out to assess biocompatibility. Finally, the ability of the nanofibers to repair burn wounds infected with Pseudomonas aeruginosa was evaluated using a laboratory mouse model. The study results showed that the synthesized nanofibers had desirable morphology and physicochemical properties and significant antibacterial effects in both in vitro and in vivo conditions. Also, loading RJ into the polymer scaffold significantly reduced erythrocyte lysis. The wound healing and contraction rates were significantly higher than the control groups, and tissue repair, re-epithelialization, and collagen synthesis occurred faster, preventing the spread of infection to deeper tissue areas. Based on these findings, the synthesized system has the potential to serve as a suitable substitute for some invasive treatments and chemical drugs to improve chronic wounds and manage infection control in burn injuries.
Collapse
Affiliation(s)
- Behnam Ashrafi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Farzaneh Chehelcheraghi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Anatomical Sciences, School of Medicine Lorestan, University of Medical Sciences, Khorramabad, Iran
| | - Marzieh Rashidipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Samaneh Hadavand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Behrouz Beiranvand
- Department of Biostatistics and Epidemiology, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Morovat Taherikalani
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
- Department of Microbiology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Setareh Soroush
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
- Department of Microbiology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
11
|
de Souza A, Santo GE, Amaral GO, Sousa KSJ, Parisi JR, Achilles RB, Ribeiro DA, Renno ACM. Electrospun skin dressings for diabetic wound treatment: a systematic review. J Diabetes Metab Disord 2024; 23:49-71. [PMID: 38932903 PMCID: PMC11196489 DOI: 10.1007/s40200-023-01324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 09/26/2023] [Indexed: 06/28/2024]
Abstract
Abstract Diabetes mellitus is a metabolic disease characterized by persistent hyperglycemia associated with a lack of insulin production or insulin resistance. In diabetic patients, the capacity for healing is generally decreased, leading to chronic wounds. One of the most common treatments for chronic wounds is skin dressings, which serve as protection from infection, reduce pain levels, and stimulate tissue healing. Furthermore, electrospinning is one of the most effective techniques used for manufacturing skin dressings. Objective The purpose of this study was to perform a systematic review of the literature to examine the effects of electrospun skin dressings from different sources in the process of healing skin wounds using in vivo experiments in diabetic rats. Methods The search was carried out according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), and the Medical Subject Headings (MeSH) descriptors were defined as "wound dressing," "diabetes," "in vivo," and "electrospun." A total of 14 articles were retrieved from PubMed and Scopus databases. Results The results were based mainly on histological analysis and macroscopic evaluation, demonstrating moderate evidence synthesis for all experimental studies, showing a positive effect of electrospun skin dressings for diabetic wound treatment. Conclusion This review confirms the significant benefits of using electrospun skin dressings for skin repair and regeneration. All the inks used were demonstrated to be suitable for dressing manufacturing. Moreover, in vivo findings showed full wound closure in most of the studies, with well-organized dermal and epidermal layers.
Collapse
Affiliation(s)
- Amanda de Souza
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Giovanna E. Santo
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Gustavo O. Amaral
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Karolyne S. J. Sousa
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Julia R. Parisi
- Metropolitan University of Santos (UNIMES), 8 Francisco Glicerio Avenue, Santos, SP 11045002 Brazil
| | - Rodrigo B. Achilles
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Daniel A. Ribeiro
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Ana C. M. Renno
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| |
Collapse
|
12
|
Kumar M, Mahmood S, Chopra S, Bhatia A. Biopolymer based nanoparticles and their therapeutic potential in wound healing - A review. Int J Biol Macromol 2024; 267:131335. [PMID: 38604431 DOI: 10.1016/j.ijbiomac.2024.131335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/11/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
Nanoparticles (NPs) have been extensively investigated for their potential in nanomedicine. There is a significant level of enthusiasm about the potential of NPs to bring out a transformative impact on modern healthcare. NPs can serve as effective wound dressings or delivery vehicles due to their antibacterial and pro-wound-healing properties. Biopolymer-based NPs can be manufactured using various food-grade biopolymers, such as proteins, polysaccharides, and synthetic polymers, each offering distinct properties suitable for different applications which include collagen, polycaprolactone, chitosan, alginate, and polylactic acid, etc. Their biodegradable and biocompatible nature renders them ideal nanomaterials for applications in wound healing. Additionally, the nanofibers containing biopolymer-based NPs have shown excellent anti-bacterial and wound healing activity like silver NPs. These NPs represent a paradigm shift in wound healing therapies, offering targeted and personalized solutions for enhanced tissue regeneration and accelerated wound closure. The current review focuses on biopolymer NPs with their applications in wound healing.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India.
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India.
| |
Collapse
|
13
|
Laha B, Tiwari AR, Gravel E, Doris E, Namboothiri INN. The Michael donor-acceptor reactivity of curcumins in the synthesis of diverse multi-functional scaffolds. Org Biomol Chem 2024; 22:1346-1359. [PMID: 38268394 DOI: 10.1039/d3ob01734f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Curcumin is a key constituent of turmeric with a variety of biological activities. From a chemical point of view, curcumin contains different functional groups that can undergo multiple transformations such as Michael addition, cycloaddition, click reaction, polymerisation, etc. Among these, Michael-type reactions under benign conditions constitute a captivating domain of curcumin's reactivity. To the best of our knowledge, no review focusing on the Michael donor-acceptor reactivity of curcumins has been published to date. Herein, we have compiled the chemistry of curcumins with respect to their chemical synthesis, biosynthesis, and involvement in chemical transformations, especially in Michael additions with advances in mechanistic aspects and understanding.
Collapse
Affiliation(s)
- Banamali Laha
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India.
| | - Abhishek R Tiwari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India.
| | - Edmond Gravel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Eric Doris
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Irishi N N Namboothiri
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India.
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
14
|
Liu X, Wang S, Ding C, Zhao Y, Zhang S, Sun S, Zhang L, Ma S, Ding Q, Liu W. Polyvinylpyrrolidone/chitosan-loaded dihydromyricetin-based nanofiber membrane promotes diabetic wound healing by anti-inflammatory and regulating autophagy-associated protein expression. Int J Biol Macromol 2024; 259:129160. [PMID: 38181908 DOI: 10.1016/j.ijbiomac.2023.129160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
The healing of wounds in diabetics is commonly delayed by recurring infections and persistent inflammation at the wound site. For this reason, we conducted a study using the electrospinning technique to create nanofiber membranes consisting of polyvinylpyrrolidone/chitosan (PVP/CS) and incorporated dihydromyricetin (DHM) into them. Infrared Fourier transform spectroscopy and scanning electron microscopy were used to analyze the nanofiber membrane. Experimental results in vitro have shown that PVP/CS/DHM has exceptional properties such as hydrophilicity, porosity, water vapor transport rate, antioxidant capacity, and antibacterial activity. Moreover, our study has demonstrated that the application of PVP/CS/DHM can significantly improve wound healing in diabetic mice. After an 18-day treatment period, a remarkable wound closure rate of 88.63 ± 1.37 % was achieved. The in vivo experiments revealed that PVP/CS/DHM can promote diabetic wound healing by suppressing the activation of TLR4/MyD88/NF-κB signaling pathway and enhancing autophagy-related protein as well as CD31 and HIF-1α expression in skin tissues. This study showed that PVP/CS/DHM is a promising wound dressing.
Collapse
Affiliation(s)
- Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; Jilin Provincial Health Products and Medical Materials Technology Innovation Center, Changchun 130118, China
| | - Shijie Wang
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yingchun Zhao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Lifeng Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuang Ma
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China.
| |
Collapse
|
15
|
Moazzami Goudarzi Z, Zaszczyńska A, Kowalczyk T, Sajkiewicz P. Electrospun Antimicrobial Drug Delivery Systems and Hydrogels Used for Wound Dressings. Pharmaceutics 2024; 16:93. [PMID: 38258102 PMCID: PMC10818291 DOI: 10.3390/pharmaceutics16010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/25/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
Wounds and chronic wounds can be caused by bacterial infections and lead to discomfort in patients. To solve this problem, scientists are working to create modern wound dressings with antibacterial additives, mainly because traditional materials cannot meet the general requirements for complex wounds and cannot promote wound healing. This demand is met by material engineering, through which we can create electrospun wound dressings. Electrospun wound dressings, as well as those based on hydrogels with incorporated antibacterial compounds, can meet these requirements. This manuscript reviews recent materials used as wound dressings, discussing their formation, application, and functionalization. The focus is on presenting dressings based on electrospun materials and hydrogels. In contrast, recent advancements in wound care have highlighted the potential of thermoresponsive hydrogels as dynamic and antibacterial wound dressings. These hydrogels contain adaptable polymers that offer targeted drug delivery and show promise in managing various wound types while addressing bacterial infections. In this way, the article is intended to serve as a compendium of knowledge for researchers, medical practitioners, and biomaterials engineers, providing up-to-date information on the state of the art, possibilities of innovative solutions, and potential challenges in the area of materials used in dressings.
Collapse
Affiliation(s)
| | | | - Tomasz Kowalczyk
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland; (Z.M.G.); (A.Z.); (P.S.)
| | | |
Collapse
|
16
|
Vyas G, Karpe S, Gupta K, Lad S, Kaur C, Sharma S, Singh G, Saini S, Kumar R. Threads of hope: Harnessing nanofibres-based treatment strategies for diabetic foot ulcers. J Drug Deliv Sci Technol 2024; 91:105225. [DOI: 10.1016/j.jddst.2023.105225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
Sánchez-Machado DI, Maldonado-Cabrera A, López-Cervantes J, Maldonado-Cabrera B, Chávez-Almanza AF. Therapeutic effects of electrospun chitosan nanofibers on animal skin wounds: A systematic review and meta-analysis. Int J Pharm X 2023; 5:100175. [PMID: 36950662 PMCID: PMC10025980 DOI: 10.1016/j.ijpx.2023.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Electrospun chitosan nanofibers (QSNFs) enhance the healing process by mimicking skin structure and function. The aim of this study was to analyze the therapeutic effects of QSNFs application on animal skin wounds to identify a potential direction for translational research in dermatology. The PRISMA methodology and the PICO scheme were used. A random effects model and mean difference analysis were applied for the meta-analysis. A meta-regression model was constructed, risk of bias was determined, and methodological quality assessment was performed. Of the 2370 articles collected, 54 studies were selected based on the inclusion and exclusion criteria. The wound healing area was used for building models on the 3rd, 7th, and 14th days of follow-up; the results were - 10.4% (95% CI, -18.2% to -2.6%, p = 0.001), -21.0% (95% CI, -27.3% to -14.7%, p = 0.001), and - 14.0% (95% CI, -19.1 to -8.8%, p = 0.001), respectively. Antioxidants and synthetic polymers combined with QSNFs further reduced skin wound areas (p < 0.05). The results show a more efficient reduction in wound area percentages in experimental groups than in control groups, so QSNFs could potentially be applied in translational human medicine research.
Collapse
Affiliation(s)
| | - Anahí Maldonado-Cabrera
- Technologic Institute of Sonora (ITSON), Ciudad Obregon MX-85000, Sonora, Mexico
- Mexican Social Security Institute (IMSS), Hermosillo MX-83000, Sonora, Mexico
| | - Jaime López-Cervantes
- Technologic Institute of Sonora (ITSON), Ciudad Obregon MX-85000, Sonora, Mexico
- Corresponding author.
| | | | | |
Collapse
|
18
|
Gong Y, Wang P, Cao R, Wu J, Ji H, Wang M, Hu C, Huang P, Wang X. Exudate Absorbing and Antimicrobial Hydrogel Integrated with Multifunctional Curcumin-Loaded Magnesium Polyphenol Network for Facilitating Burn Wound Healing. ACS NANO 2023; 17:22355-22370. [PMID: 37930078 DOI: 10.1021/acsnano.3c04556] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Burns are among the most common causes of trauma worldwide. Reducing the healing time of deep burn wounds has always been a major challenge. Traditional dressings not only require a lengthy medical procedure but also cause unbearable pain and secondary damage to patients. In this study, we developed an exudate-absorbing and antimicrobial hydrogel with a curcumin-loaded magnesium polyphenol network (Cur-Mg@PP) to promote burn wound healing. That hydrogel was composed of an ε-poly-l-lysine (ε-PLL)/polymer poly(γ-glutamic acid) (γ-PGA) hydrogel (PP) and curcumin-loaded magnesium polyphenol network (Cur-Mg). Because of the strong water absorption property of ε-PLL and γ-PGA, Cur-Mg@PP powder can quickly absorb the wound exudate and transform into a moist and viscous hydrogel, thus releasing payloads such as magnesium ion (Mg2+) and curcumin (Cur). The released Mg2+ and Cur demonstrated good therapeutic efficacy on analgesic, antioxidant, anti-inflammation, angiogenesis, and tissue regeneration. Our findings provide a strategy for accelerating burn wound healing.
Collapse
Affiliation(s)
- Yan Gong
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Pei Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ran Cao
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jiayingzi Wu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Haoran Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chuang Hu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiansong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
19
|
Zhang HM, Yang ML, Xi JZ, Yang GY, Wu QN. Mesenchymal stem cells-based drug delivery systems for diabetic foot ulcer: A review. World J Diabetes 2023; 14:1585-1602. [DOI: 10.4239/wjd.v14.i11.1585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/16/2023] [Accepted: 09/11/2023] [Indexed: 11/14/2023] Open
Abstract
The complication of diabetes, which is known as diabetic foot ulcer (DFU), is a significant concern due to its association with high rates of disability and mortality. It not only severely affects patients’ quality of life, but also imposes a substantial burden on the healthcare system. In spite of efforts made in clinical practice, treating DFU remains a challenging task. While mesenchymal stem cell (MSC) therapy has been extensively studied in treating DFU, the current efficacy of DFU healing using this method is still inadequate. However, in recent years, several MSCs-based drug delivery systems have emerged, which have shown to increase the efficacy of MSC therapy, especially in treating DFU. This review summarized the application of diverse MSCs-based drug delivery systems in treating DFU and suggested potential prospects for the future research.
Collapse
Affiliation(s)
- Hong-Min Zhang
- Department of Endocrinology, People’s Hospital of Chongqing Liangjiang New Area, Chongqing 400030, China
| | - Meng-Liu Yang
- Department of Endocrinology, The Second Affiliated Hospital of The Chongqing Medical University, Chongqing 400030, China
| | - Jia-Zhuang Xi
- Department of Endocrinology, Dazu Hospital of Chongqing Medical University, The People’s Hospital of Dazu, Chongqing 406230, China
| | - Gang-Yi Yang
- Department of Endocrinology, The Second Affiliated Hospital of The Chongqing Medical University, Chongqing 400030, China
| | - Qi-Nan Wu
- Department of Endocrinology, Dazu Hospital of Chongqing Medical University, The People’s Hospital of Dazu, Chongqing 406230, China
| |
Collapse
|
20
|
Syed MH, Khan MMR, Zahari MAKM, Beg MDH, Abdullah N. A review on current trends and future prospectives of electrospun biopolymeric nanofibers for biomedical applications. Eur Polym J 2023; 197:112352. [DOI: 10.1016/j.eurpolymj.2023.112352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Ding JY, Sun L, Zhu ZH, Wu XC, Xu XL, Xiang YW. Nano drug delivery systems: a promising approach to scar prevention and treatment. J Nanobiotechnology 2023; 21:268. [PMID: 37568194 PMCID: PMC10416511 DOI: 10.1186/s12951-023-02037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Scar formation is a common physiological process that occurs after injury, but in some cases, pathological scars can develop, leading to serious physiological and psychological effects. Unfortunately, there are currently no effective means to intervene in scar formation, and the structural features of scars and their unclear mechanisms make prevention and treatment even more challenging. However, the emergence of nanotechnology in drug delivery systems offers a promising avenue for the prevention and treatment of scars. Nanomaterials possess unique properties that make them well suited for addressing issues related to transdermal drug delivery, drug solubility, and controlled release. Herein, we summarize the recent progress made in the use of nanotechnology for the prevention and treatment of scars. We examine the mechanisms involved and the advantages offered by various types of nanomaterials. We also highlight the outstanding challenges and questions that need to be addressed to maximize the potential of nanotechnology in scar intervention. Overall, with further development, nanotechnology could significantly improve the prevention and treatment of pathological scars, providing a brighter outlook for those affected by this condition.
Collapse
Affiliation(s)
- Jia-Ying Ding
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lu Sun
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhi-Heng Zhu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xi-Chen Wu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, PR China.
| | - Yan-Wei Xiang
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
22
|
Huang Y, Qi L, Liu Z, Jiang Y, Wang J, Liu L, Li Y, Zhang L, Feng G. Radially Electrospun Fibrous Membrane Incorporated with Copper Peroxide Nanodots Capable of Self-Catalyzed Chemodynamic Therapy for Angiogenesis and Healing Acceleration of Diabetic Wounds. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37463246 DOI: 10.1021/acsami.3c06703] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Vascular dysfunction severely hinders the healing process of diabetic wounds. Therefore, a radially structured fibrous membrane was fabricated through electrospinning by using a polycaprolactone (PCL) and polyvinylpyrrolidone (PVP) mixed solution containing copper peroxide nanoparticles (CPs) as the chemodynamic therapy (CDT) agents, aiming to simultaneously accelerate tissue regeneration and angiogenesis. The fabricated membrane allowed for the in situ H2O2 generation activated by the acidic diabetic microenvironment and the subsequent Fenton-type reactions to realize 99.4% elimination against Staphylococcus aureus. Besides, the released Cu2+ ions significantly enhanced the expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in human umbilical vein endothelial cells (HUVECs), and they showed enhanced in vitro angiogenesis. Interestingly, the CP-embedded membrane also guided cell spreading and orientated migration of L929 fibroblasts along the fiber distribution through the radially aligned topology. The in vivo implantation indicated that the raidally structured membrane modified by CPs not only dramatically accelerated wound healing of diabetic Sprague-Dawley (SD) rats in 14 days but also promoted angiogenesis in wound sites. The combination of the in situ CDT with the radially structured morphology of the functional membrane is highly promising in applications to promote diabetic wound healing through anti-infection and revascularization.
Collapse
Affiliation(s)
- Yong Huang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Lin Qi
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Zheng Liu
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yulin Jiang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Jing Wang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Limin Liu
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yubao Li
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Li Zhang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Ganjun Feng
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| |
Collapse
|
23
|
Ansari L, Mashayekhi-Sardoo H, Baradaran Rahimi V, Yahyazadeh R, Ghayour-Mobarhan M, Askari VR. Curcumin-based nanoformulations alleviate wounds and related disorders: A comprehensive review. Biofactors 2023; 49:736-781. [PMID: 36961254 DOI: 10.1002/biof.1945] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/24/2023] [Indexed: 03/25/2023]
Abstract
Despite numerous advantages, curcumin's (CUR) low solubility and low bioavailability limit its employment as a free drug. CUR-incorporated nanoformulation enhances the bioavailability and angiogenesis, collagen deposition, fibroblast proliferation, reepithelization, collagen synthesis, neovascularization, and granulation tissue formation in different wounds. Designing nanoformulations with controlled-release properties ensure the presence of CUR in the defective area during treatment. Different nanoformulations encompassing nanofibers, nanoparticles (NPs), nanospray, nanoemulsion, nanosuspension, nanoliposome, nanovesicle, and nanomicelle were described in the present study comprehensively. Moreover, for some other systems which contain nano-CUR or CUR nanoformulations, including some nanofibers, films, composites, scaffolds, gel, and hydrogels seems the CUR-loaded NPs incorporation has better control of the sustained release, and thereby, the presence of CUR until the final stages of wound healing is more possible. Incorporating CUR-loaded chitosan NPs into nanofiber increased the release time, while 80% of CUR was released during 240 h (10 days). Therefore, this system can guarantee the presence of CUR during the entire healing period. Furthermore, porous structures such as sponges, aerogels, some hydrogels, and scaffolds disclosed promising performance. These architectures with interconnected pores can mimic the native extracellular matrix, thereby facilitating attachment and infiltration of cells at the wound site, besides maintaining a free flow of nutrients and oxygen within the three-dimensional structure essential for rapid and proper wound healing, as well as enhancing mechanical strength.
Collapse
Affiliation(s)
- Legha Ansari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayeh Yahyazadeh
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Jiang Z, Zheng Z, Yu S, Gao Y, Ma J, Huang L, Yang L. Nanofiber Scaffolds as Drug Delivery Systems Promoting Wound Healing. Pharmaceutics 2023; 15:1829. [PMID: 37514015 PMCID: PMC10384736 DOI: 10.3390/pharmaceutics15071829] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Nanofiber scaffolds have emerged as a revolutionary drug delivery platform for promoting wound healing, due to their unique properties, including high surface area, interconnected porosity, excellent breathability, and moisture absorption, as well as their spatial structure which mimics the extracellular matrix. However, the use of nanofibers to achieve controlled drug loading and release still presents many challenges, with ongoing research still exploring how to load drugs onto nanofiber scaffolds without loss of activity and how to control their release in a specific spatiotemporal manner. This comprehensive study systematically reviews the applications and recent advances related to drug-laden nanofiber scaffolds for skin-wound management. First, we introduce commonly used methods for nanofiber preparation, including electrostatic spinning, sol-gel, molecular self-assembly, thermally induced phase separation, and 3D-printing techniques. Next, we summarize the polymers used in the preparation of nanofibers and drug delivery methods utilizing nanofiber scaffolds. We then review the application of drug-loaded nanofiber scaffolds for wound healing, considering the different stages of wound healing in which the drug acts. Finally, we briefly describe stimulus-responsive drug delivery schemes for nanofiber scaffolds, as well as other exciting drug delivery systems.
Collapse
Affiliation(s)
- Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Lei Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| |
Collapse
|
25
|
Tomar Y, Pandit N, Priya S, Singhvi G. Evolving Trends in Nanofibers for Topical Delivery of Therapeutics in Skin Disorders. ACS OMEGA 2023; 8:18340-18357. [PMID: 37273582 PMCID: PMC10233693 DOI: 10.1021/acsomega.3c00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023]
Abstract
Nanotechnology has yielded nanostructure-based drug delivery approaches, among which nanofibers have been explored and researched for the potential topical delivery of therapeutics. Nanofibers are filaments or thread-like structures in the nanometer size range that are fabricated using various polymers, such as natural or synthetic polymers or their combination. The size or diameter of the nanofibers depends upon the polymers, the techniques of preparation, and the design specification. The four major processing techniques, phase separation, self-assembly, template synthesis, and electrospinning, are most commonly used for the fabrication of nanofibers. Nanofibers have a unique structure that needs a multimethod approach to study their morphology and characterization parameters. They are gaining attention as drug delivery carriers, and the substantially vast surface area of the skin makes it a potentially promising strategy for topical drug products for various skin disorders such as psoriasis, skin cancers, skin wounds, bacterial and fungal infections, etc. However, the large-scale production of nanofibers with desired properties remains challenging, as the widely used electrospinning processes have certain limitations, such as poor yield, use of high voltage, and difficulty in achieving in situ nanofiber deposition on various substrates. This review highlights the insights into fabrication strategies, applications, recent clinical trials, and patents of nanofibers for different skin disorders in detail. Additionally, it discusses case studies of its effective utilization in the treatment of various skin disorders for a better understanding for readers.
Collapse
Affiliation(s)
- Yashika Tomar
- Industrial
Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Nisha Pandit
- Industrial
Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Sakshi Priya
- Industrial
Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Gautam Singhvi
- Industrial
Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
26
|
Gao Z, Liu S, Li S, Shao X, Zhang P, Yao Q. Fabrication and Properties of the Multifunctional Rapid Wound Healing Panax notoginseng@Ag Electrospun Fiber Membrane. Molecules 2023; 28:molecules28072972. [PMID: 37049735 PMCID: PMC10096071 DOI: 10.3390/molecules28072972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
The Panax notoginseng@Ag core/shell electrospun fiber membrane was prepared by coaxial electrospinning combined with the UV reduction method (254 nm). The prepared Panax notoginseng@Ag core/shell nanofiber membrane has a three-dimensional structure, and its swelling ratio could reach as high as 199.87%. Traditional Chinese medicine Panax notoginseng can reduce inflammation, and the silver nanoparticles have antibacterial effects, which synergistically promote rapid wound healing. The developed Panax notoginseng@Ag core/shell nanofiber membrane can effectively inhibit the growth of the Gram-negative bacteria Escherichia coli and the Gram-positive bacteria Staphylococcus aureus. The wound healing experiments in Sprague Dawley mice showed that the wound residual area rate of the Panax notoginseng@Ag core/shell electrospun nanofiber membrane group was only 1.52% on day 9, and the wound of this group basically healed on day 12, while the wound residual area rate of the gauze treatment group (control group) was 16.3% and 10.80% on day 9 and day 12, respectively. The wound of the Panax notoginseng@Ag core/shell electrospun nanofiber membrane group healed faster, which contributed to the application of the nanofiber as Chinese medicine rapid wound healing dressings.
Collapse
Affiliation(s)
| | | | | | | | - Pingping Zhang
- Correspondence: (P.Z.); (Q.Y.); Tel.: +86-0531-82919706 (P.Z.)
| | - Qingqiang Yao
- Correspondence: (P.Z.); (Q.Y.); Tel.: +86-0531-82919706 (P.Z.)
| |
Collapse
|
27
|
Sharma A, Dheer D, Singh I, Puri V, Kumar P. Phytoconstituent-Loaded Nanofibrous Meshes as Wound Dressings: A Concise Review. Pharmaceutics 2023; 15:pharmaceutics15041058. [PMID: 37111544 PMCID: PMC10143731 DOI: 10.3390/pharmaceutics15041058] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
In the past, wounds were treated with natural materials, but modern wound dressings include functional elements to expedite the process of healing and to improve skin recovery. Due to their exceptional properties, nanofibrous wound dressings are now the most cutting-edge and desirable option. Similar in structure to the skin’s own extracellular matrix (ECM), these dressings can promote tissue regeneration, wound fluid transportation, and air ductility for cellular proliferation and regeneration owing to their nanostructured fibrous meshes or scaffolds. Many academic search engines and databases, such as Google Scholar, PubMed, and Sciencedirect, were used to conduct a comprehensive evaluation of the literature for the purposes of this investigation. Using the term “nanofibrous meshes” as a keyword, this paper focuses on the importance of phytoconstituents. This review article summarizes the most recent developments and conclusions from studies on bioactive nanofibrous wound dressings infused with medicinal plants. Several wound-healing methods, wound-dressing materials, and wound-healing components derived from medicinal plants were also discussed.
Collapse
Affiliation(s)
- Ameya Sharma
- Chitkara School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
| | - Divya Dheer
- Chitkara School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Vivek Puri
- Chitkara School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
- Correspondence: (V.P.); (P.K.)
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa
- Correspondence: (V.P.); (P.K.)
| |
Collapse
|
28
|
Laha B, Suresh A, Namboothiri INN. Regio- and stereoselective synthesis of functionalized tetrahydro-benzochromenes and hexahydrochromenochromenones via [4 + 2] annulation of curcumins with nitrochromenes. Org Biomol Chem 2023; 21:1872-1877. [PMID: 36779639 DOI: 10.1039/d2ob02211g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A base-mediated regio- and stereoselective synthesis of functionalized tetrahydro-6H-benzo[c]chromenes and hexahydro-1H,6H-chromeno[6,5-c]chromenone is disclosed here. It involves a [4 + 2] annulation via cascade double and triple Michael reactions between curcumins and nitrochromenes in the presence of Cs2CO3 and DBU, respectively, at room temperature, and it offers a diverse array of products as single regio- and diastereomers in excellent yields under mild conditions. Preliminary studies towards developing an enantioselective version under organocatalytic conditions met with only limited success but revealed a potentially interesting kinetic resolution pathway.
Collapse
Affiliation(s)
- Banamali Laha
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India.
| | - Alati Suresh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India.
| | | |
Collapse
|
29
|
Farasati Far B, Naimi-Jamal MR, Sedaghat M, Hoseini A, Mohammadi N, Bodaghi M. Combinational System of Lipid-Based Nanocarriers and Biodegradable Polymers for Wound Healing: An Updated Review. J Funct Biomater 2023; 14:jfb14020115. [PMID: 36826914 PMCID: PMC9963106 DOI: 10.3390/jfb14020115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Skin wounds have imposed serious socioeconomic burdens on healthcare providers and patients. There are just more than 25,000 burn injury-related deaths reported each year. Conventional treatments do not often allow the re-establishment of the function of affected regions and structures, resulting in dehydration and wound infections. Many nanocarriers, such as lipid-based systems or biobased and biodegradable polymers and their associated platforms, are favorable in wound healing due to their ability to promote cell adhesion and migration, thus improving wound healing and reducing scarring. Hence, many researchers have focused on developing new wound dressings based on such compounds with desirable effects. However, when applied in wound healing, some problems occur, such as the high cost of public health, novel treatments emphasizing reduced healthcare costs, and increasing quality of treatment outcomes. The integrated hybrid systems of lipid-based nanocarriers (LNCs) and polymer-based systems can be promising as the solution for the above problems in the wound healing process. Furthermore, novel drug delivery systems showed more effective release of therapeutic agents, suitable mimicking of the physiological environment, and improvement in the function of the single system. This review highlights recent advances in lipid-based systems and the role of lipid-based carriers and biodegradable polymers in wound healing.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
- Correspondence: (M.R.N.-J.); (M.B.)
| | - Meysam Sedaghat
- Advanced Materials Research Center, Materials Engineering Department, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran
| | - Alireza Hoseini
- Department of Materials Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Negar Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Science, Ahvaz 6135733184, Iran
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Correspondence: (M.R.N.-J.); (M.B.)
| |
Collapse
|
30
|
One-pot microwave synthesis of chitosan-stabilized silver nanoparticles entrapped polyethylene oxide nanofibers, with their intrinsic antibacterial and antioxidant potency for wound healing. Int J Biol Macromol 2023; 235:123704. [PMID: 36801282 DOI: 10.1016/j.ijbiomac.2023.123704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/04/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
Different physical and chemical techniques could be used to prepare chitosan/Silver nanoparticle (CHS/AgNPs) nanocomposite. The microwave heating reactor was rationally adopted as a benign tool for preparing CHS/AgNPs owing to less energy consumption and shorter time required for completing the nucleation and growth particles. UV-Vis, FTIR, and XRD, provided conclusive evidence of the AgNPs creation, while TEM micrographs elucidated that the size was spherical (20 nm). CHS/AgNPs were embedded in polyethylene oxide (PEO) nanofiber via electrospinning, and their biological properties, cytotoxicity evaluation, antioxidant, and antibacterial activity assays were investigated. The generated nanofibers have mean diameters of 130.9 ± 9.5, 168.7 ± 18.8, and 186.8 ± 8.19 nm for PEO, PEO/ CHS, and PEO/ CHS (AgNPs), respectively. Because of the tiny AgNPs particle size loaded in PEO/CHS (AgNPs) fabricated nanofiber, good antibacterial activity with ZOI against E. coli was 51.2 ± 3.2, and S. aureus was 47.2 ± 2.1 for PEO/ CHS (AgNPs) nanofibers. Non-toxicity was observed against Human Skin Fibroblast and Keratinocytes cell lines (>93.5 %), which justifies its great antibacterial potential to remove or prevent infection in wounds with fewer adverse effects.
Collapse
|
31
|
Pang Q, Jiang Z, Wu K, Hou R, Zhu Y. Nanomaterials-Based Wound Dressing for Advanced Management of Infected Wound. Antibiotics (Basel) 2023; 12:antibiotics12020351. [PMID: 36830262 PMCID: PMC9952012 DOI: 10.3390/antibiotics12020351] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
The effective prevention and treatment of bacterial infections is imperative to wound repair and the improvement of patient outcomes. In recent years, nanomaterials have been extensively applied in infection control and wound healing due to their special physiochemical and biological properties. Incorporating antibacterial nanomaterials into wound dressing has been associated with improved biosafety and enhanced treatment outcomes compared to naked nanomaterials. In this review, we discuss progress in the application of nanomaterial-based wound dressings for advanced management of infected wounds. Focus is given to antibacterial therapy as well as the all-in-one detection and treatment of bacterial infections. Notably, we highlight progress in the use of nanoparticles with intrinsic antibacterial performances, such as metals and metal oxide nanoparticles that are capable of killing bacteria and reducing the drug-resistance of bacteria through multiple antimicrobial mechanisms. In addition, we discuss nanomaterials that have been proven to be ideal drug carriers for the delivery and release of antimicrobials either in passive or in stimuli-responsive manners. Focus is given to nanomaterials with the ability to kill bacteria based on the photo-triggered heat (photothermal therapy) or ROS (photodynamic therapy), due to their unparalleled advantages in infection control. Moreover, we highlight examples of intelligent nanomaterial-based wound dressings that can detect bacterial infections in-situ while providing timely antibacterial therapy for enhanced management of infected wounds. Finally, we highlight challenges associated with the current nanomaterial-based wound dressings and provide further perspectives for future improvement of wound healing.
Collapse
|
32
|
Kumari A, Raina N, Wahi A, Goh KW, Sharma P, Nagpal R, Jain A, Ming LC, Gupta M. Wound-Healing Effects of Curcumin and Its Nanoformulations: A Comprehensive Review. Pharmaceutics 2022; 14:2288. [PMID: 36365107 PMCID: PMC9698633 DOI: 10.3390/pharmaceutics14112288] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 08/13/2023] Open
Abstract
Wound healing is an intricate process of tissue repair or remodeling that occurs in response to injury. Plants and plant-derived bioactive constituents are well explored in the treatment of various types of wounds. Curcumin is a natural polyphenolic substance that has been used since ancient times in Ayurveda for its healing properties, as it reduces inflammation and acts on several healing stages. Several research studies for curcumin delivery at the wound site reported the effectiveness of curcumin in eradicating reactive oxygen species and its ability to enhance the deposition of collagen, granulation tissue formation, and finally, expedite wound contraction. Curcumin has been widely investigated for its wound healing potential but its lower solubility and rapid metabolism, in addition to its shorter plasma half-life, have limited its applications in wound healing. As nanotechnology has proven to be an effective technique to accelerate wound healing by stimulating appropriate mobility through various healing phases, curcumin-loaded nanocarriers are used for targeted delivery at the wound sites. This review highlights the potential of curcumin and its nanoformulations, such as liposomes, nanoparticles, and nano-emulsions, etc. in wound healing. This paper emphasizes the numerous biomedical applications of curcumin which collectively prepare a base for its antibiofilm and wound-healing action.
Collapse
Affiliation(s)
- Amrita Kumari
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Neha Raina
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Abhishek Wahi
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Pratibha Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Riya Nagpal
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Atul Jain
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Long Chiau Ming
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Madhu Gupta
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| |
Collapse
|
33
|
Chen P, Yang Z, Mai Z, Huang Z, Bian Y, Wu S, Dong X, Fu X, Ko F, Zhang S, Zheng W, Zhang S, Zhou W. Electrospun nanofibrous membrane with antibacterial and antiviral properties decorated with Myoporum bontioides extract and silver-doped carbon nitride nanoparticles for medical masks application. Sep Purif Technol 2022; 298:121565. [PMID: 35765307 PMCID: PMC9225951 DOI: 10.1016/j.seppur.2022.121565] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 12/29/2022]
Abstract
Public health safety issues have been plaguing the world since the pandemic outbreak of coronavirus disease (COVID-19). However, most personal protective equipments (PPE) do not have antibacterial and anti- toxicity effects. In this work, we designed and prepared a reusable, antibacterial and anti-toxicity Polyacrylonitrile (PAN) based nanofibrous membrane cooperated with Ag/g-C3N4 (Ag-CN), Myoporum.bontioides (M. bontioides) plant extracts and Ag nanoparticles (NPs) by an electrospinning-process. The SEM and TEM characterization revealed the formation of raised, creased or wrinkled areas on the fiber surface caused by the Ag nanoparticles, the rough surface prevented the aerosol particles on the fiber surface from sliding and stagnating, thus providing excellent filtration performance. The PAN/M. bontioides/Ag-CN/Ag nanofibrous membrane could be employed as a photocatalytic bactericidal material, which not only degraded 96.37% of methylene blue within 150 min, but also exhibited the superior bactericidal effect of 98.65 ± 1.49% and 97.8 ± 1.27% against E. coli and S. aureus, respectively, under 3 hs of light exposure. After 3 cycles of sterilization experiments, the PAN/M. bontioides/Ag-CN/Ag nanofibrous membrane maintained an efficient sterilization effect. Molecular docking revealed that the compounds in M. bontioides extracts interacted with neo-coronavirus targets mainly on Mpro and RdRp proteins, and these compounds had the strongest docking energy with Mpro protein, the shortest docking radius, and more binding sites for key amino acids around the viral protein targets, which influenced the replication and transcription process of neo-coronavirus. The PAN/M.bontioides/Ag-CN/Ag nanofibrous membrane also performed significant inhibition of influenza A virus H3N2. The novel nanofiber membrane is expected to be applied to medical masks, which will improve human isolation and protection against viruses.
Collapse
Affiliation(s)
- Pinhong Chen
- Key Laboratory of the Ministry of Bio-based Materials and Energy Education, South China Agricultural University, Guangzhou 510642, China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhi Yang
- Key Laboratory of the Ministry of Bio-based Materials and Energy Education, South China Agricultural University, Guangzhou 510642, China
| | - Zhuoxian Mai
- Key Laboratory of the Ministry of Bio-based Materials and Energy Education, South China Agricultural University, Guangzhou 510642, China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Ziyun Huang
- Key Laboratory of the Ministry of Bio-based Materials and Energy Education, South China Agricultural University, Guangzhou 510642, China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yongshuang Bian
- Key Laboratory of the Ministry of Bio-based Materials and Energy Education, South China Agricultural University, Guangzhou 510642, China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Shangjing Wu
- Key Laboratory of the Ministry of Bio-based Materials and Energy Education, South China Agricultural University, Guangzhou 510642, China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xianming Dong
- Key Laboratory of the Ministry of Bio-based Materials and Energy Education, South China Agricultural University, Guangzhou 510642, China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xianjun Fu
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
| | - Frank Ko
- Department of Materials Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Shiying Zhang
- Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, China
| | - Wenxu Zheng
- Key Laboratory of the Ministry of Bio-based Materials and Energy Education, South China Agricultural University, Guangzhou 510642, China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Shengsen Zhang
- Key Laboratory of the Ministry of Bio-based Materials and Energy Education, South China Agricultural University, Guangzhou 510642, China
| | - Wuyi Zhou
- Key Laboratory of the Ministry of Bio-based Materials and Energy Education, South China Agricultural University, Guangzhou 510642, China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|