1
|
Chen J, Zhou Q, Su L, Ni L. Mitochondrial dysfunction: the hidden catalyst in chronic kidney disease progression. Ren Fail 2025; 47:2506812. [PMID: 40441691 PMCID: PMC12123951 DOI: 10.1080/0886022x.2025.2506812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Accepted: 05/10/2025] [Indexed: 06/02/2025] Open
Abstract
Chronic kidney disease (CKD) represents a global health epidemic, with approximately one-third of affected individuals ultimately necessitating renal replacement therapy or transplantation. The kidney, characterized by its exceptionally high energy demands, exhibits significant sensitivity to alterations in energy supply and mitochondrial function. In CKD, a compromised capacity for mitochondrial ATP synthesis has been documented. As research advances, the multifaceted roles of mitochondria, extending beyond their traditional functions in oxygen sensing and energy production, are increasingly acknowledged. Empirical studies have demonstrated a strong association between mitochondrial dysfunction and the pathogenesis of fibrosis and cellular apoptosis in CKD. Targeting mitochondrial dysfunction holds substantial therapeutic promise, with emerging insights into its epigenetic regulation in CKD, particularly involving non-coding RNAs and DNA methylation. This article presents a comprehensive review of contemporary research on mitochondrial dysfunction in relation to the onset and progression of CKD. It elucidates the associated molecular mechanisms across various renal cell types and proposes novel research avenues for CKD treatment.
Collapse
Affiliation(s)
- Jinhu Chen
- Department of Nephrology, Huanggang Central Hospital of Yangtze University, Huanggang, China
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuyuan Zhou
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Pathology, Liang Ping People’s Hospital of Chongqing, Chongqing, People’s Republic of China
| | - Lianjiu Su
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
- Department of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Shao N, Cai K, Hong Y, Wu L, Luo Q. USP9X suppresses ferroptosis in diabetic kidney disease by deubiquitinating Nrf2 in vitro. Ren Fail 2025; 47:2458761. [PMID: 39967230 PMCID: PMC11841168 DOI: 10.1080/0886022x.2025.2458761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/22/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates many critical genes associated with iron storage and transportation, the activity of which is influenced by E3 ligase-mediated ubiquitination. We wondered whether there is a deubiquitinase that mediates the deubiquitination of Nrf2 to stabilize Nrf2 expression and further prevent diabetic kidney disease (DKD). High glucose (HG) was applied to induce an in vitro model of DKD. The effects of HG on HK-2 cell viability, apoptosis, Fe2+ level, Nrf2, and ubiquitin-specific protease 9X (USP9X) were assessed by cell counting kit-8 (CCK-8) assay, flow cytometry, iron assay, and Western blot. The direct interaction between Nrf2 and USP9X was analyzed using co-immunoprecipitation and ubiquitination assay. After transfection and ferrostatin-1 (Fer-1) intervention, Nrf2 and USP9X levels, cell viability, apoptosis, and Fe2+ level were tested again. Reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH) contents, and ferroptosis-related markers were assessed by ROS assay kit, ELISA, and Western blot. HG reduced cell viability and levels of USP9X and Nrf2, while elevating apoptosis and Fe2+ level. An interaction between USP9X and Nrf2 has been verified and USP9X deubiquitinated Nrf2. Nrf2 up-regulation augmented the viability, GSH content, and ferroptosis-related protein expressions, while suppressing the apoptosis, Fe2+ level, MDA, and ROS content in HG-mediated HK-2 cells, which was reversed by USP9X silencing. Fer-1 offset the combined modulation of Nrf2 and siUSP9X on HG-induced HK-2 cells. USP9X mediates Nrf2 deubiquitinase to hamper the ferroptosis in DKD in vitro.
Collapse
Affiliation(s)
- Ningjun Shao
- Department of Nephrology, Ningbo No.2 Hospital, Ningbo, China
| | - Kedan Cai
- Department of Nephrology, Ningbo No.2 Hospital, Ningbo, China
| | - Yue Hong
- Department of Nephrology, Ningbo No.2 Hospital, Ningbo, China
| | - Lingping Wu
- Department of Nephrology, Ningbo No.2 Hospital, Ningbo, China
| | - Qun Luo
- Department of Nephrology, Ningbo No.2 Hospital, Ningbo, China
| |
Collapse
|
3
|
Khayal EES, Elhadidy MG, Alnasser SM, Morsy MM, Farag AI, El-Nagdy SA. Podocyte-related biomarkers' role in evaluating renal toxic effects of silver nanoparticles with the possible ameliorative role of resveratrol in adult male albino rats. Toxicol Rep 2025; 14:101882. [PMID: 39850515 PMCID: PMC11755029 DOI: 10.1016/j.toxrep.2024.101882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/25/2025] Open
Abstract
Extensive uses of silver nanoparticles (Ag NPs) in different industries result in exposure to these nanoparticle imperatives in our daily lives. Resveratrol is found in many plants as a natural compound. The present study aimed to estimate the renal toxic effects of Ag NPs in adult male albino rats and the underlying relevant mechanisms while studying the possible role of resveratrol in ameliorating these effects. Thirty adult albino rats were split into 5 groups; control, vehicle, resveratrol (30 mg/kg), Ag NPs (300 mg/kg), and resveratrol + Ag NPs groups. The treatments were given orally for 4 weeks. Ag NPs group displayed a reduction in kidney weight ( absolute and relative), excess in urinary levels of kidney injury molecule, neutrophil gelatinase-associated lipocalin, cystatin, and blood kidney biomarkers (creatinine, urea, and potassium), increases in oxidative stress markers with the reduction in antioxidant markers, and decreases in serum sirtuin 1(SIRT1) level. Upregulation of interleukin 1 beta, tumor necrosis factor-alpha, and monocyte chemoattractant protein-1 gene expressions with downregulation of nephrin and podocin gene expressions in renal tissues were also observed. These changes were associated with histological alterations of the glomeruli and tubules, and increased area percentage of collagen fiber. A significant increase in the optical density of transforming growth factor-beta 1 and claudin-1 immunostaining was detected in the Ag NPs group when compared to other groups. All these changes were alleviated by the usage of resveratrol through its anti-oxidant, anti-inflammatory, and activation of SIRT1 recommending its use as a renoprotective agent.
Collapse
Affiliation(s)
- Eman El-Sayed Khayal
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Egypt
| | - Mona G. Elhadidy
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Egypt
- Department of Medical Physiology, Faculty of Medicine, Al-Baha University, Saudi Arabia
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology,College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Manal Mohammad Morsy
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Egypt
| | - Azza I. Farag
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Egypt
| | - Samah A. El-Nagdy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
4
|
AboShabaan HS, El-Sayed HM, Abbas MA. Association between SIRT-1 and SERPINA4 gene polymorphisms and the risk of idiopathic nephrotic syndrome among Egyptian children. Mol Biol Rep 2025; 52:493. [PMID: 40402303 DOI: 10.1007/s11033-025-10568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 05/02/2025] [Indexed: 05/23/2025]
Abstract
BACKGROUND Idiopathic nephrotic syndrome (INS) is the primary cause of chronic glomerular dysfunction in children. Despite extensive research, its pathophysiology remains unclear, particularly in cases that are resistant to steroids. AIM This research evaluated the impact of SIRT-1 (rs2273773) and SERPINA4 (rs2093266) gene variants on Egyptian children's susceptibility to INS and response to steroid therapy. METHODS AND RESULTS Genetic polymorphisms of SIRT-1 (rs2273773) and SERPINA4 (rs2093266) were screened in 135 INS children and a similar number of healthy volunteers using real-time PCR. Concerning SIRT-1 rs2273773 genotypes, the cases showed markedly greater CT, TT genotypes, and T allele incidences than the reference group, which increased the risk of INS by 2.01-, 4.03-, and 1.88-folds, respectively. Regarding SERPINA4 rs2093266 genotypes, the cases exhibited notably higher GA, AA genotypes, and the A allele frequencies than controls, which enlarged the risk of INS by 3.1-, 5.47-, and 2.82-folds, respectively. The frequency of GA and AA genotypes and the presence of the A allele of SERPINA4 rs2093266 were considerably higher in steroid-resistant versus steroid-sensitive cases. The logistic regression model stated the serum creatinine, blood urea nitrogen, and the SERPINA4 rs2093266 polymorphism as independent contributors to the risk for steroid resistance in INS cases. CONCLUSION SIRT-1 (rs2273773) and SERPINA4 (rs2093266) gene polymorphisms significantly attributed to the risk of developing INS in Egyptian children. Furthermore, the SERPINA4 (rs2093266) polymorphism has a strong correlation with steroid resistance, suggesting that it could be a target for treatment to avoid severe renal problems and adverse steroid effects.
Collapse
Affiliation(s)
- Hind S AboShabaan
- Clinical Pathology Department, National Liver Institute Hospital, Menoufia University, Shebin El-Kom, Menoufia, Egypt.
| | | | - Mona A Abbas
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia, Egypt.
| |
Collapse
|
5
|
Gurusamy N, Almalki BMH, Katragadda S, Murray J, Speth RC, Robison LS. Epigenetic regulation by ketone bodies in cardiac diseases and repair. Can J Physiol Pharmacol 2025. [PMID: 40334279 DOI: 10.1139/cjpp-2024-0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Ketone bodies, particularly β-hydroxybutyrate (BHB), play an important role in the epigenetic regulation of gene expression in cardiac tissues, impacting both cardiac health and disease. This review explores the multifaceted influence of ketone bodies on epigenetic mechanisms, including histone acetylation, DNA methylation, ubiquitination, sirtuins activation, and RNA modulation. By acting as endogenous histone deacetylase inhibitors, ketone bodies enhance histone acetylation, thereby promoting the expression of genes involved in antioxidant defenses, anti-inflammatory responses, and metabolic regulation. Furthermore, BHB affects DNA methylation patterns by altering the availability of key metabolites such as S-adenosylmethionine. Ketogenic diet, which elevates BHB levels, has been shown to modulate gene expression, such as increasing FOXO3a and metallothionein 2, and improve cardiac function. This review highlights the therapeutic potential of ketone bodies in managing cardiac diseases through their epigenetic effects, underscoring the need for further research to elucidate the detailed molecular pathways and long-term impacts of these metabolic interventions.
Collapse
Affiliation(s)
- Narasimman Gurusamy
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Bandar Muteb H Almalki
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Sai Katragadda
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - James Murray
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Robert C Speth
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Lisa S Robison
- Department of Psychology and Neuroscience, College of Psychology, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
6
|
Sasaki K, Masaki T. Epigenetic histone modifications in kidney disease and epigenetic memory. Clin Exp Nephrol 2025:10.1007/s10157-025-02668-x. [PMID: 40186651 DOI: 10.1007/s10157-025-02668-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/18/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Epigenetic mechanisms, including DNA methylation, histone modifications, and non-coding RNAs, are influenced by environmental factors and play a central role in the progression and therapeutic targeting of kidney diseases, such as diabetic kidney disease (DKD), chronic kidney disease (CKD), and hypertension. These epigenetic changes are also preserved as cellular memory, with this "epigenetic memory" known to have long-term effects on such chronic diseases. Histone modifications are readily reversible epigenetic changes that regulate gene expression by altering chromatin structure or providing docking sites for transcriptional regulators. From a disease perspective, the involvement of epigenetics and "epigenetic memory" in DKD, CKD, senescence, and hypertension has been increasingly studied in recent years. Targeting epigenetic mechanisms is, thus, expected to offer novel therapeutic strategies for these diseases. Advances in treatment include histone deacetylase inhibitors and methyltransferase inhibitors, their applications of which have expanded from oncology to nephrology. However, challenges such as long-term toxicity and off-target effects remain significant. Further elucidation of kidney-specific epigenetic pathways and memory mechanisms may pave the way for precision epigenetic therapies, enabling the reversal of pathological epigenetic signatures and the mitigation of disease progression. CONCLUSION This review integrates recent advancements, highlighting functional evidence that histone modifications, particularly histone tail methylation, are involved in the pathogenesis of kidney diseases. It also emphasizes the translational significance of these findings, underlining the potential of epigenetics-based therapies to transform the management of kidney diseases.
Collapse
Affiliation(s)
- Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan.
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
7
|
Fogo AB, Harris RC. Crosstalk between glomeruli and tubules. Nat Rev Nephrol 2025; 21:189-199. [PMID: 39643696 DOI: 10.1038/s41581-024-00907-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 12/09/2024]
Abstract
Models of kidney injury have classically concentrated on glomeruli as the primary site of injury leading to glomerulosclerosis or on tubules as the primary site of injury leading to tubulointerstitial fibrosis. However, current evidence on the mechanisms of progression of chronic kidney disease indicates that a complex interplay between glomeruli and tubules underlies progressive kidney injury. Primary glomerular injury can clearly lead to subsequent tubule injury. For example, damage to the glomerular filtration barrier can expose tubular cells to serum proteins, including complement and cytokines, that would not be present in physiological conditions and can promote the development of tubulointerstitial fibrosis and progressive decline in kidney function. In addition, although less well-studied, increasing evidence suggests that tubule injury, whether primary or secondary, can also promote glomerular damage. This feedback from the tubule to the glomerulus might be mediated by changes in the reabsorptive capacity of the tubule, which can affect the glomerular filtration rate, or by mediators released by injured proximal tubular cells that can induce damage in both podocytes and parietal epithelial cells. Examining the crosstalk between the various compartments of the kidney is important for understanding the mechanisms underlying kidney pathology and identifying potential therapeutic interventions.
Collapse
Affiliation(s)
- Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Raymond C Harris
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Tennessee Department of Veterans Affairs, Nashville, TN, USA.
| |
Collapse
|
8
|
Mimura I, Chen Z, Natarajan R. Epigenetic alterations and memory: key players in the development/progression of chronic kidney disease promoted by acute kidney injury and diabetes. Kidney Int 2025; 107:434-456. [PMID: 39725223 DOI: 10.1016/j.kint.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 12/28/2024]
Abstract
Chronic kidney disease (CKD) is a highly prevalent global public health issue and can progress to kidney failure. Survivors of acute kidney injury (AKI) have an increased risk of progressing to CKD by 8.8-fold and kidney failure by 3.1-fold. Further, 20% to 40% of individuals with diabetes will develop CKD, also known as diabetic kidney disease (DKD). Thus, preventing these kidney diseases can positively impact quality-of-life and life-expectancy outcomes for affected individuals. Frequent episodes of hyperglycemia and renal hypoxia are implicated in the pathophysiology of CKD. Prior periods of hyperglycemia/uncontrolled diabetes can result in development/progression of DKD even after achieving normoglycemia, a phenomenon known as metabolic memory or legacy effect. Similarly, in AKI, hypoxic memory is stored in renal cells even after recovery from the initial AKI episode and can transition to CKD. Epigenetic mechanisms involving DNA methylation, chromatin histone post-translational modifications, and noncoding RNAs are implicated in both metabolic and hypoxic memory, collectively known as "epigenetic memory." This epigenetic memory is generally reversible and provides a therapeutic avenue to ameliorate persistent disease progression due to hyperglycemia and hypoxia and prevent/ameliorate CKD progression. Indeed, therapeutic strategies targeting epigenetic memory are effective at preventing CKD development/progression in experimental models of AKI and DKD. Here, we review the latest in-depth evidence for epigenetic features in DKD and AKI, and in epigenetic memories of AKI-to-CKD transition or DKD development and progression, followed by translational and clinical implications of these epigenetic changes for the treatment of these widespread kidney disorders.
Collapse
Affiliation(s)
- Imari Mimura
- Division of Nephrology and Endocrinology, the University of Tokyo School of Medicine, Tokyo Japan.
| | - Zhuo Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, USA.
| |
Collapse
|
9
|
Gowrikumar S, Tarudji A, McDonald BZ, Balusa SS, Kievit FM, Dhawan P. Claudin-1 impairs blood-brain barrier by downregulating endothelial junctional proteins in traumatic brain injury. Tissue Barriers 2025:2470482. [PMID: 40018968 DOI: 10.1080/21688370.2025.2470482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 03/01/2025] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in patients. Brain microvasculature endothelial cells form the blood-brain barrier (BBB) which functions to maintain a protective barrier for the brain from the passive entry of systemic solutes. As a result of the cellular disruption caused by TBI, the BBB is compromised. Tight junction disruption in the endothelium of the BBB has been implicated in this response, but the underlying mechanisms remain unresolved. We utilized various in vivo models of severe to mild TBI as well as in vitro exposure of brain endothelial cells (bEND.3) to analyze conditions encountered following TBI to gain mechanistic insight into alterations observed at the BBB. We found that claudin-1 (CLDN1), was significantly increased in the brain endothelium both in vivo and in vitro. The observed increase of CLDN1 expression correlated with down-regulation of claudin-5 (CLDN5), occludin (OCLN), and zonula occludens (ZO-1), thereby altering BBB integrity by decreasing TEER and increasing permeability. Knockdown of CLDN1 in these pathogenic conditions showed stability of the endothelial junctional proteins. A decline in the epigenetic regulator silent information regulator family protein 1 (SIRT1), a member of the NAD+ dependent protein deacetylases, coincided with this upregulation of CLDN1. Indeed, the quenching of oxidative stress through NAC treatment was able to reduce injury-induced upregulation of CLDN1 in vitro. Mechanistically, an SRC-dependent tyrosine phosphorylation of OCLN and ZO-1 in CLDN1-modulated conditions was observed. Our findings will provide new insights into BBB deregulation and new possible treatment opportunities for TBI.
Collapse
Affiliation(s)
- Saiprasad Gowrikumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aria Tarudji
- Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA
| | - Brandon Z McDonald
- Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA
| | - Sai Sindhura Balusa
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Forrest M Kievit
- Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
10
|
Chatterjee A, Tumarin J, Prabhakar S. Cellular cross-talk drives mesenchymal transdifferentiation in diabetic kidney disease. Front Med (Lausanne) 2025; 11:1499473. [PMID: 39839616 PMCID: PMC11747801 DOI: 10.3389/fmed.2024.1499473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025] Open
Abstract
While changes in glomerular function and structure may herald diabetic kidney disease (DKD), many studies have underscored the significance of tubule-interstitial changes in the progression of DKD. Indeed, tubule-interstitial fibrosis may be the most important determinant of progression of DKD as in many forms of chronic glomerulopathies. The mechanisms underlying the effects of tubular changes on glomerular function in DKD have intrigued many investigators, and therefore, the signaling mechanisms underlying the cross-talk between tubular cells and glomerular cells have been the focus of investigation in many recent studies. Additionally, the observations of slowing of glomerular filtration rate (GFR) decline and reduction of proteinuria by recent drugs such as SGLT-2 blockers, whose primary mechanism of action is on proximal tubules, further strengthen the concept of cross-talk between the tubular and glomerular cells. Recently, the focus of research on the pathogenesis of DKD has primarily centered around exploring the cross-talk between various signaling pathways in the diabetic kidney as well as cross-talk between tubular and glomerular endothelial cells and podocytes with special relevance to epithelial-to-mesenchymal transition (EMT) and endothelial-to-mesenchymal transition (EndoMT). The focus of this review is to provide a general description of cell-to-cell cross-talk in the diabetic kidney and to highlight these concepts with evidence in relation to the physiology and pathophysiology of DKD.
Collapse
Affiliation(s)
| | | | - Sharma Prabhakar
- Department of Internal Medicine, Texas Tech University Health Sciences Centre, Lubbock, TX, United States
| |
Collapse
|
11
|
Gali S, Kundu A, Sharma S, Ahn MY, Puia Z, Kumar V, Kim IS, Kwak JH, Palit P, Kim HS. Therapeutic potential of bark extracts from Macaranga denticulata on renal fibrosis in streptozotocin-induced diabetic rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:911-933. [PMID: 39306745 DOI: 10.1080/15287394.2024.2394586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Macaranga denticulata (MD) bark is commonly utilized in traditional medicine for diabetes prevention and treatment. The bark extract of MD is rich in prenyl or farnesyl flavonoids and stilbenes, which possess antioxidant properties. Although data suggest the potential therapeutic benefits of the use of MD in treating diabetic nephropathy (DN), the precise mechanisms underlying MD-initiated protective effects against DN are not well understood. This study aimed to assess the renoprotective properties of MD extract by examining renofibrosis inhibition, oxidative stress, and inflammation utilizing streptozotocin-induced DN male Sprague - Dawley rats. Diabetic rats were intraperitoneally injected with streptozotocin (STZ) to induce diabetes. After 6 days, these rats were orally administered MD extract (200 mg/kg/day) or metformin (200 mg/kg/day) for 14 days. The administration of MD extract significantly lowered blood glucose levels, restored body weight, and reduced urine levels of various biomarkers associated with kidney functions. Histopathological analysis revealed protective effects in both kidneys and pancreas. Further, MD extract significantly restored abnormalities in advanced glycation end products, oxidative stress biomarkers, and proinflammatory cytokine levels in STZ-treated rats. MD extract markedly reduced renal fibrosis biomarker levels, indicating recovery from renal injury, and reversed dysregulation of sirtuins and claudin-1 in the kidneys of rats with STZ-induced diabetes. In conclusion, data demonstrated the renoprotective role of MD extract, indicating plant extract's ability to suppress oxidative stress and regulate proinflammatory pathways during pathological changes in diabetic nephropathy.
Collapse
Affiliation(s)
- Sreevarsha Gali
- School of Pharmacy, Sungkyunkwan University, School of Pharmacy University, Suwon, Republic of Korea
| | - Amit Kundu
- School of Pharmacy, Sungkyunkwan University, School of Pharmacy University, Suwon, Republic of Korea
- Department of Pharmacology, GITAM School of Pharmacy, GITAM Deemed to be University, Visakhapatnam, India
| | - Swati Sharma
- School of Pharmacy, Sungkyunkwan University, School of Pharmacy University, Suwon, Republic of Korea
| | - Mee-Young Ahn
- Department of Biochemistry and Health Science, Changwon National University, Changwon-si, Republic of Korea
| | - Zothan Puia
- Department of Pharmacy, Regional Institute of Paramedical & Nursing Sciences, Aizawl, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology & Sciences, Allahabad, India
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, School of Pharmacy University, Suwon, Republic of Korea
| | - Jeong Hwan Kwak
- School of Pharmacy, Sungkyunkwan University, School of Pharmacy University, Suwon, Republic of Korea
| | - Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar, India
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, School of Pharmacy University, Suwon, Republic of Korea
| |
Collapse
|
12
|
Zhu Y, Dong C, Xu Z, Lou Y, Tian N, Guan Y, Nie P, Luo M, Luo P. Human Umbilical Cord Mesenchymal Stem Cells Alleviate Diabetic Nephropathy by Inhibiting Ferroptosis via the JNK/KEAP1/NRF2 Signaling Pathway. Antioxid Redox Signal 2024. [PMID: 39602247 DOI: 10.1089/ars.2024.0575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Aims: Diabetic nephropathy (DN) is a major cause of end-stage renal disease, with no therapeutic interventions available to control its progression. Ferroptosis, an iron-dependent regulated cell death characterized by lipid peroxidation, plays a pivotal role in the pathogenesis of DN. Human umbilical cord mesenchymal stem cells (hUCMSCs) are an effective treatment modality for DN; however, the underlying mechanism of action remains unclear. The aim of the present study was to investigate whether hUCMSCs alleviate DN via inhibiting ferroptosis and its molecular mechanisms in type 2 diabetic mice and high-glucose and palmitate-stimulated human renal tubular epithelial cell (HK-11) models. Results: Our findings revealed that hUCMSCs improved the renal structure and function and tubular injuries. HUCMSC treatment can inhibit ferroptosis by decreasing iron content, reducing reactive oxygen species, malondialdehyde and 4-hydroxynonenal generation, decreasing the expression of positive ferroptosis mediator transferrin receptor 1 and long-chain acyl-CoA synthetase 4, and enhancing the expression of negative ferroptosis mediators (i.e., ferritin heavy chain, glutathione peroxidase 4, and system Xc-cystine/glutamate reverse transporter). Mechanistically, hUCMSC treatment inhibited c-Jun N-terminal kinase (JNK) and Kelch-like ECH-associated protein 1 (KEAP1) activation while increasing the expression of nuclear factor erythroid 2-related factor 2 (NRF2). Furthermore, pretreatment of HK-11 cells with NRF2 siRNA, the JNK inhibitor SP600125, or the JNK agonist anisomycin demonstrated the regulation of the JNK/KEAP1/NRF2 signaling pathway by hUCMSCs. Innovation and Conclusion: HUCMSCs inhibit ferroptosis in DN via the JNK/KEAP1/NRF2 signaling pathway, providing a new perspective and scientific evidence for treating DN. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Changqing Dong
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Zhiheng Xu
- Department of Radiology, Changchun Stomatological Hospital, Changchun, P.R. China
| | - Yan Lou
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Na Tian
- Research and Development Department, Jilin Tuohua Biotechnology Co., Ltd., Siping, P.R. China
| | - Yucan Guan
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Ping Nie
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Manyu Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
13
|
Zhang Y, Piao HL, Chen D. Identification of Spatial Specific Lipid Metabolic Signatures in Long-Standing Diabetic Kidney Disease. Metabolites 2024; 14:641. [PMID: 39590877 PMCID: PMC11596753 DOI: 10.3390/metabo14110641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Diabetic kidney disease (DKD) is a major complication of diabetes leading to kidney failure. Methods: This study investigates lipid metabolism profiles of long-standing DKD (LDKD, diabetes duration > 10 years) by integrative analysis of available single-cell RNA sequencing and spatial multi-omics data (focusing on spatial continuity samples) from the Kidney Precision Medicine Project. Results: Two injured cell types, an injured thick ascending limb (iTAL) and an injured proximal tubule (iPT), were identified and significantly elevated in LDKD samples. Both iTAL and iPT exhibit increased lipid metabolic and biosynthetic activities and decreased lipid and fatty acid oxidative processes compared to TAL/PT cells. Notably, compared to PT, iPT shows significant upregulation of specific injury and fibrosis-related genes, including FSHR and BMP7. Meanwhile, comparing iTAL to TAL, inflammatory-related genes such as ANXA3 and IGFBP2 are significantly upregulated. Furthermore, spatial metabolomics analysis reveals regionally distributed clusters in the kidney and notably differentially expressed lipid metabolites, such as triglycerides, glycerophospholipids, and sphingolipids, particularly pronounced in the inner medullary regions. Conclusions: These findings provide an integrative description of the lipid metabolism landscape in LDKD, highlighting injury-associated cellular processes and potential molecular mechanisms.
Collapse
Affiliation(s)
- Yiran Zhang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Long Piao
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Chen
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Jayne D, Herbert C, Anquetil V, Teixeira G. Exploring the Critical Role of Tight Junction Proteins in Kidney Disease Pathogenesis. Nephron Clin Pract 2024; 149:240-250. [PMID: 39532075 PMCID: PMC11991748 DOI: 10.1159/000542498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Kidney disease poses a significant global health challenge, marked by a rapid decline in renal function due to a variety of causative factors. A crucial element in the pathophysiology of kidney disease is the dysregulation of epithelial cells, which are vital components of renal tissue architecture. The integrity and functionality of these cells are largely dependent on tight junctions (TJ) proteins, complex molecular structures that link adjacent epithelial cells. These TJ not only confer cellular polarity and maintain essential barrier functions but also regulate epithelial permeability. SUMMARY TJ proteins are pivotal in their traditional role at cell junctions and in their non-junctional capacities. Recent research has shifted the perception of these proteins from mere structural elements to dynamic mediators of kidney disease, playing significant roles in various renal pathologies. This review explores the multifaceted roles of TJ proteins, focusing on their functions both within and external to the renal epithelial junctions. It highlights how these proteins contribute to mechanisms underlying kidney disease, emphasizing their impact on disease progression and outcomes. KEY MESSAGES TJ proteins have emerged as significant players in the field of nephrology, not only for their structural role but also for their regulatory functions in disease pathology. Their dual roles in maintaining epithelial integrity and mediating pathological processes make them promising therapeutic targets for kidney disease. Understanding the intricate contributions of TJ proteins in kidney pathology offers potential for novel therapeutic strategies, aiming to modulate these proteins to halt or reverse the progression of kidney disease.
Collapse
Affiliation(s)
- David Jayne
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
15
|
Marín-Blázquez M, Rovira J, Ramírez-Bajo MJ, Zapata-Pérez R, Rabadán-Ros R. NAD + enhancers as therapeutic agents in the cardiorenal axis. Cell Commun Signal 2024; 22:537. [PMID: 39516787 PMCID: PMC11546376 DOI: 10.1186/s12964-024-01903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiorenal diseases represent a complex interplay between heart failure and renal dysfunction, being clinically classified as cardiorenal syndromes (CRS). Recently, the contributions of altered nicotinamide adenine dinucleotide (NAD+) metabolism, through deficient NAD+ synthesis and/or elevated consumption, have proved to be decisive in the onset and progress of cardiorenal disease. NAD+ is a pivotal coenzyme in cellular metabolism, being significant in various signaling pathways, such as energy metabolism, DNA damage repair, gene expression, and stress response. Convincing evidence suggests that strategies designed to boost cellular NAD+ levels are a promising therapeutic option to address cardiovascular and renal disorders. Here, we review and discuss the implications of NAD+ metabolism in cardiorenal diseases, focusing on the propitious NAD+ boosting therapeutic strategies, based on the use of NAD+ precursors, poly(ADP-ribose) polymerase inhibitors, sirtuin activators, and other alternative approaches, such as CD38 blockade, nicotinamide phosphoribosyltransferase activation and combined interventions.
Collapse
Affiliation(s)
- Mariano Marín-Blázquez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - María José Ramírez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - Rubén Zapata-Pérez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| | - Rubén Rabadán-Ros
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| |
Collapse
|
16
|
Bora ES, Arda DB, Erbas O. The renoprotective effect of Tibolone in sepsis-induced acute kidney injury. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2024; 168:311-318. [PMID: 38775002 DOI: 10.5507/bp.2024.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/07/2024] [Indexed: 11/27/2024] Open
Abstract
INTRODUCTION Sepsis-induced acute kidney injury (AKI) remains a major challenge in intensive care, contributing significantly to morbidity and mortality. Tibolone, known for its neuroprotective and hormonal properties, has not been explored for its potential in AKI management. This study investigates the protective effects of Tibolone and its underlying mechanisms involving Sirtuin-1 (SIRT1) and Yes-Associated Protein (YAP) in a rat sepsis model. MATERIALS AND METHODS Thirty-six female Wistar albino rats underwent cecal ligation and puncture (CLP) to induce sepsis. They were randomly assigned to control, CLP+Saline, and CLP+Tibolone groups. Tibolone was administered intraperitoneally. Biomarkers, including Sirtuin (SIRT1), Yes-associated protein (YAP), Tumor necrosis factor (TNF-α), High mobility group box 1 (HMGB1), malondialdehyde (MDA), creatinine, and urea, were assessed. Histopathological examination evaluated renal damage. RESULTS Tibolone administration significantly reduced plasma TNF-α, HMGB1, MDA, creatinine, and urea levels compared to the CLP+Saline group. Moreover, Tibolone elevated SIRT1 and YAP levels in kidney tissues. Histopathological examination demonstrated a significant decrease in tubular epithelial necrosis, luminal debris, dilatation, hemorrhage, and interstitial inflammation in Tibolone-treated rats. CONCLUSION This study unveils the protective role of Tibolone against sepsis-induced AKI in rats. The improvements in inflammatory and oxidative biomarkers and histological evidence suggest Tibolone's potential as a therapeutic intervention in sepsis-associated kidney injury. The upregulation of SIRT1 and YAP indicates their involvement in Tibolone's renoprotective mechanisms. Further investigations are warranted to explore Tibolone's translational potential in human sepsis-induced AKI.
Collapse
Affiliation(s)
- Ejder Saylav Bora
- Department of Emergency Medicine, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | - Duygu Burcu Arda
- Department of Pediatrics, Faculty of Medicine, Cerrahpasa University, Istanbul, Turkey
| | - Oytun Erbas
- Depatment of Physiology, Faculty of Medicine, Demiroglu Bilim University Istanbul, Turkey
| |
Collapse
|
17
|
Mukherjee A, Debbarman T, Banerjee BD, Siddiqi SS. The Impact of Epigenetics on the Pathophysiology of Type 2 Diabetes and Associated Nephropathic Complications. Indian J Endocrinol Metab 2024; 28:569-578. [PMID: 39881775 PMCID: PMC11774419 DOI: 10.4103/ijem.ijem_43_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 10/13/2024] [Accepted: 11/11/2024] [Indexed: 01/31/2025] Open
Abstract
Type 2 diabetes (T2D) is a long-term metabolic condition that presents considerable health challenges globally. As the disease progresses, the interplay between genetic, environmental, and lifestyle factors becomes increasingly evident, leading to complications. Epigenetics has emerged as a critical area of research, providing insights into how these factors can modify the expression and cellular behavior without altering the underlying DNA sequence. Various epigenetic mechanisms, including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA regulation, drive cell dysfunction, inflammation, and fibrosis, aggravating diabetes and its complications. Amongst all the complications diabetic kidney disease (DKD) also known as diabetic nephropathy (DN), is a significant microvascular complication often regarded as a silent killer, as early diagnosis remains highly complicated. This review investigates various epigenetic modifications associated with T2D and DKD, employing a database search strategy incorporating the PICO framework method to ensure comprehensive coverage of relevant literature. Advancements in epigenome profiling provide valuable insights into the functional outcomes and chromatin states of cells impacted by T2D. Understanding epigenetics thus emphasizes its crucial role in the development and progression of T2D and transition to DKD, while also highlighting the potential reversibility of epigenetic modifications and potency as a biomarker for predicting DKD. More extensive research is needed to identify specific epigenetic mechanisms involved in DKD to further refine predictive models and therapeutic strategies. This unified exploration of significant epigenetic modifications offers a focused analysis of how these alterations influence the trajectory of disease and presents new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Amit Mukherjee
- Rajiv Gandhi Centre for Diabetes and Endocrinology, J N Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Tanusree Debbarman
- Rajiv Gandhi Centre for Diabetes and Endocrinology, J N Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Basu D. Banerjee
- Department of Elementology and Toxicology, Hamdard University, New Delhi, India
| | - Sheelu S. Siddiqi
- Rajiv Gandhi Centre for Diabetes and Endocrinology, J N Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
18
|
O’Brien J, Niehaus P, Chang K, Remark J, Barrett J, Dasgupta A, Adenegan M, Salimian M, Kevas Y, Chandrasekaran K, Kristian T, Chellappan R, Rubin S, Kiemen A, Lu CPJ, Russell JW, Ho CY. Skin keratinocyte-derived SIRT1 and BDNF modulate mechanical allodynia in mouse models of diabetic neuropathy. Brain 2024; 147:3471-3486. [PMID: 38554393 PMCID: PMC11449144 DOI: 10.1093/brain/awae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/01/2024] Open
Abstract
Diabetic neuropathy is a debilitating disorder characterized by spontaneous and mechanical allodynia. The role of skin mechanoreceptors in the development of mechanical allodynia is unclear. We discovered that mice with diabetic neuropathy had decreased sirtuin 1 (SIRT1) deacetylase activity in foot skin, leading to reduced expression of brain-derived neurotrophic factor (BDNF) and subsequent loss of innervation in Meissner corpuscles, a mechanoreceptor expressing the BDNF receptor TrkB. When SIRT1 was depleted from skin, the mechanical allodynia worsened in diabetic neuropathy mice, likely due to retrograde degeneration of the Meissner-corpuscle innervating Aβ axons and aberrant formation of Meissner corpuscles which may have increased the mechanosensitivity. The same phenomenon was also noted in skin-keratinocyte specific BDNF knockout mice. Furthermore, overexpression of SIRT1 in skin induced Meissner corpuscle reinnervation and regeneration, resulting in significant improvement of diabetic mechanical allodynia. Overall, the findings suggested that skin-derived SIRT1 and BDNF function in the same pathway in skin sensory apparatus regeneration and highlighted the potential of developing topical SIRT1-activating compounds as a novel treatment for diabetic mechanical allodynia.
Collapse
Affiliation(s)
- Jennifer O’Brien
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Peter Niehaus
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Koping Chang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Pathology, National Taiwan University, Taipei, 100, Taiwan
| | - Juliana Remark
- Hansjörg Wyss Department of Plastic Surgery, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Joy Barrett
- Hansjörg Wyss Department of Plastic Surgery, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Abhishikta Dasgupta
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Morayo Adenegan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Mohammad Salimian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yanni Kevas
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | - Tibor Kristian
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21021, USA
| | - Rajeshwari Chellappan
- Department of Pathology, University of Alabama Birmingham, Birmingham, AL 35233, USA
| | - Samuel Rubin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemistry, College of William and Mary, Williamsburg, VA 23187, USA
| | - Ashley Kiemen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Catherine Pei-Ju Lu
- Hansjörg Wyss Department of Plastic Surgery, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - James W Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | - Cheng-Ying Ho
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
19
|
Yang K, Liang W, Hu H, Zhang Z, Hao Y, Song Z, Yang L, Hu J, Chen Z, Ding G. ESRRA modulation by empagliflozin mitigates diabetic tubular injury via mitochondrial restoration. Cell Signal 2024; 122:111308. [PMID: 39059756 DOI: 10.1016/j.cellsig.2024.111308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/09/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND The protection of the diabetic kidney by Empagliflozin (EMPA) is attributed to its interaction with the sodium glucose cotransporter 2 located on proximal tubular epithelial cells (PTECs). Estrogen-related receptor α (ESRRA), known for its high expression in PTECs and association with mitochondrial biogenesis, plays a crucial role in this process. This study aimed to explore the impact of ESRRA on mitochondrial mass in diabetic tubular injury and elucidate the mechanism underlying the protective effects of EMPA. METHODS Mitochondrial changes in PTECs of 16-week-old diabetic mice were assessed using transmission electron microscopy (TEM) and RNA-sequences. In vivo, EMPA administration was carried out in db/db mice for 8 weeks, while in vitro experiments involved modifying ESRRA expression in HK2 cells using pcDNA-ESRRA or EMPA. RESULTS Evaluation through TEM revealed reduced mitochondrial mass and swollen mitochondria in PTECs, whereas no significant changes were observed under light microscopy. Analysis of RNA-sequences identified 110 downregulated genes, including Esrra, associated with mitochondrial function. Notably, ESRRA overexpression rescued the loss of mitochondrial mass induced by high glucose (HG) in HK2 cells. EMPA treatment ameliorated the ultrastructural alterations and mitigated the downregulation of ESRRA both in db/db mice and HG-treated HK2 cells. CONCLUSION The diminished expression of ESRRA is implicated in the decline of mitochondrial mass in PTECs during the early stages of diabetes, highlighting it as a key target of EMPA for preventing the progression of diabetic kidney injury.
Collapse
Affiliation(s)
- Keju Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Hongtu Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zongwei Zhang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiqun Hao
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhixia Song
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Lin Yang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
20
|
Zhang J, Poon ETC, Wong SHS. Efficacy of oral nicotinamide mononucleotide supplementation on glucose and lipid metabolism for adults: a systematic review with meta-analysis on randomized controlled trials. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39116016 DOI: 10.1080/10408398.2024.2387324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A surge of public interest in NMN supplementation has been observed in recent years. However, whether NMN supplements are effective in improving metabolic health remains unclear. The objective of the review was to assess the effects of NMN supplementation on fasting glucose, triglycerides, total cholesterol, LDL-C, and HDL-C in adults. Studies were located by searching four databases (PubMed, Embase, Cochrane, and Web of Science). Two reviewers independently conducted title/abstract and full-text screening, data extraction, and risk-of-bias assessment. Of the 4049 records reviewed, 12 studies with a total of 513 participants met the criteria for analysis. Random-effects meta-analyses found an overall significant effect of NMN supplementation in elevating blood NAD levels. However, most of the clinically relevant outcomes were not significantly different between NMN supplementation and control group. Risk-of-bias assessment using RoB2 showed some concerns in seven studies and high risk of bias in the other five studies. Together, our findings suggest that an exaggeration of the benefits of NMN supplementation may exist in the field. Although the limited number of eligible studies was sufficiently powered to detect changes in the abovementioned primary outcomes, more studies are needed to conclude about the exact effects of NMN supplementation.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Sports Science & Physical Education, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong
| | - Eric Tsz-Chun Poon
- Department of Sports Science & Physical Education, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong
| | - Stephen Heung-Sang Wong
- Department of Sports Science & Physical Education, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong
| |
Collapse
|
21
|
Yang Y, Huang J, Xie L, Wang Y, Guo S, Wang M, Shao X, Liu W, Wang Y, Li Q, Wu X, Zhang Z, Zeng F, Gong W. Nicotinamide protects against diabetic kidney disease through regulation of Sirt1. Endocrine 2024; 85:638-648. [PMID: 38446387 PMCID: PMC11291543 DOI: 10.1007/s12020-024-03721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024]
Abstract
PURPOSE To investigate the effect of nicotinamide (Nam) on diabetic kidney disease (DKD) in mice and explore its mechanism. METHODS Thirty DBA/2 J mice were randomly assigned to three groups. After 8 weeks of hyperglycemia induced by streptozocin (STZ), Nam and saline were administrated to STZ + Nam and STZ + NS mice, respectively, for 8 weeks. Non-diabetic mice (NDM) were used as control group. Twenty In2-/- Akita mice were randomly divided into two groups. After 8 weeks of hyperglycemia, Nam and saline were administered to Akita + Nam and Akita + NS mice, respectively, for 6 weeks. Wild-type littermates were used as control group. Markers of renal injury were analyzed, and the molecular mechanisms were explored in human proximal tubular HK2 cells. RESULTS Urinary albumin-to-creatinine ratio (UACR) and kidney injury molecule 1 (KIM-1) decreased in the STZ + Nam and Akita + Nam groups. Pathological analysis showed that Nam improved the structure of glomerular basement membrane, ameliorated glomerular sclerosis, and decreased the accumulation of extracellular matrix and collagen. Compared to the diabetic control group, renal fibrosis, inflammation, and oxidative stress were reduced in the Nam-treated mice. The expression of sirtuin 1 (Sirt1) in human proximal tubular HK2 cells was inhibited by high glucose and Nam treatment enhanced its expression. However, in HK2 cells with Sirt1 knockdown, the protective effect of Nam was abolished, indicating that the beneficial effect of Nam was partially dependent on Sirt1. CONCLUSIONS Nam has a renoprotective effect against renal injury caused by hyperglycemia and may be a potential target for the treatment of DKD.
Collapse
Affiliation(s)
- Yeping Yang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jinya Huang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lijie Xie
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yilin Wang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shizhe Guo
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Meng Wang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiaoqing Shao
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wenjuan Liu
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yi Wang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qin Li
- Division of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Xia Wu
- Department of Endocrinology and Metabolism, Jing'an District Center Hospital of Shanghai, Shanghai, 200040, China
| | - Zhaoyun Zhang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Institute of Endocrinology and Diabetology, Fudan University, Shanghai, 200040, China
| | - Fangfang Zeng
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Wei Gong
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
22
|
Babickova J, Yang HC, Fogo AB. Adverse effects of acute tubular injury on the glomerulus: contributing factors and mechanisms. Pediatr Nephrol 2024; 39:2301-2308. [PMID: 38191938 DOI: 10.1007/s00467-023-06264-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
The intricate relationship between tubular injury and glomerular dysfunction in kidney diseases has been a subject of extensive research. While the impact of glomerular injury on downstream tubules has been well-studied, the reverse influence of tubular injury on the glomerulus remains less explored. This paper provides a comprehensive review of recent advances in the field, focusing on key pathways and players implicated in the pathogenesis of tubular injury on glomerular dysfunction. Anatomical and physiological evidence supports the possibility of crosstalk from the tubule to the glomerulus, whereby various mechanisms contribute to glomerular injury following tubular injury. These mechanisms include tubular backleak, dysfunctional tubuloglomerular feedback, capillary rarefaction, atubular glomeruli, and the secretion of factors from damaged tubular epithelial cells. Clinical evidence further supports the association between even mild or recovered acute kidney injury and an increased risk of chronic kidney disease, including glomerular diseases. We also discuss potential therapeutic interventions aimed at mitigating acute tubular injury, thereby reducing the detrimental effects on glomerular function. By unraveling the complex interplay from tubular injury to glomerular dysfunction, we aim to provide insights that can enhance clinical management strategies and improve outcomes for patients with kidney disease.
Collapse
Affiliation(s)
- Janka Babickova
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, MCN C3318, Nashville, TN, 37232, USA
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Hai-Chun Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, MCN C3318, Nashville, TN, 37232, USA
| | - Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, MCN C3318, Nashville, TN, 37232, USA.
| |
Collapse
|
23
|
Darvishzadeh Mahani F, Raji-Amirhasani A, Khaksari M, Mousavi MS, Bashiri H, Hajializadeh Z, Alavi SS. Caloric and time restriction diets improve acute kidney injury in experimental menopausal rats: role of silent information regulator 2 homolog 1 and transforming growth factor beta 1. Mol Biol Rep 2024; 51:812. [PMID: 39007943 DOI: 10.1007/s11033-024-09716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Estrogen has a protective impact on acute kidney injury (AKI); moreover, reducing the daily intake of calories impedes developing diseases. The present study aimed to determine the effects of calorie restriction (CR) and time restriction (TR) diets on the expression of silent information regulator 2 homolog 1 (SIRT1), transforming growth factor beta 1 (TGF-β1), and other indicators in the presence and absence of ovaries in AKI female rats. METHODS The female rats were divided into two groups, ovariectomized (OVX) and sham, and were placed on CR and TR diets for eight weeks; afterward, AKI was induced by injecting glycerol, and kidney injury indicators and biochemical parameters were measured before and after AKI. RESULTS After AKI, the levels of urine albumin excretion rate, urea, and creatinine in serum, and TGF-β1 increased, while creatinine clearance and SIRT1 decreased in kidney tissue. CR improved kidney indicators and caused a reduction in TGF-β1 and an increase in SIRT1 in ovary-intact rats. Moreover, CR prevented total antioxidant capacity (TAC) decrease and malondialdehyde (MDA) increase resulting from AKI. Before AKI, an increase in body weight, fasting blood sugar (FBS), low-density lipoprotein (LDL), triglyceride (TG), and total cholesterol (TC), and a decrease in high-density lipoprotein (HDL) were observed in OVX rats compared to sham rats, but CR prevented these changes. The effects of TR were similar to those of CR in all indicators except for TGF-β1, SIRT1, urea, creatinine, and albumin. CONCLUSION The present study indicated that CR is more effective than TR in preventing AKI, probably by increasing SIRT1 and decreasing TGF-β1 in ovary-intact animals.
Collapse
Affiliation(s)
- Fatemeh Darvishzadeh Mahani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Raji-Amirhasani
- Endocrinology and Metabolism Research Center, Kerman University of Medical SciencesKerman, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Kerman University of Medical SciencesKerman, Kerman, Iran.
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Physiology Research Center, Department of Physiology and Pharmacology, 22 Bahman Blvd, Kerman, Iran.
| | - Maryam Sadat Mousavi
- Clinical Research Development Unit, Shafa Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamideh Bashiri
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Hajializadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Samaneh Sadat Alavi
- Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
24
|
Yang C, Yi B, Yang S, Li A, Liu J, Wang J, Liu J, Li Z, Liao Q, Zhang W, Zhang H. VDR restores the expression of PINK1 and BNIP3 in TECs of streptozotocin-induced diabetic mice. Life Sci Alliance 2024; 7:e202302474. [PMID: 38697845 PMCID: PMC11066303 DOI: 10.26508/lsa.202302474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024] Open
Abstract
Defective mitophagy in renal tubular epithelial cells is one of the main drivers of renal fibrosis in diabetic kidney disease. Our gene sequencing data showed the expression of PINK1 and BNIP3, two key molecules of mitophagy, was decreased in renal tissues of VDR-knockout mice. Herein, streptozotocin (STZ) was used to induce renal interstitial fibrosis in mice. VDR deficiency exacerbated STZ-induced renal impairment and defective mitophagy. Paricalcitol (pari, a VDR agonist) and the tubular epithelial cell-specific overexpression of VDR restored the expression of PINK1 and BNIP3 in the renal cortex and attenuated STZ-induced kidney fibrosis and mitochondrial dysfunction. In HK-2 cells under high glucose conditions, an increased level of α-SMA, COL1, and FN and a decreased expression of PINK1 and BNIP3 with severe mitochondrial damage were observed, and these alterations could be largely reversed by pari treatment. ChIP-qPCR and luciferase reporter assays showed VDR could positively regulate the transcription of Pink1 and Bnip3 genes. These findings reveal that VDR could restore mitophagy defects and attenuate STZ-induced fibrosis in diabetic mice through regulation of PINK1 and BNIP3.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| | - Shikun Yang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| | - Aimei Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| | - Jishi Liu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| | - Jianwen Wang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| | - Jun Liu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| | - Zhi Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| | - Qin Liao
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| |
Collapse
|
25
|
Hasegawa K, Tamaki M, Shibata E, Inagaki T, Minato M, Yamaguchi S, Shimizu I, Miyakami S, Tada M, Wakino S. Ability of NAD and Sirt1 to epigenetically suppress albuminuria. Clin Exp Nephrol 2024; 28:599-607. [PMID: 38587753 PMCID: PMC11190001 DOI: 10.1007/s10157-024-02502-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Abstract
The time for diabetic nephropathy (DN) to progress from mild to severe is long. Thus, methods to continuously repress DN are required to exert long-lasting effects mediated through epigenetic regulation. In this study, we demonstrated the ability of nicotinamide adenine dinucleotide (NAD) and its metabolites to reduce albuminuria through Sirt1- or Nampt-dependent epigenetic regulation. We previously reported that proximal tubular Sirt1 was lowered before glomerular Sirt1. Repressed glomerular Sirt1 was found to epigenetically elevate Claudin-1. In addition, we reported that proximal tubular Nampt deficiency epigenetically augmented TIMP-1 levels in Sirt6-mediated pathways, leading to type-IV collagen deposition and diabetic fibrosis. Altogether, we propose that the Sirt1/Claudin-1 axis may be crucial in the onset of albuminuria at the early stages of DN and that the Nampt/Sirt6/TIMP-1 axis promotes diabetic fibrosis in the middle to late stages of DN. Finally, administration of NMN, an NAD precursor, epigenetically potentiates the regression of the onset of DN to maintain Sirt1 and repress Claudin-1 in podocytes, suggesting the potential use of NAD metabolites as epigenetic medications for DN.
Collapse
Affiliation(s)
- Kazuhiro Hasegawa
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Masanori Tamaki
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Eriko Shibata
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Taizo Inagaki
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Masanori Minato
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Sumiyo Yamaguchi
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Ikuko Shimizu
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shinji Miyakami
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Miho Tada
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shu Wakino
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| |
Collapse
|
26
|
Hasegawa K, Tamaki M, Sakamaki Y, Wakino S. Nmnat1 Deficiency Causes Mitoribosome Excess in Diabetic Nephropathy Mediated by Transcriptional Repressor HIC1. Int J Mol Sci 2024; 25:6384. [PMID: 38928090 PMCID: PMC11204038 DOI: 10.3390/ijms25126384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is involved in renal physiology and is synthesized by nicotinamide mononucleotide adenylyltransferase (NMNAT). NMNAT exists as three isoforms, namely, NMNAT1, NMNAT2, and NMNAT3, encoded by Nmnat1, Nmnat2, and Nmnat3, respectively. In diabetic nephropathy (DN), NAD levels decrease, aggravating renal fibrosis. Conversely, sodium-glucose cotransporter-2 inhibitors increase NAD levels, mitigating renal fibrosis. In this regard, renal NAD synthesis has recently gained attention. However, the renal role of Nmnat in DN remains uncertain. Therefore, we investigated the role of Nmnat by establishing genetically engineered mice. Among the three isoforms, NMNAT1 levels were markedly reduced in the proximal tubules (PTs) of db/db mice. We examined the phenotypic changes in PT-specific Nmnat1 conditional knockout (CKO) mice. In CKO mice, Nmnat1 expression in PTs was downregulated when the tubules exhibited albuminuria, peritubular type IV collagen deposition, and mitochondrial ribosome (mitoribosome) excess. In CKO mice, Nmnat1 deficiency-induced mitoribosome excess hindered mitoribosomal translation of mitochondrial inner membrane-associated oxidative phosphorylation complex I (CI), CIII, CIV, and CV proteins and mitoribosomal dysfunction. Furthermore, the expression of hypermethylated in cancer 1, a transcription repressor, was downregulated in CKO mice, causing mitoribosome excess. Nmnat1 overexpression preserved mitoribosomal function, suggesting its protective role in DN.
Collapse
Affiliation(s)
- Kazuhiro Hasegawa
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (M.T.); (S.W.)
| | - Masanori Tamaki
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (M.T.); (S.W.)
| | - Yusuke Sakamaki
- Department of Internal Medicine, Tokyo Dental College Ichikawa General Hospital, Chiba 272-8583, Japan;
| | - Shu Wakino
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (M.T.); (S.W.)
| |
Collapse
|
27
|
Njeim R, Merscher S, Fornoni A. Mechanisms and implications of podocyte autophagy in chronic kidney disease. Am J Physiol Renal Physiol 2024; 326:F877-F893. [PMID: 38601984 PMCID: PMC11386983 DOI: 10.1152/ajprenal.00415.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Autophagy is a protective mechanism through which cells degrade and recycle proteins and organelles to maintain cellular homeostasis and integrity. An accumulating body of evidence underscores the significant impact of dysregulated autophagy on podocyte injury in chronic kidney disease (CKD). In this review, we provide a comprehensive overview of the diverse types of autophagy and their regulation in cellular homeostasis, with a specific emphasis on podocytes. Furthermore, we discuss recent findings that focus on the functional role of different types of autophagy during podocyte injury in chronic kidney disease. The intricate interplay between different types of autophagy and podocyte health requires further research, which is critical for understanding the pathogenesis of CKD and developing targeted therapeutic interventions.
Collapse
Affiliation(s)
- Rachel Njeim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
28
|
Zhang Y, Zheng B, Li Y, Shen X, Huang L, Zhao F, Yan S. Association of high vibration perception threshold with reduced renal function in patients with type 2 diabetes. Front Endocrinol (Lausanne) 2024; 15:1357294. [PMID: 38872969 PMCID: PMC11169863 DOI: 10.3389/fendo.2024.1357294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Objective To investigate the correlation between vibration sensory threshold (VPT) and renal function, including glomerulus and renal tubule, in patients with type 2 diabetes mellitus (T2DM). Methods A total of 1274 patients with T2DM who were enrolled in the Department of Endocrinology of the First Affiliated Hospital of Fujian Medical University between January 2017 and June 2020 were included. Patients were grouped according to VPT levels and divided into three groups, including the normal VPT group (VPT<15V), the mild-moderate elevated VPT group (VPT15~25V), and the severely elevated VPT group (VPT≥25 V). Linear correlation analysis was used to analyze the correlation between VPT and renal functions, including glomerulus markers urine microalbumin (MA) and urinary immunoglobulin G (U-IgG), and renal tubule marker α1-microglobulin (α1-MG). Chronic kidney disease (CKD) was defined according to Kidney Disease Improving Global Outcomes (KDIGO) criteria. The binary logistic regression of the relation between VPT and CKD, eGFR<60 ml/min, and UACR >30 mg/g were expressed. Results In the mild-moderate and severely elevated VPT group, injury biomarkers of glomerulus (MA and U-IgG), renal tubule (α1-MG), and the incidence of CKD, eGFR<60 ml/min, and UACR > 30 mg/g were gradually increased compared with the normal VPT group. Furthermore, patients with diabetes and severely elevated VPT had significantly higher levels of MA (β=197.54, p=0.042) and α1-MG (β=11.69, p=0.023) compared to those with normal VPT. Also, patients with mild-moderate elevated VPT demonstrate significantly higher levels of MA (β=229.02, p=0.005). Patients in mild-moderate elevated VPT group (OR=1.463, 95% CI 1.005-2.127; OR=1.816, 95% CI 1.212-2.721) and severely elevated VPT group (OR=1.704, 95% CI 1.113-2.611; OR=2.027, 95% CI 1.248-3.294) are at a higher incidence of CKD and elevated levels of UACR>30mg/g compared to those in the VPT normal group. Moreover, the incidence of positive Upro was notably higher in the severely elevated VPT group (OR=1.738, 95% CI 1.182-2.556). However, this phenomenon was not observed in the incidence of eGFR <60 ml/min. Conclusion A higher VPT is positively associated with the incidence of CKD in patients with T2DM, particularly with elevated UACR. VPT may serve as a marker for glomerulus and renal tubule injury.
Collapse
Affiliation(s)
- Yongze Zhang
- Department of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, National Regional Medical Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Metabolic Diseases of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Diabetes Research Institute of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Metabolic Diseases Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Biao Zheng
- Department of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, National Regional Medical Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Metabolic Diseases of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Diabetes Research Institute of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Metabolic Diseases Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yimei Li
- Department of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, National Regional Medical Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Metabolic Diseases of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Diabetes Research Institute of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Metabolic Diseases Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ximei Shen
- Department of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, National Regional Medical Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Metabolic Diseases of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Diabetes Research Institute of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Metabolic Diseases Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Lingning Huang
- Department of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, National Regional Medical Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Metabolic Diseases of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Diabetes Research Institute of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Metabolic Diseases Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Fengying Zhao
- Department of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, National Regional Medical Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Metabolic Diseases of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Diabetes Research Institute of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Metabolic Diseases Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Sunjie Yan
- Department of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, National Regional Medical Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Metabolic Diseases of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Diabetes Research Institute of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Metabolic Diseases Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
29
|
Xie T, Yao L, Li X. Advance in Iron Metabolism, Oxidative Stress and Cellular Dysfunction in Experimental and Human Kidney Diseases. Antioxidants (Basel) 2024; 13:659. [PMID: 38929098 PMCID: PMC11200795 DOI: 10.3390/antiox13060659] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Kidney diseases pose a significant global health issue, frequently resulting in the gradual decline of renal function and eventually leading to end-stage renal failure. Abnormal iron metabolism and oxidative stress-mediated cellular dysfunction facilitates the advancement of kidney diseases. Iron homeostasis is strictly regulated in the body, and disturbance in this regulatory system results in abnormal iron accumulation or deficiency, both of which are associated with the pathogenesis of kidney diseases. Iron overload promotes the production of reactive oxygen species (ROS) through the Fenton reaction, resulting in oxidative damage to cellular molecules and impaired cellular function. Increased oxidative stress can also influence iron metabolism through upregulation of iron regulatory proteins and altering the expression and activity of key iron transport and storage proteins. This creates a harmful cycle in which abnormal iron metabolism and oxidative stress perpetuate each other, ultimately contributing to the advancement of kidney diseases. The crosstalk of iron metabolism and oxidative stress involves multiple signaling pathways, such as hypoxia-inducible factor (HIF) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. This review delves into the functions and mechanisms of iron metabolism and oxidative stress, along with the intricate relationship between these two factors in the context of kidney diseases. Understanding the underlying mechanisms should help to identify potential therapeutic targets and develop novel and effective therapeutic strategies to combat the burden of kidney diseases.
Collapse
Affiliation(s)
- Tiancheng Xie
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, China;
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
30
|
Yang S, Gong W, Wang Y, Hao C, Guan Y. Unraveling the nexus of NAD+ metabolism and diabetic kidney disease: insights from murine models and human data. Front Endocrinol (Lausanne) 2024; 15:1384953. [PMID: 38836233 PMCID: PMC11148292 DOI: 10.3389/fendo.2024.1384953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/01/2024] [Indexed: 06/06/2024] Open
Abstract
Background Nicotinamide adenine dinucleotide (NAD+) is a critical coenzyme involved in kidney disease, yet its regulation in diabetic kidney disease (DKD) remains inadequately understood. Objective Therefore, we investigated the changes of NAD+ levels in DKD and the underlying mechanism. Methods Alternations of NAD+ levels and its biosynthesis enzymes were detected in kidneys from streptozotocin-induced diabetic mouse model by real-time PCR and immunoblot. The distribution of NAD+ de novo synthetic enzymes was explored via immunohistochemical study. NAD+ de novo synthetic metabolite was measured by LC-MS. Human data from NephroSeq were analyzed to verify our findings. Results The study showed that NAD+ levels were decreased in diabetic kidneys. Both mRNA and protein levels of kynurenine 3-monooxygenase (KMO) in NAD+ de novo synthesis pathway were decreased, while NAD+ synthetic enzymes in salvage pathway and NAD+ consuming enzymes remained unchanged. Further analysis of human data suggested KMO, primarily expressed in the proximal tubules shown by our immunohistochemical staining, was consistently downregulated in human diabetic kidneys. Conclusion Our study demonstrated KMO of NAD+ de novo synthesis pathway was decreased in diabetic kidney and might be responsible for NAD+ reduction in diabetic kidneys, offering valuable insights into complex regulatory mechanisms of NAD+ in DKD.
Collapse
Affiliation(s)
- Sisi Yang
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiyuan Gong
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yujia Wang
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chuanming Hao
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Guan
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Juin SK, Pushpakumar S, Sen U. Nimbidiol protects from renal injury by alleviating redox imbalance in diabetic mice. Front Pharmacol 2024; 15:1369408. [PMID: 38835661 PMCID: PMC11148448 DOI: 10.3389/fphar.2024.1369408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/17/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Chronic hyperglycemia-induced oxidative stress plays a crucial role in the development of diabetic nephropathy (DN). Moreover, adverse extracellular matrix (ECM) accumulation elevates renal resistive index leading to progressive worsening of the pathology in DN. Nimbidiol is an alpha-glucosidase inhibitor, isolated from the medicinal plant, 'neem' (Azadirachta indica) and reported as a promising anti-diabetic compound. Previously, a myriad of studies demonstrated an anti-oxidative property of a broad-spectrum neem-extracts in various diseases including diabetes. Our recent study has shown that Nimbidiol protects diabetic mice from fibrotic renal dysfunction in part by mitigating adverse ECM accumulation. However, the precise mechanism remains poorly understood. Methods The present study aimed to investigate whether Nimbidiol ameliorates renal injury by reducing oxidative stress in type-1 diabetes. To test the hypothesis, wild-type (C57BL/6J) and diabetic Akita (C57BL/6-Ins2Akita/J) mice aged 10-14 weeks were used to treat with saline or Nimbidiol (400 μg kg-1 day-1) for 8 weeks. Results Diabetic mice showed elevated blood pressure, increased renal resistive index, and decreased renal vasculature compared to wild-type control. In diabetic kidney, reactive oxygen species and the expression levels of 4HNE, p22phox, Nox4, and ROMO1 were increased while GSH: GSSG, and the expression levels of SOD-1, SOD-2, and catalase were decreased. Further, eNOS, ACE2, Sirt1 and IL-10 were found to be downregulated while iNOS and IL-17 were upregulated in diabetic kidney. The changes were accompanied by elevated expression of the renal injury markers viz., lipocalin-2 and KIM-1 in diabetic kidney. Moreover, an upregulation of p-NF-κB and a downregulation of IkBα were observed in diabetic kidney compared to the control. Nimbidiol ameliorated these pathological changes in diabetic mice. Conclusion Altogether, the data of our study suggest that oxidative stress largely contributes to the diabetic renal injury, and Nimbidiol mitigates redox imbalance and thereby protects kidney in part by inhibiting NF-κB signaling pathway in type-1 diabetes.
Collapse
Affiliation(s)
- Subir Kumar Juin
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Sathnur Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
32
|
Kundu S, Ghosh S, Sahu BD. Scopoletin alleviates high glucose-induced toxicity in human renal proximal tubular cells via inhibition of oxidative damage, epithelial-mesenchymal transition, and fibrogenesis. Mol Biol Rep 2024; 51:620. [PMID: 38709349 DOI: 10.1007/s11033-024-09579-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Recent years of evidence suggest the crucial role of renal tubular cells in developing diabetic kidney disease. Scopoletin (SCOP) is a plant-based coumarin with numerous biological activities. This study aimed to determine the effect of SCOP on renal tubular cells in developing diabetic kidney disease and to elucidate mechanisms. METHODS AND RESULTS In this study, SCOP was evaluated in vitro using renal proximal tubular (HK-2) cells under hyperglycemic conditions to understand its mechanism of action. In HK-2 cells, SCOP alleviated the high glucose-generated reactive oxygen species (ROS), restored the levels of reduced glutathione, and decreased lipid peroxidation. High glucose-induced alteration in the mitochondrial membrane potential was markedly restored in the SCOP-treated cells. Moreover, SCOP significantly reduced the high glucose-induced apoptotic cell population in the Annexin V-FITC flow cytometry study. Furthermore, high glucose markedly elevated the mRNA expression of fibrotic and extracellular matrix (ECM) components, namely, transforming growth factor (TGF)-β, alfa-smooth muscle actin (α-SMA), collagen I, and collagen III, in HK-2 cells compared to the untreated cells. SCOP treatment reduced these mRNA expressions compared to the high glucose-treated cells. Collagen I and TGF-β protein levels were also significantly reduced in the SCOP-treated cells. Further findings in HK-2 cells revealed that SCOP interfered with the epithelial-mesenchymal transition (EMT) in the high glucose-treated HK-2 cells by normalizing E-cadherin and downregulating the vimentin and α-SMA proteins. CONCLUSIONS In conclusion, SCOP modulates the high glucose-generated renal tubular cell oxidative damage and accumulation of ECM components and may be a promising molecule against diabetic nephropathy.
Collapse
Affiliation(s)
- Sourav Kundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Changsari, Guwahati, Assam, 781101, India
| | - Sitara Ghosh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Changsari, Guwahati, Assam, 781101, India
| | - Bidya Dhar Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Changsari, Guwahati, Assam, 781101, India.
| |
Collapse
|
33
|
Saviano A, Roehlen N, Baumert TF. Tight Junction Proteins as Therapeutic Targets to Treat Liver Fibrosis and Hepatocellular Carcinoma. Semin Liver Dis 2024; 44:180-190. [PMID: 38648796 DOI: 10.1055/s-0044-1785646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In the last decade tight junction proteins exposed at the surface of liver or cancer cells have been uncovered as mediators of liver disease biology: Claudin-1 and Occludin are host factors for hepatitis C virus entry and Claudin-1 has been identified as a driver for liver fibrosis and hepatocellular carcinoma (HCC). Moreover, Claudins have emerged as therapeutic targets for liver disease and HCC. CLDN1 expression is upregulated in liver fibrosis and HCC. Monoclonal antibodies (mAbs) targeting Claudin-1 have completed preclinical proof-of-concept studies for treatment of liver fibrosis and HCC and are currently in clinical development for advanced liver fibrosis. Claudin-6 overexpression is associated with an HCC aggressive phenotype and treatment resistance. Claudin-6 mAbs or chimeric antigen receptor-T cells therapies are currently being clinically investigated for Claudin-6 overexpressing tumors. In conclusion, targeting Claudin proteins offers a novel clinical opportunity for the treatment of patients with advanced liver fibrosis and HCC.
Collapse
Affiliation(s)
- Antonio Saviano
- Inserm, U1110, Institute of Translational Medicine and Liver Disease, Strasbourg, France
- University of Strasbourg, Strasbourg, France
- Service d'hépato-gastroentérologie, Pôle Hépato-digestif, Institut-Hospitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Natascha Roehlen
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Diseases, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas F Baumert
- Inserm, U1110, Institute of Translational Medicine and Liver Disease, Strasbourg, France
- University of Strasbourg, Strasbourg, France
- Service d'hépato-gastroentérologie, Pôle Hépato-digestif, Institut-Hospitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
34
|
Tavakolidakhrabadi N, Aulicino F, May CJ, Saleem MA, Berger I, Welsh GI. Genome editing and kidney health. Clin Kidney J 2024; 17:sfae119. [PMID: 38766272 PMCID: PMC11099665 DOI: 10.1093/ckj/sfae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Indexed: 05/22/2024] Open
Abstract
Genome editing technologies, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas in particular, have revolutionized the field of genetic engineering, providing promising avenues for treating various genetic diseases. Chronic kidney disease (CKD), a significant health concern affecting millions of individuals worldwide, can arise from either monogenic or polygenic mutations. With recent advancements in genomic sequencing, valuable insights into disease-causing mutations can be obtained, allowing for the development of new treatments for these genetic disorders. CRISPR-based treatments have emerged as potential therapies, especially for monogenic diseases, offering the ability to correct mutations and eliminate disease phenotypes. Innovations in genome editing have led to enhanced efficiency, specificity and ease of use, surpassing earlier editing tools such as zinc-finger nucleases and transcription activator-like effector nucleases (TALENs). Two prominent advancements in CRISPR-based gene editing are prime editing and base editing. Prime editing allows precise and efficient genome modifications without inducing double-stranded DNA breaks (DSBs), while base editing enables targeted changes to individual nucleotides in both RNA and DNA, promising disease correction in the absence of DSBs. These technologies have the potential to treat genetic kidney diseases through specific correction of disease-causing mutations, such as somatic mutations in PKD1 and PKD2 for polycystic kidney disease; NPHS1, NPHS2 and TRPC6 for focal segmental glomerulosclerosis; COL4A3, COL4A4 and COL4A5 for Alport syndrome; SLC3A1 and SLC7A9 for cystinuria and even VHL for renal cell carcinoma. Apart from editing the DNA sequence, CRISPR-mediated epigenome editing offers a cost-effective method for targeted treatment providing new avenues for therapeutic development, given that epigenetic modifications are associated with the development of various kidney disorders. However, there are challenges to overcome, including developing efficient delivery methods, improving safety and reducing off-target effects. Efforts to improve CRISPR-Cas technologies involve optimizing delivery vectors, employing viral and non-viral approaches and minimizing immunogenicity. With research in animal models providing promising results in rescuing the expression of wild-type podocin in mouse models of nephrotic syndrome and successful clinical trials in the early stages of various disorders, including cancer immunotherapy, there is hope for successful translation of genome editing to kidney diseases.
Collapse
Affiliation(s)
| | - Francesco Aulicino
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, Bristol Royal Hospital for Children
| | - Carl J May
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, UK
| | - Moin A Saleem
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, UK
- Department of Paediatric Nephrology, Bristol Royal Hospital for Children, Bristol, UK
| | - Imre Berger
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Gavin I Welsh
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, UK
| |
Collapse
|
35
|
Abstract
Sirtuins (SIRTs) are putative regulators of lifespan in model organisms. Since the initial discovery that SIRTs could promote longevity in nematodes and flies, the identification of additional properties of these proteins has led to understanding of their roles as exquisite sensors that link metabolic activity to oxidative states. SIRTs have major roles in biological processes that are important in kidney development and physiological functions, including mitochondrial metabolism, oxidative stress, autophagy, DNA repair and inflammation. Furthermore, altered SIRT activity has been implicated in the pathophysiology and progression of acute and chronic kidney diseases, including acute kidney injury, diabetic kidney disease, chronic kidney disease, polycystic kidney disease, autoimmune diseases and renal ageing. The renoprotective roles of SIRTs in these diseases make them attractive therapeutic targets. A number of SIRT-activating compounds have shown beneficial effects in kidney disease models; however, further research is needed to identify novel SIRT-targeting strategies with the potential to treat and/or prevent the progression of kidney diseases and increase the average human healthspan.
Collapse
Affiliation(s)
- Luca Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.
| |
Collapse
|
36
|
Zhang J, Qiu L, Liu Z, Liu J, Yu B, Liu C, Ren B, Zhang J, Li S, Guan Y, Zheng F, Yang G, Chen L. Circadian light/dark cycle reversal exacerbates the progression of chronic kidney disease in mice. J Pineal Res 2024; 76:e12964. [PMID: 38803014 DOI: 10.1111/jpi.12964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Circadian disruption such as shift work, jet lag, has gradually become a global health issue and is closely associated with various metabolic disorders. The influence and mechanism of circadian disruption on renal injury in chronic kidney disease (CKD) remains inadequately understood. Here, we evaluated the impact of environmental light disruption on the progression of chronic renal injury in CKD mice. By using two abnormal light exposure models to induce circadian disruption, we found that circadian disruption induced by weekly light/dark cycle reversal (LDDL) significantly exacerbated renal dysfunction, accelerated renal injury, and promoted renal fibrosis in mice with 5/6 nephrectomy and unilateral ureteral obstruction (UUO). Mechanistically, RNA-seq analysis revealed significant immune and metabolic disorder in the LDDL-conditioned CKD kidneys. Consistently, renal content of ATP was decreased and ROS production was increased in the kidney tissues of the LDDL-challenged CKD mice. Untargeted metabolomics revealed a significant buildup of lipids in the kidney affected by LDDL. Notably, the level of β-NMN, a crucial intermediate in the NAD+ pathway, was found to be particularly reduced. Moreover, we demonstrated that both β-NMN and melatonin administration could significantly rescue the light-disruption associated kidney dysfunction. In conclusion, environmental circadian disruption may exacerbate chronic kidney injury by facilitating inflammatory responses and disturbing metabolic homeostasis. β-NMN and melatonin treatments may hold potential as promising approaches for preventing and treating light-disruption associated CKD.
Collapse
Affiliation(s)
- Jiayang Zhang
- WuHu Hospital, East China Normal University (The Second People's Hospital, Wuhu), Wuhu, China
- Health Science Center, East China Normal University, Shanghai, China
| | - Lejia Qiu
- Health Science Center, East China Normal University, Shanghai, China
| | - Zhaiyi Liu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Jiaxin Liu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Bo Yu
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Chengcheng Liu
- Health Science Center, East China Normal University, Shanghai, China
| | - Baoyin Ren
- WuHu Hospital, East China Normal University (The Second People's Hospital, Wuhu), Wuhu, China
- Health Science Center, East China Normal University, Shanghai, China
| | - Jiaqi Zhang
- Health Science Center, East China Normal University, Shanghai, China
| | - Shuyao Li
- Health Science Center, East China Normal University, Shanghai, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Feng Zheng
- WuHu Hospital, East China Normal University (The Second People's Hospital, Wuhu), Wuhu, China
- Health Science Center, East China Normal University, Shanghai, China
| | - Guangrui Yang
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Lihong Chen
- WuHu Hospital, East China Normal University (The Second People's Hospital, Wuhu), Wuhu, China
- Health Science Center, East China Normal University, Shanghai, China
| |
Collapse
|
37
|
Velma G, Krider IS, Alves ETM, Courey JM, Laham MS, Thatcher GRJ. Channeling Nicotinamide Phosphoribosyltransferase (NAMPT) to Address Life and Death. J Med Chem 2024; 67:5999-6026. [PMID: 38580317 PMCID: PMC11056997 DOI: 10.1021/acs.jmedchem.3c02112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the rate-limiting step in NAD+ biosynthesis via salvage of NAM formed from catabolism of NAD+ by proteins with NADase activity (e.g., PARPs, SIRTs, CD38). Depletion of NAD+ in aging, neurodegeneration, and metabolic disorders is addressed by NAD+ supplementation. Conversely, NAMPT inhibitors have been developed for cancer therapy: many discovered by phenotypic screening for cancer cell death have low nanomolar potency in cellular models. No NAMPT inhibitor is yet FDA-approved. The ability of inhibitors to act as NAMPT substrates may be associated with efficacy and toxicity. Some 3-pyridyl inhibitors become 4-pyridyl activators or "NAD+ boosters". NAMPT positive allosteric modulators (N-PAMs) and boosters may increase enzyme activity by relieving substrate/product inhibition. Binding to a "rear channel" extending from the NAMPT active site is key for inhibitors, boosters, and N-PAMs. A deeper understanding may fulfill the potential of NAMPT ligands to regulate cellular life and death.
Collapse
Affiliation(s)
- Ganga
Reddy Velma
- Department
of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Isabella S. Krider
- Department
of Chemistry & Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Erick T. M. Alves
- Department
of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jenna M. Courey
- Department
of Chemistry & Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Megan S. Laham
- Department
of Chemistry & Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Gregory R. J. Thatcher
- Department
of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
- Department
of Chemistry & Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
38
|
Yamaguchi M, Fukuyama R, Fujita M. Effect of nattokinase on the pathological conditions in streptozotocin induced diabetic rats. Heliyon 2024; 10:e28835. [PMID: 38586318 PMCID: PMC10998082 DOI: 10.1016/j.heliyon.2024.e28835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
Nattokinase (NK), also known as subtilisin NAT (EC 3.4.21.62), is a serine protease produced by Bacillus subtilis natto that has anti-inflammatory and fibrinolytic properties. To study whether NK prevents the progression of pathological changes in diabetes as an inflammatory disease, we examined the effect of NK on pathological conditions in streptozotocin (STZ)-induced diabetic rats using the following parameters: fasting blood glucose (glucose), total plasma protein (TP), creatinine, histopathology of renal corpuscles and tubules, advanced glycation end products (AGEs), and C-reactive protein (CRP). STZ-administered rats were maintained on a basic diet (CE-2) as control, low-NK diet (containing 0.2 mg NK/g diet), and high-NK diet (0.6 mg NK/g diet) for 14 days. High-dose NK significantly inhibited both glycogen deposition in the renal tubules and increase in the circulating AGE levels without downregulating glucose levels. Compared with the control group, the group treated with the high-NK diet presented a significant inhibition of the increase in the circulating CRP level on day 7 after the beginning of the treatment. However, the CRP level in the NK-H group reached the same level as that in the control group on Day 14. AGEs are known to induce CRP expression in hepatocytes, but the increase in CRP levels in our animal model was independent on the circulating AGE levels. In contrast, low-dose NK did not suppress changes in these parameters. Our present study suggests that NK suppresses glycogen deposition in renal tubules in a dose-dependent manner by the downregulation of AGE formation under hyperglycaemia in the rats with STZ-induced short-term diabetes. However, it is unclear whether this downregulation is caused by intact NK or peptides derived from NK during its digestion in the digestive tract.
Collapse
Affiliation(s)
- Moe Yamaguchi
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Science, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima, 737-0112, Japan
| | - Ryo Fukuyama
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Science, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima, 737-0112, Japan
| | - Mitsugu Fujita
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Science, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima, 737-0112, Japan
| |
Collapse
|
39
|
Tsuruta H, Yasuda-Yamahara M, Yoshibayashi M, Kuwagata S, Yamahara K, Tanaka-Sasaki Y, Chin-Kanasaki M, Matsumoto S, Ema M, Kume S. Fructose overconsumption accelerates renal dysfunction with aberrant glomerular endothelial-mesangial cell interactions in db/db mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167074. [PMID: 38354758 DOI: 10.1016/j.bbadis.2024.167074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
For the advancement of DKD treatment, identifying unrecognized residual risk factors is essential. We explored the impact of obesity diversity derived from different carbohydrate qualities, with an emphasis on the increasing trend of excessive fructose consumption and its effect on DKD progression. In this study, we utilized db/db mice to establish a novel diabetic model characterized by fructose overconsumption, aiming to uncover the underlying mechanisms of renal damage. Compared to the control diet group, the fructose-fed db/db mice exhibited more pronounced obesity yet demonstrated milder glucose intolerance. Plasma cystatin C levels were elevated in the fructose model compared to the control, and this elevation was accompanied by enhanced glomerular sclerosis, even though albuminuria levels and tubular lesions were comparable. Single-cell RNA sequencing of the whole kidney highlighted an increase in Lrg1 in glomerular endothelial cells (GECs) in the fructose model, which appeared to drive mesangial fibrosis through enhanced TGF-β1 signaling. Our findings suggest that excessive fructose intake exacerbates diabetic kidney disease progression, mediated by aberrant Lrg1-driven crosstalk between GECs and mesangial cells.
Collapse
Affiliation(s)
- Hiroaki Tsuruta
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Mako Yasuda-Yamahara
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Mamoru Yoshibayashi
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Shogo Kuwagata
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Kosuke Yamahara
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Yuki Tanaka-Sasaki
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Masami Chin-Kanasaki
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Shoma Matsumoto
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan.
| |
Collapse
|
40
|
Jin Q, Liu T, Ma F, Fu T, Yang L, Mao H, Wang Y, Peng L, Li P, Zhan Y. Roles of Sirt1 and its modulators in diabetic microangiopathy: A review. Int J Biol Macromol 2024; 264:130761. [PMID: 38467213 DOI: 10.1016/j.ijbiomac.2024.130761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Diabetic vascular complications include diabetic macroangiopathy and diabetic microangiopathy. Diabetic microangiopathy is characterised by impaired microvascular endothelial function, basement membrane thickening, and microthrombosis, which may promote renal, ocular, cardiac, and peripheral system damage in diabetic patients. Therefore, new preventive and therapeutic strategies are urgently required. Sirt1, a member of the nicotinamide adenine dinucleotide-dependent histone deacetylase class III family, regulates different organ growth and development, oxidative stress, mitochondrial function, metabolism, inflammation, and aging. Sirt1 is downregulated in vascular injury and microangiopathy. Moreover, its expression and distribution in different organs correlate with age and play critical regulatory roles in oxidative stress and inflammation. This review introduces the background of diabetic microangiopathy and the main functions of Sirt1. Then, the relationship between Sirt1 and different diabetic microangiopathies and the regulatory roles mediated by different cells are described. Finally, we summarize the modulators that target Sirt1 to ameliorate diabetic microangiopathy as an essential preventive and therapeutic measure for diabetic microangiopathy. In conclusion, targeting Sirt1 may be a new therapeutic strategy for diabetic microangiopathy.
Collapse
Affiliation(s)
- Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongfei Fu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
41
|
O’Brien J, Niehaus P, Chang K, Remark J, Barrett J, Dasgupta A, Adenegan M, Salimian M, Kevas Y, Chandrasekaran K, Kristian T, Chellappan R, Rubin S, Kiemen A, Lu CPJ, Russell JW, Ho CY. Skin keratinocyte-derived SIRT1 and BDNF modulate mechanical allodynia in mouse models of diabetic neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.24.523981. [PMID: 36747753 PMCID: PMC9900813 DOI: 10.1101/2023.01.24.523981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Diabetic neuropathy is a debilitating disorder characterized by spontaneous and mechanical pain. The role of skin mechanoreceptors in the development of mechanical pain (allodynia) is unclear. We discovered that mice with diabetic neuropathy had decreased sirtuin 1 (SIRT1) deacetylase activity in foot skin, leading to reduced expression of brain-derived neurotrophic factor (BDNF) and subsequent loss of innervation in Meissner corpuscles, a mechanoreceptor expressing the BDNF receptor TrkB. When SIRT1 was depleted from skin, the mechanical allodynia worsened in diabetic neuropathy mice, likely due to retrograde degeneration of the Meissner-corpuscle innervating Aβ axons and aberrant formation of Meissner corpuscles which may have increased the mechanosensitivity. The same phenomenon was also noted in skin BDNF knockout mice. Furthermore, overexpression of SIRT1 in skin induced Meissner corpuscle reinnervation and regeneration, resulting in significant improvement of diabetic mechanical allodynia. Overall, the findings suggested that skin-derived SIRT1 and BDNF function in the same pathway in skin sensory apparatus regeneration and highlighted the potential of developing topical SIRT1-activating compounds as a novel treatment for diabetic mechanical allodynia.
Collapse
Affiliation(s)
- Jennifer O’Brien
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Peter Niehaus
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Koping Chang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pathology, National Taiwan University, Taipei, 100, Taiwan
| | - Juliana Remark
- Hansj rg Wyss Department of Plastic Surgery, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Joy Barrett
- Hansj rg Wyss Department of Plastic Surgery, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Abhishikta Dasgupta
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Morayo Adenegan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Mohammad Salimian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yanni Kevas
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, 21201, USA
| | - Tibor Kristian
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, 21201, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Rajeshwari Chellappan
- Department of Pathology, University of Alabama Birmingham, Birmingham, AL, 35233, USA
| | - Samuel Rubin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Chemistry, College of William and Mary, Williamsburg, VA, 23187, USA
| | - Ashley Kiemen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Catherine Pei-Ju Lu
- Hansj rg Wyss Department of Plastic Surgery, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - James W. Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, 21201, USA
| | - Cheng-Ying Ho
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
42
|
Gujarati NA, Chow AK, Mallipattu SK. Central role of podocytes in mediating cellular cross talk in glomerular health and disease. Am J Physiol Renal Physiol 2024; 326:F313-F325. [PMID: 38205544 PMCID: PMC11207540 DOI: 10.1152/ajprenal.00328.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Podocytes are highly specialized epithelial cells that surround the capillaries of the glomeruli in the kidney. Together with the glomerular endothelial cells, these postmitotic cells are responsible for regulating filtrate from the circulating blood with their organized network of interdigitating foot processes that wrap around the glomerular basement membrane. Although podocyte injury and subsequent loss is the hallmark of many glomerular diseases, recent evidence suggests that the cell-cell communication between podocytes and other glomerular and nonglomerular cells is critical for the development and progression of kidney disease. In this review, we highlight these key cellular pathways of communication and how they might be a potential target for therapy in glomerular disease. We also postulate that podocytes might serve as a central hub for communication in the kidney under basal conditions and in response to cellular stress, which may have implications for the development and progression of glomerular diseases.
Collapse
Affiliation(s)
- Nehaben A Gujarati
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, United States
| | - Andrew K Chow
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, United States
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, United States
- Renal Section, Northport Veterans Affairs Medical Center, Northport, New York, United States
| |
Collapse
|
43
|
Wang H, Yu X, Liu D, Qiao Y, Huo J, Pan S, Zhou L, Wang R, Feng Q, Liu Z. VDR Activation Attenuates Renal Tubular Epithelial Cell Ferroptosis by Regulating Nrf2/HO-1 Signaling Pathway in Diabetic Nephropathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305563. [PMID: 38145959 PMCID: PMC10933633 DOI: 10.1002/advs.202305563] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/18/2023] [Indexed: 12/27/2023]
Abstract
Diabetic nephropathy (DN) is a serious microvascular complication of diabetes. Ferroptosis, a new form of cell death, plays a crucial role in the pathogenesis of DN. Renal tubular injury triggered by ferroptosis might be essential in this process. Numerous studies demonstrate that the vitamin D receptor (VDR) exerts beneficial effects by suppressing ferroptosis. However, the underlying mechanism has not been fully elucidated. Thus, they verified the nephroprotective effect of VDR activation and explored the mechanism by which VDR activation suppressed ferroptosis in db/db mice and high glucose-cultured proximal tubular epithelial cells (PTECs). Paricalcitol (PAR) is a VDR agonist that can mitigate kidney injury and prevent renal dysfunction. PAR treatment could inhibit ferroptosis of PTECs through decreasing iron content, increasing glutathione (GSH) levels, reducing malondialdehyde (MDA) generation, decreasing the expression of positive ferroptosis mediator transferrin receptor 1 (TFR-1), and enhancing the expression of negative ferroptosis mediators including ferritin heavy chain (FTH-1), glutathione peroxidase 4 (GPX4), and cystine/glutamate antiporter solute carrier family 7 member 11 (SLC7A11). Mechanistically, VDR activation upregulated the NFE2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) signaling pathway to suppress ferroptosis in PTECs. These findings suggested that VDR activation inhibited ferroptosis of PTECs in DN via modulating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Hui Wang
- Research Institute of Nephrology, Zhengzhou UniversityThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Traditional Chinese Medicine Integrated Department of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Henan Province Research Center for Kidney DiseaseZhengzhou450052P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan ProvinceZhengzhou450052P. R. China
| | - Xiaoyue Yu
- Research Institute of Nephrology, Zhengzhou UniversityThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Traditional Chinese Medicine Integrated Department of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Henan Province Research Center for Kidney DiseaseZhengzhou450052P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan ProvinceZhengzhou450052P. R. China
| | - Dongwei Liu
- Research Institute of Nephrology, Zhengzhou UniversityThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Traditional Chinese Medicine Integrated Department of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Henan Province Research Center for Kidney DiseaseZhengzhou450052P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan ProvinceZhengzhou450052P. R. China
| | - Yingjin Qiao
- Blood Purification CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
| | - Jinling Huo
- Research Institute of Nephrology, Zhengzhou UniversityThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Traditional Chinese Medicine Integrated Department of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Henan Province Research Center for Kidney DiseaseZhengzhou450052P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan ProvinceZhengzhou450052P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou UniversityThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Traditional Chinese Medicine Integrated Department of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Henan Province Research Center for Kidney DiseaseZhengzhou450052P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan ProvinceZhengzhou450052P. R. China
| | - Lijuan Zhou
- Electron Microscopy Laboratory of Renal PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
| | - Rui Wang
- Research Institute of Nephrology, Zhengzhou UniversityThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Traditional Chinese Medicine Integrated Department of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Henan Province Research Center for Kidney DiseaseZhengzhou450052P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan ProvinceZhengzhou450052P. R. China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou UniversityThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Traditional Chinese Medicine Integrated Department of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Henan Province Research Center for Kidney DiseaseZhengzhou450052P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan ProvinceZhengzhou450052P. R. China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou UniversityThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Traditional Chinese Medicine Integrated Department of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Henan Province Research Center for Kidney DiseaseZhengzhou450052P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan ProvinceZhengzhou450052P. R. China
| |
Collapse
|
44
|
Jin Q, Ma F, Liu T, Yang L, Mao H, Wang Y, Peng L, Li P, Zhan Y. Sirtuins in kidney diseases: potential mechanism and therapeutic targets. Cell Commun Signal 2024; 22:114. [PMID: 38347622 PMCID: PMC10860260 DOI: 10.1186/s12964-023-01442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/12/2023] [Indexed: 02/15/2024] Open
Abstract
Sirtuins, which are NAD+-dependent class III histone deacetylases, are involved in various biological processes, including DNA damage repair, immune inflammation, oxidative stress, mitochondrial homeostasis, autophagy, and apoptosis. Sirtuins are essential regulators of cellular function and organismal health. Increasing evidence suggests that the development of age-related diseases, including kidney diseases, is associated with aberrant expression of sirtuins, and that regulation of sirtuins expression and activity can effectively improve kidney function and delay the progression of kidney disease. In this review, we summarise current studies highlighting the role of sirtuins in renal diseases. First, we discuss sirtuin family members and their main mechanisms of action. We then outline the possible roles of sirtuins in various cell types in kidney diseases. Finally, we summarise the compounds that activate or inhibit sirtuin activity and that consequently ameliorate renal diseases. In conclusion, targeted modulation of sirtuins is a potential therapeutic strategy for kidney diseases. Video Abstract.
Collapse
Affiliation(s)
- Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
45
|
Mihanfar A, Akbarzadeh M, Ghazizadeh Darband S, Sadighparvar S, Majidinia M. SIRT1: a promising therapeutic target in type 2 diabetes mellitus. Arch Physiol Biochem 2024; 130:13-28. [PMID: 34379994 DOI: 10.1080/13813455.2021.1956976] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023]
Abstract
A significant increase in the worldwide incidence and prevalence of type 2 diabetic mellitus (T2DM) has elevated the need for studies on novel and effective therapeutic strategies. Sirtuin 1 (SIRT1) is an NAD + dependent protein deacetylase with a critical function in the regulation of glucose/lipid metabolism, insulin resistance, inflammation, oxidative stress, and mitochondrial function. SIRT1 is also involved in the regulation of insulin secretion from pancreatic β-cells and protecting these cells from inflammation and oxidative stress-mediated tissue damages. In this regard, major SIRT1 activators have been demonstrated to exert a beneficial impact in reversing T2DM-related complications including cardiomyopathy, nephropathy, retinopathy, and neuropathy, hence treating T2DM. Therefore, an accumulating number of recent studies have investigated the efficacy of targeting SIRT1 as a therapeutic strategy in T2DM. In this review we aimed to discuss the current understanding of the physiological and biological roles of SIRT1, then its implication in the pathogenesis of T2DM, and the therapeutic potential of SIRT1 in combating T2DM.
Collapse
Affiliation(s)
- Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Akbarzadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
46
|
Soltysiak J, Ostalska-Nowicka D, Mackowiak-Lewandowicz K, Skowronska B, Fichna P, Stankiewicz W, Zaorska K, Zachwieja J. Early kidney damage in diabetic adolescents with increased blood pressure and glomerular hyperfiltration. Minerva Pediatr (Torino) 2024; 76:37-45. [PMID: 32748608 DOI: 10.23736/s2724-5276.20.05812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
BACKGROUND The early impact of type 1 diabetes mellitus (DM1), increased blood pressure and glomerular hyperfiltration (GHF) on kidney damage in adolescents using two urinary markers of kidney injury - neutrophil gelatinase-associated lipocalin (uNGAL) and transferrin (uTransf) - was assessed. METHODS The study group consisted of 80 adolescents with DM1, of whom 42 were patients with increased blood pressure (IBP), and 38 were patients with normal blood pressure (NBP). Blood pressure was assessed by 24-hour ambulatory blood-pressure monitoring. All patients showed estimated glomerular-filtration rates (eGFRs) above 90 mL/min/1.73 m2. The control group consisted of 19 healthy, age and gender-matched adolescents. RESULTS All diabetic children showed a significant increase in uNGAL (P<0.001). This increase was not related to blood pressure. The uNGAL was elevated in all patients with normal albuminuria, normal eGFR and NBP. The concentration of uTransf was not increased in the entire studied group and was not related to blood pressure. Children with GHF had significantly higher levels of both uTransf (P=0.010) and uNGAL (P<0.001). In patients with GHF, blood pressure was normal. Patients with IBP showed a significantly higher value for triglycerides (r=0.247; P=0.032) and a longer duration of diabetes (r=0.264; P=0.019). CONCLUSIONS Diabetes is the leading risk factor for early kidney injury. However, increased blood pressure does not lead to kidney damage, at least in the early stage of DM1. The uNGAL is the early indicator of kidney injury and increases in patients with normal albuminuria, normal glomerular filtration and normal blood pressure. Glomerular hyperfiltration seems to be a marker of diabetic-kidney involvement.
Collapse
Affiliation(s)
- Jolanta Soltysiak
- Department of Pediatric Nephrology and Hypertension, Poznan University of Medical Sciences, Poznan, Poland -
| | - Danuta Ostalska-Nowicka
- Department of Pediatric Nephrology and Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Bogda Skowronska
- Department of Pediatric Diabetes and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Fichna
- Department of Pediatric Diabetes and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | - Witold Stankiewicz
- Department of Pediatric Diabetes and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Zaorska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jacek Zachwieja
- Department of Pediatric Nephrology and Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
47
|
Rad NK, Heydari Z, Tamimi AH, Zahmatkesh E, Shpichka A, Barekat M, Timashev P, Hossein-Khannazer N, Hassan M, Vosough M. Review on Kidney-Liver Crosstalk: Pathophysiology of Their Disorders. CELL JOURNAL 2024; 26:98-111. [PMID: 38459727 PMCID: PMC10924833 DOI: 10.22074/cellj.2023.2007757.1376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/25/2023] [Accepted: 12/30/2023] [Indexed: 03/10/2024]
Abstract
Kidney-liver crosstalk plays a crucial role in normal and certain pathological conditions. In pathologic states, both renal-induced liver damage and liver-induced kidney diseases may happen through these kidney-liver interactions. This bidirectional crosstalk takes place through the systemic conditions that mutually influence both the liver and kidneys. Ischemia and reperfusion, cytokine release and pro-inflammatory signaling pathways, metabolic acidosis, oxidative stress, and altered enzyme activity and metabolic pathways establish the base of this interaction between the kidneys and liver. In these concomitant kidney-liver diseases, the survival rates strongly correlate with early intervention and treatment of organ dysfunction. Proper care of a nephrologist and hepatologist and the identification of pathological conditions using biomarkers at early stages are necessary to prevent the complications induced by this complex and potentially vicious cycle. Therefore, understanding the characteristics of this crosstalk is essential for better management. In this review, we discussed the available literature concerning the detrimental effects of kidney failure on liver functions and liver-induced kidney diseases.
Collapse
Affiliation(s)
- Niloofar Khoshdel Rad
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Heydari
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
| | - Amir Hossein Tamimi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensieh Zahmatkesh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Anastasia Shpichka
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Maryam Barekat
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Peter Timashev
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. ,
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
48
|
Yamamoto K, Oda T, Uchida T, Takechi H, Oshima N, Kumagai H. Evaluating the State of Glomerular Disease by Analyzing Urinary Sediments: mRNA Levels and Immunofluorescence Staining for Various Markers. Int J Mol Sci 2024; 25:744. [PMID: 38255818 PMCID: PMC10815027 DOI: 10.3390/ijms25020744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Renal biopsy is the gold standard for making the final diagnosis and for predicting the progression of renal disease, but monitoring disease status by performing biopsies repeatedly is impossible because it is an invasive procedure. Urine tests are non-invasive and may reflect the general condition of the whole kidney better than renal biopsy results. We therefore investigated the diagnostic value of extensive urinary sediment analysis by immunofluorescence staining for markers expressed on kidney-derived cells (cytokeratin: marker for tubular epithelial cells, synaptopodin: marker for podocytes, claudin1: marker for parietal epithelial cells, CD68: marker for macrophages (MΦ), neutrophil elastase: marker for neutrophils). We further examined the expression levels of the mRNAs for these markers by real-time reverse transcription polymerase chain reaction. We also examined the levels of mRNAs associated with the M1 (iNOS, IL-6) and M2 (CD163, CD204, CD206, IL-10) MΦ phenotypes. Evaluated markers were compared with clinical and histological findings for the assessment of renal diseases. Claudin1- and CD68-positive cell counts in urinary sediments were higher in patients with glomerular crescents (especially cellular crescents) than in patients without crescents. The relative levels of mRNA for CD68 and the M2 MΦ markers (CD163, CD204, CD206, and IL-10) in urinary sediments were also higher in patients with glomerular crescents. These data suggest that immunofluorescence staining for claudin1 and CD68 in urinary sediments and the relative levels of mRNA for CD68 and M2 MΦ markers in urinary sediments are useful for evaluating the state of glomerular diseases.
Collapse
Affiliation(s)
- Kojiro Yamamoto
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa 359-8513, Japan; (K.Y.); (H.T.); (N.O.); (H.K.)
| | - Takashi Oda
- Department of Nephrology, Tokyo Medical University Hachioji Medical Center, Hachioji 193-0998, Japan;
| | - Takahiro Uchida
- Department of Nephrology, Tokyo Medical University Hachioji Medical Center, Hachioji 193-0998, Japan;
| | - Hanako Takechi
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa 359-8513, Japan; (K.Y.); (H.T.); (N.O.); (H.K.)
| | - Naoki Oshima
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa 359-8513, Japan; (K.Y.); (H.T.); (N.O.); (H.K.)
| | - Hiroo Kumagai
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa 359-8513, Japan; (K.Y.); (H.T.); (N.O.); (H.K.)
- Department of Nephrology, Sayama General Clinic, Sayama 350-1305, Japan
| |
Collapse
|
49
|
Lopes-Gonçalves G, Costa-Pessoa JM, Pimenta R, Tostes AF, da Silva EM, Ledesma FL, Malheiros DMAC, Zatz R, Thieme K, Câmara NOS, Oliveira-Souza M. Evaluation of glomerular sirtuin-1 and claudin-1 in the pathophysiology of nondiabetic focal segmental glomerulosclerosis. Sci Rep 2023; 13:22685. [PMID: 38114708 PMCID: PMC10730508 DOI: 10.1038/s41598-023-49861-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is the leading cause of nephrotic syndrome, which is characterized by podocyte injury. Given that the pathophysiology of nondiabetic glomerulosclerosis is poorly understood and targeted therapies to prevent glomerular disease are lacking, we decided to investigate the tight junction protein claudin-1 and the histone deacetylase sirtuin-1 (SIRT1), which are known to be involved in podocyte injury. For this purpose, we first examined SIRT1, claudin-1 and podocin expression in kidney biopsies from patients diagnosed with nondiabetic FSGS and found that upregulation of glomerular claudin-1 accompanies a significant reduction in glomerular SIRT1 and podocin levels. From this, we investigated whether a small molecule activator of SIRT1, SRT1720, could delay the onset of FSGS in an animal model of adriamycin (ADR)-induced nephropathy; 14 days of treatment with SRT1720 attenuated glomerulosclerosis progression and albuminuria, prevented transcription factor Wilms tumor 1 (WT1) downregulation and increased glomerular claudin-1 in the ADR + SRT1720 group. Thus, we evaluated the effect of ADR and/or SRT1720 in cultured mouse podocytes. The results showed that ADR [1 µM] triggered an increase in claudin-1 expression after 30 min, and this effect was attenuated by pretreatment of podocytes with SRT1720 [5 µM]. ADR [1 µM] also led to changes in the localization of SIRT1 and claudin-1 in these cells, which could be associated with podocyte injury. Although the use of specific agonists such as SRT1720 presents some benefits in glomerular function, their underlying mechanisms still need to be further explored for therapeutic use. Taken together, our data indicate that SIRT1 and claudin-1 are relevant for the pathophysiology of nondiabetic FSGS.
Collapse
Affiliation(s)
- Guilherme Lopes-Gonçalves
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Prof. Lineu Prestes Avenue, Sao Paulo, 05508-000, Brazil.
| | - Juliana Martins Costa-Pessoa
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Prof. Lineu Prestes Avenue, Sao Paulo, 05508-000, Brazil
| | - Ruan Pimenta
- Laboratory of Medical Investigation (LIM 55), Urology Department, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Flavia Tostes
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Eloisa Martins da Silva
- Department of Nephrology, Paulista School of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Roberto Zatz
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Karina Thieme
- Laboratory of Cellular and Molecular Bases of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Nephrology, Paulista School of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Oliveira-Souza
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Prof. Lineu Prestes Avenue, Sao Paulo, 05508-000, Brazil.
| |
Collapse
|
50
|
Liu Z, Yang J, Du M, Xin W. Functioning and mechanisms of PTMs in renal diseases. Front Pharmacol 2023; 14:1238706. [PMID: 38074159 PMCID: PMC10702752 DOI: 10.3389/fphar.2023.1238706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/13/2023] [Indexed: 12/22/2024] Open
Abstract
Post-translational modifications (PTMs) are crucial epigenetic mechanisms that regulate various cellular biological processes. The use of mass spectrometry (MS)-proteomics has led to the discovery of numerous novel types of protein PTMs, such as acetylation, crotonylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation, protein propionylation and butyrylation, succinylation, malonylation, lactylation, and histone methylation. In this review, we specifically highlight the molecular mechanisms and roles of various histone and some non-histone PTMs in renal diseases, including diabetic kidney disease. PTMs exhibit diverse effects on renal diseases, which can be either protective or detrimental, depending on the specific type of protein PTMs and their respective targets. Different PTMs activate various signaling pathways in diverse renal pathological conditions, which could provide novel insights for studying epigenetic mechanisms and developing potential therapeutic strategies for renal diseases.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jian Yang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Minghui Du
- Biomedical Science College, Shandong First Medical University, Jinan, China
| | - Wei Xin
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|