1
|
Wang R, Liao Y, Deng Y, Shuang R. Unraveling the Health Benefits and Mechanisms of Time-Restricted Feeding: Beyond Caloric Restriction. Nutr Rev 2025; 83:e1209-e1224. [PMID: 38954563 DOI: 10.1093/nutrit/nuae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Time-restricted feeding (TRF) is a lifestyle intervention that aims to maintain a consistent daily cycle of feeding and fasting to support robust circadian rhythms. Recently, it has gained scientific, medical, and public attention due to its potential to enhance body composition, extend lifespan, and improve overall health, as well as induce autophagy and alleviate symptoms of diseases like cardiovascular diseases, type 2 diabetes, neurodegenerative diseases, cancer, and ischemic injury. However, there is still considerable debate on the primary factors that contribute to the health benefits of TRF. Despite not imposing strict limitations on calorie intake, TRF consistently led to reductions in calorie intake. Therefore, while some studies suggest that the health benefits of TRF are primarily due to caloric restriction (CR), others argue that the key advantages of TRF arise not only from CR but also from factors like the duration of fasting, the timing of the feeding period, and alignment with circadian rhythms. To elucidate the roles and mechanisms of TRF beyond CR, this review incorporates TRF studies that did not use CR, as well as TRF studies with equivalent energy intake to CR, which addresses the previous lack of comprehensive research on TRF without CR and provides a framework for future research directions.
Collapse
Affiliation(s)
- Ruhan Wang
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 43000, China
| | - Yan Deng
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| | - Rong Shuang
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| |
Collapse
|
2
|
Yan Z, Ha L, Chen H, Xiao Y, Chen M, Wu B, Xu H, Dong D. Sleep deprivation alters hepatic UGT1A9 and propofol metabolism in mice. Biochem Pharmacol 2025; 232:116713. [PMID: 39675587 DOI: 10.1016/j.bcp.2024.116713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/21/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Sleep deprivation (SD) causes circadian misalignment, and circadian clock disruption is associated with metabolic diseases such as obesity, insulin resistance, and diabetes. However, the underlying mechanism for SD-induced circadian clock disruption as well as metabolic enzyme changes is still lacking. Here, we developed SD sensitizes mice with disrupted circadian rhythms to demonstrate the regulation role and mechanism of SD in UDP-glucuronosyltransferases (UGTs) expression and the metabolism of corresponding substrates. We found that UGT Family 1 Member A9 (UGT1A9) expression was significantly decreased in the liver of SD mice, which led to an elevation exposure and prolonged anesthesia effect of propofol, which was attributed to the decreased metabolism. Meanwhile, SD down-regulated basic helix-loop-helix ARNT like 1 (BMAL1) and its target clock genes period circadian clock (Per), cryptochrome circadian regulator (Cry), and nuclear receptor subfamily 1 group D member 1 (Rev-erb) expression in mice. Furthermore, the positive regulation of UGTIA9 mRNA and protein levels by Bmal1 was confirmed in hepatocyte-specific Bmal1-knockout mice (Bmal1-hkO) and Bmal1-overexpressed AML-12 cells. At last, through a combination of promoter analysis, luciferase reporter assay, and chromatin immunoprecipitation (ChIP) assay, it was conducted that Bmal1 regulates Ugtla9 expression by directly binding the -864 bp E-box in Ugtla9 promotor or indirectly acting on the Rev-erbα- differentiated embryo chondrocyte 2 (Dec2) axis. In conclusion, our findings suggested that SD can lead to altered drug disposition and effects in vivo, and Bmal1 plays a crucial role in the crosstalk between SD-induced circadian clock disruption and drug metabolism. It initiates a new direction for the understanding of drug efficacy and toxicity changes in SD conditions and provides a scientific basis for improving the rationality of drug use.
Collapse
Affiliation(s)
- Zhiqian Yan
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Linna Ha
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, PR China
| | - Hui Chen
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - YiFei Xiao
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Min Chen
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Haiman Xu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| | - Dong Dong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, PR China.
| |
Collapse
|
3
|
Sinton MC, Shorthouse O, Costain A, Quintana JF. Interleukin-17 and fat: Timing is everything. Immunity 2025; 58:15-17. [PMID: 39813991 DOI: 10.1016/j.immuni.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
Interleukin-17 plays a major role in controlling adipose tissue homeostasis. In a recent study published in Nature, Douglas et al. demonstrate that time-of-day-dependent expression of interleukin-17 by tissue-resident innate lymphocytes in the adipose tissue drives circadian regulation of adipose tissue homeostasis and function.
Collapse
Affiliation(s)
- Matthew C Sinton
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK; Division of Immunology, Immunity to Infection and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| | - Olivia Shorthouse
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK; Division of Immunology, Immunity to Infection and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Alice Costain
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK; Division of Immunology, Immunity to Infection and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Juan F Quintana
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK; Division of Immunology, Immunity to Infection and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
Hussain Y, Dar MI, Pan X. Circadian Influences on Brain Lipid Metabolism and Neurodegenerative Diseases. Metabolites 2024; 14:723. [PMID: 39728504 DOI: 10.3390/metabo14120723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Circadian rhythms are intrinsic, 24 h cycles that regulate key physiological, mental, and behavioral processes, including sleep-wake cycles, hormone secretion, and metabolism. These rhythms are controlled by the brain's suprachiasmatic nucleus, which synchronizes with environmental signals, such as light and temperature, and consequently maintains alignment with the day-night cycle. Molecular feedback loops, driven by core circadian "clock genes", such as Clock, Bmal1, Per, and Cry, are essential for rhythmic gene expression; disruptions in these feedback loops are associated with various health issues. Dysregulated lipid metabolism in the brain has been implicated in the pathogenesis of neurological disorders by contributing to oxidative stress, neuroinflammation, and synaptic dysfunction, as observed in conditions such as Alzheimer's and Parkinson's diseases. Disruptions in circadian gene expression have been shown to perturb lipid regulatory mechanisms in the brain, thereby triggering neuroinflammatory responses and oxidative damage. This review synthesizes current insights into the interconnections between circadian rhythms and lipid metabolism, with a focus on their roles in neurological health and disease. It further examines how the desynchronization of circadian genes affects lipid metabolism and explores the potential mechanisms through which disrupted circadian signaling might contribute to the pathophysiology of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yusuf Hussain
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| | - Mohammad Irfan Dar
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| |
Collapse
|
5
|
Daudali H, Anderson J, Bailey MES, Fradera A, Niedzwiedz CL, Lyall D, Lyall LMM, Strawbridge RJ. Genetic variation in circadian regulator gene BMAL1 in psychiatric, psychological and cardiometabolic traits: a trans-ancestry UK Biobank study. BMJ MENTAL HEALTH 2024; 27:e301267. [PMID: 39667926 PMCID: PMC11647332 DOI: 10.1136/bmjment-2024-301267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/30/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND The link between cardiometabolic disease and mental illness has been well established but remains incompletely explained. One hypothesis suggests that circadian rhythm dysregulation links cardiometabolic disease and mental illnesses. BMAL1 is a circadian rhythm regulatory gene. Human genetic studies have implicated BMAL1 in depression, schizophrenia, bipolar disorder as well as body mass index, blood pressure and lipid levels. OBJECTIVE We investigated the BMAL1 locus genetic variants for associations with both cardiometabolic and mental illness. METHODS Genetic and phenotypic data from UK Biobank (~500 000 participants) of White British, African-Caribbean, South Asian, white European and Multiple ancestries were used. Regression analyses using Plink 1.09 was used to identify significant associations, with Bonferroni multiple testing correction. Multiple ancestry meta-analyses using METAL software was used to investigate trans-ancestry consistency in genetic effects. FINDINGS We identified associations for body mass index, anhedonia, diastolic and systolic blood pressure, waist-hip ratio, major depressive disorder, neuroticism and risk-taking. Meta-analyses indicated that there are ancestry-wide and ancestry-specific effects on cardiometabolic, mental illness and related traits. CONCLUSIONS Our results suggest that the associations for mental illness (and related traits) and those for cardiometabolic traits are distinct rather than shared and that these associations were consistent across ancestry groups. CLINICAL IMPLICATIONS Further investigation into the tissue-specific roles of BMAL1 is required to fully understand the clinical impact of these findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rona J Strawbridge
- University of Glasgow, Glasgow, UK
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
6
|
Zhang R, Liu M, Lu J, Lu S, Wang Y, Guan S. Fisetin Ameliorates Hepatocyte Lipid Droplet Accumulation via Targeting the Rhythmic Protein BMAL1 to Regulate Cell Death-Inducing DNA Fragmentation Factor-α-like Effector C-Mediated Lipid Droplet Fusion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39563624 DOI: 10.1021/acs.jafc.4c06487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
High fat diet (HFD) induces the enlargement and accumulation of lipid droplets (LDs) in hepatocytes, thereby influencing the homeostasis of lipid metabolism. Cell death-inducing DNA fragmentation factor-α-like effector C (CIDEC), a surface protein of LDs, facilitates their fusion and growth, transforming small LDs into larger ones. Lipophagy, a selective form of autophagy, primarily targets small LDs for degradation. Fisetin (FIS), a natural dietary flavonoid present in various fruits and vegetables, has an unclear mechanism for reducing LD accumulation. In this study, we observed that FIS significantly ameliorated HFD-induced lipid accumulation in the hepatocytes of C57BL/6 mice. In further mechanistic studies, we revealed that FFA enhanced the expression of CIDEC, which promoted the fusion of LDs and caused them to become larger. The enlarged LDs could not be degraded by autophagy, which ultimately led to accumulation of LDs. Conversely, FIS alleviated LD accumulation by inhibiting CIDEC-mediated fusion, resulting in smaller LDs that facilitated lipophagy. Additionally, studies indicated that the dysfunction of circadian rhythms is closely related to lipid metabolism. In our study, we showed that HFD and FFA disrupted circadian rhythm in C57BL/6 mouse hepatocytes and AML12 cells, while FIS modified the rhythm disturbances and increased protein expression of the core clocks BMAL1 and CLOCK. We silenced the BMAL1 protein and revealed that si-BMAL1 upregulated CIDEC proteins. These data suggested that FIS might inhibit CIDEC-mediated LD fusion and enhance hepatocyte lipophagy by promoting the expression of rhythm protein BMAL1, thereby alleviating LD accumulation in C57BL/6 and AML12 cells caused by the HFD and FFA. The present study provided novel insights and potential targets for utilizing functional food factors to mitigate the accumulation of LD in hepatocytes.
Collapse
Affiliation(s)
- Ranran Zhang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Meitong Liu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shujing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Yuanmeng Wang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
7
|
Ledesma-Aparicio J, Mailloux-Salinas P, Arias-Chávez DJ, Campos-Pérez E, Calixto-Tlacomulco S, Cruz-Rangel A, Reyes-Grajeda JP, Bravo G. Transcriptomic Analysis of the Protective Effect of Piperine on Orlistat Hepatotoxicity in Obese Male Wistar Rats. J Biochem Mol Toxicol 2024; 38:e70040. [PMID: 39503200 DOI: 10.1002/jbt.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/17/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024]
Abstract
Obesity is a risk factor for the development of noncommunicable diseases that impair the quality of life. Orlistat is one of the most widely used drugs in the management of obesity due to its accessibility and low cost. However, cases of hepatotoxicity have been reported due to the consumption of this drug. On the other hand, piperine is an alkaloid found in black pepper that has demonstrated antiobesity, antihyperlipidemic, antioxidant, prebiotic, and hepatoprotective effects. The aim of this study was to evaluate the protective effect of piperine on the toxicity of orlistat in liver tissue. Obese male rats were administered piperine (30 mg/kg), orlistat (60 mg/kg), and the orlistat-piperine combination (30 mg/kg + 60 mg/kg) daily for 6 weeks. It was observed that the orlistat-piperine treatment resulted in greater weight loss, decreased biochemical markers (lipid profile, liver enzymes, pancreatic lipase activity), and histopathological analysis showed decreased hepatic steatosis and reduction of duodenal inflammation. Transcriptomic analysis revealed that the administration of piperine with orlistat increased the expression of genes related to the beta-oxidation of fatty acids, carbohydrate metabolism, detoxification of xenobiotics, and response to oxidative stress. Therefore, the results suggest that the administration of orlistat-piperine activates signaling pathways that confer a hepatoprotective effect, reducing the toxic impact of this drug.
Collapse
Affiliation(s)
- Jessica Ledesma-Aparicio
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Patrick Mailloux-Salinas
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - David Julian Arias-Chávez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Elihu Campos-Pérez
- Departamento de Patología, Hospital General Dra Matilde Petra Montoya Lafragua, ISSSTE, Mexico City, Mexico
| | - Sandra Calixto-Tlacomulco
- Laboratorio de Estructura de Proteínas, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Armando Cruz-Rangel
- Laboratorio de Estructura de Proteínas, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Juan Pablo Reyes-Grajeda
- Laboratorio de Estructura de Proteínas, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Guadalupe Bravo
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| |
Collapse
|
8
|
Gu Y, Seong DH, Liu W, Wang Z, Jeong YW, Kim JC, Kang DR, Lee RJE, Koh JH, Kim SH. Exercise improves muscle mitochondrial dysfunction-associated lipid profile under circadian rhythm disturbance. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:515-526. [PMID: 39467715 PMCID: PMC11519723 DOI: 10.4196/kjpp.2024.28.6.515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 10/30/2024]
Abstract
We investigated whether endurance exercise training (EXT) ameliorates circadian rhythm (CR)-induced risk factors by improving skeletal muscle (SKM) mitochondrial biogenesis, reducing oxidative stress, and modulating apoptotic protein expression. We distinguished between regular and shift workers using the National Health and Nutrition Examination Survey (NHANES) and investigated the health problems caused by shift work (CR disturbance) and the potential therapeutic effects of exercise. In our animal study, 36 rats underwent 12 weeks of CR disturbance, divided into regular and irregular CR groups. These groups were further split into EXT (n = 12) and sedentary (n = 12) for an additional 8 weeks. We analyzed SKM tissue to understand the molecular changes induced by CR and EXT. NHANES data were analyzed using SAS 9.4 and Prism 8 software, while experimental animal data were analyzed using Prism 8 software. The statistical procedures used in each experiment are indicated in the figure legends. Our studies showed that CR disturbance increases dyslipidemia, alters circadian clock proteins (BMAL1, PER2), raises apoptotic protein levels, and reduces mitochondrial biogenesis in SKM. EXT improved LDL-C and HDLC levels without affecting muscle BMAL1 expression. It also enhanced mitochondrial biogenesis (AMPK, PGC-1α, Tfam, NADH-UO, COX-I), antioxidant levels (Catalase, SOD1, SOD2), and apoptotic protein (p53, Bax/Bcl2) expression or activity in SKM. We demonstrated that shift work-induced CR disturbance leads to dyslipidemia, diminished mitochondrial biogenesis, and reduced antioxidant capacity in SKM. However, EXT can counteract dyslipidemia under CR disturbance, potentially lowering the risk of cardiovascular disorders.
Collapse
Affiliation(s)
- Yu Gu
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea
| | - Dong-Hun Seong
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea
| | - Wenduo Liu
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea
| | - Zilin Wang
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea
| | - Yong Whi Jeong
- Department of Medical Informatics and Biostatistics, Graduate School, Yonsei University, Wonju 26426, Korea
| | - Jae-Cheol Kim
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea
| | - Dae Ryong Kang
- Department of Precision Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Rose Ji Eun Lee
- Department of Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Jin-Ho Koh
- Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Sang Hyun Kim
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
9
|
Li X, Zhuang R, Lu Z, Wu F, Wu X, Zhang K, Wang M, Li W, Zhang H, Zhu W, Zhang B. Nobiletin promotes lipolysis of white adipose tissue in a circadian clock-dependent manner. J Nutr Biochem 2024; 132:109696. [PMID: 39094217 DOI: 10.1016/j.jnutbio.2024.109696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024]
Abstract
Nobiletin has been reported to protect against obesity-related metabolic disorders by enhancing the circadian rhythm; however its effects on lipid metabolism in adipose tissue are unclear. In this study, mice were fed with high-fat diet (HFD) for four weeks firstly and gavaged with 50 or 200 mg/kg bodyweight/day nobiletin at Zeitgeber time (ZT) 4 for another four weeks while still receiving HFD. At the end of the 8-week experimental period, the mice were sacrificed at ZT4 or ZT8 on the same day. Mature 3T3-L1 adipocytes were treated with nobiletin in the presence or absence of siBmal1, siRora, siRorc, SR8278 or SR9009. Nobiletin reduced the weight of white adipose tissue (WAT) and the size of adipocytes in WAT. At ZT4, nobiletin decreased the TG, TC and LDL-c levels and increased serum FFA level and glucose tolerance. Nobiletin triggered the lipolysis of mesenteric and epididymal WAT at both ZT4 and ZT16. Nobiletin increased the level of RORγ at ZT16, that of BMAL1 and PPARγ at ZT4, and that of ATGL at both ZT4 and ZT16. Nobiletin increased lipolysis and ATGL levels in 3T3-L1 adipocytes in Bmal1- or Rora/c- dependent manner. Dual luciferase assay indicated that nobiletin enhanced the transcriptional activation of RORα/γ on Atgl promoter and decreased the repression of RORα/γ on PPARγ-binding PPRE. Promoter deletion analysis indicated that nobiletin inhibited the suppression of PPARγ-mediated Atgl transcription by RORα/γ. Taken together, nobiletin elevated lipolysis in WAT by increasing ATGL levels through activating the transcriptional activity of RORα/γ and decreasing the repression of RORα/γ on PPARγ-binding PPRE.
Collapse
MESH Headings
- Animals
- Flavones/pharmacology
- Lipolysis/drug effects
- Mice
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/drug effects
- 3T3-L1 Cells
- Male
- Circadian Clocks/drug effects
- Mice, Inbred C57BL
- ARNTL Transcription Factors/metabolism
- ARNTL Transcription Factors/genetics
- Diet, High-Fat/adverse effects
- PPAR gamma/metabolism
- PPAR gamma/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 1/genetics
- Adipocytes/drug effects
- Adipocytes/metabolism
- Lipase/metabolism
- Obesity/metabolism
- Obesity/drug therapy
- Acyltransferases
- Nuclear Receptor Subfamily 1, Group F, Member 3
Collapse
Affiliation(s)
- Xudong Li
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Department of Toxicological and Biochemical Test, Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Runxuan Zhuang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhitian Lu
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Department of maternity health, Guangzhou Baiyun District Maternal and Child Health Hospital, Guangzhou, Guangdong, China
| | - Fan Wu
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoli Wu
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke Zhang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Min Wang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenxue Li
- Department of Toxicological and Biochemical Test, Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Shock and Microcirculation, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Zhu
- Department of Toxicological and Biochemical Test, Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China.
| | - Bo Zhang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Yeo GS, Lee ST, Wong JE, Khouw I, Safii NS, Poh BK. Association of breakfast skipping on nutrient intake and adiposity in Malaysian children: Findings from SEANUTS II. Appetite 2024; 201:107607. [PMID: 39029531 DOI: 10.1016/j.appet.2024.107607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Malaysian children often skip breakfast, an important meal providing essential nutrients for optimal growth and maintaining proper nutritional status. Therefore, this study aims to investigate the associations between breakfast skipping with dietary intake, diet quality, and adiposity indicators among primary schoolchildren aged 6.0-12.9 years. This study involved 1383 children from the South East Asian Nutrition Surveys (SEANUTS II) Malaysia. Information collected through questionnaires included sociodemography and breakfast consumption, defined as the first meal before noon. Breakfast skipping was identified as skipping breakfast at least once a week. Anthropometric measures, including height, body weight, and waist circumference, as well as percentage of body fat, were collected. Body mass index (BMI) and waist-to-height ratio were calculated, and BMI-for-age-z-scores was determined using WHO (2007) growth reference. A one-day 24-hour dietary recall was employed to assess dietary intake, and diet quality was analyzed using Malaysian Healthy Eating Index. Binary logistic regression was applied to examine relationship between breakfast skipping on diet quality and adiposity indicators. Over one-third (36.0%) of children skipped breakfast at least once a week, resulting in lower intakes of energy, nutrients, cereals/grains, vegetables, and milk/dairy products, though not affecting total diet quality score. Breakfast skipping was associated with higher odds of overweight/obesity (aOR 2.04, 95%CI: 1.52-2.76) and central obesity (aOR 1.87, 95%CI 1.34-2.61). In conclusion, primary schoolchildren in Peninsular Malaysia who skipped breakfast tended to have lower consumption of nutrients and specific basic food groups, as well as increased body fat. This study highlights the importance of continuing to educate parents and children about healthy eating habits, especially the need to adhere to dietary recommendations, with an emphasis on breakfast consumption.
Collapse
Affiliation(s)
- Giin Shang Yeo
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Shoo Thien Lee
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia; Faculty of Health and Life Sciences, Management and Science University, 40100, Shah Alam, Malaysia
| | - Jyh Eiin Wong
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia; Obesity-UKM Research Group, Universiti Kebangsaan Malaysia, 43600, Bangi, Malaysia
| | - Ilse Khouw
- FrieslandCampina, Amersfoort, the Netherlands
| | - Nik Shanita Safii
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia; Obesity-UKM Research Group, Universiti Kebangsaan Malaysia, 43600, Bangi, Malaysia.
| | - Bee Koon Poh
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia; Obesity-UKM Research Group, Universiti Kebangsaan Malaysia, 43600, Bangi, Malaysia.
| |
Collapse
|
11
|
Onuma S, Kawai M. Circadian Regulatory Networks of Glucose Homeostasis and Its Disruption as a Potential Cause of Undernutrition. Endocrinology 2024; 165:bqae126. [PMID: 39276035 DOI: 10.1210/endocr/bqae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/09/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024]
Abstract
The circadian clock system, an evolutionarily conserved mechanism, orchestrates diurnal rhythms in biological activities such as behavior and metabolism, aligning them with the earth's 24-hour light/dark cycle. This synchronization enables organisms to anticipate and adapt to predictable environmental changes, including nutrient availability. However, modern lifestyles characterized by irregular eating and sleeping habits disrupt this synchrony, leading to metabolic disorders such as obesity and metabolic syndrome, evidenced by higher obesity rates among shift workers. Conversely, circadian disturbances are also associated with reduced nutrient absorption and an increased risk of malnutrition in populations such as the critically ill or the elderly. The precise mechanisms of these disturbances in leading to either overnutrition or undernutrition is complex and not yet fully understood. Glucose, a crucial energy source, is closely linked to obesity when consumed excessively and to weight loss when intake is reduced, which suggests that circadian regulation of glucose metabolism is a key factor connecting circadian disturbances with nutritional outcomes. In this review, we describe how the biological clock in various tissues regulates glucose metabolism, with a primary focus on studies utilizing animal models. Additionally, we highlight current clinical evidence supporting the association between circadian disturbance and glucose metabolism, arguing that such disruption could predominantly contribute to undernutrition due to impaired efficient utilization of nutrients.
Collapse
Affiliation(s)
- Shinsuke Onuma
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, 594-1101, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Masanobu Kawai
- Department of Molecular Genetics and Endocrinology, Research Institute, Osaka Women's and Children's Hospital, 594-1101, Osaka, Japan
- Department of Gastroenterology, Nutrition and Endocrinology, Osaka Women's and Children's Hospital, 594-1101, Osaka, Japan
| |
Collapse
|
12
|
Chen Y, Jing Y, Hu L, Xi Z, Lu Z, Loor JJ, Wang M. Overexpression of PER2 Promotes De Novo Fatty Acid Synthesis, Fatty Acid Desaturation, and Triglyceride Accumulation in Bovine Mammary Epithelial Cells. Int J Mol Sci 2024; 25:9785. [PMID: 39337271 PMCID: PMC11431620 DOI: 10.3390/ijms25189785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The core clock gene Period2 (PER2) is associated with mammary gland development and lipid synthesis in rodents and has recently been found to have a diurnal variation in the process of lactation, but has not yet been demonstrated in bovine mammary epithelial cells (BMECs). To explore the regulatory function of PER2 on milk fat synthesis in bovine mammary epithelial cells, we initially assessed the expression of clock genes and milk fat metabolism genes for 24 h using real-time quantitative PCR and fitted the data to a cosine function curve. Subsequently, we overexpressed the PER2 in BMECs using plasmid vector (pcDNA3.1-PER2), with empty vector pcDNA3.1-myc as the control. After transfecting BMECs for 48 h, we assessed the protein abundance related to milk fat synthesis by Western blot, the expression of genes coding for these proteins using real time-quantitative PCR, the production of triacylglycerol, and the fatty acid profile. The findings indicated that a total of nine clock genes (PER1/2, CRY1/2, REV-ERBα, BMAL1, NCOR1, NR2F2, FBXW11), seven fatty acid metabolism genes (CD36, ACSS2, ACACA, SCD, FADS1, DGAT1, ADFP), and six nuclear receptor-related genes (INSIG1, SCAP, SREBF1, C/EBP, PPARG, LXR) exhibited oscillation with a period close to 24 h in non-transfected BMECs (R2 ≥ 0.7). Compared to the control group (transfected with empty pcDNA3.1-myc), the triglyceride content significantly increased in the PER2 overexpression group (p < 0.05). The lipogenic genes for fatty acid transport and triglyceride synthesis (ACACA, SCD, LPIN1, DGAT1, and SREBF1) were upregulated after PER2 overexpression, along with the upregulation of related protein abundance (p < 0.05). The contents and ratios of palmitic acid (C16:0), oleic acid (C18:1n9c), and trans-oleic acid (C18:1n9t) were significantly increased in the overexpression group (p < 0.05). Overall, the data supported that PER2 participated in the process of milk fat metabolism and is potentially involved in the de novo synthesis and desaturation of fatty acid in bovine mammary epithelial cells.
Collapse
Affiliation(s)
- Yifei Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yujia Jing
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Liangyu Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Zanna Xi
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhiqi Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
13
|
Pereira AC, Serrano-Cuñarro L, Cruz MT, Cavadas C, Pereira CMF. The link between alterations in circadian rhythms and lipid metabolism in bipolar disorder: the hypothesis of lipid droplets. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2024; 46:e20243670. [PMID: 39102528 PMCID: PMC11744263 DOI: 10.47626/1516-4446-2024-3670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024]
Abstract
Bipolar disorder (BD) is a neuropsychiatric illness characterized by recurrent episodes of mania and depression, leading to significant cognitive and functional impairments, psychiatric and metabolic comorbidities, and substantial healthcare costs. The complex nature and lack of specific biomarkers for BD make it a daily challenge for clinicians. Therefore, advancing our understanding of BD pathophysiology is essential to identify novel diagnostic biomarkers and potential therapeutic targets. Although its neurobiology remains unclear, circadian disruption and lipid alterations have emerged as key hallmarks of BD. Lipids are essential components of the brain and play a critical role in regulating synaptic activity and neuronal development. Consequently, alterations in brain lipids may contribute to the neuroanatomical changes and reduced neuroplasticity observed in BD. Lipid droplets, which regulate the storage of neutral lipids, buffer the levels of toxic lipids within cells. These dynamic organelles adapt to cellular needs, and their dysregulated accumulation has been implicated in several pathological conditions. Notably, lipid droplets and different classes of lipids exhibit rhythmic oscillations throughout the 24-hour cycle, suggesting a link between lipid metabolism, circadian rhythms, and lipid droplets. In this review, we explore the impairment of circadian rhythms and lipid metabolism in BD and present evidence that circadian clocks regulate lipid droplet accumulation. Importantly, we propose the "hypothesis of lipid droplets for BD," which posits that impaired lipid metabolism in BD is closely linked to alterations in lipid droplet homeostasis driven by circadian clock disruption.
Collapse
Affiliation(s)
- Ana Catarina Pereira
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra (UC), Coimbra, Portugal
- Centro de Inovação em Biotecnologia e Biomedicina (CIBB), UC, Coimbra, Portugal
- Faculdade de Medicina, UC, Coimbra, Portugal
- Centro Académico Clínico de Coimbra, Coimbra, Portugal
| | - Laura Serrano-Cuñarro
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra (UC), Coimbra, Portugal
- Centro de Inovação em Biotecnologia e Biomedicina (CIBB), UC, Coimbra, Portugal
| | - Maria Teresa Cruz
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra (UC), Coimbra, Portugal
- Centro de Inovação em Biotecnologia e Biomedicina (CIBB), UC, Coimbra, Portugal
- Centro Académico Clínico de Coimbra, Coimbra, Portugal
- Faculdade de Farmácia, UC, Coimbra, Portugal
| | - Cláudia Cavadas
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra (UC), Coimbra, Portugal
- Centro de Inovação em Biotecnologia e Biomedicina (CIBB), UC, Coimbra, Portugal
- Faculdade de Farmácia, UC, Coimbra, Portugal
| | - Cláudia Maria Fragão Pereira
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra (UC), Coimbra, Portugal
- Centro de Inovação em Biotecnologia e Biomedicina (CIBB), UC, Coimbra, Portugal
- Faculdade de Medicina, UC, Coimbra, Portugal
- Centro Académico Clínico de Coimbra, Coimbra, Portugal
| |
Collapse
|
14
|
Li L, Hyun Cho K, Yu X, Cheng S. Systematic Multi-Omics Investigation of Androgen Receptor Driven Gene Expression and Epigenetics changes in Prostate Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604505. [PMID: 39091838 PMCID: PMC11291036 DOI: 10.1101/2024.07.22.604505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Background Prostate cancer, a common malignancy, is driven by androgen receptor (AR) signaling. Understanding the function of AR signaling is critical for prostate cancer research. Methods We performed multi-omics data analysis for the AR+, androgen-sensitive LNCaP cell line, focusing on gene expression (RNAseq), chromatin accessibility (ATACseq), and transcription factor binding (ChIPseq). High-quality datasets were curated from public repositories and processed using state-of-the-art bioinformatics tools. Results Our analysis identified 1004 up-regulated and 707 down-regulated genes in response to androgen deprivation therapy (ADT) which diminished AR signaling activity. Gene-set enrichment analysis revealed that AR signaling influences pathways related to neuron differentiation, cell adhesion, P53 signaling, and inflammation. ATACseq and ChIPseq data demonstrated that as a transcription factor, AR primarily binds to distal enhancers, influencing chromatin modifications without affecting proximal promoter regions. In addition, the AR-induced genes maintained higher active chromatin states than AR-inhibited genes, even under ADT conditions. Furthermore, ADT did not directly induce neuroendocrine differentiation in LNCaP cells, suggesting a complex mechanism behind neuroendocrine prostate cancer development. In addition, a publicly available online application LNCaP-ADT (https://pcatools.shinyapps.io/shinyADT/) was launched for users to visualize and browse data generated by this study. Conclusion This study provides a comprehensive multi-omics dataset, elucidating the role of AR signaling in prostate cancer at the transcriptomic and epigenomic levels. The reprocessed data is publicly available, offering a valuable resource for future prostate cancer research.
Collapse
Affiliation(s)
- Lin Li
- Department of Biochemistry and Molecular biology, LSU Health Shreveport, Shreveport, LA
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA
| | - Kyung Hyun Cho
- Department of Biochemistry and Molecular biology, LSU Health Shreveport, Shreveport, LA
| | - Xiuping Yu
- Department of Biochemistry and Molecular biology, LSU Health Shreveport, Shreveport, LA
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA
- Department of Urology, LSU Health Shreveport, Shreveport, LA
| | - Siyuan Cheng
- Department of Biochemistry and Molecular biology, LSU Health Shreveport, Shreveport, LA
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA
| |
Collapse
|
15
|
Geronikolou SA, Pavlopoulou A, Uça Apaydin M, Albanopoulos K, Cokkinos DV, Chrousos G. Non-Hereditary Obesity Type Networks and New Drug Targets: An In Silico Approach. Int J Mol Sci 2024; 25:7684. [PMID: 39062927 PMCID: PMC11277295 DOI: 10.3390/ijms25147684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity, a chronic, preventable disease, has significant comorbidities that are associated with a great human and financial cost for society. The aim of the present work is to reconstruct the interactomes of non-hereditary obesity to highlight recent advances of its pathogenesis, and discover potential therapeutic targets. Obesity and biological-clock-related genes and/or gene products were extracted from the biomedical literature databases PubMed, GeneCards and OMIM. Their interactions were investigated using STRING v11.0 (a database of known and predicted physical and indirect associations among genes/proteins), and a high confidence interaction score of >0.7 was set. We also applied virtual screening to discover natural compounds targeting obesity- and circadian-clock-associated proteins. Two updated and comprehensive interactomes, the (a) stress- and (b) inflammation-induced obesidomes involving 85 and 93 gene/gene products of known and/or predicted interactions with an average node degree of 9.41 and 10.8, respectively, were produced. Moreover, 15 of these were common between the two non-hereditary entities, namely, ADIPOQ, ADRB2/3, CCK, CRH, CXCL8, FOS, GCG, GNRH1, IGF1, INS, LEP, MC4R, NPY and POMC, while phelligridin E, a natural product, may function as a potent FOX1-DBD interaction blocker. Molecular networks may contribute to the understanding of the integrated regulation of energy balance/obesity pathogenesis and may associate chronopharmacology schemes with natural products.
Collapse
Affiliation(s)
- Styliani A. Geronikolou
- Clinical, Translational Research and Experimental Surgery Centre, Biomedical Research Foundation of the Academy of Athens, 4, Soranou Ephessiou Str., 11527 Athens, Greece; (D.V.C.); (G.C.)
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens Medical School, Levadias 8, 11527 Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Türkiye; (A.P.)
- Izmir International Biomedicine and Genome Institute, Genomics and Molecular Biotechnology Department, Dokuz Eylül University, 35340 Izmir, Türkiye
| | - Merve Uça Apaydin
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Türkiye; (A.P.)
- Izmir International Biomedicine and Genome Institute, Genomics and Molecular Biotechnology Department, Dokuz Eylül University, 35340 Izmir, Türkiye
| | | | - Dennis V. Cokkinos
- Clinical, Translational Research and Experimental Surgery Centre, Biomedical Research Foundation of the Academy of Athens, 4, Soranou Ephessiou Str., 11527 Athens, Greece; (D.V.C.); (G.C.)
| | - George Chrousos
- Clinical, Translational Research and Experimental Surgery Centre, Biomedical Research Foundation of the Academy of Athens, 4, Soranou Ephessiou Str., 11527 Athens, Greece; (D.V.C.); (G.C.)
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens Medical School, Levadias 8, 11527 Athens, Greece
| |
Collapse
|
16
|
Lin T, Mohammad A, Kolonin MG, Eckel-Mahan KL. Mechanisms and metabolic consequences of adipocyte progenitor replicative senescence. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00046. [PMID: 39211801 PMCID: PMC11356692 DOI: 10.1097/in9.0000000000000046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
In recent decades, obesity has become a worldwide epidemic. As a result, the importance of adipose tissue (AT) as a metabolically active storage depot for lipids and a key mediator of body-wide metabolism and energy balance has been increasingly recognized. Emerging from the studies of AT in metabolic disease is a recognition of the importance of the adipocyte progenitor cell (APC) population of AT being the gatekeeper of adipocyte function. APCs have the capability to self-renew and undergo adipogenesis to propagate new adipocytes capable of lipid storage, which is important for maintaining a healthy fat pad, devoid of dysfunctional lipid droplet hypertrophy, inflammation, and fibrosis, which is linked to metabolic diseases, including type 2 diabetes. Like other dividing cells, APCs are at risk for undergoing cell senescence, a state of irreversible cell proliferation arrest that occurs under a variety of stress conditions, including DNA damage and telomere attrition. APC proliferation is controlled by a variety of factors, including paracrine and endocrine factors, quality and timing of energy intake, and the circadian clock system. Therefore, alteration in any of the underlying signaling pathways resulting in excessive proliferation of APCs can lead to premature APC senescence. Better understanding of APCs senescence mechanisms will lead to new interventions extending metabolic health.
Collapse
Affiliation(s)
- Tonghui Lin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Aftab Mohammad
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mikhail G. Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Molecular and Translational Biology Program, MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kristin L. Eckel-Mahan
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Molecular and Translational Biology Program, MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
17
|
Kumar A, Vaca-Dempere M, Mortimer T, Deryagin O, Smith JG, Petrus P, Koronowski KB, Greco CM, Segalés J, Andrés E, Lukesova V, Zinna VM, Welz PS, Serrano AL, Perdiguero E, Sassone-Corsi P, Benitah SA, Muñoz-Cánoves P. Brain-muscle communication prevents muscle aging by maintaining daily physiology. Science 2024; 384:563-572. [PMID: 38696572 DOI: 10.1126/science.adj8533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/26/2024] [Indexed: 05/04/2024]
Abstract
A molecular clock network is crucial for daily physiology and maintaining organismal health. We examined the interactions and importance of intratissue clock networks in muscle tissue maintenance. In arrhythmic mice showing premature aging, we created a basic clock module involving a central and a peripheral (muscle) clock. Reconstituting the brain-muscle clock network is sufficient to preserve fundamental daily homeostatic functions and prevent premature muscle aging. However, achieving whole muscle physiology requires contributions from other peripheral clocks. Mechanistically, the muscle peripheral clock acts as a gatekeeper, selectively suppressing detrimental signals from the central clock while integrating important muscle homeostatic functions. Our research reveals the interplay between the central and peripheral clocks in daily muscle function and underscores the impact of eating patterns on these interactions.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Mireia Vaca-Dempere
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Thomas Mortimer
- Institute for Research in Biomedicine (IRB), Barcelona, The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Oleg Deryagin
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Jacob G Smith
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Paul Petrus
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
- Department of Medicine (H7), Karolinska Institutet, Stockholm 141 86, Sweden
| | - Kevin B Koronowski
- Department of Biochemistry & Structural Biology, Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Carolina M Greco
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
- Department of Biomedical Sciences, Humanitas University and Humanitas Research Hospital IRCCS, 20089, Rozzano (Milan), Italy
| | - Jessica Segalés
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Eva Andrés
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Vera Lukesova
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Valentina M Zinna
- Institute for Research in Biomedicine (IRB), Barcelona, The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Patrick-Simon Welz
- Cancer Research Programme, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Antonio L Serrano
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Altos Labs Inc., San Diego Institute of Science, San Diego, CA 92121, USA
| | - Eusebio Perdiguero
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Altos Labs Inc., San Diego Institute of Science, San Diego, CA 92121, USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
- Deceased
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB), Barcelona, The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Altos Labs Inc., San Diego Institute of Science, San Diego, CA 92121, USA
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
18
|
Ma D, Qu Y, Wu T, Liu X, Cai L, Wang Y. Excessive fat expenditure in MCT-induced heart failure rats is associated with BMAL1/REV-ERBα circadian rhythmic loop disruption. Sci Rep 2024; 14:8128. [PMID: 38584196 PMCID: PMC10999456 DOI: 10.1038/s41598-024-58577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/01/2024] [Indexed: 04/09/2024] Open
Abstract
Fat loss predicts adverse outcomes in advanced heart failure (HF). Disrupted circadian clocks are a primary cause of lipid metabolic issues, but it's unclear if this disruption affects fat expenditure in HF. To address this issue, we investigated the effects of disruption of the BMAL1/REV-ERBα circadian rhythmic loop on adipose tissue metabolism in HF.50 Wistar rats were initially divided into control (n = 10) and model (n = 40) groups. The model rats were induced with HF via monocrotaline (MCT) injections, while the control group received equivalent solvent injections. After establishing the HF model, the model group was further subdivided into four groups: normal rhythm (LD), inverted rhythm (DL), lentivirus vector carrying Bmal1 short hairpin RNA (LV-Bmal1 shRNA), and empty lentivirus vector control (LV-Control shRNA) groups, each with 10 rats. The DL subgroup was exposed to a reversed light-dark cycle of 8 h: 16 h (dark: light), while the rest adhered to normal light-dark conditions (light: dark 12 h: 12 h). Histological analyses were conducted using H&E, Oil Red O, and Picrosirius red stains to examine adipose and liver tissues. Immunohistochemical staining, RT-qPCR, and Western blotting were performed to detect markers of lipolysis, lipogenesis, and beiging of white adipose tissue (WAT), while thermogenesis indicators were detected in brown adipose tissue (BAT). The LD group rats exhibited decreased levels of BMAL1 protein, increased levels of REV-ERBα protein, and disrupted circadian circuits in adipose tissue compared to controls. Additionally, HF rats showed reduced adipose mass and increased ectopic lipid deposition, along with smaller adipocytes containing lower lipid content and fibrotic adipose tissue. In the LD group WAT, expression of ATGL, HSL, PKA, and p-PKA proteins increased, alongside elevated mRNA levels of lipase genes (Hsl, Atgl, Peripilin) and FFA β-oxidation genes (Cpt1, acyl-CoA). Conversely, lipogenic gene expression (Scd1, Fas, Mgat, Dgat2) decreased, while beige adipocyte markers (Cd137, Tbx-1, Ucp-1, Zic-1) and UCP-1 protein expression increased. In BAT, HF rats exhibited elevated levels of PKA, p-PKA, and UCP-1 proteins, along with increased expression of thermogenic genes (Ucp-1, Pparγ, Pgc-1α) and lipid transportation genes (Cd36, Fatp-1, Cpt-1). Plasma NT-proBNP levels were higher in LD rats, accompanied by elevated NE and IL-6 levels in adipose tissue. Remarkably, morphologically, the adipocytes in the DL and LV-Bmal1 shRNA groups showed reduced size and lower lipid content, while lipid deposition in the liver was more pronounced in these groups compared to the LD group. At the gene/protein level, the BMAL1/REV-ERBα circadian loop exhibited severe disruption in LV-Bmal1 shRNA rats compared to LD rats. Additionally, there was increased expression of lipase genes, FFA β oxidation genes, and beige adipocyte markers in WAT, as well as higher expression of thermogenic genes and lipid transportation genes in BAT. Furthermore, plasma NT-proBNP levels and adipose tissue levels of NE and IL-6 were elevated in LV-Bmal1 shRNA rats compared with LD rats. The present study demonstrates that disruption of the BMAL1/REV-ERBα circadian rhythmic loop is associated with fat expenditure in HF. This result suggests that restoring circadian rhythms in adipose tissue may help counteract disorders of adipose metabolism and reduce fat loss in HF.
Collapse
Affiliation(s)
- Dufang Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, Shandong, China
| | - Yiwei Qu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Tao Wu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Xue Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Lu Cai
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, Shandong, China
| | - Yong Wang
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, Shandong, China.
| |
Collapse
|
19
|
Wan X, Wang L, Khan MA, Peng L, Zhang K, Sun X, Yi X, Wang Z, Chen K. Shift work promotes adipogenesis via cortisol-dependent downregulation of EGR3-HDAC6 pathway. Cell Death Discov 2024; 10:129. [PMID: 38467615 PMCID: PMC10928160 DOI: 10.1038/s41420-024-01904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
The disruption of circadian rhythms caused by long-term shift work can cause metabolic diseases such as obesity. Early growth response 3 (EGR3) is a member of early growth response (EGR) family, which is involved in several cellular responses, had been reported as a circadian rhythm gene in suprachiasmatic nucleus. In this research, EGR3 was found to be widely expressed in the different tissue of human and mice, and downregulated in adipose tissue of obese subjects and high-fat diet mice. Moreover, EGR3 was found negatively regulated by cortisol. In addition, EGR3 is a key negative modulator of hADSCs and 3T3-L1 adipogenesis via regulating HDAC6, which is a downstream target gene of EGR3 and a negative regulator of adipogenesis and lipogenesis. These findings may explain how circadian rhythm disorder induced by shift works can cause obesity. Our study revealed a potential therapeutic target to alleviate metabolic disorders in shift workers and may provide better health guidance to shift workers.
Collapse
Affiliation(s)
- Xinxing Wan
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Linghao Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Md Asaduzzaman Khan
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
- Pulmonary Department, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Lin Peng
- Department of Nephrology, The First Hospital of Changsha, Changsha, 410005, Hunan, PR China
| | - Keke Zhang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Xiaoying Sun
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Xuan Yi
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Zhouqi Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Ke Chen
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China.
| |
Collapse
|
20
|
Boyi JO, Sonne C, Dietz R, Rigét F, Siebert U, Lehnert K. Gene expression and trace elements in Greenlandic ringed seals (Pusa hispida). ENVIRONMENTAL RESEARCH 2024; 244:117839. [PMID: 38081340 DOI: 10.1016/j.envres.2023.117839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Marine top predators such as ringed seals biomagnify environmental contaminants; and with the increasing human activities in the Arctic, ringed seals are exposed to biologically significant concentrations of trace elements resulting in reproductive impairment, immunosuppression, and neurological damages. Little is known about the molecular effects of heavy metals on these vulnerable apex predators suffering from a rapidly changing Arctic with significant loss of sea-ice. In the present study, concentrations of cadmium (Cd), mercury (Hg) and selenium (Se) were measured in liver of sixteen Greenlandic ringed seals (nine adults and seven subadults) together with molecular biomarkers involved in bio-transformation, oxidative stress, endocrine disruption and immune activity in blood and blubber. The concentrations of trace elements increased in the following order: Hg > Se > Cd with levels of mercury and selenium being highest in adults. Aryl hydrocarbon receptor nuclear translocator (ARNT), peroxisome proliferator activated receptor alpha (PPARα, estrogen receptor alpha (ESR1), thyroid hormone receptor alpha (TRα) and interleukin - 2 (IL-2) mRNA transcript levels were highest in blubber, while heat shock protein 70 (HSP70) and interleukin - 10 (IL-10) were significantly higher in blood. There were no significant correlations between the concentrations of trace elements and mRNA transcript levels suggesting that stressors other than the trace elements investigated are responsible for the changes in gene expression levels. Since Hg seems to increase in Greenlandic ringed seals, there is a need to re-enforce health monitoring of this ringed seal population.
Collapse
Affiliation(s)
- Joy Ometere Boyi
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, Germany.
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Roskilde, Denmark.
| | - Rune Dietz
- Department of Ecoscience, Aarhus University, Roskilde, Denmark.
| | - Frank Rigét
- Department of Ecoscience, Aarhus University, Roskilde, Denmark.
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, Germany.
| | - Kristina Lehnert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, Germany.
| |
Collapse
|
21
|
Jesse TG, Becer E, Kalkan R. Identification of the Relationship Between DNA Methylation of Circadian Rhythm Genes and Obesity. Biochem Genet 2024; 62:281-293. [PMID: 37329425 DOI: 10.1007/s10528-023-10415-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
In children, teenagers, and young adults, environmental factors and genetic modifications have contributed to the development of obesity. There is a close relationship between obesity and circadian rhythm. To understand the role of CLOCK and BMAL1 in obesity, we analyzed the methylation status of CLOCK and BMAL1 in obese and control subjects. In this paper, we analyzed the methylation status of the CLOCK and BMAL1 genes by using MS-HRM in a total of 55 obese and 54 control subjects. In our study, we demonstrated that the level of fasting glucose and the level of HDL-cholesterol were associated with CLOCK methylation in obesity. We also showed a significant association between BMAL1 gene methylation and waist and hip circumference in obese subjects. This is the first study that shows the methylation of BMAL1 is associated with the obese phenotype. However, we could not show a direct association between CLOCK methylation and the obese phenotype. In this paper, a novel epigenetic interaction between circadian clock genes and obesity was demonstrated.
Collapse
Affiliation(s)
- Tirah Galaya Jesse
- Department of Medical Genetics, Faculty of Medicine, Near East University, Mersin 10, Nicosia, 99138, Turkey
| | - Eda Becer
- Faculty of Pharmacy, Eastern Mediterranean University, Mersin 10, Famagusta, 99628, Turkey
| | - Rasime Kalkan
- Department of Medical Genetics, Faculty of Medicine, Near East University, Mersin 10, Nicosia, 99138, Turkey.
- Department of Medical Genetics, Faculty of Medicine, Cyprus Health and Social Sciences University, Mersin 10, Guzelyurt, 99138, Turkey.
| |
Collapse
|
22
|
Engin A. Misalignment of Circadian Rhythms in Diet-Induced Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:27-71. [PMID: 39287848 DOI: 10.1007/978-3-031-63657-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronize them with daily cycles. While the central clock in the suprachiasmatic nucleus (SCN) is mainly synchronized by the light/dark cycles, the peripheral clocks react to other stimuli, including the feeding/fasting state, nutrients, sleep-wake cycles, and physical activity. During the disruption of circadian rhythms due to genetic mutations or social and occupational obligations, incorrect arrangement between the internal clock system and environmental rhythms leads to the development of obesity. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition leads to uncoupling of the peripheral clocks from the central pacemaker and to the development of metabolic disorders. The strong coupling of the SCN to the light-dark cycle creates a situation of misalignment when food is ingested during the "wrong" time of day. Food-anticipatory activity is mediated by a self-sustained circadian timing, and its principal component is a food-entrainable oscillator. Modifying the time of feeding alone greatly affects body weight, whereas ketogenic diet (KD) influences circadian biology, through the modulation of clock gene expression. Night-eating behavior is one of the causes of circadian disruption, and night eaters have compulsive and uncontrolled eating with severe obesity. By contrast, time-restricted eating (TRE) restores circadian rhythms through maintaining an appropriate daily rhythm of the eating-fasting cycle. The hypothalamus has a crucial role in the regulation of energy balance rather than food intake. While circadian locomotor output cycles kaput (CLOCK) expression levels increase with high-fat diet-induced obesity, peroxisome proliferator-activated receptor-alpha (PPARα) increases the transcriptional level of brain and muscle aryl hydrocarbon receptor nuclear translocator (ARNT)-like 1 (BMAL1) in obese subjects. In this context, effective timing of chronotherapies aiming to correct SCN-driven rhythms depends on an accurate assessment of the SCN phase. In fact, in a multi-oscillator system, local rhythmicity and its disruption reflects the disruption of either local clocks or central clocks, thus imposing rhythmicity on those local tissues, whereas misalignment of peripheral oscillators is due to exosome-based intercellular communication.Consequently, disruption of clock genes results in dyslipidemia, insulin resistance, and obesity, while light exposure during the daytime, food intake during the daytime, and sleeping during the biological night promote circadian alignment between the central and peripheral clocks. Thus, shift work is associated with an increased risk of obesity, diabetes, and cardiovascular diseases because of unusual eating times as well as unusual light exposure and disruption of the circadian rhythm.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
23
|
Lee CH, Murrell CE, Chu A, Pan X. Circadian Regulation of Apolipoproteins in the Brain: Implications in Lipid Metabolism and Disease. Int J Mol Sci 2023; 24:17415. [PMID: 38139244 PMCID: PMC10743770 DOI: 10.3390/ijms242417415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
The circadian rhythm is a 24 h internal clock within the body that regulates various factors, including sleep, body temperature, and hormone secretion. Circadian rhythm disruption is an important risk factor for many diseases including neurodegenerative illnesses. The central and peripheral oscillators' circadian clock network controls the circadian rhythm in mammals. The clock genes govern the central clock in the suprachiasmatic nucleus (SCN) of the brain. One function of the circadian clock is regulating lipid metabolism. However, investigations of the circadian regulation of lipid metabolism-associated apolipoprotein genes in the brain are lacking. This review summarizes the rhythmic expression of clock genes and lipid metabolism-associated apolipoprotein genes within the SCN in Mus musculus. Nine of the twenty apolipoprotein genes identified from searching the published database (SCNseq and CircaDB) are highly expressed in the SCN. Most apolipoprotein genes (ApoE, ApoC1, apoA1, ApoH, ApoM, and Cln) show rhythmic expression in the brain in mice and thus might be regulated by the master clock. Therefore, this review summarizes studies on lipid-associated apolipoprotein genes in the SCN and other brain locations, to understand how apolipoproteins associated with perturbed cerebral lipid metabolism cause multiple brain diseases and disorders. This review describes recent advancements in research, explores current questions, and identifies directions for future research.
Collapse
Affiliation(s)
- Chaeeun Hannah Lee
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Charlotte Ellzabeth Murrell
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Alexander Chu
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| |
Collapse
|
24
|
Nakazato R, Matsuda Y, Ijaz F, Ikegami K. Circadian oscillation in primary cilium length by clock genes regulates fibroblast cell migration. EMBO Rep 2023; 24:e56870. [PMID: 37971148 DOI: 10.15252/embr.202356870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/30/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Various mammalian cells have autonomous cellular clocks that are produced by the transcriptional cycle of clock genes. Cellular clocks provide circadian rhythms for cellular functions via transcriptional and cytoskeletal regulation. The vast majority of mammalian cells possess a primary cilium, an organelle protruding from the cell surface. Here, we investigated the little-known relationship between circadian rhythm and primary cilia. The length and number of primary cilia showed circadian dynamics both in vitro and in vivo. The circadian rhythm of primary cilium length was abolished by SR9011 and Bmal1 knockout. A centrosomal protein, pericentrin, transiently accumulates in centriolar satellites, the base of primary cilia at the shortest cilia phase, and induces elongation of primary cilia at the longest cilia phase in the circadian rhythm of primary cilia. In addition, rhythmic cell migration during wound healing depends on the length of primary cilia and affects the rate of wound healing. Our findings demonstrate that the circadian dynamics of primary cilium length by clock genes control fibroblast migration and could provide new insights into chronobiology.
Collapse
Affiliation(s)
- Ryota Nakazato
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Matsuda
- Hiroshima University School of Medicine, Hiroshima, Japan
| | - Faryal Ijaz
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koji Ikegami
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| |
Collapse
|
25
|
Ohdo S, Koyanagi S, Matsunaga N. Implications of biological clocks in pharmacology and pharmacokinetics of antitumor drugs. J Control Release 2023; 364:490-507. [PMID: 37918485 DOI: 10.1016/j.jconrel.2023.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Mammalians' circadian pacemaker resides in the paired suprachiasmatic nuclei (SCN). SCN control biological rhythms such as the sleep-wake rhythm and homeostatic functions of steroid hormones and their receptors. Alterations in these biological rhythms are implicated in the outcomes of pathogenic conditions such as depression, diabetes, and cancer. Chronotherapy is about optimizing treatment to combat risks and intensity of the disease symptoms that vary depending on the time of day. Thus, conditions/diseases such as allergic rhinitis, arthritis, asthma, myocardial infarction, congestive heart failure, stroke, and peptic ulcer disease, prone to manifest severe symptoms depending on the time of day, would be benefited from chronotherapy. Monitoring rhythm, overcoming rhythm disruption, and manipulating the rhythms from the viewpoints of underlying molecular clocks are essential to enhanced chronopharmacotherapy. New drugs focused on molecular clocks are being developed to improve therapeutics. In this review, we provide a critical summary of literature reports concerning (a) the rationale/mechanisms for time-dependent dosing differences in therapeutic outcomes and safety of antitumor drugs, (b) the molecular pathways underlying biological rhythms, and (c) the possibility of pharmacotherapy based on the intra- and inter-individual variabilities from the viewpoints of the clock genes.
Collapse
Affiliation(s)
- Shigehiro Ohdo
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan.
| | - Satoru Koyanagi
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Naoya Matsunaga
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| |
Collapse
|
26
|
Bolshette N, Ibrahim H, Reinke H, Asher G. Circadian regulation of liver function: from molecular mechanisms to disease pathophysiology. Nat Rev Gastroenterol Hepatol 2023; 20:695-707. [PMID: 37291279 DOI: 10.1038/s41575-023-00792-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 06/10/2023]
Abstract
A wide variety of liver functions are regulated daily by the liver circadian clock and via systemic circadian control by other organs and cells within the gastrointestinal tract as well as the microbiome and immune cells. Disruption of the circadian system, as occurs during jetlag, shift work or an unhealthy lifestyle, is implicated in several liver-related pathologies, ranging from metabolic diseases such as obesity, type 2 diabetes mellitus and nonalcoholic fatty liver disease to liver malignancies such as hepatocellular carcinoma. In this Review, we cover the molecular, cellular and organismal aspects of various liver pathologies from a circadian viewpoint, and in particular how circadian dysregulation has a role in the development and progression of these diseases. Finally, we discuss therapeutic and lifestyle interventions that carry health benefits through support of a functional circadian clock that acts in synchrony with the environment.
Collapse
Affiliation(s)
- Nityanand Bolshette
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hussam Ibrahim
- University of Düsseldorf, Medical Faculty, Institute of Clinical Chemistry and Laboratory Diagnostics, Düsseldorf, Germany
| | - Hans Reinke
- University of Düsseldorf, Medical Faculty, Institute of Clinical Chemistry and Laboratory Diagnostics, Düsseldorf, Germany.
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
27
|
Li W, Xiong X, Kiperman T, Ma K. Transcription Repression of CRY2 via PER2 Interaction Promotes Adipogenesis. Mol Cell Biol 2023; 43:500-514. [PMID: 37724597 PMCID: PMC10569361 DOI: 10.1080/10985549.2023.2253710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
The circadian clock is driven by a transcriptional-translational feedback loop, and cryptochrome 2 (CRY2) represses CLOCK/BMAL1-induced transcription activation. Despite the established role of clock in adipogenic regulation, whether the CRY2 repressor activity functions in adipocyte biology remains unclear. Here we identify a critical cysteine residue of CRY2 that mediates interaction with Period 2 (PER2). We further demonstrate that this mechanism is required for repressing circadian clock-controlled Wnt signaling to promote adipogenesis. CRY2 protein is enriched in white adipose depots and robustly induced by adipogenic differentiation. Via site-directed mutagenesis, we identified that a conserved CRY2 cysteine at 432 within the loop interfacing with PER2 mediates heterodimer complex formation that confers transcription repression. C432 mutation disrupted PER2 association without affecting BMAL1 binding, leading to loss of repression of clock transcription activation. In preadipocytes, whereas CRY2 enhanced adipocyte differentiation, the repression-defective C432 mutant suppressed this process. Furthermore, silencing of CRY2 attenuated, while stabilization of CRY2 by KL001 markedly augmented adipocyte maturation. Mechanistically, we show that transcriptional repression of Wnt pathway components underlies CRY2 modulation of adipogenesis. Collectively, our findings elucidate a CRY2-mediated repression mechanism that promotes adipocyte development, and implicate its potential as a clock intervention target for obesity.
Collapse
Affiliation(s)
- Weini Li
- Department of Diabetes Complications & Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Xuekai Xiong
- Department of Diabetes Complications & Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Tali Kiperman
- Department of Diabetes Complications & Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Ke Ma
- Department of Diabetes Complications & Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, USA
| |
Collapse
|
28
|
Csoma B, Bikov A. The Role of the Circadian Rhythm in Dyslipidaemia and Vascular Inflammation Leading to Atherosclerosis. Int J Mol Sci 2023; 24:14145. [PMID: 37762448 PMCID: PMC10532147 DOI: 10.3390/ijms241814145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiovascular diseases (CVD) are among the leading causes of death worldwide. Many lines of evidence suggest that the disturbances in circadian rhythm are responsible for the development of CVDs; however, circadian misalignment is not yet a treatable trait in clinical practice. The circadian rhythm is controlled by the central clock located in the suprachiasmatic nucleus and clock genes (molecular clock) located in all cells. Dyslipidaemia and vascular inflammation are two hallmarks of atherosclerosis and numerous experimental studies conclude that they are under direct influence by both central and molecular clocks. This review will summarise the results of experimental studies on lipid metabolism, vascular inflammation and circadian rhythm, and translate them into the pathophysiology of atherosclerosis and cardiovascular disease. We discuss the effect of time-respected administration of medications in cardiovascular medicine. We review the evidence on the effect of bright light and melatonin on cardiovascular health, lipid metabolism and vascular inflammation. Finally, we suggest an agenda for future research and recommend on clinical practice.
Collapse
Affiliation(s)
- Balazs Csoma
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK;
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| | - Andras Bikov
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK;
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
29
|
Sharma D, Wessel CR, Mahdavinia M, Preuss F, Bishehsari F. Reorganization of pancreas circadian transcriptome with aging. Aging (Albany NY) 2023; 15:7909-7921. [PMID: 37647013 PMCID: PMC10497008 DOI: 10.18632/aging.204929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/11/2023] [Indexed: 09/01/2023]
Abstract
The evolutionarily conserved circadian system allows organisms to synchronize internal processes with 24-h cycling environmental timing cues, ensuring optimal adaptation. Like other organs, the pancreas function is under circadian control. Recent evidence suggests that aging by itself is associated with altered circadian homeostasis in different tissues which could affect the organ's resiliency to aging-related pathologies. Pancreas pathologies of either endocrine or exocrine components are age-related. Whether pancreas circadian transcriptome output is affected by age is still unknown. To address this, here we profiled the impact of age on the pancreatic transcriptome over a full circadian cycle and elucidated a circadian transcriptome reorganization of pancreas by aging. Our study highlights gain of rhythms in the extrinsic cellular pathways in the aged pancreas and extends a potential role to fibroblast-associated mechanisms.
Collapse
Affiliation(s)
- Deepak Sharma
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, USA
| | - Caitlin R. Wessel
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, USA
| | - Mahboobeh Mahdavinia
- Division of Allergy and Immunology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Fabian Preuss
- University of Wisconsin-Parkside, Department: Biological Sciences, Kenosha, WI 53144, USA
| | - Faraz Bishehsari
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
30
|
Civelek E, Ozturk Civelek D, Akyel YK, Kaleli Durman D, Okyar A. Circadian Dysfunction in Adipose Tissue: Chronotherapy in Metabolic Diseases. BIOLOGY 2023; 12:1077. [PMID: 37626963 PMCID: PMC10452180 DOI: 10.3390/biology12081077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023]
Abstract
Essential for survival and reproduction, the circadian timing system (CTS) regulates adaptation to cyclical changes such as the light/dark cycle, temperature change, and food availability. The regulation of energy homeostasis possesses rhythmic properties that correspond to constantly fluctuating needs for energy production and consumption. Adipose tissue is mainly responsible for energy storage and, thus, operates as one of the principal components of energy homeostasis regulation. In accordance with its roles in energy homeostasis, alterations in adipose tissue's physiological processes are associated with numerous pathologies, such as obesity and type 2 diabetes. These alterations also include changes in circadian rhythm. In the current review, we aim to summarize the current knowledge regarding the circadian rhythmicity of adipogenesis, lipolysis, adipokine secretion, browning, and non-shivering thermogenesis in adipose tissue and to evaluate possible links between those alterations and metabolic diseases. Based on this evaluation, potential therapeutic approaches, as well as clock genes as potential therapeutic targets, are also discussed in the context of chronotherapy.
Collapse
Affiliation(s)
- Erkan Civelek
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey; (E.C.); (D.K.D.)
| | - Dilek Ozturk Civelek
- Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakıf University, 34093 Istanbul, Turkey;
| | - Yasemin Kubra Akyel
- Department of Medical Pharmacology, School of Medicine, Istanbul Medipol University, 34815 Istanbul, Turkey;
| | - Deniz Kaleli Durman
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey; (E.C.); (D.K.D.)
| | - Alper Okyar
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey; (E.C.); (D.K.D.)
| |
Collapse
|
31
|
Vu JP, Luong L, Sanford D, Oh S, Kuc A, Pisegna R, Lewis M, Pisegna JR, Germano PM. PACAP and VIP Neuropeptides' and Receptors' Effects on Appetite, Satiety and Metabolism. BIOLOGY 2023; 12:1013. [PMID: 37508442 PMCID: PMC10376325 DOI: 10.3390/biology12071013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
The overwhelming increase in the prevalence of obesity and related disorders in recent years is one of the greatest threats to the global healthcare system since it generates immense healthcare costs. As the prevalence of obesity approaches epidemic proportions, the importance of elucidating the mechanisms regulating appetite, satiety, body metabolism, energy balance and adiposity has garnered significant attention. Currently, gastrointestinal (GI) bariatric surgery remains the only approach capable of achieving successful weight loss. Appetite, satiety, feeding behavior, energy intake and expenditure are regulated by central and peripheral neurohormonal mechanisms that have not been fully elucidated yet. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and Vasoactive Intestinal Polypeptide (VIP) are members of a family of regulatory peptides that are widely distributed in parallel with their specific receptors, VPAC1R, VPAC2R and PAC1R, in the central nervous system (CNS) and in the periphery, such as in the gastrointestinal tract and its associated organs and immune cells. PACAP and VIP have been reported to play an important role in the regulation of body phenotype, metabolism and homeostatic functions. The purpose of this review is to present recent data on the effects of PACAP, VIP, VPAC1R, VPAC2R and PAC1R on the modulation of appetite, satiety, metabolism, calorie intake and fat accumulation, to evaluate their potential use as therapeutic targets for the treatment of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- John P Vu
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA 90073, USA
| | - Leon Luong
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA 90073, USA
| | - Daniel Sanford
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA 90073, USA
| | - Suwan Oh
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA 90073, USA
| | - Alma Kuc
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Rita Pisegna
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Michael Lewis
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90078, USA
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Pathology, Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, CA 90073, USA
| | - Joseph R Pisegna
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA 90073, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System and Department of Medicine, Los Angeles, CA 90073, USA
- Division of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Patrizia M Germano
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA 90073, USA
- Division of Pulmonary and Critical Care, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| |
Collapse
|
32
|
Sun Z, Ji J, Zuo L, Hu Y, Wang K, Xu T, Wang Q, Cheng F. Causal relationship between nonalcoholic fatty liver disease and different sleep traits: a bidirectional Mendelian randomized study. Front Endocrinol (Lausanne) 2023; 14:1159258. [PMID: 37334291 PMCID: PMC10272397 DOI: 10.3389/fendo.2023.1159258] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
Background and aims Non-alcoholic fatty liver disease(NAFLD) is common worldwide and has previously been reported to be associated with sleep traits. However, it is not clear whether NAFLD changes sleep traits or whether the changes in sleep traits lead to the onset of NAFLD. The purpose of this study was to investigate the causal relationship between NAFLD and changes in sleep traits using Mendelian randomization. Methods We proposed a bidirectional Mendelian randomization (MR) analysis and performed validation analyses to dissect the association between NAFLD and sleep traits. Genetic instruments were used as proxies for NAFLD and sleep. Data of genome-wide association study(GWAS) were obtained from the center for neurogenomics and cognitive research database, Open GWAS database and GWAS catalog. Three MR methods were performed, including inverse variance weighted method(IVW), MR-Egger, weighted median. Results In total,7 traits associated with sleep and 4 traits associated with NAFLD are used in this study. A total of six results showed significant differences. Insomnia was associated with NAFLD (OR(95% CI)= 2.25(1.18,4.27), P = 0.01), Alanine transaminase levels (OR(95% CI)= 2.79(1.70, 4.56), P =4.71×10-5) and percent liver fat(OR(95% CI)= 1.31(1.03,1.69), P = 0.03). Snoring was associated with percent liver fat (1.15(1.05,1.26), P =2×10-3), alanine transaminase levels (OR(95% CI)= 1.27(1.08,1.50), P =0.04).And dozing was associated with percent liver fat(1.14(1.02,1.26), P =0.02).For the remaining 50 outcomes, no significant or definitive association was yielded in MR analysis. Conclusion Genetic evidence suggests putative causal relationships between NAFLD and a set of sleep traits, indicating that sleep traits deserves high priority in clinical practice. Not only the confirmed sleep apnea syndrome, but also the sleep duration and sleep state (such as insomnia) deserve clinical attention. Our study proves that the causal relationship between sleep characteristics and NAFLD is the cause of the change of sleep characteristics, while the onset of non-NAFLD is the cause of the change of sleep characteristics, and the causal relationship is one-way.
Collapse
|
33
|
Abstract
The circadian clock plays an essential role in coordinating feeding and metabolic rhythms with the light/dark cycle. Disruption of clocks is associated with increased adiposity and metabolic disorders, whereas aligning feeding time with cell-autonomous rhythms in metabolism improves health. Here, we provide a comprehensive overview of recent literature in adipose tissue biology as well as our understanding of molecular mechanisms underlying the circadian regulation of transcription, metabolism, and inflammation in adipose tissue. We highlight recent efforts to uncover the mechanistic links between clocks and adipocyte metabolism, as well as its application to dietary and behavioral interventions to improve health and mitigate obesity.
Collapse
Affiliation(s)
- Chelsea Hepler
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
34
|
Sharma D, Wessel CR, Mahdavinia M, Preuss F, Bishehsari F. Reorganization of Pancreas Circadian Transcriptome with Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541196. [PMID: 37292612 PMCID: PMC10245651 DOI: 10.1101/2023.05.17.541196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The evolutionarily conserved circadian system allows organisms to synchronize internal processes with 24-h cycling environmental timing cues, ensuring optimal adaptation. Like other organs, the pancreas function is under circadian control. Recent evidence suggests that aging by itself is associated with altered circadian homeostasis in different tissues which could affect the organ's resiliency to aging-related pathologies. Pancreas pathologies of either endocrine or exocrine components are age-related. Whether pancreas circadian transcriptome output is affected by age is still unknown. To address this, here we profiled the impact of age on the pancreatic transcriptome over a full circadian cycle and elucidated a circadian transcriptome reorganization of pancreas by aging. Our study highlights gain of rhythms in the extrinsic cellular pathways in the aged pancreas and extends a potential role to fibroblast-associated mechanisms.
Collapse
|
35
|
Synthesis, Regulatory Factors, and Signaling Pathways of Estrogen in the Ovary. Reprod Sci 2023; 30:350-360. [PMID: 35384637 DOI: 10.1007/s43032-022-00932-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/28/2022] [Indexed: 02/06/2023]
Abstract
New insights have been thrown for understanding the significant role of estrogen on various systems of humans. Increasing evidences have determined the significant roles of estrogen in female reproductive system. So, the normal synthesis and secretion of estrogen play important roles in maintaining the function of tissues and organs. The ovaries are the main synthetic organs of estrogen. In this review, we summarized the current knowledge of the estrogen synthesis in the ovaries. A series of factors and signaling pathways that regulate the synthesis of estrogen are expounded in detail. Understanding the regulating factors and potential mechanism related to estrogen synthesis will be beneficial for understanding estrogen disorder related diseases and may provide novel therapeutic targets.
Collapse
|
36
|
Trebucq LL, Lamberti ML, Rota R, Aiello I, Borio C, Bilen M, Golombek DA, Plano SA, Chiesa JJ. Chronic circadian desynchronization of feeding-fasting rhythm generates alterations in daily glycemia, LDL cholesterolemia and microbiota composition in mice. Front Nutr 2023; 10:1154647. [PMID: 37125029 PMCID: PMC10145162 DOI: 10.3389/fnut.2023.1154647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/15/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction The circadian system synchronizes behavior and physiology to the 24-h light- dark (LD) cycle. Timing of food intake and fasting periods provide strong signals for peripheral circadian clocks regulating nutrient assimilation, glucose, and lipid metabolism. Mice under 12 h light:12 h dark (LD) cycles exhibit behavioral activity and feeding during the dark period, while fasting occurs at rest during light. Disruption of energy metabolism, leading to an increase in body mass, was reported in experimental models of circadian desynchronization. In this work, the effects of chronic advances of the LD cycles (chronic jet-lag protocol, CJL) were studied on the daily homeostasis of energy metabolism and weight gain. Methods Male C57 mice were subjected to a CJL or LD schedule, measuring IPGTT, insulinemia, microbiome composition and lipidemia. Results Mice under CJL show behavioral desynchronization and feeding activity distributed similarly at the light and dark hours and, although feeding a similar daily amount of food as compared to controls, show an increase in weight gain. In addition, ad libitum glycemia rhythm was abolished in CJL-subjected mice, showing similar blood glucose values at light and dark. CJL also generated glucose intolerance at dark in an intraperitoneal glucose tolerance test (IPGTT), with increased insulin release at both light and dark periods. Low-density lipoprotein (LDL) cholesterolemia was increased under this condition, but no changes in HDL cholesterolemia were observed. Firmicutes/Bacteroidetes ratio was analyzed as a marker of circadian disruption of microbiota composition, showing opposite phases at the light and dark when comparing LD vs. CJL. Discussion Chronic misalignment of feeding/fasting rhythm leads to metabolic disturbances generating nocturnal hyperglycemia, glucose intolerance and hyperinsulinemia in a IPGTT, increased LDL cholesterolemia, and increased weight gain, underscoring the importance of the timing of food consumption with respect to the circadian system for metabolic health.
Collapse
Affiliation(s)
- Laura Lucía Trebucq
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Argentina
| | - Melisa Luciana Lamberti
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Argentina
| | - Rosana Rota
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Argentina
| | - Ignacio Aiello
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Argentina
| | - Cristina Borio
- Laboratorio de Ingeniería Genética, Biología Celular y Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Argentina
| | - Marcos Bilen
- Laboratorio de Ingeniería Genética, Biología Celular y Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Argentina
| | - Diego Andrés Golombek
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Argentina
- Escuela de Educacion, Universidad de San Andrés, Victoria, Argentina
| | - Santiago Andrés Plano
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Argentina
- Institute for Biomedical Research (BIOMED), Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- *Correspondence: Santiago Andrés Plano,
| | - Juan José Chiesa
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Argentina
- Juan José Chiesa,
| |
Collapse
|
37
|
Martín-Reyes F, Ho-Plagaro A, Rodríguez-Díaz C, Lopez-Gómez C, Garcia-Serrano S, de Los Reyes DR, Gonzalo M, Fernández-Garcia JC, Montiel-Casado C, Fernández-Aguilar JL, Fernández JR, García-Fuentes E, Rodríguez-Pacheco F. Oleic acid regulates the circadian rhythm of adipose tissue in obesity. Pharmacol Res 2023; 187:106579. [PMID: 36435269 DOI: 10.1016/j.phrs.2022.106579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
The effect of oleic acid (OA) on the regulation of the circadian rhythm present in human visceral (VAT) and subcutaneous (SAT) adipose tissue from patients with morbid obesity has not been analyzed yet. VAT and SAT explants from patients with morbid obesity were incubated with OA to analyze the circadian regulation of clock and other genes related to lipid metabolism (SREBP-1c, FAS, LPL and CPT1), and their association with baseline variables and the improvement of these patients after bariatric surgery. There were significant differences in amplitude and acrophase in VAT with respect to SAT. In VAT, body weight negatively correlated with BMAL1 and CRY1 amplitude, and REVERBα acrophase; body mass index (BMI) negatively correlated with REVERBα acrophase; and waist circumference negatively correlated with PER3 acrophase. In SAT, BMI negatively correlated with CLOCK amplitude, and CLOCK, REVERBα and CRY2 MESOR; and waist circumference negatively correlated with PER3 amplitude and acrophase. A greater short-term improvement of body weight, BMI and waist circumference in patients with morbid obesity after bariatric surgery was associated with a lower CRY1 and CRY2 amplitude and an earlier PER1 and PER3 acrophase in SAT. OA produced a more relevant circadian rhythm and increased the amplitude of most clock genes and lipid metabolism-related genes. OA regulated the acrophase of most clock genes in VAT and SAT, placing CLOCK/BMAL1 in antiphase with regard to the other genes. OA increased the circadian rhythmicity, although with slight differences between adipose tissues. These differences could determine its different behavior in obesity.
Collapse
Affiliation(s)
- Flores Martín-Reyes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Ailec Ho-Plagaro
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Cristina Rodríguez-Díaz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Carlos Lopez-Gómez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Sara Garcia-Serrano
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario, Málaga, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas-CIBERDEM, Málaga, Spain
| | - Dámaris Rodriguez de Los Reyes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Montserrat Gonzalo
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario, Málaga, Spain
| | - Jose C Fernández-Garcia
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario, Málaga, Spain
| | - Custodia Montiel-Casado
- Unidad de Gestión Clínica de Cirugía General, Digestiva y Trasplantes, Hospital Regional Universitario, Málaga, Spain
| | - Jose L Fernández-Aguilar
- Unidad de Gestión Clínica de Cirugía General, Digestiva y Trasplantes, Hospital Regional Universitario, Málaga, Spain
| | - José R Fernández
- Bioengeneering & Chronobiology Labs, atlanTTic Research Center, University of Vigo, Spain
| | - Eduardo García-Fuentes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain; CIBER de Enfermedades Hepáticas y Digestivas-CIBEREHD, Málaga, Spain.
| | - Francisca Rodríguez-Pacheco
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas-CIBERDEM, Málaga, Spain
| |
Collapse
|
38
|
The circadian transcription factor ARNTL2 is regulated by weight-loss interventions in human white adipose tissue and inhibits adipogenesis. Cell Death Dis 2022; 8:443. [PMID: 36329012 PMCID: PMC9633602 DOI: 10.1038/s41420-022-01239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Misalignment of physiological circadian rhythms promotes obesity which is characterized by white adipose tissue (WAT) expansion. Differentiation of Adipose stem/progenitor cells (ASCs) contributes to WAT increase but the importance of the cellular clock in this process is incompletely understood. In the present study, we reveal the role of the circadian transcription factor Aryl hydrocarbon receptor nuclear translocator-like 2 (ARNTL2) in human ASCs, isolated from subcutaneous (s)WAT samples of patients undergoing routine elective plastic abdominal surgery. We show that circadian synchronization by serum-shock or stimulation with adipogenic stimuli leads to a different expression pattern of ARNTL2 relative to its well-studied paralogue ARNTL1. We demonstrate that ARNTL2 mRNA is downregulated in ASCs upon weight-loss (WL) whereas ARNTL2 protein is rapidly induced in the course of adipogenic differentiation and highly abundant in adipocytes. ARNTL2 protein is maintained in ASCs cooperatively by mechanistic Target of Rapamycin (mTOR) and Mitogen-activated Protein Kinase (MAPK) signalling pathways while ARNTL2 functions as an inhibitor on both circuits, leading to a feedback mechanism. Consistently, ectopic overexpression of ARNTL2 repressed adipogenesis by facilitating the degradation of ARNTL1, inhibition of Kruppel-Like Factor 15 (KLF15) gene expression and down-regulation of the MAPK-CCAAT/enhancer-binding protein β (C/EBPβ) axis. Western blot analysis of sWAT samples from normal-weight, obese and WL donors revealed that ARNTL2 protein was solely elevated by WL compared to ARNTL1 which underscores unique functions of both transcription factors. In conclusion, our study reveals ARNTL2 to be a WL-regulated inhibitor of adipogenesis which might provide opportunities to develop strategies to ameliorate obesity.
Collapse
|
39
|
Sankaranarayanan C, Subramanian P. Molecular mechanisms interlinking biological clock and diabetes mellitus: Effective tools for better management. Diabetes Metab Syndr 2022; 16:102639. [PMID: 36279704 DOI: 10.1016/j.dsx.2022.102639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND AIM Advances in circadian biology have delineated the link between perturbed biological clock and metabolic diseases. Circadian disturbances are associated with the onset, progression and severity of diabetes mellitus. METHODS We conducted a literature survey using the key terms - circadian, diabetes, circadian and diabetes, clock genes and diabetes, chronotherapy and peripheral clocks in science direct, PubMed, Google, and Embase till August 23, 2021. RESULTS Misalignment between peripheral clocks located in pancreas, intestine, liver, adipose tissue and skeletal muscle and with the central oscillator alters the secretion of insulin, incretins, adipokines and soluble factors resulting in the derangement of metabolism leading to chronic hyperglycemia. CONCLUSION Management of circadian health restores glucose homeostasis confirming that chronotherapy will help in the management of diabetes mellitus. Further, administration of circadian clock modifiers has proved potential therapeutic agents to treat diabetes mellitus. The aim of the review is to highlight the molecular mechanisms linking biological clock and diabetes mellitus and how they are useful for effective management of the disease.
Collapse
Affiliation(s)
- Chandrasekaran Sankaranarayanan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, 608 002, Tamil Nadu, India
| | - Perumal Subramanian
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, 608 002, Tamil Nadu, India.
| |
Collapse
|
40
|
Gagné F, Houda H, André C. Altered mitochondria oscillations and circadian changes in NADH levels in freshwaters mussels exposed to cadmium. Comp Biochem Physiol C Toxicol Pharmacol 2022; 260:109420. [PMID: 35902061 DOI: 10.1016/j.cbpc.2022.109420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/27/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022]
Affiliation(s)
- F Gagné
- Aquatic Contaminants Research Division, Environnement and Climate Change Canada, 105 McGill, Montreal, Québec H2Y 2E7, Canada.
| | - H Houda
- Aquatic Contaminants Research Division, Environnement and Climate Change Canada, 105 McGill, Montreal, Québec H2Y 2E7, Canada
| | - C André
- Aquatic Contaminants Research Division, Environnement and Climate Change Canada, 105 McGill, Montreal, Québec H2Y 2E7, Canada
| |
Collapse
|
41
|
The Mediation Effect of Peripheral Biomarkers of Calcium Metabolism and Chronotypes in Bipolar Disorder Psychopathology. Metabolites 2022; 12:metabo12090827. [PMID: 36144231 PMCID: PMC9505716 DOI: 10.3390/metabo12090827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Calcium (Ca++) metabolism may be impaired in several psychiatric diseases. We hypothesize that calcium imbalance might also correlate with a specific chronotype and could be recognized as a marker of illness severity in bipolar disorder (BD). We aimed to (1) identify the association between calcium imbalance and a specific chronotype in a cohort of BD patients, and (2) test the mediation role of high parathyroid hormone (PTH) levels towards a specific chronotype and illness severity in BD patients. Patients’ socio-demographic and clinical characteristics were collected with an ad-hoc schedule. We administered the Hamilton Depression Rating Scale (HAM-D), the Hamilton Rating Scale for Anxiety (HAM-A), the Young Mania Rating Scale (YMRS), and the Morningness Eveningness Questionnaire (MEQ). 100 patients affected by BD were recruited. The Kruskal-Wallis test showed a significant difference between the three MEQ groups in PTH levels (p < 0.001) and vitamin D levels (p = 0.048) but not in Ca++ levels (p = 0.426). Dwass-Steel-Critchlow-Fligner Pairwise analyses performed concerning three MEQ groups revealed significantly higher scores on PTH levels in MEQ-E subjects compared to MEQ-M and MEQ-I (in both cases, p < 0.001). No differences emerged between calcium levels among the three chronotypes. The mediation analysis has shown that elevated PTH levels are directly influenced by more severe HAM-A, HAM-D, and YMRS scores. MEQ-E could be a marker related to BD and predispose to various factors influencing mood symptoms. The combination of vitamin D therapy in MEQ-E may help to improve prognosis in this subtype of patients affected by BD.
Collapse
|
42
|
The Circadian Axis and Cardiometabolic Syndrome. JOURNAL OF INTERDISCIPLINARY MEDICINE 2022. [DOI: 10.2478/jim-2022-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Abstract
Circadian rhythm refers to the daily physiologically fluctuating patterns of systemic processes that occur within a circa 24-hour timeframe, independently of external factors. There is evidence that in time, external and internal cycle misalignment leads to severe health consequences, resulting in the development of cardiometabolic disturbances. Desynchronized hormonal fluctuations along with daily specific macronutrient utilization patterns are also discussed, which by consequence, are all predictors of metabolic syndrome. The aim of this paper is to provide insight on the circadian clock’s organization throughout the human body and to explain the underlying genetic background. By understanding these well-established molecular mechanisms and processes, we believe this paper will provide accuracy regarding the importance of the circadian clock’s integrity and will highlight its role in the etiopathology of cardiometabolic syndrome.
Collapse
|
43
|
Chan K, Wong FS, Pearson JA. Circadian rhythms and pancreas physiology: A review. Front Endocrinol (Lausanne) 2022; 13:920261. [PMID: 36034454 PMCID: PMC9399605 DOI: 10.3389/fendo.2022.920261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022] Open
Abstract
Type 2 diabetes mellitus, obesity and metabolic syndrome are becoming more prevalent worldwide and will present an increasingly challenging burden on healthcare systems. These interlinked metabolic abnormalities predispose affected individuals to a plethora of complications and comorbidities. Furthermore, diabetes is estimated by the World Health Organization to have caused 1.5 million deaths in 2019, with this figure projected to rise in coming years. This highlights the need for further research into the management of metabolic diseases and their complications. Studies on circadian rhythms, referring to physiological and behavioral changes which repeat approximately every 24 hours, may provide important insight into managing metabolic disease. Epidemiological studies show that populations who are at risk of circadian disruption such as night shift workers and regular long-haul flyers are also at an elevated risk of metabolic abnormalities such as insulin resistance and obesity. Aberrant expression of circadian genes appears to contribute to the dysregulation of metabolic functions such as insulin secretion, glucose homeostasis and energy expenditure. The potential clinical implications of these findings have been highlighted in animal studies and pilot studies in humans giving rise to the development of circadian interventions strategies including chronotherapy (time-specific therapy), time-restricted feeding, and circadian molecule stabilizers/analogues. Research into these areas will provide insights into the future of circadian medicine in metabolic diseases. In this review, we discuss the physiology of metabolism and the role of circadian timing in regulating these metabolic functions. Also, we review the clinical aspects of circadian physiology and the impact that ongoing and future research may have on the management of metabolic disease.
Collapse
Affiliation(s)
- Karl Chan
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - F. Susan Wong
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - James Alexander Pearson
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
44
|
Taleb Z, Karpowicz P. Circadian regulation of digestive and metabolic tissues. Am J Physiol Cell Physiol 2022; 323:C306-C321. [PMID: 35675638 DOI: 10.1152/ajpcell.00166.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The circadian clock is a self-sustained molecular timekeeper that drives 24-h (circadian) rhythms in animals. The clock governs important aspects of behavior and physiology including wake/sleep activity cycles that regulate the activity of metabolic and digestive systems. Light/dark cycles (photoperiod) and cycles in the time of feeding synchronize the circadian clock to the surrounding environment, providing an anticipatory benefit that promotes digestive health. The availability of animal models targeting the genetic components of the circadian clock has made it possible to investigate the circadian clock's role in cellular functions. Circadian clock genes have been shown to regulate the physiological function of hepatocytes, gastrointestinal cells, and adipocytes; disruption of the circadian clock leads to the exacerbation of liver diseases and liver cancer, inflammatory bowel disease and colorectal cancer, and obesity. Previous findings provide strong evidence that the circadian clock plays an integral role in digestive/metabolic disease pathogenesis, hence, the circadian clock is a necessary component in metabolic and digestive health and homeostasis. Circadian rhythms and circadian clock function provide an opportunity to improve the prevention and treatment of digestive and metabolic diseases by aligning digestive system tissue with the 24-h day.
Collapse
Affiliation(s)
- Zainab Taleb
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Phillip Karpowicz
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
45
|
Ohdo S, Koyanagi S, Matsunaga N. Chronopharmacology of immune-related diseases. Allergol Int 2022; 71:437-447. [PMID: 35850747 DOI: 10.1016/j.alit.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 11/01/2022] Open
Abstract
Clock genes, circadian pacemaker resides in the paired suprachiasmatic nuclei (SCN), control various circadian rhythms in many biological processes such as physiology and behavior. Clock gene regulates many diseases such as cancer, immunological dysfunction, metabolic syndrome and sleep disorders etc. Chronotherapy is especially relevant, when the risk and/or intensity of the symptoms of disease vary predicably over time as exemplified by allergic rhinitis, arthritis, asthma, myocardial infarction, congestive heart failure, stroke, and peptic ulcer disease. Dosing time influences the effectiveness and toxicity of many drugs. The pharmacodynamics of medications as well as pharmacokinetics influences chronopharmacological phenomena. To escape from host immunity in the tumor microenvironment, cancer cells have acquired several pathways. Immune checkpoint therapy targeting programmed death 1 (PD-1) and its ligand (PD-L1) interaction had been approved for the treatment of patients with several types of cancers. Circadian expression of PD-1 is identified on tumor associated macrophages (TAMs), which is rationale for selecting the most appropriate time of day for administration of PD-1/PD-L1 inhibitors. The therapies for chronic kidney disease (CKD) are urgently needed because of a global health problem. The mechanism of the cardiac complications in mice with CKD had been related the GRP68 in circulating monocytes and serum accumulation of retinol. Development of a strategy to suppress retinol accumulation will be useful to prevent the cardiac complications of CKD. Therefore, we introduce an overview of the dosing time-dependent changes in therapeutic outcome and safety of drug for immune-related diseases.
Collapse
Affiliation(s)
- Shigehiro Ohdo
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| | - Satoru Koyanagi
- Department of Glocal Healthcare, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoya Matsunaga
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
46
|
Zhang W, Xiong Y, Tao R, Panayi AC, Mi B, Liu G. Emerging Insight Into the Role of Circadian Clock Gene BMAL1 in Cellular Senescence. Front Endocrinol (Lausanne) 2022; 13:915139. [PMID: 35733785 PMCID: PMC9207346 DOI: 10.3389/fendo.2022.915139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/10/2022] [Indexed: 12/16/2022] Open
Abstract
Cell senescence is a crucial process in cell fate determination and is involved in an extensive array of aging-associated diseases. General perceptions and experimental evidence point out that the decline of physical function as well as aging-associated diseases are often initiated by cell senescence and organ ageing. Therefore, regulation of cell senescence process can be a promising way to handle aging-associated diseases such as osteoporosis. The circadian clock regulates a wide range of cellular and physiological activities, and many age-linked degenerative disorders are associated with the dysregulation of clock genes. BMAL1 is a core circadian transcription factor and governs downstream genes by binding to the E-box elements in their promoters. Compelling evidence has proposed the role of BMAL1 in cellular senescence and aging-associated diseases. In this review, we summarize the linkage between BMAL1 and factors of cell senescence including oxidative stress, metabolism, and the genotoxic stress response. Dysregulated and dampened BMAL1 may serve as a potential therapeutic target against aging- associated diseases.
Collapse
Affiliation(s)
- Wenqian Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ranyang Tao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Adriana C. Panayi
- Division of Plastic Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
47
|
ZHANG JM, LIANG S, NIE P, LIAO Y, AI Q, YAN X, LIU H, JI Y, ZENG Z. Efficacy of Kushen decoction on high-fat-diet-induced hyperlipidemia in rats. J TRADIT CHIN MED 2022; 42:364-371. [PMID: 35610005 PMCID: PMC9924673 DOI: 10.19852/j.cnki.jtcm.20220225.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
OBJECTIVE To investigate the efficacy and underlying mechanisms of action of Kushen decoction on high-fat-diet-induced hyperlipidemia in rats using RNA-seq technology. METHODS The efficacy of a Kushen decoction, at a concentration of 1 mL/g of crude medicine prepared according to the method commonly used in clinical practice, was investigated on 24 specific pathogen-free male Sprague-Dawley rats. Liver tissues were compared using RNA-Seq technology. The differentially expressed genes were further investigated by real-time fluorescent quantitative polymerase chain reaction (qPCR and Western blot (WB). RESULTS Serum triglycerides (TG), liver low-density lipoprotein cholesterol (LDL-C), body weight, body length, and Lee's index were significantly increased in the untreated hyperlipidemia-induced group (model) compared with the control group, whereas liver high-density lipoprotein cholesterol (HDL-C) was significantly decreased. Serum TG, liver LDL-C, bodyweight, and Lee's index were decreased in the high-dose Kushen decoction group (HDKS) compared with the model group, whereas liver HDL-C was significantly increased. Similarly, liver TG tended to decline in the HDKS group. Comparison of the gene expression profiles in the livers from different groups indicated that the Kushen decoction significantly affected metabolic pathways, PPAR signalling pathway, and circadian rhythm ( ≤ 0.05), with the genes ARNTL, PER3, and CLOCK being differentially expressed. qPCR and WB analysis confirmed the differential expression of the genes discovered by transcriptomics analysis. CONCLUSION The Kushen decoction may achieve a lipid-lowering effect on hyperlipidemic rats by regulating metabolic pathways and the circadian rhythm pathway and in particular, their related genes ARNTL, PER3, and CLOCK.
Collapse
Affiliation(s)
- Jiri Mutu ZHANG
- 1 Research Center for Differention and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, China
- 2 Mongolian Medical College, Inner Mongolia Minzu Uaniversity, Tongliao 028000, China
| | - Shilong LIANG
- 1 Research Center for Differention and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, China
| | - Peng NIE
- 1 Research Center for Differention and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, China
| | - Yong’an LIAO
- 1 Research Center for Differention and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, China
| | - Qinying AI
- 1 Research Center for Differention and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, China
| | - Xiaojun YAN
- 1 Research Center for Differention and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, China
| | - Hongning LIU
- 1 Research Center for Differention and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, China
| | - Yanhua JI
- 1 Research Center for Differention and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, China
- JI Yanhua and ZENG Zhijun, Research Center for Differention and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, China. and
| | - Zhijun ZENG
- 1 Research Center for Differention and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, China
- JI Yanhua and ZENG Zhijun, Research Center for Differention and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, China. and
| |
Collapse
|
48
|
Martin C, Johnston JD, Henslee EA, van der Veen DR, Labeed FH. In vitro
characterisation of murine pre‐adipose nucleated cells reveals electrophysiological cycles associated with biological clocks. Electrophoresis 2022; 43:1337-1346. [PMID: 35543378 PMCID: PMC9323421 DOI: 10.1002/elps.202100308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Capucine Martin
- Chronobiology Section School of Biosciences and Medicine Faculty of Health and Medical Sciences University of Surrey Guildford UK
| | - Jonathan D. Johnston
- Chronobiology Section School of Biosciences and Medicine Faculty of Health and Medical Sciences University of Surrey Guildford UK
| | - Erin A. Henslee
- Centre for Biomedical Engineering School of Mechanical Engineering Sciences Faculty of Engineering and Physical Sciences University of Surrey Guildford UK
- Department of Engineering Wake Forest University Winston‐Salem North Carolina USA
| | - Daan R. van der Veen
- Chronobiology Section School of Biosciences and Medicine Faculty of Health and Medical Sciences University of Surrey Guildford UK
| | - Fatima H. Labeed
- Centre for Biomedical Engineering School of Mechanical Engineering Sciences Faculty of Engineering and Physical Sciences University of Surrey Guildford UK
| |
Collapse
|
49
|
Gao W, Li R, Ye M, Zhang L, Zheng J, Yang Y, Wei X, Zhao Q. The circadian clock has roles in mesenchymal stem cell fate decision. Stem Cell Res Ther 2022; 13:200. [PMID: 35578353 PMCID: PMC9109355 DOI: 10.1186/s13287-022-02878-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/26/2022] [Indexed: 02/08/2023] Open
Abstract
The circadian clock refers to the intrinsic biological rhythms of physiological functions and behaviours. It synergises with the solar cycle and has profound effects on normal metabolism and organismal fitness. Recent studies have suggested that the circadian clock exerts great influence on the differentiation of stem cells. Here, we focus on the close relationship between the circadian clock and mesenchymal stem cell fate decisions in the skeletal system. The underlying mechanisms include hormone signals and the activation and repression of different transcription factors under circadian regulation. Additionally, the clock interacts with epigenetic modifiers and non-coding RNAs and is even involved in chromatin remodelling. Although the specificity and safety of circadian therapy need to be further studied, the circadian regulation of stem cells can be regarded as a promising candidate for health improvement and disease prevention.
Collapse
Affiliation(s)
- Wenzhen Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Rong Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Meilin Ye
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, 250012, China
| | - Lanxin Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiawen Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuqing Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoyu Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qing Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
50
|
Tang Y, Du X, Sun S, Shi W, Han Y, Zhou W, Zhang J, Teng S, Ren P, Liu G. Circadian Rhythm and Neurotransmitters Are Potential Pathways through Which Ocean Acidification and Warming Affect the Metabolism of Thick-Shell Mussels. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4324-4335. [PMID: 35293730 DOI: 10.1021/acs.est.1c06735] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although the impacts of ocean acidification and warming on marine organisms have been increasingly documented, little is known about the affecting mechanism underpinning their interactive impacts on physiological processes such as metabolism. Therefore, the effects of these two stressors on metabolism were investigated in thick-shell mussel Mytilus coruscus in this study. In addition, because metabolism is primarily regulated by circadian rhythm and neurotransmitters, the impacts of acidification and warming on these two regulatory processes were also analyzed. The data obtained demonstrated that the metabolism of mussels (indicated by the clearance rate, oxygen consumption rate, ammonia excretion rate, O:N ratio, ATP content, activity of pyruvate kinase, and expression of metabolism-related genes) were significantly affected by acidification and warming, resulting in a shortage of energy supply (indicated by the in vivo content of ATP). In addition, exposure to acidification and warming led to evident disruption in circadian rhythm (indicated by the heartrate and the expression rhythm of Per2, Cry, and BMAL1) and neurotransmitters (indicated by the activity of acetyl cholinesterase and in vivo contents of ACh, GABA, and DA). These findings suggest that circadian rhythms and neurotransmitters might be potential routes through which acidification and warming interactively affect the metabolism of mussels.
Collapse
Affiliation(s)
- Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jiongming Zhang
- Zhejiang Mariculture Research Institute, Wenzhou 325005, P.R. China
| | | | - Peng Ren
- Zhejiang Mariculture Research Institute, Wenzhou 325005, P.R. China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|