1
|
Van Greenen JD, Hockman D. FGF20. Differentiation 2024; 139:100737. [PMID: 38007375 DOI: 10.1016/j.diff.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 11/27/2023]
Abstract
Fibroblast growth factor 20 (FGF20) is a neurotrophic factor and a member of the FGF9 subfamily. It was first identified in Xenopus embryos and was isolated shortly thereafter from the adult rat brain. Its receptors include FGFR4, FGFR3b, FGFR2b and the FGFRc splice forms. In adults it is highly expressed in the brain, while it is expressed in a variety of regions during embryonic development, including the inner ear, heart, hair placodes, mammary buds, dental epithelium and limbs. As a result of its wide-spread expression, FGF20 mouse mutants exhibit a variety of phenotypes including congenital deafness, lack of hair, small kidneys and delayed mammary ductal outgrowth. FGF20 is also associated with human diseases including Parkinson's Disease, cancer and hereditary deafness.
Collapse
Affiliation(s)
- Justine D Van Greenen
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dorit Hockman
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
2
|
Zhang CY, Yang M. Roles of fibroblast growth factors in the treatment of diabetes. World J Diabetes 2024; 15:392-402. [PMID: 38591079 PMCID: PMC10999039 DOI: 10.4239/wjd.v15.i3.392] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/16/2023] [Accepted: 01/25/2024] [Indexed: 03/15/2024] Open
Abstract
Diabetes affects about 422 million people worldwide, causing 1.5 million deaths each year. However, the incidence of diabetes is increasing, including several types of diabetes. Type 1 diabetes (5%-10% of diabetic cases) and type 2 diabetes (90%-95% of diabetic cases) are the main types of diabetes in the clinic. Accumulating evidence shows that the fibroblast growth factor (FGF) family plays important roles in many metabolic disorders, including type 1 and type 2 diabetes. FGF consists of 23 family members (FGF-1-23) in humans. Here, we review current findings of FGFs in the treatment of diabetes and management of diabetic complications. Some FGFs (e.g., FGF-15, FGF-19, and FGF-21) have been broadly investigated in preclinical studies for the diagnosis and treatment of diabetes, and their therapeutic roles in diabetes are currently under investigation in clinical trials. Overall, the roles of FGFs in diabetes and diabetic complications are involved in numerous processes. First, FGF intervention can prevent high-fat diet-induced obesity and insulin resistance and reduce the levels of fasting blood glucose and triglycerides by regulating lipolysis in adipose tissues and hepatic glucose production. Second, modulation of FGF expression can inhibit renal and cardiac fibrosis by regulating the expression of extracellular matrix components, promote diabetic wound healing process and bone repair, and inhibit cancer cell proliferation and migration. Finally, FGFs can regulate the activation of glucose-excited neurons and the expression of thermogenic genes.
Collapse
Affiliation(s)
- Chun-Ye Zhang
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
- NextGen Precision Health Institution, University of Missouri, Columbia, MO 65212, United States
| |
Collapse
|
3
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
4
|
Shi M, Wang C, Mei H, Temprosa M, Florez JC, Tripputi M, Merino J, Lipworth L, Shu X, Gerszten RE, Wang TJ, Beckman JA, Gamboa JL, Mosley JD, Ferguson JF. Genetic Architecture of Plasma Alpha-Aminoadipic Acid Reveals a Relationship With High-Density Lipoprotein Cholesterol. J Am Heart Assoc 2022; 11:e024388. [PMID: 35621206 PMCID: PMC9238724 DOI: 10.1161/jaha.121.024388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
Background Elevated plasma levels of alpha-aminoadipic acid (2-AAA) have been associated with the development of type 2 diabetes and atherosclerosis. However, the nature of the association remains unknown. Methods and Results We identified genetic determinants of plasma 2-AAA through meta-analysis of genome-wide association study data in 5456 individuals of European, African, and Asian ancestry from the Framingham Heart Study, Diabetes Prevention Program, Jackson Heart Study, and Shanghai Women's and Men's Health Studies. No single nucleotide polymorphisms reached genome-wide significance across all samples. However, the top associations from the meta-analysis included single-nucleotide polymorphisms in the known 2-AAA pathway gene DHTKD1, and single-nucleotide polymorphisms in genes involved in mitochondrial respiration (NDUFS4) and macrophage function (MSR1). We used a Mendelian randomization instrumental variable approach to evaluate relationships between 2-AAA and cardiometabolic phenotypes in large disease genome-wide association studies. Mendelian randomization identified a suggestive inverse association between increased 2-AAA and lower high-density lipoprotein cholesterol (P=0.005). We further characterized the genetically predicted relationship through measurement of plasma 2-AAA and high-density lipoprotein cholesterol in 2 separate samples of individuals with and without cardiometabolic disease (N=98), and confirmed a significant negative correlation between 2-AAA and high-density lipoprotein (rs=-0.53, P<0.0001). Conclusions 2-AAA levels in plasma may be regulated, in part, by common variants in genes involved in mitochondrial and macrophage function. Elevated plasma 2-AAA associates with reduced levels of high-density lipoprotein cholesterol. Further mechanistic studies are required to probe this as a possible mechanism linking 2-AAA to future cardiometabolic risk.
Collapse
Affiliation(s)
- Mingjian Shi
- Department of Biomedical InformaticsVanderbilt University Medical CenterNashvilleTN
| | - Chuan Wang
- Division of Cardiovascular MedicineDepartment of MedicineVanderbilt University Medical CenterNashvilleTN
| | - Hao Mei
- Department of Data ScienceSchool of Population HealthUniversity of Mississippi Medical CenterJacksonMS
| | - Marinella Temprosa
- Department of Biostatistics and BioinformaticsMilken Institute School of Public HealthGeorge Washington UniversityRockvilleMD
| | - Jose C. Florez
- Center for Genomic Medicine and Diabetes UnitMassachusetts General HospitalBostonMA
- Programs in Metabolism and Medical & Population GeneticsBroad InstituteCambridgeMA
- Department of MedicineHarvard Medical SchoolBostonMA
| | - Mark Tripputi
- Department of Biostatistics and BioinformaticsMilken Institute School of Public HealthGeorge Washington UniversityRockvilleMD
| | - Jordi Merino
- Center for Genomic Medicine and Diabetes UnitMassachusetts General HospitalBostonMA
- Programs in Metabolism and Medical & Population GeneticsBroad InstituteCambridgeMA
- Department of MedicineHarvard Medical SchoolBostonMA
| | - Loren Lipworth
- Division of EpidemiologyDepartment of MedicineVanderbilt University Medical CenterNashvilleTN
| | - Xiao‐Ou Shu
- Division of EpidemiologyDepartment of MedicineVanderbilt University Medical CenterNashvilleTN
| | - Robert E. Gerszten
- Division of Cardiovascular MedicineBeth Israel Deaconess Medical CenterBostonMA
- Broad Institute of Harvard and MITCambridgeMA
| | - Thomas J. Wang
- Department of MedicineUT Southwestern Medical CenterDallasTX
| | - Joshua A. Beckman
- Division of Cardiovascular MedicineDepartment of MedicineVanderbilt University Medical CenterNashvilleTN
| | - Jorge L. Gamboa
- Division of Clinical PharmacologyDepartment of MedicineVanderbilt University Medical CenterNashvilleTN
| | - Jonathan D. Mosley
- Department of Biomedical InformaticsVanderbilt University Medical CenterNashvilleTN
- Division of Clinical PharmacologyDepartment of MedicineVanderbilt University Medical CenterNashvilleTN
| | - Jane F. Ferguson
- Division of Cardiovascular MedicineDepartment of MedicineVanderbilt University Medical CenterNashvilleTN
| | | |
Collapse
|
5
|
Quan W, Li J, Liu L, Zhang Q, Qin Y, Pei X, Chen J. Quantitative assessment of the effect of FGF20 rs1721100 and rs12720208 variant on the risk of sporadic Parkinson's disease: a meta-analysis. Neurol Sci 2021; 43:3145-3152. [PMID: 34845561 DOI: 10.1007/s10072-021-05754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES While many studies have investigated the associations between fibroblast growth factor 20 (FGF20) rs1721100 (C/G) and rs12720208 (C/T) polymorphisms and susceptibility to Parkinson's disease (PD), their results are controversial. Our present meta-analysis estimated the overall association between FGF20 rs1721100 and rs12720208 polymorphisms and the risk of sporadic PD. METHODS We performed a comprehensive literature search of the PubMed, Web of Science, Embase, Chinese National Knowledge Infrastructure, and Wanfang Medicine electronic databases, which was updated in April 2021. Based on strict inclusion and exclusion criteria, the analysis included a total of 10 papers involving 14 studies with 5262 cases of PD and 6075 controls. Review Manager 5.4 software was used to assess the available data from each study. The pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess the association between the FGF20 rs1721100 and rs12720208 polymorphisms and sporadic PD risk. RESULTS Our results showed that the FGF20 rs1721100 G allele frequency and genotype distribution did not differ between PD patients and controls. Similarly, the FGF20 rs12720208 T allele frequency and genotype distribution did not differ significantly between the two groups. A subgroup analysis of Asian and Caucasian populations also showed the same results. CONCLUSIONS The results of this meta-analysis indicated that neither the rs1721100 C/G nor the rs12720208 C/T variants were associated with sporadic PD susceptibility.
Collapse
Affiliation(s)
- Wei Quan
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130000, Jilin, China
| | - Jia Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130000, Jilin, China
| | - Li Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130000, Jilin, China
| | - Qinghui Zhang
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130000, Jilin, China
| | - Yidan Qin
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130000, Jilin, China
| | - Xiaochen Pei
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130000, Jilin, China
| | - Jiajun Chen
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130000, Jilin, China.
| |
Collapse
|
6
|
Frydas A, Wauters E, van der Zee J, Van Broeckhoven C. Uncovering the impact of noncoding variants in neurodegenerative brain diseases. Trends Genet 2021; 38:258-272. [PMID: 34535299 DOI: 10.1016/j.tig.2021.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Neurodegenerative brain diseases (NBDs) are characterized by cognitive decline and movement impairments caused by neuronal loss in different brain regions. A large fraction of the genetic heritability of NBDs is not explained by the current known mutations. Genome-wide association studies identified novel disease-risk loci, adding to the genetic basis of NBDs. Many of the associated variants reside in noncoding regions with distinct molecular functions. Genetic variation in these regions can alter functions and contribute to disease pathogenesis. Here, we discuss noncoding variants associated with NBDs. Methods for better functional interpretation of noncoding variation will expand our knowledge of the genetic architecture of NBDs and broaden the routes for therapeutic strategies.
Collapse
Affiliation(s)
- Alexandros Frydas
- Neurodegenerative Brain Diseases, Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Eline Wauters
- Neurodegenerative Brain Diseases, Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Julie van der Zee
- Neurodegenerative Brain Diseases, Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases, Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
7
|
Wang AQ, Kong LN, Meng MZ, Zhao XH, Chen S, Wang XT. Mechanisms by which fibroblast growth factor 20 improves motor performance in a mouse model of Parkinson's disease. Neural Regen Res 2019; 14:1438-1444. [PMID: 30964070 PMCID: PMC6524521 DOI: 10.4103/1673-5374.253527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genome-wide studies have reported that Parkinson’s disease is associated with abnormal expression of various growth factors. In this study, male C57BL/6 mice aged 10 weeks were used to establish Parkinson’s disease models using an intraperitoneal injection of 60 mg/kg 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. 28 days later, 10 or 100 ng fibroblast growth factor 20 was injected intracerebroventricularly. The electrophysiological changes in the mouse hippocampus were recorded using a full-cell patch clamp. Expression of Kv4.2 in the substantia nigra was analyzed using a western blot assay. Serum malondialdehyde levels were analyzed by enzyme-linked immunosorbent assay. The motor coordination of mice was evaluated using the rotarod test. The results showed that fibroblast growth factor 20 decreased A-type potassium current in neurons of the substantia nigra, increased long-term potentiation amplitude in the hippocampus, and downregulated Kv4.2 expression. A high dose of fibroblast growth factor 20 reduced serum malondialdehyde levels and enhanced the motor coordination of mice. These findings confirm that fibroblast growth factor 20 has a therapeutic effect on the toxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and its mechanism of action is associated with the inhibition of A-type K+ currents and Kv4.2 expression. All animal procedures were approved by the Animal Care and Use Committee of Qilu Hospital of Shandong University, China in 2017 (approval No. KYLL-2017-0012).
Collapse
Affiliation(s)
- Ai-Qin Wang
- Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Li-Na Kong
- Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Ming-Zhu Meng
- Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xiu-He Zhao
- Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Si Chen
- Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xiao-Tang Wang
- Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
8
|
Lardenoije R, Pishva E, Lunnon K, van den Hove DL. Neuroepigenetics of Aging and Age-Related Neurodegenerative Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:49-82. [PMID: 30072060 DOI: 10.1016/bs.pmbts.2018.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neurodegenerative diseases are complex, progressive disorders and affect millions of people worldwide, contributing significantly to the global burden of disease. In recent years, research has begun to investigate epigenetic mechanisms for a potential role in disease etiology. In this chapter, we describe the current state of play for epigenetic research into neurodegenerative disorders including Alzheimer's disease, Parkinson's disease and Huntington's disease. We focus on the recent evidence for a potential role of DNA modifications, histone modifications and non-coding RNA in the etiology of these disorders. Finally, we discuss how new technological and bioinformatics advances in the field of epigenetics could further progress our understanding about the underlying mechanisms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Roy Lardenoije
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ehsan Pishva
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, The Netherlands; University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Katie Lunnon
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Daniel L van den Hove
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, The Netherlands.
| |
Collapse
|
9
|
Evaluation of FGF 20 variants for susceptibility to Parkinson’s disease in Eastern Indians. Neurosci Lett 2018; 675:68-73. [DOI: 10.1016/j.neulet.2018.03.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 11/18/2022]
|