1
|
Wu Y, Deng T, Song L, Zhu W, Zhong D, Jiao J, Li W, Zhong L, Tian T, Dong L, Li JP. Clone-Resolved Chemical Depletion of T cells via Cellular Proximity Chemistry. Angew Chem Int Ed Engl 2025; 64:e202425628. [PMID: 39869413 DOI: 10.1002/anie.202425628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 01/29/2025]
Abstract
T cells play a pivotal role in the development of autoimmune diseases. To mitigate autoimmune inflammation without inducing global immunosuppression, it is crucial to selectively eliminate autoreactive T cell clones while preserving the normal T cell repertoire. In this study, we applied cellular proximity chemistry to develop a T-cell depletion method with clonal precision. Using engineered dendritic cells (DCs) with surface-bound photosensitizers, we generated reactive oxygen species (ROS) at immune synapses, leading to the targeted death of antigen-specific T cells in close proximity. This process induces lipid oxidation in T cell membranes, triggering ferroptosis-like cell death. The method enables the selective elimination of specific T cell clones without affecting others, in which the clonal resolution was demonstrated by TCR sequencing. Finally, we demonstrated the efficacy of this approach in a type 1 diabetes model by selectively depleting the pathogenic 8.3 T cell clone, thereby protecting islet β cells and preserving overall T cell function. This strategy offers a promising avenue for immunosuppressive therapy that targets pathogenic T cells while maintaining overall immune integrity.
Collapse
Affiliation(s)
- Yunze Wu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Tao Deng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lin Song
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Wenqi Zhu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Da Zhong
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jinbiao Jiao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wannan Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lingyu Zhong
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Tian Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Jie P Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
2
|
Lin Y, Yang L, Li Y, Dou S, Zhang Z, Zhou Q. CD4+CD25- T-Cell-Secreted IFN-γ Promotes Corneal Nerve Degeneration in Diabetic Mice. Invest Ophthalmol Vis Sci 2025; 66:15. [PMID: 40192636 PMCID: PMC11980951 DOI: 10.1167/iovs.66.4.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/17/2025] [Indexed: 04/11/2025] Open
Abstract
Purpose This study aimed to explore the relationship between corneal nerve degeneration and elevated dendritic cells (DCs) in diabetic keratopathy. Methods Corneas from diabetic and healthy mice were analyzed using single-cell RNA sequencing. Corneal nerve density and DC and T-cell infiltration were quantified through whole-mount corneal staining. Freshly isolated mouse trigeminal ganglion (TG) neurons were co-cultured with immature DCs, mature DCs, activated CD8+ T cells, and CD4+CD25- T cells. TG neurite outgrowth was assessed to identify potential effector cells driving corneal nerve degeneration. In addition, interferon-gamma (IFN-γ) and blocking antibodies were used to evaluate their effects on TG neurite outgrowth and corneal nerve degeneration in mice. Results Compared with age-matched healthy mice, diabetic mice exhibited a significant reduction in corneal nerve density and sensitivity, along with increased infiltration of DCs, CD4+ T cells, and CD8+ T cells. In vitro co-culture experiments revealed that CD4+CD25- T cells, rather than DCs and CD8+ T cells, significantly inhibited TG neurite outgrowth. Among cytokines, elevated IFN-γ in diabetic corneas impaired TG neurite outgrowth and induced corneal nerve degeneration, whereas IL-4 and IL-17 had no such effect. Blocking IFN-γ alleviated CD4+CD25- T-cell-induced inhibition of TG neurite outgrowth and corneal nerve degeneration in diabetic mice. Conclusions CD4+CD25- T cells, but not DCs or CD8+ T cells, contribute to corneal nerve degeneration in diabetic mice, a process partially mediated by IFN-γ.
Collapse
Affiliation(s)
- Yujing Lin
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Ya Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Zhenzhen Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| |
Collapse
|
3
|
Peng J, He Q, Wang C, Wang Z, Zeng S, Huang Q, Guan T, He Y, Liu C. OCDet: A comprehensive ovarian cell detection model with channel attention on immunohistochemical and morphological pathology images. Comput Biol Med 2025; 186:109713. [PMID: 39864335 DOI: 10.1016/j.compbiomed.2025.109713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND Ovarian cancer is among the most lethal gynecologic malignancy that threatens women's lives. Pathological diagnosis is a key tool for early detection and diagnosis of ovarian cancer, guiding treatment strategies. The evaluation of various ovarian cancer-related cells, based on morphological and immunohistochemical pathology images, is deemed an important step. Currently, the lack of a comprehensive deep learning framework for detecting various ovarian cells poses a performance bottleneck in ovarian cancer pathological diagnosis. METHOD This paper presents OCDet, an object detection model with channel attention, which achieves comprehensive detection of CD3, CD8, and CD20 positive lymphocytes in immunohistochemical pathology slides, and neutrophils and polyploid giant cancer cells in H&E slides of ovarian cancer. OCDet, utilizing CSPDarkNet as its backbone, incorporates an Efficient Channel Attention module for Resolution-Specified Embedding Refinement and Multi-Resolution Embedding Fusion, enabling the efficient extraction of pathological features. RESULT The experiment demonstrated that OCDet performed well in target detection of three types of positive lymphocytes in immunohistochemical images, as well as neutrophils and polyploid giant cancer cells in H&E images. The mAP@0.5 reached 98.82 %, 92.91 %, and 90.49 % respectively, all surpassing other compared models. The ablation experiment further highlighted the superiority of the introduced Efficient Channel Attention (ECA) mechanism. CONCLUSION The proposed OCDet enables accurate detection of multiple types of cells in immunohistochemical and morphological pathology images of ovarian cancer, serving as an efficient application tool for pathological diagnosis thereof. The proposed framework has the potential to be further applied to other cancer types.
Collapse
Affiliation(s)
- Jing Peng
- Department of Life and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China
| | - Qiming He
- Department of Life and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China
| | - Chen Wang
- Department of Pathology, Peking University Health Science Center, 38 College Road, Haidian, Beijing, 100191, China; Department of Pathology, School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Zijun Wang
- Department of Pathology, Peking University Health Science Center, 38 College Road, Haidian, Beijing, 100191, China; Department of Pathology, School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Siqi Zeng
- Department of Life and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Shenzhen Shengqiang Technology Co., Ltd, China
| | - Qiang Huang
- Shenzhen Shengqiang Technology Co., Ltd, China
| | - Tian Guan
- Department of Life and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China
| | - Yonghong He
- Department of Life and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China
| | - Congrong Liu
- Department of Pathology, Peking University Health Science Center, 38 College Road, Haidian, Beijing, 100191, China; Department of Pathology, School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
4
|
Chen H, Fang HQ, Liu JT, Chang SY, Cheng LB, Sun MX, Feng JR, Liu ZM, Zhang YH, Rosen CJ, Liu P. Atlas of Fshr expression from novel reporter mice. eLife 2025; 13:RP93413. [PMID: 39773308 PMCID: PMC11709436 DOI: 10.7554/elife.93413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
The FSH-FSHR pathway has been considered an essential regulator in reproductive development and fertility. But there has been emerging evidence of FSHR expression in extragonadal organs. This poses new questions and long-term debates regarding the physiological role of the FSH-FSHR, and underscores the need for reliable, in vivo analysis of FSHR expression in animal models. However, conventional methods have proven insufficient for examining FSHR expression due to several limitations. To address this challenge, we developed Fshr-ZsGreen reporter mice under the control of Fshr endogenous promoter using CRISPR-Cas9. With this novel genetic tool, we provide a reliable readout of Fshr expression at single-cell resolution level in vivo and in real time. Reporter animals were also subjected to additional analyses,to define the accurate expression profile of FSHR in gonadal and extragonadal organs/tissues. Our compelling results not only demonstrated Fshr expression in intragonadal tissues but also, strikingly, unveiled notably increased expression in Leydig cells, osteoblast lineage cells, endothelial cells in vascular structures, and epithelial cells in bronchi of the lung and renal tubes. The genetic decoding of the widespread pattern of Fshr expression highlights its physiological relevance beyond reproduction and fertility, and opens new avenues for therapeutic options for age-related disorders of the bones, lungs, kidneys, and hearts, among other tissues. Exploiting the power of the Fshr knockin reporter animals, this report provides the first comprehensive genetic record of the spatial distribution of FSHR expression, correcting a long-term misconception about Fshr expression and offering prospects for extensive exploration of FSH-FSHR biology.
Collapse
Affiliation(s)
- Hongqian Chen
- Laboratory of Bone and Adipose Biology, Shanxi Medical UniversityTaiyuanChina
| | - Hui-Qing Fang
- Laboratory of Bone and Adipose Biology, Shanxi Medical UniversityTaiyuanChina
- Department of Dentistry, The 980th Hospital of the PLA Joint Logistic Support ForceShijiazhuangChina
| | - Jin-Tao Liu
- Laboratory of Bone and Adipose Biology, Shanxi Medical UniversityTaiyuanChina
| | - Shi-Yu Chang
- Laboratory of Bone and Adipose Biology, Shanxi Medical UniversityTaiyuanChina
| | - Li-Ben Cheng
- Laboratory of Bone and Adipose Biology, Shanxi Medical UniversityTaiyuanChina
| | - Ming-Xin Sun
- Laboratory of Bone and Adipose Biology, Shanxi Medical UniversityTaiyuanChina
| | - Jian-Rui Feng
- Laboratory of Bone and Adipose Biology, Shanxi Medical UniversityTaiyuanChina
| | - Ze-Min Liu
- Laboratory of Bone and Adipose Biology, Shanxi Medical UniversityTaiyuanChina
- Shanxi Medical Universityersity, The Second Hospital, University Shanxi Medical UniversityTaiyuanChina
| | - Yong-Hong Zhang
- Laboratory of Bone and Adipose Biology, Shanxi Medical UniversityTaiyuanChina
- Shanxi Medical Universityersity, The Second Hospital, University Shanxi Medical UniversityTaiyuanChina
| | | | - Peng Liu
- Laboratory of Bone and Adipose Biology, Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
5
|
Zhang S, Wang X, Gao X, Chen X, Li L, Li G, Liu C, Miao Y, Wang R, Hu K. Radiopharmaceuticals and their applications in medicine. Signal Transduct Target Ther 2025; 10:1. [PMID: 39747850 PMCID: PMC11697352 DOI: 10.1038/s41392-024-02041-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/30/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025] Open
Abstract
Radiopharmaceuticals involve the local delivery of radionuclides to targeted lesions for the diagnosis and treatment of multiple diseases. Radiopharmaceutical therapy, which directly causes systematic and irreparable damage to targeted cells, has attracted increasing attention in the treatment of refractory diseases that are not sensitive to current therapies. As the Food and Drug Administration (FDA) approvals of [177Lu]Lu-DOTA-TATE, [177Lu]Lu-PSMA-617 and their complementary diagnostic agents, namely, [68Ga]Ga-DOTA-TATE and [68Ga]Ga-PSMA-11, targeted radiopharmaceutical-based theranostics (radiotheranostics) are being increasingly implemented in clinical practice in oncology, which lead to a new era of radiopharmaceuticals. The new generation of radiopharmaceuticals utilizes a targeting vector to achieve the accurate delivery of radionuclides to lesions and avoid off-target deposition, making it possible to improve the efficiency and biosafety of tumour diagnosis and therapy. Numerous studies have focused on developing novel radiopharmaceuticals targeting a broader range of disease targets, demonstrating remarkable in vivo performance. These include high tumor uptake, prolonged retention time, and favorable pharmacokinetic properties that align with clinical standards. While radiotheranostics have been widely applied in tumor diagnosis and therapy, their applications are now expanding to neurodegenerative diseases, cardiovascular diseases, and inflammation. Furthermore, radiotheranostic-empowered precision medicine is revolutionizing the cancer treatment paradigm. Diagnostic radiopharmaceuticals play a pivotal role in patient stratification and treatment planning, leading to improved therapeutic outcomes in targeted radionuclide therapy. This review offers a comprehensive overview of the evolution of radiopharmaceuticals, including both FDA-approved and clinically investigated agents, and explores the mechanisms of cell death induced by radiopharmaceuticals. It emphasizes the significance and future prospects of theranostic-based radiopharmaceuticals in advancing precision medicine.
Collapse
Grants
- 82372002 National Natural Science Foundation of China (National Science Foundation of China)
- 0104002 Beijing Nova Program
- L248087; L234044 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences (No. 2022-RC350-04), the CAMS Innovation Fund for Medical Sciences (Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001), the National Key Research and Development Program of China (No. 2022YFE0111700),the Fundamental Research Funds for the Central Universities (Nos. 3332023044 and 3332023151), the CIRP Open Fund of Radiation Protection Laboratories (No. ZHYLYB2021005), and the China National Nuclear Corporation Young Talent Program.
- Fundamental Research Funds for the Central Universities,Nos. 3332023044
- Fundamental Research Funds for the Central Universities,Nos. 3332023151
- he Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences,No. 2022-RC350-04;the CAMS Innovation Fund for Medical Sciences,Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001;the National Key Research and Development Program of China,No. 2022YFE0111700
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xueyao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Linger Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Guoqing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Can Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Yuan Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 2019RU066, 730000, Lanzhou, China.
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
6
|
Lenzen S, Jörns A. Therapy concepts in type 1 diabetes mellitus treatment: disease modifying versus curative approaches. J Mol Med (Berl) 2024; 102:1451-1455. [PMID: 39420138 PMCID: PMC11579207 DOI: 10.1007/s00109-024-02494-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
For many autoimmune diseases, including type 1 diabetes mellitus (T1DM), efforts have been made to modify the disease process through pharmacotherapy. The ultimate goal must be to develop therapies with curative potential by achieving an organ without signs of parenchymal cell destruction and without signs of immune cell infiltration. In the case of the pancreas, this means regenerated and well-preserved beta cells in the islets without activated infiltrating immune cells. Recent research has opened up the prospect of successful antibody combination therapy for autoimmune diabetes with curative potential. This goal cannot be achieved with monotherapies. The requirements for the implementation of such a therapy with curative potential for the benefit of patients with T1DM and LADA (latent autoimmune diabetes in adults) are considered.
Collapse
Affiliation(s)
- Sigurd Lenzen
- Institute of Experimental Diabetes Research, Hannover Medical School, 30625, Hannover, Germany.
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Wang X, Xie M, Li T, Shi J, Wu M, Zhang S, Sun J, Hu Y. Comparative Ability of Various Immunosuppressants as Adjuvants on the Activity of T1D Vaccine. Vaccines (Basel) 2024; 12:1117. [PMID: 39460283 PMCID: PMC11511529 DOI: 10.3390/vaccines12101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/08/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Type 1 diabetes (T1D) is an autoimmune disorder characterised by the destruction of insulin-producing beta cells in the pancreatic islets, resulting from a breakdown in immunological tolerance. Currently, T1D treatment primarily relies on insulin replacement or immunosuppressive therapies. However, these approaches often have significant drawbacks, including adverse effects, high costs, and limited long-term efficacy. Consequently, there is a pressing need for innovative immunotherapeutic strategies capable of inducing antigen-specific tolerance and protecting beta cells from autoimmune destruction. Among the various antigens, β-cell antigens like 65 kDa glutamic acid decarboxylase (GAD65) have been explored as vaccine candidates for T1D. Despite their potential, their effectiveness in humans remains modest, necessitating the use of appropriate adjuvants to enhance the vaccine's protective effects. Methods: In this study, we evaluated the therapeutic potential of kynurenine (KYN), dexamethasone (DXMS), tacrolimus (FK506), and aluminium hydroxide (Alum) in combination with the GAD65 phage vaccine as adjuvants. Results: Our findings demonstrate that KYN, when used in conjunction with the GAD65 vaccine, significantly enhances the vaccine's immunosuppressive effects. Compared to dexamethasone, FK506, and Alum adjuvants, KYN more effectively reduced the incidence and delayed the onset of T1D, preserved β-cell function, and promoted the induction of regulatory T cells and antigen-specific tolerance. These results suggest that KYN combined with vaccines could offer superior preventive and therapeutic benefits for T1D compared to existing treatments. Additionally, we investigated the dose-dependent effects of the GAD65 vaccine by including a low-dose group in our study. The results indicated that reducing the vaccine dose below 1010 plaque-forming units (pfu) did not confer any protective advantage or therapeutic benefit in combination with KYN. This finding underscores that 1010 pfu is the minimum effective dose for the GAD65 vaccine in achieving a protective response. In conclusion, KYN shows considerable promise as an adjuvant for the GAD65 vaccine in T1D therapy, potentially offering a more effective and durable treatment option than current immunosuppressive strategies.
Collapse
Affiliation(s)
- Xinyi Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; (X.W.); (M.X.); (T.L.); (J.S.); (M.W.); (S.Z.)
| | - Mengxin Xie
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; (X.W.); (M.X.); (T.L.); (J.S.); (M.W.); (S.Z.)
| | - Tengjiao Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; (X.W.); (M.X.); (T.L.); (J.S.); (M.W.); (S.Z.)
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jiandong Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; (X.W.); (M.X.); (T.L.); (J.S.); (M.W.); (S.Z.)
| | - Meini Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; (X.W.); (M.X.); (T.L.); (J.S.); (M.W.); (S.Z.)
| | - Shihan Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; (X.W.); (M.X.); (T.L.); (J.S.); (M.W.); (S.Z.)
| | - Jing Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; (X.W.); (M.X.); (T.L.); (J.S.); (M.W.); (S.Z.)
| | - Yunzhang Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; (X.W.); (M.X.); (T.L.); (J.S.); (M.W.); (S.Z.)
| |
Collapse
|
8
|
Yang Z, Zhang Z, Li L, Jing Z, Ma Y, Lan T, Li Y, Lin Z, Fang W, Zhang J, Zhang J, Liang X, Wu B, Zheng Y, Zhang X. Bioengineered Artificial Extracellular Vesicles Presenting PD-L1 and Gal-9 Ameliorate New-Onset Type 1 Diabetes. Diabetes 2024; 73:1325-1335. [PMID: 38771941 DOI: 10.2337/db23-0987] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/05/2024] [Indexed: 05/23/2024]
Abstract
An important factor in the development of type 1 diabetes (T1D) is the deficiency of inhibitory immune checkpoint ligands, specifically programmed cell death ligand 1 (PD-L1) and galectin-9 (Gal-9), in β-cells. Therefore, modulation of pancreas-infiltrated T lymphocytes by exogenous PD-L1 or Gal-9 is an ideal approach for treating new-onset T1D. We genetically engineered macrophage cells to generate artificial extracellular vesicles (aEVs) overexpressing PD-L1 and Gal-9, which could restrict islet autoreactive T lymphocytes and protect β-cells from destruction. Intriguingly, overexpression of Gal-9 stimulated macrophage polarization to the M2 phenotype with immunosuppressive attributes. Alternatively, both PD-L1- and Gal-9-presenting aEVs (PD-L1-Gal-9 aEVs) favorably adhered to T cells via the interaction of programmed cell death protein 1/PD-L1 or T-cell immunoglobulin mucin 3/Gal-9. Moreover, PD-L1-Gal-9 aEVs prominently promoted effector T-cell apoptosis and splenic regulatory T (Treg) cell formation in vitro. Notably, PD-L1-Gal-9 aEVs efficaciously reversed new-onset hyperglycemia in NOD mice, prevented T1D progression, and decreased the proportion and activation of CD4+ and CD8+ T cells infiltrating the pancreas, which together contributed to the preservation of residual β-cell survival and mitigation of hyperglycemia. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Zhaoxin Yang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Zhirang Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Liyan Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Zhangyan Jing
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yumeng Ma
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Tianyu Lan
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yuan Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Zhongda Lin
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Wenli Fang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jinxie Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jinling Zhang
- Department of Gynaecology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Xin Liang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Stem Cell and Regenerative Tissue Engineering, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, Guangdong, China
| | - Benqing Wu
- Center for Medical Experiments (CME), Benqing Laboratory, Guangming District People's Hospital, Shenzhen, Guangdong, China
| | - Yi Zheng
- Center for Medical Experiments (CME), Benqing Laboratory, Guangming District People's Hospital, Shenzhen, Guangdong, China
| | - Xudong Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Kumar V, Narisawa M, Cheng XW. Overview of multifunctional Tregs in cardiovascular disease: From insights into cellular functions to clinical implications. FASEB J 2024; 38:e23786. [PMID: 38979903 DOI: 10.1096/fj.202400839r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
Regulatory T cells (Tregs) are crucial in regulating T-cell-mediated immune responses. Numerous studies have shown that dysfunction or decreased numbers of Tregs may be involved in inflammatory cardiovascular diseases (CVDs) such as atherosclerosis, hypertension, myocardial infarction, myocarditis, cardiomyopathy, valvular heart diseases, heart failure, and abdominal aortic aneurysm. Tregs can help to ameliorate CVDs by suppressing excessive inflammation through various mechanisms, including inhibition of T cells and B cells, inhibition of macrophage-induced inflammation, inhibition of dendritic cells and foam cell formation, and induction of anti-inflammatory macrophages. Enhancing or restoring the immunosuppressive activity of Tregs may thus serve as a fundamental immunotherapy to treat hypertension and CVDs. However, the precise molecular mechanisms underlying the Tregs-induced protection against hypertension and CVDs remain to be investigated. This review focuses on recent advances in our understanding of Tregs subsets and function in CVDs. In addition, we discuss promising strategies for using Tregs through various pharmacological approaches to treat hypertension and CVDs.
Collapse
Affiliation(s)
- Vipin Kumar
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P.R. China
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P.R. China
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
10
|
Campos RK, Liang Y, Azar SR, Ly J, Camargos VN, Hager-Soto EE, Eyzaguirre E, Sun J, Rossi SL. CD8 + T cells promote ZIKV clearance and mitigate testicular damage in mice. NPJ VIRUSES 2024; 2:20. [PMID: 40295722 PMCID: PMC11721072 DOI: 10.1038/s44298-024-00033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/06/2024] [Indexed: 04/30/2025]
Abstract
Zika virus (ZIKV) causes human testicular inflammation and alterations in sperm parameters and causes testicular damage in mouse models. The involvement of individual immune cells in testicular damage is not fully understood. We detected virus in the testes of the interferon (IFN) α/β receptor-/- A129 mice three weeks post-infection and found elevated chemokines in the testes, suggesting chronic inflammation and long-term infection play a role in testicular damage. In the testes, myeloid cells and CD4+ T cells were absent at 7 dpi but were present at 23 days post-infection (dpi), and CD8+ T cell infiltration started at 7 dpi. CD8-/- mice with an antibody-depleted IFN response had a significant reduction in spermatogenesis, indicating that CD8+ T cells are essential to prevent testicular damage during long-term ZIKV infections. Our findings on the dynamics of testicular immune cells and the importance of CD8+ T cells function as a framework to understand mechanisms underlying observed inflammation and sperm alterations in humans.
Collapse
Affiliation(s)
- Rafael K Campos
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Sasha R Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
| | - Judy Ly
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | - Eduardo Eyzaguirre
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Shannan L Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- Center of Tropical Disease, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
11
|
Ota T, Goto R, Harada T, Forgioni A, Kanazawa R, Ganchiku Y, Kawamura N, Watanabe M, Fukai M, Shimamura T, Taketomi A. TCF1highPD-1+Ly108+CD8+ T Cells Are Associated with Graft Preservation in Sensitized Mice Treated with Non-Fc Receptor-Binding CD3 Antibodies. Immunohorizons 2024; 8:295-306. [PMID: 38587418 PMCID: PMC11066723 DOI: 10.4049/immunohorizons.2300117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
The non-Fc-binding anti-CD3 Ab [anti-CD3F(ab')2] can induce graft acceptance depending on the therapeutic window in a rodent heart transplant model. The delayed protocol allows for early graft infiltration of lymphocytes, which may behave in an inhibitory manner. We investigated the most effective protocol for anti-CD3F(ab')2 in sensitized conditions to confirm the evidence for clinical application. C57BL/6 mice were sensitized with BALB/c tail skin grafts and transplanted with BALB/c heart grafts at 8-12 wk after sensitization. Fifty micrograms of anti-CD3F(ab')2 was administered daily for 5 consecutive days on days 1-5 (day 1 protocol) or days 3-7 (delayed protocol). In nonsensitized mice, the delayed protocol significantly prolonged graft survival after transplantation from BALB/c to naive B6 (median survival time [MST], >100 d). In contrast, the delayed protocol was unable to prevent graft rejection in sensitized mice (MST, 5 d). A significantly increased percentage of granzyme B+ CD8+ T cells was observed in the graft on day 3 posttransplantation in sensitized conditions. Further, the day 1 protocol significantly prolonged graft survival (MST, 18 d), even in sensitized conditions. Day 1 treatment significantly increased the percentage of Foxp3+CD25+CD4+ T cells and phenotypically changed CD8+ T cells in the graft (i.e., caused a significant increase in the proportion of Ly108+TCF1highPD-1+CD8+ T cells). In conclusion, different timings of delayed anti-CD3F(ab')2 treatment promoted allograft preservation in association with phenotypic changes in CD4+ and CD8+ T cells in the graft under sensitized conditions.
Collapse
Affiliation(s)
- Takuji Ota
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Ryoichi Goto
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Takuya Harada
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Agustina Forgioni
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Ryo Kanazawa
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Yoshikazu Ganchiku
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Norio Kawamura
- Department of Transplant Surgery, Hokkaido University, Sapporo, Japan
| | - Masaaki Watanabe
- Department of Transplant Surgery, Hokkaido University, Sapporo, Japan
| | - Moto Fukai
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Tsuyoshi Shimamura
- Division of Organ Transplantation, Hokkaido University Hospital, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
- Department of Transplant Surgery, Hokkaido University, Sapporo, Japan
| |
Collapse
|
12
|
Li SJ, Wu YL, Chen JH, Shen SY, Duan J, Xu HE. Autoimmune diseases: targets, biology, and drug discovery. Acta Pharmacol Sin 2024; 45:674-685. [PMID: 38097717 PMCID: PMC10943205 DOI: 10.1038/s41401-023-01207-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/20/2023] [Indexed: 03/17/2024]
Abstract
Autoimmune diseases (AIDs) arise from a breakdown in immunological self-tolerance, wherein the adaptive immune system mistakenly attacks healthy cells, tissues and organs. AIDs impose excessive treatment costs and currently rely on non-specific and universal immunosuppression, which only offer symptomatic relief without addressing the underlying causes. AIDs are driven by autoantigens, targeting the autoantigens holds great promise in transforming the treatment of these diseases. To achieve this goal, a comprehensive understanding of the pathogenic mechanisms underlying different AIDs and the identification of specific autoantigens are critical. In this review, we categorize AIDs based on their underlying causes and compile information on autoantigens implicated in each disease, providing a roadmap for the development of novel immunotherapy regimens. We will focus on type 1 diabetes (T1D), which is an autoimmune disease characterized by irreversible destruction of insulin-producing β cells in the Langerhans islets of the pancreas. We will discuss insulin as possible autoantigen of T1D and its role in T1D pathogenesis. Finally, we will review current treatments of TID and propose a potentially effective immunotherapy targeting autoantigens.
Collapse
Affiliation(s)
- Shu-Jie Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Department of Traditional Chinese Medicine, Fujian Medical University Union Hospital, Fuzhou, 350000, China.
| | - Yan-Li Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Juan-Hua Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shi-Yi Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China.
| |
Collapse
|
13
|
Cui H, Wang N, Li H, Bian Y, Wen W, Kong X, Wang F. The dynamic shifts of IL-10-producing Th17 and IL-17-producing Treg in health and disease: a crosstalk between ancient "Yin-Yang" theory and modern immunology. Cell Commun Signal 2024; 22:99. [PMID: 38317142 PMCID: PMC10845554 DOI: 10.1186/s12964-024-01505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/28/2024] [Indexed: 02/07/2024] Open
Abstract
The changes in T regulatory cell (Treg) and T helper cell (Th) 17 ratios holds paramount importance in ensuring internal homeostasis and disease progression. Recently, novel subsets of Treg and Th17, namely IL-17-producing Treg and IL-10-producing Th17 have been identified. IL-17-producing Treg and IL-10-producing Th17 are widely considered as the intermediates during Treg/Th17 transformation. These "bi-functional" cells exhibit plasticity and have been demonstrated with important roles in multiple physiological functions and disease processes. Yin and Yang represent opposing aspects of phenomena according to the ancient Chinese philosophy "Yin-Yang" theory. Furthermore, Yin can transform into Yang, and vice versa, under specific conditions. This theory has been widely used to describe the contrasting functions of immune cells and molecules. Therefore, immune-activating populations (Th17, M1 macrophage, etc.) and immune overreaction (inflammation, autoimmunity) can be considered Yang, while immunosuppressive populations (Treg, M2 macrophage, etc.) and immunosuppression (tumor, immunodeficiency) can be considered Yin. However, another important connotation of "Yin-Yang" theory, the conversion between Yin and Yang, has been rarely documented in immune studies. The discovery of IL-17-producing Treg and IL-10-producing Th17 enriches the meaning of "Yin-Yang" theory and further promotes the relationship between ancient "Yin-Yang" theory and modern immunology. Besides, illustrating the functions of IL-17-producing Treg and IL-10-producing Th17 and mechanisms governing their differentiation provides valuable insights into the mechanisms underlying the dynamically changing statement of immune statement in health and diseases.
Collapse
Affiliation(s)
- Huantian Cui
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Ning Wang
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Hanzhou Li
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuhong Bian
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Weibo Wen
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Xiangying Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fudi Wang
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Christen U, Pouzol L, Tunis M, Sassi A, Tondello C, Bayer M, Hintermann E, Strasser DS, Schuldes S, Mentzel U, Martinic MM. Combination treatment of a novel CXCR3 antagonist ACT-777991 with an anti-CD3 antibody synergistically increases persistent remission in experimental models of type 1 diabetes. Clin Exp Immunol 2023; 214:131-143. [PMID: 37458220 PMCID: PMC10714188 DOI: 10.1093/cei/uxad083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/29/2023] [Accepted: 07/15/2023] [Indexed: 12/18/2023] Open
Abstract
Treatment of patients with recent-onset type 1 diabetes with an anti-CD3 antibody leads to the transient stabilization of C-peptide levels in responder patients. Partial efficacy may be explained by the entry of islet-reactive T-cells spared by and/or regenerated after the anti-CD3 therapy. The CXCR3/CXCL10 axis has been proposed as a key player in the infiltration of autoreactive T cells into the pancreatic islets followed by the destruction of β cells. Combining the blockade of this axis using ACT-777991, a novel small-molecule CXCR3 antagonist, with anti-CD3 treatment may prevent further infiltration and β-cell damage and thus, preserve insulin production. The effect of anti-CD3 treatment on circulating T-cell subsets, including CXCR3 expression, in mice was evaluated by flow cytometry. Anti-CD3/ACT-777991 combination treatment was assessed in the virally induced RIP-LCMV-GP and NOD diabetes mouse models. Treatments started at disease onset. The effects on remission rate, blood glucose concentrations, insulitis, and plasma C-peptide were evaluated for the combination treatment and the respective monotherapies. Anti-CD3 treatment induced transient lymphopenia but spared circulating CXCR3+ T cells. Combination therapy in both mouse models synergistically and persistently reduced blood glucose concentrations, resulting in increased disease remission rates compared to each monotherapy. At the study end, mice in disease remission demonstrated reduced insulitis and detectable plasma C-peptide levels. When treatments were initiated in non-severely hyperglycemic NOD mice at diabetes onset, the combination treatment led to persistent disease remission in all mice. These results provide preclinical validation and rationale to investigate the combination of ACT-777991 with anti-CD3 for the treatment of patients with recent-onset diabetes.
Collapse
Affiliation(s)
- Urs Christen
- Pharmazentrum Frankfurt, Goethe University Frankfurt, Germany
| | - Laetitia Pouzol
- Immunology and Pharmacology Department, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil, Switzerland
| | - Mélanie Tunis
- Immunology and Pharmacology Department, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil, Switzerland
| | - Anna Sassi
- Immunology and Pharmacology Department, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil, Switzerland
| | | | - Monika Bayer
- Pharmazentrum Frankfurt, Goethe University Frankfurt, Germany
| | | | - Daniel S Strasser
- Translational Biomarkers Department, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil, Switzerland
| | - Sabrina Schuldes
- Project Management Department, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil, Switzerland
| | - Ulrich Mentzel
- Pharmacology and Preclinical Development Department, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil, Switzerland
| | - Marianne M Martinic
- Immunology and Pharmacology Department, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil, Switzerland
| |
Collapse
|
15
|
Lebel Y, Milo T, Bar A, Mayo A, Alon U. Excitable dynamics of flares and relapses in autoimmune diseases. iScience 2023; 26:108084. [PMID: 37915612 PMCID: PMC10616393 DOI: 10.1016/j.isci.2023.108084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/04/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Many autoimmune disorders exhibit flares in which symptoms erupt and then decline, as exemplified by multiple sclerosis (MS) in its relapsing-remitting form. Existing mathematical models of autoimmune flares often assume regular oscillations, failing to capture the stochastic and non-periodic nature of flare-ups. We suggest that autoimmune flares are driven by excitable dynamics triggered by stochastic events auch as stress, infection and other factors. Our minimal model, involving autoreactive and regulatory T-cells, demonstrates this concept. Autoimmune response initiates antigen-induced expansion through positive feedback, while regulatory cells counter the autoreactive cells through negative feedback. The model explains the decrease in MS relapses during pregnancy and the subsequent surge postpartum, based on lymphocyte dynamics. Additionally, it identifies potential therapeutic targets, predicting significant reduction in relapse rate from mild adjustments of regulatory T cell activity or production. These findings indicate that excitable dynamics may underlie flare-ups across various autoimmune disorders, potentially informing treatment strategies.
Collapse
Affiliation(s)
- Yael Lebel
- Department Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100 Israel
| | - Tomer Milo
- Department Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100 Israel
| | - Alon Bar
- Department Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100 Israel
| | - Avi Mayo
- Department Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100 Israel
| | - Uri Alon
- Department Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100 Israel
| |
Collapse
|
16
|
Huang CC, Sung HH, Li HC, Miaw SC, Kung JT, Chou MY, Wu-Hsieh BA. A novel trivalent non-Fc anti-CD3 Collabody preferentially induces Th1 cell apoptosis in vitro and long-lasting remission in recent-onset diabetic NOD mice. Front Immunol 2023; 14:1201853. [PMID: 37600814 PMCID: PMC10435756 DOI: 10.3389/fimmu.2023.1201853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Specific anti-CD3 treatment is deemed to be a promising therapy for allograft rejection and type 1 diabetes (T1D). Fc receptor (FcR) reduced-binding antibodies, by avoiding adverse effects of Fc and FcR interaction, have good therapeutic potential. We generated a trivalent anti-mouse-CD3 Collabody, h145CSA, by using a triplex-forming collagen-like peptide (Gly-Pro-Pro)10 to drive the trimerization of the Fab fragments. Exposure to h145CSA, but not its bivalent counterparts 145-2C11 and h145chIgGAA (FcR reduced-binding format), upregulates FasL expression on Th1 cells and causes Th1 cell apoptosis. Administration of h145CSA invokes minimal mitogenic effects in mice. The ability of multiple dosing of h145CSA to induce splenic CD4+ T-cell depletion is comparable to bivalent antibodies but is characterized by more rapid CD4+ T-cell recovery kinetics. h145CSA is more potent than h145chIgGAA in inducing long-lasting remission in recent-onset diabetic NOD mice. Its therapeutic effect is accompanied by a significantly lower percentage of CD4+IFNγ+ T cells and a higher Treg/Th1 ratio in pancreatic and mesenteric lymph nodes. The results of our study demonstrate that trivalent non-Fc anti-CD3 Collabody has the potential to be used in the treatment of T1D.
Collapse
Affiliation(s)
- Chuan-Chuan Huang
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Hsiang-Hsuan Sung
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Hsiu-Chuan Li
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Shi-Chuen Miaw
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - John T. Kung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Min-Yuan Chou
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Betty A. Wu-Hsieh
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
17
|
Affiliation(s)
- Cate Speake
- Center for Interventional Immunology and Diabetes Program, Benaroya Research Institute, Seattle, WA, USA
| | - Carla J Greenbaum
- Center for Interventional Immunology and Diabetes Program, Benaroya Research Institute, Seattle, WA, USA.
| |
Collapse
|
18
|
Krechetov SP, Vtorushina VV, Inviyaeva EV, Gorodnova EA, Kolesnik SV, Kudlay DA, Borovikov PI, Krechetova LV, Dolgushina NV, Sukhikh GT. T-Cell Immunity in COVID-19-Recovered Individuals and Individuals Vaccinated with the Combined Vector Vaccine Gam-COVID-Vac. Int J Mol Sci 2023; 24:ijms24031930. [PMID: 36768254 PMCID: PMC9916700 DOI: 10.3390/ijms24031930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023] Open
Abstract
The COVID-19 pandemic has required extensive research on the new coronavirus SARS-CoV-2 and the creation of new highly effective vaccines. The presence of T-cells in the body that respond to virus antigens suggests adequate antiviral immunity. We investigated T-cell immunity in individuals who recovered from mild and moderate COVID-19 and in individuals vaccinated with the Gam-COVID-Vac combined vector vaccine. The ELISPOT method was used to determine the number of T-cells responding with IFN-γ synthesis to stimulation by peptides containing epitopes of the S-protein or N-, M-, ORF3, and ORF7 proteins, using peripheral blood mononuclear cells (PBMCs). At the same time, the multiplex method was used to determine the accumulation of IFN-γ and other cytokines in the culture medium. According to the data obtained, the proportion of positive conclusions about the T-cell immune response to SARS-CoV-2 antigens in control, recovered, and vaccinated individuals was 12%, 70%, and 52%, respectively. At the same time, more than half of the vaccinated individuals with a T-cell response were sensitized to the antigens of N-, M-, ORF3, and ORF7 proteins not produced by Gam-COVID-Vac, indicating a high likelihood of asymptomatic SARS-CoV-2 infection. Increased IFN-γ release by single sensitized T-cells in response to specific stimulation in recovered and vaccinated individuals did not result in the accumulation of this and other cytokines in the culture medium. These findings suggest a balance between cytokine production and utilization by immunocompetent cells as a prerequisite for providing a controlled cytokine signal and avoiding a "cytokine storm".
Collapse
Affiliation(s)
- Sergey Petrovich Krechetov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I., Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Valentina Valentinovna Vtorushina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I., Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Evgenia Vladimirovna Inviyaeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I., Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Elena Aleksandrovna Gorodnova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I., Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Correspondence: ; Tel.: +7-(916)564-77-69
| | - Svetlana Vladimirovna Kolesnik
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I., Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Dmitry Anatolievich Kudlay
- NRC Institute of Immunology FMBA of Russia, 115522 Moscow, Russia
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Pavel Igorevich Borovikov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I., Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Liubov Valentinovna Krechetova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I., Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Nataliya Vitalievna Dolgushina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I., Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Department of Obstetrics, Gynecology, Perinatology and Reproductology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Gennady Tikhonovich Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I., Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Department of Obstetrics, Gynecology, Perinatology and Reproductology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
19
|
Farshbafnadi M, Razi S, Rezaei N. Transplantation. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Ruschig M, Heine PA, Fühner V, Zilkens KJK, Steinke S, Schubert M, Bertoglio F, Hust M. Construction of Human Immune and Naive scFv Phage Display Libraries. Methods Mol Biol 2023; 2702:15-37. [PMID: 37679613 DOI: 10.1007/978-1-0716-3381-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Antibody phage display is a widely used in vitro selection technology for the generation of human recombinant antibodies and has yielded thousands of useful antibodies for research, diagnostics, and therapy. In order to successfully generate antibodies using phage display, the basis is the construction of high-quality antibody gene libraries. Here, we describe detailed methods for the construction of such high-quality immune and naive scFv gene libraries of human origin. These protocols were used to develop human naive (e.g., HAL9/10) and immune libraries, which resulted in thousands of specific antibodies for all kinds of applications.
Collapse
Affiliation(s)
- Maximilian Ruschig
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viola Fühner
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Choose Life Biotech SA, Bellinzona, Switzerland
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
21
|
Wang Y, Yuan W, Guo S, Li Q, Chen X, Li C, Liu Q, Sun L, Chen Z, Yuan Z, Luo C, Chen S, Tong S, Nassal M, Wen YM, Wang YX. A 33-residue peptide tag increases solubility and stability of Escherichia coli produced single-chain antibody fragments. Nat Commun 2022; 13:4614. [PMID: 35941164 PMCID: PMC9359998 DOI: 10.1038/s41467-022-32423-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Single-chain variable fragments (scFvs), composed of variable domains of heavy and light chains of an antibody joined by a linker, share antigen binding capacity with their parental antibody. Due to intrinsically low solubility and stability, only two Escherichia coli-produced scFvs have been approved for therapy. Here we report that a 33-residue peptide, termed P17 tag, increases the solubility of multiple scFvs produced in Escherichia coli SHuffle strain by up to 11.6 fold. Hydrophilic sequence, especially charged residues, but not the predicted α-helical secondary structure of P17 tag, contribute to the solubility enhancement. Notably, the P17 tag elevates the thermostability of scFv as efficiently as intra-domain disulfide bonds. Moreover, a P17-tagged scFv targeting hepatitis B virus surface proteins shows over two-fold higher antigen-binding affinity and virus-neutralizing activity than the untagged version. These data strongly suggest a type I intramolecular chaperone-like activity of the P17 tag. Hence, the P17 tag could benefit the research, production, and application of scFv. Low solubility and stability of Escherichia coli produced single chain variable fragments (scFvs) restrict their applications. Here the authors report a 33-residue peptide tag which simultaneously increases the solubility and thermostability of multiple scFvs produced in Escherichia coli SHuffle strain.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjie Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Siqi Guo
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, Nanchang University, Nanchang, China
| | - Qiqi Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaomei Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qianying Liu
- Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Lei Sun
- Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Zhenguo Chen
- Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Luo
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| | - Shijie Chen
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Shuping Tong
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Michael Nassal
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Yu-Mei Wen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yong-Xiang Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Christen U, Hintermann E. Animal Models for Autoimmune Hepatitis: Are Current Models Good Enough? Front Immunol 2022; 13:898615. [PMID: 35903109 PMCID: PMC9315390 DOI: 10.3389/fimmu.2022.898615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmune liver diseases like autoimmune hepatitis, primary biliary cholangitis, primary sclerosing cholangitis, and IgG4-related cholangitis are chronic inflammatory diseases of the liver with an autoimmune background. The therapy of autoimmune hepatitis targets the autoreactive immune system and is largely dependent on the use of glucocorticoids and cytostatic drugs. In contrast, the treatment of cholestatic autoimmune liver diseases is restricted to the use of secondary or semi-synthetic bile acids, like ursodeoxycholic acid or obeticholic acid. Although the management of the disease using such drugs works well for the majority of patients, many individuals do not respond to standard therapy. In addition, chronic treatment with glucocorticoids results in well-known side effects. Further, the use of bile acids is a symptomatic therapy that has no direct immunomodulatory effect. Thus, there is still a lot of room for improvement. The use of animal models has facilitated to elucidate the pathogenesis of autoimmune liver diseases and many potential target structures for immunomodulatory therapies have been identified. In this review, we will focus on autoimmune hepatitis for which the first animal models have been established five decades ago, but still a precise treatment for autoimmune hepatitis, as obtainable for other autoimmune diseases such as rheumatoid arthritis or multiple sclerosis has yet to be introduced. Thus, the question arises if our animal models are too far from the patient reality and thus findings from the models cannot be reliably translated to the patient. Several factors might be involved in this discrepancy. There is first and foremost the genetic background and the inbred status of the animals that is different from human patients. Here the use of humanized animals, such as transgenic mice, might reduce some of the differences. However, there are other factors, such as housing conditions, nutrition, and the microbiome that might also play an important role. This review will predominantly focus on the current status of animal models for autoimmune hepatitis and the possible ways to overcome discrepancies between model and patient.
Collapse
|
23
|
Zhou C, Wang C, Xu K, Niu Z, Zou S, Zhang D, Qian Z, Liao J, Xie J. Hydrogel platform with tunable stiffness based on magnetic nanoparticles cross-linked GelMA for cartilage regeneration and its intrinsic biomechanism. Bioact Mater 2022; 25:615-628. [PMID: 37056264 PMCID: PMC10087085 DOI: 10.1016/j.bioactmat.2022.07.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/02/2022] Open
Abstract
Cartilage injury affects numerous individuals, but the efficient repair of damaged cartilage is still a problem in clinic. Hydrogel is a potent scaffold candidate for tissue regeneration, but it remains a big challenge to improve its mechanical property and figure out the interaction of chondrocytes and stiffness. Herein, a novel hybrid hydrogel with tunable stiffness was fabricated based on methacrylated gelatin (GelMA) and iron oxide nanoparticles (Fe2O3) through chemical bonding. The stiffness of Fe2O3/GelMA hybrid hydrogel was controlled by adjusting the concentration of magnetic nanoparticles. The hydrogel platform with tunable stiffness modulated its cellular properties including cell morphology, microfilaments and Young's modulus of chondrocytes. Interestingly, Fe2O3/GelMA hybrid hydrogel promoted oxidative phosphorylation of mitochondria and facilitated catabolism of lipids in chondrocytes. As a result, more ATP and metabolic materials generated for cellular physiological activities and organelle component replacements in hybrid hydrogel group compared to pure GelMA hydrogel. Furthermore, implantation of Fe2O3/GelMA hybrid hydrogel in the cartilage defect rat model verified its remodeling potential. This study provides a deep understanding of the bio-mechanism of Fe2O3/GelMA hybrid hydrogel interaction with chondrocytes and indicates the hydrogel platform for further application in tissue engineering.
Collapse
|
24
|
Van Simaeys D, De La Fuente A, Zilio S, Zoso A, Kuznetsova V, Alcazar O, Buchwald P, Grilli A, Caroli J, Bicciato S, Serafini P. RNA aptamers specific for transmembrane p24 trafficking protein 6 and Clusterin for the targeted delivery of imaging reagents and RNA therapeutics to human β cells. Nat Commun 2022; 13:1815. [PMID: 35383192 PMCID: PMC8983715 DOI: 10.1038/s41467-022-29377-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
The ability to detect and target β cells in vivo can substantially refine how diabetes is studied and treated. However, the lack of specific probes still hampers a precise characterization of human β cell mass and the delivery of therapeutics in clinical settings. Here, we report the identification of two RNA aptamers that specifically and selectively recognize mouse and human β cells. The putative targets of the two aptamers are transmembrane p24 trafficking protein 6 (TMED6) and clusterin (CLUS). When given systemically in immune deficient mice, these aptamers recognize the human islet graft producing a fluorescent signal proportional to the number of human islets transplanted. These aptamers cross-react with endogenous mouse β cells and allow monitoring the rejection of mouse islet allografts. Finally, once conjugated to saRNA specific for X-linked inhibitor of apoptosis (XIAP), they can efficiently transfect non-dissociated human islets, prevent early graft loss, and improve the efficacy of human islet transplantation in immunodeficient in mice.
Collapse
Affiliation(s)
- Dimitri Van Simaeys
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Adriana De La Fuente
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Serena Zilio
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Alessia Zoso
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Victoria Kuznetsova
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Oscar Alcazar
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Andrea Grilli
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jimmy Caroli
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvio Bicciato
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Paolo Serafini
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA. .,Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA. .,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
25
|
Thomas OS, Rebmann B, Tonn M, Schirmeister IC, Wehrle S, Becker J, Zea Jimenez GJ, Hook S, Jäger S, Klenzendorf M, Laskowski M, Kaier A, Pütz G, Zurbriggen MD, Weber W, Hörner M, Wagner HJ. Reversible Shielding and Immobilization of Liposomes and Viral Vectors by Tailored Antibody-Ligand Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105157. [PMID: 34859962 DOI: 10.1002/smll.202105157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Controlling the time and dose of nanoparticulate drug delivery by administration of small molecule drugs holds promise for efficient and safer therapies. This study describes a versatile approach of exploiting antibody-ligand interactions for the design of small molecule-responsive nanocarrier and nanocomposite systems. For this purpose, antibody fragments (scFvs) specific for two distinct small molecule ligands are designed. Subsequently, the surface of nanoparticles (liposomes or adeno-associated viral vectors, AAVs) is modified with these ligands, serving as anchor points for scFv binding. By modifying the scFvs with polymer tails, they can act as a non-covalently bound shielding layer, which is recruited to the anchor points on the nanoparticle surface and prevents interactions with cultured mammalian cells. Administration of an excess of the respective ligand triggers competitive displacement of the shielding layer from the nanoparticle surface and restores nanoparticle-cell interactions. The same principle is applied for developing hydrogel depots that can release integrated AAVs or liposomes in response to small molecule ligands. The liberated nanoparticles subsequently deliver their cargoes to cells. In summary, the utilization of different antibody-ligand interactions, different nanoparticles, and different release systems validates the versatility of the design concept described herein.
Collapse
Affiliation(s)
- Oliver S Thomas
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| | - Balder Rebmann
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Matthias Tonn
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Ivo C Schirmeister
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Sarah Wehrle
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Jan Becker
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Gabriel J Zea Jimenez
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Sebastian Hook
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Sarah Jäger
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Melissa Klenzendorf
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Mateo Laskowski
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Alexander Kaier
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Gerhard Pütz
- University Medical Center Freiburg, Institute for Clinical Chemistry, 79106, Freiburg, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Wilfried Weber
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| | - Maximilian Hörner
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Hanna J Wagner
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
- Department of Biosystems Science and Engineering - D-BSSE, ETH Zurich, Basel, 4058, Switzerland
| |
Collapse
|
26
|
IκBζ controls IL-17-triggered gene expression program in intestinal epithelial cells that restricts colonization of SFB and prevents Th17-associated pathologies. Mucosal Immunol 2022; 15:1321-1337. [PMID: 35999460 PMCID: PMC9705257 DOI: 10.1038/s41385-022-00554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023]
Abstract
Control of gut microbes is crucial for not only local defense in the intestine but also proper systemic immune responses. Although intestinal epithelial cells (IECs) play important roles in cytokine-mediated control of enterobacteria, the underlying mechanisms are not fully understood. Here we show that deletion of IκBζ in IECs in mice leads to dysbiosis with marked expansion of segmented filamentous bacteria (SFB), thereby enhancing Th17 cell development and exacerbating inflammatory diseases. Mechanistically, the IκBζ deficiency results in decrease in the number of Paneth cells and impairment in expression of IL-17-inducible genes involved in IgA production. The decrease in Paneth cells is caused by aberrant activation of IFN-γ signaling and a failure of IL-17-dependent recovery from IFN-γ-induced damage. Thus, the IL-17R-IκBζ axis in IECs contributes to the maintenance of intestinal homeostasis by serving as a key component in a regulatory loop between the gut microbiota and immune cells.
Collapse
|
27
|
Van Lent J, Breukers J, Ven K, Ampofo L, Horta S, Pollet F, Imbrechts M, Geukens N, Vanhoorelbeke K, Declerck P, Lammertyn J. Miniaturized single-cell technologies for monoclonal antibody discovery. LAB ON A CHIP 2021; 21:3627-3654. [PMID: 34505611 DOI: 10.1039/d1lc00243k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antibodies (Abs) are among the most important class of biologicals, showcasing a high therapeutic and diagnostic value. In the global therapeutic Ab market, fully-human monoclonal Abs (FH-mAbs) are flourishing thanks to their low immunogenicity and high specificity. The rapidly emerging field of single-cell technologies has paved the way to efficiently discover mAbs by facilitating a fast screening of the antigen (Ag)-specificity and functionality of Abs expressed by B cells. This review summarizes the principles and challenges of the four key concepts to discover mAbs using these technologies, being confinement of single cells using either droplet microfluidics or microstructure arrays, identification of the cells of interest, retrieval of those cells and single-cell sequence determination required for mAb production. This review reveals the enormous potential for mix-and-matching of the above-mentioned strategies, which is illustrated by the plethora of established, highly integrated devices. Lastly, an outlook is given on the many opportunities and challenges that still lie ahead to fully exploit miniaturized single-cell technologies for mAb discovery.
Collapse
Affiliation(s)
- Julie Van Lent
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Jolien Breukers
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Karen Ven
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Louanne Ampofo
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, Leuven 3000, Belgium
| | - Sara Horta
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk 8500, Belgium
| | - Francesca Pollet
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Maya Imbrechts
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, Leuven 3000, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Leuven 3000, Belgium
| | - Nick Geukens
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Leuven 3000, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk 8500, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Leuven 3000, Belgium
| | - Paul Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, Leuven 3000, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Leuven 3000, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| |
Collapse
|
28
|
Shi Z, Li Y, Jaberi-Douraki M. Hybrid computational modeling demonstrates the utility of simulating complex cellular networks in type 1 diabetes. PLoS Comput Biol 2021; 17:e1009413. [PMID: 34570760 PMCID: PMC8496846 DOI: 10.1371/journal.pcbi.1009413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 10/07/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022] Open
Abstract
Persistent destruction of pancreatic β-cells in type 1 diabetes (T1D) results from multifaceted pancreatic cellular interactions in various phase progressions. Owing to the inherent heterogeneity of coupled nonlinear systems, computational modeling based on T1D etiology help achieve a systematic understanding of biological processes and T1D health outcomes. The main challenge is to design such a reliable framework to analyze the highly orchestrated biology of T1D based on the knowledge of cellular networks and biological parameters. We constructed a novel hybrid in-silico computational model to unravel T1D onset, progression, and prevention in a non-obese-diabetic mouse model. The computational approach that integrates mathematical modeling, agent-based modeling, and advanced statistical methods allows for modeling key biological parameters and time-dependent spatial networks of cell behaviors. By integrating interactions between multiple cell types, model results captured the individual-specific dynamics of T1D progression and were validated against experimental data for the number of infiltrating CD8+T-cells. Our simulation results uncovered the correlation between five auto-destructive mechanisms identifying a combination of potential therapeutic strategies: the average lifespan of cytotoxic CD8+T-cells in islets; the initial number of apoptotic β-cells; recruitment rate of dendritic-cells (DCs); binding sites on DCs for naïve CD8+T-cells; and time required for DCs movement. Results from therapy-directed simulations further suggest the efficacy of proposed therapeutic strategies depends upon the type and time of administering therapy interventions and the administered amount of therapeutic dose. Our findings show modeling immunogenicity that underlies autoimmune T1D and identifying autoantigens that serve as potential biomarkers are two pressing parameters to predict disease onset and progression.
Collapse
Affiliation(s)
- Zhenzhen Shi
- 1DATA Consortium, Kansas State University Olathe, Olathe, Kansas, United States of America
- Department of Mathematics, Kansas State University, Manhattan, Kansas, United States of America
| | - Yang Li
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Science, Shenzhen, China
| | - Majid Jaberi-Douraki
- 1DATA Consortium, Kansas State University Olathe, Olathe, Kansas, United States of America
- Department of Mathematics, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
29
|
Bluestone JA, Buckner JH, Herold KC. Immunotherapy: Building a bridge to a cure for type 1 diabetes. Science 2021; 373:510-516. [PMID: 34326232 DOI: 10.1126/science.abh1654] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which T cells attack and destroy the insulin-producing β cells in the pancreatic islets. Genetic and environmental factors increase T1D risk by compromising immune homeostasis. Although the discovery and use of insulin have transformed T1D treatment, insulin therapy does not change the underlying disease or fully prevent complications. Over the past two decades, research has identified multiple immune cell types and soluble factors that destroy insulin-producing β cells. These insights into disease pathogenesis have enabled the development of therapies to prevent and modify T1D. In this review, we highlight the key events that initiate and sustain pancreatic islet inflammation in T1D, the current state of the immunological therapies, and their advantages for the treatment of T1D.
Collapse
Affiliation(s)
- Jeffrey A Bluestone
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute (BRI) at Virginia Mason, Seattle, WA, USA.,Department of Immunology, University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Kevan C Herold
- Department of Immunobiology and Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
30
|
Clark M, Kroger CJ, Ke Q, Zhang R, Statum K, Milner JJ, Martin AJ, Wang B, Tisch R. Coreceptor therapy has distinct short- and long-term tolerogenic effects intrinsic to autoreactive effector T cells. JCI Insight 2021; 6:e149130. [PMID: 34314385 PMCID: PMC8492310 DOI: 10.1172/jci.insight.149130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Immunotherapies are needed in the clinic that effectively suppress beta cell autoimmunity and reestablish long-term self-tolerance in type 1 diabetes. We previously demonstrated that nondepleting αCD4 and αCD8α antibodies establish rapid and indefinite remission in recent-onset diabetic NOD mice. Diabetes reversal by coreceptor therapy (CoRT) is induced by suppression of pathogenic effector T cells (Teff) and the selective egress of T cells from the pancreatic lymph nodes and islets that remain free of infiltration long-term. Here, we defined CoRT-induced events regulating early Teff function and pancreatic residency, and long-term tolerance. TCR-driven gene expression controlling autoreactive Teff expansion and proinflammatory activity was suppressed by CoRT, and islet T cell egress was sphingosine-1 phosphate-dependent. In both murine and human T cells, CoRT upregulated the Foxo1 transcriptional axis, which in turn was required for suppression and efficient pancreatic egress of Teff. Interestingly, long-term tolerance induced in late-preclinical NOD mice was marked by reseeding of the pancreas by a reduced CD8+ Teff pool exhibiting an exhausted phenotype. Notably, PD-1 blockade, which rescues exhausted Teff, resulted in diabetes onset in protected animals. These findings demonstrate that CoRT has distinct intrinsic effects on Teff that impact events early in induction and later in maintenance of self-tolerance.
Collapse
Affiliation(s)
- Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Rui Zhang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Karen Statum
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - J Justin Milner
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Aaron J Martin
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Bo Wang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Roland Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| |
Collapse
|
31
|
Roth KDR, Wenzel EV, Ruschig M, Steinke S, Langreder N, Heine PA, Schneider KT, Ballmann R, Fühner V, Kuhn P, Schirrmann T, Frenzel A, Dübel S, Schubert M, Moreira GMSG, Bertoglio F, Russo G, Hust M. Developing Recombinant Antibodies by Phage Display Against Infectious Diseases and Toxins for Diagnostics and Therapy. Front Cell Infect Microbiol 2021; 11:697876. [PMID: 34307196 PMCID: PMC8294040 DOI: 10.3389/fcimb.2021.697876] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select in vivo affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Kristian Daniel Ralph Roth
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Esther Veronika Wenzel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Maximilian Ruschig
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kai-Thomas Schneider
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viola Fühner
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | - Stefan Dübel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulio Russo
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| |
Collapse
|
32
|
Wagner HJ, Weber W, Fussenegger M. Synthetic Biology: Emerging Concepts to Design and Advance Adeno-Associated Viral Vectors for Gene Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004018. [PMID: 33977059 PMCID: PMC8097373 DOI: 10.1002/advs.202004018] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/18/2020] [Indexed: 05/28/2023]
Abstract
Three recent approvals and over 100 ongoing clinical trials make adeno-associated virus (AAV)-based vectors the leading gene delivery vehicles in gene therapy. Pharmaceutical companies are investing in this small and nonpathogenic gene shuttle to increase the therapeutic portfolios within the coming years. This prospect of marking a new era in gene therapy has fostered both investigations of the fundamental AAV biology as well as engineering studies to enhance delivery vehicles. Driven by the high clinical potential, a new generation of synthetic-biologically engineered AAV vectors is on the rise. Concepts from synthetic biology enable the control and fine-tuning of vector function at different stages of cellular transduction and gene expression. It is anticipated that the emerging field of synthetic-biologically engineered AAV vectors can shape future gene therapeutic approaches and thus the design of tomorrow's gene delivery vectors. This review describes and discusses the recent trends in capsid and vector genome engineering, with particular emphasis on synthetic-biological approaches.
Collapse
Affiliation(s)
- Hanna J. Wagner
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26Basel4058Switzerland
- Faculty of BiologyUniversity of FreiburgSchänzlestraße 1Freiburg79104Germany
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 18Freiburg79104Germany
| | - Wilfried Weber
- Faculty of BiologyUniversity of FreiburgSchänzlestraße 1Freiburg79104Germany
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 18Freiburg79104Germany
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26Basel4058Switzerland
- Faculty of ScienceUniversity of BaselKlingelbergstrasse 50Basel4056Switzerland
| |
Collapse
|
33
|
Ke Q, Kroger CJ, Clark M, Tisch RM. Evolving Antibody Therapies for the Treatment of Type 1 Diabetes. Front Immunol 2021; 11:624568. [PMID: 33679717 PMCID: PMC7930374 DOI: 10.3389/fimmu.2020.624568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/31/2020] [Indexed: 12/24/2022] Open
Abstract
Type 1 diabetes (T1D) is widely considered to be a T cell driven autoimmune disease resulting in reduced insulin production due to dysfunction/destruction of pancreatic β cells. Currently, there continues to be a need for immunotherapies that selectively reestablish persistent β cell-specific self-tolerance for the prevention and remission of T1D in the clinic. The utilization of monoclonal antibodies (mAb) is one strategy to target specific immune cell populations inducing autoimmune-driven pathology. Several mAb have proven to be clinically safe and exhibit varying degrees of efficacy in modulating autoimmunity, including T1D. Traditionally, mAb therapies have been used to deplete a targeted cell population regardless of antigenic specificity. However, this treatment strategy can prove detrimental resulting in the loss of acquired protective immunity. Nondepleting mAb have also been applied to modulate the function of immune effector cells. Recent studies have begun to define novel mechanisms associated with mAb-based immunotherapy that alter the function of targeted effector cell pools. These results suggest short course mAb therapies may have persistent effects for regaining and maintaining self-tolerance. Furthermore, the flexibility to manipulate mAb properties permits the development of novel strategies to target multiple antigens and/or deliver therapeutic drugs by a single mAb molecule. Here, we discuss current and potential future therapeutic mAb treatment strategies for T1D, and T cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
34
|
Matas‐Céspedes A, Brown L, Mahbubani KT, Bareham B, Higgins J, Curran M, de Haan L, Lapointe J, Stebbings R, Saeb‐Parsy K. Use of human splenocytes in an innovative humanised mouse model for prediction of immunotherapy-induced cytokine release syndrome. Clin Transl Immunology 2020; 9:e1202. [PMID: 33173582 PMCID: PMC7641894 DOI: 10.1002/cti2.1202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/09/2020] [Accepted: 10/06/2020] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES Humanised mice have emerged as valuable models for pre-clinical testing of the safety and efficacy of immunotherapies. Given the variety of models available, selection of the most appropriate humanised mouse model is critical in study design. Here, we aimed to develop a model for predicting cytokine release syndrome (CRS) while minimising graft-versus-host disease (GvHD). METHODS To overcome donor-induced variation, we directly compared the in vitro and in vivo immune phenotype of immunodeficient NSG mice reconstituted with human bone marrow (BM) CD34+ haematopoietic stem cells (HSCs), peripheral blood mononuclear cells (PBMCs) or spleen mononuclear cells (SPMCs) from the same human donors. SPMC engraftment in NSG-dKO mice, which lack MHC class I and II, was also evaluated as a strategy to limit GvHD. Another group of mice was engrafted with umbilical cord blood (UCB) CD34+ HSCs. Induction of CRS in vivo was investigated upon administration of the anti-CD3 monoclonal antibody OKT3. RESULTS PBMC- and SPMC-reconstituted NSG mice showed short-term survival, with engrafted human T cells exhibiting mostly an effector memory phenotype. Survival in SPMC-reconstituted NSG-dKO mice was significantly longer. Conversely, both BM and UCB-HSC models showed longer survival, without demonstrable GvHD and a more naïve T-cell phenotype. PBMC- and SPMC-reconstituted mice, but not BM-HSC or UCB-HSC mice, experienced severe clinical signs of CRS upon administration of OKT3. CONCLUSION PBMC- and SPMC-reconstituted NSG mice better predict OKT3-mediated CRS. The SPMC model allows generation of large experimental groups, and the use of NSG-dKO mice mitigates the limitation of early GvHD.
Collapse
Affiliation(s)
- Alba Matas‐Céspedes
- Clinical Pharmacology and Safety SciencesR&DAstraZenecaCambridgeUK
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| | - Lee Brown
- Clinical Pharmacology and Safety SciencesR&DAstraZenecaCambridgeUK
| | - Krishnaa T Mahbubani
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| | - Bethany Bareham
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| | - Jackie Higgins
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| | - Michelle Curran
- Clinical Pharmacology and Safety SciencesR&DAstraZenecaCambridgeUK
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| | - Lolke de Haan
- Clinical Pharmacology and Safety SciencesR&DAstraZenecaCambridgeUK
- Present address:
ADC TherapeuticsLondonUK
| | | | | | - Kourosh Saeb‐Parsy
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| |
Collapse
|
35
|
|
36
|
Brovkina O, Dashinimaev E. Advances and complications of regenerative medicine in diabetes therapy. PeerJ 2020; 8:e9746. [PMID: 33194345 PMCID: PMC7485501 DOI: 10.7717/peerj.9746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/27/2020] [Indexed: 12/23/2022] Open
Abstract
The rapid development of technologies in regenerative medicine indicates clearly that their common application is not a matter of if, but of when. However, the regeneration of beta-cells for diabetes patients remains a complex challenge due to the plurality of related problems. Indeed, the generation of beta-cells masses expressing marker genes is only a first step, with maintaining permanent insulin secretion, their protection from the immune system and avoiding pathological modifications in the genome being the necessary next developments. The prospects of regenerative medicine in diabetes therapy were promoted by the emergence of promising results with embryonic stem cells (ESCs). Their pluripotency and proliferation in an undifferentiated state during culture have ensured the success of ESCs in regenerative medicine. The discovery of induced pluripotent stem cells (iPSCs) derived from the patients’ own mesenchymal cells has provided further hope for diabetes treatment. Nonetheless, the use of stem cells has significant limitations related to the pluripotent stage, such as the risk of development of teratomas. Thus, the direct conversion of mature cells into beta-cells could address this issue. Recent studies have shown the possibility of such transdifferentiation and have set trends for regeneration medicine, directed at minimizing genome modifications and invasive procedures. In this review, we will discuss the published results of beta-cell regeneration and the advantages and disadvantages illustrated by these experiments.
Collapse
Affiliation(s)
- Olga Brovkina
- Federal Research Clinical Center for Specialized Types of Health Care and Medical Technologies of Federal Medical and Biology Agency, Moscow, Russia
| | - Erdem Dashinimaev
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
37
|
Rosenzwajg M, Salet R, Lorenzon R, Tchitchek N, Roux A, Bernard C, Carel JC, Storey C, Polak M, Beltrand J, Amouyal C, Hartemann A, Corbeau P, Vicaut E, Bibal C, Bougnères P, Tran TA, Klatzmann D. Low-dose IL-2 in children with recently diagnosed type 1 diabetes: a Phase I/II randomised, double-blind, placebo-controlled, dose-finding study. Diabetologia 2020; 63:1808-1821. [PMID: 32607749 DOI: 10.1007/s00125-020-05200-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS Low-dose IL-2 (ld-IL2) selectively activates and expands regulatory T cells (Tregs) and thus has the potential to skew the regulatory/effector T (Treg/Teff) cell balance towards improved regulation. We investigated which low doses of IL-2 would more effectively and safely activate Tregs during a 1 year treatment in children with recently diagnosed type 1 diabetes. METHODS Dose Finding Study of IL-2 at Ultra-low Dose in Children With Recently Diagnosed Type 1 Diabetes (DF-IL2-Child) was a multicentre, double-blinded, placebo-controlled, dose-finding Phase I/II clinical trial conducted in four centres at university hospitals in France: 24 children (7-14 years old) with type 1 diabetes diagnosed within the previous 3 months were randomly assigned 1:1:1:1 to treatment by a centralised randomisation system, leading to a 7/5/6/6 patient distribution of placebo or IL-2 at doses of 0.125, 0.250 or 0.500 million international units (MIU)/m2, given daily for a 5 day course and then fortnightly for 1 year. A study number was attributed to patients by an investigator unaware of the randomisation list and all participants as well as investigators and staff involved in the study conduct and analyses were blinded to treatments. The primary outcome was change in Tregs, expressed as a percentage of CD4+ T cells at day 5. It pre-specified that a ≥60% increase in Tregs from baseline would identify Treg high responders. RESULTS There were no serious adverse events. Non-serious adverse events (NSAEs) were transient and mild to moderate. In treated patients vs placebo, the commonest NSAE was injection site reaction (37.9% vs 3.4%), whereas other NSAEs were at the same level (23.3% vs 19.2%). ld-IL2 induced a dose-dependent increase in the mean proportion of Tregs, from 23.9% (95% CI -11.8, 59.6) at the lowest to 77.2% (44.7, 109.8) at the highest dose, which was significantly different from placebo for all dose groups. However, the individual Treg responses to IL-2 were variable and fluctuated over time. Seven patients, all among those treated with the 0.250 and 0.500 MIU m-2 day-1 doses, were Treg high responders. At baseline, they had lower Treg proportions in CD4+ cells than Treg low responders, and serum soluble IL-2 receptor α (sIL-2RA) and vascular endothelial growth factor receptor 2 (VEGFR2) levels predicted the Treg response after the 5 day course. There was no significant change in glycaemic control in any of the dose groups compared with placebo. However, there was an improved maintenance of induced C-peptide production at 1 year in the seven Treg high responders as compared with low responders. CONCLUSIONS/INTERPRETATION The safety profile at all doses, the dose-dependent effects on Tregs and the observed variability of the Treg response to ld-IL2 in children with newly diagnosed type 1 diabetes call for use of the highest dose in future developments. The better preservation of insulin production in Treg high responders supports the potential of Tregs in regulating autoimmunity in type 1 diabetes, and warrants pursuing the investigation of ld-IL2 for its treatment and prevention. TRIAL REGISTRATION ClinicalTrials.gov NCT01862120. FUNDING Assistance Publique-Hôpitaux de Paris, Investissements d'Avenir programme (ANR-11-IDEX-0004-02, LabEx Transimmunom and ANR-16-RHUS-0001, RHU iMAP) and European Research Council Advanced Grant (FP7-IDEAS-ERC-322856, TRiPoD).
Collapse
Affiliation(s)
- Michelle Rosenzwajg
- Clinical Investigation Center for Biotherapies and Inflammation-Immunopathology-Biotherapy Department (i2B), AP-HP.Sorbonne Université, Pitié-Salpêtrière Hospital, 83 Bd de l'Hôpital, F-75013, Paris, France
- UMR_S 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université and Inserm, Paris, France
| | - Randa Salet
- Department of Paediatrics, Nîmes University Hospital and Inserm U1183, Montpellier University, Montpellier, France
| | - Roberta Lorenzon
- Clinical Investigation Center for Biotherapies and Inflammation-Immunopathology-Biotherapy Department (i2B), AP-HP.Sorbonne Université, Pitié-Salpêtrière Hospital, 83 Bd de l'Hôpital, F-75013, Paris, France
- UMR_S 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université and Inserm, Paris, France
| | - Nicolas Tchitchek
- Clinical Investigation Center for Biotherapies and Inflammation-Immunopathology-Biotherapy Department (i2B), AP-HP.Sorbonne Université, Pitié-Salpêtrière Hospital, 83 Bd de l'Hôpital, F-75013, Paris, France
- UMR_S 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université and Inserm, Paris, France
| | - Alexandra Roux
- Clinical Investigation Center for Biotherapies and Inflammation-Immunopathology-Biotherapy Department (i2B), AP-HP.Sorbonne Université, Pitié-Salpêtrière Hospital, 83 Bd de l'Hôpital, F-75013, Paris, France
- UMR_S 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université and Inserm, Paris, France
| | - Claude Bernard
- Clinical Investigation Center for Biotherapies and Inflammation-Immunopathology-Biotherapy Department (i2B), AP-HP.Sorbonne Université, Pitié-Salpêtrière Hospital, 83 Bd de l'Hôpital, F-75013, Paris, France
- UMR_S 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université and Inserm, Paris, France
| | - Jean-Claude Carel
- Department of Paediatric Endocrinology and Diabetology, and Centre de Référence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité, Robert-Debré Hospital, AP-HP Nord-Université de Paris Diderot & UFR de Médecine Paris Diderot, Paris, France
| | - Caroline Storey
- Department of Paediatric Endocrinology and Diabetology, and Centre de Référence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité, Robert-Debré Hospital, AP-HP Nord-Université de Paris Diderot & UFR de Médecine Paris Diderot, Paris, France
| | - Michel Polak
- Department of Paediatric Endocrinology, Gynecology and Diabetology, and Centre de Référence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité, Necker Enfants Malades Hospital, AP-HP.Centre & Université de Paris, UFR de Médecine Paris Descartes, Paris, France
| | - Jacques Beltrand
- Department of Paediatric Endocrinology, Gynecology and Diabetology, and Centre de Référence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité, Necker Enfants Malades Hospital, AP-HP.Centre & Université de Paris, UFR de Médecine Paris Descartes, Paris, France
| | - Chloé Amouyal
- Department of Diabetology, Pitié-Salpêtrière Hospital, AP-HP. Sorbonne Université, Paris, France
| | - Agnès Hartemann
- Department of Diabetology, Pitié-Salpêtrière Hospital, AP-HP. Sorbonne Université, Paris, France
| | - Pierre Corbeau
- Immunology Department, Nîmes University Hospital, Nîmes, France
| | - Eric Vicaut
- Lariboisière Hospital, Clinical Trial Unit, AP-HP.Nord, Paris, France
| | - Cecile Bibal
- Department of Paediatric Endocrinology, Bicêtre Hospital, AP-HP.Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - Pierre Bougnères
- Department of Paediatric Endocrinology, Bicêtre Hospital, AP-HP.Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - Tu-Anh Tran
- Department of Paediatrics, Nîmes University Hospital and Inserm U1183, Montpellier University, Montpellier, France
| | - David Klatzmann
- Clinical Investigation Center for Biotherapies and Inflammation-Immunopathology-Biotherapy Department (i2B), AP-HP.Sorbonne Université, Pitié-Salpêtrière Hospital, 83 Bd de l'Hôpital, F-75013, Paris, France.
- UMR_S 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université and Inserm, Paris, France.
| |
Collapse
|
38
|
Xu H, Agalioti T, Zhao J, Steglich B, Wahib R, Vesely MCA, Bielecki P, Bailis W, Jackson R, Perez D, Izbicki J, Licona-Limón P, Kaartinen V, Geginat J, Esplugues E, Tolosa E, Huber S, Flavell RA, Gagliani N. The induction and function of the anti-inflammatory fate of T H17 cells. Nat Commun 2020; 11:3334. [PMID: 32620760 PMCID: PMC7335205 DOI: 10.1038/s41467-020-17097-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 06/11/2020] [Indexed: 01/19/2023] Open
Abstract
TH17 cells exemplify environmental immune adaptation: they can acquire both a pathogenic and an anti-inflammatory fate. However, it is not known whether the anti-inflammatory fate is merely a vestigial trait, or whether it serves to preserve the integrity of the host tissues. Here we show that the capacity of TH17 cells to acquire an anti-inflammatory fate is necessary to sustain immunological tolerance, yet it impairs immune protection against S. aureus. Additionally, we find that TGF-β signalling via Smad3/Smad4 is sufficient for the expression of the anti-inflammatory cytokine, IL-10, in TH17 cells. Our data thus indicate a key function of TH17 cell plasticity in maintaining immune homeostasis, and dissect the molecular mechanisms explaining the functional flexibility of TH17 cells with regard to environmental changes. CD4+ T helper cells producing IL-17A (TH17 cells) can take on pathogenic or anti-inflammatory functions in context-specific manners. Here the authors show that the anti-inflammatory fate of TH17 cells contributes, via TGF-β signaling and induction of IL-10, to host immune tolerance, but also simultaneously dampens protective immunity against S. aureus.
Collapse
Affiliation(s)
- Hao Xu
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Theodora Agalioti
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jun Zhao
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Babett Steglich
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ramez Wahib
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | | | - Piotr Bielecki
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Will Bailis
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Ruaidhri Jackson
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Daniel Perez
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jakob Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, D.F, México
| | - Vesa Kaartinen
- Biologic and Material Sciences, University of Michigan, 1011N. University Ave, Ann Arbor, MI, 48109, USA
| | - Jens Geginat
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy.,Department of Clinical Sciences and Community Health, Università degli studi di Milano, Milan, Italy
| | - Enric Esplugues
- Laboratory of Molecular and Cellular Immunology, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Eva Tolosa
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Richard A Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA. .,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany. .,I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany. .,Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden.
| |
Collapse
|
39
|
Christen U, Kimmel R. Chemokines as Drivers of the Autoimmune Destruction in Type 1 Diabetes: Opportunity for Therapeutic Intervention in Consideration of an Optimal Treatment Schedule. Front Endocrinol (Lausanne) 2020; 11:591083. [PMID: 33193102 PMCID: PMC7604482 DOI: 10.3389/fendo.2020.591083] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes (T1D) is mainly precipitated by the destruction of insulin-producing β-cells in the pancreatic islets of Langerhans by autoaggressive T cells. The etiology of the disease is still not clear, but besides genetic predisposition the exposure to environmental triggers seems to play a major role. Virus infection of islets has been demonstrated in biopsies of T1D patients, but there is still no firm proof that such an infection indeed results in islet-specific autoimmunity. However, virus infection results in a local inflammation with expression of inflammatory factors, such as cytokines and chemokines that attract and activate immune cells, including potential autoreactive T cells. Many chemokines have been found to be elevated in the serum and expressed by islet cells of T1D patients. In mouse models, it has been demonstrated that β-cells express chemokines involved in the initial recruitment of immune cells to the islets. The bulk load of chemokines is however released by the infiltrating immune cells that also express multiple chemokine receptors. The result is a mutual attraction of antigen-presenting cells and effector immune cells in the local islet microenvironment. Although there is a considerable redundancy within the chemokine ligand-receptor network, a few chemokines, such as CXCL10, seem to play a key role in the T1D pathogenesis. Studies with neutralizing antibodies and investigations in chemokine-deficient mice demonstrated that interfering with certain chemokine ligand-receptor axes might also ameliorate human T1D. However, one important aspect of such a treatment is the time of administration. Blockade of the recruitment of immune cells to the site of autoimmune destruction might not be effective when the disease process is already ongoing. By that time, autoaggressive cells have already arrived in the islet microenvironment and a blockade of migration might even hold them in place leading to accelerated destruction. Thus, an anti-chemokine therapy makes most sense in situations where the cells have not yet migrated to the islets. Such situations include treatment of patients at risk already carrying islet-antigen autoantibodies but are not yet diabetic, islet transplantation recipients, and patients that have undergone a T cell reset as occurring after anti-CD3 antibody treatment.
Collapse
|
40
|
JunB plays a crucial role in development of regulatory T cells by promoting IL-2 signaling. Mucosal Immunol 2019; 12:1104-1117. [PMID: 31285535 DOI: 10.1038/s41385-019-0182-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 05/18/2019] [Accepted: 06/06/2019] [Indexed: 02/04/2023]
Abstract
The AP-1 transcription factor JunB plays crucial roles in multiple biological processes, including placental formation and bone homeostasis. We recently reported that JunB is essential for development of Th17 cells, and thus Junb-deficient mice are resistant to experimental autoimmune encephalomyelitis. However, the role of JunB in CD4+ T cells under other inflammatory disease conditions is unknown. Here we show that mice lacking JunB in CD4+ T cells (Junbfl/flCd4-Cre mice) were more susceptible to dextran sulfate sodium (DSS)-induced colitis because of impaired development of regulatory T (Treg) cells. Production of interleukin (IL)-2 and expression of CD25, a high affinity IL-2 receptor component, were decreased in Junb-deficient CD4+ T cells in vitro and in vivo. Naive CD4+ T cells from Junbfl/flCd4-Cre mice failed to differentiate into Treg cells in the absence of exogenously added IL-2 in vitro. A mixed bone marrow transfer experiment revealed that defective Treg development of Junb-deficient CD4+ T cells was not rescued by co-transferred wild-type cells, indicating a significance of the cell-intrinsic defect. Injection of IL-2-anti-IL-2 antibody complexes induced expansion of Treg cells and alleviated DSS-induced colitis in Junbfl/flCd4-Cre mice. Thus JunB plays a crucial role in the development of Treg cells by facilitating IL-2 signaling.
Collapse
|
41
|
|
42
|
Gene expression profile of human T cells following a single stimulation of peripheral blood mononuclear cells with anti-CD3 antibodies. BMC Genomics 2019; 20:593. [PMID: 31324145 PMCID: PMC6642599 DOI: 10.1186/s12864-019-5967-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/11/2019] [Indexed: 01/24/2023] Open
Abstract
Background Anti-CD3 immunotherapy was initially approved for clinical use for renal transplantation rejection prevention. Subsequently, new generations of anti-CD3 antibodies have entered clinical trials for a broader spectrum of therapeutic applications, including cancer and autoimmune diseases. Despite their extensive use, little is known about the exact mechanism of these molecules, except that they are able to activate T cells, inducing an overall immunoregulatory and tolerogenic behavior. To better understand the effects of anti-CD3 antibodies on human T cells, PBMCs were stimulated, and then, we performed RNA-seq assays of enriched T cells to assess changes in their gene expression profiles. In this study, three different anti-CD3 antibodies were used for the stimulation: two recombinant antibody fragments, namely, a humanized and a chimeric FvFc molecule, and the prototype mouse mAb OKT3. Results Gene Ontology categories and individual immunoregulatory markers were compared, suggesting a similarity in modulated gene sets, mainly those for immunoregulatory and inflammatory terms. Upregulation of interleukin receptors, such as IL2RA, IL1R, IL12RB2, IL18R1, IL21R and IL23R, and of inhibitory molecules, such as FOXP3, CTLA4, TNFRSF18, LAG3 and PDCD1, were also observed, suggesting an inhibitory and exhausted phenotype. Conclusions We used a deep transcriptome sequencing method for comparing three anti-CD3 antibodies in terms of Gene Ontology enrichment and immunological marker expression. The present data showed that both recombinant antibodies induced a compatible expression profile, suggesting that they might be candidates for a closer evaluation with respect to their therapeutic value. Moreover, the proposed methodology is amenable to be more generally applied for molecular comparison of cell receptor dependent antibody therapy. Electronic supplementary material The online version of this article (10.1186/s12864-019-5967-8) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Mercantepe T, Tümkaya L, Mercantepe F. Effects of Infliximab against Methotrexate Toxicity in Splenic Tissue via the Regulation of CD3, CD68, and C200R in Rats. Cells Tissues Organs 2019; 206:308-316. [PMID: 31284287 DOI: 10.1159/000500905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 05/13/2019] [Indexed: 01/03/2025] Open
Abstract
Methotrexate (MTX), which has been used in clinical practice for approximately 70 years, is still widely employed in the treatment of rheumatoid arthritis (RA), psoriasis, and cancer. Although MTX toxicity causes nephrotoxicity, hepatotoxicity, bone marrow suppression, pulmonary fibrosis, and gastrointestinal damage, previous studies have not addressed splenic toxicity. This is the first study to examine the effectiveness of infliximab (INF) against MTX-induced toxicity in splenic tissues via the regulation of CD3, CD68, and C200R. We investigated the effects of MTX on macrophages and T lymphocytes in the spleen at the molecular level and examined the protective potential of the tumor necrosis factor (TNF)-α antagonist INF against MTX toxicity. Three groups of rats were set up. Group 1 received saline solution only, group 2 a single dose of MTX (20 mg/kg), and group 3 INF (7 mg/kg) before administration of a single dose of MTX (20 mg/kg). All injections were given intraperitoneally. Spleen tissues were removed 5 days after MTX administration and evaluated for CD3, CD68, and CD200R using immunohistochemical staining. Finally, the mean numerical density of CD3+, CD68+, and CD200R+ cells was estimated by a histopathologist using StereoInvestigator 8. MTX increased the numerical densities of CD3+, CD68+, and CD200R+ cells (p < 0.05). We also observed that INF reduced the numerical densities of these cells following MTX administration (p < 0.05). INF may, therefore, be a promising candidate for the prevention of the deleterious effects on spleen tissue of MTX, used in the treatment of RA and cancer.
Collapse
Affiliation(s)
- Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey,
| | - Levent Tümkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Filiz Mercantepe
- Department of Internal Medicine, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
44
|
Tenspolde M, Zimmermann K, Weber LC, Hapke M, Lieber M, Dywicki J, Frenzel A, Hust M, Galla M, Buitrago-Molina LE, Manns MP, Jaeckel E, Hardtke-Wolenski M. Regulatory T cells engineered with a novel insulin-specific chimeric antigen receptor as a candidate immunotherapy for type 1 diabetes. J Autoimmun 2019; 103:102289. [PMID: 31176558 DOI: 10.1016/j.jaut.2019.05.017] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/23/2019] [Accepted: 05/26/2019] [Indexed: 12/14/2022]
Abstract
Adoptive immunotherapy with ex vivo expanded, polyspecific regulatory T cells (Tregs) is a promising treatment for graft-versus-host disease. Animal transplantation models used by us and others have demonstrated that the adoptive transfer of allospecific Tregs offers greater protection from graft rejection than that of polyclonal Tregs. This finding is in contrast to those of autoimmune models, where adoptive transfer of polyspecific Tregs had very limited effects, while antigen-specific Tregs were promising. However, antigen-specific Tregs in autoimmunity cannot be isolated in sufficient numbers. Chimeric antigen receptors (CARs) can modify T cells and redirect their specificity toward needed antigens and are currently clinically used in leukemia patients. A major benefit of CAR technology is its "off-the-shelf" usability in a translational setting in contrast to major histocompatibility complex (MHC)-restricted T cell receptors. We used CAR technology to redirect T cell specificity toward insulin and redirect T effector cells (Teffs) to Tregs by Foxp3 transduction. Our data demonstrate that our converted, insulin-specific CAR Tregs (cTregs) were functional stable, suppressive and long-lived in vivo. This is a proof of concept for both redirection of T cell specificity and conversion of Teffs to cTregs.
Collapse
Affiliation(s)
- Michel Tenspolde
- Dept. of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Katharina Zimmermann
- Dept. of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Leonie C Weber
- Dept. of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Hapke
- Dept. of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Maren Lieber
- Dept. of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Janine Dywicki
- Dept. of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Andre Frenzel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany; YUMAB GmbH, Science Campus Braunschweig-Süd, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany; YUMAB GmbH, Science Campus Braunschweig-Süd, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Melanie Galla
- Institute of Experimental Haematology, Hannover Medical School, Hannover, Germany
| | - Laura E Buitrago-Molina
- Dept. of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael P Manns
- Dept. of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Elmar Jaeckel
- Dept. of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Matthias Hardtke-Wolenski
- Dept. of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany; Dept. of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
45
|
Kasagi S, Wang D, Zhang P, Zanvit P, Chen H, Zhang D, Li J, Che L, Maruyama T, Nakatsukasa H, Wu R, Jin W, Sun L, Chen W. Combination of apoptotic T cell induction and self-peptide administration for therapy of experimental autoimmune encephalomyelitis. EBioMedicine 2019; 44:50-59. [PMID: 31097410 PMCID: PMC6603850 DOI: 10.1016/j.ebiom.2019.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Clinical trials on multiple sclerosis with repeated injections of monoclonal antibodies depleting CD4+ T cells have not resulted in much success as a disease therapy. Here, we developed an immunotherapy for EAE in mice by combining a transient depletion of T cells together with the administration of neuron derived peptides. METHODS EAE was induced in SJL and C57BL/6 mice, by proteolipid protein peptide PLP139-151 (pPLP) and myelin-oligodendrocyte glycoprotein MOG35-55 (pMOG) peptides, respectively. Anti-CD4 and anti-CD8 antibody were injected intraperitoneally before or after peptide immunization. EAE scores were evaluated and histology data from brain and spinal cord were analyzed. Splenocytes were isolated and CD4+, CD4+CD25- and CD4+CD25+ T cells were purified and cultured in the presence of either specific peptides or anti-CD3 antibody and proliferation of T cells as well as cytokines in supernatant were assessed. FINDINGS This experimental treatment exhibited therapeutic effects on mice with established EAE in pPLP-susceptible SJL mice and pMOG-susceptible C57BL/6 mice. Mechanistically, we revealed that antibody-induced apoptotic T cells triggered macrophages to produce TGFβ, and together with administered auto-antigenic peptides, generated antigen-specific Foxp3+ regulatory T cells (Treg cells) in vivo. INTERPRETATION We successfully developed a specific immunotherapy to EAE by generating autoantigen-specific Treg cells. These findings have overcome the drawbacks of long and repeated depletion of CD4+ T cells, but also obtained long-term immune tolerance, which should have clinical implications for the development of a new effective therapy for multiple sclerosis. FUND: This research was supported by the Intramural Research Program of the NIH, NIDCR.
Collapse
Affiliation(s)
- Shimpei Kasagi
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Dandan Wang
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD 20892, USA; Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Pin Zhang
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Peter Zanvit
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Hua Chen
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Dunfang Zhang
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Jia Li
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Li Che
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | | | | | - Ruiqing Wu
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Wenwen Jin
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - WanJun Chen
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
46
|
Chatenoud L. A future for CD3 antibodies in immunotherapy of type 1 diabetes. Diabetologia 2019; 62:578-581. [PMID: 30612137 DOI: 10.1007/s00125-018-4808-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Lucienne Chatenoud
- Université Paris Descartes, Sorbonne Paris Cité, F-75475, Paris, France.
- INSERM U1151, INEM, Hôpital Necker-Enfants Malades, 149 Rue de Sèvres, 75015, Paris, France.
- CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France.
| |
Collapse
|
47
|
Lee HJ, Ehlerding EB, Cai W. Antibody-Based Tracers for PET/SPECT Imaging of Chronic Inflammatory Diseases. Chembiochem 2019; 20:422-436. [PMID: 30240550 PMCID: PMC6377337 DOI: 10.1002/cbic.201800429] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 12/18/2022]
Abstract
Chronic inflammatory diseases are often progressive, resulting not only in physical damage to patients but also social and economic burdens, making early diagnosis of them critical. Nuclear medicine techniques can enhance the detection of inflammation by providing functional as well as anatomical information when combined with other modalities such as magnetic resonance imaging, computed tomography or ultrasonography. Although small molecules and peptides were mainly used for the treatment and imaging of chronic inflammatory diseases in the past, antibodies and their fragments have also been emerging for chronic inflammatory diseases as they show high specificity to their targets and can have various biological half-lives depending on how they are engineered. In addition, imaging with antibodies or their fragments can visualize the in vivo biodistribution of the probes or help monitor therapeutic responses, thereby providing physicians with a greater understanding of drug behavior in vivo and another means of monitoring their patients. In this review, we introduce various targets and radiolabeled antibody-based probes for the molecular imaging of chronic inflammatory diseases in preclinical and clinical studies. Targets can be classified into three different categories: 1) cell-adhesion molecules, 2) surface markers on immune cells, and 3) cytokines or enzymes. The limitations and future directions of using radiolabeled antibodies for imaging inflammatory diseases are also discussed.
Collapse
Affiliation(s)
- Hye Jin Lee
- Pharmaceutical Sciences Department, University of Wisconsin – Madison, Madison WI 53705, USA
| | - Emily B. Ehlerding
- Medical Physics Department, University of Wisconsin – Madison, Madison WI 53705, USA
| | - Weibo Cai
- Pharmaceutical Sciences Department, University of Wisconsin – Madison, Madison WI 53705, USA
- Medical Physics Department, University of Wisconsin – Madison, Madison WI 53705, USA
- Department of Radiology and Carbone Cancer Center, University of Wisconsin – Madison, Madison WI 53705, USA
| |
Collapse
|
48
|
Ni Q, Pham NB, Meng WS, Zhu G, Chen X. Advances in immunotherapy of type I diabetes. Adv Drug Deliv Rev 2019; 139:83-91. [PMID: 30528629 DOI: 10.1016/j.addr.2018.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease affecting 3 million individuals in the U.S. The pathogenesis of T1DM is driven by immune-mediated destruction of pancreatic β cells, the source of glucose regulator insulin. While T1DM can be successfully managed with insulin replacement therapy, approaches that can modify the underlying immuno-pathology of β cell destruction has been long sought after. Immunotherapy can attenuate T cell responses against β cell antigens. Given the detailed cellular and molecular definitions of T1DM immune responses, rational immunomodulation can be and have been developed in mouse models, and in some instances, tested in humans. The possibility of identifying individuals who are predisposed to T1DM through genotyping lend to the possibility of preventive vaccines. While much has been accomplished in delineating the mechanisms of immunotherapies, some of which are being tested in humans, long-term preservation of β cells and insulin independency has not been achieved. In this regard, the drug delivery field has much to offer in maximizing the benefits of immune modulators by optimizing spatiotemporal presentation of antigens and costimulatory signals. In this review, we attempt to capture the current state of T1DM immunotherapy by highlighting representative studies.
Collapse
Affiliation(s)
- Qianqian Ni
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA; Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Ngoc B Pham
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Guizhi Zhu
- Department of Pharmaceutics, School of Pharmacy; The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
49
|
|
50
|
A Two-Step Approach for the Design and Generation of Nanobodies. Int J Mol Sci 2018; 19:ijms19113444. [PMID: 30400198 PMCID: PMC6274671 DOI: 10.3390/ijms19113444] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/29/2022] Open
Abstract
Nanobodies, the smallest possible antibody format, have become of considerable interest for biotechnological and immunotherapeutic applications. They show excellent robustness, are non-immunogenic in humans, and can easily be engineered and produced in prokaryotic hosts. Traditionally, nanobodies are selected from camelid immune libraries involving the maintenance and treatment of animals. Recent advances have involved the generation of nanobodies from naïve or synthetic libraries. However, such approaches demand large library sizes and sophisticated selection procedures. Here, we propose an alternative, two-step approach for the design and generation of nanobodies. In a first step, complementarity-determining regions (CDRs) are grafted from conventional antibody formats onto nanobody frameworks, generating weak antigen binders. In a second step, the weak binders serve as templates to design focused synthetic phage libraries for affinity maturation. We validated this approach by grafting toxin- and hapten-specific CDRs onto frameworks derived from variable domains of camelid heavy-chain-only antibodies (VHH). We then affinity matured the hapten binder via panning of a synthetic phage library. We suggest that this strategy can complement existing immune, naïve, and synthetic library based methods, requiring neither animal experiments, nor large libraries, nor sophisticated selection protocols.
Collapse
|