1
|
Yamamura R, Okubo R, Ukawa S, Nakamura K, Okada E, Nakagawa T, Imae A, Kimura T, Tamakoshi A. Increased fecal glycocholic acid levels correlate with obesity in conjunction with the depletion of archaea: The Dosanco Health Study. J Nutr Biochem 2025; 139:109846. [PMID: 39863085 DOI: 10.1016/j.jnutbio.2025.109846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/30/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Recent studies have focused on the relationship between obesity and gut microbiota. This study aims to identify fecal components and gut bacterial species associated with different BMI categories. In this study, 538 participants aged ≥18 years were categorized into underweight, normal, and obese groups based on BMI (cutoffs: 18.5 and 25.0 kg/m²). We compared 30 fecal components among these groups and calculated correlation coefficients between each component and BMI. Participants were then divided into quartiles based on fecal component levels correlated with BMI, and the prevalence ratio (PR) of obesity was calculated, adjusted for confounding factors. We also analyzed the composition and diversity of gut microbiota and bacterial gene expression among the quartiles for each fecal component. Fecal glycocholic acid (GCA) showed a significant positive correlation with BMI. The PR for obesity in the highest quartile of fecal GCA was 3.30 (95% CI, 1.21-9.54), indicating a significantly higher risk of obesity compared to the lowest quartile. Gut microbiota analysis revealed significant differences in the abundance of Ruminococcaceae Incertae Sedis, Faecalibacterium, and Methanobrevibacter, with Methanobrevibacter being absent in the higher quartiles of fecal GCA. Additionally, gene expression for enzymes involved in the deconjugation of conjugated bile acids, including GCA, was downregulated in the highest quartile. Increased fecal GCA levels are positively correlated with obesity, alongside a depletion of archaea.
Collapse
Affiliation(s)
- Ryodai Yamamura
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
| | - Ryo Okubo
- Department of Neuropsychiatry, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Shigekazu Ukawa
- Osaka Metropolitan University Graduate School of Human Life and Ecology, Sumiyoshi, Osaka, Japan; Department of Public Health, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Koshi Nakamura
- Department of Public Health and Epidemiology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan; Department of Public Health, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Emiko Okada
- The Health Care Science Institute, Minato-ku, Tokyo, Japan; Department of Public Health, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | | | - Akihiro Imae
- The Hokkaido Centre for Family Medicine, Sapporo, Japan
| | - Takashi Kimura
- Department of Public Health, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Akiko Tamakoshi
- Department of Public Health, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Zhong Y, Yan J, Lei Y, Zhang R, Abudurexiti A, Qi S, Hou W, Ma X. Lactucin and lactucopicrin ameliorate obesity in high-fat diet fed mice by promoting white adipose tissue browning through the activation of the AMPK/SIRT1/PGC-1α pathway. J Nutr Biochem 2025; 139:109851. [PMID: 39909319 DOI: 10.1016/j.jnutbio.2025.109851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Lactucin and lactucopicrin are the characteristic lipid-lowering active components found in Cichorium glandulosum. However, their effects and underlying mechanisms in obesity remain unclear. In the present study, C57BL/6J mice were simultaneously subjected to a high-fat diet (HFD) and treated with drugs to investigate the impacts of lactucin and lactucopicrin on HFD-induced obese mice. The results demonstrated that in HFD obese mice, lactucin and lactucopicrin significantly decreased body weight and the weights of adipose tissues, improved serum metabolic parameters, and increased the content of irisin. Regarding the intermediate metabolites of intestinal flora, which are closely associated with white adipose tissue (WAT) browning, lactucin and lactucopicrin treatment led to a reduction in the levels of 12-α-OH/non-12-α-OH bile acids (BAs) and also tended to enhance the levels of short-chain fatty acids (SCFAs). qRT-PCR results indicated that lactucin and lactucopicrin treatment elevated the expression levels of genes related to beige fat markers, thermogenesis, mitochondrial biogenesis, and lipolysis in WAT, as well as those of thermogenesis and lipolysis genes in brown adipose tissue (BAT). Western blot analysis revealed that lactucin and lactucopicrin up-regulated the expression of uncoupling protein 1 (UCP1), the core protein in thermogenesis, in both WAT and BAT. Moreover, they also up-regulated the expression levels of AMP-activated kinase (AMPK), sirtuin 1 (SIRT1), and PPARγ coactivator 1-alpha (PGC-1α), which are key pathway proteins involved in WAT browning. Furthermore, 16S rRNA sequencing results showed that in HFD obese mice, lactucin and lactucopicrin improved the composition and function of the intestinal microbiota. In conclusion, lactucin and lactucopicrin may promote WAT browning by activating the AMPK/SIRT1/PGC-1α pathway, thereby ameliorating obesity in HFD mice.
Collapse
Affiliation(s)
- Yewei Zhong
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Junlin Yan
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Yi Lei
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Rui Zhang
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | | | - Shuwen Qi
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Wenhui Hou
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Xiaoli Ma
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
3
|
Chen CC, Yeh YM, Chen KJ, Chang HJ, Cheng ML, Lo CJ, Lai HC. Gut Microbiota and Related Metabolites in Children With Egg White Sensitization. Pediatr Infect Dis J 2025; 44:299-309. [PMID: 39637305 DOI: 10.1097/inf.0000000000004628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
BACKGROUND We hypothesized that food sensitization in children could be linked to specific gut microbiota. The objective of this study is to assess a group of children with egg white sensitization (ES) from the microbiological and biochemical-metabolic standpoint, applying the microbiota and metabolomics approach to studying the intestinal contents of the feces. METHODS Twenty-eight toddlers with ES (mean age 13.08 months) and 24 healthy controls (mean age 12.85 months) were recruited for feces collection, serum IgE measurement, gut microbiota and metabolomics analysis. Individual microbial diversity and composition were analyzed via targeting the 16S rRNA gene hypervariable V3-V5 regions. The metabolite profiles of human feces were explored by 1 H nuclear magnetic resonance. RESULTS Children with ES exhibited relatively high levels of Firmicutes at the phylum level and relatively low levels of Bacteroidetes. Moreover, children with ES exhibited significantly reduced overall gut microbiota diversity and richness compared with healthy children. At the family level, we observed significant increases in the numbers of Clostridiaceae, Lachnospiraceae, Pasteurellaceae and Ruminococcaceae in children with ES. Egg white sensitivity increases orotic acid, nicotinate, methyl succinate, urocanic acid, xanthine, amino acids (tyrosine, lysine, tryptophan, phenylalanine) and short-chain fatty acids ( n -butyrate, valerate) levels according to the results of metabolomics analysis. CONCLUSIONS In summary, some specific families and genera (dysbiosis) are enriched in the gut microbiota, and increases in the mean concentrations of organic compounds in the fecal metabolite profile are associated with ES in children. These findings may provide evidence of potential strategies to control the development of ES or other atopies by modifying the gut microbiota.
Collapse
Affiliation(s)
- Chien-Chang Chen
- From the Division of Gastroenterology, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kun-Jei Chen
- From the Division of Gastroenterology, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Hung-Ju Chang
- From the Division of Gastroenterology, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Mei-Ling Cheng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine
- Metabolomics Core Laboratory, Healthy Aging Research Center
| | - Chi-Jen Lo
- Department of Medical Biotechnology and Laboratory Science, College of Medicine
- Metabolomics Core Laboratory, Healthy Aging Research Center
| | - Hsin-Chih Lai
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
4
|
Yang Y, Zhang Y, Zhang W, Lu K, Wang L, Liu Y, Du L, Yang J, Guan L, Ma H. Flammulina velutipes residue Polysaccharide Alleviates Immunosuppression and Intestinal Injury by Modulating Gut Microbiota and Associated Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40116376 DOI: 10.1021/acs.jafc.4c12105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
This study elucidated the mechanisms underlying the immunoregulatory and gut-microbiota-modulating effects of Flammulina velutipes residue polysaccharide (FVRP) using cyclophosphamide (CTX)-induced mouse models. FVRP supplementation alleviated CTX-induced intestinal damage and boosted antioxidant enzyme activity and cytokine secretion. Additionally, FVRP enhanced the diversity and total species richness of the gut microbiota, promoting the proliferation of beneficial bacteria (e.g., Prevotellaceae), while reducing the abundance of CTX-derived bacteria (Lachnospiraceae and Rikenellaceae). FVRP facilitates the accumulation of short-chain fatty acids. Untargeted metabolomic analyses of cecal content revealed that FVRP treatment notably restored the levels of 32 endogenous metabolites altered by CTX. Based on a pseudosterility mice model, fecal microbiota transplantation (FMT), and fecal filtrate transplantation (FFT), gut microbiota and associated metabolites were demonstrated to play a crucial role in the immunomodulatory and protective effects of FVRP against intestinal injury. In conclusion, FVRP exhibits significant potential as an immune enhancer and natural therapeutic agent for alleviating intestinal inflammatory conditions.
Collapse
Affiliation(s)
- Yiting Yang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Yao Zhang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Wenying Zhang
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, P. R. China
| | - Kunpeng Lu
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Liping Wang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Yanfang Liu
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Linna Du
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Jing Yang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Lili Guan
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Hongxia Ma
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, P. R. China
| |
Collapse
|
5
|
Mamun MAA, Rakib A, Mandal M, Singh UP. Impact of a High-Fat Diet on the Gut Microbiome: A Comprehensive Study of Microbial and Metabolite Shifts During Obesity. Cells 2025; 14:463. [PMID: 40136712 PMCID: PMC11940932 DOI: 10.3390/cells14060463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Over the last few decades, the prevalence of metabolic diseases such as obesity, diabetes, non-alcoholic fatty liver disease, hypertension, and hyperuricemia has surged, primarily due to high-fat diet (HFD). The pathologies of these metabolic diseases show disease-specific alterations in the composition and function of their gut microbiome. How HFD alters the microbiome and its metabolite to mediate adipose tissue (AT) inflammation and obesity is not well known. Thus, this study aimed to identify the changes in the gut microbiome and metabolomic signatures induced by an HFD to alter obesity. To explore the changes in the gut microbiota and metabolites, 16S rRNA gene amplicon sequencing and metabolomic analyses were performed after HFD and normal diet (ND) feeding. We noticed that, at taxonomic levels, the number of operational taxonomic units (OTUs), along with the Chao and Shannon indexes, significantly shifted in HFD-fed mice compared to those fed a ND. Similarly, at the phylum level, an increase in Firmicutes and a decrease in Bacteroidetes were noticed in HFD-fed mice. At the genus level, an increase in Lactobacillus and Ruminococcus was observed, while Allobaculum, Clostridium, and Akkermansia were markedly reduced in the HFD group. Many bacteria from the Ruminococcus genus impair bile acid metabolism and restrict weight loss. Firmicutes are efficient in breaking down complex carbohydrates into short-chain fatty acids (SCFAs) and other metabolites, whereas Bacteroidetes are involved in a more balanced or efficient energy extraction. Thus, an increase in Firmicutes over Bacteroidetes enhances the absorption of more calories from food, which may contribute to obesity. Taken together, the altered gut microbiota and metabolites trigger AT inflammation, which contributes to metabolic dysregulation and disease progression. Thus, this study highlights the potential of the gut microbiome in the development of therapeutic strategies for obesity and related metabolic disorders.
Collapse
Affiliation(s)
| | | | | | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA; (M.A.A.M.); (A.R.); (M.M.)
| |
Collapse
|
6
|
Luu QQ, Kim T, Cao TBT, Choi I, Yang SY, An BS, Hwang DY, Choi Y, Park HS. Therapeutic Potential of Arginine-Loaded Red Blood Cell Nanovesicles Targeting Obese Asthma. Mediators Inflamm 2025; 2025:8248722. [PMID: 40134943 PMCID: PMC11936518 DOI: 10.1155/mi/8248722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/12/2025] [Indexed: 03/27/2025] Open
Abstract
Purpose: The role of the gut microbiomes has been emphasized in the pathogenesis of obese asthma (OA). However, the molecular mechanism of airway dysfunction underlying OA has not yet been fully elucidated. The effects of microbiomes on arginine metabolism in relation to lung functions and a novel method for delivering arginine to lung tissue based on arginine-loaded red blood cell (RBC)-derived nanovesicles (NVs) (NVArg) will be investigated. Materials and Methods: Inflammatory status, amino acid profiles, and microbial diversity were evaluated in 20 adult patients with OA compared to 30 adult patients with non-OA (NOA) and 10 healthy control (HC) groups. Changes in gut or lung microbial composition that altered arginine metabolism in relation to airway inflammation were investigated in an OA mouse model in vivo. Additionally, this study evaluated the delivery of arginine to lung tissue utilizing NVArg in vivo and in vitro. Results: Significantly increased Bacteroides abundance but decreased serum arginine concentration with lower forced exhaled volume at 1 s (FEV1) (%) was noted in the OA group compared to the NOA and HC groups. In mouse experiments, when OA mice were given living bacteria from normal control (NC) mice, lung arginine concentration and airway resistance were restored. However, the administration of arginine or its metabolite (citrulline) did not increase the arginine levels in the lung tissues. We therefore created NVArg, which successfully delivered arginine into the cytoplasm of the airway epithelial cell line in vitro. Oral administration of NVArg for OA mice significantly induced the AMP-activated protein kinase (AMPK) and endothelial nitric oxide synthase (eNOS) pathways in airway epithelial cells, which reduced airway resistance and inflammation. Conclusion: These findings suggest that microbiomes contribute to airway dysfunction by regulating arginine metabolism, whereas NVArg treatment may be a potential option for managing OA.
Collapse
Affiliation(s)
- Quoc Quang Luu
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, California, USA
| | - Taejune Kim
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Injung Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Seung Yun Yang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Youngwoo Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
7
|
Rodrigues FG, Ormanji MS, Meca R, Montenegro H, Cuppari L, de Borst MH, Heilberg IP. Effects of a high-fat diet on gut microbiota and possible implications for bone health in male Wistar rats. Lipids 2025. [PMID: 40103344 DOI: 10.1002/lipd.12440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/20/2025]
Abstract
Diet plays an important role in the composition of gut microbiota. Emerging research suggests that bone homeostasis can also be influenced by the gut microbiota. The aim of this study was to assess possible alterations in gut microbiota in an experimental obesity model induced by a high-fat diet (HFD) and the possible effects on parameters of bone metabolism and remodeling. Male Wistar rats were fed a HFD (60% lipids) or standard (control) diet for 14 weeks. Biochemical and hormonal parameters, bone histomorphometry, bone protein levels, and gut microbiota composition were analyzed. HFD animals exhibited a greater gut microbiota α-diversity represented by the Shannon Index and an increased relative abundance of the Proteobacteria phylum. Histomorphometry detected lower bone formation in the HFD group, accompanied by increased levels of serum and bone leptin and FGF-23 (fibroblast growth factor-23). The Shannon Index was correlated directly with bone FGF-23 (R 0.96, p = 0.04) and inversely with the osteoblastic surface (R -0.95, p = 0.04). The present study disclosed a significant increase in gut microbiota α-diversity and relative abundance of Proteobacteria phylum in obese animals fed a high-fat diet in parallel with increased levels of bone and serum leptin and FGF-23 and lower bone formation. The associations of Shannon Index with bone levels of FGF-23 and reduced osteoblastic surface suggest a link between HFD-induced higher gut microbiota diversity and low bone formation.
Collapse
Affiliation(s)
- Fernanda Guedes Rodrigues
- Nutrition Post Graduation Program, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Renata Meca
- Nephrology Division, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Lilian Cuppari
- Nutrition Post Graduation Program, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Nephrology Division, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Martin H de Borst
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ita Pfeferman Heilberg
- Nutrition Post Graduation Program, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Nephrology Division, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
8
|
Luo F, Yang J, Song Z, Zhao Y, Wang P, Liu K, Mou X, Liu W, Li W. Renshen Zhuye decoction ameliorates high-fat diet-induced obesity and insulin resistance by modulating gut microbiota and metabolic homeostasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156655. [PMID: 40120542 DOI: 10.1016/j.phymed.2025.156655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/09/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Obesity, characterized by excessive adipose tissue accumulation, has become a global health challenge with rapidly increasing prevalence. It contributes significantly to metabolic disorders including insulin resistance (IR). Renshen-zhuye decoction (RZD), a traditional Chinese medicine formula historically used for diabetes, shows potential for improving metabolic parameters, but its effects and mechanisms in obesity and insulin resistance remain unclear. PURPOSE This study aimed to evaluate the therapeutic benefits of RZD on obesity and insulin resistance, and to elucidate the underlying mechanisms through which it improves glucose and lipid metabolism. METHODS The role of RZD was evaluated in a high-fat diet (HFD) mouse model. The formula was characterized using UPLC-MS. Comprehensive analyses including histopathological staining, immunofluorescence, biochemical assays, 16S rRNA gene sequencing of gut microbiota, and non-targeted metabolomic analysis were performed. To validate the role of gut microbiota, we employed antibiotic treatment (ABX) to deplete intestinal flora and conducted fecal microbiota transplantation (FMT) experiments. RESULTS RZD treatment dose-dependently alleviated HFD-induced dyslipidemia and insulin resistance, improving glucose tolerance, insulin sensitivity, and energy expenditure. Gut microbiota analysis revealed that RZD significantly modulated the composition of intestinal flora and their metabolic profiles. Additionally, RZD reduced intestinal and systemic inflammation by enhancing intestinal barrier integrity, particularly through increased expression of tight junction proteins such as Occludin. Importantly, the beneficial effects of RZD on weight management and glucose homeostasis were antagonized by antibiotic intervention, while FMT experiments confirmed that these improvements were mediated through gut microbiota modulation. CONCLUSION This study provides new insights into RZD's modulatory effects on gut microbiota and subsequent improvements in obesity-related metabolic parameters. RZD alleviates HFD-induced obesity and insulin resistance in mice by modulating gut microbiota composition and function, which subsequently improves intestinal barrier integrity, reduces inflammation, and enhances metabolic homeostasis.
Collapse
Affiliation(s)
- Fei Luo
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jie Yang
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Zhiping Song
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Yuan Zhao
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Panpan Wang
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Hangzhou 310000, PR China
| | - Kaiyuan Liu
- Department of Endocrinology, Zhejiang Integrated Traditional Chinese and Western Medicine Hospital, Hangzhou, 310000, PR China
| | - Xin Mou
- Department of Endocrinology, Zhejiang Integrated Traditional Chinese and Western Medicine Hospital, Hangzhou, 310000, PR China.
| | - Wenhong Liu
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Wei Li
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| |
Collapse
|
9
|
Saad MJA, Santos A. The Microbiota and Evolution of Obesity. Endocr Rev 2025; 46:300-316. [PMID: 39673174 PMCID: PMC11894537 DOI: 10.1210/endrev/bnae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/03/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Obesity is a major global concern and is generally attributed to a combination of genetic and environmental factors. Several hypotheses have been proposed to explain the evolutionary origins of obesity epidemic, including thrifty and drifty genotypes, and changes in thermogenesis. Here, we put forward the hypothesis of metaflammation, which proposes that due to intense selection pressures exerted by environmental pathogens, specific genes that help develop a robust defense mechanism against infectious diseases have had evolutionary advantages and that this may contribute to obesity in modern times due to connections between the immune and energy storage systems. Indeed, incorporating the genetic variations of gut microbiota into the complex genetic framework of obesity makes it more polygenic than previously believed. Thus, uncovering the evolutionary origins of obesity requires a multifaceted approach that considers the complexity of human history, the unique genetic makeup of different populations, and the influence of gut microbiome on host genetics.
Collapse
Affiliation(s)
- Mario J A Saad
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, CEP 13083-887 Campinas, SP, Brazil
| | - Andrey Santos
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, CEP 13083-887 Campinas, SP, Brazil
| |
Collapse
|
10
|
Ghosh AN, Walsh CJ, Maiden MJ, Stinear TP, Deane AM. Effect of dietary fibre on the gastrointestinal microbiota during critical illness: A scoping review. World J Crit Care Med 2025; 14:98241. [DOI: 10.5492/wjccm.v14.i1.98241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/27/2024] [Accepted: 10/28/2024] [Indexed: 12/11/2024] Open
Abstract
The systemic effects of gastrointestinal (GI) microbiota in health and during chronic diseases is increasingly recognised. Dietary strategies to modulate the GI microbiota during chronic diseases have demonstrated promise. While changes in dietary intake can rapidly change the GI microbiota, the impact of dietary changes during acute critical illness on the microbiota remain uncertain. Dietary fibre is metabolised by carbohydrate-active enzymes and, in health, can alter GI microbiota. The aim of this scoping review was to describe the effects of dietary fibre supplementation in health and disease states, specifically during critical illness. Randomised controlled trials and prospective cohort studies that include adults (> 18 years age) and reported changes to GI microbiota as one of the study outcomes using non-culture methods, were identified. Studies show dietary fibres have an impact on faecal microbiota in health and disease. The fibre, inulin, has a marked and specific effect on increasing the abundance of faecal Bifidobacteria. Short chain fatty acids produced by Bifidobacteria have been shown to be beneficial in other patient populations. Very few trials have evaluated the effect of dietary fibre on the GI microbiota during critical illness. More research is necessary to establish optimal fibre type, doses, duration of intervention in critical illness.
Collapse
Affiliation(s)
- Angajendra N Ghosh
- Department of Intensive Care, The Northern Hospital, Epping 3076, Victoria, Australia
| | - Calum J Walsh
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne 3052, Victoria, Australia
| | - Matthew J Maiden
- Department of Intensive Care, The Royal Melbourne Hospital, The University of Melbourne, Parkville 3050, Victoria, Australia
| | - Tim P Stinear
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne 3052, Victoria, Australia
| | - Adam M Deane
- Department of Intensive Care Medicine, The Royal Melbourne Hospital, Parkville 3050, Victoria, Australia
| |
Collapse
|
11
|
Zhao A, Li J, Peterson M, Black M, Gaulke CA, Jeffery EH, Miller MJ. Cooked Broccoli Alters Cecal Microbiota and Impacts Microbial Metabolism of Glucoraphanin in Lean and Obese Mice. Mol Nutr Food Res 2025; 69:e202400813. [PMID: 39962804 PMCID: PMC11924887 DOI: 10.1002/mnfr.202400813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/29/2024] [Accepted: 01/21/2025] [Indexed: 03/21/2025]
Abstract
SCOPE Brassica vegetables contain unique compounds known as glucosinolates (GSLs), which, when hydrolyzed by plant or microbial myrosinase, form bioactive isothiocyanates (ITCs) that offer health benefits to the host. The present study evaluated the impact of cooked broccoli (broccoli myrosinase inactivated) consumption on cecal microbial metabolism of glucoraphanin (GRP) in lean and obese mice and characterized the changes in cecal microbiota following broccoli-containing diets. METHODS AND RESULTS Twenty lean and 20 diet-induced obese (DIO) mice were randomized to consume control or cooked broccoli supplemented diets for 7 days. Cooked broccoli consumption increased ex vivo microbial GRP hydrolysis by cecal contents collected from lean and obese mice, led to increased production of sulforaphane (SF), sulforaphane-cysteine (SF-CYS), total ITC, and colonic NAD(P)H: Quinone Oxidoreductase (NQO1) activity. Further investigation revealed increased abundance of health-promoting gut microbiota, including Lachnospiraceae NK4A136 group and Dubosiella newyorkensis, following broccoli-containing diets. The Peptococcaseae family, the Blautia genus, and an amplicon sequence variation (ASV) from the Oscillospiraceae family exhibited negative correlation with total ITC production. CONCLUSION These finding suggest that cooked broccoli consumption enhances microbial GRP hydrolysis to produce more bioactive ITCs and inform future strategies toward altering microbial GSL metabolism to promote gut health in both lean and obese individuals.
Collapse
Affiliation(s)
- Anqi Zhao
- Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, USA
| | - Jiaxuan Li
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, Illinois, USA
| | - Mark Peterson
- College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| | - Molly Black
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, Illinois, USA
| | | | - Elizabeth H Jeffery
- Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, USA
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, Illinois, USA
| | - Michael J Miller
- Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, USA
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
12
|
Xie C, Qi C, Zhang J, Wang W, Meng X, Aikepaer A, Lin Y, Su C, Liu Y, Feng X, Gao H. When short-chain fatty acids meet type 2 diabetes mellitus: Revealing mechanisms, envisioning therapies. Biochem Pharmacol 2025; 233:116791. [PMID: 39894305 DOI: 10.1016/j.bcp.2025.116791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/19/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Evidence is accumulating that short-chain fatty acids (SCFAs) produced by the gut microbiota play pivotal roles in host metabolism. They contribute to the metabolic regulation and energy homeostasis of the host not only by preserving intestinal health and serving as energy substrates but also by entering the systemic circulation as signaling molecules, affecting the gut-brain axis and neuroendocrine-immune network. This review critically summarizes the current knowledge regarding the effects of SCFAs in the fine-tuning of the pathogenesis of type 2 diabetes mellitus (T2DM) and insulin resistance, with an emphasis on the complex relationships among diet, microbiota-derived metabolites, T2DM inflammation, glucose metabolism, and the underlying mechanisms involved. We hold an optimistic view that elucidating how diet can influence gut bacterial composition and activity, SCFA production, and metabolic functions in the host will advance our understanding of the mutual interactions of the intestinal microbiota with other metabolically active organs, and may pave the way for harnessing these pathways to develop novel personalized therapeutics for glucometabolic disorders.
Collapse
Affiliation(s)
- Cong Xie
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China
| | - Cong Qi
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China
| | - Jianwen Zhang
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China; School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617 China
| | - Wei Wang
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China
| | - Xing Meng
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China; School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617 China
| | - Aifeila Aikepaer
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China; Dongzhimen Hospital, the First Clinical Medical School of Beijing University of Chinese Medicine, Beijing 100700 China
| | - Yuhan Lin
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China; Dongzhimen Hospital, the First Clinical Medical School of Beijing University of Chinese Medicine, Beijing 100700 China
| | - Chang Su
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730124 China
| | - Yunlu Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700 China
| | - Xingzhong Feng
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China.
| | - Huijuan Gao
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China.
| |
Collapse
|
13
|
Manfredi JN, Gupta SK, Vyavahare S, Deak F, Lu X, Buddha L, Wankhade U, Lohakare J, Isales C, Fulzele S. Gut microbiota dysbiosis in Alzheimer's disease (AD): Insights from human clinical studies and the mouse AD models. Physiol Behav 2025; 290:114778. [PMID: 39672482 DOI: 10.1016/j.physbeh.2024.114778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/19/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Alzheimer's Disease (AD) is a debilitating neurocognitive disorder with an unclear underlying mechanism. Recent studies have implicated gut microbiota dysbiosis with the onset and progression of AD. The connection between gut microbiota and AD can significantly affect the prevention and treatment of AD patients. This systematic review summarizes primary outcomes of human and mouse AD models concerning gut microbiota alterations. A systematic literature search in February through March 2023 was conducted on PubMed, Embase, and Web of Science. We identified 711 as potential manuscripts of which 672 were excluded because of irrelevance to the identified search criteria. Primary outcomes include microbiota compositions of control and AD models in humans and mice. In total, 39 studies were included (19 mouse and 20 human studies), published between 2017 and 2023. We included studies involving well-established mice models of AD (5xFAD, 3xTg-AD, APP/PS1, Tg2576, and APPPS2) which harbor mutations and genes that drive the formation of Aß plaques. All human studies were included on those with AD or mild cognitive impairment. Among alterations in gut microbiota, most studies found a decreased abundance of the phyla Firmicutes and Bifidobacteria, a genus of the phylum Actinomycetota. An increased abundance of the phyla Bacteroidetes and Proteobacteria were identified in animal and human studies. Studies indicated that gut microbiota alter the pathogenesis of AD through its impact on neuroinflammation and permeability of the gastrointestinal tract. The ensuing increase in blood-brain barrier permeability may accelerate Aβ penetrance and formation of neuritic plaques that align with the amyloid hypothesis of AD pathogenesis. Further studies should assess the relationship between gut microbiota and AD progression and therapy preserving beneficial gut microbiota.
Collapse
Affiliation(s)
- John N Manfredi
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sonu Kumar Gupta
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sagar Vyavahare
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ferenc Deak
- Deptment of Neuroscience & Regenerative Medicine, Augusta, GA 30912, USA
| | - Xinyun Lu
- Deptment of Neuroscience & Regenerative Medicine, Augusta, GA 30912, USA
| | - Lasya Buddha
- Arkansas Children's Nutrition Center, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Umesh Wankhade
- Arkansas Children's Nutrition Center, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jayant Lohakare
- College of Agriculture, Food, and Natural Resources, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Carlos Isales
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Deptment of Neuroscience & Regenerative Medicine, Augusta, GA 30912, USA; Centre for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Deptment of Neuroscience & Regenerative Medicine, Augusta, GA 30912, USA; College of Agriculture, Food, and Natural Resources, Prairie View A&M University, Prairie View, TX 77446, USA; Centre for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Cell Biology and Anatomy, Medical College of Georgia, Augusta University, GA, USA; Department of Orthopedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
14
|
Liu S, Tao Z, Qiao M, Shi L. The Functions of Major Gut Microbiota in Obesity and Type 2 Diabetes. Metabolites 2025; 15:167. [PMID: 40137132 PMCID: PMC11943573 DOI: 10.3390/metabo15030167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Gut microbiomes play a vital role in maintaining whole-body metabolic homeostasis. It has gained significant attention in recent years due to advancements in genome sequencing technologies and a deeper understanding of its relationship with obesity. However, the specific ways in which different microorganisms directly or indirectly influence host obesity, as well as the underlying mechanisms, remain uncertain because of the complexity of gut microbiota composition. Methods: In this review, we summarize the roles of the major gut microbiota phyla such as Bacteroidetes, Firmicutes, Proteobacteria, and Verrucomicrobia in obesity and type 2 diabetes based on studies published in the past five years on PubMed and Google Scholar. The current therapeutic strategies associated with gut microbiota are also explored from clinical trials, and challenges and future directions are discussed. Results and Conclusions: This review will provide a deeper understanding of the functions of major gut microbiota in obesity and type 2 diabetes, which could lead to more individualized and effective treatments for metabolic diseases.
Collapse
Affiliation(s)
- Siman Liu
- Departments of Nutritional Science, University of Connecticut, Storrs, CT 06269, USA
| | - Zhipeng Tao
- Department of Nutrition and Food Sciences, Texas Woman’s University, Denton, TX 76204, USA
| | - Mingyu Qiao
- Departments of Nutritional Science, University of Connecticut, Storrs, CT 06269, USA
| | - Limin Shi
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
| |
Collapse
|
15
|
Chao J, Coleman RA, Keating DJ, Martin AM. Gut Microbiome Regulation of Gut Hormone Secretion. Endocrinology 2025; 166:bqaf004. [PMID: 40037297 PMCID: PMC11879239 DOI: 10.1210/endocr/bqaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Indexed: 03/06/2025]
Abstract
The gut microbiome, comprising bacteria, viruses, fungi, and bacteriophages, is one of the largest microbial ecosystems in the human body and plays a crucial role in various physiological processes. This review explores the interaction between the gut microbiome and enteroendocrine cells (EECs), specialized hormone-secreting cells within the intestinal epithelium. EECs, which constitute less than 1% of intestinal epithelial cells, are key regulators of gut-brain communication, energy metabolism, gut motility, and satiety. Recent evidence shows that gut microbiota directly influence EEC function, maturation, and hormone secretion. For instance, commensal bacteria regulate the production of hormones like glucagon-like peptide 1 and peptide YY by modulating gene expression and vesicle cycling in EE cells. Additionally, metabolites such as short-chain fatty acids, derived from microbial fermentation, play a central role in regulating EEC signaling pathways that affect metabolism, gut motility, and immune responses. Furthermore, the interplay between gut microbiota, EECs, and metabolic diseases, such as obesity and diabetes, is examined, emphasizing the microbiome's dual role in promoting health and contributing to disease states. This intricate relationship between the gut microbiome and EECs offers new insights into potential therapeutic strategies for metabolic and gut disorders.
Collapse
Affiliation(s)
- Jessica Chao
- Gut Hormones in Health and Disease Lab, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Rosemary A Coleman
- Gut Hormones in Health and Disease Lab, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Damien J Keating
- Gut Sensory Systems Group, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Alyce M Martin
- Gut Hormones in Health and Disease Lab, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| |
Collapse
|
16
|
Ren X, Wang L, Yu C, An J, Fu S, Sun H, Zhao M, Te R, Bai X, Yuan J, Liu Y, He J. Impact of oat grain supplementation on growth performance, rumen microbiota, and fatty acid profiles in Hu sheep. Front Microbiol 2025; 16:1528298. [PMID: 40092034 PMCID: PMC11907649 DOI: 10.3389/fmicb.2025.1528298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025] Open
Abstract
The intestinal microbiota plays a vital role in animal growth and development. In this study, we explored the impact of oat grain dietary supplementation on growth performance, intestinal microbiota, short-chain fatty acids (SCFAs), and fatty acids (FAs) in Hu sheep. Thirty-two Hu lambs were randomly assigned to a control group (RC) or an oat grain-supplemented group (RO). After 90 days on their respective diets, rumen digesta were collected from six randomly selected Hu lambs per group to assess microbial diversity, SCFAs, and FAs. The RO diet significantly enhanced growth in Hu sheep (p < 0.01) and increased α-diversity, as indicated by Chao1 and Shannon indices. Core phyla in both groups were Firmicutes and Bacteroidota, with predominant genera including Prevotella, Rikenellaceae_RC9_gut_group, and F082. Oat grain supplementation led to significant shifts in microbial composition, increasing the abundance of Acidobacteriota, Proteobacteria, Chloroflexi, Actinobacteriota, and Subgroup_2, while decreasing Bacteroidota and Oscillospiraceae (p < 0.05). The RO group also exhibited lower levels of isobutyric and citraconic acids but higher levels of azelaic acid (p < 0.05). These results indicate that oat grain supplementation enhances beneficial rumen microbes and optimizes FAs and SCFAs composition, thereby promoting weight gain in Hu sheep.
Collapse
Affiliation(s)
- Xiaoqi Ren
- Research Institute of Biotechnology, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Liwei Wang
- Research Institute of Biotechnology, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Chuanzong Yu
- Research Institute of Biotechnology, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Jianghong An
- Research Institute of Biotechnology, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Shaoyin Fu
- Research Institute of Biotechnology, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Hua Sun
- Research Institute of Biotechnology, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Mengran Zhao
- Research Institute of Biotechnology, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Rigele Te
- Research Institute of Biotechnology, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Xiaobo Bai
- Research Institute of Biotechnology, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jingda Yuan
- Research Institute of Biotechnology, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Yongbin Liu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiangfeng He
- Research Institute of Biotechnology, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
17
|
Woh PY, Chen Y, Kumpitsch C, Mohammadzadeh R, Schmidt L, Moissl-Eichinger C. Reevaluation of the gastrointestinal methanogenic archaeome in multiple sclerosis and its association with treatment. Microbiol Spectr 2025:e0218324. [PMID: 39998261 DOI: 10.1128/spectrum.02183-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/02/2025] [Indexed: 02/26/2025] Open
Abstract
The role of the gut archaeal microbiome (archaeome) in health and disease remains poorly understood. Methanogenic archaea have been linked to multiple sclerosis (MS), but prior studies were limited by small cohorts and inconsistent methodologies. To address this, we re-evaluated the association between methanogenic archaea and MS using metagenomic data from the International Multiple Sclerosis Microbiome Study. We analyzed gut microbiome profiles from 115 MS patients and 115 healthy household controls across Buenos Aires (27.8%), Edinburgh (33.9%), New York (10.4%), and San Francisco (27.8%). Metagenomic sequences were taxonomically classified using kraken2/bracken and a curated profiling database to detect archaea, specifically Methanobrevibacter species. Most MS patients were female (80/115), aged 25-72 years (median: 44.5), and 70% were undergoing treatment, including dimethyl fumarate (n = 21), fingolimod (n = 20), glatiramer acetate (n = 14), interferon (n = 18), natalizumab (n = 6), or ocrelizumab/rituximab (n = 1). We found no significant differences in overall archaeome profiles between MS patients and controls. However, treated MS patients exhibited higher abundances of Methanobrevibacter smithii and M. sp900766745 compared to untreated patients. Notably, M. sp900766745 abundance correlated with lower disease severity scores in treated patients. Our results suggest that gut methanogens are not directly associated with MS onset or progression but may reflect microbiome health during treatment. These findings highlight potential roles for M. smithii and M. sp900766745 in modulating treatment outcomes, warranting further investigation into their relevance to gut microbiome function and MS management.IMPORTANCEMultiple sclerosis (MS) is a chronic neuroinflammatory disease affecting the central nervous system, with approximately 2.8 million people diagnosed worldwide, mainly young adults aged 20-30 years. While recent studies have focused on bacterial changes in the MS microbiome, the role of gut archaea has been less explored. Previous research suggested a potential link between methanogenic archaea and MS disease status, but these findings remained inconclusive. Our study addresses this gap by investigating the gut archaeal composition in MS patients and examining how it changes in response to treatment. By focusing on methanogens, we aim to uncover novel insights into their role in MS, potentially revealing new biomarkers or therapeutic targets. This research is crucial for enhancing our understanding of the gut microbiome's impact on MS and improving patient management.
Collapse
Affiliation(s)
- Pei Yee Woh
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Future Food (RiFood), The Hong Kong Polytechnic University, Hong Kong, China
| | - Yehao Chen
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
| | - Christina Kumpitsch
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Rokhsareh Mohammadzadeh
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Laura Schmidt
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
18
|
Ali Ahmad M, Venema K, Ayoub Moubareck C, Wazz G, Mahdy T, Karavetian M. Changes in energy homeostasis, gut peptides, and gut microbiota in Emiratis with obesity after bariatric surgery. PLoS One 2025; 20:e0318699. [PMID: 39992945 PMCID: PMC11849869 DOI: 10.1371/journal.pone.0318699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Obesity is a growing health concern worldwide, including United Arab Emirates. Bariatric surgery is an effective treatment option, with to date unclear weight loss mechanisms. In this prospective study, we explored post-bariatric surgery changes in energy homeostasis, gut peptides, hormones, and gut microbiota. METHOD We recruited 19 Emirati adults who were planning to undergo sleeve gastrectomy (SG). We assessed the energy requirements using 24-hour diet recalls, indirect calorimetry for resting energy expenditure (REE), and a questionnaire for appetite. Anthropometrics included body mass index (BMI), waist circumference, waist-to-height ratio, fat mass, fat-free mass, and percentage of body fat. Gut peptides, including peptide YY (PYY), glucagon-like peptide-1/2 (GLP-1/2), ghrelin (GHR), cholecystokinin (CCK), insulin, and leptin, were quantified using ELISA. Gut microbiota composition at phylum and genus levels, including the Firmicutes/Bacteroidetes (F/B) ratio and alpha (α) and beta (β) diversity, was determined by sequencing amplicons of the V3-V4 region of the 16S rRNA at baseline and three months post-surgery. Comparisons used paired sample T-test, Wilcoxon, and McNemar test. QIIME 2 was used to identify taxa and their relative abundance; subsequent analyses were done in R for (α) and (β) diversity (package qiime2R) and Wilcoxon signed-rank test in R for differences in microbiota at phylum and genus levels. We conducted Spearman correlation analyses between genera and energy homeostasis, appetite, anthropometrics, hormones, and gut peptides. RESULTS At three months post-SG, energy intake, appetite, all anthropometric indices, insulin, leptin, and GLP-1 significantly decreased; PYY and GHR significantly increased, and REE was stable. β-diversity of the gut microbiota and its composition at phylum and genus levels significantly changed post-surgery, yet F/B remained constant. Energy intake, BMI, and appetite negatively correlated with several taxa that significantly increased post-SG. CONCLUSION Gut peptides, hormones, and microbiota change partly account for bariatric surgery's weight-loss benefits. Understanding these alterations can inform personalized interventions targeting obesity.
Collapse
Affiliation(s)
- Manal Ali Ahmad
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Koen Venema
- Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Gabi Wazz
- Center of Excellence in Bariatric and Metabolic Surgery, Dr. Sulaiman Al Habib Hospital, Dubai, United Arab Emirates
| | - Tarek Mahdy
- Department of Bariatric Surgery, Sharjah University, Sharjah, United Arab Emirates
| | - Mirey Karavetian
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Chen H, Li J, Wu Y, Li Y, Zheng S, Wu Y, Xuan R, Wu L, Miao J, Wang Y, Tan H, Zhou J, Huang J, Yan X. Structural characteristics of intestinal microbiota of domestic ducks with different body sizes. Poult Sci 2025; 104:104930. [PMID: 40056781 PMCID: PMC11930160 DOI: 10.1016/j.psj.2025.104930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/10/2025] Open
Abstract
Domestic ducks are economically important agricultural animals, and their body size is a crucial economic trait. The intestinal flora plays a pivotal role in influencing body metabolism, growth, and development. Currently, no literature is available on the potential effect of the intestinal flora of domestic ducks on body size. This study used 16S rRNA sequencing technology to investigate the fecal microbiota of 229 individuals reared under identical feeding conditions. The findings revealed that partridge ducks with large body sizes (LBS) exhibited a higher level of intestinal microbial diversity than ducks with small body sizes (SBS). Notably, the gut microbiota composition of SBS displayed significantly elevated proportions of Streptococcus, Rothia, and Psychrobacter compared to their counterparts with LBS. Conversely, Lactobacillus was significantly more abundant in LBS. Jeotgalibaca and Psychrobacter were identified as key biomarkers of SBS, whereas Lactobacillus and Bacteroides were predominant biomarkers of LBS. Functional predictions based on intestinal microbiota indicated discernible differences among different body types, particularly evident in non- partridge ducks. The present study investigated the correlation between the intestinal microbiota and body size of domestic ducks, aiming to provide practical insights for the production management of domestic duck farming.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jiawei Li
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yongfei Wu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yuhang Li
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Sumei Zheng
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yan Wu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Rui Xuan
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Liping Wu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Junjie Miao
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yanan Wang
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Hongli Tan
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jing Zhou
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jianhua Huang
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| | - Xueming Yan
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
20
|
Erlin M, Rianda D, Fadilah F, Erlina L, Rahayu MD, Prafiantini E, Sungkar A, Shankar AH, Agustina R. Association of Prepregnancy Body Mass Index with Gut Microbiota Diversity and Abundance in Pregnant Women. J Nutr 2025:S0022-3166(25)00087-2. [PMID: 39956391 DOI: 10.1016/j.tjnut.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 01/23/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND Understanding the link between prepregnancy nutritional status and gut microbiota during pregnancy may lead to novel maternal and child health interventions. We explored the association of prepregnancy body mass index (BMI) status with gut microbiota diversity and abundance during pregnancy. METHODS A cross-sectional study was conducted on 90 pregnant women from primary health centers in Jakarta, Indonesia. Trained staff interviewed women on sociodemographic characteristics and nutrient intake, gathered data on prepregnancy BMI from antenatal records, and obtained fecal samples. Samples were analyzed for microbiota diversity indices [Shannon, Faith phylogenetic diversity (Faith PD), and Chao1] and abundance using 16S ribosome ribonucleic acid sequencing. Multivariate logistic regression was performed although adjusting for carbohydrate and protein intake, ethnicity, and education to determine the relationship between prepregnancy BMI and the alpha diversity index and the presence of the phylum Firmicutes and genera Prevotella and Blautia. RESULTS Pregnant women who were overweight or obese (BMI ≥23.0 kg/m2) before pregnancy had significantly lower odds of having gut microbiota diversity above the median of Shannon index [adjusted odds ratio (aOR): 0.4, 95% confidence interval (CI): 0.1, 0.9, P = 0.042], Faith PD (aOR: 0.2, 95% CI: 0.1, 0.8, P = 0.015), and Chao1 (aOR: 0.3, 95% CI: 0.1, 0.7, P = 0.006) compared with those who were neither overweight nor obese. Prepregnant women with overweight or obesity also had significantly lower odds of having levels above the median of the phylum Firmicutes (aOR: 0.38, 95% CI: 0.15, 0.98, P = 0.045) and genus Blautia (aOR: 0.32, 95% CI: 0.12, 0.85, P = 0.022) compared with women without overweight and obesity. CONCLUSIONS Prepregnancy overweight or obese status was associated with lower gut microbiota diversity and lower abundance of Firmicutes and Blautia among pregnant women in an urban community. These findings suggest that prepregnancy interventions to control BMI may improve gut flora and potentially benefit pregnant women.
Collapse
Affiliation(s)
- Maria Erlin
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia-Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Davrina Rianda
- Human Nutrition Research Center, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Fadilah Fadilah
- Bioinformatics Core Facilities, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Linda Erlina
- Bioinformatics Core Facilities, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Mega Diasty Rahayu
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia-Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Erfi Prafiantini
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia-Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia; Human Nutrition Research Center, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ali Sungkar
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Indonesia-Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Anuraj H Shankar
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Oxford University Clinical Research Unit-Indonesia, Jakarta, Indonesia
| | - Rina Agustina
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia-Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia; Human Nutrition Research Center, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| |
Collapse
|
21
|
Mohsen E, Haffez H, Ahmed S, Hamed S, El-Mahdy TS. Multiple Sclerosis: A Story of the Interaction Between Gut Microbiome and Components of the Immune System. Mol Neurobiol 2025:10.1007/s12035-025-04728-5. [PMID: 39934561 DOI: 10.1007/s12035-025-04728-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025]
Abstract
Multiple sclerosis (MS) is defined as an inflammatory disorder that chronically affects the central nervous system of young people mostly and is distributed globally. It is associated with degeneration and demyelination of the myelin sheath around the nerves, resulting in multiple neurological disability symptoms ranging from mild to severe cases that end with paralysis sometimes. MS is one of the rising diseases globally that is unfortunately associated with reduced quality of life and adding national economic burdens. The definite MS mechanism is not clearly defined; however, all the previous researches confirm the role of the immune system as the master contributor in the pathogenesis. Innate and adaptive immune cells are activated peripherally then attracted toward the central nervous system (CNS) due to the breakdown of the blood-brain barrier. Recently, the gut-brain axis was shown to depend on gut metabolites that are produced by different microorganisms in the colon. The difference in microbiota composition between individuals is responsible for diversity in secreted metabolites that affect immune responses locally in the gut or systemically when reach blood circulation to the brain. It may enhance or suppress immune responses in the central nervous system (CNS) (repeated short forms); consequently, it may exacerbate or ameliorate MS symptoms. Recent data showed that some metabolites can be used as adjuvant therapy in MS and other inflammatory diseases. This review sheds light on the nature of MS and the possible interaction between gut microbiota and immune system regulation through the gut-brain axis, hence contributing to MS pathogenesis.
Collapse
Affiliation(s)
- Esraa Mohsen
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, PO Box 11795, Cairo, Egypt
| | - Hesham Haffez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, PO Box 11795, Cairo, Egypt
- Center of Scientific Excellence "Helwan Structural Biology Research (HSBR), Helwan University, Cairo, 11795, Egypt
| | - Sandra Ahmed
- Department of Neurology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Selwan Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, PO Box 11795, Cairo, Egypt.
| | - Taghrid S El-Mahdy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, PO Box 11795, Cairo, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| |
Collapse
|
22
|
Li C, Yao J, Yang C, Yu S, Yang Z, Wang L, Li S, He N. Gut microbiota-derived short chain fatty acids act as mediators of the gut-liver-brain axis. Metab Brain Dis 2025; 40:122. [PMID: 39921774 DOI: 10.1007/s11011-025-01554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
The gut microbiota plays a crucial role in the communication between the gut, liver, and brain through the production of short chain fatty acids (SCFAs). SCFAs serve as key mediators in the Gut-Liver-Brain Axis, influencing various physiological processes and contributing to overall health. SCFAs are produced by bacterial fermentation of dietary fiber in the gut, and they exert systemic effects by signaling through various pathways. In the Gut-Liver axis, SCFAs regulate liver metabolism through peroxisome proliferator-activated receptor-γ (PPAR-γ), AMP-activated protein kinase (AMPK) and other pathways, promotes fat oxidation, modulate inflammation through mTOR pathway, and impact metabolic health. In the Gut-Brain axis, SCFAs influence brain function, behavior, and may have implications for neurological disorders, in which G-protein coupled receptors (GPCRs) play an essential role, along with other pathways such as hypothalamic-pituitary-adrenal (HPA) pathway. Understanding the mechanisms by which SCFAs mediate communication between the gut, liver, and brain is crucial for elucidating the complex interplay of the Gut-Liver-Brain Axis. This review aims to provide insight into the role of gut microbiota-derived SCFAs as mediators of the Gut-Liver-Brain Axis and their potential therapeutic implications. Further research in this area will be instrumental in developing novel strategies to target the Gut-Liver-Brain Axis for the prevention and treatment of various health conditions.
Collapse
Affiliation(s)
- Cunyin Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
- Department of Obstetrics and Gynecology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266000, China
| | - Jingtong Yao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Chang Yang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Shengnan Yu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
- Affiliated Hospital of Inner Mongolia University for Nationalities, TongLiao, 028005, China
| | - Zizhen Yang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Lijing Wang
- Department of Obstetrics and Gynecology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266000, China.
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, 266000, China.
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
- Department of Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
23
|
Molan K, Ambrožič Avguštin J, Likar M, Pongrac Barlovic D, Žgur Bertok D, Starčič Erjavec M. Fecal Short-Chain Fatty Acids Are Associated with Obesity in Gestational Diabetes. Biomedicines 2025; 13:387. [PMID: 40002799 PMCID: PMC11853429 DOI: 10.3390/biomedicines13020387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Short-chain fatty acids (SCFAs), which are produced by the microbial fermentation of undigested carbohydrates, play an important role in the metabolism and physiology of the host. SCFAs are involved in the regulation of maternal metabolism during pregnancy and influence weight gain, glucose metabolism, and metabolic hormones. Methods: In 2017, women who were treated for gestational diabetes mellitus (GDM) at the University Medical Centre Ljubljana were invited to participate in a longitudinal study. A total of 45 women were included in this study and comprehensively phenotyped. During the second and third trimester of pregnancy, the women with GDM provided fecal samples for SCFA analysis. The samples were analyzed by high-performance liquid chromatography for the simultaneous determination of acetate, propionate, and butyrate. Results: SCFA concentrations in feces differed between overweight/obese and normal-weight women with GDM. Acetate and propionate concentrations were significantly higher in pregnant women who were overweight or obese before pregnancy compared to normal-weight women but butyrate concentrations were not. Butyrate was elevated in the third trimester in the group with excessive gestational weight gain. Conclusions: The relationship between SCFAs and obesity is complex, and the association between SCFAs and GDM remains to be clarified. Regardless of the conflicting publications on the role of SCFAs, our study showed that higher acetate and propionate levels were associated with the weight categories of overweight or obesity before pregnancy and higher butyrate levels were associated with excessive gestational weight gain.
Collapse
Affiliation(s)
- Katja Molan
- Faculty of Health Sciences, University of Novo mesto, 8000 Novo mesto, Slovenia;
| | - Jerneja Ambrožič Avguštin
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.A.A.); (M.L.); (D.Ž.B.)
| | - Matevž Likar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.A.A.); (M.L.); (D.Ž.B.)
| | - Drazenka Pongrac Barlovic
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre, 1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Darja Žgur Bertok
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.A.A.); (M.L.); (D.Ž.B.)
| | - Marjanca Starčič Erjavec
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
24
|
Zhou M, Luo Y, Qiu J, Wang H, Li X, Zhang K, Li X, Yaqoob MU, Wang M. Effects of dietary supplementation with butyrate glycerides on lipid metabolism, intestinal morphology, and microbiota population in laying hens. Poult Sci 2025; 104:104755. [PMID: 39862486 PMCID: PMC11803851 DOI: 10.1016/j.psj.2024.104755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
The present study investigated the impact of butyrate glycerides (BG) on lipid metabolism, intestinal morphology, and microbiota of laying hens. Four hundred eighty 54-week-old Hy-line Brown laying hens were randomly selected and divided into five groups. The control group (ND) was fed a basal diet. Meanwhile, the remaining groups were given a basal supplemented with 0.5, 1, 2, and 4 g/kg of the product containing BG and were designated as BG-0.5, BG-1, BG-2, and BG-4 groups, respectively. The findings showed that: (1) BG supplementation significantly decreased (P < 0.001) the blood Glu levels (BG-0.5, BG-1, BG-2, and BG-4) and increased (P < 0.001) the serum HDL-C levels (BG-2, and BG-4). (2) The BG-2 and BG-4 groups showed an increase (P < 0.01) in abdominal lipid HSL activity. (3) The levels of hepatic TC and TG in all BG groups were significantly decreased (P < 0.05). (4) The addition of BG resulted in a significant reduction in the mRNA expression of the liver X receptor alpha (LXRα) (P < 0.05). (5) All BG groups presented a substantial reduction in duodenal crypt depth and a notable increase in the ratio of villus height to crypt depth (V/C) (P < 0.01). Additionally, all BG groups exhibited a significant increase in villus height in the ileum (P < 0.001). (6) Both the BG-1 and BG-4 groups exhibited a significant reduction in the amounts of n-butyric and n-glutaric acids in the cecum contents (P < 0.05). (7) The inclusion of BG did not substantially impact the diversity of cecal microbiota in laying hens. However, it dramatically boosted the proportion of the beneficial bacterium Alistipes (P < 0.05) and reduced the abundance of the harmful bacterium Verrucomicrobiota (P < 0.05). Overall, incorporating BG with glycerol monobutyrate as the diet's primary active component reduces fat accumulation in laying hens' blood and liver. It potentially regulates lipid metabolism via the PPARγ-LXRα-SREBP1c pathway. Additionally, BG has the potential to enhance the structure of the small intestine's mucous membrane and increase the presence of beneficial bacteria. Under the experimental conditions, late-laying hens supplemented with 4 g/kg BG performed best overall.
Collapse
Affiliation(s)
- Minyao Zhou
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Yanqiu Luo
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Ji Qiu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Haidong Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Li
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Kexin Zhang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoteng Li
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | | | - Minqi Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
25
|
Yi C, Huang S, Zhang W, Guo L, Xia T, Huang F, Yan Y, Li H, Yu B. Synergistic interactions between gut microbiota and short chain fatty acids: Pioneering therapeutic frontiers in chronic disease management. Microb Pathog 2025; 199:107231. [PMID: 39681288 DOI: 10.1016/j.micpath.2024.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
Microorganisms in the gut play a pivotal role in human health, influencing various pathophysiological processes. Certain microorganisms are particularly essential for maintaining intestinal homeostasis, reducing inflammation, supporting nervous system function, and regulating metabolic processes. Short-chain fatty acids (SCFAs) are a subset of fatty acids produced by the gut microbiota (GM) during the fermentation of indigestible polysaccharides. The interaction between GM and SCFAs is inherently bidirectional: the GM not only shapes SCFAs composition and metabolism but SCFAs also modulate microbiota's diversity, stability, growth, proliferation, and metabolism. Recent research has shown that GM and SCFAs communicate through various pathways, mainly involving mechanisms related to inflammation and immune responses, intestinal barrier function, the gut-brain axis, and metabolic regulation. An imbalance in GM and SCFA homeostasis can lead to the development of several chronic diseases, including inflammatory bowel disease, colorectal cancer, systemic lupus erythematosus, Alzheimer's disease, and type 2 diabetes mellitus. This review explores the synergistic interactions between GM and SCFAs, and how these interactions directly or indirectly influence the onset and progression of various diseases through the regulation of the mechanisms mentioned above.
Collapse
Affiliation(s)
- Chunmei Yi
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shanshan Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenlan Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tong Xia
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Fayin Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yijing Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Huhu Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Bin Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
26
|
Zhao C, Pan J, Wang Y, Zhao J, Huang J. Differential Analysis of Fecal SCFAs and Their Contribution to Adipogenesis in UCP1 Knock-In Pigs. Vet Sci 2025; 12:102. [PMID: 40005862 PMCID: PMC11860427 DOI: 10.3390/vetsci12020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
This study aimed to investigate the changes in fecal short-chain fatty acids (SCFAs) content in UCP1 knock-in pigs (KI pigs) and their effect on adipogenesis. Fecal samples from five 6-month-old wild-type (WT) and KI pigs were collected for targeted metabolomics and 16s rRNA sequencing analyses to identify differences in SCFAs and gut microbiota that may contribute to regulating fat deposition in pigs. The metabolome of pig fecal samples targeted for an analysis of SCFAs identified seven SCFAs, with caproic acid (except isovaleric acid) being the significantly different one. The results of the fecal 16s rRNA analysis demonstrated a notable reduction in the abundance of Streptococcus spp. in the KI pigs in comparison to the WT pigs, with a statistically significant difference. Correlation analyses demonstrated a statistically significant positive correlation between the abundance of Streptococcus spp. and SCFAs, as well as pig body weight and fatness. It was postulated that the reduction in SCFAs in the intestinal tracts of KI pigs may be associated with a reduction in Streptococcus spp. abundance. Compared to WT pigs, the concentration of fecal SCFAs in KI pigs was significantly reduced, which may be related to the decreased abundance of Streptococcus. The in vitro experiments showed that caproic acid could significantly enhance the differentiation efficiency of porcine SVF cells into mature adipocytes by activating the FFAR4 gene.
Collapse
Affiliation(s)
- Chengyu Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China;
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.P.); (Y.W.)
| | - Jianfei Pan
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.P.); (Y.W.)
| | - Yanfang Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.P.); (Y.W.)
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Jiaojiao Huang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China;
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
27
|
Peng F, Yu Z, Du B, Niu K, Yu X, Wang S, Yang Y. Non-starch polysaccharides from Castanea mollissima Bl. ameliorate metabolic syndrome by remodeling barrier function, microbial community, and metabolites in high-fat-diet/streptozotocin-induced diabetic mice. Food Res Int 2025; 202:115638. [PMID: 39967138 DOI: 10.1016/j.foodres.2024.115638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/21/2024] [Accepted: 12/28/2024] [Indexed: 02/20/2025]
Abstract
Non-starch polysaccharides have been demonstrated to have significant benefits in treating some chronic metabolic diseases such as hyperglycemia. However, the preventive effect of non-starch polysaccharides from Castanea mollissima Bl. (CMNSP) on type 2 diabetes mellitus (T2DM) remain underexplored. The objective of this study was to investigate the effect of CMNSP on glucose and lipid metabolism, intestinal barrier, gut microbiota and their metabolites in high fat diet/streptozotocin-induced T2DM mice. The results revealed that CMNSP significantly mitigated hyperglycemia, insulin resistance, hyperlipidemia, and prevented pancreatic atrophy, hepatic steatosis and enhanced the expression at mRNA level and corresponding protein of PI3K/AKT/Glut2 signaling pathway in liver. Moreover, CMNSP enhanced the level of SCFAs and restored intestinal barrier damage and gut microbiota disturbance in diabetic mice. Further fecal metabolomics analysis identified that CMNSP primarily influenced the metabolic pathways such as Primary bile acid biosynthesis and Taurine and hypotaurine metabolism, and were significantly correlated with changes in dominant bacterial genera including Bacteroides and Lactobacillus.
Collapse
Affiliation(s)
- Fei Peng
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000 China; Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao 066000 China
| | - Zuoqing Yu
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000 China
| | - Bin Du
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000 China; Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao 066000 China
| | - Kui Niu
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000 China; Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao 066000 China
| | - Xi Yu
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000 China
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457 China.
| | - Yuedong Yang
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000 China; Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao 066000 China.
| |
Collapse
|
28
|
Saeed H, Díaz LA, Gil-Gómez A, Burton J, Bajaj JS, Romero-Gomez M, Arrese M, Arab JP, Khan MQ. Microbiome-centered therapies for the management of metabolic dysfunction-associated steatotic liver disease. Clin Mol Hepatol 2025; 31:S94-S111. [PMID: 39604327 PMCID: PMC11925441 DOI: 10.3350/cmh.2024.0811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a significant global health issue, affecting over 30% of the population worldwide due to the rising prevalence of metabolic risk factors such as obesity and type 2 diabetes mellitus. This spectrum of liver disease ranges from isolated steatosis to more severe forms such as steatohepatitis, fibrosis, and cirrhosis. Recent studies highlight the role of gut microbiota in MASLD pathogenesis, showing that dysbiosis significantly impacts metabolic health and the progression of liver disease. This review critically evaluates current microbiome-centered therapies in MASLD management, including prebiotics, probiotics, synbiotics, fecal microbiota transplantation, and emerging therapies such as engineered bacteria and bacteriophage therapy. We explore the scientific rationale, clinical evidence, and potential mechanisms by which these interventions influence MASLD. The gut-liver axis is crucial in MASLD, with notable changes in microbiome composition linked to disease progression. For instance, specific microbial profiles and reduced alpha diversity are associated with MASLD severity. Therapeutic strategies targeting the microbiome could modulate disease progression by improving gut permeability, reducing endotoxin-producing bacteria, and altering bile acid metabolism. Although promising, these therapies require further research to fully understand their mechanisms and optimize their efficacy. This review integrates findings from clinical trials and experimental studies, providing a comprehensive overview of microbiome-centered therapies' potential in managing MASLD. Future research should focus on personalized strategies, utilizing microbiome features, blood metabolites, and customized dietary interventions to enhance the effectiveness of these therapies.
Collapse
Affiliation(s)
- Huma Saeed
- Division of Infectious Diseases, Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Luis Antonio Díaz
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California San Diego, San Diego, CA, USA
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonio Gil-Gómez
- SeLiver Group, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Jeremy Burton
- Department of Microbiology & Immunology, Western University, London, ON, Canada
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Manuel Romero-Gomez
- SeLiver Group, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- UCM Digestive diseases, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Mohammad Qasim Khan
- Division of Gastroenterology, Department of Medicine, University of Western Ontario, London, ON, Canada
- Department of Epidemiology and Biostatistics, University of Western Ontario, London, ON, Canada
| |
Collapse
|
29
|
Wu T, Cheng H, Zhuang J, Liu X, Ouyang Z, Qian R. Risk factors for inflammatory bowel disease: an umbrella review. Front Cell Infect Microbiol 2025; 14:1410506. [PMID: 39926114 PMCID: PMC11802543 DOI: 10.3389/fcimb.2024.1410506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/21/2024] [Indexed: 02/11/2025] Open
Abstract
Introduction Inflammatory bowel disease (IBD) represents a cluster of chronic idiopathic inflammatory disorders situated at the nexus of intricate interplays. The primary aim of the present investigation is to perform an umbrella review of metaanalyses, systematically offering a comprehensive overview of the evidence concerning risk factors for IBD. Methods To achieve this, we searched reputable databases, including PubMed, Embase, Web of Science, and the Cochrane Database of Systematic Reviews, from inception through April 2023. Two authors independently assessed the methodological quality of each metaanalysis using the AMSTAR tool and adhered to evidence classification criteria. Results In total, we extracted 191 unique risk factors in meta-analyses, including 92 significantly associated risk factors. The top ten risk factors were human cytomegalovirus (HCMV) infection, IBD family history, periodontal disease, poliomyelitis, campylobacter species infection, hidradenitis suppurativa, psoriasis, use of proton pump inhibitors, chronic obstructive pulmonary disease, and western dietary pattern. Discussion In conclusion, this umbrella review extracted 62 risk factors and 30 protective factors, most of which were related to underlying diseases, personal lifestyle and environmental factors. The findings in this paper help to develop better prevention and treatment measures to reduce the incidence of IBD, delay its progression, and reduce the burden of IBD-related disease worldwide. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023417175.
Collapse
Affiliation(s)
- Tingping Wu
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Honghui Cheng
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jiamei Zhuang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xianhua Liu
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Zichen Ouyang
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Rui Qian
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
30
|
Ismail HM, Perera D, Mandal R, DiMeglio LA, Evans-Molina C, Hannon T, Petrosino J, Javornik Cregeen S, Schmidt NW. Gut Microbial Changes Associated With Obesity in Youth With Type 1 Diabetes. J Clin Endocrinol Metab 2025; 110:364-373. [PMID: 39078977 PMCID: PMC11747672 DOI: 10.1210/clinem/dgae529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
CONTEXT Obesity is prevalent in type 1 diabetes (T1D) and is problematic with higher risk for diabetes complications. It is unknown to what extent gut microbiome changes are associated with obesity and T1D. OBJECTIVE This work aimed to describe the gut microbiome and microbial metabolite changes associated with obesity in T1D. We hypothesized statistically significant gut microbial and metabolite differences in lean T1D youth (body mass index [BMI]: 5%-<85%) vs those with obesity (BMI: ≥95%). METHODS We analyzed stool samples for gut microbial (using metagenomic shotgun sequencing) and short-chain fatty acid (SCFA) differences in lean (n = 27) and obese (n = 21) T1D youth in a pilot study. The mean ± SD age was 15.3 ± 2.2 years, glycated hemoglobin A1c 7.8 ± 1.3%, diabetes duration 5.1 ± 4.4 years, 42.0% female, and 94.0% were White. RESULTS Bacterial community composition showed between sample diversity differences (β-diversity) by BMI group (P = .013). There was a higher ratio of Prevotella to Bacteroides in the obese group (P = .0058). There was a differential distribution of significantly abundant taxa in either the lean or obese groups, including increased relative abundance of Prevotella copri, among other taxa in the obese group. Functional profiling showed an upregulation of branched-chain amino acid (BCAA) biosynthesis in the obese group and upregulation of BCAA degradation, tyrosine metabolism, and secondary bile acid biosynthesis in the lean group. Stool SCFAs were higher in the obese vs the lean group (P < .05 for all). CONCLUSION Our findings identify a gut microbiome and microbial metabolite signature associated with obesity in T1D. These findings could help identify gut microbiome-targeted therapies to manage obesity in T1D.
Collapse
Affiliation(s)
- Heba M Ismail
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dimuthu Perera
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rabindra Mandal
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Linda A DiMeglio
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Tamara Hannon
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Joseph Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sara Javornik Cregeen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nathan W Schmidt
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
31
|
Yang X, Zhao Q, Wang X, Zhang Y, Ma J, Liu Y, Wang H. Investigation of Clostridium butyricum on atopic dermatitis based on gut microbiota and TLR4/MyD88/ NF-κB signaling pathway. Technol Health Care 2025:9287329241301680. [PMID: 39973880 DOI: 10.1177/09287329241301680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND Probiotics, as common regulators of the gut microbiota, have been used in research to alleviate clinical symptoms of atopic dermatitis (AD). OBJECTIVE Our research team has previously identified a potential relieving effect of Clostridium butyricum on the treatment of AD, but the specific mechanism of how Clostridium butyricum alleviates AD has not yet been confirmed. METHODS In this study, we explored the relieving effect of Clostridium butyricum on AD through in vivo and in vitro experiments. AD mice induced by 2,4-dinitrofluorobenzene (DNFB) were orally administered with 1 × 108 CFU of Clostridium butyricum for three consecutive weeks. RESULTS Oral administration of Clostridium butyricum reduced ear swelling, alleviated back skin lesions, decreased mast cell and inflammatory cell infiltration, and regulated the levels of inflammation-related cytokines. Clostridium butyricum activated the intestinal immune system through the TLR4/MyD88/NF-κB signaling pathway, suppressed the expression of inflammatory factors IL-10 and IL-13, and protected the damaged intestinal mucosa. CONCLUSION Clostridium butyricum administration improved the diversity and abundance of the gut microbiota, enhanced the functionality of the immune system, and protected the epidermal barrier.
Collapse
Affiliation(s)
- Xiaojing Yang
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin, China
| | - Qian Zhao
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin, China
| | - Xing Wang
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin, China
| | - Yiming Zhang
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin, China
| | - Jingyue Ma
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin, China
| | - Yuanjun Liu
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin, China
| | - Huiping Wang
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin, China
| |
Collapse
|
32
|
Huang Y, Tang Y, Zhao X, Xu M, Chen M. Novel insights into the role of gut microbiota and its metabolites in diabetic chronic wounds. FASEB J 2025; 39:e70316. [PMID: 39785136 DOI: 10.1096/fj.202401478rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/14/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025]
Abstract
Wounds in patients with diabetes present significant physical and economic challenges due to impaired healing and prolonged inflammation, exacerbated by complex interactions between microbes. Especially, the development and healing of diabetic foot ulcers (DFUs) remain an urgent clinical problem. The human gut harbors a vast microbial ecosystem comprising intestinal flora and their metabolic products. Recent advancements in research have illuminated the concept of the "gut-skin axis," revealing intricate relationships between gut microbiota, microbiota-derived metabolites, and various skin diseases, including DFUs. This review aims to unravel the formation and healing process of DFUs in the context of the gut-skin axis. We reviewed the current research progress worldwide regarding to the gut-skin axis, compared and discussed significant changes in the microbiota colonizing the skin and gut in patients with DFUs. The roles of microbiota-derived metabolites such as lipopolysaccharides, short-chain fatty acids, and trimethylamine-N-oxide in the development of DFUs are highlighted. We also reviewed treatment strategies currently employed in clinical practice and identified potential therapeutic targets such as probiotics for treating DFUs. The need for more comprehensive experimental designs to elucidate the intricate relationship between gut microbiota and its metabolites in the context of DFUs are therefore highlighted.
Collapse
Affiliation(s)
- Yixuan Huang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Ying Tang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Xiaotong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Murong Xu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| |
Collapse
|
33
|
Zárate-Córdova VL, Sánchez-Tapia M, Torres N, Osorio-Díaz P. Effect of the Starchy Legume Source on the In Vitro Fermentation of the Fecal Microbiota from Normal-Weight and Obese Individuals. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:35. [PMID: 39804406 DOI: 10.1007/s11130-024-01273-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/30/2024] [Indexed: 03/29/2025]
Abstract
The relationship between the gut microbiota (GM) and the health of human beings has been a topic of growing interest in the last few years. Legumes are a rich source of indigestible carbohydrates, including resistant starch (RS), which are substrates of the GM. The aim of this study was to evaluate the effect of the indigestible fraction of legumes on the fecal microbiota of normal-weight (NW) and obese (O) donors. Accordingly, a preclinical in vitro fermentation model was developed (Goñi and Martín-Carrón, Nutr Res 18:1077-1089, 1998). Short-chain fatty acid (SCFAs) production was measured via gas chromatography. In addition, the fecal microbiota was characterized via 16 S rRNA sequence analysis. The results revealed that the ratio of the relative abundance of Firmicutes to Bacteroidetes was lower in O individuals than in NW individuals. Bacteroides was the predominant genus in the fecal inoculum of the O group. Total SCFAs production was significantly greater in the chickpea (C) group than in the lentil (L) and white bean (WB) groups among the samples from the NW group. In contrast, WB presented the highest production of SCFAs in the samples from the O group. These results suggest that fermentation products (SCFAs) are determined by the components of the legumes, including RS, and the type of microbiota donor (NW or O individuals).
Collapse
Affiliation(s)
- Vareska L Zárate-Córdova
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Col. San Isidro, Km 8.5 Carr. Yautepec-Jojutla, Yautepec, Morelos, C.P. 62731, México
| | - Mónica Sánchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc 16, Tlalpan, CDMX, 14080, México
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc 16, Tlalpan, CDMX, 14080, México
| | - Perla Osorio-Díaz
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Col. San Isidro, Km 8.5 Carr. Yautepec-Jojutla, Yautepec, Morelos, C.P. 62731, México.
| |
Collapse
|
34
|
Cai Y, Tang H, Xiang G, Yi H, Zhong J, Xie Z, Hu Q, El Bouhi R, Zhou P, Zhang Y, Yan H. Deciphering of differences in gut microbiota and plasma metabolites profile between non-obese and obese Golden Retrievers dogs. Front Microbiol 2025; 15:1514633. [PMID: 39845032 PMCID: PMC11751222 DOI: 10.3389/fmicb.2024.1514633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Golden Retrievers have a high risk of obesity, which is prevalent in dogs and is associated with inflammation and cancer, impairing the health and life expectancy of companion animals. Microbial and metabolite biomarkers have been proposed for identifying the presence of obesity in humans and rodents. However, the effects of obesity on the microbiome and metabolome of Golden Retrievers remains unknown. Therefore, this study was designed to evaluate the signatures of serum biochemistry indexes, gut microbiota and plasma metabolites in non-obese and obese Golden Retrievers, aiming to recognize potential biomarkers of canine obesity. Methods A total of 8 non-obese (Ctrl group) and 8 obese (Obe group) Golden Retrievers were included in the present study to collect blood and feces samples for measurements. The fecal microbiome and plasma metabolome were determined using 16S rRNA amplicon sequencing and liquid chromatography-mass spectrometry, respectively. Results Results showed that the alanine aminotransferase activity and total bilirubin concentration, which have been measured using serum biochemistry analysis, were higher in the Obe group than in the Ctrl group (p < 0.05). Moreover, there was a significant difference in gut microbiota composition between the two groups (p < 0.05). The phyla Proteobacteria, Fusobacteriota, and Bacteroidota as well as genera Fusobacterium, Prevotella, Faecalibacterium, Escherichia-Shigell, and Alloprevotella were more abundant, while phylum Firmicutes and genera Peptoclostridium, Blautia, Turicibacter, Allobaculum, and Erysipelatoclostridium were less abundant in the Obe group compared to the Ctrl group (p < 0.05). Plasma concentrations of citrulline and 11-dehydrocorticosterone were significantly higher in the Obe group than those in the Ctrl group (p < 0.05). Close correlations between serum biochemistry parameters, gut microbiome, and plasma metabolites were observed in the current study. Conclusion The obesity-induced shifts in serum biochemistry indexes, gut microbiota, and plasma metabolites profiles suggest that obese Golden Retrievers exhibit a different microbiome and metabolome than non-obese ones, and the certain metabolites like citrulline and 11-dehydrocorticosterone could be considered as potential biomarkers to recognize obese Golden Retrievers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Honglin Yan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
35
|
Termite F, Archilei S, D’Ambrosio F, Petrucci L, Viceconti N, Iaccarino R, Liguori A, Gasbarrini A, Miele L. Gut Microbiota at the Crossroad of Hepatic Oxidative Stress and MASLD. Antioxidants (Basel) 2025; 14:56. [PMID: 39857390 PMCID: PMC11759774 DOI: 10.3390/antiox14010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver condition marked by excessive lipid accumulation in hepatic tissue. This disorder can lead to a range of pathological outcomes, including metabolic dysfunction-associated steatohepatitis (MASH) and cirrhosis. Despite extensive research, the molecular mechanisms driving MASLD initiation and progression remain incompletely understood. Oxidative stress and lipid peroxidation are pivotal in the "multiple parallel hit model", contributing to hepatic cell death and tissue damage. Gut microbiota plays a substantial role in modulating hepatic oxidative stress through multiple pathways: impairing the intestinal barrier, which results in bacterial translocation and chronic hepatic inflammation; modifying bile acid structure, which impacts signaling cascades involved in lipidic metabolism; influencing hepatocytes' ferroptosis, a form of programmed cell death; regulating trimethylamine N-oxide (TMAO) metabolism; and activating platelet function, both recently identified as pathogenetic factors in MASH progression. Moreover, various exogenous factors impact gut microbiota and its involvement in MASLD-related oxidative stress, such as air pollution, physical activity, cigarette smoke, alcohol, and dietary patterns. This manuscript aims to provide a state-of-the-art overview focused on the intricate interplay between gut microbiota, lipid peroxidation, and MASLD pathogenesis, offering insights into potential strategies to prevent disease progression and its associated complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Luca Miele
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy (S.A.)
| |
Collapse
|
36
|
Zhang Z, Yue R, Wang Y, Ma L, Wang M, Chen Y. To explore the mechanism of gypenosides in the treatment of liver injury in rats based on GC-MS metabolomics and bile acid metabolism pathway. J Pharm Biomed Anal 2025; 252:116506. [PMID: 39418697 DOI: 10.1016/j.jpba.2024.116506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/16/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
Gynostemma pentaphyllum is a herbaceous vine of Cucurbitaceae family, and its principal pharmacological components, gypenosides (GPs), have been proved to be effective in various liver diseases. However, the mechanisms of GPs on liver injury are still to be studied for further. This investigation utilized the CCl4-induced liver injury rat model (LI) to comprehensively explore the mechanism of action of GPs in the treatment of chemical liver injury by comparing the metabolomic changes in four groups rats. In this study, the therapeutic efficacy of GPs in a liver injury rat model induced by weekly gavage of CCl4 was evaluated by inflammatory factors, oxidative damage indexes, and histopathological sections. Then, GC-MS technology was used to identify the metabolic profile of GPs in treating liver injury. Finally, the content variation of metabolites (BAs and SCFAs) was measured to elucidate the mechanism of GPs in the treatment of CCl4-induced liver injury. After 8 weeks of administration, GPs effectively reduced the degree of LI and appeared a substantial tendency of reversing in the levels of MDA, GSH, CYP7E1, CYP7A1 and CYP27A1. Untargeted metabolomics suggested that GPs may play a role in BAs and SCFAs metabolism. Targeted metabolomics and ELISA confirmed the key role of GPs in increasing SCFAs levels and regulating BAs metabolism. Overall, this study indicated that GPs can alleviate CCl4-induced liver injury. And GPs may exert beneficial effects on LI by affecting their metabolites (SCFAs and BAs).
Collapse
Affiliation(s)
- Zhiru Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Rong Yue
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Yibo Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Lizhou Ma
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.
| | - Yu Chen
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
37
|
Zhu T, Kuai Y, Guo X, Bu G, Yang C, Chen F. Effect of Dietary Oils with Different Fatty Acid Compositions on Serum Lipid and Gut Microbiota of Rats. Foods 2024; 14:61. [PMID: 39796351 PMCID: PMC11720656 DOI: 10.3390/foods14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
The effects of three dietary oils (rapeseed oil, camellia oil, linseed oil) with different fatty acid compositions on the growth performance, digestion and gut microbiota of SD rats after 8 weeks of feeding were studied. The serum metabolic index and liver histomorphology of rats were measured using an automatic biochemical analyzer and light microscope. Furthermore, 16S rDNA amplicon sequencing technology was used to analyze the gut microbiota. It was found that these differences in fatty acid composition had no significant effect on body fat and liver tissue. However, after digestion, the rapeseed oil group showed lowest triglyceride content (1.22 ± 0.15) and a lower LDL/HDL ratio (0.41 ± 0.02). For gut microbiota distribution, the linseed oil group showed a higher Firmicutes/Bacteroides ratio (6.11 ± 0.54) and a high proportion of Lactobacillus. These data indicate that both the unsaturated fatty acid content and n-3 unsaturated fatty acids collectively had an effect on digestion metabolism, and the influence order may be n-3 unsaturated fatty acids > unsaturated fatty acid content.
Collapse
Affiliation(s)
| | | | | | | | | | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (T.Z.); (Y.K.); (X.G.); (G.B.); (C.Y.)
| |
Collapse
|
38
|
Uriot O, Defois-Fraysse C, Couturier I, Deschamps C, Durif C, Chaudemanche C, Dreux-Zigha A, Blanquet-Diot S. Effects of prebiotics from diverse sources on dysbiotic gut microbiota associated to western diet: Insights from the human Mucosal ARtificial COLon (M-ARCOL). Curr Res Food Sci 2024; 10:100968. [PMID: 39834797 PMCID: PMC11743849 DOI: 10.1016/j.crfs.2024.100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025] Open
Abstract
Associated to various illnesses, Western Diet (WD) is acknowledged to have deleterious effects on human gut microbiota, decreasing bacterial diversity, lowering gut bacteria associated to health (such as Akkermansia muciniphila), while increasing those linked to diseases (e.g., Proteobacteria). In this study, we evaluated the potential of two new prebiotics to counteract the negative effect of WD on gut microbiota, namely raffinose family oligosaccharides (RFO) from chickpeas and laminarin (LAM) from algae, when compared to the well-known inulin (INU). The effects of prebiotics on gut microbiota composition and metabolic activities were investigated in the Mucosal-Artificial Colon, set-up to reproduce WD condition, as compared to healthy control (n = 3). None of the prebiotics was able to efficiently offset the shift in microbiota induced by WD. Nevertheless, when compared to non-supplemented WD, all prebiotics showed significant impacts on microbiota composition, that were both prebiotic and donor-dependant. RFO was the only prebiotic to enhance α-diversity, while it led to an increase in Blautia and Butyricicoccaceae, associated with higher amounts of gas and butyrate. LAM and INU did not strongly impact microbial metabolic activities but were associated with a rise in Prevotella_9/Agathobacter and Faecalibacterium, respectively. To conclude, this study showed that all tested prebiotics had different impacts on human gut microbiota structure and activities, which was further donor-dependent. M-ARCOL appears as a suitable in vitro tool to better understand the mechanisms of action of prebiotic compounds in relation to gut microbes and define responders and non-responders to prebiotic supplementation, opening the possibility of customized nutritional strategies.
Collapse
Affiliation(s)
- Ophélie Uriot
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne – INRAE, Clermont-Ferrand, France
| | | | - Ingrid Couturier
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne – INRAE, Clermont-Ferrand, France
| | - Charlotte Deschamps
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne – INRAE, Clermont-Ferrand, France
| | - Claude Durif
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne – INRAE, Clermont-Ferrand, France
| | | | | | - Stéphanie Blanquet-Diot
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne – INRAE, Clermont-Ferrand, France
| |
Collapse
|
39
|
Xia X, He X, Huang J, Hou X, Lin C, Liu Y, Liu M. Emodin induced hepatic steatosis in BALb/c mice by modulating the gut microbiota composition and fatty acid metabolism. Front Pharmacol 2024; 15:1516272. [PMID: 39776579 PMCID: PMC11703826 DOI: 10.3389/fphar.2024.1516272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction The aim of this study is to examine the physiological effects of emodin on intestinal microorganisms and the liver in the BALb/c mice. Method and Results Following an 8-week administration of emodin at doses of 25, 50, and 100 mg/kg/day,pathological analyses revealed that emodin significantly reduced the colon length, induced colonic crypt inflammation,diminished the colonic mucus layer,and decreased the fluorescence intensity of colonic tight junction proteins ZO-1 and Occludin. Concurrently, 16S rDNA gene sequencing corroborated that emodin altered the diversity and composition of the intestinal microbiota by increasing the Firmicutes to Bacteroides ratio. Simultaneously, the non-targeted metabolomics analyses exhibited significant alternations in both short chain fatty acids and free fatty acids between the emodin-treated and the normal groups, indicating emodin-induced disturbance in intestinal metabolic disorder. Furthermore, emodin exhibited a significant elevation in LPS levels in colon, serum and liver as well an marked increase in the levels of TC, TG, AST, and ALT in serum. Additionally, histological examination employing by HE and oil-red O staining furtherly verified that the administration of varying doses emodin induced hepatic inflammation and lipid accumulation. Whereas qRT-PCR and Western blot analyses demonstrated that the administering of varying doses of emodin upregulated the mRNA levels of TNF-α, IL-1β, IL-6, and IL-18 as well as the expression of TLR4, Myd88, and P-65. Following the combined administration of probiotics, the high-dose emodin did not significantly influence ALT and AST levels in mice. However, the faeces of the high-dose emodin transplanted in mice and induced a significant increase in AST levels and in the relative abundance of Firmicutes and Proteobacteria. Discussion These findings further corroborate that emodin induces liver injury via the intestinal dysfunction. These findings suggested that emodin may disrupt intestinal microbiota and resulted in significant alternations in endogenous metabolites in mice, thereby facilitating the entry of LPS and FFAs into the liver, potentially leading to hepatic injury.
Collapse
Affiliation(s)
- Xinhua Xia
- TCM Department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Institute of Integrated Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xueling He
- Guangdong Provincial Key Laboratory of Research and Development in TCM, Guangdong Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Jinzhou Huang
- TCM Department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Institute of Integrated Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuyang Hou
- TCM Department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Institute of Integrated Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chen Lin
- TCM Department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Institute of Integrated Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yaxiong Liu
- The Key Laboratory of Rapid Testing, State Food and Drug Administration, Guangdong Institute for Drug Control, Guangzhou, Guangdong, China
| | - Mei Liu
- School of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| |
Collapse
|
40
|
Pinanga YD, Pyo KH, Shin EA, Lee H, Lee EH, Kim W, Kim S, Kim JE, Kim S, Lee JW. Association between hepatocyte TM4SF5 expression and gut microbiome dysbiosis during non-alcoholic fatty liver disease development. Life Sci 2024; 358:123164. [PMID: 39454995 DOI: 10.1016/j.lfs.2024.123164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/24/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Gut microbiome dysbiosis is involved in non-alcoholic fatty liver disease (NAFLD) development. Hepatic transmembrane 4 L six family member 5 (TM4SF5) overexpression promotes NAFLD. However, how gut microbiota are associated with TM4SF5-mediated NAFLD remains unexplored. We analyzed the gut microbiome using feces from hepatocyte-specific TM4SF5-overexpressing transgenic (Alb-TGTm4sf5-Flag, TG) or Tm4sf5-/- knock-out (KO) mice fed a normal chow diet (NCD), high-fat diet (HFD) for 2 weeks (HFD2W), or methionine-choline-deficient diet (MCD) for 4 weeks to investigate associations among Tm4sf5 expression, diet, and the gut microbiome. TG-NCD mice showed a higher Firmicutes-to-Bacteroidetes (F/B) ratio, with less enrichment of Akkermansia muciniphila and Lactobacillus reuteri. NASH-related microbiomes in feces were more abundant in TG-HFD2w mice than in KO-HFD2w mice. Further, TG-MCD showed a higher F/B ratio than TG-NCD or KO mice, with decreases or increases in microbiomes beneficial or detrimental to the liver, respectively. Such effects in TG-MCD animals were correlated with functional pathways producing short-chain fatty acids (SCFAs). Furthermore, potential functional pathways of the gut microbiome were metabolically parallel to NAFLD features in TG-MCD mice. These results suggest that hepatocyte Tm4sf5 supports gut microbiome dysbiosis and metabolic activity, leading to SCFA production and hepatic inflammation during NAFLD development.
Collapse
Affiliation(s)
- Yangie Dwi Pinanga
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung-Hee Pyo
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Ae Shin
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Haesong Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Hae Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Wonsik Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Soyeon Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Eon Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Semi Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejon 34141, Republic of Korea
| | - Jung Weon Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
41
|
Ban SY, Yun DY, Yum SJ, Jeong HG, Park JT. Development of Saccharomyces cerevisiae accumulating excessive amount of glycogen and its effects on gut microbiota in a mouse model. Int J Biol Macromol 2024; 283:137589. [PMID: 39557260 DOI: 10.1016/j.ijbiomac.2024.137589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
Saccharomyces cerevisiae accumulates glycogen, a hyperbranched glucose polymer with multiple bio-functionalities. In this study, mutants of S. cerevisiae that accumulate excessive amounts of glycogen were developed through UV mutagenesis. From over 30,000 mutants, the mutant strain CEY1, which exhibited the highest glycogen production, was selected using iodine vapor screening. The glycogen structures of wild type (WT) and CEY1 were analyzed and found to be relatively similar in molecular weight, hydrodynamic diameter, and side-chain distribution. The glycogen from CEY1 contained long branches (DP >12) 23.6 % greater than those in Escherichia coli TBP38. In addition, WT and CEY1 glycogen showed 32 %-34 % digestibility, which is significantly lower than E. coli glycogen. The glycogen content in dried CEY1 cells was increased to 21.7 % during laboratory-scale fed-batch fermentation. Glycogen with a homogeneous structure was accumulated to 17.5 % (w/w dried cell), and the total glucan content was increased by 33.2 % during large-scale fed-batch fermentation. In a mouse model, a diet containing 30 % CEY1 increased the production of butyrate and populations of beneficial bacteria, including Bacteroides and Parabacteroides. Therefore, glycogen from CEY1 exhibits a distinct structure from other polysaccharides, with notably slow and low digestibility, thereby indicating its potential application as a dietary supplement.
Collapse
Affiliation(s)
- So Young Ban
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea; CARBOEXPERT Inc., Daejeon 34134, Republic of Korea
| | - Da-Young Yun
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Su-Jin Yum
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hee-Gon Jeong
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Jong-Tae Park
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea; CARBOEXPERT Inc., Daejeon 34134, Republic of Korea.
| |
Collapse
|
42
|
Bellver J, Gonzalez-Monfort M, González S, Toson B, Labarta E, Castillón G, Mariani G, Vidal C, Giles J, Cruz F, Ballesteros A, Ferrando M, García-Velasco JA, Valbuena D, Vilella F, Parras-Molto M, Tercero-Atencia E, Simon C, Moreno I. An Analysis of the Digestive and Reproductive Tract Microbiota in Infertile Women with Obesity. Int J Mol Sci 2024; 25:12600. [PMID: 39684312 PMCID: PMC11641297 DOI: 10.3390/ijms252312600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Previous studies have linked the microbiome of distinct body habitats to obesity and infertility; however, the often-divergent results observed have left the role of the so-called "second genome" in obese infertile patients incompletely explored. Here, we present a prospective observational multicenter study of oral, gut, endometrial, and vaginal microbiota of infertile patients classified according to BMI. Patients collected saliva/fecal samples, while vaginal/endometrial fluid samples were collected in the clinic. Total bacterial DNA was extracted, and microbiota profiles were analyzed by 16S rRNA gene sequencing. Our results showed no differences in the Bacteroidetes/Firmicutes ratio (proposed obesity hallmark) in the gut microbiota between patients with obesity and normal weight; however, a tendency for higher levels of genera such as Escherichia-Shigella in normal-weight patients was observed; in comparison, patients with obesity possessed increased numbers of Parasutterella and Roseburia. In the reproductive tract, vaginal samples possessed a similar microbiota to endometrial fluid, both largely colonised by Lactobacillus, Gardnerella, and Streptococcus, supporting the hypothesis that uterine colonisation proceeds from vaginal bacteria ascension. Additionally, higher prevalence of a Streptococcus-dominated (>50%) endometrial microbiota was observed among patients with obesity. This first description of the human digestive and reproductive tract microbiota in infertile women with obesity may explain their poor reproductive outcomes.
Collapse
Affiliation(s)
- Jose Bellver
- IVIRMA Valencia, Pl. de la Policia Local, 3, 46015 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Av. de Blasco Ibáñez, 15, 46010 Valencia, Spain
- IVI Foundation, Health Research Institute La Fe, Av. Fernando Abril Martorell, 106-Torre A, 46026 Valencia, Spain
| | - Marta Gonzalez-Monfort
- Carlos Simon Foundation-INCLIVA Health Research Institute, Ronda Narcis Monturiol Estarriol, 11C, 46980 Paterna, Valencia, Spain
| | - Sandra González
- IVIRMA Bilbao, Landabarri Bidea, 3, 48940 Leioa, Biscay, Spain
| | - Bruno Toson
- Carlos Simon Foundation-INCLIVA Health Research Institute, Ronda Narcis Monturiol Estarriol, 11C, 46980 Paterna, Valencia, Spain
| | - Elena Labarta
- IVIRMA Valencia, Pl. de la Policia Local, 3, 46015 Valencia, Spain
| | - Gemma Castillón
- IVIRMA Barcelona, Carrer Mallorca, 45, 08029 Barcelona, Spain
| | - Giulia Mariani
- IVIRMA Valencia, Pl. de la Policia Local, 3, 46015 Valencia, Spain
| | - Carmina Vidal
- IVIRMA Valencia, Pl. de la Policia Local, 3, 46015 Valencia, Spain
| | - Juan Giles
- IVIRMA Valencia, Pl. de la Policia Local, 3, 46015 Valencia, Spain
| | - Fabio Cruz
- IVIRMA Valencia, Pl. de la Policia Local, 3, 46015 Valencia, Spain
| | | | - Marcos Ferrando
- IVIRMA Bilbao, Landabarri Bidea, 3, 48940 Leioa, Biscay, Spain
| | | | - Diana Valbuena
- Igenomix R&D, Ronda Narcis Monturiol Estarriol, 11B, 46980 Paterna, Valencia, Spain
| | - Felipe Vilella
- Carlos Simon Foundation-INCLIVA Health Research Institute, Ronda Narcis Monturiol Estarriol, 11C, 46980 Paterna, Valencia, Spain
| | - Marcos Parras-Molto
- Carlos Simon Foundation-INCLIVA Health Research Institute, Ronda Narcis Monturiol Estarriol, 11C, 46980 Paterna, Valencia, Spain
| | - Esther Tercero-Atencia
- Carlos Simon Foundation-INCLIVA Health Research Institute, Ronda Narcis Monturiol Estarriol, 11C, 46980 Paterna, Valencia, Spain
| | - Carlos Simon
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Av. de Blasco Ibáñez, 15, 46010 Valencia, Spain
- Carlos Simon Foundation-INCLIVA Health Research Institute, Ronda Narcis Monturiol Estarriol, 11C, 46980 Paterna, Valencia, Spain
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard University, 330 Brookline Ave, Boston, MA 02215, USA
| | - Inmaculada Moreno
- Carlos Simon Foundation-INCLIVA Health Research Institute, Ronda Narcis Monturiol Estarriol, 11C, 46980 Paterna, Valencia, Spain
| |
Collapse
|
43
|
da Silva TR, Marchesan LB, Rampelotto PH, Longo L, de Oliveira TF, Landberg R, de Mello V, Spritzer PM. Gut microbiota and gut-derived metabolites are altered and associated with dietary intake in women with polycystic ovary syndrome. J Ovarian Res 2024; 17:232. [PMID: 39578890 PMCID: PMC11583432 DOI: 10.1186/s13048-024-01550-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Disturbances in the gut microbiota may act as mechanisms influencing the interplay between dietary factors and metabolic disorders. Studies have demonstrated that these alterations are associated with the diagnosis of polycystic ovary syndrome (PCOS). Within this context, we aimed to investigate associations between gut microbiota, gut-derived metabolites (short-chain fatty acids [SCFAs] and indole-3-propionic acid [IPA]), and dietary intake in women with PCOS. METHODS We conducted a cross-sectional study of 24 women with PCOS, previously recruited for two studies at our research center, compared with 14 age-matched healthy controls. The mean (SD) age of all 38 participants was 33.3 (7.5) years, and the mean (SD) body mass index was 29.5 (4.8) kg/m2. Primary outcomes included gut microbiota analysis by sequencing the V4 region of the 16 S rRNA gene, serum IPA levels measured by liquid chromatography/triple-quadrupole mass spectrometry (LC-QqQ-MS), and fecal and plasma SCFA levels measured by LC-MS/MS. RESULTS Gut microbiota diversity, composition, and metabolic pathways differed between the PCOS and control groups. A higher abundance of two operational taxonomic units specializing in complex carbohydrate metabolism was observed in healthy control women. The PCOS group exhibited a less favorable dietary intake than the control group, and a significant correlation was observed between gut microbiota composition and dietary glycemic load in PCOS (r = 0.314, P = 0.03 in Mantel test). Multivariable-adjusted linear regression models indicated that lower levels of IPA and higher circulating levels of two SCFAs (acetic acid and propionic acid) were independently associated with the diagnosis of PCOS. CONCLUSIONS Our data support the differentiation between women with PCOS and healthy controls based on gut microbiota analysis. Furthermore, changes in gut bacteria and their metabolites could be, at least in part, the biological mechanism by which a low glycemic load diet may potentially improve PCOS-related reproductive and cardiometabolic outcomes.
Collapse
Affiliation(s)
- Thaís Rasia da Silva
- Postgraduate Program in Endocrinology and Metabolism, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 90035-003, Brazil
- Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, 90035-003, Brazil
| | - Lucas Bandeira Marchesan
- Postgraduate Program in Endocrinology and Metabolism, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 90035-003, Brazil
- Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, 90035-003, Brazil
| | - Pabulo Henrique Rampelotto
- Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Larisse Longo
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Tiago Franco de Oliveira
- Department of Diagnostic Methods, Universidade Federal de Ciências Médicas de Porto Alegre (UFCSPA), Porto Alegre, 90060-100, Brazil
| | - Rikard Landberg
- Department of Life Sciences, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| | - Vanessa de Mello
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, 70210, Finland
| | - Poli Mara Spritzer
- Postgraduate Program in Endocrinology and Metabolism, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 90035-003, Brazil.
- Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, 90035-003, Brazil.
- Department of Physiology, Laboratory of Molecular Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 90035-003, Brazil.
- Division of Endocrinology, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, Porto Alegre, 2350, 90035-003, RS, Brazil.
| |
Collapse
|
44
|
Patloka O, Komprda T, Franke G. Review of the Relationships Between Human Gut Microbiome, Diet, and Obesity. Nutrients 2024; 16:3996. [PMID: 39683390 DOI: 10.3390/nu16233996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Obesity is a complex disease that increases the risk of other pathologies. Its prevention and long-term weight loss maintenance are problematic. Gut microbiome is considered a potential obesity modulator. The objective of the present study was to summarize recent findings regarding the relationships between obesity, gut microbiota, and diet (vegetable/animal proteins, high-fat diets, restriction of carbohydrates), with an emphasis on dietary fiber and resistant starch. The composition of the human gut microbiome and the methods of its quantification are described. Products of the gut microbiome metabolism, such as short-chain fatty acids and secondary bile acids, and their effects on the gut microbiota, intestinal barrier function and immune homeostasis are discussed in the context of obesity. The importance of dietary fiber and resistant starch is emphasized as far as effects of the host diet on the composition and function of the gut microbiome are concerned. The complex relationships between human gut microbiome and obesity are finally summarized.
Collapse
Affiliation(s)
- Ondřej Patloka
- Department of Food Technology, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Tomáš Komprda
- Department of Food Technology, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Gabriela Franke
- Department of Food Technology, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
45
|
Huang W, Wang J, Xiao Z, Lin J, Tan Z, Sun G. Lingguizhugan decoction alleviates obesity in rats on a high-fat diet through the regulation of lipid metabolism and intestinal microbiota. Front Microbiol 2024; 15:1462173. [PMID: 39606109 PMCID: PMC11600314 DOI: 10.3389/fmicb.2024.1462173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Background Individuals with obesity often experience elevated blood lipid levels, leading to a chronic low-grade inflammatory state, exacerbating liver oxidative stress, and increasing the risk of various metabolic diseases. Recent evidence suggests that intestinal microbiota and short-chain fatty acids (SCFAs) play crucial roles in the development and progression of obesity. While the mechanisms by which Lingguizhugan decoction (LGZGD) intervenes in obesity by improving lipid metabolism, enhancing insulin sensitivity, and reducing inflammatory responses are well-documented, its potential in intestinal microbiota and SCFAs remains unclear. This study aims to explore the impact of LGZGD on high-fat diet (HFD) induced obesity in rats and its regulatory effects on intestinal microbiota and SCFAs, providing new insights for obesity prevention and treatment. Methods Fifty-one male SD rats were randomly divided into groups, with six in the normal control group (NC) receiving a ddH2O treatment and a standard diet. The remaining 45 rats were fed a high-fat diet (HFD) using D12451 feed. After 10 weeks, the rats on the HFD gained 20% more weight than the NC group, confirming the successful modeling of obesity. These rats were then randomly divided into the following groups: ddH2O high-fat diet model group (MC), 20 mg/kg/day Orlistat positive control group (Orlistat), 1.62 g/kg/day low-dose LGZGD group (LGZGL), and 3.24 g/kg/day high-dose LGZGD group (LGZGH) for 8 weeks. We evaluated changes in body weight, serum total cholesterol (TC), total triacylglycerol (TG), low-density lipoprotein cholesterol (LDL), and high-density lipoprotein cholesterol (HDL) levels. Fat and liver tissues were collected for pathological analysis. Intestinal contents were aseptically collected for 16S rRNA gene sequencing and gas chromatography-mass spectrometry (GC-MS) to assess gut microbiota and SCFA levels. Results LGZGD reduces body weight, TC, TG, LDL, and HDL levels, significantly reducing hepatic steatosis. Besides, it restored the richness and diversity of gut microbiota, which was reduced by HFD, altering the overall structure. Specifically, LGZGD significantly promoted the growth of Muribaculaceae and Dubosiella while inhibiting the growth of Christensenellaceae_R_7_group and UCG_005. It also restricts the production of caproic acid. Correlation analysis indicated positive correlations: Muribaculaceae with Butyric acid and Isovaleric acid; UCG_005 with TC, LDL, and HDL; and Christensenellaceae_R_7_group with TC and LDL. Conclusion LGZGD increased the abundance of beneficial gut microbiota in HFD-induced obese rats, improved gut microbiota dysbiosis, and inhibited the increase in caproic acid content. These results suggest that LGZGD can mitigate HFD-induced obesity, and its active components warrant further investigation.
Collapse
Affiliation(s)
| | | | | | | | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Guixiang Sun
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
46
|
Abeltino A, Hatem D, Serantoni C, Riente A, De Giulio MM, De Spirito M, De Maio F, Maulucci G. Unraveling the Gut Microbiota: Implications for Precision Nutrition and Personalized Medicine. Nutrients 2024; 16:3806. [PMID: 39599593 PMCID: PMC11597134 DOI: 10.3390/nu16223806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Recent studies have shown a growing interest in the complex relationship between the human gut microbiota, metabolism, and overall health. This review aims to explore the gut microbiota-host association, focusing on its implications for precision nutrition and personalized medicine. The objective is to highlight how gut microbiota modulate metabolic and immune functions, contributing to disease susceptibility and wellbeing. The review synthesizes recent research findings, analyzing key studies on the influence of gut microbiota on lipid and carbohydrate metabolism, intestinal health, neurobehavioral regulation, and endocrine signaling. Data were drawn from both experimental and clinical trials examining microbiota-host interactions relevant to precision nutrition. Our findings highlight the essential role of gut microbiota-derived metabolites in regulating host metabolism, including lipid and glucose pathways. These metabolites have been found to influence immune responses and gut barrier integrity. Additionally, the microbiota impacts broader physiological processes, including neuroendocrine regulation, which could be crucial for dietary interventions. Therefore, understanding the molecular mechanisms of dietary-microbiota-host interactions is pivotal for advancing personalized nutrition strategies. Tailored dietary recommendations based on individual gut microbiota compositions hold promise for improving health outcomes, potentially revolutionizing future healthcare approaches across diverse populations.
Collapse
Affiliation(s)
- Alessio Abeltino
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Duaa Hatem
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Cassandra Serantoni
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Alessia Riente
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Michele Maria De Giulio
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Marco De Spirito
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Flavio De Maio
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Giuseppe Maulucci
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| |
Collapse
|
47
|
Tomisova K, Jarosova V, Marsik P, Bergo AM, Cinek O, Hlinakova L, Kloucek P, Janousek V, Valentová K, Havlik J. Mutual Interactions of Silymarin and Colon Microbiota in Healthy Young and Healthy Elder Subjects. Mol Nutr Food Res 2024; 68:e2400500. [PMID: 39473280 PMCID: PMC11605779 DOI: 10.1002/mnfr.202400500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/01/2024] [Indexed: 11/30/2024]
Abstract
SCOPE This multi-omic study investigates the bidirectional interactions between gut microbiota and silymarin metabolism, highlighting the differential effects across various age groups. Silymarin, the extract from Silybum marianum (milk thistle), is commonly used for its hepatoprotective effects. METHODS AND RESULTS An in vitro fermentation colon model was used with microbiota from 20 stool samples obtained from healthy donors divided into two age groups. A combination of three analytical advanced techniques, namely proton nuclear magnetic resonance (1H NMR), next-generation sequencing (NGS), and liquid chromatography-mass spectrometry (LC-MS) was used to determine silymarin microbial metabolites over 24 h, overall metabolome, and microbiota composition. Silymarin at a low diet-relevant dose of 50 µg mL-1 significantly altered gut microbiota metabolism, reducing short-chain fatty acid (acetate, butyrate, propionate) production, glucose utilization, and increasing alpha-diversity. Notably, the study reveals age-related differences in silymarin catabolism. Healthy elderly donors (70-80 years) exhibited a significant increase in a specific catabolite associated with Oscillibacter sp., whereas healthy young donors (12-45 years) showed a faster breakdown of silymarin components, particularly isosilybin B, which is associated with higher abundance of Faecalibacterium and Erysipelotrichaceae UCG-003. CONCLUSION This study provides insights into microbiome functionality in metabolizing dietary flavonolignans, highlighting implications for age-specific nutritional strategies, and advancing our understanding of dietary (poly)phenol metabolism.
Collapse
Affiliation(s)
- Katerina Tomisova
- Department of Food Science, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences PragueKamycka 129Prague Suchdol165 00Czech Republic
| | - Veronika Jarosova
- Department of Food Science, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences PragueKamycka 129Prague Suchdol165 00Czech Republic
| | - Petr Marsik
- Department of Food Science, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences PragueKamycka 129Prague Suchdol165 00Czech Republic
| | - Anna Mascellani Bergo
- Department of Food Science, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences PragueKamycka 129Prague Suchdol165 00Czech Republic
| | - Ondrej Cinek
- Department of PediatricsCharles University and University Hospital MotolV Uvalu 84Prague150 06Czech Republic
| | - Lucie Hlinakova
- Department of PediatricsCharles University and University Hospital MotolV Uvalu 84Prague150 06Czech Republic
| | - Pavel Kloucek
- Department of Food Science, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences PragueKamycka 129Prague Suchdol165 00Czech Republic
| | | | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of SciencesVidenska 1083Prague142 00Czech Republic
| | - Jaroslav Havlik
- Department of Food Science, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences PragueKamycka 129Prague Suchdol165 00Czech Republic
| |
Collapse
|
48
|
Saggese A, Barrella V, Porzio AD, Troise AD, Scaloni A, Cigliano L, Scala G, Baccigalupi L, Iossa S, Ricca E, Mazzoli A. Protective role of cells and spores of Shouchella clausii SF174 against fructose-induced gut dysfunctions in small and large intestine. J Nutr Biochem 2024; 133:109706. [PMID: 39053859 DOI: 10.1016/j.jnutbio.2024.109706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The oral administration of probiotics is nowadays recognized as a strategy to treat or prevent the consequences of unhealthy dietary habits. Here we analyze and compare the effects of the oral administration of vegetative cells or spores of Shouchella clausii SF174 in counteracting gut dysfunctions induced by 6 weeks of high fructose intake in a rat model. Gut microbiota composition, tight junction proteins, markers of inflammation and redox homeostasis were evaluated in ileum and colon in rats fed fructose rich diet and supplemented with cells or spores of Shouchella clausii SF174. Our results show that both spores and cells of SF174 were effective in preventing the fructose-induced metabolic damage to the gut, namely establishment of "leaky gut", inflammation and oxidative damage, thus preserving gut function. Our results also suggest that vegetative cells and germination-derived cells metabolize part of the ingested fructose at the ileum level.
Collapse
Affiliation(s)
- Anella Saggese
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Valentina Barrella
- Department of Biology, University of Naples Federico II, Naples, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Angela Di Porzio
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Antonio Dario Troise
- National Research Council, Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, Portici Naples, Italy
| | - Andrea Scaloni
- National Research Council, Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, Portici Naples, Italy
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Napoli, Italy
| | - Giovanni Scala
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Loredana Baccigalupi
- NBFC, National Biodiversity Future Center, Palermo, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Napoli, Italy
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II, Naples, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Napoli, Italy
| | - Ezio Ricca
- Department of Biology, University of Naples Federico II, Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Napoli, Italy.
| | - Arianna Mazzoli
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
49
|
He L, Su Z, Wang S. The anti-obesity effects of polyphenols: a comprehensive review of molecular mechanisms and signal pathways in regulating adipocytes. Front Nutr 2024; 11:1393575. [PMID: 39539361 PMCID: PMC11557335 DOI: 10.3389/fnut.2024.1393575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Excess weight gain is a growing concern worldwide, fueled by increased consumption of calorie-dense foods and more sedentary lifestyles. Obesity in China is also becoming increasingly problematic, developing into a major public health concern. Obesity not only increases the risk of associated disease but also imposes a burden on health care systems, and it is thus imperative that an effective intervention approach be identified. Recent studies have demonstrated that the polyphenol-rich Mediterranean diet has considerable potential in this regard. Polyphenols can inhibit the production of adipocytes and reduce adverse reactions, such as inflammation, insulin resistance, and gut microflora imbalance. In this review, we examine four polyphenols (curcumin, ellagic acid, ferulic acid, and quercetin) in terms of their potential as interventions targeting obesity. The mechanisms that help promote adipocyte browning, increase thermogenic factors, increase thermogenesis, and regulate adipocyte differentiation are summarized, and key signaling pathways, including PPARγ, C/EBP-, and others, are reviewed.
Collapse
Affiliation(s)
- Lan He
- Department of Cardiology, The First People’s Hospital of Wenling, Taizhou University Affiliated Wenling Hospital, Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhan Su
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Shuangshuang Wang
- Department of Cardiology, The First People’s Hospital of Wenling, Taizhou University Affiliated Wenling Hospital, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Affiliated First Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
50
|
Yan H, Kuerbanjiang M, Muheyati D, Yang Z, Han J. Wheat bran oil ameliorates high-fat diet-induced obesity in rats with alterations in gut microbiota and liver metabolite profile. Nutr Metab (Lond) 2024; 21:84. [PMID: 39455992 PMCID: PMC11515275 DOI: 10.1186/s12986-024-00861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Obesity is one of the public health issues that seriously threatens human health. This study aimed to investigate the effects of wheat bran oil (WBO) on body weight and fat/lipid accumulation in high-fat diet (HFD)-induced obese rats and further explore the possible mechanisms by microbiome and metabolome analyses. METHODS Fifty Sprague-Dawley (SD) rats were fed either a normal chow diet (B group, n = 10) or HFD (n = 40) for 14 weeks to establish an obesity model. The HFD-induced obese rats were further divided into four groups and given WBO at 0 mL/kg (M group), 1.25 mL/kg (WBO-L group), 2.5 mL/kg (WBO-M group), and 5 mL/kg (WBO-H group) by oral gavage for 9 weeks. The body weight of rats was weighed weekly. The gut microbiota structure was analyzed using 16 S rDNA high-throughput sequencing. The liver metabolite profile was determined using UHPLC-QE-MS non-target metabolomics technology. RESULTS In this study, WBO treatment reduced body weight gain, fat and lipid accumulation, and ameliorated hepatic steatosis and inflammation. WBO treatment increased the relative abundance of Romboutsia and Allobaculum and decreased that of Candidatus_Saccharimonas, Alloprevotella, Rikenellaceae_RC9_gut_group, Alistipes, Parabacteroides, UCG-005, Helicobacter, Colidextribacter, and Parasutterella compared with the M group. A total of 22 liver metabolites were significantly altered by WBO treatment, which were mainly involved in taurine and hypotaurine metabolism, nicotinate and nicotunamide metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and ether lipid metabolism. CONCLUSIONS WBO alleviated body weight gain and fat/lipid accumulation in HFD-induced obese rats, which may be related to altered gut microbiota and liver metabolites.
Collapse
Affiliation(s)
- Huan Yan
- Xinjiang Uygur Autonomous Region Analysis and Testing Research Institute, Xinjiang Key Laboratory of Featured Functional Food Nutrition and Safety Testing, Urumqi, 830011, China
| | - Maierheba Kuerbanjiang
- Department of Nutrition and Food Hygiene, School of Public Health, Xinjiang Medical University, Urumqi, 830017, China
| | - Dina Muheyati
- Department of Nutrition and Food Hygiene, School of Public Health, Xinjiang Medical University, Urumqi, 830017, China
| | - Zhong Yang
- Xinjiang Uygur Autonomous Region Analysis and Testing Research Institute, Xinjiang Key Laboratory of Featured Functional Food Nutrition and Safety Testing, Urumqi, 830011, China.
| | - Jia Han
- Department of Nutrition and Food Hygiene, School of Public Health, Xinjiang Medical University, Urumqi, 830017, China.
| |
Collapse
|