1
|
Igarashi N, Kasai K, Tada Y, Kani K, Kato M, Takano S, Goto K, Matsuura Y, Ichimura-Shimizu M, Watanabe S, Tsuneyama K, Furusawa Y, Nagai Y. Impacts of liver macrophages, gut microbiota, and bile acid metabolism on the differences in iHFC diet-induced MASH progression between TSNO and TSOD mice. Inflamm Res 2024; 73:1081-1098. [PMID: 38619583 DOI: 10.1007/s00011-024-01884-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Tsumura-Suzuki non-obese (TSNO) mice exhibit a severe form of metabolic dysfunction-associated steatohepatitis (MASH) with advanced liver fibrosis upon feeding a high-fat/cholesterol/cholate-based (iHFC) diet. Another ddY strain, Tsumura-Suzuki diabetes obese (TSOD) mice, are impaired in the progression of iHFC diet-induced MASH. AIM To elucidate the underlying mechanisms contributing to the differences in MASH progression between TSNO and TSOD mice. METHODS We analyzed differences in the immune system, gut microbiota, and bile acid metabolism in TSNO and TSOD mice fed with a normal diet (ND) or an iHFC diet. RESULTS TSOD mice had more anti-inflammatory macrophages in the liver than TSNO mice under ND feeding, and were impaired in the iHFC diet-induced accumulation of fibrosis-associated macrophages and formation of histological hepatic crown-like structures in the liver. The gut microbiota of TSOD mice also exhibited a distinct community composition with lower diversity and higher abundance of Akkermansia muciniphila compared with that in TSNO mice. Finally, TSOD mice had lower levels of bile acids linked to intestinal barrier disruption under iHFC feeding. CONCLUSIONS The dynamics of liver macrophage subsets, and the compositions of the gut microbiota and bile acids at steady state and post-onset of MASH, had major impacts on MASH development.
Collapse
Affiliation(s)
- Naoya Igarashi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Kaichi Kasai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yuki Tada
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Koudai Kani
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Miyuna Kato
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Shun Takano
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Kana Goto
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yudai Matsuura
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-8-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shiro Watanabe
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-8-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yoshinori Nagai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| |
Collapse
|
2
|
Smiriglia A, Lorito N, Serra M, Perra A, Morandi A, Kowalik MA. Sex difference in liver diseases: How preclinical models help to dissect the sex-related mechanisms sustaining NAFLD and hepatocellular carcinoma. iScience 2023; 26:108363. [PMID: 38034347 PMCID: PMC10682354 DOI: 10.1016/j.isci.2023.108363] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Only a few preclinical findings are confirmed in the clinic, posing a critical issue for clinical development. Therefore, identifying the best preclinical models can help to dissect molecular and mechanistic insights into liver disease pathogenesis while being clinically relevant. In this context, the sex relevance of most preclinical models has been only partially considered. This is particularly significant in NAFLD and HCC, which have a higher prevalence in men when compared to pre-menopause women but not to those in post-menopausal status, suggesting a role for sex hormones in the pathogenesis of the diseases. This review gathers the sex-relevant findings and the available preclinical models focusing on both in vitro and in vivo studies and discusses the potential implications and perspectives of introducing the sex effect in the selection of the best preclinical model. This is a critical aspect that would help to tailor personalized therapies based on sex.
Collapse
Affiliation(s)
- Alfredo Smiriglia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Marina Serra
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Marta Anna Kowalik
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
3
|
Yagihashi S. Contribution of animal models to diabetes research: Its history, significance, and translation to humans. J Diabetes Investig 2023; 14:1015-1037. [PMID: 37401013 PMCID: PMC10445217 DOI: 10.1111/jdi.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 07/05/2023] Open
Abstract
Diabetes mellitus is still expanding globally and is epidemic in developing countries. The combat of this plague has caused enormous economic and social burdens related to a lowered quality of life in people with diabetes. Despite recent significant improvements of life expectancy in patients with diabetes, there is still a need for efforts to elucidate the complexities and mechanisms of the disease processes to overcome this difficult disorder. To this end, the use of appropriate animal models in diabetes studies is invaluable for translation to humans and for the development of effective treatment. In this review, a variety of animal models of diabetes with spontaneous onset in particular will be introduced and discussed for their implication in diabetes research.
Collapse
Affiliation(s)
- Soroku Yagihashi
- Department of Exploratory Medicine for Nature, Life and HumansToho University School of MedicineChibaJapan
- Department of PathologyHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
4
|
Shao W, Ichimura-Shimizu M, Ogawa H, Jin S, Sutoh M, Nakamura S, Onodera M, Tawara H, Toyohara S, Hokao R, Kudo Y, Oya T, Tsuneyama K. Establishment of repeated liver biopsy technique in experimental mice. Heliyon 2023; 9:e16978. [PMID: 37484353 PMCID: PMC10361027 DOI: 10.1016/j.heliyon.2023.e16978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 05/10/2023] [Accepted: 06/02/2023] [Indexed: 07/25/2023] Open
Abstract
Biopsy is a commonly used method for determining pathological diagnoses by directly using human tissues and cells. Biopsies are widely used to determine disease progression and treatment efficacy. Although organs and tissues are usually obtained by sacrifice during animal experiments, it is theoretically possible to use the same biopsy techniques in humans. In the present study, we examined the feasibility of performing four repeated liver biopsies in a spontaneous metabolic syndrome mouse model. Even though a small number of mice died accidently, most mice were able to undergo four liver biopsies without significant adverse events. We also performed three liver biopsies in mouse liver tumor carcinogen models at 4, 8, and 12 weeks of age. In addition to the sample collected at 16 weeks of age during sacrifice, we successfully collected four liver samples from the same mice at different stages of disease progression. The application of this liver biopsy technique might make it possible for direct evaluation of pathological conditions in the same individual over time, thereby reducing the number of experimental animals.
Collapse
Affiliation(s)
- Wenhua Shao
- Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shengjian Jin
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mitsuko Sutoh
- Institute for Animal Reproduction, Kasumigaura, Ibaraki, Japan
| | - Satoko Nakamura
- Institute for Animal Reproduction, Kasumigaura, Ibaraki, Japan
| | - Miki Onodera
- Institute for Animal Reproduction, Kasumigaura, Ibaraki, Japan
| | - Hirosuke Tawara
- Institute for Animal Reproduction, Kasumigaura, Ibaraki, Japan
| | - Shunji Toyohara
- Institute for Animal Reproduction, Kasumigaura, Ibaraki, Japan
| | - Ryoji Hokao
- Institute for Animal Reproduction, Kasumigaura, Ibaraki, Japan
| | - Yasusei Kudo
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takeshi Oya
- Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
5
|
Kakimoto T, Hosokawa M, Ichimura-Shimizu M, Ogawa H, Miyakami Y, Sumida S, Tsuneyama K. Accumulation of α-synuclein in hepatocytes in nonalcoholic steatohepatitis and its usefulness in pathological diagnosis. Pathol Res Pract 2023; 247:154525. [PMID: 37209576 DOI: 10.1016/j.prp.2023.154525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUNDS Nonalcoholic steatohepatitis (NASH) is characterized by fat deposition, inflammation, and hepatocellular damage. The diagnosis of NASH is confirmed pathologically, and hepatocyte ballooning is an important finding for definite diagnosis. Recently, α-synuclein deposition in multiple organs was reported in Parkinson's disease. Since it was reported that α-synuclein is taken up by hepatocytes via connexin 32, the expression of α-synuclein in the liver in NASH is of interest. The accumulation of α-synuclein in the liver in NASH was investigated. Immunostaining for p62, ubiquitin, and α-synuclein was performed, and the usefulness of immunostaining in pathological diagnosis was examined. METHODS Liver biopsy tissue specimens from 20 patients were evaluated. Several antibodies against α-synuclein, as well as antibodies against connexin 32, p62, and ubiquitin were used for immunohistochemical analyses. Staining results were evaluated by several pathologists with varying experience, and the diagnostic accuracy of ballooning was compared. RESULTS Polyclonal α-synuclein antibody, not the monoclonal antibody, reacted with eosinophilic aggregates in ballooning cells. Expression of connexin 32 in degenerating cells was also demonstrated. Antibodies against p62 and ubiquitin also reacted with some of the ballooning cells. In the pathologists' evaluations, the highest interobserver agreement was obtained with hematoxylin and eosin (H&E)-stained slides, followed by slides immunostained for p62 and α-synuclein, and there were cases with different results between H&E staining and immunostaining CONCLUSION: These results indicate the incorporation of degenerated α-synuclein into ballooning cells, suggesting the involvement of α-synuclein in the pathogenesis of NASH. The combination of immunostaining including polyclonal α-synuclein may contribute to improving the diagnosis of NASH.
Collapse
Affiliation(s)
- Takumi Kakimoto
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan; Department of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Masato Hosokawa
- Department of Immunological and Molecular Pharmacology, Fukuoka University Faculty of Pharmaceutical Sciences, Fukuoka, Japan
| | - Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuko Miyakami
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan; Department of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Satoshi Sumida
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan; Department of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| |
Collapse
|
6
|
Dungubat E, Kusano H, Mori I, Tawara H, Sutoh M, Ohkura N, Takanashi M, Kuroda M, Harada N, Udo E, Souda M, Furusato B, Fukusato T, Takahashi Y. Age-dependent sex difference of non-alcoholic fatty liver disease in TSOD and db/db mice. PLoS One 2022; 17:e0278580. [PMID: 36516179 PMCID: PMC9750023 DOI: 10.1371/journal.pone.0278580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/19/2022] [Indexed: 12/15/2022] Open
Abstract
According to previous clinical studies, the prevalence of non-alcoholic fatty liver disease (NAFLD) is higher in men than women only during the reproductive age. Animal models of NAFLD that reflect sex differences in humans have not been established. In this study, we examined sex differences in the hepatic lesions of Tsumura Suzuki obese diabetes (TSOD) and db/db mice, which are representative genetic models of NAFLD. Male and female TSOD and db/db mice were fed with a normal diet and tap water ad libitum. Six male and female mice of each strain were sacrificed at the ages of 3 and 9 months, respectively, and serum biochemical, pathological, and molecular analyses were performed. Serum aspartate aminotransferase (AST) levels were significantly higher in male than female mice of both strains at the age of 3 months; however, at 9 months, significant sex differences were not observed. Similarly, alanine aminotransferase (ALT) levels were significantly higher in male mice than in female TSOD mice at the age of 3 months; however, at 9 months, significant sex differences were not observed. Image analysis of histological slides revealed that the frequency of the steatotic area was significantly higher in male than female db/db mice at the age of 3 months; however, significant sex differences were not observed at 9 months. The frequency of Sirius red-positive fibrotic area was significantly higher in male than female mice in both strains at the age of 3 months; however, significant sex differences were not observed at 9 months. Serum AST and ALT levels and hepatic steatosis and fibrosis in TSOD and db/db mice showed age-dependent sex differences consistent with those observed in human NAFLD. These mice may be suitable for studying sex differences of the disease.
Collapse
Affiliation(s)
- Erdenetsogt Dungubat
- Department of Pathology, School of Medicine, International University of Health and Welfare, Narita, Japan,Department of Pathology, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Hiroyuki Kusano
- Department of Pathology, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Ichiro Mori
- Department of Pathology, School of Medicine, International University of Health and Welfare, Narita, Japan
| | | | - Mitsuko Sutoh
- Institute for Animal Reproduction, Kasumigaura, Japan
| | - Naoki Ohkura
- Faculty of Pharma Sciences, Laboratory of Host Defence, Teikyo University, Tokyo, Japan
| | | | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Naoki Harada
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Osaka, Japan
| | - Emiko Udo
- Clinical Genomics Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Masakazu Souda
- Clinical Genomics Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Bungo Furusato
- Clinical Genomics Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Toshio Fukusato
- General Medical Education and Research Center, Teikyo University, Tokyo, Japan
| | - Yoshihisa Takahashi
- Department of Pathology, School of Medicine, International University of Health and Welfare, Narita, Japan,* E-mail:
| |
Collapse
|
7
|
Flessa CM, Nasiri-Ansari N, Kyrou I, Leca BM, Lianou M, Chatzigeorgiou A, Kaltsas G, Kassi E, Randeva HS. Genetic and Diet-Induced Animal Models for Non-Alcoholic Fatty Liver Disease (NAFLD) Research. Int J Mol Sci 2022; 23:ijms232415791. [PMID: 36555433 PMCID: PMC9780957 DOI: 10.3390/ijms232415791] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
A rapidly increasing incidence of non-alcoholic fatty liver disease (NAFLD) is noted worldwide due to the adoption of western-type lifestyles and eating habits. This makes the understanding of the molecular mechanisms that drive the pathogenesis of this chronic disease and the development of newly approved treatments of utmost necessity. Animal models are indispensable tools for achieving these ends. Although the ideal mouse model for human NAFLD does not exist yet, several models have arisen with the combination of dietary interventions, genetic manipulations and/or administration of chemical substances. Herein, we present the most common mouse models used in the research of NAFLD, either for the whole disease spectrum or for a particular disease stage (e.g., non-alcoholic steatohepatitis). We also discuss the advantages and disadvantages of each model, along with the challenges facing the researchers who aim to develop and use animal models for translational research in NAFLD. Based on these characteristics and the specific study aims/needs, researchers should select the most appropriate model with caution when translating results from animal to human.
Collapse
Affiliation(s)
- Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Research Institute for Health and Wellbeing, Coventry University, Coventry CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Bianca M. Leca
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Maria Lianou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Gregory Kaltsas
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Correspondence: (E.K.); (H.S.R.)
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Correspondence: (E.K.); (H.S.R.)
| |
Collapse
|
8
|
Spontaneous Occurrence of Various Types of Hepatocellular Adenoma in the Livers of Metabolic Syndrome-Associated Steatohepatitis Model TSOD Mice. Int J Mol Sci 2022; 23:ijms231911923. [PMID: 36233225 PMCID: PMC9570293 DOI: 10.3390/ijms231911923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022] Open
Abstract
Male Tsumura-Suzuki Obese Diabetes (TSOD) mice, a spontaneous metabolic syndrome model, develop non-alcoholic steatohepatitis and liver tumors by feeding on a standard mouse diet. Nearly 70% of liver tumors express glutamine synthetase (GS), a marker of hepatocellular carcinoma. In contrast, approximately 30% are GS-negative without prominent nuclear or structural atypia. In this study, we examined the characteristics of the GS-negative tumors of TSOD mice. Twenty male TSOD mice were sacrificed at 40 weeks and a total of 21 tumors were analyzed by HE staining and immunostaining of GS, liver fatty acid-binding protein (L-FABP), serum amyloid A (SAA), and beta-catenin. With immunostaining for GS, six (29%) tumors were negative. Based on the histological and immunohistological characteristics, six GS-negative tumors were classified into several subtypes of human hepatocellular adenoma (HCA). One large tumor showed generally similar findings to inflammatory HCA, but contained small atypical foci with GS staining and partial nuclear beta-catenin expression suggesting malignant transformation. GS-negative tumors of TSOD mice contained features similar to various subtypes of HCA. Different HCA subtypes occurring in the same liver have been reported in humans; however, the diversity of patient backgrounds limits the ability to conduct a detailed, multifaceted analysis. TSOD mice may share similar mechanisms of HCA development as in humans. It is timely to review the pathogenesis of HCA from both genetic and environmental perspectives, and it is expected that TSOD mice will make further contributions in this regard.
Collapse
|
9
|
Murotomi K, Tawara H, Sutoh M, Yasunaga M. Iron-accumulating splenocytes may exacerbate non-alcoholic steatohepatitis through the production of proinflammatory cytokines and reactive oxygen species. Exp Biol Med (Maywood) 2022; 247:848-855. [PMID: 35187967 PMCID: PMC9160938 DOI: 10.1177/15353702221077218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) results from non-alcoholic fatty liver disease (NAFLD) via multiple-parallel events, including hepatic triglyceride accumulation, oxidative stress, and inflammation. The complex interaction between the liver and multiple other organs is involved in NASH development. Although spleen-derived humoral factors can directly contribute to NAFLD/NASH onset via the portal vein, the status of the spleen in the early stage of NASH remains unknown. Here, our aim was to investigate whether splenocytes may exacerbate NASH via the generations of reactive oxygen species (ROS) and proinflammatory cytokines. Iron accumulation was observed in the spleen but not the liver, and the proportion of phagocytic macrophages increased in the spleen of Tsumura Suzuki Obese Diabetes (TSOD) mice showing histological characteristics of NASH in the early stage. The splenocytes generated moderate amounts of ROS and released high amounts of tumor necrosis factor (TNF)-α in response to lipopolysaccharide, indicating excessive inflammatory cytokine released by activated macrophages in iron-accumulating spleens. Our results suggest that iron-accumulating splenocytes can easily induce inflammation and contribute to exacerbate NASH via the portal vein. Thus, the regulation of iron metabolism in the spleen should be considered in the development of novel therapeutic targets against NASH.
Collapse
Affiliation(s)
- Kazutoshi Murotomi
- Biomedical Research Institute,
National Institute of Advanced Industrial Science and Technology (AIST),
Tsukuba 305-8566, Japan
| | - Hirosuke Tawara
- Institute for Animal
Reproduction, Kasumigaura 300-0134, Japan
| | - Mitsuko Sutoh
- Institute for Animal
Reproduction, Kasumigaura 300-0134, Japan
| | - Mayu Yasunaga
- Health and Medical Research
Institute, National Institute of Advanced Industrial Science and Technology
(AIST), Tsukuba 305-8566, Japan
| |
Collapse
|
10
|
Ichimura-Shimizu M, Kageyama T, Oya T, Ogawa H, Matsumoto M, Sumida S, Kakimoto T, Miyakami Y, Nagatomo R, Inoue K, Cheng C, Tsuneyama K. Verification of the Impact of Blood Glucose Level on Liver Carcinogenesis and the Efficacy of a Dietary Intervention in a Spontaneous Metabolic Syndrome Model. Int J Mol Sci 2021; 22:ijms222312844. [PMID: 34884650 PMCID: PMC8657638 DOI: 10.3390/ijms222312844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Metabolic syndrome (MS) is a risk factor for type 2 diabetes mellitus, vascular inflammation, atherosclerosis, and renal, liver, and heart diseases. Non-alcoholic steatohepatitis (NASH) is a progressive representative liver disease and may lead to the irreversible calamities of cirrhosis and hepatocellular carcinoma. Metabolic disorders such as hyperglycemia have been broadly reported to be related to hepatocarcinogenesis in NASH; however, direct evidence of a link between hyperglycemia and carcinogenesis is still lacking. Tsumura Suzuki Obese Diabetic (TSOD) mice spontaneously develop metabolic syndrome, including obesity, insulin resistance, and NASH-like liver phenotype, and eventually develop hepatocellular carcinomas. TSOD mice provide a spontaneous human MS-like model, even with significant individual variations. In this study, we monitored mice in terms of their changes in blood glucose levels, body weights, and pancreatic and liver lesions over time. As a result, liver carcinogenesis was delayed in non-hyperglycemic TSOD mice compared to hyperglycemic mice. Moreover, at the termination point of 40 weeks, liver tumors appeared in 18 of 24 (75%) hyperglycemic TSOD mice; in contrast, they only appeared in 5 of 24 (20.8%) non-hyperglycemic mice. Next, we investigated three kinds of oligosaccharide that could lower blood glucose levels in hyperglycemic TSOD mice. We monitored the levels of blood and urinary glucose and assessed pancreatic lesions among the experimental groups. As expected, significantly lower levels of blood and urinary glucose and smaller deletions of Langerhans cells were found in TSOD mice fed with milk-derived oligosaccharides (galactooligosaccharides and lactosucrose). At the age of 24 weeks, mild steatohepatitis was found in the liver but there was no evidence of liver carcinogenesis. Steatosis in the liver was alleviated in the milk-derived oligosaccharide-administered group. Taken together, suppressing the increase in blood glucose level from a young age prevented susceptible individuals from diabetes and the onset of NAFLD/NASH, as well as carcinogenesis. Milk-derived oligosaccharides showed a lowering effect on blood glucose levels, which may be expected to prevent liver carcinogenesis.
Collapse
Affiliation(s)
- Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (M.I.-S.); (T.K.); (H.O.); (S.S.); (T.K.); (Y.M.)
| | - Takeshi Kageyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (M.I.-S.); (T.K.); (H.O.); (S.S.); (T.K.); (Y.M.)
| | - Takeshi Oya
- Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (T.O.); (M.M.)
| | - Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (M.I.-S.); (T.K.); (H.O.); (S.S.); (T.K.); (Y.M.)
| | - Minoru Matsumoto
- Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (T.O.); (M.M.)
| | - Satoshi Sumida
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (M.I.-S.); (T.K.); (H.O.); (S.S.); (T.K.); (Y.M.)
| | - Takumi Kakimoto
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (M.I.-S.); (T.K.); (H.O.); (S.S.); (T.K.); (Y.M.)
| | - Yuko Miyakami
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (M.I.-S.); (T.K.); (H.O.); (S.S.); (T.K.); (Y.M.)
| | - Ryosuke Nagatomo
- Laboratory of Clinical and Analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; (R.N.); (K.I.)
| | - Koichi Inoue
- Laboratory of Clinical and Analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; (R.N.); (K.I.)
| | - Chunmei Cheng
- Pharmacology and Histopathology, Novo Nordisk Research Centre China, Beijing 102206, China;
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (M.I.-S.); (T.K.); (H.O.); (S.S.); (T.K.); (Y.M.)
- Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; (T.O.); (M.M.)
- Correspondence: ; Tel.: +81-88-633-7065; Fax: +81-88-633-7067
| |
Collapse
|
11
|
Ichimura-Shimizu M, Omagari K, Yamashita M, Tsuneyama K. Development of a novel mouse model of diet-induced nonalcoholic steatohepatitis-related progressive bridging fibrosis. Biosci Biotechnol Biochem 2021; 85:941-947. [PMID: 33620426 DOI: 10.1093/bbb/zbaa107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) progresses to liver fibrosis and cirrhosis. Existing mouse models of NASH rarely develop diet-induced severe fibrosis. We aimed to establish a dietary model of NASH with rapid progression to fibrosis. Six-week-old male Tsumura-Suzuki obese diabetes (TSOD) mice (a model of spontaneous metabolic syndrome) and corresponding control Tsumura-Suzuki nonobese (TSNO) mice were fed a novel diet high in fat, cholesterol, and cholate (iHFC). Histologic steatohepatitis, including steatosis, inflammation, and fibrosis, were observed in both TSNO and TSOD iHFC diet-fed mice at 20 weeks of age. As compared with TSOD mice, TSNO mice developed much more severe fibrosis and reached stage 3 of bridging fibrosis within 14 weeks under the iHFC diet feeding. Perivenular/perisinusoidal pattern of fibrosis in TSNO mice resembled human NASH. Our model of NASH with advanced fibrosis by simple diet offers many advantages useful in studying the mechanism of liver fibrosis and preclinical drug testing.
Collapse
Affiliation(s)
- Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, Tokushima, Japan
| | - Katsuhisa Omagari
- Division of Nutritional Science, Graduate School of Human Health Science, University of Nagasaki, Nagasaki, Japan
| | - Michiko Yamashita
- Department of Analytical Pathology, Tokushima University Graduate School, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
12
|
Kobayashi T, Ichimura-Shimizu M, Oya T, Ogawa H, Matsumoto M, Morimoto Y, Sumida S, Kakimoto T, Yamashita M, Sutoh M, Toyohara S, Hokao R, Cheng C, Tsuneyama K. Neonatal streptozotocin treatment rapidly causes different subtype of hepatocellular carcinoma without persistent hyperglycemia in 4CS mice fed on a normal diet. Pathol Res Pract 2021; 225:153559. [PMID: 34325313 DOI: 10.1016/j.prp.2021.153559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Although diabetes mellitus (DM) is a well-known risk factor for hepatocellular carcinoma (HCC), the underlying mechanisms have not yet to be defined. We previously reported that DIAR mice fed with standard murine diet developed type 1 diabetes and HCC at age of 16 weeks old with a neonatal streptozotocin treatment (n-STZ). Because DIAR mice did not manifest obesity nor develop steatohepatitis, hyperglycemia with streptozotocin trigger or streptozotocin alone might turn on the hepato-carcinogenesis. An insulin-recruitment to DIAR-nSTZ mice showed an increased frequency of HCC during the first 12 weeks of age, although the diabetic indications notably improved. To elucidate the role of hyperglycemia in hepato-carcinogenesis, we performed a head-to-head comparative study by using 4CS mice and DIAR mice with n-STZ treatment. Newborn 4CS mice and DIAR mice were divided into STZ treated group and control group. The blood glucose levels of DIAR-nSTZ mice increased at age of eight weeks, while that of 4CS-nSTZ mice were maintained in the normal range. At eight weeks old, three out of five DIAR-nSTZ mice (60%) and one out of ten 4CS-nSTZ mice (10%) developed multiple liver tumors. At age of 12 weeks old, all eight of DIAR-nSTZ mice (100%) and two of 10 4CS-nSTZ mice (20%) developed multiple liver tumors. At 16 weeks old, all animals of DIAR-nSTZ and 4CS-nSTZ mice occurred liver tumors. DIAR-nSTZ showed hyperglycemia and HCC, and 4CS-nSTZ developed HCC without hyperglycemia. These results were interpreted that the onset of HCC maybe not related to the presence or absence of hyperglycemia but nSTZ treatment. On the other hand, since the carcinogenesis of 4CS-nSTZ is delayed compared to DIAR-nSTZ, hyperglycemia may play a role in the progression of carcinogenesis. Histologically, the liver tumor appeared irregularly trabecular arrangements of hepatocytes with various degrees of nuclear atypia. By immunohistochemical analyses, all liver tumors showed positive staining of glutamine synthetase (GS), an established human HCC marker. The expression pattern of GS was divided into a strong diffuse pattern and weak patchy pattern, respectively. The liver tumor showing the weak GS-patchy pattern expressed biliary/stem markers, EpCAM, and SALL4, partially. Because 4CS-nSTZ mice did not show any metabolic complications such as gaining body weight or high blood glucose level, it is a unique animal model with a simple condition to investigate hepatic carcinogenesis by excluding other factors.
Collapse
Affiliation(s)
- Tomoko Kobayashi
- Department of Pathology and Laboratory Medicine and Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan; Tokushima University Hospital, Division of Pathology, 2-50-1, Kuramoto-Cho, Tokushima 770-8503, Japan.
| | - Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine and Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.
| | - Takeshi Oya
- Molecular Pathology and Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.
| | - Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine and Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.
| | - Minoru Matsumoto
- Molecular Pathology and Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.
| | - Yuki Morimoto
- Department of Pathology and Laboratory Medicine and Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.
| | - Satoshi Sumida
- Department of Pathology and Laboratory Medicine and Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.
| | - Takumi Kakimoto
- Department of Pathology and Laboratory Medicine and Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.
| | - Michiko Yamashita
- Pathological Science and Technology and Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.
| | - Mitsuko Sutoh
- Institute for Animal Reproduction, 1103 Fukaya, Kasumigaura, Ibaraki 300-0134, Japan.
| | - Shunji Toyohara
- Institute for Animal Reproduction, 1103 Fukaya, Kasumigaura, Ibaraki 300-0134, Japan.
| | - Ryoji Hokao
- Institute for Animal Reproduction, 1103 Fukaya, Kasumigaura, Ibaraki 300-0134, Japan.
| | - Chunmei Cheng
- Pharmacology and Histopathology, Novo Nordisk Research Centre, China.
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine and Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan; Molecular Pathology and Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.
| |
Collapse
|
13
|
Lamadrid P, Alonso-Peña M, San Segundo D, Arias-Loste M, Crespo J, Lopez-Hoyos M. Innate and Adaptive Immunity Alterations in Metabolic Associated Fatty Liver Disease and Its Implication in COVID-19 Severity. Front Immunol 2021; 12:651728. [PMID: 33859644 PMCID: PMC8042647 DOI: 10.3389/fimmu.2021.651728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
The coronavirus infectious disease 2019 (COVID-19) pandemic has hit the world, affecting health, medical care, economies and our society as a whole. Furthermore, COVID-19 pandemic joins the increasing prevalence of metabolic syndrome in western countries. Patients suffering from obesity, type II diabetes mellitus, cardiac involvement and metabolic associated fatty liver disease (MAFLD) have enhanced risk of suffering severe COVID-19 and mortality. Importantly, up to 25% of the population in western countries is susceptible of suffering from both MAFLD and COVID-19, while none approved treatment is currently available for any of them. Moreover, it is well known that exacerbated innate immune responses are key in the development of the most severe stages of MAFLD and COVID-19. In this review, we focus on the role of the immune system in the establishment and progression of MAFLD and discuss its potential implication in the development of severe COVID-19 in MAFLD patients. As a result, we hope to clarify their common pathology, but also uncover new potential therapeutic targets and prognostic biomarkers for further research.
Collapse
Affiliation(s)
- Patricia Lamadrid
- Transplant and Autoimmunity Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain
| | - Marta Alonso-Peña
- Clinical and Translational Research in Digestive Pathology Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain
| | - David San Segundo
- Transplant and Autoimmunity Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Immunology Department, Marques de Valdecilla University Hospital, Santander, Spain
| | - Mayte Arias-Loste
- Clinical and Translational Research in Digestive Pathology Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Gastroenterology and Hepatology Department, Marques de Valdecilla University Hospital, Santander, Spain
| | - Javier Crespo
- Clinical and Translational Research in Digestive Pathology Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Gastroenterology and Hepatology Department, Marques de Valdecilla University Hospital, Santander, Spain
| | - Marcos Lopez-Hoyos
- Transplant and Autoimmunity Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Immunology Department, Marques de Valdecilla University Hospital, Santander, Spain
| |
Collapse
|
14
|
Kakehashi A, Chariyakornkul A, Suzuki S, Khuanphram N, Tatsumi K, Yamano S, Fujioka M, Gi M, Wongpoomchai R, Wanibuchi H. Cache Domain Containing 1 Is a Novel Marker of Non-Alcoholic Steatohepatitis-Associated Hepatocarcinogenesis. Cancers (Basel) 2021; 13:cancers13061216. [PMID: 33802238 PMCID: PMC8001421 DOI: 10.3390/cancers13061216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 01/31/2023] Open
Abstract
Simple Summary The aim of the present study was to discover novel early molecular biomarkers of liver neoplasms which arise in non-alcoholic steatohepatitis (NASH) Stelic Animal Model (STAM) mice. Significant increase of lipid deposits, hepatocyte ballooning, fibrosis, and incidences and multiplicities of hepatocellular adenomas and carcinomas were detected in the livers of 18-week-old STAM mice. From the results of proteome analysis of STAM mice hepatocellular carcinomas, significant elevation of a novel protein, cache domain-containing 1 (CACHD1) was found. Furthermore, we observed CACHD1-positive foci in STAM mice livers, which number, area, and cell proliferation index within the foci were significantly elevated. Results of immunohistochemical and in vitro functional analysis indicated that CACHD1 may become a useful early biomarker and potential molecular target in NASH-associated hepatocarcinogenesis, which is involved in control of cell proliferation, autophagy and apoptosis. Abstract In the present study, potential molecular biomarkers of NASH hepatocarcinogenesis were investigated using the STAM mice NASH model, characterized by impaired insulin secretion and development of insulin resistance. In this model, 2-days-old C57BL/6N mice were subjected to a single subcutaneous (s.c.) injection of 200 μg streptozotocin (STZ) to induce diabetes mellitus (DM). Four weeks later, mice were administered high-fat diet (HFD) HFD-60 for 14 weeks (STAM group), or fed control diet (STZ group). Eighteen-week-old mice were euthanized to allow macroscopic, microscopic, histopathological, immunohistochemical and proteome analyses. The administration of HFD to STZ-treated mice induced significant fat accumulation and fibrosis development in the liver, which progressed to NASH, and rise of hepatocellular adenomas (HCAs) and carcinomas (HCCs). In 18-week-old animals, a significant increase in the incidence and multiplicity of HCAs and HCCs was found. On the basis of results of proteome analysis of STAM mice HCCs, a novel highly elevated protein in HCCs, cache domain-containing 1 (CACHD1), was chosen as a potential NASH-HCC biomarker candidate. Immunohistochemical assessment demonstrated that STAM mice liver basophilic, eosinophilic and mixed-type altered foci, HCAs and HCCs were strongly positive for CACHD1. The number and area of CACHD1-positive foci, and cell proliferation index in the area of foci in mice of the STAM group were significantly increased compared to that of STZ group. In vitro siRNA knockdown of CACHD1 in human Huh7 and HepG2 liver cancer cell lines resulted in significant inhibition of cell survival and proliferation. Analysis of the proteome of knockdown cells indicated that apoptosis and autophagy processes could be activated. From these results, CACHD1 is an early NASH-associated biomarker of liver preneoplastic and neoplastic lesions, and a potential target protein in DM/NASH-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Anna Kakehashi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Abeno-ku 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (S.S.); (K.T.); (S.Y.); (M.F.); (M.G.); (H.W.)
- Correspondence: ; Tel.: +81-66-645-3737
| | - Arpamas Chariyakornkul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, 110 Inthawarorot Rd., Sri Phum, Muang, Chiang Mai 50200, Thailand; (A.C.); (N.K.); (R.W.)
| | - Shugo Suzuki
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Abeno-ku 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (S.S.); (K.T.); (S.Y.); (M.F.); (M.G.); (H.W.)
| | - Napaporn Khuanphram
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, 110 Inthawarorot Rd., Sri Phum, Muang, Chiang Mai 50200, Thailand; (A.C.); (N.K.); (R.W.)
| | - Kumiko Tatsumi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Abeno-ku 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (S.S.); (K.T.); (S.Y.); (M.F.); (M.G.); (H.W.)
| | - Shotaro Yamano
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Abeno-ku 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (S.S.); (K.T.); (S.Y.); (M.F.); (M.G.); (H.W.)
| | - Masaki Fujioka
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Abeno-ku 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (S.S.); (K.T.); (S.Y.); (M.F.); (M.G.); (H.W.)
| | - Min Gi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Abeno-ku 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (S.S.); (K.T.); (S.Y.); (M.F.); (M.G.); (H.W.)
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, 110 Inthawarorot Rd., Sri Phum, Muang, Chiang Mai 50200, Thailand; (A.C.); (N.K.); (R.W.)
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Abeno-ku 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (S.S.); (K.T.); (S.Y.); (M.F.); (M.G.); (H.W.)
| |
Collapse
|
15
|
Ferreira MA, Azevedo H, Mascarello A, Segretti ND, Russo E, Russo V, Guimarães CRW. Discovery of ACH-000143: A Novel Potent and Peripherally Preferred Melatonin Receptor Agonist that Reduces Liver Triglycerides and Steatosis in Diet-Induced Obese Rats. J Med Chem 2021; 64:1904-1929. [PMID: 33626870 DOI: 10.1021/acs.jmedchem.0c00627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The modulation of melatonin signaling in peripheral tissues holds promise for treating metabolic diseases like obesity, diabetes, and nonalcoholic steatohepatitis. Here, several benzimidazole derivatives have been identified as novel agonists of the melatonin receptors MT1 and MT2. The lead compounds 10b, 15a, and 19a demonstrated subnanomolar potency at MT1/MT2 receptors, high oral bioavailability in rodents, peripherally preferred exposure, and excellent selectivity in a broad panel of targets. Two-month oral administration of 10b in high-fat diet rats led to a reduction in body weight gain similar to dapagliflozin with superior results on hepatic steatosis and triglyceride levels. An early toxicological assessment indicated that 10b (also codified as ACH-000143) was devoid of hERG binding, genotoxicity, and behavioral alterations at doses up to 100 mg/kg p.o., supporting further investigation of this compound as a drug candidate.
Collapse
Affiliation(s)
| | - Hatylas Azevedo
- Aché Laboratórios Farmacêuticos, Guarulhos, São Paulo 07034-904, Brazil
| | | | | | - Elisa Russo
- Zirkon Ind. Com de Insumos Químicos, Itapira, São Paulo 13977-105, Brazil
| | - Valter Russo
- Zirkon Ind. Com de Insumos Químicos, Itapira, São Paulo 13977-105, Brazil
| | | |
Collapse
|
16
|
Koizumi K, Oku M, Hayashi S, Inujima A, Shibahara N, Chen L, Igarashi Y, Tobe K, Saito S, Kadowaki M, Aihara K. Suppression of Dynamical Network Biomarker Signals at the Predisease State ( Mibyou) before Metabolic Syndrome in Mice by a Traditional Japanese Medicine (Kampo Formula) Bofutsushosan. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:9129134. [PMID: 32831883 PMCID: PMC7424500 DOI: 10.1155/2020/9129134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022]
Abstract
Due to the increasing incidence of metabolic syndrome, the development of new therapeutic strategies is urgently required. One promising approach is to focus on the predisease state (so-called Mibyou in traditional Japanese medicine) before metabolic syndrome as a preemptive medical target. We recently succeeded in detecting a predisease state before metabolic syndrome using a mathematical theory called the dynamical network biomarker (DNB) theory. The detected predisease state was characterized by 147 DNB genes among a total of 24,217 genes in TSOD (Tsumura-Suzuki Obese Diabetes) mice, a well-accepted model of metabolic syndrome, at 5 weeks of age. The timing of the predisease state was much earlier than the onset of metabolic syndrome in TSOD mice reported to be at approximately 8-12 weeks of age. In the present study, we investigated whether the predisease state in TSOD mice can be inhibited by the oral administration of a Kampo formula, bofutsushosan (BTS), which is usually used to treat obese patients with metabolic syndrome in Japan, from 3 to 7 weeks of age. We found the comprehensive suppression of the early warning signals of the DNB genes by BTS at 5 weeks of age and later. Specifically, the standard deviations of 134 genes among the 147 DNB genes decreased at 5 weeks of age as compared to the nontreatment control group, and 80 of them showed more than 50% reduction. In addition, at 7 weeks of age, the body weight and blood glucose level were significantly lower in the BTS-treated group than in the nontreatment control group. The results of our study suggest a novel mechanism of BTS; it suppressed fluctuations of the DNB genes at the predisease state before metabolic syndrome and thus prevented the subsequent transition to metabolic syndrome. In conclusion, this study demonstrated the preventive and preemptive effects of a Kampo formula on Mibyou before metabolic syndrome for the first time based on scientific evaluation.
Collapse
Affiliation(s)
- Keiichi Koizumi
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, Japan
- Laboratory of Drug Discovery and Development for Pre-disease, Section of Host Defences, Division of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Makito Oku
- Division of Chemo-Bioinformatics, Institute of Natural Medicine, University of Toyama, Toyama, Japan
- Laboratory of Chemo-Bioinformatics, Section of Host Defences, Division of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Shusaku Hayashi
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan
- Laboratory of Gastrointestinal Disorder, Section of Host Defences, Division of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Akiko Inujima
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, Japan
- Laboratory of Drug Discovery and Development for Pre-disease, Section of Host Defences, Division of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Naotoshi Shibahara
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Luonan Chen
- CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Yoshiko Igarashi
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | | | - Makoto Kadowaki
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Kazuyuki Aihara
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Preemptive Study, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
NAFLD Preclinical Models: More than a Handful, Less of a Concern? Biomedicines 2020; 8:biomedicines8020028. [PMID: 32046285 PMCID: PMC7167756 DOI: 10.3390/biomedicines8020028] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver diseases ranging from simple steatosis to non-alcoholic steatohepatitis, fibrosis, cirrhosis, and/or hepatocellular carcinoma. Due to its increasing prevalence, NAFLD is currently a major public health concern. Although a wide variety of preclinical models have contributed to better understanding the pathophysiology of NAFLD, it is not always obvious which model is best suitable for addressing a specific research question. This review provides insights into currently existing models, mainly focusing on murine models, which is of great importance to aid in the identification of novel therapeutic options for human NAFLD.
Collapse
|
18
|
Koizumi K, Oku M, Hayashi S, Inujima A, Shibahara N, Chen L, Igarashi Y, Tobe K, Saito S, Kadowaki M, Aihara K. Identifying pre-disease signals before metabolic syndrome in mice by dynamical network biomarkers. Sci Rep 2019; 9:8767. [PMID: 31235708 PMCID: PMC6591167 DOI: 10.1038/s41598-019-45119-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
The establishment of new therapeutic strategies for metabolic syndrome is urgently needed because metabolic syndrome, which is characterized by several disorders, such as hypertension, increases the risk of lifestyle-related diseases. One approach is to focus on the pre-disease state, a state with high susceptibility before the disease onset, which is considered as the best period for preventive treatment. In order to detect the pre-disease state, we recently proposed mathematical theory called the dynamical network biomarker (DNB) theory based on the critical transition paradigm. Here, we investigated time-course gene expression profiles of a mouse model of metabolic syndrome using 64 whole-genome microarrays based on the DNB theory, and showed the detection of a pre-disease state before metabolic syndrome defined by characteristic behavior of 147 DNB genes. The results of our study demonstrating the existence of a notable pre-disease state before metabolic syndrome may help to design novel and effective therapeutic strategies for preventing metabolic syndrome, enabling just-in-time preemptive interventions.
Collapse
Affiliation(s)
- Keiichi Koizumi
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan.
| | - Makito Oku
- Division of Chemo-Bioinformatics, Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Shusaku Hayashi
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Akiko Inujima
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Naotoshi Shibahara
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Luonan Chen
- CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan
| | - Yoshiko Igarashi
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Shigeru Saito
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Makoto Kadowaki
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Kazuyuki Aihara
- Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
19
|
Iida A, Kuranuki S, Yamamoto R, Uchida M, Ohta M, Ichimura M, Tsuneyama K, Masaki T, Seike M, Nakamura T. Analysis of amino acid profiles of blood over time and biomarkers associated with non-alcoholic steatohepatitis in STAM mice. Exp Anim 2019; 68:417-428. [PMID: 31155606 PMCID: PMC6842803 DOI: 10.1538/expanim.18-0152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The changes in free amino acid (AA) levels in blood during the progression from
non-alcoholic steatohepatitis (NASH) to hepatocellular carcinoma (HCC) are unclear. We
investigated serum AA levels, along with biochemical and histological events, in a mouse
model of NASH. We induced NASH in male C57BL/6J mice with a streptozotocin injection and
high-fat diet after 4 weeks of age (STAM group). We chronologically (6, 8, 10, 12, and 16
weeks, n=4–12 mice/group) evaluated the progression from steatohepatitis to HCC by
biochemical and histological analyses. The serum AA levels were determined using an AA
analyzer. Serum aspartate aminotransferase and alanine aminotransferase levels were higher
in the STAM group than in the normal group (non-NASH-induced mice). Histological analysis
revealed that STAM mice had fatty liver, NASH, and fibrosis at 6, 8, and 10 weeks,
respectively. Moreover, the mice exhibited fibrosis and HCC at 16 weeks. The serum
branched-chain AA levels were higher in the STAM group than in the normal group,
especially at 8 and 10 weeks. The Fischer ratio decreased at 16 weeks in the STAM group,
with increasing aromatic AA levels. These results suggested that this model sequentially
depicts the development of fatty liver, NASH, cirrhosis, HCC, and AA metabolism disorders
within a short experimental period. Additionally, serum amyloid A was suggested to be a
useful inflammation biomarker associated with NASH. We believe that the STAM model will be
useful for studying AA metabolism and/or pharmacological effects in NASH.
Collapse
Affiliation(s)
- Ayaka Iida
- School of Nutrition and Dietetics, Faculty of Health and Social Services, Kanagawa University of Human Services, 1-10-1 Heisei-cho, Yokosuka, Kanagawa 238-8522, Japan.,Graduate School of Health and Environmental Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka 813-8529, Japan
| | - Sachi Kuranuki
- School of Nutrition and Dietetics, Faculty of Health and Social Services, Kanagawa University of Human Services, 1-10-1 Heisei-cho, Yokosuka, Kanagawa 238-8522, Japan
| | - Ryoko Yamamoto
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8560, Japan
| | - Masaya Uchida
- Department of Creative Engineering, National Institute of Technology, Ariake College, 150 Higashi hagio-machi, Omuta, Fukuoka 836-8585, Japan
| | - Masanori Ohta
- Graduate School of Health and Environmental Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka 813-8529, Japan
| | - Mayuko Ichimura
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Takayuki Masaki
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Masataka Seike
- Department of Gastroenterology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Tsuyoshi Nakamura
- Graduate School of Health and Environmental Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka 813-8529, Japan
| |
Collapse
|
20
|
Murotomi K, Arai S, Suyama A, Harashima A, Nakajima Y. Trehalose attenuates development of nonalcoholic steatohepatitis associated with type 2 diabetes in TSOD mouse. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
21
|
Schumacher-Petersen C, Christoffersen BØ, Kirk RK, Ludvigsen TP, Zois NE, Pedersen HD, Vyberg M, Olsen LH. Experimental non-alcoholic steatohepatitis in Göttingen Minipigs: consequences of high fat-fructose-cholesterol diet and diabetes. J Transl Med 2019; 17:110. [PMID: 30943987 PMCID: PMC6448276 DOI: 10.1186/s12967-019-1854-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/25/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in humans, and ranges from steatosis to non-alcoholic steatohepatitis (NASH), the latter with risk of progression to cirrhosis. The Göttingen Minipig has been used in studies of obesity and diabetes, but liver changes have not been described. The aim of this study was to characterize hepatic changes in Göttingen Minipigs with or without diabetes, fed a diet high in fat, fructose, and cholesterol to see if liver alterations resemble features of human NAFLD/NASH. METHODS Fifty-four male castrated minipigs (age 6 to 7 months) were distributed into four groups and diet-fed for 13 months. Groups were: lean controls fed standard diet (SD, n = 8), a group fed high fat/fructose/cholesterol diet (FFC, n = 16), a group fed high fat/fructose/cholesterol diet but changed to standard diet after 7 months (diet normalization, FFC/SD, n = 16), and a streptozotocin-induced diabetic group fed high fat/fructose/cholesterol diet (FFCDIA, n = 14). At termination, blood samples for analyses of circulating biomarkers and liver tissue for histopathological assessment and analyses of lipids and glycogen content were collected. RESULTS In comparison with SD and FFC/SD, FFC and FFCDIA pigs developed hepatomegaly with increased content of cholesterol, whereas no difference in triglyceride content was found. FFC and FFCDIA groups had increased values of circulating total cholesterol and triglycerides and the hepatic circulating markers alkaline phosphatase and glutamate dehydrogenase. In the histopathological evaluation, fibrosis (mainly located periportally) and inflammation along with cytoplasmic alterations (characterized by hepatocytes with pale, granulated cytoplasm) were found in FFC and FFCDIA groups compared to SD and FFC/SD. Interestingly, FFC/SD also had fibrosis, a feature not seen in SD. Only two FFC and three FFCDIA pigs had > 5% steatosis, and no hepatocellular ballooning or Mallory-Denk bodies were found in any of the pigs. CONCLUSIONS Fibrosis, inflammation and cytoplasmic alterations were characteristic features in the livers of FCC and FFCDIA pigs. Overall, diabetes did not exacerbate the hepatic changes compared to FFC. The limited presence of the key human-relevant pathological hepatic findings of steatosis and hepatocellular ballooning and the variation in the model, limits its use in preclinical research without further optimisation.
Collapse
Affiliation(s)
- Camilla Schumacher-Petersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 2., 1870, Frederiksberg, Denmark
| | | | - Rikke Kaae Kirk
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Trine Pagh Ludvigsen
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Nora Elisabeth Zois
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark.,In Vivo Pharmacology, Gubra ApS, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | - Henrik Duelund Pedersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 2., 1870, Frederiksberg, Denmark.,Ellegaard Göttingen Minipigs A/S, Sorø Landevej 302, 4261, Dalmose, Denmark
| | - Mogens Vyberg
- Institute of Pathology, Aalborg University Hospital, Ladegaardsgade 3, 9000, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Soendre Skovvej 15, 9000, Aalborg, Denmark
| | - Lisbeth Høier Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 2., 1870, Frederiksberg, Denmark.
| |
Collapse
|
22
|
Sun G, Jackson CV, Zimmerman K, Zhang LK, Finnearty CM, Sandusky GE, Zhang G, Peterson RG, Wang YXJ. The FATZO mouse, a next generation model of type 2 diabetes, develops NAFLD and NASH when fed a Western diet supplemented with fructose. BMC Gastroenterol 2019; 19:41. [PMID: 30885145 PMCID: PMC6421686 DOI: 10.1186/s12876-019-0958-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 02/27/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Metabolic disorders such as insulin resistance, obesity, and hyperglycemia are prominent risk factors for the development of non-alcoholic fatty liver disease (NAFLD)/steatohepatitis (NASH). Dietary rodent models employ high fat, high cholesterol, high fructose, methionine/choline deficient diets or combinations of these to induce NAFLD/NASH. The FATZO mice spontaneously develop the above metabolic disorders and type 2 diabetes (T2D) when fed with a normal chow diet. The aim of the present study was to determine if FATZO mice fed a high fat and fructose diet would exacerbate the progression of NAFLD/NASH. METHODS Male FATZO mice at the age of 8 weeks were fed with high fat Western diet (D12079B) supplemented with 5% fructose in the drinking water (WDF) for the duration of 20 weeks. The body weight, whole body fat content, serum lipid profiles and liver function markers were examined monthly along with the assessment of liver histology for the development of NASH. In addition, the effects of obeticholic acid (OCA, 30 mg/kg, QD) on improvement of NASH progression in the model were evaluated. RESULTS Compared to normal control diet (CD), FATZO mice fed with WDF were heavier with higher body fat measured by qNMR, hypercholesterolemia and had progressive elevations in AST (~ 6 fold), ALT (~ 6 fold), liver over body weight (~ 2 fold) and liver triglyceride (TG) content (1.4-2.9 fold). Histological examination displayed evidence of NAFLD/NASH, including hepatic steatosis, lobular inflammation, ballooning and fibrosis in FATZO mice fed WDF. Treatment with OCA for 15 weeks in FATZO mice on WDF significantly alleviated hypercholesterolemia and elevation of AST/ALT, reduced liver weight and liver TG contents, attenuated hepatic ballooning, but did not affect body weight and blood TG levels. CONCLUSION WDF fed FATZO mice represent a new model for the study of progressive NAFLD/NASH with concurrent metabolic dysregulation.
Collapse
Affiliation(s)
- Gao Sun
- Crown Bioscience Taicang Inc, Taicang, China
| | | | | | | | - Courtney M Finnearty
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - George E Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | |
Collapse
|
23
|
Xu YXZ, Mishra S. Obesity-Linked Cancers: Current Knowledge, Challenges and Limitations in Mechanistic Studies and Rodent Models. Cancers (Basel) 2018; 10:E523. [PMID: 30567335 PMCID: PMC6316427 DOI: 10.3390/cancers10120523] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/09/2018] [Accepted: 12/15/2018] [Indexed: 02/07/2023] Open
Abstract
The worldwide prevalence of obesity has doubled during the last 50 years, and according to the World Obesity Federation, one third of the people on Earth will be obese by the year 2025. Obesity is described as a chronic, relapsing and multifactorial disease that causes metabolic, biomechanical, and psychosocial health consequences. Growing evidence suggests that obesity is a risk factor for multiple cancer types and rivals smoking as the leading preventable cause for cancer incidence and mortality. The epidemic of obesity will likely generate a new wave of obesity-related cancers with high aggressiveness and shortened latency. Observational studies have shown that from cancer risk to disease prognosis, an individual with obesity is consistently ranked worse compared to their lean counterpart. Mechanistic studies identified similar sets of abnormalities under obesity that may lead to cancer development, including ectopic fat storage, altered adipokine profiles, hormone fluctuations and meta-inflammation, but could not explain how these common mechanisms produce over 13 different cancer types. A major hurdle in the mechanistic underpinning of obesity-related cancer is the lack of suitable pre-clinical models that spontaneously develop obesity-linked cancers like humans. Current approaches and animal models fall short when discerning the confounders that often coexist in obesity. In this mini-review, we will briefly survey advances in the different obesity-linked cancers and discuss the challenges and limitations in the rodent models employed to study their relationship. We will also provide our perspectives on the future of obesity-linked cancer research.
Collapse
Affiliation(s)
- Yang Xin Zi Xu
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Suresh Mishra
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Department of Internal Medicine, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
24
|
mTOR Activation in Liver Tumors Is Associated with Metabolic Syndrome and Non-Alcoholic Steatohepatitis in Both Mouse Models and Humans. Cancers (Basel) 2018; 10:cancers10120465. [PMID: 30469530 PMCID: PMC6315895 DOI: 10.3390/cancers10120465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/12/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) can cause liver fibrosis and cirrhosis, with final progression to hepatocellular carcinoma (HCC) in some cases. Various factors have been suggested to be involved in the development of NASH. Considering the many possible contributing factors, we postulated that mechanisms of progression from NASH to HCC could differ depending on the risk factors. In the present study, we applied two mouse models of NASH⁻HCC and performed histopathological and proteome analyses of mouse liver tumors. Furthermore, to compare the mechanisms of NASH⁻HCC progression in mice and humans, we investigated HCCs in humans with a background of metabolic syndrome and NASH, as well as HCCs associated with hepatitis virus infection by immunohistochemistry. It was demonstrated that upstream regulators associated with the mammalian target of rapamycin (mTOR) pathway were altered in liver tumors of mice with metabolic syndrome characteristics (TSOD mice) using proteome analysis. Immunohistochemical analysis showed that mTOR was characteristically phosphorylated in liver tumors of TSOD mice and HCCs from metabolic syndrome cases in humans. These results indicated that the mTOR pathway is characteristically activated in liver tumors with metabolic syndrome and NASH, unlike liver tumors with other etiologies.
Collapse
|
25
|
Effect of coffee or coffee components on gut microbiome and short-chain fatty acids in a mouse model of metabolic syndrome. Sci Rep 2018; 8:16173. [PMID: 30385796 PMCID: PMC6212590 DOI: 10.1038/s41598-018-34571-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023] Open
Abstract
We previously showed that male Tsumura Suzuki obese diabetes (TSOD) mice, a spontaneous mouse model of metabolic syndrome, manifested gut dysbiosis and subsequent disruption of the type and quantity of plasma short-chain fatty acids (SCFAs), and daily coffee intake prevented nonalcoholic steatohepatitis in this mouse model. Here, we present a preliminary study on whether coffee and its major components, caffeine and chlorogenic acid, would affect the gut dysbiosis and the disrupted plasma SCFA profile of TSOD mice, which could lead to improvement in the liver pathology of these mice. Three mice per group were used. Daily intake of coffee or its components for 16 wk prevented liver lobular inflammation without improving obesity in TSOD mice. Coffee and its components did not repair the altered levels of Gram-positive and Gram-negative bacteria and an increased abundance of Firmicutes in TSOD mice but rather caused additional changes in bacteria in six genera. However, caffeine and chlorogenic acid partially improved the disrupted plasma SCFA profile in TSOD mice, although coffee had no effects. Whether these alterations in the gut microbiome and the plasma SCFA profile might affect the liver pathology of TSOD mice may deserve further investigation.
Collapse
|
26
|
Gao W, Xiao C, Hu J, Chen B, Wang C, Cui B, Deng P, Yang J, Deng Z. Qing brick tea (QBT) aqueous extract protects monosodium glutamate-induced obese mice against metabolic syndrome and involves up-regulation Transcription Factor Nuclear Factor-Erythroid 2-Related Factor 2 (Nrf2) antioxidant pathway. Biomed Pharmacother 2018; 103:637-644. [PMID: 29679905 DOI: 10.1016/j.biopha.2018.04.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Qing brick tea (QBT), traditional and popular beverage for Chinese people, is an important post-fermentation dark tea. Our present study was performed to investigate the ameliorative effects of QBT aqueous extract on metabolic syndrome (Mets) in monosodium glutamate-induced obese mice and the potential mechanisms. METHOD Monosodium glutamate-induced obese mice were used to evaluate the anti-Mets effects of QBT. Content levels of malonaldehyde (MDA), reactive oxygen species (ROS) and protein carbonylation, antioxidant enzyme activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione reductase (GR) in the skeletal muscle were assessed by commercial kits, respectively. Western blot and Q-PCR were used to detect the expressions of Transcription Factor Nuclear Factor-Erythroid 2-Related Factor 2 (Nrf2) signaling pathway and downstream antioxidant factors. In addition, activity of AKT signaling and expression of glucose transporter type 4 (GLUT4) in the skeletal muscle were investigated by western blot. RESULT QBT treatment limited gain of body weight, waistline and LEE index, improved insulin resistance and glucose intolerance, reduced lipid level in MSG mice. Content levels of MDA, ROS and protein carbonylation in skeletal muscle of QBT group were significantly improved compared to those of MSG mice. The antioxidant enzyme activities of SOD, GPx, CAT, and GR were increased in skeletal muscle of MSG mice intervened with QBT. After 20-week QBT treatment, Nrf2 signaling pathway and downstream antioxidant factors were both increased in the skeletal muscle. In addition, QBT treatment improved insulin signaling by preferentially augmenting AKT signaling, as well as increased the protein expression of GLUT4 in the skeletal muscle. CONCLUSION Our results showed that QBT intake was effective in protecting monosodium glutamate-induced obese mice against metabolic syndrome and involved in the Nrf2 signaling pathway in the skeletal muscle.
Collapse
Affiliation(s)
- Wenqi Gao
- Department of Central Experimental Laboratory& Yichang Key Laboratory of ischemic cardiovascular and cerebrovascular disease translational medicine, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
| | - Changyi Xiao
- Department of Central Experimental Laboratory& Yichang Key Laboratory of ischemic cardiovascular and cerebrovascular disease translational medicine, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
| | - Jun Hu
- Department of Central Experimental Laboratory& Yichang Key Laboratory of ischemic cardiovascular and cerebrovascular disease translational medicine, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
| | - Biaoxin Chen
- Department of Central Experimental Laboratory& Yichang Key Laboratory of ischemic cardiovascular and cerebrovascular disease translational medicine, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
| | - Chunyan Wang
- Chang-sheng-chuan Hubei Qingzhuan Brick Tea Institute, Yichang, 443002, China
| | - Bangping Cui
- Department of Nuclear Medicine, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China
| | - Pengyi Deng
- Department of Nuclear Medicine, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China
| | - Jian Yang
- Department of Central Experimental Laboratory& Yichang Key Laboratory of ischemic cardiovascular and cerebrovascular disease translational medicine, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China.
| | - Zhifang Deng
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China.
| |
Collapse
|
27
|
Tsumura-Suzuki obese diabetic mice-derived hepatic tumors closely resemble human hepatocellular carcinomas in metabolism-related genes expression and bile acid accumulation. Hepatol Int 2018; 12:254-261. [PMID: 29651702 DOI: 10.1007/s12072-018-9860-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/22/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Tsumura-Suzuki obese diabetic (TSOD) is a good model of metabolic syndrome showing typical lesions found in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, and develops spontaneous hepatic tumors with a high frequency. Majority of the developing tumors overexpress glutamine synthetase (GS), which is used as a marker of hepatocellular carcinoma (HCC). The aim of this study is to assess the status of expression of metabolism-related genes and the level of bile acids in the TSOD mice-derived tumors and to determine the association with metabolic dysregulation between human HCC and TSOD mice-derived tumors. METHODS GS-positive hepatic tumors or adjacent normal tissues from 71-week-old male TSOD mice were subjected to immunohistochemical staining, quantitative RT-PCR (qRT-PCR), quantitation of cholic acid and taurocholic acid. RESULTS We found that downregulation of the rate-limiting enzyme for betaine synthesis (BADH), at both mRNA and protein levels in GS-positive TSOD mice-derived tumors. Furthermore, the bile acid receptor FXR and the bile acid excretion pump BSEP (Abcb11) were found to be downregulated, whereas BAAT and Akr1c14, involved in primary bile acid synthesis and bile acid conjugation, were found to be upregulated at mRNA level in GS-positive TSOD mice-derived tumors. BAAT and Akr1c14 were also overexpressed at protein levels. Total cholic acid was found to be increased in GS-positive TSOD mice-derived tumors. CONCLUSION Our results strongly support the significance of TSOD mice as a model of spontaneously developing HCC.
Collapse
|
28
|
Analysis of the gut microbiome and plasma short-chain fatty acid profiles in a spontaneous mouse model of metabolic syndrome. Sci Rep 2017; 7:15876. [PMID: 29158587 PMCID: PMC5696507 DOI: 10.1038/s41598-017-16189-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023] Open
Abstract
Male Tsumura Suzuki obese diabetes (TSOD) mice spontaneously develop obesity and obesity-related metabolic syndrome. Gut dysbiosis, an imbalance of gut microbiota, has been implicated in the pathogenesis of metabolic syndrome, but its mechanisms are unknown. Short-chain fatty acids (SCFAs) are the main fermentation products of gut microbiota and a link between the gut microbiota and the host’s physiology. Here, we investigated a correlation among gut dysbiosis, SCFAs, and metabolic syndrome in TSOD mice. We detected enriched levels of Gram-positive bacteria and corresponding decreases in Gram-negative bacteria in 24-wk-old metabolic syndrome-affected TSOD mice compared with age-matched controls. The abundance of Bacteroidetes species decreased, the abundance of Firmicutes species increased, and nine genera of bacteria were altered in 24-wk-old TSOD mice. The total plasma SCFA level was significantly lower in the TSOD mice than in controls. The major plasma SCFA—acetate—decreased in TSOD mice, whereas propionate and butyrate increased. TSOD mice had no minor SCFAs (valerate and hexanoate) but normal mice did. We thus concluded that gut dysbiosis and consequent disruptions in plasma SCFA profiles occurred in metabolic syndrome-affected TSOD mice. We also propose that the TSOD mouse is a useful model to study gut dysbiosis, SCFAs, and metabolic syndrome.
Collapse
|
29
|
Tsuneyama K, Nishitsuji K, Matsumoto M, Kobayashi T, Morimoto Y, Tsunematsu T, Ogawa H. Animal models for analyzing metabolic syndrome-associated liver diseases. Pathol Int 2017; 67:539-546. [PMID: 29027308 DOI: 10.1111/pin.12600] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/20/2017] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome (MS) is a worldwide healthcare issue and a dominant risk factor for the development of incurable diseases affecting the entire body. The hepatic manifestations of MS include nonalcoholic fatty liver disease (NAFLD) and its progressive variant, nonalcoholic steatohepatitis (NASH). NASH is known to progress to liver cirrhosis and hepatocellular carcinoma (HCC). Excellent animal models for determining the mechanism of pathogenesis and establishing therapeutic treatment of NASH/HCC are strongly required worldwide. We recently reported that two previously established mouse models of obesity and diabetes mellitus, namely, Tsumura-Suzuki Obese Diabetes (TSOD) mice and MSG mice, developed MS-associated NASH and that their clinical course and pathological characteristics closely mimicked those of human MS-NASH patients. Interestingly, most of the mice developed HCC with advancing age, and the pathological and functional characteristics of this condition were identical to those of human HCC. We further established a novel mouse model of HCC based on type 1 diabetes (DIAR-nSTZ mice) and reported its histopathological features. By comparing various aspects of these mouse models, specific and useful characteristics in a suitable model of MS-associated liver diseases, including hepato-carcinogenesis, can be highlighted.
Collapse
Affiliation(s)
- Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, 770-8503, Japan
| | - Kazuchika Nishitsuji
- Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Minoru Matsumoto
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, 770-8503, Japan
| | - Tomoko Kobayashi
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, 770-8503, Japan
| | - Yuki Morimoto
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, 770-8503, Japan
| | - Takaaki Tsunematsu
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, 770-8503, Japan
| | - Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, 770-8503, Japan
| |
Collapse
|
30
|
Watanabe S, Takahashi T, Ogawa H, Uehara H, Tsunematsu T, Baba H, Morimoto Y, Tsuneyama K. Daily Coffee Intake Inhibits Pancreatic Beta Cell Damage and Nonalcoholic Steatohepatitis in a Mouse Model of Spontaneous Metabolic Syndrome, Tsumura-Suzuki Obese Diabetic Mice. Metab Syndr Relat Disord 2017; 15:170-177. [PMID: 28358620 DOI: 10.1089/met.2016.0114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Metabolic syndrome is one of the most important health issues worldwide. Obesity causes insulin resistance, hyperlipidemia, diabetes, and various diseases throughout the body. The liver phenotype, which is called nonalcoholic steatohepatitis (NASH), frequently progresses to hepatocellular carcinoma. We recently established a new animal model, Tsumura-Suzuki obese diabetic (TSOD) mice, which spontaneously exhibit obesity, diabetes, hyperlipidemia, and NASH with liver nodules. METHODS We examined the effects of coffee intake on various conditions of the metabolic syndrome using TSOD mice. The daily volume of coffee administered was limited so that it reflected the appropriate quantities consumed in humans. To clarify the effects of the specific components, animals were divided into two coffee-intake groups that included with and without caffeine. RESULTS Coffee intake did not significantly affect obesity and hyperlipidemia in TSOD mice. In contrast, coffee intake caused various degrees of improvement in the pancreatic beta cell damage and steatohepatitis with liver carcinogenesis. Most of the effects were believed to be caused by a synergistic effect of caffeine with other components such as polyphenols. However, the antifibrotic effects of coffee appeared to be due to the polyphenols rather than the caffeine. CONCLUSIONS A daily habit of drinking coffee could possibly play a role in the prevention of metabolic syndrome.
Collapse
Affiliation(s)
- Syunsuke Watanabe
- 1 Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima, Japan
| | - Tetsuyuki Takahashi
- 2 Department of Anatomy and Cell Biology, Faculty of Pharmacy, Research Institute of Pharmaceutical Science, Musashino University , Nishitokyo, Japan
| | - Hirohisa Ogawa
- 1 Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima, Japan
| | - Hisanori Uehara
- 1 Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima, Japan
| | - Takaaki Tsunematsu
- 1 Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima, Japan
| | - Hayato Baba
- 1 Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima, Japan
| | - Yuki Morimoto
- 1 Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima, Japan
| | - Koichi Tsuneyama
- 1 Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima, Japan
| |
Collapse
|
31
|
Ishibashi K, Takeda Y, Nakatani E, Sugawara K, Imai R, Sekiguchi M, Takahama R, Ohkura N, Atsumi GI. Activation of PPARγ at an Early Stage of Differentiation Enhances Adipocyte Differentiation of MEFs Derived from Type II Diabetic TSOD Mice and Alters Lipid Droplet Morphology. Biol Pharm Bull 2017; 40:852-859. [DOI: 10.1248/bpb.b17-00030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kenichi Ishibashi
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University
| | - Yoshihiro Takeda
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University
| | - Eriko Nakatani
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University
| | - Kana Sugawara
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University
| | - Ryo Imai
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University
| | - Mayu Sekiguchi
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University
| | - Risa Takahama
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University
| | - Naoki Ohkura
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University
| | - Gen-ichi Atsumi
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University
| |
Collapse
|
32
|
Nishida T, Tsuneyama K, Fujimoto M, Nomoto K, Hayashi S, Miwa S, Nakajima T, Nakanishi Y, Hatta H, Imura J. Aberrant iron metabolism might have an impact on progression of diseases in Tsumura Suzuki obese diabetes mice, a model of spontaneous metabolic syndrome. Pathol Int 2016; 66:622-628. [DOI: 10.1111/pin.12466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/31/2016] [Accepted: 09/08/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Takeshi Nishida
- Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima Japan
| | - Makoto Fujimoto
- Department of Japanese Oriental Medicine, Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama Japan
| | - Kazuhiro Nomoto
- Laboratory of Pathology; Kouseiren Takaoka Hospital; Takaoka Japan
| | - Shinichi Hayashi
- Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama Japan
| | - Shigeharu Miwa
- Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama Japan
| | - Takahiko Nakajima
- Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama Japan
| | - Yuko Nakanishi
- Department of Pathology; Toyama Prefectural Central Hospital; Toyama Japan
| | - Hideki Hatta
- Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama Japan
| | - Johji Imura
- Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama Japan
| |
Collapse
|
33
|
Takahashi T, Nishida T, Baba H, Hatta H, Imura J, Sutoh M, Toyohara S, Hokao R, Watanabe S, Ogawa H, Uehara H, Tsuneyama K. Histopathological characteristics of glutamine synthetase-positive hepatic tumor lesions in a mouse model of spontaneous metabolic syndrome (TSOD mouse). Mol Clin Oncol 2016; 5:267-270. [PMID: 27446562 PMCID: PMC4950734 DOI: 10.3892/mco.2016.924] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 04/27/2016] [Indexed: 12/11/2022] Open
Abstract
We previously reported that Tsumura-Suzuki obese diabetic (TSOD) mice, a polygenic model of spontaneous type 2 diabetes, is a valuable model of hepatic carcinogenesis via non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). One of the characteristics of tumors in these mice is the diffuse expression of glutamine synthetase (GS), which is a diagnostic marker for hepatocellular carcinoma (HCC). In this study, we performed detailed histopathological examinations and found that GS expression was diffusely positive in >70% of the hepatic tumors from 15-month-old male TSOD mice. Translocation of β-catenin into nuclei with enhanced membranous expression also occurred in GS-positive tumors. Small lesions (<1 mm) in GS-positive cases exhibited dysplastic nodules, with severe nuclear atypia, whereas large lesions (>3 mm) bore the characteristics of human HCC, exhibiting nuclear and structural atypia with invasive growth. By contrast, the majority of GS-negative tumors were hepatocellular adenomas with advanced fatty change and low nuclear grade. In GS-negative tumors, loss of liver fatty acid-binding protein expression was observed. These results suggest that the histological characteristics of GS-positive hepatic tumors in TSOD mice resemble human HCC; thus, this model may be a useful tool in translational research targeting the NAFLD/NASH-HCC sequence.
Collapse
Affiliation(s)
- Tetsuyuki Takahashi
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Takeshi Nishida
- Department of Diagnostic Pathology, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Hayato Baba
- Department of Diagnostic Pathology, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Hideki Hatta
- Department of Diagnostic Pathology, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Johji Imura
- Department of Diagnostic Pathology, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Mitsuko Sutoh
- Institute for Animal Reproduction, Kasumigaura, Ibaraki 300-0134, Japan
| | - Syunji Toyohara
- Institute for Animal Reproduction, Kasumigaura, Ibaraki 300-0134, Japan
| | - Ryoji Hokao
- Institute for Animal Reproduction, Kasumigaura, Ibaraki 300-0134, Japan
| | - Syunsuke Watanabe
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Hisanori Uehara
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| |
Collapse
|
34
|
Ande SR, Nguyen KH, Grégoire Nyomba BL, Mishra S. Prohibitin-induced, obesity-associated insulin resistance and accompanying low-grade inflammation causes NASH and HCC. Sci Rep 2016; 6:23608. [PMID: 27005704 PMCID: PMC4804274 DOI: 10.1038/srep23608] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/10/2016] [Indexed: 02/08/2023] Open
Abstract
Obesity increases the risk for nonalcoholic steatohepatitis (NASH) and hepatocarcinogenesis. However, the underlying mechanisms involved in the disease process remain unclear. Recently, we have developed a transgenic obese mouse model (Mito-Ob) by prohibitin mediated mitochondrial remodeling in adipocytes. The Mito-Ob mice develop obesity in a sex-neutral manner, but obesity-associated adipose inflammation and metabolic dysregulation in a male sex-specific manner. Here we report that with aging, the male Mito-Ob mice spontaneously develop obesity-linked NASH and hepatocellular carcinoma (HCC). In contrast, the female Mito-Ob mice maintained normal glucose and insulin levels and did not develop NASH and HCC. The anti-inflammatory peptide ghrelin was significantly upregulated in the female mice and down regulated in the male mice compared with respective control mice. In addition, a reduction in the markers of mitochondrial content and function was found in the liver of male Mito-Ob mice with NASH/HCC development. We found that ERK1/2 signaling was significantly upregulated whereas STAT3 signaling was significantly down regulated in the tumors from Mito-Ob mice. These data provide a proof-of-concept that the metabolic and inflammatory status of the adipose tissue and their interplay at the systemic and hepatic level play a central role in the pathogenesis of obesity-linked NASH and HCC.
Collapse
Affiliation(s)
- Sudharsana R. Ande
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - K. Hoa Nguyen
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | | | - Suresh Mishra
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
35
|
Murotomi K, Arai S, Uchida S, Endo S, Mitsuzumi H, Tabei Y, Yoshida Y, Nakajima Y. Involvement of splenic iron accumulation in the development of nonalcoholic steatohepatitis in Tsumura Suzuki Obese Diabetes mice. Sci Rep 2016; 6:22476. [PMID: 26932748 PMCID: PMC4773882 DOI: 10.1038/srep22476] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/16/2016] [Indexed: 12/27/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a common hepatic manifestation of metabolic syndrome and can lead to hepatic cirrhosis and cancer. It is considered that NASH is caused by multiple parallel events, including abnormal lipid metabolism, gut-derived-endotoxin-induced inflammation, and adipocytokines derived from adipose tissue, suggesting that other tissues are involved in NASH development. Previous studies demonstrated that spleen enlargement is observed during the course of NASH pathogenesis. However, the involvement of splenic status in the progression of NASH remains unclear. In this study, we examined hepatic and splenic histopathological findings in the early stage of NASH using the Tsumura Suzuki Obese Diabetes (TSOD) mouse model established for assessing NASH. We found that 12-week-old TSOD mice clearly exhibited the histopathological features of NASH in the early stage. At this age, the spleen of TSOD mice showed markedly higher iron level than that of control Tsumura Suzuki Non Obesity (TSNO) mice. The level of accumulated iron was significantly decreased by feeding a diet with glucosyl hesperidin, a bioactive flavonoid, accompanied with alleviation of hepatic lesions. Furthermore, we found that splenic iron level was positively correlated with the severity of NASH manifestations, suggesting that abnormalities in the spleen are involved in the development of NASH.
Collapse
Affiliation(s)
- Kazutoshi Murotomi
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan
| | | | - Satoko Uchida
- Hayashibara Co., Ltd., Naka-ku, Okayama 702-8006, Japan
| | - Shin Endo
- Hayashibara Co., Ltd., Naka-ku, Okayama 702-8006, Japan
| | | | - Yosuke Tabei
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan
| | - Yasukazu Yoshida
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan
| | - Yoshihiro Nakajima
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan
| |
Collapse
|
36
|
Haas JT, Francque S, Staels B. Pathophysiology and Mechanisms of Nonalcoholic Fatty Liver Disease. Annu Rev Physiol 2015; 78:181-205. [PMID: 26667070 DOI: 10.1146/annurev-physiol-021115-105331] [Citation(s) in RCA: 294] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver disorders characterized by abnormal hepatic fat accumulation, inflammation, and hepatocyte dysfunction. Importantly, it is also closely linked to obesity and the metabolic syndrome. NAFLD predisposes susceptible individuals to cirrhosis, hepatocellular carcinoma, and cardiovascular disease. Although the precise signals remain poorly understood, NAFLD pathogenesis likely involves actions of the different hepatic cell types and multiple extrahepatic signals. The complexity of this disease has been a major impediment to the development of appropriate metrics of its progression and effective therapies. Recent clinical data place increasing importance on identifying fibrosis, as it is a strong indicator of hepatic disease-related mortality. Preclinical modeling of the fibrotic process remains challenging, particularly in the contexts of obesity and the metabolic syndrome. Future studies are needed to define the molecular pathways determining the natural progression of NAFLD, including key determinants of fibrosis and disease-related outcomes. This review covers the evolving concepts of NAFLD from both human and animal studies. We discuss recent clinical and diagnostic methods assessing NAFLD diagnosis, progression, and outcomes; compare the features of genetic and dietary animal models of NAFLD; and highlight pharmacological approaches for disease treatment.
Collapse
Affiliation(s)
- Joel T Haas
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; , .,Université de Lille, F-59000 Lille, France.,INSERM UMR 1011, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, 2650 Antwerp, Belgium; .,Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Bart Staels
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; , .,Université de Lille, F-59000 Lille, France.,INSERM UMR 1011, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
37
|
Mikula M, Majewska A, Ledwon JK, Dzwonek A, Ostrowski J. Obesity increases histone H3 lysine 9 and 18 acetylation at Tnfa and Ccl2 genes in mouse liver. Int J Mol Med 2014; 34:1647-54. [PMID: 25319795 DOI: 10.3892/ijmm.2014.1958] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 09/15/2014] [Indexed: 11/06/2022] Open
Abstract
Obesity contributes to the development of non-alcoholic fatty liver disease (NAFLD), which is characterized by the upregulated expression of two key inflammatory mediators: tumor necrosis factor (Tnfa) and monocyte chemotactic protein 1 (Mcp1; also known as Ccl2). However, the chromatin make-up at these genes in the liver in obese individuals has not been explored. In this study, to identify obesity-mediated epigenetic changes at Tnfa and Ccl2, we used a murine model of obesity induced by a high-fat diet (HFD) and hyperphagic (ob/ob) mice. Chromatin immunoprecipitation (ChIP) assay was used to determine the abundance of permissive histone marks, namely histone H3 lysine 9 and 18 acetylation (H3K9/K18Ac), H3 lysine 4 trimethylation (H3K4me3) and H3 lysine 36 trimethylation (H3K36me3), in conjunction with polymerase 2 RNA (Pol2) and nuclear factor (Nf)-κB recruitment in the liver. Additionally, to correlate the liver tissue-derived ChIP measurements with a robust in vitro transcriptional response at the Tnfa and Ccl2 genes, we used lipopolysaccharide (LPS) treatment to induce an inflammatory response in Hepa1-6 cells, a cell line derived from murine hepatocytes. ChIP revealed increased H3K9/K18Ac at Tnfa and Ccl2 in the obese mice, although the differences were only statistically significant for Tnfa (p<0.05). Unexpectedly, the levels of H3K4me3 and H3K36me3 marks, as well as Pol2 and Nf-κB recruitment, did not correspond with the increased expression of these two genes in the obese mice. By contrast, the acute treatment of Hepa1-6 cells with LPS significantly increased the H3K9/K18Ac marks, as well as Pol2 and Nf-κB recruitment at both genes, while the levels of H3K4me3 and H3K36me3 marks remained unaltered. These results demonstrate that increased Tnfa and Ccl2 expression in fatty liver at the chromatin level corresponds to changes in the level of histone H3 acetylation.
Collapse
Affiliation(s)
- Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02-781, Poland
| | - Aneta Majewska
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw 02-781, Poland
| | - Joanna Karolina Ledwon
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw 02-781, Poland
| | - Artur Dzwonek
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02-781, Poland
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02-781, Poland
| |
Collapse
|
38
|
Nault R, Colbry D, Brandenberger C, Harkema JR, Zacharewski TR. Development of a computational high-throughput tool for the quantitative examination of dose-dependent histological features. Toxicol Pathol 2014; 43:366-75. [PMID: 25274660 DOI: 10.1177/0192623314544379] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
High-resolution digitalizing of histology slides facilitates the development of computational alternatives to manual quantitation of features of interest. We developed a MATLAB-based quantitative histological analysis tool (QuHAnT) for the high-throughput assessment of distinguishable histological features. QuHAnT validation was demonstrated by comparison with manual quantitation using liver sections from mice orally gavaged with sesame oil vehicle or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 0.001-30 μg/kg) every 4 days for 28 days, which elicits hepatic steatosis with mild fibrosis. A quality control module of QuHAnT reduced the number of quantifiable Oil Red O (ORO)-stained images from 3,123 to 2,756. Increased ORO staining was measured at 10 and 30 μg/kg TCDD with a high correlation between manual and computational volume densities (Vv ), although the dynamic range of QuHAnT was 10-fold greater. Additionally, QuHAnT determined the size of each ORO vacuole, which could not be accurately quantitated by visual examination or manual point counting. PicroSirius Red quantitation demonstrated superior collagen deposition detection due to the ability to consider all images within each section. QuHAnT dramatically reduced analysis time and facilitated the comprehensive assessment of features improving accuracy and sensitivity and represents a complementary tool for tissue/cellular features that are difficult and tedious to assess via subjective or semiquantitative methods.
Collapse
Affiliation(s)
- Rance Nault
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, USA Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Dirk Colbry
- Institute for Cyber-Enabled Research, Michigan State University, East Lansing, Michigan, USA
| | | | - Jack R Harkema
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Timothy R Zacharewski
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, USA Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
39
|
Tsuneyama K, Nishida T, Baba H, Taira S, Fujimoto M, Nomoto K, Hayashi S, Miwa S, Nakajima T, Sutoh M, Oda E, Hokao R, Imura J. Neonatal monosodium glutamate treatment causes obesity, diabetes, and macrovesicular steatohepatitis with liver nodules in DIAR mice. J Gastroenterol Hepatol 2014; 29:1736-43. [PMID: 24730643 DOI: 10.1111/jgh.12610] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/06/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM Non-alcoholic steatohepatitis (NASH) is the hepatic manifestation of metabolic syndrome (MS). Monosodium glutamate (MSG)-treated ICR mice is a useful model of MS and NASH, but it shows the different patterns of steatosis from human NASH. Because inbred aged DIAR (ddY, Institute for Animal Reproduction) mice spontaneously show the similar pattern of steatosis as NASH, we analyzed their liver pathology after administering MSG. METHODS MSG-treated DIAR mice (DIAR-MSG) and untreated DIAR mice (DIAR-controls) were sacrificed and assessed histopathologically at 29, 32, 40, 48, and 54 weeks of age. The NASH activity score, body mass index, blood glucose level, and oral glucose tolerance test were also assessed. RESULTS The body mass index and blood glucose levels of DIAR-MSG were significantly higher than controls. The oral glucose tolerance test revealed a type 2 diabetes pattern in DIAR-MSG. The livers of DIAR-MSG mice showed macrovesicular steatosis, lobular inflammation with neutrophils, and ballooning degeneration after 29 weeks. At 54 weeks, mild fibrosis was observed in 5/6 DIAR-MSG and 2/5 DIAR-control mice. In imaging mass spectrometry analysis, cholesterol as well as triglyceride accumulated in the liver of DIAR-MSG mice. Atypical liver nodules were also observed after 32 weeks in DIAR-MSG, some with cellular and structural atypia mimicking human hepatocellular carcinoma. The NASH activity score of DIAR-MSG after 29 weeks was higher than that of control mice, suggesting the development of NASH. CONCLUSIONS DIAR-MSG had NASH-like liver pathology and liver nodules typically associated with MS symptoms. DIAR-MSG provides a valuable animal model to analyze NASH pathogenesis and carcinogenesis.
Collapse
Affiliation(s)
- Koichi Tsuneyama
- Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Murotomi K, Umeno A, Yasunaga M, Shichiri M, Ishida N, Abe H, Yoshida Y, Nakajima Y. Type 2 diabetes model TSOD mouse is exposed to oxidative stress at young age. J Clin Biochem Nutr 2014; 55:216-20. [PMID: 25411529 PMCID: PMC4227832 DOI: 10.3164/jcbn.14-73] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/12/2014] [Indexed: 01/11/2023] Open
Abstract
Tsumura Suzuki Obese Diabetes (TSOD) mouse, a model of obese type 2 diabetes, older than around 11 weeks of age develops diabetic phenotypes. Previous studies have indicated that the development of diabetes is partly due to three loci associated with body weight and glucose homeostasis. However, little is known about the initial events triggering the development of the diabetic phenotypes in TSOD mouse. Here, we investigated the alteration of diabetes-related parameters, including the levels of blood glucose and inflammatory cytokines, and the oxidative stress status, in young TSOD mice. TSOD mice at 5 weeks of age showed increases in body weight and plasma total cholesterol level, but not hyperglycemia or impaired glucose tolerance, compared with age-matched control Tsumura Suzuki Non-Obese (TSNO) mice. Plasma tumor necrosis factor (TNF)-α and interleukin (IL)-6 were not detected in TSOD mice at 5 weeks of age. However, plasma total hydroxyoctadecadienoic acid (tHODE), a biomarker of oxidative stress, was increased in TSOD mice relative to TSNO mice at same age. The results demonstrated that young TSOD mice are exposed to oxidative stress before developing the diabetic phenotypes, and suggested that oxidative stress is an initial event triggering the development of diabetes in TSOD mice.
Collapse
Affiliation(s)
- Kazutoshi Murotomi
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Aya Umeno
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Mayu Yasunaga
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Mototada Shichiri
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-13 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Noriko Ishida
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-13 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Hiroko Abe
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Yasukazu Yoshida
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Yoshihiro Nakajima
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| |
Collapse
|
41
|
Neonatal streptozotocin treatment causes type 1 diabetes and subsequent hepatocellular carcinoma in DIAR mice fed a normal diet. Hepatol Int 2014. [DOI: 10.1007/s12072-014-9541-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Hennig EE, Mikula M, Goryca K, Paziewska A, Ledwon J, Nesteruk M, Woszczynski M, Walewska-Zielecka B, Pysniak K, Ostrowski J. Extracellular matrix and cytochrome P450 gene expression can distinguish steatohepatitis from steatosis in mice. J Cell Mol Med 2014; 18:1762-72. [PMID: 24913135 PMCID: PMC4196652 DOI: 10.1111/jcmm.12328] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/15/2014] [Indexed: 12/22/2022] Open
Abstract
One of the main questions regarding nonalcoholic fatty liver disease is the molecular background of the transition from simple steatosis (SS) to the inflammatory and fibrogenic condition of steatohepatitis (NASH). We examined the gene expression changes during progression from histologically normal liver to SS and NASH in models of obesity caused by hyperphagia or a high-fat diet. Microarray-based analysis revealed that the expression of 1445 and 264 probe sets was changed exclusively in SS and NASH samples, respectively, and 1577 probe sets were commonly altered in SS and NASH samples. Functional annotations indicated that transcriptome alterations that were common for NASH and SS, as well as exclusive for NASH, involved extracellular matrix (ECM)-related processes, although they differed in the type of matrix structure change. The expression of 80 genes was significantly changed in all three comparisons: SS versus control, NASH versus control and NASH versus SS. Of these genes, epithelial membrane protein 1, IKBKB interacting protein and decorin were progressively up-regulated in both SS and NASH compared to normal tissue. The molecular context of interactions of encoded 80 proteins revealed that they are highly interconnected and significantly enriched for processes involving metabolism by cytochrome P450. Validation of 10 selected mRNAs encoding genes related to ECM and cytochrome P450 with quantitative RT-PCR analysis showed consistent changes in their expression during NASH development. The expression profile of these genes has the potential to distinguish NASH from SS and normal tissue and may possibly be beneficial in the clinical diagnosis of NASH.
Collapse
Affiliation(s)
- Ewa E Hennig
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw, Poland; Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Modeling progressive non-alcoholic fatty liver disease in the laboratory mouse. Mamm Genome 2014; 25:473-86. [PMID: 24802098 PMCID: PMC4164843 DOI: 10.1007/s00335-014-9521-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/14/2014] [Indexed: 12/19/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world and its prevalence is rising. In the absence of disease progression, fatty liver poses minimal risk of detrimental health outcomes. However, advancement to non-alcoholic steatohepatitis (NASH) confers a markedly increased likelihood of developing severe liver pathologies, including fibrosis, cirrhosis, organ failure, and cancer. Although a substantial percentage of NAFLD patients develop NASH, the genetic and molecular mechanisms driving this progression are poorly understood, making it difficult to predict which patients will ultimately develop advanced liver disease. Deficiencies in mechanistic understanding preclude the identification of beneficial prognostic indicators and the development of effective therapies. Mouse models of progressive NAFLD serve as a complementary approach to the direct analysis of human patients. By providing an easily manipulated experimental system that can be rigorously controlled, they facilitate an improved understanding of disease development and progression. In this review, we discuss genetically- and chemically-induced models of NAFLD that progress to NASH, fibrosis, and liver cancer in the context of the major signaling pathways whose disruption has been implicated as a driving force for their development. Additionally, an overview of nutritional models of progressive NAFLD is provided.
Collapse
|
44
|
Abstract
Overweight and obesity have reached pandemic levels on a worldwide basis and are associated with increased risk and worse prognosis for many but not all malignancies. Pathophysiologic processes that affect this association are reviewed, with a focus on the relationship between type 2 diabetes mellitus and cancer, lessons learned from the use of murine models to study the association, the impact of obesity on pancreatic cancer, the effects of dietary fats and cholesterol on cancer promotion, and the mechanisms by which the intestinal microbiome affects obesity and cancer.
Collapse
Affiliation(s)
- Nathan A Berger
- Departments of Medicine, Biochemistry, and Genetics, Center for Science, Health and Society, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
45
|
Tsuneyama K, Baba H, Kikuchi K, Nishida T, Nomoto K, Hayashi S, Miwa S, Nakajima T, Nakanishi Y, Masuda S, Terada M, Imura J, Selmi C. Autoimmune features in metabolic liver disease: a single-center experience and review of the literature. Clin Rev Allergy Immunol 2014; 45:143-8. [PMID: 23842720 DOI: 10.1007/s12016-013-8383-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is the progressive phenotype of non-alcoholic fatty liver disease associated with the metabolic syndrome. The existence of autoimmune features in NASH has been reported, but its significance remains unclear. We herein report the autoantibody profile of 54 patients with histologically proven NASH and further determined the development of autoimmunity in three different murine NASH models (monosodium glutamate, CDAA (choline-deficient L-amino acid-defined), and TSOD (Tsumura Suzuki, Obese Diabetes)) at 48 weeks of age. Forty-eight percent (26/54) of NASH cases were positive for antinuclear (ANA) or antimitochondrial antibody and manifested histological signs of overlap with autoimmune hepatitis and primary biliary cirrhosis, respectively. These patients were significantly older (60 ± 10 versus 50 ± 16 years), more frequently women (81 % versus 43 %), and with more severe portal inflammatory infiltrate compared with patients without autoimmunity. In one third of mice, regardless of the model, we observed a marked lymphoid infiltrate with non-suppurative cholangitis, and several cases were ANA-positive, but none AMA-positive. Our data suggest that autoimmunity may share some pathogenetic traits with the chronic inflammation of NASH, possibly related to advanced age.
Collapse
Affiliation(s)
- Koichi Tsuneyama
- Department of Diagnostic Pathology, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Jorgačević B, Mladenović D, Ninković M, Prokić V, Stanković MN, Aleksić V, Cerović I, Vukićević RJ, Vučević D, Stanković M, Radosavljević T. Dynamics of oxidative/nitrosative stress in mice with methionine-choline-deficient diet-induced nonalcoholic fatty liver disease. Hum Exp Toxicol 2013; 33:701-9. [PMID: 24130212 DOI: 10.1177/0960327113506723] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Insulin resistance, oxidative stress, and proinflammatory cytokines play a key role in pathogenesis of nonalcoholic fatty liver disease (NAFLD). The aim of our study was to investigate the dynamics of oxidative/nitrosative stress in methionine-choline-deficient (MCD) diet -induced NAFLD in mice. Male C57BL/6 mice were divided into following groups: group 1: control group on standard diet; group 2: MCD diet for 2, 4, and 6 weeks (MCD2, MCD4, and MCD6, respectively). After treatment, liver and blood samples were taken for histopathology, alanine- and aspartate aminotransferase, acute phase reactants, and oxidative/nitrosative stress parameters. Liver malondialdehyde level was higher in all MCD-fed groups versus control group (p < 0.01), while nitrites + nitrates level showed a progressive increase. The activity of total superoxide dismutase and its isoenzymes was significantly lower in all MCD-fed groups (p < 0.01). Although catalase activity was significantly lower in MCD-fed animals at all intervals (p < 0.01), the lowest activity of this enzyme was evident in MCD4 group. Liver content of glutathione was lower in MCD4 (p < 0.05) and MCD6 group (p < 0.01) versus control. : Ferritin and C-reactive protein serum concentration were significantly higher only in MCD6 group. Our study suggests that MCD diet induces a progressive rise in nitrosative stress in the liver. Additionally, the most prominent decrease in liver antioxidative capacity is in the fourth week, which implies that application of antioxidants would be most suitable in this period, in order to prevent nonalcoholic steatohepatitis but not the initial NAFLD phase.
Collapse
Affiliation(s)
- B Jorgačević
- Institute of Pathophysiology "Ljubodrag Buba Mihailović", Faculty of Medicine, University of Belgrade, Serbia
| | - D Mladenović
- Institute of Pathophysiology "Ljubodrag Buba Mihailović", Faculty of Medicine, University of Belgrade, Serbia
| | - M Ninković
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - V Prokić
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - M N Stanković
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - V Aleksić
- Institute of Pathophysiology "Ljubodrag Buba Mihailović", Faculty of Medicine, University of Belgrade, Serbia
| | - I Cerović
- Institute of Digestive Diseases, Clinical Centre of Serbia, Belgrade, Serbia
| | - R Ješić Vukićević
- Institute of Digestive Diseases, Clinical Centre of Serbia, Belgrade, Serbia
| | - D Vučević
- Institute of Pathophysiology "Ljubodrag Buba Mihailović", Faculty of Medicine, University of Belgrade, Serbia
| | - M Stanković
- Institute of Pathophysiology "Ljubodrag Buba Mihailović", Faculty of Medicine, University of Belgrade, Serbia
| | - T Radosavljević
- Institute of Pathophysiology "Ljubodrag Buba Mihailović", Faculty of Medicine, University of Belgrade, Serbia
| |
Collapse
|
47
|
Duan XY, Zhang L, Fan JG, Qiao L. NAFLD leads to liver cancer: do we have sufficient evidence? Cancer Lett 2013; 345:230-4. [PMID: 23941829 DOI: 10.1016/j.canlet.2013.07.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/16/2013] [Accepted: 07/28/2013] [Indexed: 02/07/2023]
Abstract
Primary liver cancer has several well-recognized risk factors, such as HBV and HCV infection, alcohol abuse and aflatoxin. Recent studies show that nonalcoholic fatty liver disease (NAFLD), especially its aggressive form nonalcoholic steatohepatitis (NASH) is associated with an increased risk of liver cancer, mainly hepatocellular carcinoma (HCC). On the other hand, clinical and epidemiological data have showed that HCC has rarely been found in a "pure" fatty liver in human. Thus, the question we need to ask is do we have sufficient evidence to support a causative role of NAFLD in liver cancer? Furthermore, if NAFLD is indeed a causative factor for liver cancer, what is the mechanism? Perhaps at this stage, fatty liver and NASH can be regarded as a definite risk factor for liver cancer, but to conclude that NAFLD induces HCC requires more robust in vitro and in vivo data.
Collapse
Affiliation(s)
- Xiao-Yan Duan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Children's Digestion and Nutrition, Shanghai 200092, China
| | - Lei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Children's Digestion and Nutrition, Shanghai 200092, China.
| | - Liang Qiao
- Storr Liver Unit, University of Sydney at the Westmead Millennium Institute, Westmead, NSW 2145, Australia.
| |
Collapse
|
48
|
Yu J, Shen J, Sun TT, Zhang X, Wong N. Obesity, insulin resistance, NASH and hepatocellular carcinoma. Semin Cancer Biol 2013; 23:483-91. [PMID: 23876851 DOI: 10.1016/j.semcancer.2013.07.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 07/12/2013] [Indexed: 02/06/2023]
Abstract
Epidemiological and clinical data have clearly demonstrated that non-alcoholic steatohepatitis (NASH) predisposes risk to the development of hepatocellular carcinoma (HCC). NASH is the liver manifestation of metabolic syndrome, which constellates obesity, insulin resistance and dyslipidemia. Although the percentage of patients diagnosed annually with NASH-associated HCC is still relatively low, this number signifies a large population due to the rapidly increasing incidence of obesity and diabetes globally. Fundamental studies on lipid storage, regulation of adipose factors, inflammatory cytokine recruitments and oxidative stress have provided insights into NASH as well as metabolic syndrome. Recent evidence also indicates the significant role of genetic factors in contributing to the pathogenesis of NASH and induced hepatic malignancy. In this review, we attempt to collate current research on NASH biology that lead to our understandings on how metabolic disorders may intersect with cancer development. We also discuss study models that have supported discoveries of molecular and cellular defects, and offered a perspective on therapeutic developments. These studies have collectively increased our knowledge on the complex signaling pathways involved in NASH and cancer, and provided the foundation for improved clinical management of patients with metabolic diseases.
Collapse
Affiliation(s)
- Jun Yu
- Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | | | | | | | | |
Collapse
|
49
|
Krishnan B, Babu S, Walker J, Walker AB, Pappachan JM. Gastrointestinal complications of diabetes mellitus. World J Diabetes 2013; 4:51-63. [PMID: 23772273 PMCID: PMC3680624 DOI: 10.4239/wjd.v4.i3.51] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/14/2013] [Accepted: 04/19/2013] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus affects virtually every organ system in the body and the degree of organ involvement depends on the duration and severity of the disease, and other co-morbidities. Gastrointestinal (GI) involvement can present with esophageal dysmotility, gastro-esophageal reflux disease (GERD), gastroparesis, enteropathy, non alcoholic fatty liver disease (NAFLD) and glycogenic hepatopathy. Severity of GERD is inversely related to glycemic control and management is with prokinetics and proton pump inhibitors. Diabetic gastroparesis manifests as early satiety, bloating, vomiting, abdominal pain and erratic glycemic control. Gastric emptying scintigraphy is considered the gold standard test for diagnosis. Management includes dietary modifications, maintaining euglycemia, prokinetics, endoscopic and surgical treatments. Diabetic enteropathy is also common and management involves glycemic control and symptomatic measures. NAFLD is considered a hepatic manifestation of metabolic syndrome and treatment is mainly lifestyle measures, with diabetes and dyslipidemia management when coexistent. Glycogenic hepatopathy is a manifestation of poorly controlled type 1 diabetes and is managed by prompt insulin treatment. Though GI complications of diabetes are relatively common, awareness about its manifestations and treatment options are low among physicians. Optimal management of GI complications is important for appropriate metabolic control of diabetes and improvement in quality of life of the patient. This review is an update on the GI complications of diabetes, their pathophysiology, diagnostic evaluation and management.
Collapse
|