1
|
Chen X, Cheng Z, Xu J, Wang Q, Zhao Z, Cheng Q, Jiang Q. The dual role of diabetes on oral potentially malignant disorders. Eur J Med Res 2025; 30:199. [PMID: 40122861 PMCID: PMC11931820 DOI: 10.1186/s40001-025-02462-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/13/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Observational studies suggest a link between diabetes and oral potentially malignant disorders (OPMDs), such as oral lichen planus (OLP) and oral leukoplakia (OLK). The causal relationship, as well as the type of diabetes that promotes OPMDs development, remains unclear. This Mendelian randomization (MR) study estimated the causal effects of diabetes-related traits on OPMDs. METHODS Large-scale genome-wide association study data on type 1 diabetes (T1D), type 2 diabetes (T2D), fasting glucose (FG), fasting insulin (FI), glycated hemoglobin (HbA1c), OLP, OLK, and actinic cheilitis (AC) were used. Causal effects were assessed using inverse-variance weighted (IVW), weighted median, and MR-Egger methods. Multivariable MR analyses evaluated the independent roles of these traits, with extensive sensitivity analyses. RESULTS Genetic susceptibility to T1D (IVW OR = 1.09, 95% CI 1.02-1.17, P = 0.007) and T2D (IVW OR = 0.91, 95% CI 0.86-0.97, P = 0.002) showed protective effects against AC. T1D was associated with an increased risk of OLP (IVW OR = 1.09, 95% CI 1.02-1.17, P = 0.007). The effect of T1D on AC and OLP remained robust after adjusting for FI, FG, and HbA1c, while T2D's effect on AC was not significant when considering these glycemic traits. No potential pleiotropy was detected (P > 0.05). CONCLUSIONS T1D may have a causal role in the development of OLP independent of glycemic traits, emphasizing the need for routine oral examinations in T1D patients. Conversely, genetically predicted T1D and T2D are significantly associated with a reduced risk of AC, challenging previous assumptions and offering new insights into the relationship between diabetes and OPMDs. Further extensive investigations are required to address the limitations of this study and to clarify these associations.
Collapse
Affiliation(s)
- Xin Chen
- Department of Oral and Maxillofacial Surgery, Jiangyin People's Hospital Affiliated to Nantong University, No. 163, Shoushan Road, Jiangyin, 214400, Jiangsu Province, China
| | - Zheng Cheng
- Department of Oral and Maxillofacial Surgery, Jiangyin People's Hospital Affiliated to Nantong University, No. 163, Shoushan Road, Jiangyin, 214400, Jiangsu Province, China
| | - Junyu Xu
- Department of Oral and Maxillofacial Surgery, Jiangyin People's Hospital Affiliated to Nantong University, No. 163, Shoushan Road, Jiangyin, 214400, Jiangsu Province, China
| | - Qianyi Wang
- Department of Cardiology, Jiangyin People's Hospital Affiliated to Nantong University, Jiangyin, China
| | - Zhibai Zhao
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Cheng
- Department of Oral and Maxillofacial Surgery, Jiangyin People's Hospital Affiliated to Nantong University, No. 163, Shoushan Road, Jiangyin, 214400, Jiangsu Province, China.
| | - Qianglin Jiang
- Department of Oral and Maxillofacial Surgery, Jiangyin People's Hospital Affiliated to Nantong University, No. 163, Shoushan Road, Jiangyin, 214400, Jiangsu Province, China.
| |
Collapse
|
2
|
Lernmark Å, Agardh D, Akolkar B, Gesualdo P, Hagopian WA, Haller MJ, Hyöty H, Johnson SB, Elding Larsson H, Liu E, Lynch KF, McKinney EF, McIndoe R, Melin J, Norris JM, Rewers M, Rich SS, Toppari J, Triplett E, Vehik K, Virtanen SM, Ziegler AG, Schatz DA, Krischer J. Looking back at the TEDDY study: lessons and future directions. Nat Rev Endocrinol 2025; 21:154-165. [PMID: 39496810 PMCID: PMC11825287 DOI: 10.1038/s41574-024-01045-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/06/2024]
Abstract
The goal of the TEDDY (The Environmental Determinants of Diabetes in the Young) study is to elucidate factors leading to the initiation of islet autoimmunity (first primary outcome) and those related to progression to type 1 diabetes mellitus (T1DM; second primary outcome). This Review outlines the key findings so far, particularly related to the first primary outcome. The background, history and organization of the study are discussed. Recruitment and follow-up (from age 4 months to 15 years) of 8,667 children showed high retention and compliance. End points of the presence of autoantibodies against insulin, GAD65, IA-2 and ZnT8 revealed the HLA-associated early appearance of insulin autoantibodies (1-3 years of age) and the later appearance of GAD65 autoantibodies. Competing autoantibodies against tissue transglutaminase (marking coeliac disease autoimmunity) also appeared early (2-4 years). Genetic and environmental factors, including enterovirus infection and gastroenteritis, support mechanistic differences underlying one phenotype of autoimmunity against insulin and another against GAD65. Infant growth and both probiotics and high protein intake affect the two phenotypes differently, as do serious life events during pregnancy. As the end of the TEDDY sampling phase is approaching, major omics approaches are in progress to further dissect the mechanisms that might explain the two possible endotypes of T1DM.
Collapse
Affiliation(s)
- Åke Lernmark
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden.
| | - Daniel Agardh
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| | - Beena Akolkar
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patricia Gesualdo
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, USA
| | - William A Hagopian
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael J Haller
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Heikki Hyöty
- Department of Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Suzanne Bennett Johnson
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Helena Elding Larsson
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| | - Edwin Liu
- Digestive Health Institute, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristian F Lynch
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Eoin F McKinney
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Richard McIndoe
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jessica Melin
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marian Rewers
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jorma Toppari
- Department of Paediatrics, Turku University Hospital, Turku, Finland
- Institute of Biomedicine, Research Centre for Integrated Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Eric Triplett
- University of Florida, Department of Microbiology and Cell Science, Gainesville, FL, USA
| | - Kendra Vehik
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Suvi M Virtanen
- Center for Child Health Research, Tampere University and University Hospital and Research, Tampere, Finland
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Munich, Germany
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München and e.V., Munich, Germany
| | - Desmond A Schatz
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Jeffrey Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
3
|
Du M, Li S, Jiang J, Ma X, Liu L, Wang T, Zhang J, Niu D. Advances in the Pathogenesis and Treatment Strategies for Type 1 Diabetes Mellitus. Int Immunopharmacol 2025; 148:114185. [PMID: 39893858 DOI: 10.1016/j.intimp.2025.114185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/26/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Type 1 diabetes (T1D) is a complex autoimmune disorder distinguished by the infiltration of immune cells into pancreatic islets, primarily resulting in damage to pancreatic β-cells. Despite extensive research, the precise pathogenesis of T1D remains elusive, with its etiology linked to a complex interplay of genetic, immune, and environmental factors. While genetic predispositions, such as HLA and other susceptibility genes, are necessary, they do not fully account for disease development. Environmental influences such as viral infections and dietary factors may contribute to the disease by affecting the immune system and epigenetic modifications. Additionally, endogenous retroviruses (ERVs) might play a role in T1D pathogenesis. Current therapeutic approaches, including insulin replacement therapy, immune omodulatory therapy, autoantigen immunotherapy, organ transplantation, and genetic modification, offer potential to alter disease progression but are still constrained by limitations. This review presents updated knowledge on T1D, with a focus on risk factors, predisposing hypotheses, and recent advancements in therapeutic strategies.
Collapse
Affiliation(s)
- Meiheng Du
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Sihong Li
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Jun Jiang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Xiang Ma
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Lu Liu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China
| | - Jufang Zhang
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| | - Dong Niu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
4
|
Moss ST, Minelli C, Leavy OC, Allen RJ, Oliver N, Wain LV, Jenkins G, Stewart I. Assessing causal relationships between diabetes mellitus and idiopathic pulmonary fibrosis: a Mendelian randomisation study. Thorax 2025; 80:133-139. [PMID: 39613458 DOI: 10.1136/thorax-2024-221472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/30/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a disease of progressive lung scarring. There is a known association between diabetes mellitus (DM) and IPF, but it is unclear whether a causal relationship exists between these traits. OBJECTIVES The objectives of this study are to examine causal relationships among DM, diabetes-associated traits and IPF using a Mendelian randomisation approach. METHODS Two-sample MR approaches, including bidirectional inverse-variance weighted random effects and routine sensitivity models, used genetic variants identified from genome-wide association studies for type 1 diabetes (T1D), type 2 diabetes (T2D), glycated haemoglobin level (HbA1c), fasting insulin level and body mass index (BMI) to assess for causal effects of these traits on IPF. Further analyses using pleiotropy-robust and multivariable MR (MVMR) methods were additionally performed to account for trait complexity. RESULTS Results did not suggest that either T1D (OR=1.00, 95% CI 0.93 to 1.07, p=0.90) or T2D (1.02, 0.93 to 1.11, p=0.69) are in the causal pathway of IPF. No effects were suggested of HbA1c (1.19, 0.63 to 2.22, p=0.59) or fasting insulin level (0.60, 0.31 to 1.15, p=0.12) on IPF, but potential effects of BMI on IPF were indicated (1.44, 1.12 to 1.85, p=4.00×10-3). Results were consistent in MVMR, although no independent effects of T2D (0.91, 0.68 to 1.21, p=0.51) or BMI (1.01, 0.94 to 1.09, p=0.82) on IPF were observed when modelled together. CONCLUSIONS This study suggests that DM and IPF are unlikely to be causally linked. This comorbid relationship may instead be driven by shared risk factors or treatment effects.
Collapse
Affiliation(s)
- Samuel T Moss
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Cosetta Minelli
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Olivia C Leavy
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, East Midlands, UK
| | - Richard J Allen
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Nick Oliver
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Louise V Wain
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Iain Stewart
- National Heart & Lung Institute, Imperial College London, London, UK
| |
Collapse
|
5
|
Tosur M, Onengut-Gumuscu S, Redondo MJ. Type 1 Diabetes Genetic Risk Scores: History, Application and Future Directions. Curr Diab Rep 2025; 25:22. [PMID: 39920466 DOI: 10.1007/s11892-025-01575-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2025] [Indexed: 02/09/2025]
Abstract
PURPOSE OF REVIEW To review the genetics of type 1 diabetes (T1D) and T1D genetic risk scores, focusing on their development, research and clinical applications, and future directions. RECENT FINDINGS More than 90 genetic loci have been linked to T1D risk, with approximately half of the genetic risk attributable to the human leukocyte antigen (HLA) locus, along with non-HLA loci that have smaller effects to disease risk. The practical use of T1D genetic risk scores simplifies the complex genetic information, within the HLA and non-HLA regions, by combining the additive effect and interactions of single nucleotide polymorphisms (SNPs) associated with risk. Genetic risk scores have proven to be useful in various aspects, including classifying diabetes (e.g., distinguishing between T1D vs. neonatal, type 2 or other diabetes types), predicting the risk of developing T1D, assessing the prognosis of the clinical course (e.g., determining the risk of developing insulin dependence and glycemic control), and research into the heterogeneity of diabetes (e.g., atypical diabetes). However, there are gaps in our current knowledge including the specific sets of genes that regulate transition between preclinical stages of T1D, response to disease modifying therapies, and other outcomes of interest such as persistence of beta cell function. Several T1D genetic risk scores have been developed and shown to be valuable in various contexts, from classification of diabetes to providing insights into its etiology and predicting T1D risk across different stages of T1D. Further research is needed to develop and validate T1D genetic risk scores that are effective across all populations and ancestries. Finally, barriers such as cost, and training of medical professionals have to be addressed before the use of genetic risk scores can be incorporated into routine clinical practice.
Collapse
Affiliation(s)
- Mustafa Tosur
- Department of Pediatrics, Division of Diabetes and Endocrinology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA.
- Children's Nutrition Research Center, USDA/ARS, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| | | | - Maria J Redondo
- Department of Pediatrics, Division of Diabetes and Endocrinology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
6
|
Roshandel D, Spiliopoulou A, McGurnaghan SJ, Iakovliev A, Lipschutz D, Hayward C, Bull SB, Klein BE, Lee KE, Kinney GL, Rewers M, Costacou T, Miller RG, McKeigue PM, Paterson AD, Colhoun HM. Genetics of C-Peptide and Age at Diagnosis in Type 1 Diabetes. Diabetes 2025; 74:223-233. [PMID: 39556808 PMCID: PMC11755686 DOI: 10.2337/db24-0340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
ARTICLE HIGHLIGHTS Identified genetic loci for C-peptide and type 1 diabetes (T1D) age at diagnosis (AAD) explain only a small proportion of their variation. We aimed to identify additional genetic loci associated with C-peptide and AAD. Some HLA allele/haplotypes associated with T1D also contributed to variability of C-peptide and AAD, whereas outside the HLA region, T1D loci were mostly not associated with C-peptide or AAD. Genetic variation within CTSH can affect AAD. There is still residual heritability of C-peptide and AAD outside of HLA that could benefit from larger meta-genome-wide association studies.
Collapse
Affiliation(s)
- Delnaz Roshandel
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Athina Spiliopoulou
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, U.K
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, U.K
| | | | - Andrii Iakovliev
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, U.K
| | - Debby Lipschutz
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, U.K
| | - Caroline Hayward
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, U.K
| | - Shelley B. Bull
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Barbara E.K. Klein
- School of Medicine and Public Health, Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI
| | - Kristine E. Lee
- School of Medicine and Public Health, Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI
| | - Gregory L. Kinney
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, CO
| | - Marian Rewers
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Tina Costacou
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA
| | - Rachel G. Miller
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA
| | - Paul M. McKeigue
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, U.K
| | - Andrew D. Paterson
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Helen M. Colhoun
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
7
|
Zhao J, Fang Z. Single-cell RNA sequencing reveals the dysfunctional characteristics of PBMCs in patients with type 2 diabetes mellitus. Front Immunol 2025; 15:1501660. [PMID: 39916961 PMCID: PMC11798774 DOI: 10.3389/fimmu.2024.1501660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/11/2024] [Indexed: 02/09/2025] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is a disease that involves autoimmunity. However, how immune cells function in the peripheral blood remains unclear. Exploring T2DM biomarkers via single-cell RNA sequencing (scRNA-seq) could provide new insights into the underlying molecular mechanisms. Methods The clinical trial registration number is ChiCTR2100049613. In this study, we included three healthy participants and three T2DM patients. The observed clinical indicators included weight and fasting blood glucose (FBG), glycosylated haemoglobin A1c (HbA1c) and fasting insulin levels. Direct separation and purification of peripheral blood mononuclear cells (PBMCs) were performed via the Ficoll density gradient centrifugation method. Immune cell types were identified via scRNA-seq. The differentially expressed genes, biological functions, cell cycle dynamics, and correlations between blood glucose indicators and genes in different cell types were analysed. Results There were differences between the healthy and T2DM groups in terms of FBG and HbA1c (p<0.05 or p<0.01). We profiled 13,591 cells and 3188 marker genes from PBMCs. B cells, T cells, monocytes, and NK cells were grouped into 4 subclusters from PBMCs. CD4+ T cells are mainly in the memory activation stage, and CD8+ T cells are effectors. Monocytes include mainly CD14+ monocytes and FCGR3A+ monocytes. There were 119 differentially expressed genes in T cells and 175 differentially expressed genes in monocytes. Gene set enrichment analysis revealed that the marker genes were enriched in HALLMARK_ INTERFERON_GAMMA_RESPONSE and HALLMARK_TNFA_SIGNALING_VIA_ NFKB. Moreover, TNFRSF1A was identified as the core gene involved in network interactions in T cells. Discussion Our study provides a transcriptional map of immune cells from PBMCs and provides a framework for understanding the immune status and potential immune mechanisms of T2DM patients via scRNA-seq. Clinical trial registration http://www.chictr.org.cn, identifier ChiCTR2100049613.
Collapse
Affiliation(s)
- Jindong Zhao
- Department of Endocrinology Two, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Diabetes Institute, Anhui Academy Chinese Medicine, Hefei, China
| | - Zhaohui Fang
- Department of Endocrinology Two, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Diabetes Institute, Anhui Academy Chinese Medicine, Hefei, China
| |
Collapse
|
8
|
Crouch DJM, Inshaw JRJ, Robertson CC, Ng E, Zhang J, Chen W, Onengut‐Gumuscu S, Cutler AJ, Sidore C, Cucca F, Pociot F, Concannon P, Rich SS, Todd JA. Bayesian Effect Size Ranking to Prioritise Genetic Risk Variants in Common Diseases for Follow-Up Studies. Genet Epidemiol 2025; 49:e22608. [PMID: 39749473 PMCID: PMC11696485 DOI: 10.1002/gepi.22608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/10/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
Biological datasets often consist of thousands or millions of variables, e.g. genetic variants or biomarkers, and when sample sizes are large it is common to find many associated with an outcome of interest, for example, disease risk in a GWAS, at high levels of statistical significance, but with very small effects. The False Discovery Rate (FDR) is used to identify effects of interest based on ranking variables according to their statistical significance. Here, we develop a complementary measure to the FDR, the priorityFDR, that ranks variables by a combination of effect size and significance, allowing further prioritisation among a set of variables that pass a significance or FDR threshold. Applying to the largest GWAS of type 1 diabetes to date (15,573 cases and 158,408 controls), we identified 26 independent genetic associations, including two newly-reported loci, with qualitatively lower priorityFDRs than the remaining 175 signals. We detected putatively causal type 1 diabetes risk genes using Mendelian Randomisation, and found that these were located disproportionately close to low priorityFDR signals (p = 0.005), as were genes in the IL-2 pathway (p = 0.003). Selecting variables on both effect size and significance can lead to improved prioritisation for mechanistic follow-up studies from genetic and other large biological datasets.
Collapse
Grants
- DP3 DK111906 NIDDK NIH HHS
- T32 LM012416 NLM NIH HHS
- U01 DK062418 NIDDK NIH HHS
- Wellcome Trust
- This work was funded by JDRF grants 9-2011-253, 5-SRA-2015-130-A-N and 4-SRA-2017-473-A-N, and Wellcome grants 091157/Z/10/Z and 107212/Z/15/Z, to the Diabetes and Inflammation Laboratory, University of Oxford, Fondazione di Sardegna grant U1301.2015/AI.1157.BE to Francesco Cucca, NIDDK grants U01 DK062418 and DP3 DK111906 and US National Library of Medicine grant T32 LM012416.
- This work was funded by JDRF grants 9‐2011‐253, 5‐SRA‐2015‐130‐A‐N and 4‐SRA‐2017‐473‐A‐N, and Wellcome grants 091157/Z/10/Z and 107212/Z/15/Z, to the Diabetes and Inflammation Laboratory, University of Oxford, Fondazione di Sardegna grant U1301.2015/AI.1157.BE to Francesco Cucca, NIDDK grants U01 DK062418 and DP3 DK111906 and US National Library of Medicine grant T32 LM012416.
Collapse
Affiliation(s)
- Daniel J. M. Crouch
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of MedicineCentre for Human Genetics, NIHR Oxford Biomedical Research CentreUniversity of OxfordOxfordUK
| | - Jamie R. J. Inshaw
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of MedicineCentre for Human Genetics, NIHR Oxford Biomedical Research CentreUniversity of OxfordOxfordUK
| | | | - Esther Ng
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of MedicineCentre for Human Genetics, NIHR Oxford Biomedical Research CentreUniversity of OxfordOxfordUK
- Nuffield Department of OrthopaedicsKennedy Institute of Rheumatology, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUK
| | - Jia‐Yuan Zhang
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of MedicineCentre for Human Genetics, NIHR Oxford Biomedical Research CentreUniversity of OxfordOxfordUK
| | - Wei‐Min Chen
- Center for Public Health GenomicsUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Public Health SciencesUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Suna Onengut‐Gumuscu
- Center for Public Health GenomicsUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Public Health SciencesUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Antony J. Cutler
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of MedicineCentre for Human Genetics, NIHR Oxford Biomedical Research CentreUniversity of OxfordOxfordUK
| | - Carlo Sidore
- Institute for Research in Genetics and Biomedicine (IRGB)SardiniaItaly
| | - Francesco Cucca
- Institute for Research in Genetics and Biomedicine (IRGB)SardiniaItaly
| | - Flemming Pociot
- Department of PediatricsHerlev University HospitalCopenhagenDenmark
- Institute of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical ResearchSteno Diabetes Center Copenhagen, Type 1 Diabetes BiologyGentofteDenmark
| | - Patrick Concannon
- Department of Pathology, Immunology, and Laboratory MedicineUniversity of FloridaGainesvilleFloridaUSA
- Genetics InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Stephen S. Rich
- Center for Public Health GenomicsUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Public Health SciencesUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - John A. Todd
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of MedicineCentre for Human Genetics, NIHR Oxford Biomedical Research CentreUniversity of OxfordOxfordUK
| |
Collapse
|
9
|
Khaiz Y, Al Idrissi N, Bakkali M, Ahid S. Association of the Immunity Genes with Type 1 Diabetes Mellitus. Curr Diabetes Rev 2025; 21:38-46. [PMID: 38310481 DOI: 10.2174/0115733998275617231218101116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 02/05/2024]
Abstract
Type 1 diabetes mellitus (T1D) is a complicated illness marked by the death of insulin- producing pancreatic beta cells, which ultimately leads to insulin insufficiency and hyperglycemia. T lymphocytes are considered to destroy pancreatic beta cells in the etiology of T1D as a result of hereditary and environmental factors. Although the latter factors are very important causes of T1D development, this disease is very genetically predisposed, so there is a significant genetic component to T1D susceptibility. Among the T1D-associated gene mutations, those that affect genes that encode the traditional Human Leukocyte Antigens (HLA) entail the highest risk of T1D development. Accordingly, the results of decades of genetic linkage and association studies clearly demonstrate that mutations in the HLA genes are the most associated mutations with T1D. They can, therefore, be used as biomarkers for prediction strategies and may even prove to be of value for personalized treatments. Other immunity-associated genetic loci are also associated with higher T1D risk. Indeed, T1D is considered an autoimmune disease. Its prevalence is rising globally, especially among children and young people. Given the global rise of, and thus interest in, autoimmune diseases, here we present a short overview of the link between immunity, especially HLA, genes and T1D.
Collapse
Affiliation(s)
- Youssef Khaiz
- Laboratory of Genomics, Bioinformatics and Digital Health, School of Medicine, Mohammed VI University of Science and Health, Casablanca, Morocco
| | - Najib Al Idrissi
- Laboratory of Genomics, Bioinformatics and Digital Health, School of Medicine, Mohammed VI University of Science and Health, Casablanca, Morocco
| | - Mohammed Bakkali
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Fuentenueva S/N, 18071, Granada, Spain
| | - Samir Ahid
- Laboratory of Genomics, Bioinformatics and Digital Health, School of Medicine, Mohammed VI University of Science and Health, Casablanca, Morocco
- Pharmaco-Epidemiology and Pharmaco-Economics Research Team, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Rabat, Morocco
| |
Collapse
|
10
|
Montaser E, Farhy LS, Rich SS. Enhancing Type 1 Diabetes Immunological Risk Prediction with Continuous Glucose Monitoring and Genetic Profiling. Diabetes Technol Ther 2024. [PMID: 39686752 DOI: 10.1089/dia.2024.0496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Background: Early identification of individuals at high risk for type 1 diabetes (T1D) is essential for timely intervention. Islet autoantibodies (AB) and continuous glucose monitoring (CGM) reveal early signs of glycemic dysregulation, while T1D genetic risk scores (GRS) further improve disease prediction. We use CGM data and T1D GRS to develop an AB classifier (1 AB vs. ≥2 AB) and predict early T1D risk. Methods: Thirty-nine AB-positive (18 with 1 and 21 with ≥2 AB) healthy relatives of T1D (mean age 22.1 ± 11.1 years, HbA1c 5.3 ± 0.3%, body mass index 24.1 ± 5.8 kg/m2) were enrolled in a National Institutes of Health's (NIH) TrialNet ancillary study. Participants wore CGMs for a week and consumed three standardized liquid mixed meals (SLMM). Post-SLMM CGM glycemic features and T1D GRS were used in a linear support vector machine (SVM) model with recursive feature elimination (RFE) for AB classification, evaluated via fivefold cross-validation using the receiver operating characteristic and precision-recall area under the curve (AUC-ROC/PR). Results: Significant differences between the AB groups were observed in the post-SLMM percent time of glucose >180 mg/dL and GRS (P = 0.020 and P = 0.001, respectively). An SVM model with two RFE-selected features (T1D GRS and incremental AUC) achieved the best performance, classifying 1 versus ≥2 AB individuals with an AUC-ROC of 0.93 (95% confidence interval [CI]: 0.83-1.00) and AUC-PR of 0.89 (95% CI: 0.71-0.99), compared with AUC-ROC of 0.80 (95% CI: 0.46-1.00) and AUC-PR of 0.82 (95% CI: 0.71-0.93) using all features. Conclusions: A machine learning approach combining a 1-week CGM home test and T1D GRS reliably assesses T1D immunological risk, enabling early intervention.
Collapse
Affiliation(s)
- Eslam Montaser
- Division of Endocrinology and Metabolism, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Leon S Farhy
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Stephen S Rich
- Department of Genome Sciences, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
11
|
Heikkilä TE, Kaiser EK, Lin J, Gill D, Koskenniemi JJ, Karhunen V. Genetic evidence for efficacy of targeting IL-2, IL-6 and TYK2 signalling in the prevention of type 1 diabetes: a Mendelian randomisation study. Diabetologia 2024; 67:2667-2677. [PMID: 39271518 PMCID: PMC11604673 DOI: 10.1007/s00125-024-06267-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/11/2024] [Indexed: 09/15/2024]
Abstract
AIMS/HYPOTHESIS We aimed to investigate the genetic evidence that supports the repurposing of drugs already licensed or in clinical phases of development for prevention of type 1 diabetes. METHODS We obtained genome-wide association study summary statistics for the risk of type 1 diabetes, whole-blood gene expression and serum protein levels and investigated genetic polymorphisms near seven potential drug target genes. We used co-localisation to examine whether the same genetic variants that are associated with type 1 diabetes risk were also associated with the relevant drug target genetic proxies and used Mendelian randomisation to evaluate the direction and magnitude of the associations. Furthermore, we performed Mendelian randomisation analysis restricted to functional variants within the drug target genes. RESULTS Co-localisation revealed that the blood expression levels of IL2RA (encoding IL-2 receptor subunit α [IL2RA]), IL6R (encoding IL-6 receptor [IL6R]) and IL6ST (encoding IL-6 cytokine family signal transducer [IL6ST]) shared the same causal variant with type 1 diabetes liability near the corresponding genes (posterior probabilities 100%, 96.5% and 97.0%, respectively). The OR (95% CI) of type 1 diabetes per 1-SD increase in the genetically proxied gene expression of IL2RA, IL6R and IL6ST were 0.22 (0.17, 0.27), 1.98 (1.48, 2.65) and 1.90 (1.45, 2.48), respectively. Using missense variants, genetically proxied TYK2 (encoding tyrosine kinase 2) expression levels were associated with type 1 diabetes risk (OR 0.61 [95% CI 0.54, 0.69]). CONCLUSIONS/INTERPRETATION Our findings support the targeting of IL-2, IL-6 and TYK2 signalling in prevention of type 1 diabetes. DATA AVAILABILITY The analysis code is available at https://github.com/jkoskenniemi/T1DSCREEN , which also includes instructions on how to download the original GWAS summary statistics.
Collapse
Affiliation(s)
- Tea E Heikkilä
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Emilia K Kaiser
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Jake Lin
- Faculty of Social Sciences, Tampere University, Tampere, Finland
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Jaakko J Koskenniemi
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Ville Karhunen
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland.
- Research Unit of Mathematical Sciences, Faculty of Science, University of Oulu, Oulu, Finland.
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Lyu C, Wang Y, Xu R. Mendelian randomization analysis reveals causal effects of inflammatory bowel disease and autoimmune hyperthyroidism on diffuse large B-cell lymphoma risk. Sci Rep 2024; 14:29163. [PMID: 39587169 PMCID: PMC11589711 DOI: 10.1038/s41598-024-79791-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
The clinical phenomenon whereby diffuse large B-cell lymphoma (DLBCL) occurs in patients with a history of autoimmune disease (AD) has been noted, but it remains controversial. This study aimed to evaluate the causal associations between nine ADs and DLBCL via a Mendelian randomization (MR) study. Single-nucleotide polymorphism (SNP) obtained from published genome-wide association studies (GWAS) was chosen as instrumental variable (IV). A total of nine ADs of European ancestry including asthma (56,167 cases and 352,255 controls), psoriasis (4,510 cases and 212,242 controls), autoimmune hyperthyroidism (962 cases and 172,976 controls), inflammatory bowel disease (31,665 cases and 33,977 controls), type 1 diabetes (6,683 cases and 12,173 controls), multiple sclerosis (14,498 cases and 24,091 controls), sarcoidosis (2,046 cases and 215,712 controls), ankylosing spondylitis (9,069 cases and 1,550 controls), and celiac disease (12,041 cases and 12,228 controls), were set as the exposure and DLBCL (209 cases and 218,583 controls) of European ancestry as the outcome. Inverse-variance weighted (IVW) was used as the primary analysis method, and the weighted median and MR-Egger method were used as supplementary methods. The sensitivity analyses employed in this study include the MR-Egger intercept, MR-PRESSO global test, Cochran's Q test, leave-one-out analysis, and funnel plot. IVW showed that inflammatory bowel disease (OR = 1.241, 95% CI 1.009-1.526, P = 0.040) and autoimmune hyperthyroidism (OR = 1.464, 95% CI 1.103-1.942, P = 0.008) increased the risk of DLBCL without significant heterogeneity or horizontal pleiotropy, and the results remained stable according to the leave-one-out analysis. The IVW results revealed no associations between the other seven ADs and DLBCL: asthma (OR = 0.782, 95% CI 0.395-1.546, P = 0.159), psoriasis (OR = 0.842, 95% CI 0.669-1.060, P = 0.143), type 1 diabetes (OR = 1.071, 95% CI 0.860-1.334, P = 0.537), multiple sclerosis (OR = 1.331, 95% CI 0.941-1.883, P = 0.105), sarcoidosis (OR = 1.324, 95% CI 0.861-2.038, P = 0.200), ankylosing spondylitis (OR = 1.884, 95% CI 0.776-4.573, P = 0.161), and celiac disease (OR = 1.003, 95% CI 0.854-1.178, P = 0.969). Although no significant heterogeneity or horizontal pleiotropy was detected in these seven ADs and DLBCL, these results did not pass the leave-one-out analysis; therefore, the results need to be interpreted with caution. Inflammatory bowel disease and autoimmune hyperthyroidism may increase the onset of DLBCL. The risk of DLBCL should be considered in specific types of ADs.
Collapse
Affiliation(s)
- Chunyi Lyu
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Yan Wang
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province; Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.
| | - Ruirong Xu
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province; Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.
| |
Collapse
|
13
|
Yazdanpanah E, Pazoki A, Dadfar S, Nemati MH, Sajad Siadati SM, Tarahomi M, Orooji N, Haghmorad D, Oksenych V. Interleukin-27 and Autoimmune Disorders: A Compressive Review of Immunological Functions. Biomolecules 2024; 14:1489. [PMID: 39766196 PMCID: PMC11672993 DOI: 10.3390/biom14121489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Autoimmune disorders (ADs) pose significant health and economic burdens globally, characterized by the body's immune system mistakenly attacking its own tissues. While the precise mechanisms driving their development remain elusive, a combination of genetic predisposition(s) and environmental triggers is implicated. Interleukin-27 (IL-27), among numerous cytokines involved, has emerged as a key regulator, exhibiting dual roles in immune modulation. This review delves into the molecular structure and signaling mechanisms of IL-27, highlighting its diverse effects on various immune cells. Additionally, it explores the involvement of IL-27 in autoimmune diseases, such as multiple sclerosis (MS) and rheumatoid arthritis (RA), offering insights into its potential therapeutic implications. Moreover, its involvement in autoimmune diseases like type 1 diabetes (T1D), inflammatory bowel disease (IBD), myasthenia gravis (MG), Sjögren's syndrome (SS), and Guillain-Barré syndrome (GBS) is multifaceted, with potential diagnostic and therapeutic implications across these conditions. Further research is essential to fully understand IL-27's mechanisms of action and therapeutic potential in autoimmune diseases.
Collapse
Affiliation(s)
- Esmaeil Yazdanpanah
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Alireza Pazoki
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Sepehr Dadfar
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Mohammad Hosein Nemati
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | | | - Mahdieh Tarahomi
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Niloufar Orooji
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Valentyn Oksenych
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7028 Trondheim, Norway
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| |
Collapse
|
14
|
Braun A, Shekhar S, Levey DF, Straub P, Kraft J, Panagiotaropoulou GM, Heilbron K, Awasthi S, Meleka Hanna R, Hoffmann S, Stein M, Lehnerer S, Mergenthaler P, Elnahas AG, Topaloudi A, Koromina M, Palviainen T, Asbjornsdottir B, Stefansson H, Skuladóttir AT, Jónsdóttir I, Stefansson K, Reis K, Esko T, Palotie A, Leypoldt F, Stein MB, Fontanillas P, Kaprio J, Gelernter J, Davis LK, Paschou P, Tannemaat MR, Verschuuren JJGM, Kuhlenbäumer G, Gregersen PK, Huijbers MG, Stascheit F, Meisel A, Ripke S. Genome-wide meta-analysis of myasthenia gravis uncovers new loci and provides insights into polygenic prediction. Nat Commun 2024; 15:9839. [PMID: 39537604 PMCID: PMC11560923 DOI: 10.1038/s41467-024-53595-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Myasthenia gravis (MG) is a rare autoantibody-mediated disease affecting the neuromuscular junction. We performed a genome-wide association study of 5708 MG cases and 432,028 controls of European ancestry and a replication study in 3989 cases and 226,643 controls provided by 23andMe Inc. We identified 12 independent genome-wide significant hits (P < 5e-8) across 11 loci. Subgroup analyses revealed two of these were associated with early-onset (at age <50) and four with late-onset MG (at age ≥ 50). Imputation of human leukocyte antigen alleles revealed inverse effect sizes for late- and early-onset, suggesting a potential modulatory influence on the time of disease manifestation. We assessed the performance of polygenic risk scores for MG, which significantly predicted disease status in an independent target cohort, explaining 4.21% of the phenotypic variation (P = 5.12e-9). With this work, we aim to enhance our understanding of the genetic architecture of MG.
Collapse
Grants
- Full founding statement: The FinnGen project is funded by two grants from Business Finland (HUS 4685/31/2016 and UH 4386/31/2016) and the following industry partners: AbbVie Inc., AstraZeneca UK Ltd, Biogen MA Inc., Bristol Myers Squibb (and Celgene Corporation & Celgene International II Sàrl), Genentech Inc., Merck Sharp & Dohme LCC, Pfizer Inc., GlaxoSmithKline Intellectual Property Development Ltd., Sanofi US Services Inc., Maze Therapeutics Inc., Janssen Biotech Inc, Novartis AG, and Boehringer Ingelheim International GmbH. This research is based, in part, on data from the Million Veteran Program, Office of Research and Development, Veterans Health Administration. Funding for D.F.L. was provided by a Career Development Award CDA-2 from the Veterans Affairs Office of Research and Development (1IK2BX005058-01A2). Funding for M.B.S. and J.G. was provided from a Veterans Affairs Office of Research and Development Merit Award (I01CX001849). One dataset used for the analyses described were obtained from Vanderbilt University Medical Center’s BioVU which is supported by numerous sources: institutional funding, private agencies, and federal grants. These include the NIH funded Shared Instrumentation Grant S10RR025141; and CTSA grants UL1TR002243, UL1TR000445, and UL1RR024975. Genomic data are also supported by investigator-led projects that include U01HG004798, R01NS032830, RC2GM092618, P50GM115305, U01HG006378, U19HL065962, R01HD074711; and additional funding sources listed at https://victr.vumc.org/biovufunding/. P.M. is Einstein Junior Fellow funded by the Einstein Foundation Berlin and acknowledges funding support by the Einstein Foundation Berlin (EJF‐2020–602; EVF‐2021–619, EVF-BUA-2022-694) and the Leducq Foundation for Cardiovascular and Neurovascular Research (Consortium International pour la Recherche Circadienne sur l’AVC). M.G.H. receives financial support from the LUMC (Gisela Thier Fellowship 2021), Top Sector Life Sciences & Health to Samenwerkende Gezondheidsfondsen (LSHM19130), Prinses Beatrix Spierfonds (W.OR-19.13). The LUMC is part of the European Reference Network for Rare Neuromuscular Diseases [ERN EURO-NMD] and the Netherlands Neuromuscular Center. S.R. has received funding from the German Research Foundation (Deutsche Forschungsgemeinschaft - DFG) (grant number 461427996). The Estonian Biobank work was supported by Personal research funding: Team grant PRG1291.
Collapse
Affiliation(s)
- Alice Braun
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Sudhanshu Shekhar
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Daniel F Levey
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, USA
- Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Peter Straub
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julia Kraft
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Georgia M Panagiotaropoulou
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Karl Heilbron
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Swapnil Awasthi
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Rafael Meleka Hanna
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
| | - Sarah Hoffmann
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
| | - Maike Stein
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Department of Neurology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Sophie Lehnerer
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
| | - Philipp Mergenthaler
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Apostolia Topaloudi
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Maria Koromina
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Teemu Palviainen
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | - Kadri Reis
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Aarno Palotie
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Frank Leypoldt
- Department of Neurology, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Murray B Stein
- Department of Psychiatry and School of Public Health, University of California San Diego, La Jolla, California, USA
- Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, California, USA
| | | | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, USA
- Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Lea K Davis
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Martijn R Tannemaat
- Leiden University Medical Center, Department of Neurology, Leiden, Zuid Holland, Netherlands
| | - Jan J G M Verschuuren
- Leiden University Medical Center, Department of Neurology, Leiden, Zuid Holland, Netherlands
| | - Gregor Kuhlenbäumer
- Department of Neurology, Kiel University, Kiel, Schleswig-Holstein, Germany
- Neuroimmunology, Kiel University, Institute of Clinical Chemistry, Kiel, Schleswig-Holstein, Germany
| | - Peter K Gregersen
- Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, NY, USA
| | - Maartje G Huijbers
- Leiden University Medical Center, Department of Neurology, Leiden, Zuid Holland, Netherlands
- Leiden University Medical Center, Department of Human Genetics, Leiden, Zuid Holland, Netherlands
| | - Frauke Stascheit
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
| | - Andreas Meisel
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Berlin, Germany.
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany.
| |
Collapse
|
15
|
Adebekun J, Nadig A, Saarah P, Asgari S, Kachuri L, Alagpulinsa DA. Genetic relations between type 1 diabetes, coronary artery disease and leukocyte counts. Diabetologia 2024; 67:2518-2529. [PMID: 39141130 DOI: 10.1007/s00125-024-06247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/19/2024] [Indexed: 08/15/2024]
Abstract
AIMS/HYPOTHESIS Type 1 diabetes is associated with excess coronary artery disease (CAD) risk even when known cardiovascular risk factors are accounted for. Genetic perturbation of haematopoiesis that alters leukocyte production is a novel independent modifier of CAD risk. We examined whether there are shared genetic determinants and causal relationships between type 1 diabetes, CAD and leukocyte counts. METHODS Genome-wide association study summary statistics were used to perform pairwise linkage disequilibrium score regression and heritability estimation from summary statistics (ρ-HESS) to respectively estimate the genome-wide and local genetic correlations, and two-sample Mendelian randomisation to estimate the causal relationships between leukocyte counts (335,855 healthy individuals), type 1 diabetes (18,942 cases, 501,638 control individuals) and CAD (122,733 cases, 424,528 control individuals). A latent causal variable (LCV) model was performed to estimate the genetic causality proportion of the genetic correlation between type 1 diabetes and CAD. RESULTS There was significant genome-wide genetic correlation (rg) between type 1 diabetes and CAD (rg=0.088, p=8.60 × 10-3) and both diseases shared significant genome-wide genetic determinants with eosinophil count (rg for type 1 diabetes [rg(T1D)]=0.093, p=7.20 × 10-3, rg for CAD [rg(CAD)]=0.092, p=3.68 × 10-6) and lymphocyte count (rg(T1D)=-0.052, p=2.76 × 10-2, rg(CAD)=0.176, p=1.82 × 10-15). Sixteen independent loci showed stringent Bonferroni significant local genetic correlations between leukocyte counts, type 1 diabetes and/or CAD. Cis-genetic regulation of the expression levels of genes within shared loci between type 1 diabetes and CAD was associated with both diseases as well as leukocyte counts, including SH2B3, CTSH, MORF4L1, CTRB1, CTRB2, CFDP1 and IFIH1. Genetically predicted lymphocyte, neutrophil and eosinophil counts were associated with type 1 diabetes and CAD (lymphocyte OR for type 1 diabetes [ORT1D]=0.67, p=2.02-19, ORCAD=1.09, p=2.67 × 10-6; neutrophil ORT1D=0.82, p=5.63 × 10-5, ORCAD=1.17, p=5.02 × 10-14; and eosinophil ORT1D=1.67, p=5.45 × 10-25, ORCAD=1.07, p=2.03 × 10-4. The genetic causality proportion between type 1 diabetes and CAD was 0.36 ± 0.16 (pLCV=1.30 × 10-2), suggesting a possible intermediary causal variable. CONCLUSIONS/INTERPRETATION This study sheds light on shared genetic mechanisms underlying type 1 diabetes and CAD, which may contribute to their co-occurrence through regulation of gene expression and leukocyte counts and identifies cellular and molecular targets for further investigation for disease prediction and potential drug discovery.
Collapse
Affiliation(s)
- Jolade Adebekun
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Ajay Nadig
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Priscilla Saarah
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Samira Asgari
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - David A Alagpulinsa
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, USA.
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
16
|
Bougnères P, Le Fur S, Kamatani Y, Mai TN, Belot MP, Perge K, Shao X, Lathrop M, Valleron AJ. Genomic variants associated with age at diagnosis of childhood-onset type 1 diabetes. J Hum Genet 2024; 69:585-590. [PMID: 38982180 DOI: 10.1038/s10038-024-01272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Age at diagnosis (AAD) of Type 1 diabetes (T1D) is determined by the age at onset of the autoimmune attack and by the rate of beta cell destruction that follows. Twin studies found that T1D AAD is strongly influenced by genetics, notably in young children. In young UK, Finnish, Sardinian patients AAD-associated genomic variants were previously identified, which may vary across populations and with time. In 1956 children of European ancestry born in mainland France in 1980-2008 who declared T1D before 15 years, we tested 94 T1D-associated SNPs for their association with AAD using nonparametric Kruskal-Wallis test. While high-risk HLA genotypes were not found to be associated with AAD, fourteen SNPs located in 12 non-HLA loci showed a strong association (2.9 × 10-12 < P < 1.4 × 10-3 after FDR correction). Four of these loci have been associated with AAD in previous cohorts (GSDMB, IL2, TNFAIP3, IL1), supporting a partially shared genetic influence on AAD of T1D in the studied European populations. In contrast, the association of 8 new loci CLEC16A, TYK2, ERBB3, CCR7, FCRL3, DNAH2, FGF3/4, and HPSE2 with AAD is novel. The 12 protein-coding genes located within these loci are involved in major immune pathways or in predisposition to other autoimmune diseases, which suggests a prominent role for these genes in the early immune mechanisms of beta cell destruction.
Collapse
Affiliation(s)
- Pierre Bougnères
- Inserm U1169, now at MIRCEN, Commissariat à l'Énergie Atomique, Fontenay-aux-Roses, France.
- GETDOC Association, Paris, France.
| | - Sophie Le Fur
- Inserm U1169, now at MIRCEN, Commissariat à l'Énergie Atomique, Fontenay-aux-Roses, France
- GETDOC Association, Paris, France
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, Center for Integrative Medical Sciences, RIKEN Center now at the Graduate School of Frontier Sciences, Tokyo University, Tokyo, Japan
| | - Thanh-Nga Mai
- Inserm U1169, now at MIRCEN, Commissariat à l'Énergie Atomique, Fontenay-aux-Roses, France
| | - Marie-Pierre Belot
- Inserm U1169, now at MIRCEN, Commissariat à l'Énergie Atomique, Fontenay-aux-Roses, France
- GETDOC Association, Paris, France
| | - Kevin Perge
- Service d'Endocrinologie Diabétologie Pédiatrique, Hôpital Mère-Enfant, Lyon, France
| | - XiaoJian Shao
- Digital Technologies Research Center, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Mark Lathrop
- Genome Québec Innovation Centre, Quantitative Life Sciences, McGill University, Montréal, QC, Canada
| | - Alain-Jacques Valleron
- Inserm U1169, now at MIRCEN, Commissariat à l'Énergie Atomique, Fontenay-aux-Roses, France
| |
Collapse
|
17
|
Willis TW, Gkrania-Klotsas E, Wareham NJ, McKinney EF, Lyons PA, Smith KGC, Wallace C. Leveraging pleiotropy identifies common-variant associations with selective IgA deficiency. Clin Immunol 2024; 268:110356. [PMID: 39241920 DOI: 10.1016/j.clim.2024.110356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Selective IgA deficiency (SIgAD) is the most common inborn error of immunity (IEI). Unlike many IEIs, evidence of a role for highly penetrant rare variants in SIgAD is lacking. Previous SIgAD studies have had limited power to identify common variants due to their small sample size. We overcame this problem first through meta-analysis of two existing GWAS. This identified four novel common-variant associations and enrichment of SIgAD-associated variants in genes linked to Mendelian IEIs. SIgAD showed evidence of shared genetic architecture with serum IgA and a number of immune-mediated diseases. We leveraged this pleiotropy through the conditional false discovery rate procedure, conditioning our SIgAD meta-analysis on large GWAS of asthma and rheumatoid arthritis, and our own meta-analysis of serum IgA. This identified an additional 18 variants, increasing the number of known SIgAD-associated variants to 27 and strengthening the evidence for a polygenic, common-variant aetiology for SIgAD.
Collapse
Affiliation(s)
- Thomas W Willis
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK.
| | - Effrossyni Gkrania-Klotsas
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK; Department of Infectious Diseases, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Nicholas J Wareham
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Eoin F McKinney
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Paul A Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kenneth G C Smith
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Chris Wallace
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Jiang L, Shen M, Zhang S, Zhang J, Shi Y, Gu Y, Yang T, Fu Q, Wang B, Chen Y, Xu K, Chen H. A regulatory variant rs9379874 in T1D risk region 6p22.2 affects BTN3A1 expression regulating T cell function. Acta Diabetol 2024:10.1007/s00592-024-02389-9. [PMID: 39417845 DOI: 10.1007/s00592-024-02389-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE Genome-wide association studies (GWAS) have identified that 6p22.2 region is associated with type 1 diabetes (T1D) risk in the Chinese Han population. This study aims to reveal associations between this risk region and T1D subgroups and related clinical features, and further identify causal variant(s) and target gene(s) in this region. METHODS 2608 T1D and 4814 healthy controls were recruited from East, Central, and South China. Baseline data and genotyping for rs4320356 were collected. The most likely causal variant and gene were identified by bioinformatics analysis, dual-luciferase reporter assays, expression quantitative trait loci (eQTL), and functional annotation of the non-coding region within the 6p22.2 region. RESULTS The leading variant rs4320356 in the 6p22.2 region was associated with T1D risk in the Chinese and Europeans. However, this variant was not significantly associated with islet function or autoimmunity. In silico analysis suggested rs9379874 was the most potential causal variant for T1D risk among thymus, spleen, and T cells, overlapping with the enhancer-related histone mark in multiple T cell subsets. Dual luciferase reporter assay and eQTL showed that the T allele of rs9379874 increased BTN3A1 expression by binding to FOXA1. Public single-cell RNA sequencing analysis indicated that BTN3A1 was related to T-cell activation, ATP metabolism, and cytokine metabolism pathways, which might contribute to T1D development. CONCLUSION This study indicates that a functional variant rs9379874 regulates BTN3A1 expression, expanding the genomic landscape of T1D risk and offering a potential target for developing novel therapies.
Collapse
Affiliation(s)
- Liying Jiang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Rehabilitation Medicine, Lishui People's Hospital, Lishui, 323000, Zhejiang, China
| | - Min Shen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Saisai Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jie Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yun Shi
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yong Gu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tao Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qi Fu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bingwei Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yang Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Kuanfeng Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Heng Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
19
|
Abidha CA, Meeks KAC, Chilunga FP, Venema A, Schindlmayr R, Hayfron-Benjamin C, Klipstein-Grobusch K, Mockenhaupt FP, Agyemang C, Henneman P, Danquah I. A comprehensive lifestyle index and its associations with DNA methylation and type 2 diabetes among Ghanaian adults: the rodam study. Clin Epigenetics 2024; 16:143. [PMID: 39415250 PMCID: PMC11481717 DOI: 10.1186/s13148-024-01758-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND A series of modifiable lifestyle factors, such as diet quality, physical activity, alcohol intake, and smoking, may drive the rising burden of type 2 diabetes (T2DM) among sub-Saharan Africans globally. It is unclear whether epigenetic changes play a mediatory role in the associations between these lifestyle factors and T2DM. We assessed the associations between a comprehensive lifestyle index, DNA methylation and T2DM among Ghanaian adults. METHODS We used whole-blood Illumina 450 k DNA methylation data from 713 Ghanaians from the Research on Obesity and Diabetes among African Migrants (RODAM) study. We constructed a comprehensive lifestyle index based on established cut-offs for diet quality, physical activity, alcohol intake, and smoking status. In the T2DM-free discovery cohort (n = 457), linear models were fitted to identify differentially methylated positions (DMPs) and differentially methylated regions (DMRs) associated with the lifestyle index after adjustment for age, sex, body mass index (BMI), and technical covariates. Associations between the identified DMPs and the primary outcome (T2DM), as well as secondary outcomes (fasting blood glucose (FBG) and HbA1c), were determined via logistic and linear regression models, respectively. RESULTS In the present study population (mean age: 52 ± 10 years; male: 42.6%), the comprehensive lifestyle index showed a significant association with one DMP annotated to an intergenic region on chromosome 7 (false discovery rate (FDR) = 0.024). Others were annotated to ADCY7, SMARCE1, AHRR, LOXL2, and PTBP1 genes. One DMR was identified and annotated to the GFPT2 gene (familywise error rate (FWER) from bumphunter bootstrap = 0.036). None of the DMPs showed significant associations with T2DM; directions of effect were positive for the DMP in the AHRR and inverse for all the other DMPs. Higher methylation of the ADCY7 DMP was associated with higher FBG (p = 0.024); LOXL2 DMP was associated with lower FBG (p = 0.023) and HbA1c (p = 0.049); and PTBP1 DMP was associated with lower HbA1c (p = 0.002). CONCLUSIONS In this explorative epigenome-wide association study among Ghanaians, we identified one DMP and DMR associated with a comprehensive lifestyle index not previously associated with individual lifestyle factors. Based on our findings, we infer that lifestyle factors in combination, affect DNA methylation, thereby influencing the risk of T2DM among Ghanaian adults living in different contexts.
Collapse
Affiliation(s)
- C A Abidha
- Faculty of Medicine and University Hospital, Heidelberg Institute of Global Health (HIGH), Heidelberg University, Heidelberg, Germany.
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
| | - K A C Meeks
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - F P Chilunga
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - A Venema
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - R Schindlmayr
- Faculty of Medicine and University Hospital, Heidelberg Institute of Global Health (HIGH), Heidelberg University, Heidelberg, Germany
| | - C Hayfron-Benjamin
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Physiology, University of Ghana Medical School, Accra, Ghana
| | - Kerstin Klipstein-Grobusch
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, Julius Global Health, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Frank P Mockenhaupt
- Institute of Tropical Medicine and International Health, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin and Humboldt-Universitaet Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - C Agyemang
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P Henneman
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - I Danquah
- Faculty of Medicine and University Hospital, Heidelberg Institute of Global Health (HIGH), Heidelberg University, Heidelberg, Germany.
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.
| |
Collapse
|
20
|
Ho CH, Dippel MA, McQuade MS, Mishra A, Pribitzer S, Nguyen LP, Hardy S, Chandok H, Chardon F, McDiarmid TA, DeBerg HA, Buckner JH, Shendure J, de Boer CG, Guo MH, Tewhey R, Ray JP. Linking candidate causal autoimmune variants to T cell networks using genetic and epigenetic screens in primary human T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617092. [PMID: 39416200 PMCID: PMC11482744 DOI: 10.1101/2024.10.07.617092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Genetic variants associated with autoimmune diseases are highly enriched within putative cis -regulatory regions of CD4 + T cells, suggesting that they alter disease risk via changes in gene regulation. However, very few genetic variants have been shown to affect T cell gene expression or function. We tested >18,000 autoimmune disease-associated variants for allele-specific expression using massively parallel reporter assays in primary human CD4 + T cells. The 545 expression-modulating variants (emVars) identified greatly enrich for likely causal variants. We provide evidence that many emVars are mediated by common upstream regulatory conduits, and that putative target genes of primary T cell emVars are highly enriched within a lymphocyte activation network. Using bulk and single-cell CRISPR-interference screens, we confirm that emVar-containing T cell cis -regulatory elements modulate both known and novel target genes that regulate T cell proliferation, providing plausible mechanisms by which these variants alter autoimmune disease risk.
Collapse
|
21
|
Fogarasi M, Dima S. Immunomodulatory Functions of TNF-Related Apoptosis-Inducing Ligand in Type 1 Diabetes. Cells 2024; 13:1676. [PMID: 39451194 PMCID: PMC11506310 DOI: 10.3390/cells13201676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF protein superfamily and was initially identified as a protein capable of inducing apoptosis in cancer cells. In addition, TRAIL can promote pro-survival and proliferation signaling in various cell types. Subsequent studies have demonstrated that TRAIL plays several important roles in immunoregulation, immunosuppression, and immune effector functions. Type 1 diabetes (T1D) is an autoimmune disease characterized by hyperglycemia due to the loss of insulin-producing β-cells, primarily driven by T-cell-mediated pancreatic islet inflammation. Various genetic, epigenetic, and environmental factors, in conjunction with the immune system, contribute to the initiation, development, and progression of T1D. Recent reports have highlighted TRAIL as an important immunomodulatory molecule with protective effects on pancreatic islets. Experimental data suggest that TRAIL protects against T1D by reducing the proliferation of diabetogenic T cells and pancreatic islet inflammation and restoring normoglycemia in animal models. In this review, we aimed to summarize the consequences of TRAIL action in T1D, focusing on and discussing its signaling mechanisms, role in the immune system, and protective effects in T1D.
Collapse
Affiliation(s)
- Marton Fogarasi
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Simona Dima
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
22
|
Roy S, Pokharel P, Piganelli JD. Decoding the immune dance: Unraveling the interplay between beta cells and type 1 diabetes. Mol Metab 2024; 88:101998. [PMID: 39069156 PMCID: PMC11342121 DOI: 10.1016/j.molmet.2024.101998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease characterized by the specific destruction of insulin-producing beta cells in the pancreas by the immune system, including CD4 cells which orchestrate the attack and CD8 cells which directly destroy the beta cells, resulting in the loss of glucose homeostasis. SCOPE OF REVIEW This comprehensive document delves into the complex interplay between the immune system and beta cells, aiming to shed light on the mechanisms driving their destruction in T1D. Insights into the genetic predisposition, environmental triggers, and autoimmune responses provide a foundation for understanding the autoimmune attack on beta cells. From the role of viral infections as potential triggers to the inflammatory response of beta cells, an intricate puzzle starts to unfold. This exploration highlights the importance of beta cells in breaking immune tolerance and the factors contributing to their targeted destruction. Furthermore, it examines the potential role of autophagy and the impact of cytokine signaling on beta cell function and survival. MAJOR CONCLUSIONS This review collectively represents current research findings on T1D which offers valuable perspectives on novel therapeutic approaches for preserving beta cell mass, restoring immune tolerance, and ultimately preventing or halting the progression of T1D. By unraveling the complex dynamics between the immune system and beta cells, we inch closer to a comprehensive understanding of T1D pathogenesis, paving the way for more effective treatments and ultimately a cure.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Pravil Pokharel
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jon D Piganelli
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States.
| |
Collapse
|
23
|
Hitomi Y, Ueno K, Aiba Y, Nishida N, Kono M, Sugihara M, Kawai Y, Kawashima M, Khor SS, Sugi K, Kouno H, Kohno H, Naganuma A, Iwamoto S, Katsushima S, Furuta K, Nikami T, Mannami T, Yamashita T, Ario K, Komatsu T, Makita F, Shimada M, Hirashima N, Yokohama S, Nishimura H, Sugimoto R, Komura T, Ota H, Kojima M, Nakamuta M, Fujimori N, Yoshizawa K, Mano Y, Takahashi H, Hirooka K, Tsuruta S, Sato T, Yamasaki K, Kugiyama Y, Motoyoshi Y, Suehiro T, Saeki A, Matsumoto K, Nagaoka S, Abiru S, Yatsuhashi H, Ito M, Kawata K, Takaki A, Arai K, Arinaga-Hino T, Abe M, Harada M, Taniai M, Zeniya M, Ohira H, Shimoda S, Komori A, Tanaka A, Ishigaki K, Nagasaki M, Tokunaga K, Nakamura M. A genome-wide association study identified PTPN2 as a population-specific susceptibility gene locus for primary biliary cholangitis. Hepatology 2024; 80:776-790. [PMID: 38652555 DOI: 10.1097/hep.0000000000000894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/22/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND AND AIMS Previous genome-wide association studies (GWAS) have indicated the involvement of shared (population-nonspecific) and nonshared (population-specific) susceptibility genes in the pathogenesis of primary biliary cholangitis (PBC) among European and East-Asian populations. Although a meta-analysis of these distinct populations has recently identified more than 20 novel PBC susceptibility loci, analyses of population-specific genetic architecture are still needed for a more comprehensive search for genetic factors in PBC. APPROACH AND RESULTS Protein tyrosine phosphatase nonreceptor type 2 ( PTPN2) was identified as a novel PBC susceptibility gene locus through GWAS and subsequent genome-wide meta-analysis involving 2181 cases and 2699 controls from the Japanese population (GWAS-lead variant: rs8098858, p = 2.6 × 10 -8 ). In silico and in vitro functional analyses indicated that the risk allele of rs2292758, which is a primary functional variant, decreases PTPN2 expression by disrupting Sp1 binding to the PTPN2 promoter in T follicular helper cells and plasmacytoid dendritic cells. Infiltration of PTPN2-positive T-cells and plasmacytoid dendritic cells was confirmed in the portal area of the PBC liver by immunohistochemistry. Furthermore, transcriptomic analysis of PBC-liver samples indicated the presence of a compromised negative feedback loop in vivo between PTPN2 and IFNG in patients carrying the risk allele of rs2292758. CONCLUSIONS PTPN2 , a novel susceptibility gene for PBC in the Japanese population, may be involved in the pathogenesis of PBC through an insufficient negative feedback loop caused by the risk allele of rs2292758 in IFN-γ signaling. This suggests that PTPN2 could be a potential molecular target for PBC treatment.
Collapse
Affiliation(s)
- Yuki Hitomi
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kazuko Ueno
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yoshihiro Aiba
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Nao Nishida
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michihiro Kono
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mitsuki Sugihara
- Division of Biomedical Information Analysis, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Seik-Soon Khor
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kazuhiro Sugi
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hirotaka Kouno
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hiroshi Kohno
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Atsushi Naganuma
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Satoru Iwamoto
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Shinji Katsushima
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kiyoshi Furuta
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Toshiki Nikami
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Tomohiko Mannami
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Tsutomu Yamashita
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Keisuke Ario
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Tatsuji Komatsu
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Fujio Makita
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Masaaki Shimada
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Noboru Hirashima
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Shiro Yokohama
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hideo Nishimura
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Rie Sugimoto
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Takuya Komura
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hajime Ota
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Motoyuki Kojima
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Makoto Nakamuta
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Naoyuki Fujimori
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kaname Yoshizawa
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Yutaka Mano
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hironao Takahashi
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kana Hirooka
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Satoru Tsuruta
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Takeaki Sato
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kazumi Yamasaki
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Yuki Kugiyama
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | | | - Tomoyuki Suehiro
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Akira Saeki
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kosuke Matsumoto
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Shinya Nagaoka
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Seigo Abiru
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | | | - Masahiro Ito
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kazuhito Kawata
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kuniaki Arai
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Teruko Arinaga-Hino
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Matsuyama, Japan
| | - Masaru Harada
- The Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Makiko Taniai
- Department of Medicine and Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Mikio Zeniya
- Department of Gastroenterology and Hepatology, Tokyo Jikei University School of Medicine, Tokyo, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Shinji Shimoda
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Atsumasa Komori
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masao Nagasaki
- Division of Biomedical Information Analysis, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Minoru Nakamura
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
- Division of Biomedical Information Analysis, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| |
Collapse
|
24
|
Wang Y, Lei K, Zhao L, Zhang Y. Clinical glycoproteomics: methods and diseases. MedComm (Beijing) 2024; 5:e760. [PMID: 39372389 PMCID: PMC11450256 DOI: 10.1002/mco2.760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Glycoproteins, representing a significant proportion of posttranslational products, play pivotal roles in various biological processes, such as signal transduction and immune response. Abnormal glycosylation may lead to structural and functional changes of glycoprotein, which is closely related to the occurrence and development of various diseases. Consequently, exploring protein glycosylation can shed light on the mechanisms behind disease manifestation and pave the way for innovative diagnostic and therapeutic strategies. Nonetheless, the study of clinical glycoproteomics is fraught with challenges due to the low abundance and intricate structures of glycosylation. Recent advancements in mass spectrometry-based clinical glycoproteomics have improved our ability to identify abnormal glycoproteins in clinical samples. In this review, we aim to provide a comprehensive overview of the foundational principles and recent advancements in clinical glycoproteomic methodologies and applications. Furthermore, we discussed the typical characteristics, underlying functions, and mechanisms of glycoproteins in various diseases, such as brain diseases, cardiovascular diseases, cancers, kidney diseases, and metabolic diseases. Additionally, we highlighted potential avenues for future development in clinical glycoproteomics. These insights provided in this review will enhance the comprehension of clinical glycoproteomic methods and diseases and promote the elucidation of pathogenesis and the discovery of novel diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yujia Wang
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Kaixin Lei
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Lijun Zhao
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Yong Zhang
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
25
|
Ribeiro AF, Fitas AL, Pires MO, Matoso P, Ligeiro D, Sobral D, Penha-Gonçalves C, Demengeot J, Caramalho Í, Limbert C. Whole Exome Sequencing in Children With Type 1 Diabetes Before Age 6 Years Reveals Insights Into Disease Heterogeneity. J Diabetes Res 2024; 2024:3076895. [PMID: 39364395 PMCID: PMC11449554 DOI: 10.1155/2024/3076895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/04/2024] [Accepted: 08/24/2024] [Indexed: 10/05/2024] Open
Abstract
Aims: This study is aimed at comparing whole exome sequencing (WES) data with the clinical presentation in children with type 1 diabetes onset ≤ 5 years of age (EOT1D). Methods: WES was performed in 99 unrelated children with EOT1D with subsequent analysis to identify potentially deleterious rare variants in MODY genes. High-resolution HLA class II haplotyping, SNP genotyping, and T1D-genetic risk score (T1D-GRS) were also evaluated. Results: Eight of the ninety-nine EOT1D participants carried a potentially deleterious rare variant in a MODY gene. Rare variants affected five genes: GCK (n = 1), HNF1B (n = 2), HNF4A (n = 1), PDX1 (n = 2), and RFX6 (n = 2). At diagnosis, these children had a mean age of 3.0 years, a mean HbA1c of 10.5%, a detectable C-peptide in 5/8, and a positive islet autoantibody in 6/7. Children with MODY variants tend to exhibit a lower number of pancreatic autoantibodies and a lower fasting C-peptide compared to EOT1D without MODY rare variants. They also carried at least one high-risk DR3-DQ2 or DR4-DQ8 haplotype and exhibited a T1D-GRS similar to the other individuals in the EOT1D cohort, but higher than healthy controls. Conclusions: WES found potentially deleterious rare variants in MODY genes in 8.1% of EOT1D, occurring in the context of a T1D genetic background. Such genetic variants may contribute to disease precipitation by a β-cell dysfunction mechanism. This supports the concept of different endotypes of T1D, and WES at T1D onset may be a prerequisite for the implementation of precision therapies in children with autoimmune diabetes.
Collapse
Affiliation(s)
- Andreia Fiúza Ribeiro
- Pediatric Endocrinology UnitHospital de Dona EstefâniaSão José Local Health Unit, Lisbon, Portugal
- Pediatric DepartmentHospital Prof. Doutor Fernando FonsecaAmadora Sintra Local Health Unit, Amadora, Portugal
| | - Ana Laura Fitas
- Pediatric Endocrinology UnitHospital de Dona EstefâniaSão José Local Health Unit, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC)NOVA Medical SchoolUniversidade NOVA de Lisboa, Lisbon, Portugal
| | - Marcela Oliveira Pires
- Pediatric Endocrinology UnitHospital de Dona EstefâniaSão José Local Health Unit, Lisbon, Portugal
- Pediatric DepartmentHospital de São Francisco XavierLisboa Ocidental Local Health Unit, Lisbon, Portugal
| | - Paula Matoso
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Dário Ligeiro
- Blood and Transplantation Center of LisbonInstituto Português do Sangue e da Transplantação, Lisbon, Portugal
- Immunosurgery UnitChampalimaud Foundation, Lisbon, Portugal
| | | | | | | | - Íris Caramalho
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Faculty of SciencesUniversity of Lisbon, Lisbon, Portugal
| | - Catarina Limbert
- Pediatric Endocrinology UnitHospital de Dona EstefâniaSão José Local Health Unit, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC)NOVA Medical SchoolUniversidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
26
|
Wang E, Sun Y, Zhao H, Wang M, Cao Z. Genetic correlation between chronic sinusitis and autoimmune diseases. FRONTIERS IN ALLERGY 2024; 5:1387774. [PMID: 39381510 PMCID: PMC11458559 DOI: 10.3389/falgy.2024.1387774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/23/2024] [Indexed: 10/10/2024] Open
Abstract
Objective The association between autoimmune diseases and chronic rhinosinusitis in observational studies remains unclear. This study aimed to explore the genetic correlation between chronic rhinosinusitis and autoimmune diseases. Methods We employed Mendelian randomization (MR) analysis and linkage disequilibrium score regression (LDSC) to investigate causal relationships and genetic correlations between autoimmune phenotypes and chronic rhinosinusitis. Additionally, transcriptome-wide association (TWAS) analysis was conducted to identify the shared genes between the two conditions to demonstrate their relationship. The CRS GWAS (genome-wide association study) data and other autoimmune diseases were retrieved from ieuOpenGWAS (https://gwas.mrcieu.ac.uk/), the FinnGen alliance (https://r8.finngen.fi/), the UK Biobank (https://www.ukbiobank.ac.uk/), and the EBI database (https://www.ebi.ac.uk/). Results Utilizing a bivariate two-sample Mendelian randomization approach, our findings suggest a significant association of chronic rhinosinusitis with various autoimmune diseases, including allergic rhinitis (p = 9.55E-10, Odds Ratio [OR] = 2,711.019, 95% confidence interval [CI] = 261.83391-28,069.8), asthma (p = 1.81E-23, OR = 33.99643, 95%CI = 17.52439-65.95137), rheumatoid arthritis (p = 9.55E-10, OR = 1.115526, 95%CI = 1.0799484-1.1522758), hypothyroidism (p = 2.08828E-2, OR = 4.849254, 95%CI = 1.7154455-13.707962), and type 1 diabetes (p = 2.08828E-2, OR = 01.04849, 95%CI = 1.0162932-1.0817062). LDSC analysis revealed a genetic correlation between the positive autoimmune phenotypes mentioned above and chronic rhinosinusitis: AR (rg = 0.344724754, p = 3.94E-8), asthma (rg = 0.43703672, p = 1.86E-10), rheumatoid arthritis (rg = 0.27834931, p = 3.5376E-2), and hypothyroidism (rg = -0.213201473, p = 3.83093E-4). Utilizing the Transcriptome-Wide Association Studies (TWAS) approach, we identified several genes commonly associated with both chronic rhinosinusitis and autoimmune diseases. Genes such as TSLP/WDR36 (Chromosome 5, top SNP: rs1837253), ORMDL3 (Chromosome 13, top SNP: rs11557467), and IL1RL1/IL18R1 (Chromosome 2, top SNP: rs12905) exhibited a higher degree of consistency in their shared involvement across atopic dermatitis (AT), allergic rhinitis (AR), and chronic rhinosinusitis (CRS). Conclusion Current evidence suggests a genetic correlation between chronic rhinosinusitis and autoimmune diseases like allergic rhinitis, asthma, rheumatoid arthritis, hypothyroidism, and type 1 diabetes. Further research is required to elucidate the mechanisms underlying these associations.
Collapse
Affiliation(s)
- Enze Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingxuan Sun
- Department of Neurology, The First Affiliation Hospital of China Medical University, Shenyang, China
| | - He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Meng Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiwei Cao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
27
|
Kerns S, Owen KA, Daamen A, Kain J, Grammer AC, Lipsky PE. Genetic association with autoimmune diseases identifies molecular mechanisms of coronary artery disease. iScience 2024; 27:110715. [PMID: 39262791 PMCID: PMC11387803 DOI: 10.1016/j.isci.2024.110715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Abstract
Autoimmune patients have a significantly increased risk of developing coronary artery disease (CAD) compared to the general population. However, autoimmune patients often lack traditional risk factors for CAD and there is increasing recognition of inflammation in CAD development. In this study, we leveraged genome-wide association study (GWAS) data to understand whether there is a genetic relationship between CAD and autoimmunity. Statistical genetic comparison methods were used to identify correlated and causal SNPs between various autoimmune diseases and CAD. Pleiotropic SNPs were identified by cross-phenotype association analysis (CPASSOC) and overlap between GWAS. Causal SNPs were identified using Mendelian Randomization (MR) and Colocalization (COLOC). Using SNP-to-gene mapping, we additionally identified pleiotropic and causal genes and pathways associated between autoimmunity and CAD, which were contextualized by documentation of enrichment in individual cell types identified from coronary atherosclerotic plaques by single-cell RNA sequencing. These results provide insight into potential inflammatory therapeutic targets for CAD.
Collapse
Affiliation(s)
- Sophia Kerns
- AMPEL Biosolutions, LLC, Charlottesville, VA 22903, USA
- The RILITE Research Institute, Charlottesville, VA 22903, USA
| | - Katherine A Owen
- AMPEL Biosolutions, LLC, Charlottesville, VA 22903, USA
- The RILITE Research Institute, Charlottesville, VA 22903, USA
| | - Andrea Daamen
- AMPEL Biosolutions, LLC, Charlottesville, VA 22903, USA
- The RILITE Research Institute, Charlottesville, VA 22903, USA
| | - Jessica Kain
- AMPEL Biosolutions, LLC, Charlottesville, VA 22903, USA
- The RILITE Research Institute, Charlottesville, VA 22903, USA
- Stanford University Department of Genetics, Stanford, CA 94305, USA
| | - Amrie C Grammer
- AMPEL Biosolutions, LLC, Charlottesville, VA 22903, USA
- The RILITE Research Institute, Charlottesville, VA 22903, USA
| | - Peter E Lipsky
- AMPEL Biosolutions, LLC, Charlottesville, VA 22903, USA
- The RILITE Research Institute, Charlottesville, VA 22903, USA
| |
Collapse
|
28
|
Miletić M, Stević Z, Vujović S, Rakočević J, Tomić A, Tančić Gajić M, Stojanović M, Palibrk A, Žarković M. Glucose and Lipid Metabolism Disorders in Adults with Spinal Muscular Atrophy Type 3. Diagnostics (Basel) 2024; 14:2078. [PMID: 39335757 PMCID: PMC11431033 DOI: 10.3390/diagnostics14182078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/22/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Spinal muscular atrophy type 3 (juvenile SMA, Kugelberg-Welander disease) is a genetic disease caused by changes in the survival motor neuron 1 (SMN) gene. However, there is increasing evidence of metabolic abnormalities in SMA patients, such as altered fatty acid metabolism, impaired glucose tolerance, and defects in the functioning of muscle mitochondria. Given that data in the literature are scarce regarding this subject, the purpose of this study was to estimate the prevalence of glucose and lipid metabolism disorders in adult patients with SMA type 3. METHODS We conducted a cross-sectional study of 23 adult patients with SMA type 3 who underwent a comprehensive evaluation, including a physical examination, biochemical analysis, and an oral glucose tolerance test during 2020-2023. RESULTS At least one lipid abnormality was observed in 60.8% of patients. All four lipid parameters were atypical in 4.3% of patients, three lipid parameters were abnormal in 21.7% of patients, and two lipid parameters were altered in 8.7% patients. A total of 91.3% of SMA3 patients met the HOMA-IR criteria for insulin resistance, with 30.43% having impaired glucose tolerance. None of the patients met the criteria for a diagnosis of overt DM2. CONCLUSIONS The prevalence of dyslipidemia and altered glucose metabolism in our study sets apart the adult population with SMA3 from the general population, confirming a significant interplay between muscle, liver, and adipose tissue. Ensuring metabolic care for aging patients with SMA 3 is crucial, as they are vulnerable to metabolic derangements and cardiovascular risks.
Collapse
Affiliation(s)
- Marija Miletić
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (S.V.); (M.T.G.); (M.S.); (M.Ž.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.S.); (A.P.)
| | - Zorica Stević
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.S.); (A.P.)
- Clinic of Neurology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Svetlana Vujović
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (S.V.); (M.T.G.); (M.S.); (M.Ž.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.S.); (A.P.)
| | - Jelena Rakočević
- Institute of Histology and Embryology “Aleksandar Đ. Kostić”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ana Tomić
- Center for Radiology Imaging-Magnetic Resonance, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Milina Tančić Gajić
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (S.V.); (M.T.G.); (M.S.); (M.Ž.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.S.); (A.P.)
| | - Miloš Stojanović
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (S.V.); (M.T.G.); (M.S.); (M.Ž.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.S.); (A.P.)
| | - Aleksa Palibrk
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.S.); (A.P.)
- Clinic of Neurology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Miloš Žarković
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (S.V.); (M.T.G.); (M.S.); (M.Ž.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.S.); (A.P.)
| |
Collapse
|
29
|
Guare LA, Humphrey LA, Rush M, Pollie M, Jaworski J, Akerele AT, Luo Y, Weng C, We WQ, Kottyan L, Jarvik G, Elhadad N, Zondervan K, Missmer S, Vujkovic M, Velez-Edwards D, Senapati S, Setia-Verma S. Enhancing genetic association power in endometriosis through unsupervised clustering of clinical subtypes identified from electronic health records. RESEARCH SQUARE 2024:rs.3.rs-5004325. [PMID: 39315247 PMCID: PMC11419171 DOI: 10.21203/rs.3.rs-5004325/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Endometriosis is a complex and heterogeneous condition affecting 10% of reproductive-age women, and yet, it often goes undiagnosed for several years. Limited observed heritability (7%) of large genetic association studies may be attributable to underlying heterogeneity of disease mechanisms. Therefore, we conducted this study to investigate genetic associations across sub-phenotypes of endometriosis. We performed unsupervised clustering of 4,078 women with endometriosis based on known endometriosis risk factors, symptoms, and concomitant conditions. The clusters were characterized by examining electronic health record (EHR) data and comprehensive chart reviews. We then performed genetic association for each cluster with 39 endometriosis-associated loci (Total Nendometriosis cases = 12,350). We identified five sub-phenotype clusters: (1) pain comorbidities, (2) uterine disorders, (3) pregnancy complications, (4) cardiometabolic comorbidities, and (5) HER-asymptomatic. Bonferroni significant loci included PDLIM5 for the cluster 1, GREB1 for cluster 2, WNT4 for cluster 3, RNLS for cluster 4, and ABO for cluster 5. The difference in associations between the groups suggests complex and varied genetic mechanisms of endometriosis and its symptoms. This study enhances our understanding of the clinical patterns of endometriosis sub-phenotypes, showcasing the innovative approach employed to investigate this complex disease.
Collapse
Affiliation(s)
- Lindsay A Guare
- Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Leigh Ann Humphrey
- Department of Obstetrics and Gynecology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Margaret Rush
- Department of Obstetrics and Gynecology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Meredith Pollie
- Department of Obstetrics and Gynecology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - James Jaworski
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee, United States of America
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Alexis T Akerele
- School of graduate studies, Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, United States of America
- Division of Quantitative Science, Department of Obstetrics and Gynecology, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Yuan Luo
- Feinberg School of Medicine, Northwestern University, Evanston, Illinois, United States of America
| | - Chunhua Weng
- Department of Biomedical Informatics, Columbia University, New York City, New York, United States of America
| | - Wei-Qi We
- Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Leah Kottyan
- Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Gail Jarvik
- Division of Medical Genetics, University of Washington, Seattle, Washington, United States of America
| | - Noemie Elhadad
- Department of Biomedical Informatics, Columbia University, New York City, New York, United States of America
| | | | | | - Krina Zondervan
- Department of Genomic Epidemiology, University of Oxford, Oxford, England
| | - Stacey Missmer
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Marijana Vujkovic
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Digna Velez-Edwards
- Division of Quantitative Science, Department of Obstetrics and Gynecology, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Suneeta Senapati
- Department of Obstetrics and Gynecology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shefali Setia-Verma
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
30
|
Qian Y, Chen S, Wang Y, Zhang Y, Zhang J, Jiang L, Dai H, Shen M, He Y, Jiang H, Yang T, Fu Q, Xu K. A functional variant rs912304 for late-onset T1D risk contributes to islet dysfunction by regulating proinflammatory cytokine-responsive gene STXBP6 expression. BMC Med 2024; 22:357. [PMID: 39227839 PMCID: PMC11373477 DOI: 10.1186/s12916-024-03583-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Our previous genome‑wide association studies (GWAS) have suggested rs912304 in 14q12 as a suggestive risk variant for type 1 diabetes (T1D). However, the association between this risk region and T1D subgroups and related clinical risk features, the underlying causal functional variant(s), putative candidate gene(s), and related mechanisms are yet to be elucidated. METHODS We assessed the association between variant rs912304 and T1D, as well as islet autoimmunity and islet function, stratified by the diagnosed age of 12. We used epigenome bioinformatics analyses, dual luciferase reporter assays, and expression quantitative trait loci (eQTL) analyses to prioritize the most likely functional variant and potential causal gene. We also performed functional experiments to evaluate the role of the causal gene on islet function and its related mechanisms. RESULTS We identified rs912304 as a risk variant for T1D subgroups with diagnosed age ≥ 12 but not < 12. This variant is associated with residual islet function but not islet-specific autoantibody positivity in T1D individuals. Bioinformatics analysis indicated that rs912304 is a functional variant exhibiting spatial overlaps with enhancer active histone marks (H3K27ac and H3K4me1) and open chromatin status (ATAC-seq) in the human pancreas and islet tissues. Luciferase reporter gene assays and eQTL analyses demonstrated that the biallelic sites of rs912304 had differential allele-specific enhancer activity in beta cell lines and regulated STXBP6 expression, which was defined as the most putative causal gene based on Open Targets Genetics, GTEx v8 and Tiger database. Moreover, Stxbp6 was upregulated by T1D-related proinflammatory cytokines but not high glucose/fat. Notably, Stxbp6 over-expressed INS-1E cells exhibited decreasing insulin secretion and increasing cell apoptosis through Glut1 and Gadd45β, respectively. CONCLUSIONS This study expanded the genomic landscape regarding late-onset T1D risk and supported islet function mechanistically connected to T1D pathogenesis.
Collapse
Affiliation(s)
- Yu Qian
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shu Chen
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong, 226000, China
| | - Yan Wang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuyue Zhang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jie Zhang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Liying Jiang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Dai
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Min Shen
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yunqiang He
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hemin Jiang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tao Yang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qi Fu
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Kuanfeng Xu
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
31
|
Fuhri Snethlage CM, Balvers M, Ferwerda B, Rampanelli E, de Groen P, Roep BO, Herrema H, McDonald TJ, van Raalte DH, Weedon MN, Oram RA, Nieuwdorp M, Hanssen NMJ. Associations between diabetes-related genetic risk scores and residual beta cell function in type 1 diabetes: the GUTDM1 study. Diabetologia 2024; 67:1865-1876. [PMID: 38922416 PMCID: PMC11410997 DOI: 10.1007/s00125-024-06204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024]
Abstract
AIMS/HYPOTHESIS Use of genetic risk scores (GRS) may help to distinguish between type 1 diabetes and type 2 diabetes, but less is known about whether GRS are associated with disease severity or progression after diagnosis. Therefore, we tested whether GRS are associated with residual beta cell function and glycaemic control in individuals with type 1 diabetes. METHODS Immunochip arrays and TOPMed were used to genotype a cross-sectional cohort (n=479, age 41.7 ± 14.9 years, duration of diabetes 16.0 years [IQR 6.0-29.0], HbA1c 55.6 ± 12.2 mmol/mol). Several GRS, which were originally developed to assess genetic risk of type 1 diabetes (GRS-1, GRS-2) and type 2 diabetes (GRS-T2D), were calculated. GRS-C1 and GRS-C2 were based on SNPs that have previously been shown to be associated with residual beta cell function. Regression models were used to investigate the association between GRS and residual beta cell function, assessed using the urinary C-peptide/creatinine ratio, and the association between GRS and continuous glucose monitor metrics. RESULTS Higher GRS-1 and higher GRS-2 both showed a significant association with undetectable UCPCR (OR 0.78; 95% CI 0.69, 0.89 and OR 0.84: 95% CI 0.75, 0.93, respectively), which were attenuated after correction for sex and age of onset (GRS-2) and disease duration (GRS-1). Higher GRS-C2 was associated with detectable urinary C-peptide/creatinine ratio (≥0.01 nmol/mmol) after correction for sex and age of onset (OR 6.95; 95% CI 1.19, 40.75). A higher GRS-T2D was associated with less time below range (TBR) (OR for TBR<4% 1.41; 95% CI 1.01 to 1.96) and lower glucose coefficient of variance (β -1.53; 95% CI -2.76, -0.29). CONCLUSIONS/INTERPRETATION Diabetes-related GRS are associated with residual beta cell function in individuals with type 1 diabetes. These findings suggest some genetic contribution to preservation of beta cell function.
Collapse
Affiliation(s)
- Coco M Fuhri Snethlage
- Department of (Experimental) Vascular and Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Manon Balvers
- Department of (Experimental) Vascular and Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Bart Ferwerda
- Department of Clinical Epidemiology and Biostatistics, Amsterdam UMC, Amsterdam, the Netherlands
| | - Elena Rampanelli
- Department of (Experimental) Vascular and Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Pleun de Groen
- Department of (Experimental) Vascular and Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Bart O Roep
- Leids Universitair Medisch Centrum, Internal Medicine, Leiden, the Netherlands
| | - Hilde Herrema
- Department of (Experimental) Vascular and Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Timothy J McDonald
- Peninsula College of Medicine and Dentistry, Peninsula NIHR Clinical Research Facility, Exeter, Devon, UK
| | - Daniël H van Raalte
- Department of (Experimental) Vascular and Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, Amsterdam, the Netherlands
- Diabeter Center Amsterdam, Amsterdam, the Netherlands
| | - Michael N Weedon
- Peninsula College of Medicine and Dentistry, Peninsula NIHR Clinical Research Facility, Exeter, Devon, UK
| | - Richard A Oram
- Peninsula College of Medicine and Dentistry, Peninsula NIHR Clinical Research Facility, Exeter, Devon, UK
| | - Max Nieuwdorp
- Department of (Experimental) Vascular and Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Diabeter Center Amsterdam, Amsterdam, the Netherlands
| | - Nordin M J Hanssen
- Department of (Experimental) Vascular and Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Diabeter Center Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
32
|
Arivarasan VK, Diwakar D, Kamarudheen N, Loganathan K. Current approaches in CRISPR-Cas systems for diabetes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 210:95-125. [PMID: 39824586 DOI: 10.1016/bs.pmbts.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
In the face of advancements in health care and a shift towards healthy lifestyle, diabetes mellitus (DM) still presents as a global health challenge. This chapter explores recent advancements in the areas of genetic and molecular underpinnings of DM, addressing the revolutionary potential of CRISPR-based genome editing technologies. We delve into the multifaceted relationship between genes and molecular pathways contributing to both type1 and type 2 diabetes. We highlight the importance of how improved genetic screening and the identification of susceptibility genes are aiding in early diagnosis and risk stratification. The spotlight then shifts to CRISPR-Cas9, a robust genome editing tool capable of various applications including correcting mutations in type 1 diabetes, enhancing insulin production in T2D, modulating genes associated with metabolism of glucose and insulin sensitivity. Delivery methods for CRISPR to targeted tissues and cells are explored, including viral and non-viral vectors, alongside the exciting possibilities offered by nanocarriers. We conclude by discussing the challenges and ethical considerations surrounding CRISPR-based therapies for DM. These include potential off-target effects, ensuring long-term efficacy and safety, and navigating the ethical implications of human genome modification. This chapter offers a comprehensive perspective on how genetic and molecular insights, coupled with the transformative power of CRISPR, are paving the way for potential cures and novel therapeutic approaches for DM.
Collapse
Affiliation(s)
- Vishnu Kirthi Arivarasan
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Diksha Diwakar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Neethu Kamarudheen
- The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | | |
Collapse
|
33
|
Dwyer AJ, Shaheen ZR, Fife BT. Antigen-specific T cell responses in autoimmune diabetes. Front Immunol 2024; 15:1440045. [PMID: 39211046 PMCID: PMC11358097 DOI: 10.3389/fimmu.2024.1440045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Autoimmune diabetes is a disease characterized by the selective destruction of insulin-secreting β-cells of the endocrine pancreas by islet-reactive T cells. Autoimmune disease requires a complex interplay between host genetic factors and environmental triggers that promote the activation of such antigen-specific T lymphocyte responses. Given the critical involvement of self-reactive T lymphocyte in diabetes pathogenesis, understanding how these T lymphocyte populations contribute to disease is essential to develop targeted therapeutics. To this end, several key antigenic T lymphocyte epitopes have been identified and studied to understand their contributions to disease with the aim of developing effective treatment approaches for translation to the clinical setting. In this review, we discuss the role of pathogenic islet-specific T lymphocyte responses in autoimmune diabetes, the mechanisms and cell types governing autoantigen presentation, and therapeutic strategies targeting such T lymphocyte responses for the amelioration of disease.
Collapse
Affiliation(s)
- Alexander J. Dwyer
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Zachary R. Shaheen
- Center for Immunology, Department of Pediatrics, Pediatric Rheumatology, Allergy, & Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Brian T. Fife
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
34
|
McGrail C, Sears TJ, Kudtarkar P, Carter H, Gaulton K. Genetic association and machine learning improves discovery and prediction of type 1 diabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.31.24311310. [PMID: 39132494 PMCID: PMC11312647 DOI: 10.1101/2024.07.31.24311310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Type 1 diabetes (T1D) has a large genetic component, and expanded genetic studies of T1D can lead to novel biological and therapeutic discovery and improved risk prediction. In this study, we performed genetic association and fine-mapping analyses in 817,718 European ancestry samples genome-wide and 29,746 samples at the MHC locus, which identified 165 independent risk signals for T1D of which 19 were novel. We used risk variants to train a machine learning model (named T1GRS) to predict T1D, which highly differentiated T1D from non-disease and type 2 diabetes (T2D) in Europeans as well as African Americans at or beyond the level of current standards. We identified extensive non-linear interactions between risk loci in T1GRS, for example between HLA-DQB1*57 and INS, coding and non-coding HLA alleles, and DEXI, INS and other beta cell loci, that provided mechanistic insight and improved risk prediction. T1D individuals formed distinct clusters based on genetic features from T1GRS which had significant differences in age of onset, HbA1c, and renal disease severity. Finally, we provided T1GRS in formats to enhance accessibility of risk prediction to any user and computing environment. Overall, the improved genetic discovery and prediction of T1D will have wide clinical, therapeutic, and research applications.
Collapse
Affiliation(s)
- Carolyn McGrail
- Biomedical sciences graduate program, University of California San Diego, La Jolla CA
| | - Timothy J. Sears
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla CA
| | - Parul Kudtarkar
- Department of Pediatrics, University of California San Diego, La Jolla CA
| | - Hannah Carter
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla CA
- Moore’s Cancer Center, University of California San Diego, La Jolla CA
- Department of Medicine, University of California San Diego, La Jolla CA
| | - Kyle Gaulton
- Department of Pediatrics, University of California San Diego, La Jolla CA
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla CA
| |
Collapse
|
35
|
Yau C, Danska JS. Cracking the type 1 diabetes code: Genes, microbes, immunity, and the early life environment. Immunol Rev 2024; 325:23-45. [PMID: 39166298 DOI: 10.1111/imr.13362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Type 1 diabetes (T1D) results from a complex interplay of genetic predisposition, immunological dysregulation, and environmental triggers, that culminate in the destruction of insulin-secreting pancreatic β cells. This review provides a comprehensive examination of the multiple factors underpinning T1D pathogenesis, to elucidate key mechanisms and potential therapeutic targets. Beginning with an exploration of genetic risk factors, we dissect the roles of human leukocyte antigen (HLA) haplotypes and non-HLA gene variants associated with T1D susceptibility. Mechanistic insights gleaned from the NOD mouse model provide valuable parallels to the human disease, particularly immunological intricacies underlying β cell-directed autoimmunity. Immunological drivers of T1D pathogenesis are examined, highlighting the pivotal contributions of both effector and regulatory T cells and the multiple functions of B cells and autoantibodies in β-cell destruction. Furthermore, the impact of environmental risk factors, notably modulation of host immune development by the intestinal microbiome, is examined. Lastly, the review probes human longitudinal studies, unveiling the dynamic interplay between mucosal immunity, systemic antimicrobial antibody responses, and the trajectories of T1D development. Insights garnered from these interconnected factors pave the way for targeted interventions and the identification of biomarkers to enhance T1D management and prevention strategies.
Collapse
Affiliation(s)
- Christopher Yau
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jayne S Danska
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Lin YL, Yao T, Wang YW, Yu JS, Zhen C, Lin JF, Chen SB. Association between primary biliary cholangitis with diabetes and cardiovascular diseases: A bidirectional multivariable Mendelian randomization study. Clin Res Hepatol Gastroenterol 2024; 48:102419. [PMID: 38992425 DOI: 10.1016/j.clinre.2024.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND AND AIMS Primary biliary cholangitis (PBC) is an autoimmune disease often accompanied by multisystem damage. This study aimed to explore the causal association between genetically predicted PBC and diabetes, as well as multiple cardiovascular diseases (CVDs). METHODS Genome-wide association studies (GWAS) summary data of PBC in 24,510 individuals of European ancestry from the European Association for the Study of the Liver was used to identify genetically predicted PBC. We conducted 2-sample single-variable Mendelian randomization (SVMR) and multivariable Mendelian randomization (MVMR) to estimate the impacts of PBC on diabetes (N = 17,685 to 318,014) and 20 CVDs from the genetic consortium (N = 171,875 to 1,030,836). RESULTS SVMR provided evidence that genetically predicted PBC is associated with an increased risk of type 1 diabetes (T1D), type 2 diabetes (T2D), myocardial infarction (MI), heart failure (HF), hypertension, atrial fibrillation (AF), stroke, ischemic stroke, and small-vessel ischemic stroke. Additionally, there was no evidence of a causal association between PBC and coronary atherosclerosis. In the MVMR analysis, PBC maintained independent effects on T1D, HF, MI, and small-vessel ischemic stroke in most models. CONCLUSION Our findings revealed the causal effects of PBC on diabetes and 7 CVDs, and no causal relationship was detected between PBC and coronary atherosclerosis.
Collapse
Affiliation(s)
- Yun-Lu Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Tao Yao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Ying-Wei Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Jia-Sheng Yu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Cheng Zhen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Jia-Feng Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Shui-Bing Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China.
| |
Collapse
|
37
|
Robertson CC, Elgamal RM, Henry-Kanarek BA, Arvan P, Chen S, Dhawan S, Eizirik DL, Kaddis JS, Vahedi G, Parker SCJ, Gaulton KJ, Soleimanpour SA. Untangling the genetics of beta cell dysfunction and death in type 1 diabetes. Mol Metab 2024; 86:101973. [PMID: 38914291 PMCID: PMC11283044 DOI: 10.1016/j.molmet.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a complex multi-system disease which arises from both environmental and genetic factors, resulting in the destruction of insulin-producing pancreatic beta cells. Over the past two decades, human genetic studies have provided new insight into the etiology of T1D, including an appreciation for the role of beta cells in their own demise. SCOPE OF REVIEW Here, we outline models supported by human genetic data for the role of beta cell dysfunction and death in T1D. We highlight the importance of strong evidence linking T1D genetic associations to bona fide candidate genes for mechanistic and therapeutic consideration. To guide rigorous interpretation of genetic associations, we describe molecular profiling approaches, genomic resources, and disease models that may be used to construct variant-to-gene links and to investigate candidate genes and their role in T1D. MAJOR CONCLUSIONS We profile advances in understanding the genetic causes of beta cell dysfunction and death at individual T1D risk loci. We discuss how genetic risk prediction models can be used to address disease heterogeneity. Further, we present areas where investment will be critical for the future use of genetics to address open questions in the development of new treatment and prevention strategies for T1D.
Collapse
Affiliation(s)
- Catherine C Robertson
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Ruth M Elgamal
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Belle A Henry-Kanarek
- Department of Internal Medicine and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Peter Arvan
- Department of Internal Medicine and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA; Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - John S Kaddis
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Golnaz Vahedi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
| | - Kyle J Gaulton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| | - Scott A Soleimanpour
- Department of Internal Medicine and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
38
|
Niu F, Liu W, Ren Y, Tian Y, Shi W, Li M, Li Y, Xiong Y, Qian L. β-cell neogenesis: A rising star to rescue diabetes mellitus. J Adv Res 2024; 62:71-89. [PMID: 37839502 PMCID: PMC11331176 DOI: 10.1016/j.jare.2023.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Diabetes Mellitus (DM), a chronic metabolic disease characterized by elevated blood glucose, is caused by various degrees of insulin resistance and dysfunctional insulin secretion, resulting in hyperglycemia. The loss and failure of functional β-cells are key mechanisms resulting in type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). AIM OF REVIEW Elucidating the underlying mechanisms of β-cell failure, and exploring approaches for β-cell neogenesis to reverse β-cell dysfunction may provide novel strategies for DM therapy. KEY SCIENTIFIC CONCEPTS OF REVIEW Emerging studies reveal that genetic susceptibility, endoplasmic reticulum (ER) stress, oxidative stress, islet inflammation, and protein modification linked to multiple signaling pathways contribute to DM pathogenesis. Over the past few years, replenishing functional β-cell by β-cell neogenesis to restore the number and function of pancreatic β-cells has remarkably exhibited a promising therapeutic approach for DM therapy. In this review, we provide a comprehensive overview of the underlying mechanisms of β-cell failure in DM, highlight the effective approaches for β-cell neogenesis, as well as discuss the current clinical and preclinical agents research advances of β-cell neogenesis. Insights into the challenges of translating β-cell neogenesis into clinical application for DM treatment are also offered.
Collapse
Affiliation(s)
- Fanglin Niu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wenxuan Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Department of Neurology, Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Wenzhen Shi
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Medical Research Center, the affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Man Li
- Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Yujia Li
- Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
39
|
Song Z, Li S, Shang Z, Lv W, Cheng X, Meng X, Chen R, Zhang S, Zhang R. Integrating multi-omics data to analyze the potential pathogenic mechanism of CTSH gene involved in type 1 diabetes in the exocrine pancreas. Brief Funct Genomics 2024; 23:406-417. [PMID: 38050341 DOI: 10.1093/bfgp/elad052] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/19/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of insulin-producing pancreatic islet beta cells. Despite significant advancements, the precise pathogenesis of the disease remains unknown. This work integrated data from expression quantitative trait locus (eQTL) studies with Genome wide association study (GWAS) summary data of T1D and single-cell transcriptome data to investigate the potential pathogenic mechanisms of the CTSH gene involved in T1D in exocrine pancreas. Using the summary data-based Mendelian randomization (SMR) approach, we obtained four potential causative genes associated with T1D: BTN3A2, PGAP3, SMARCE1 and CTSH. To further investigate these genes'roles in T1D development, we validated them using a scRNA-seq dataset from pancreatic tissues of both T1D patients and healthy controls. The analysis showed a significantly high expression of the CTSH gene in T1D acinar cells, whereas the other three genes showed no significant changes in the scRNA-seq data. Moreover, single-cell WGCNA analysis revealed the strongest positive correlation between the module containing CTSH and T1D. In addition, we found cellular ligand-receptor interactions between the acinar cells and different cell types, especially ductal cells. Finally, based on functional enrichment analysis, we hypothesized that the CTSH gene in the exocrine pancreas enhances the antiviral response, leading to the overexpression of pro-inflammatory cytokines and the development of an inflammatory microenvironment. This process promotes β cells injury and ultimately the development of T1D. Our findings offer insights into the underlying pathogenic mechanisms of T1D.
Collapse
Affiliation(s)
- Zerun Song
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - Shuai Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - Zhenwei Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - Wenhua Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - Xiangshu Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - Xin Meng
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - Rui Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - Shuhao Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - Ruijie Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| |
Collapse
|
40
|
Mishra A, Jajodia A, Weston E, Jayavelu ND, Garcia M, Hossack D, Hawkins RD. Identification of functional enhancer variants associated with type I diabetes in CD4+ T cells. Front Immunol 2024; 15:1387253. [PMID: 38947339 PMCID: PMC11211866 DOI: 10.3389/fimmu.2024.1387253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/09/2024] [Indexed: 07/02/2024] Open
Abstract
Type I diabetes is an autoimmune disease mediated by T-cell destruction of β cells in pancreatic islets. Currently, there is no known cure, and treatment consists of daily insulin injections. Genome-wide association studies and twin studies have indicated a strong genetic heritability for type I diabetes and implicated several genes. As most strongly associated variants are noncoding, there is still a lack of identification of functional and, therefore, likely causal variants. Given that many of these genetic variants reside in enhancer elements, we have tested 121 CD4+ T-cell enhancer variants associated with T1D. We found four to be functional through massively parallel reporter assays. Three of the enhancer variants weaken activity, while the fourth strengthens activity. We link these to their cognate genes using 3D genome architecture or eQTL data and validate them using CRISPR editing. Validated target genes include CLEC16A and SOCS1. While these genes have been previously implicated in type 1 diabetes and other autoimmune diseases, we show that enhancers controlling their expression harbor functional variants. These variants, therefore, may act as causal type 1 diabetic variants.
Collapse
Affiliation(s)
- Arpit Mishra
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - Ajay Jajodia
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - Eryn Weston
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - Naresh Doni Jayavelu
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - Mariana Garcia
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - Daniel Hossack
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - R. David Hawkins
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, United States
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| |
Collapse
|
41
|
Li L, Zhang M, Gu M, Li J, Li Z, Zhang R, Du C, Lv Y. The causal relationship between autoimmune diseases and age-related macular degeneration: A two-sample mendelian randomization study. PLoS One 2024; 19:e0303170. [PMID: 38857222 PMCID: PMC11164335 DOI: 10.1371/journal.pone.0303170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/18/2024] [Indexed: 06/12/2024] Open
Abstract
OBJECTIVE The aim of this study is to investigate the potential causal relationship between autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis, and Type 1 diabetes, and age-related macular degeneration (AMD). By utilizing the two-sample Mendelian Randomization (MR) approach, we endeavor to address this complex medical issue. METHODS Genome-wide association study (GWAS) data for autoimmune diseases and AMD were obtained from the IEU Open GWAS database and the FinnGen consortium. A series of stringent SNP filtering steps was applied to ensure the reliability of the genetic instruments. MR analyses were conducted using the TwoSampleMR and MR-PRESSO packages in R. The inverse-variance weighted (IVW) method served as the primary analysis, complemented by multiple supplementary analyses and sensitivity tests. RESULTS Within the discovery sample, only a statistically significant inverse causal relationship between multiple sclerosis (MS) and AMD was observed (OR = 0.92, 95% CI: 0.88-0.97, P = 0.003). This finding was confirmed in the replication sample (OR = 0.85, 95% CI: 0.80-0.89, P = 3.32×10-12). No statistically significant associations were detected between systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, and Type 1 diabetes and AMD. CONCLUSION Strong evidence is provided by this study to support the existence of an inverse causal relationship between multiple sclerosis and age-related macular degeneration. However, no causal evidence was found linking other autoimmune diseases with AMD. These findings not only offer novel insights into the potential etiological mechanisms underlying AMD but also suggest possible directions for future clinical interventions.
Collapse
Affiliation(s)
- Linrui Li
- Department of Ophthalmology, Fushun People’s Hospital, Fushun, China. Sichuan Province, P.R. China
| | - Mingyue Zhang
- Department of Ophthalmology, Fushun People’s Hospital, Fushun, China. Sichuan Province, P.R. China
| | - Moxiu Gu
- Department of Ophthalmology, Fushun People’s Hospital, Fushun, China. Sichuan Province, P.R. China
| | - Jun Li
- Department of Ophthalmology, Fushun People’s Hospital, Fushun, China. Sichuan Province, P.R. China
| | - Zhiyuan Li
- Department of Ophthalmology, Fushun People’s Hospital, Fushun, China. Sichuan Province, P.R. China
| | - Rong Zhang
- Department of Ophthalmology, Fushun People’s Hospital, Fushun, China. Sichuan Province, P.R. China
| | - Chuanwang Du
- Department of Ophthalmology, Fushun People’s Hospital, Fushun, China. Sichuan Province, P.R. China
| | - Yun Lv
- Department of Ophthalmology, Fushun People’s Hospital, Fushun, China. Sichuan Province, P.R. China
| |
Collapse
|
42
|
Li J, Ma X, Yin C. Proteome-wide Mendelian randomization identifies potential therapeutic targets for nonalcoholic fatty liver diseases. Sci Rep 2024; 14:11814. [PMID: 38782984 PMCID: PMC11116402 DOI: 10.1038/s41598-024-62742-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the predominant cause of liver pathology. Current evidence highlights plasma proteins as potential therapeutic targets. However, their mechanistic roles in NAFLD remain unclear. This study investigated the involvement of specific plasma proteins and intermediate risk factors in NAFLD progression. Two-sample Mendelian randomization (MR) analysis was conducted to examine the association between plasma proteins and NAFLD. Colocalization analysis determined the shared causal variants between the identified proteins and NAFLD. The MR analysis was applied separately to proteins, risk factors, and NAFLD. Mediator shares were computed by detecting the correlations among these elements. Phenome-wide association studies (phewas) were utilized to assess the safety implications of targeting these proteins. Among 1,834 cis-protein quantitative trait loci (cis-pQTLs), after-FDR correction revealed correlations between the plasma levels of four gene-predicted proteins (CSPG3, CILP2, Apo-E, and GCKR) and NAFLD. Colocalization analysis indicated shared causal variants for CSPG3 and GCKR in NAFLD (posterior probability > 0.8). Out of the 22 risk factors screened for MR analysis, only 8 showed associations with NAFLD (p ≤ 0.05), while 4 linked to CSPG3 and GCKR. The mediator shares for these associations were calculated separately. Additionally, reverse MR analysis was performed on the pQTLs, risk factors, and NAFLD, which exhibited a causal relationship with forward MR analysis. Finally, phewas summarized the potential side effects of associated-targeting proteins, including CSPG3 and GCKR. Our research emphasized the potential therapeutic targets for NAFLD and provided modifiable risk factors for preventing NAFLD.
Collapse
Affiliation(s)
- Junhang Li
- Department of Ultrasonography, Dali Prefecture Third People's Hospital, Dali Prefecture, Yunnan Province, China
| | - Xiang Ma
- Chongqing Medical University, Chongqing, China
| | - Cuihua Yin
- Department of Ultrasonography, Dali Prefecture Third People's Hospital, Dali Prefecture, Yunnan Province, China.
| |
Collapse
|
43
|
Michalek DA, Tern C, Zhou W, Robertson CC, Farber E, Campolieto P, Chen WM, Onengut-Gumuscu S, Rich SS. A multi-ancestry genome-wide association study in type 1 diabetes. Hum Mol Genet 2024; 33:958-968. [PMID: 38453145 PMCID: PMC11102596 DOI: 10.1093/hmg/ddae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 02/09/2023] [Indexed: 03/09/2024] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by destruction of the pancreatic β-cells. Genome-wide association (GWAS) and fine mapping studies have been conducted mainly in European ancestry (EUR) populations. We performed a multi-ancestry GWAS to identify SNPs and HLA alleles associated with T1D risk and age at onset. EUR families (N = 3223), and unrelated individuals of African (AFR, N = 891) and admixed (Hispanic/Latino) ancestry (AMR, N = 308) were genotyped using the Illumina HumanCoreExome BeadArray, with imputation to the TOPMed reference panel. The Multi-Ethnic HLA reference panel was utilized to impute HLA alleles and amino acid residues. Logistic mixed models (T1D risk) and frailty models (age at onset) were used for analysis. In GWAS meta-analysis, seven loci were associated with T1D risk at genome-wide significance: PTPN22, HLA-DQA1, IL2RA, RNLS, INS, IKZF4-RPS26-ERBB3, and SH2B3, with four associated with T1D age at onset (PTPN22, HLA-DQB1, INS, and ERBB3). AFR and AMR meta-analysis revealed NRP1 as associated with T1D risk and age at onset, although NRP1 variants were not associated in EUR ancestry. In contrast, the PTPN22 variant was significantly associated with risk only in EUR ancestry. HLA alleles and haplotypes most significantly associated with T1D risk in AFR and AMR ancestry differed from that seen in EUR ancestry; in addition, the HLA-DRB1*08:02-DQA1*04:01-DQB1*04:02 haplotype was 'protective' in AMR while HLA-DRB1*08:01-DQA1*04:01-DQB1*04:02 haplotype was 'risk' in EUR ancestry, differing only at HLA-DRB1*08. These results suggest that much larger sample sizes in non-EUR populations are required to capture novel loci associated with T1D risk.
Collapse
Affiliation(s)
- Dominika A Michalek
- Center for Public Health Genomics, University of Virginia, 1330 Jefferson Park Avenue, Charlottesville, VA 22908, United States
| | - Courtney Tern
- Center for Public Health Genomics, University of Virginia, 1330 Jefferson Park Avenue, Charlottesville, VA 22908, United States
| | - Wei Zhou
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, United States
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, 185 Cambridge Street, Boston, MA 02114, United States
| | - Catherine C Robertson
- Center for Public Health Genomics, University of Virginia, 1330 Jefferson Park Avenue, Charlottesville, VA 22908, United States
| | - Emily Farber
- Center for Public Health Genomics, University of Virginia, 1330 Jefferson Park Avenue, Charlottesville, VA 22908, United States
| | - Paul Campolieto
- Center for Public Health Genomics, University of Virginia, 1330 Jefferson Park Avenue, Charlottesville, VA 22908, United States
| | - Wei-Min Chen
- Center for Public Health Genomics, University of Virginia, 1330 Jefferson Park Avenue, Charlottesville, VA 22908, United States
- Department of Public Health Sciences, University of Virginia, 1330 Jefferson Park Avenue, Charlottesville, VA 22908, United States
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, 1330 Jefferson Park Avenue, Charlottesville, VA 22908, United States
- Department of Public Health Sciences, University of Virginia, 1330 Jefferson Park Avenue, Charlottesville, VA 22908, United States
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, 1330 Jefferson Park Avenue, Charlottesville, VA 22908, United States
- Department of Public Health Sciences, University of Virginia, 1330 Jefferson Park Avenue, Charlottesville, VA 22908, United States
| |
Collapse
|
44
|
Lincoln MR, Connally N, Axisa PP, Gasperi C, Mitrovic M, van Heel D, Wijmenga C, Withoff S, Jonkers IH, Padyukov L, Rich SS, Graham RR, Gaffney PM, Langefeld CD, Vyse TJ, Hafler DA, Chun S, Sunyaev SR, Cotsapas C. Genetic mapping across autoimmune diseases reveals shared associations and mechanisms. Nat Genet 2024; 56:838-845. [PMID: 38741015 DOI: 10.1038/s41588-024-01732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/21/2024] [Indexed: 05/16/2024]
Abstract
Autoimmune and inflammatory diseases are polygenic disorders of the immune system. Many genomic loci harbor risk alleles for several diseases, but the limited resolution of genetic mapping prevents determining whether the same allele is responsible, indicating a shared underlying mechanism. Here, using a collection of 129,058 cases and controls across 6 diseases, we show that ~40% of overlapping associations are due to the same allele. We improve fine-mapping resolution for shared alleles twofold by combining cases and controls across diseases, allowing us to identify more expression quantitative trait loci driven by the shared alleles. The patterns indicate widespread sharing of pathogenic mechanisms but not a single global autoimmune mechanism. Our approach can be applied to any set of traits and is particularly valuable as sample collections become depleted.
Collapse
Affiliation(s)
- Matthew R Lincoln
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Division of Neurology at the Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Noah Connally
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Pierre-Paul Axisa
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | | | - Mitja Mitrovic
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - David van Heel
- Blizard Institute, Queen Mary University of London, London, UK
| | - Cisca Wijmenga
- Department of Genetics at the University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sebo Withoff
- Department of Genetics at the University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Iris H Jonkers
- Department of Genetics at the University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Leonid Padyukov
- Division of Rheumatology at the Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Robert R Graham
- Maze Therapeutics, South San Francisco, CA, USA
- Genentech, South San Francisco, CA, USA
| | - Patrick M Gaffney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Timothy J Vyse
- Department of Medical and Molecular Genetics, Kings College London, London, UK
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Sung Chun
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Shamil R Sunyaev
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Chris Cotsapas
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Vesalius Therapeutics, Cambridge, MA, USA.
| |
Collapse
|
45
|
Guare L, Humphrey LA, Rush M, Pollie M, Luo Y, Weng C, Wei WQ, Kottyan L, Jarvik G, Elhadad N, Zondervan K, Missmer S, Vujkovic M, Velez-Edwards D, Senapati S, Setia-Verma S. Enhancing Genetic Association Power in Endometriosis through Unsupervised Clustering of Clinical Subtypes Identified from Electronic Health Records. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.22.24306092. [PMID: 38712122 PMCID: PMC11071578 DOI: 10.1101/2024.04.22.24306092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background Endometriosis affects 10% of reproductive-age women, and yet, it goes undiagnosed for 3.6 years on average after symptoms onset. Despite large GWAS meta-analyses (N > 750,000), only a few dozen causal loci have been identified. We hypothesized that the challenges in identifying causal genes for endometriosis stem from heterogeneity across clinical and biological factors underlying endometriosis diagnosis. Methods We extracted known endometriosis risk factors, symptoms, and concomitant conditions from the Penn Medicine Biobank (PMBB) and performed unsupervised spectral clustering on 4,078 women with endometriosis. The 5 clusters were characterized by utilizing additional electronic health record (EHR) variables, such as endometriosis-related comorbidities and confirmed surgical phenotypes. From four EHR-linked genetic datasets, PMBB, eMERGE, AOU, and UKBB, we extracted lead variants and tag variants 39 known endometriosis loci for association testing. We meta-analyzed ancestry-stratified case/control tests for each locus and cluster in addition to a positive control (Total N endometriosis cases = 10,108). Results We have designated the five subtype clusters as pain comorbidities, uterine disorders, pregnancy complications, cardiometabolic comorbidities, and EHR-asymptomatic based on enriched features from each group. One locus, RNLS , surpassed the genome-wide significant threshold in the positive control. Thirteen more loci reached a Bonferroni threshold of 1.3 x 10 -3 (0.05 / 39) in the positive control. The cluster-stratified tests yielded more significant associations than the positive control for anywhere from 5 to 15 loci depending on the cluster. Bonferroni significant loci were identified for four out of five clusters, including WNT4 and GREB1 for the uterine disorders cluster, RNLS for the cardiometabolic cluster, FSHB for the pregnancy complications cluster, and SYNE1 and CDKN2B-AS1 for the EHR-asymptomatic cluster. This study enhances our understanding of the clinical presentation patterns of endometriosis subtypes, showcasing the innovative approach employed to investigate this complex disease.
Collapse
|
46
|
Fu Y, Kelly JA, Gopalakrishnan J, Pelikan RC, Tessneer KL, Pasula S, Grundahl K, Murphy DA, Gaffney PM. Massively parallel reporter assay confirms regulatory potential of hQTLs and reveals important variants in lupus and other autoimmune diseases. HGG ADVANCES 2024; 5:100279. [PMID: 38389303 PMCID: PMC10943488 DOI: 10.1016/j.xhgg.2024.100279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024] Open
Abstract
We designed a massively parallel reporter assay (MPRA) in an Epstein-Barr virus transformed B cell line to directly characterize the potential for histone post-translational modifications, i.e., histone quantitative trait loci (hQTLs), expression QTLs (eQTLs), and variants on systemic lupus erythematosus (SLE) and autoimmune (AI) disease risk haplotypes to modulate regulatory activity in an allele-dependent manner. Our study demonstrates that hQTLs, as a group, are more likely to modulate regulatory activity in an MPRA compared with other variant classes tested, including a set of eQTLs previously shown to interact with hQTLs and tested AI risk variants. In addition, we nominate 17 variants (including 11 previously unreported) as putative causal variants for SLE and another 14 for various other AI diseases, prioritizing these variants for future functional studies in primary and immortalized B cells. Thus, we uncover important insights into the mechanistic relationships among genotype, epigenetics, and gene expression in SLE and AI disease phenotypes.
Collapse
Affiliation(s)
- Yao Fu
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Jennifer A Kelly
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Jaanam Gopalakrishnan
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Neuro-Immune Regulome Unit, National Eye Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Richard C Pelikan
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Kandice L Tessneer
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Satish Pasula
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Kiely Grundahl
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - David A Murphy
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Patrick M Gaffney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| |
Collapse
|
47
|
Jin P, Jin X, He L, Liu W, Zhan Z. The casual relationship between autoimmune diseases and multiple myeloma: a Mendelian randomization study. Clin Exp Med 2024; 24:65. [PMID: 38564026 PMCID: PMC10987346 DOI: 10.1007/s10238-024-01327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
Observational studies showed possible associations between systemic lupus erythematosus and multiple myeloma. However, whether there is a casual relationship between different types of autoimmune diseases (type 1 diabetes mellitus, rheumatoid arthritis, systemic lupus erythematosus, psoriasis, multiple sclerosis, primary sclerosing cholangitis, primary biliary cirrhosis, and juvenile idiopathic arthritis) and multiple myeloma (MM) is not well known. We performed a two-sample Mendelian randomization (MR) study to estimate the casual relationship. Summary-level data of autoimmune diseases were gained from published genome-wide association studies while data of MM was obtained from UKBiobank. The Inverse-Variance Weighted (IVW) method was used as the primary analysis method to interpret the study results, with MR-Egger and weighted median as complementary methods of analysis. There is causal relationship between primary sclerosing cholangitis [OR = 1.00015, 95% CI 1.000048-1.000254, P = 0.004] and MM. Nevertheless, no similar causal relationship was found between the remaining seven autoimmune diseases and MM. Considering the important role of age at recruitment and body mass index (BMI) in MM, we excluded these relevant instrument variables, and similar results were obtained. The accuracy and robustness of these findings were confirmed by sensitivity tests. Overall, MR analysis suggests that genetic liability to primary sclerosing cholangitis could be causally related to the increasing risk of MM. This finding may serve as a guide for clinical attention to patients with autoimmune diseases and their early screening for MM.
Collapse
Affiliation(s)
- Peipei Jin
- Second School of Clinical Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Xiaoqing Jin
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Li He
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China.
| | - Wen Liu
- Second School of Clinical Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Zhuo Zhan
- Second School of Clinical Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| |
Collapse
|
48
|
Kang Q, Ren J, Cong J, Yu W. Diabetes mellitus and idiopathic pulmonary fibrosis: a Mendelian randomization study. BMC Pulm Med 2024; 24:142. [PMID: 38504175 PMCID: PMC10953180 DOI: 10.1186/s12890-024-02961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND The question as to whether or not diabetes mellitus increases the risk of idiopathic pulmonary fibrosis (IPF) remains controversial. This study aimed to investigate the causal association between type 1 diabetes (T1D), type 2 diabetes (T2D), and IPF using Mendelian randomization (MR) analysis. METHODS We used two-sample univariate and multivariate MR (MVMR) analyses to investigate the causal relationship between T1D or T2D and IPF. We obtained genome-wide association study (GWAS) data for T1D and T2D from the European Bioinformatics Institute, comprising 29,652 T1D samples and 101,101 T1D single nucleotide polymorphisms (SNPs) and 655,666 T2D samples and 5,030,727 T2D SNPs. We also used IPF GWAS data from the FinnGen Biobank comprising 198,014 IPF samples and 16,380,413 IPF SNPs. All cases and controls in these datasets were derived exclusively from European populations. In the univariate MR analysis, we employed inverse variance-weighted (IVW), weighted median (WM), and MR-Egger regression methods. For the MVMR analysis, we used the multivariate IVW method primarily, and supplemented it with multivariate MR-Egger and multivariate MR- least absolute shrinkage and selection operator methods. Heterogeneity tests were conducted using the MR-IVW and MR-Egger regression methods, whereas pleiotropic effects were assessed using the MR-Egger intercept. The results of MR and sensitivity analyses were visualized using forest, scatter, leave-one-out, and funnel plots. RESULTS Univariate MR revealed a significant causal relationship between T1D and IPF (OR = 1.118, 95% CI = 1.021-1.225, P = 0.016); however, no significant causal relationship was found between T2D and IPF (OR = 0.911, 95% CI = 0.796-1.043, P = 0.178). MVMR analysis further confirmed a causal association between T1D and IPF (OR = 1.133, 95% CI = 1.011-1.270, P = 0.032), but no causal relationship between T2D and IPF (OR = 1.009, 95% CI = 0.790-1.288, P = 0.950). Sensitivity analysis results validated the stability and reliability of our findings. CONCLUSION Univariate and multivariate analyses demonstrated a causal relationship between T1D and IPF, whereas no evidence was found to support a causal relationship between T2D and IPF. Therefore, in clinical practice, patients with T1D should undergo lung imaging for early detection of IPF.
Collapse
Affiliation(s)
- Quou Kang
- Department of Pulmonary and Critical Care Medicine, The affiliated hospital of Qingdao University, Qingdao University, Qingdao, China
- Medical Department of Qingdao University, Qingdao, China
| | - Jing Ren
- Department of Pulmonary and Critical Care Medicine, The affiliated hospital of Qingdao University, Qingdao University, Qingdao, China
- Medical Department of Qingdao University, Qingdao, China
| | - Jinpeng Cong
- Department of Pulmonary and Critical Care Medicine, The affiliated hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wencheng Yu
- Department of Pulmonary and Critical Care Medicine, The affiliated hospital of Qingdao University, Qingdao University, Qingdao, China.
| |
Collapse
|
49
|
Artaza H, Eriksson D, Lavrichenko K, Aranda-Guillén M, Bratland E, Vaudel M, Knappskog P, Husebye ES, Bensing S, Wolff ASB, Kämpe O, Røyrvik EC, Johansson S. Rare copy number variation in autoimmune Addison's disease. Front Immunol 2024; 15:1374499. [PMID: 38562931 PMCID: PMC10982488 DOI: 10.3389/fimmu.2024.1374499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Autoimmune Addison's disease (AAD) is a rare but life-threatening endocrine disorder caused by an autoimmune destruction of the adrenal cortex. A previous genome-wide association study (GWAS) has shown that common variants near immune-related genes, which mostly encode proteins participating in the immune response, affect the risk of developing this condition. However, little is known about the contribution of copy number variations (CNVs) to AAD susceptibility. We used the genome-wide genotyping data from Norwegian and Swedish individuals (1,182 cases and 3,810 controls) to investigate the putative role of CNVs in the AAD aetiology. Although the frequency of rare CNVs was similar between cases and controls, we observed that larger deletions (>1,000 kb) were more common among patients (OR = 4.23, 95% CI 1.85-9.66, p = 0.0002). Despite this, none of the large case-deletions were conclusively pathogenic, and the clinical presentation and an AAD-polygenic risk score were similar between cases with and without the large CNVs. Among deletions exclusive to individuals with AAD, we highlight two ultra-rare deletions in the genes LRBA and BCL2L11, which we speculate might have contributed to the polygenic risk in these carriers. In conclusion, rare CNVs do not appear to be a major cause of AAD but further studies are needed to ascertain the potential contribution of rare deletions to the polygenic load of AAD susceptibility.
Collapse
Affiliation(s)
- Haydee Artaza
- Department of Clinical Science, University of Bergen, Bergen, Norway
- K. G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
| | - Daniel Eriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Ksenia Lavrichenko
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Maribel Aranda-Guillén
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Eirik Bratland
- K. G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Marc Vaudel
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Department of Genetics and Bioinformatics, Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway
| | - Per Knappskog
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Eystein S. Husebye
- K. G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Sophie Bensing
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anette S. B. Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway
- K. G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Olle Kämpe
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ellen C. Røyrvik
- Department of Clinical Science, University of Bergen, Bergen, Norway
- K. G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Bergen, Norway
| | - Stefan Johansson
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
50
|
Kim T, Martínez-Bonet M, Wang Q, Hackert N, Sparks JA, Baglaenko Y, Koh B, Darbousset R, Laza-Briviesca R, Chen X, Aguiar VRC, Chiu DJ, Westra HJ, Gutierrez-Arcelus M, Weirauch MT, Raychaudhuri S, Rao DA, Nigrovic PA. Non-coding autoimmune risk variant defines role for ICOS in T peripheral helper cell development. Nat Commun 2024; 15:2150. [PMID: 38459032 PMCID: PMC10923805 DOI: 10.1038/s41467-024-46457-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
Fine-mapping and functional studies implicate rs117701653, a non-coding single nucleotide polymorphism in the CD28/CTLA4/ICOS locus, as a risk variant for rheumatoid arthritis and type 1 diabetes. Here, using DNA pulldown, mass spectrometry, genome editing and eQTL analysis, we establish that the disease-associated risk allele is functional, reducing affinity for the inhibitory chromosomal regulator SMCHD1 to enhance expression of inducible T-cell costimulator (ICOS) in memory CD4+ T cells from healthy donors. Higher ICOS expression is paralleled by an increase in circulating T peripheral helper (Tph) cells and, in rheumatoid arthritis patients, of blood and joint fluid Tph cells as well as circulating plasmablasts. Correspondingly, ICOS ligation and carriage of the rs117701653 risk allele accelerate T cell differentiation into CXCR5-PD-1high Tph cells producing IL-21 and CXCL13. Thus, mechanistic dissection of a functional non-coding variant in human autoimmunity discloses a previously undefined pathway through which ICOS regulates Tph development and abundance.
Collapse
Affiliation(s)
- Taehyeung Kim
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marta Martínez-Bonet
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Laboratory of Immune-regulation, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Qiang Wang
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicolaj Hackert
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jeffrey A Sparks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuriy Baglaenko
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Byunghee Koh
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Roxane Darbousset
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raquel Laza-Briviesca
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - Vitor R C Aguiar
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Darren J Chiu
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Harm-Jan Westra
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, The Netherlands
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
- Divisions of Human Genetics, Biomedical Informatics, and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|