1
|
Kim SH, Kim CH, Lee CH, Lee J, Kang H, Cho S, Jang WH, Park M, Ha M, Kim J, Um W, Kwon S, Lee S, Kim JW, Chung CH, Park JH. Glycoengineered stem cell-derived extracellular vesicles for targeted therapy of acute kidney injury. Biomaterials 2025; 318:123165. [PMID: 39923538 DOI: 10.1016/j.biomaterials.2025.123165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Acute kidney injury (AKI) is associated with high morbidity and mortality rates, primarily due to the lack of effective therapeutic options for kidney repair. To restore the biological function of injured kidney, there is a need to protect renal tubular epithelial cells (RTECs) and regulate M1 macrophages, responsible for progress of AKI. Herein, based on metabolic glycoengineering-mediated click chemistry, we prepare the engineered extracellular vesicles (pSEVs), derived from PEGylated hyaluronic acid (HA)-modified mesenchymal stem cells. Owing to their cell-protective and anti-inflammatory properties, pSEVs effectively prevent the apoptosis of RTECs and inhibit the polarization of macrophages into an inflammatory phenotype in vitro. When systemically administered into the cisplatin-induced AKI animal model, pSEVs selectively accumulate in injured kidneys via HA-mediated binding to CD44 and toll-like receptor4 which are over-expressed on RTECs and M1 macrophages, respectively. This targeted delivery efficiently alleviates AKI-related symptoms, as evidenced by delayed kidney weight reduction, and decreased levels of creatinine, blood urea nitrogen, and neutrophil gelatinase-associated lipocalin. Overall, pSEVs show potent anti-inflammatory effects and specific targeting to injured kidneys, presenting a considerable potential as the therapeutics for AKI.
Collapse
Affiliation(s)
- So Hee Kim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Chan Ho Kim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Chang Hyun Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jungmi Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Heegun Kang
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Sohyun Cho
- Department of MetaBioHealth, SKKU Institute for Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Won Ho Jang
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Minsung Park
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Minji Ha
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jiyeon Kim
- Department of MetaBioHealth, SKKU Institute for Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Wooram Um
- Department of Biotechnology, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Seunglee Kwon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Republic of Korea Suwon, Suwon, 16419, Republic of Korea
| | - Jin Woong Kim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Chan-Hwa Chung
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea; Department of MetaBioHealth, SKKU Institute for Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
| |
Collapse
|
2
|
Meng XM, Wang L, Nikolic-Paterson DJ, Lan HY. Innate immune cells in acute and chronic kidney disease. Nat Rev Nephrol 2025:10.1038/s41581-025-00958-x. [PMID: 40263532 DOI: 10.1038/s41581-025-00958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2025] [Indexed: 04/24/2025]
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are inter-related clinical and pathophysiological disorders. Cells of the innate immune system, such as granulocytes and macrophages, can induce AKI through the secretion of pro-inflammatory mediators such as cytokines, chemokines and enzymes, and the release of extracellular traps. In addition, macrophages and dendritic cells can drive the progression of CKD through a wide range of pro-inflammatory and pro-fibrotic mechanisms, and by regulation of the adaptive immune response. However, innate immune cells can also promote kidney repair after acute injury. These actions highlight the multifaceted nature of the way by which innate immune cells respond to signals within the kidney microenvironment, including interaction with the complement and coagulation cascades, cells of the adaptive immune system, intrinsic renal cells and infiltrating mesenchymal cells. The factors and mechanisms that underpin the ability of innate immune cells to contribute to renal injury or repair and to drive the progression of CKD are of great interest for understanding disease processes and for developing new therapeutic approaches to limit AKI and the AKI-to-CKD transition.
Collapse
Affiliation(s)
- Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre and Monash University Centre for Inflammatory Diseases, Melbourne, Victoria, Australia
| | - Hui-Yao Lan
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
- Departments of Medicine & Therapeutics, the Chinese University of Hong Kong, Hong Kong, and Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China.
| |
Collapse
|
3
|
Gouveia PQ, Fanelli C, Ornellas FM, Garnica MR, Francini ALR, Murata GM, Matheus LHG, Morales MM, Noronha IL. Adipose Tissue Stem Cells (ASCs) and ASC-Derived Extracellular Vesicles Prevent the Development of Experimental Peritoneal Fibrosis. Cells 2025; 14:436. [PMID: 40136685 PMCID: PMC11941392 DOI: 10.3390/cells14060436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 03/27/2025] Open
Abstract
Cell therapy utilizing mesenchymal stromal cells (MSCs) through paracrine mechanisms holds promise for regenerative purposes. Peritoneal fibrosis (PF) is a significant complication of peritoneal dialysis. Various strategies have been proposed to protect the peritoneal membrane (PM). This study explores the effectiveness of adipose-tissue-derived stem cells (ASCs) and extracellular vesicles (EVs) at mitigating PF using a rat model of PF induced by chlorhexidine gluconate. ASC and EV treatments effectively prevented an increase in the thickness of the PM and diminished the number of myofibroblasts, fibronectin expression, collagen III expression, and PF-related factors such as TGF-β and FSP-1. Smad3 gene expression decreased in the treatment groups, whereas Smad7 gene expression increased in treated animals. In addition, ASC and EV injections showed potent anti-inflammatory effects. Glucose transport through the PM remained unaffected in relation to the PF group; both treatments promoted an increase in ultrafiltration (UF) capacity. The PF+EVs treated group showed the highest increase in UF capacity. Another critical aspect of ASC and EV treatments was their impact on neoangiogenesis in the PM which is vital for UF capacity. Although the treated groups displayed a significant decrease in VEGF expression in the PM, peritoneal function remained effective. In conclusion, within the experimental PF model, both ASC and EV treatments demonstrated anti-inflammatory effects and comparably hindered the progression of PF. The EV treatment exhibited superior preservation of peritoneal function, along with enhanced UF capacity. These findings suggest the potential of ASCs and EVs as novel therapeutic approaches to prevent the development of PF associated with peritoneal dialysis.
Collapse
Affiliation(s)
- Priscila Q. Gouveia
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, Medical School, University of São Paulo, São Paulo 01246-903, Brazil; (P.Q.G.); (C.F.); (F.M.O.); (M.R.G.); (G.M.M.)
| | - Camilla Fanelli
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, Medical School, University of São Paulo, São Paulo 01246-903, Brazil; (P.Q.G.); (C.F.); (F.M.O.); (M.R.G.); (G.M.M.)
| | - Felipe M. Ornellas
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, Medical School, University of São Paulo, São Paulo 01246-903, Brazil; (P.Q.G.); (C.F.); (F.M.O.); (M.R.G.); (G.M.M.)
| | - Margoth R. Garnica
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, Medical School, University of São Paulo, São Paulo 01246-903, Brazil; (P.Q.G.); (C.F.); (F.M.O.); (M.R.G.); (G.M.M.)
| | - Ana L. R. Francini
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, Medical School, University of São Paulo, São Paulo 01246-903, Brazil; (P.Q.G.); (C.F.); (F.M.O.); (M.R.G.); (G.M.M.)
| | - Gilson M. Murata
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, Medical School, University of São Paulo, São Paulo 01246-903, Brazil; (P.Q.G.); (C.F.); (F.M.O.); (M.R.G.); (G.M.M.)
| | - Luiz H. G. Matheus
- Laboratory of Carbohydrate and Radioimmunoassay, School of Medicine, University of São Paulo, São Paulo 01246-903, Brazil;
| | - Marcelo M. Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-853, Brazil;
| | - Irene L. Noronha
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, Medical School, University of São Paulo, São Paulo 01246-903, Brazil; (P.Q.G.); (C.F.); (F.M.O.); (M.R.G.); (G.M.M.)
| |
Collapse
|
4
|
Duan X, Lv X, Wang X, Zhang Y, Hu Y, Li H, Zhou Y, Jing Y. Impact of immune cell metabolism on membranous nephropathy and prospective therapy. Commun Biol 2025; 8:405. [PMID: 40065158 PMCID: PMC11893770 DOI: 10.1038/s42003-025-07816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Membranous nephropathy (MN) is a primary glomerular disease commonly causing adult nephrotic syndrome. Characterized by thickened glomerular capillary walls due to immune complex deposition, MN is a complex autoimmune disorder. Its pathogenesis involves immune deposit formation, complement activation, and a heightened risk of renal failure. Central to MN is immune system dysfunction, particularly the dysregulation of B and T cell responses. B cells contribute to renal injury through the production of autoantibodies, particularly IgG targeting the phospholipase A2 receptor (PLA2R) on podocytes, while T cells modulate immune responses that influence disease progression. Metabolic reprogramming alters lymphocyte survival, differentiation, proliferation, and function, potentially triggering autoimmune processes. Although the link between immune cell metabolism and MN remains underexplored, this review highlights recent advances in understanding immune metabolism and its role in MN. These insights may provide novel biomarkers and therapeutic strategies for MN treatment.
Collapse
Affiliation(s)
- Xuemei Duan
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xin Lv
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Xiaocui Wang
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yunfei Zhang
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ying Hu
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Haonan Li
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yongnian Zhou
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| | - Yukai Jing
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
5
|
Zhang W, Wang R, Guo R, Yi Z, Wang Y, Wang H, Li Y, Li X, Song J. The multiple biological activities of hyperoside: from molecular mechanisms to therapeutic perspectives in neoplastic and non-neoplastic diseases. Front Pharmacol 2025; 16:1538601. [PMID: 40098612 PMCID: PMC11911483 DOI: 10.3389/fphar.2025.1538601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
In recent years, hyperoside (quercetin 3-O-β-D-galactopyranoside) has garnered significant attention due to its diverse biological effects, which include vasoprotective, antioxidant, anti-inflammatory, and anti-tumor properties. Notably, hyperoside has shown remarkable potential in cancer therapy by targeting multiple mechanisms; it induces apoptosis, inhibits proliferation, blocks angiogenesis, and reduces the metastatic potential of cancer cells. Furthermore, hyperoside enhances the sensitivity of cancer cells to chemotherapy by modulating key signaling pathways. Beyond neoplastic diseases, hyperoside also presents promising therapeutic applications in managing non-cancerous conditions such as diabetes, Alzheimer's disease, and pulmonary fibrosis. This review comprehensively examines the molecular mechanisms underlying hyperoside's anti-cancer effects and highlights its role in the treatment of cancers, including lung and colorectal cancers. Additionally, it explores the latest research on hyperoside's potential in addressing non-neoplastic conditions, such as pulmonary fibrosis, diabetes, and Parkinson's disease. By summarizing current findings, this review underscores the unique therapeutic value of hyperoside and its potential as a multifunctional treatment in both neoplastic and non-neoplastic contexts.
Collapse
Affiliation(s)
- Weisong Zhang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
- Medical School of Nantong University, Nantong, China
| | - Rui Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
- Medical School of Nantong University, Nantong, China
| | - Rongqi Guo
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
- Medical School of Nantong University, Nantong, China
| | - Zhongquan Yi
- Central Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Yihao Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
- Medical School of Nantong University, Nantong, China
| | - Hao Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
- Medical School of Nantong University, Nantong, China
| | - Yangyang Li
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
- Medical School of Nantong University, Nantong, China
| | - Xia Li
- Department of General Medicine, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Jianxiang Song
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| |
Collapse
|
6
|
Chatterjee T, Zarjou A. Navigating the Complex Pathogenesis of Acute Kidney Injury: Exploring Macrophage Dynamics, Mitochondrial Dysfunction, and Ferroptosis Pathways. ADVANCES IN KIDNEY DISEASE AND HEALTH 2025; 32:122-132. [PMID: 40222799 PMCID: PMC11999248 DOI: 10.1053/j.akdh.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 04/15/2025]
Abstract
Acute kidney injury, a rapid decline in kidney function coupled with physiological and homeostatic perturbations, is an independent risk factor for both short-term and long-term health outcomes. As incidence of acute kidney injury continues to rise globally, the significant clinical and economic challenge of acute kidney injury underscores the need for its prompt recognition and application of novel and germane strategies to reduce its severity and facilitate recovery. Understanding the multifaceted cascade of events engaged in pathogenesis of acute kidney injury is pivotal for the development of effective preventive and therapeutic strategies. To facilitate an in-depth discussion on emerging therapeutic targets, this review will examine the role of macrophages in kidney injury and repair, explore the alterations in mitochondrial biogenesis dynamics induced by acute kidney injury, and provide insights into the molecular mechanisms underlying the contribution of ferroptosis to kidney injury.
Collapse
Affiliation(s)
- Tanima Chatterjee
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Abolfazl Zarjou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
7
|
Sriram A, Ithape H, Singh PK. Deep-insights: Nanoengineered gel-based localized drug delivery for arthritis management. Asian J Pharm Sci 2025; 20:101012. [PMID: 39995751 PMCID: PMC11848107 DOI: 10.1016/j.ajps.2024.101012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 05/15/2024] [Accepted: 07/03/2024] [Indexed: 02/26/2025] Open
Abstract
Arthritis is an inflammatory joint disorder that progressively impairs function and diminishes quality of life. Conventional therapies often prove ineffective, as oral administration lacks specificity, resulting in off-target side effects like hepatotoxicity and GIT-related issues. Intravenous administration causes systemic side effects. The characteristic joint-localized symptoms such as pain, stiffness, and inflammation make the localized drug delivery suitable for managing arthritis. Topical/transdermal/intra-articular routes have become viable options for drug delivery in treating arthritis. However, challenges with those localized drug delivery routes include skin barrier and cartilage impermeability. Additionally, conventional intra-articular drug delivery also leads to rapid clearance of drugs from the synovial joint tissue. To circumvent these limitations, researchers have developed nanocarriers that enhance drug permeability through skin and cartilage, influencing localized action. Gel-based nanoengineered therapy employs a gel matrix to incorporate the drug-encapsulated nanocarriers. This approach combines the benefits of gels and nanocarriers to enhance therapeutic effects and improve patient compliance. This review emphasizes deep insights into drug delivery using diverse gel-based novel nanocarriers, exploring their various applications embedded in hyaluronic acid (biopolymer)-based gels, carbopol-based gels, and others. Furthermore, this review discusses the influence of nanocarrier pharmacokinetics on the localization and therapeutic manipulation of macrophages mediated by nanocarriers. The ELVIS (extravasation through leaky vasculature and inflammatory cell-mediated sequestration) effect associated with arthritis is advantageous in drug delivery. Simply put, the ELVIS effect refers to the extravasation of nanocarriers through leaky vasculatures, which finally results in the accumulation of nanocarriers in the joint cavity.
Collapse
Affiliation(s)
| | | | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Telangana 500037, India
| |
Collapse
|
8
|
Boyer O, Bernardi S, Preka E. To biopsy or not to biopsy a teenager with typical idiopathic nephrotic syndrome? Start steroids first. Pediatr Nephrol 2025; 40:579-585. [PMID: 39259322 DOI: 10.1007/s00467-024-06447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 09/13/2024]
Abstract
It is well known that minimal change disease (MCD) and focal segmental glomerulosclerosis are the most common histopathology findings in children with idiopathic nephrotic syndrome. Moreover, several studies demonstrated that MCD is associated with high steroid-responsiveness and a low incidence of kidney failure, suggesting that routine kidney biopsy is not warranted. Over time, the indications for performing a kidney biopsy have become increasingly stringent, aiming to limit unnecessary invasive procedures in the paediatric population. The most recent guidelines state that a kidney biopsy is not usually necessary at disease onset. Still, it should be performed in case of atypical features suggestive of systemic diseases or glomerulonephritis and in case of steroid-resistance, to assess the different differential diagnoses, regardless of patient age. Moreover, it has been shown that the best prognostic marker in childhood nephrotic syndrome is response to treatment and that kidney histology is not accurate in predicting prognosis. Furthermore, a kidney biopsy is not necessary to predict the relapsing course. Notably, kidney biopsy is an invasive procedure and may lead to significant complications. Finally, novel non-invasive biomarkers have been validated or are in the process of being approved to guide differential diagnoses and thus limit the need for kidney biopsies in patients with typical nephrotic syndrome. In the following sections, we aim to explain why initiating steroid treatment as the initial approach in teenagers with typical nephrotic syndrome is a reasonable strategy. Additionally, we explore how kidney biopsy indications may be alleviated in this population.
Collapse
Affiliation(s)
- Olivia Boyer
- Néphrologie Pédiatrique, Centre de Référence du Syndrome Néphrotique Idiopathique de L'enfant Et L'adulte, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris (APHP), Institut Imagine, INSERM U1163, Université Paris Cité, 149 Rue de Sèvres, 75015, Paris, France.
| | - Silvia Bernardi
- Néphrologie Pédiatrique, Centre de Référence du Syndrome Néphrotique Idiopathique de L'enfant Et L'adulte, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris (APHP), Institut Imagine, INSERM U1163, Université Paris Cité, 149 Rue de Sèvres, 75015, Paris, France
| | - Evgenia Preka
- Néphrologie Pédiatrique, Centre de Référence du Syndrome Néphrotique Idiopathique de L'enfant Et L'adulte, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris (APHP), Institut Imagine, INSERM U1163, Université Paris Cité, 149 Rue de Sèvres, 75015, Paris, France
- INSERM U970, PARCC, Paris Translational Research Centre for Organ, Transplantation, Paris, France
| |
Collapse
|
9
|
Chavanisakun C, Keawvichit R, Benjakul N. M1 and M2 Macrophage Polarization Correlates with Activity and Chronicity Indices in Lupus Nephritis. Life (Basel) 2025; 15:55. [PMID: 39859995 PMCID: PMC11766976 DOI: 10.3390/life15010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Lupus nephritis (LN) is a severe manifestation of systemic lupus erythematosus (SLE), characterized by inflammation and immune dysregulation in the kidneys. The role of macrophage polarization in LN progression remains underexplored. Objective: This study examined the association between tubulointerstitial M1/M2 macrophage subpopulations and LN indices of activity and chronicity. Materials and Methods: We retrospectively reviewed 160 renal biopsy specimens in patients with LN (ISN/RPS classes II-V) from the database of the Department of Anatomical Pathology, the Faculty of Medicine Vajira Hospital, Navamindradhiraj University (2012-2021). Additional immunohistochemical analysis included CD68, iNOS, CD206, CD163, and evaluation of infiltration with M1 (iNOS+), M2a (CD206+), and M2c macrophages (CD163+). Moreover, clinical information at the time of the renal biopsy, including age, sex, and laboratory findings, was obtained from the electronic medical records. The data were correlated with the macrophage infiltration using the Spearman test. Results: Lupus nephritis biopsies with ISN/RPS class II-V were included (class II: 3 cases (2%), III: 30 cases (19%), III + V: 16 cases (10%), IV: 73 cases (46%), IV + V: 18 cases (11%), and V: 20 cases (12%)). In addition, the mean age of SLE patients at the time of biopsy was 33 years (range: 19-47 years). Most patients were females (n = 141; 88%). The population of CD68+ macrophages was related to serum creatinine (p < 0.001; rs = 0.34). We detected predominantly M2 macrophages across all LN classes, but M1 macrophages demonstrated significant correlations with the activity index (p < 0.001; rs = 0.43). Conversely, M2a and M2c subpopulations were strongly associated with the chronicity index (M2a: p < 0.001, rs = 0.48; M2c: p = 0.024, rs = 0.18). Total macrophages correlated with both indices (activity: p < 0.001, rs = 0.44; chronicity: p < 0.001, rs = 0.42). Conclusions: In lupus nephritis, the predominant population of macrophages is M2. Correlations were noted between the subpopulations of M1 and M2c macrophages and the activity and chronicity indices, respectively. In addition, macrophage populations correlated with disease progression, but the significance of this association in disease progression remains uncertain.
Collapse
Affiliation(s)
- Chutima Chavanisakun
- Department of Anatomical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, 681 Samsen Road, Dusit, Bangkok 10300, Thailand
- Vajira Pathology-Clinical-Correlation Target Research Interest Group, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, 681 Samsen Road, Dusit, Bangkok 10300, Thailand
| | - Rassamon Keawvichit
- Vajira Pathology-Clinical-Correlation Target Research Interest Group, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, 681 Samsen Road, Dusit, Bangkok 10300, Thailand
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, 681 Samsen Road, Dusit, Bangkok 10300, Thailand
| | - Nontawat Benjakul
- Department of Anatomical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, 681 Samsen Road, Dusit, Bangkok 10300, Thailand
- Vajira Pathology-Clinical-Correlation Target Research Interest Group, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, 681 Samsen Road, Dusit, Bangkok 10300, Thailand
| |
Collapse
|
10
|
Zhao Y, Jiang Y, Wang F, Sun L, Ding M, Zhang L, Wu B, Zhang X. High glucose promotes macrophage switching to the M1 phenotype via the downregulation of STAT-3 mediated autophagy. PLoS One 2024; 19:e0314974. [PMID: 39739966 DOI: 10.1371/journal.pone.0314974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
AIM Imbalanced M1/M2 macrophage phenotype activation is a key point in diabetic kidney disease (DKD). Macrophages mainly exhibit the M1 phenotype, which contributes to inflammation and fibrosis in DKD. Studies have indicated that autophagy plays an important role in M1/M2 activation. However, the mechanism by which autophagy regulates the macrophage M1/M2 phenotype in DKD is unknown. Thus, the aim of the present study was to explore whether high glucose-induced macrophages switch to the M1 phenotype via the downregulation of STAT-3-mediated autophagy. METHODS DKD model rats were established in vivo via the intraperitoneal injection of streptozocin (STZ). The rats were sacrificed at 18 weeks for histological and molecular analysis. RAW264.7 cells were cultured in vitro with 30 mM glucose in the presence or absence of a STAT-3 activator (colivelin) and an autophagy activator (rapamycin). Moreover, M1 and M2 macrophage activation models were established as a control group. Immunofluorescence and Western blot analyses were used to detect the expression of autophagy-related proteins (LC3 and Beclin-1), M1 markers (iNOS and CD11c) and M2 markers (MR and CD206). RESULTS In DKD, macrophages exhibit an M1 phenotype. Under high-glucose conditions, RAW264.7 macrophages switched to the M1 phenotype. Autophagy was downregulated in high glucose-induced M1 macrophages. Both the STAT-3 activator and the autophagy activator promoted the transition of glucose-induced M1 macrophages to M2 macrophages. Moreover, STAT-3 activation increased the expression of autophagy markers (LC3 and Beclin-1). However, the autophagy activator had no effect on STAT-3 phosphorylation. CONCLUSION High glucose promotes macrophage switching to the M1 phenotype via the downregulation of STAT-3-mediated autophagy.
Collapse
Affiliation(s)
- Yu Zhao
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, China
| | - Yuteng Jiang
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, China
| | - Fengmei Wang
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, China
| | - Li Sun
- Department of Nephrology, Xuyi People's Hospital, Huaian, China
| | - Mengyuan Ding
- Department of Nephrology, Xuyi People's Hospital, Huaian, China
| | - Liyuan Zhang
- Department of Nephrology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Beibei Wu
- Institute of Nephrology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong, China
| | - Xiaoliang Zhang
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, China
| |
Collapse
|
11
|
Lee K, Jang HR, Rabb H. Lymphocytes and innate immune cells in acute kidney injury and repair. Nat Rev Nephrol 2024; 20:789-805. [PMID: 39095505 DOI: 10.1038/s41581-024-00875-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Acute kidney injury (AKI) is a common and serious disease entity that affects native kidneys and allografts but for which no specific treatments exist. Complex intrarenal inflammatory processes driven by lymphocytes and innate immune cells have key roles in the development and progression of AKI. Many studies have focused on prevention of early injury in AKI. However, most patients with AKI present after injury is already established. Increasing research is therefore focusing on mechanisms of renal repair following AKI and prevention of progression from AKI to chronic kidney disease. CD4+ and CD8+ T cells, B cells and neutrophils are probably involved in the development and progression of AKI, whereas regulatory T cells, double-negative T cells and type 2 innate lymphoid cells have protective roles. Several immune cells, such as macrophages and natural killer T cells, can have both deleterious and protective effects, depending on their subtype and/or the stage of AKI. The immune system not only participates in injury and repair processes during AKI but also has a role in mediating AKI-induced distant organ dysfunction. Targeted manipulation of immune cells is a promising therapeutic strategy to improve AKI outcomes.
Collapse
Affiliation(s)
- Kyungho Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Cell and Gene Therapy Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Cell and Gene Therapy Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hamid Rabb
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Li J, Yan X, Wu Z, Shen J, Li Y, Zhao Y, Du F, Li M, Wu X, Chen Y, Xiao Z, Wang S. Role of miRNAs in macrophage-mediated kidney injury. Pediatr Nephrol 2024; 39:3397-3410. [PMID: 38801452 DOI: 10.1007/s00467-024-06414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Macrophages, crucial components of the human immune system, can be polarized into M1/M2 phenotypes, each with distinct functions and roles. Macrophage polarization has been reported to be significantly involved in the inflammation and fibrosis observed in kidney injury. MicroRNA (miRNA), a type of short RNA lacking protein-coding function, can inhibit specific mRNA by partially binding to its target mRNA. The intricate association between miRNAs and macrophages has been attracting increasing interest in recent years. This review discusses the role of miRNAs in regulating macrophage-mediated kidney injury. It shows how miRNAs can influence macrophage polarization, thereby altering the biological function of macrophages in the kidney. Furthermore, this review highlights the significance of miRNAs derived from exosomes and extracellular vesicles as a crucial mediator in the crosstalk between macrophages and kidney cells. The potential of miRNAs as treatment applications and biomarkers for macrophage-mediated kidney injury is also discussed.
Collapse
Affiliation(s)
- Junxin Li
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xida Yan
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Pharmacy, Mianyang Central Hospital, Mianyang, China
| | - Zhigui Wu
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yalin Li
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Shurong Wang
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
13
|
Alruhaimi RS, Hassanein EHM, Ahmeda AF, Alnasser SM, Atwa AM, Sabry M, Alzoghaibi MA, Mahmoud AM. Attenuation of inflammation, oxidative stress and TGF-β1/Smad3 signaling and upregulation of Nrf2/HO-1 signaling mediate the protective effect of diallyl disulfide against cadmium nephrotoxicity. Tissue Cell 2024; 91:102576. [PMID: 39353227 DOI: 10.1016/j.tice.2024.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Heavy metals are toxic environmental pollutants with serious health effects on humans and animals. Cadmium (Cd) is known for its serious nephrotoxic effect and its toxicity involves oxidative stress (OS) and inflammation. Diallyl disulfide (DADS), a main constituent of garlic, exhibites cytoprotective and antioxidant activities. This study investigated the effect of DADS on OS, inflammation, and fibrosis induced by Cd in rat kidney, pointing to the involvement of transforming growth factor-β (TGF-β)/Smad3 and nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling, and peroxisome proliferator-activated receptor gamma (PPARγ). Rats received DADS for 14 days and Cd on day 7 and blood and kidney samples were collected. Cd elevated serum creatinine, urea and uric acid, provoked kidney histopathological alterations and collagen deposition, increased kidney malondialdehyde (MDA) level, and decreased glutathione (GSH) and antioxidant enzymes. Nuclear factor-kappaB (NF-κB) p65, interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-1β, and CD68 were upregulated in Cd-administered rat kidney. DADS prevented kidney injury, mitigated OS, suppressed NF-κB, CD68 and pro-inflammatory mediators, and boosted antioxidants. DADS downregulated TGF-β1, Smad3 phosphorylation and Kelch-like ECH-associated protein-1 (Keap1), and increased Nrf2, HO-1, cytoglobin, and PPARγ. In conclusion, DADS protects the kidney against Cd toxicity by attenuating OS, inflammation, and TGF-β1/Smad3 signaling, and enhancement of Nrf2/HO-1 signaling, antioxidants, and PPARγ.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Assiut 71524, Egypt
| | - Ahmad F Ahmeda
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman 346, United Arab Emirates; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Sulaiman M Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Mostafa Sabry
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Mohammed A Alzoghaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
14
|
Hu Y, Wang Y, Hong H, Chen Y, Zhou Q, Zhu G, Tang J, Liu W, Wang L. Global trends and prospects related to macrophage in chronic kidney disease: a bibliometric analysis. Ren Fail 2024; 46:2423846. [PMID: 39572163 PMCID: PMC11583328 DOI: 10.1080/0886022x.2024.2423846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/11/2024] [Accepted: 10/27/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND AND AIMS Macrophages play a variety of widely concerned roles in the process of chronic kidney disease (CKD). To further understand the research hotspots and development trends regarding the relationship between macrophages and CKD, the role of macrophages in the occurrence and progression of CKD was summarized by bibliometrics in this study. MATERIAL AND METHODS We collected the studies relevant the role of macrophages in CKD from the Web of Science Core Collection, which included 1332 relevant studies from Jan 1st, 2004 to Jul 6th, 2023 in WoSCC. CiteSpace, biblioshiny in R, VOSviewer and SCImago Graphica Beta were used for bibliometric analysis and visualization. RESULTS Monash University from Australia is the most productive institution, while China and the USA are most productive countries. Anders HJ is the most cited author. In terms of the number of co-citations, the top one was "Macrophages: versatile players in renal inflammation and fibrosis" by Patrick Ming-Kuen Tang, published in Nature Reviews Nephrology in 2019. Important keywords of this research topic include inflammation, dendritic cell, oxidative stress, NF-κB, tgf-beta, interstitial fibrosis, glomerulonephritis, diabetic nephropathy. Future research hotspots may include molecular mechanism, acute kidney injury, macrophage polarization, kidney fibrosis. CONCLUSION This study provides a systematic review of the role of macrophages in CKD and speculates that future research hotspots. Previous studies have focused on the immune function of macrophages and atypia, and metabolic factors (especially iron metabolism within macrophages) have attracted the attention of researchers in recent years and are the forefront of recent research.
Collapse
Affiliation(s)
- Yuxin Hu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
- Renal Research-Institution of Beijing University of Chinese Medicine, Beijing, China
| | - Yaoxian Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research-Institution of Beijing University of Chinese Medicine, Beijing, China
- Henan University of Chinese Medicine, Henan, China
| | - Hanzhang Hong
- Beijing University of Chinese Medicine, Beijing, China
| | - Yexin Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Qinjie Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | | | - Jingyi Tang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
- Renal Research-Institution of Beijing University of Chinese Medicine, Beijing, China
| | - Weijing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Lin Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research-Institution of Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
15
|
Ene CD, Nicolae I, Căpușă C. Abnormalities of IL-12 Family Cytokine Pathways in Autosomal Dominant Polycystic Kidney Disease Progression. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1971. [PMID: 39768851 PMCID: PMC11677652 DOI: 10.3390/medicina60121971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Background and Objectives: Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most frequent genetic renal disease with a complex physiopathology. More and more studies sustain that inflammation plays a crucial role in ADPKD pathogenesis and progression. We evaluated IL-12 involvement in ADPKD pathophysiology by assessing the serum levels of its monomers and heterodimers. Materials and Methods: A prospective case-control study was developed and included 66 ADPKD subjects and a control group of 40 healthy subjects. The diagnosis of ADPKD was based on familial history clinical and imagistic exams. The study included subjects with eGFR > 60 mL/min/1.73 mp, with no history of hematuria or other renal disorders, with stable blood pressure in the last 6 months. We tested serum levels of monomers IL-12 p40 and IL-12 p35 and heterodimers IL-12 p70, IL-23, IL 35, assessed by ELISA method. Results: IL-12 family programming was abnormal in ADPKD patients. IL-12p70, IL-12p40, and IL-23 secretion increased, while IL-12p35 and IL-35 secretion decreased compared to control. IL-12p70, IL-12p40, and IL-23 had a progressive increase correlated with immune response amplification, a decrease of eGFR, an increase in TKV, and in albuminuria. On the other hand, IL-35 and IL-12p35 were correlated negatively with CRP and albuminuria and positively with eGFR in advanced ADPKD. Conclusions: The present study investigated IL-12 cytokine family members' involvement in ADPKD pathogenesis, enriching our understanding of inflammation in the most common renal genetic disorder.
Collapse
Affiliation(s)
- Corina-Daniela Ene
- Department of Internal Medicine and Nephrology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Nephrology Department, Dr Carol Davila Clinical Hospital of Nephrology, 010731 Bucharest, Romania
| | - Ilinca Nicolae
- Research Department, Victor Babes Clinical Hospital of Infectious Diseases, 030303 Bucharest, Romania;
| | - Cristina Căpușă
- Department of Internal Medicine and Nephrology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Nephrology Department, Dr Carol Davila Clinical Hospital of Nephrology, 010731 Bucharest, Romania
| |
Collapse
|
16
|
Xu M, Zeng X, Pan M, Chen R, Bai Y, He J, Wang C, Qi Y, Sun Q, Wang C, An N. MiR-92a-3p Promotes Renal Injury and Fibrosis Through Facilitating M1 Macrophage Polarization via Targeting LIN28A. Physiol Res 2024; 73:755-767. [PMID: 39545790 PMCID: PMC11629952 DOI: 10.33549/physiolres.935305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/07/2024] [Indexed: 12/13/2024] Open
Abstract
Infiltrated and activated M1 macrophages play a role in kidney injury and fibrosis during chronic kidney disease (CKD) progression. However, the specific ways that M1 macrophage polarization contributes to renal fibrosis are not fully understood. The study seeks to investigate how miR-92a-3p regulates M1 macrophage polarization and its connection to renal fibrosis in the development of CKD. Our results revealed that miR-92a-3p overexpression increased M1-macrophage activation, iNOS, IL-6, and TNF-alpha expression in RAW264.7 upon LPS stimulation. LIN28A overexpression reversed these effects. Moreover, miR-92a-3p overexpression in RAW264.7 exacerbated NRK-52E cell apoptosis induced by LPS, but LIN28A overexpression counteracted this effect. MiR-92a-3p knockout in unilateral ureteral obstruction (UUO) C57BL/6 mice led to reduced renal infiltration and fibrosis, accompanied by decreased iNOS, alpha-SMA, IL-6, TNF-alpha, and increased LIN28A. In summary, our findings suggest that miR-92a-3p may play a role in promoting renal injury and fibrosis both in vitro and in vivo. This effect is potentially achieved by facilitating M1 macrophage polarization through the targeting of LIN28A.
Collapse
Affiliation(s)
- M Xu
- Blood Purification Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Xiuying District, Haikou, Hainan Province, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Su B, Ren Y, Yao W, Su Y, He Q. Mitochondrial dysfunction and NLRP3 inflammasome: key players in kidney stone formation. BJU Int 2024; 134:696-713. [PMID: 38967108 DOI: 10.1111/bju.16454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The mitochondrion serves as a critical intracellular organelle, engaging in essential roles in the regulation of energy production, oxidative stress management, calcium homeostasis, and apoptosis. One such disease that has been particularly associated with these functions is kidney stone disease (KSD), specifically calcium oxalate (CaOx). It is underpinned by oxidative stress and tissue inflammation. Recent studies have shed light on the vital involvement of mitochondrial dysfunction, the nucleotide-binding domain and leucine-rich repeat containing protein 3 (NLRP3) inflammasome, endoplasmic reticulum stress and subsequent cell death in CaOx crystal retention and aggregation. These processes are pivotal in the pathogenesis of kidney stone formation. This review focuses on the pivotal roles of mitochondria in renal cell functions and provides an overview of the intricate interconnectedness between mitochondrial dysfunction and NLRP3 inflammasome activation in the context of KSD. It is essential to recognise the utmost significance of gaining a comprehensive understanding of the mechanisms that safeguard mitochondrial function and regulate the NLRP3 inflammasome. Such knowledge carries significant scientific implications and opens up promising avenues for the development of innovative strategies to prevent the formation of kidney stones.
Collapse
Affiliation(s)
- Boyan Su
- Department of Urology, Key Laboratory of Disease of Urological Systems, Gansu Nepho-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - YaLin Ren
- Department of Urology, Key Laboratory of Disease of Urological Systems, Gansu Nepho-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Weimin Yao
- Department of Urology, Tongji Medical College Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Su
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Qiqi He
- Department of Urology, Key Laboratory of Disease of Urological Systems, Gansu Nepho-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
18
|
Li X, Yao C, Lan DM, Wang Y, Qi SC. Porphyromonas gingivalis Induces Chronic Kidney Disease through Crosstalk between the NF-κB/NLRP3 Pathway and Ferroptosis in GMCs. Curr Med Sci 2024; 44:932-946. [PMID: 39446285 DOI: 10.1007/s11596-024-2923-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/16/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE Porphyromonas gingivalis (P.gingivalis) is a gram-negative bacterium found in the human oral cavity and is a recognized pathogenic bacterium associated with chronic periodontitis and systemic diseases, including chronic kidney disease (CKD), but the roles and molecular mechanism of P.gingivalis in CKD pathogenesis are unclear. METHODS In this study, an animal model of oral P.gingivalis administration and glomerular mesangial cells (GMCs) cocultured with M1-polarized macrophages and P.gingivalis supernatant were constructed. After seven weeks of P.gingivalis gavaged, peripheral blood was collected to detect the changes in renal function. By collecting the teeth and kidneys of mice, H&E staining and IHC were used to analyze the expression of periodontal inflammatory factors in mice, PAS staining was used to analyze glomerular lesions. The supernatant of macrophages was treated with 5% P.gingivalis supernatant. H&E staining, IHC, Western blot and RT-PCR were applied to analyze renal inflammatory factors, macrophage M1 polarization, NF-κB, NLRP3 and ferroptosis changes in vitro. RESULTS We found that oral P.gingivalis administration induced CKD in mice. P.gingivalis supernatant induced macrophage polarization and inflammatory factor upregulation, which triggered the activation of the NF-κB/NLRP3 pathway and ferroptosis in GMCs. By inhibiting the NF-κB/NLRP3 pathway and ferroptosis in GMCs, cell viability and the inflammatory response were partially alleviated in vitro. CONCLUSION We demonstrated that P.gingivalis induced CKD in mice by triggering crosstalk between the NF κB/NLRP3 pathway and ferroptosis in GMCs. Overall, our study suggested that periodontitis can promote the pathogenesis of CKD in mice, which provides evidence of the importance of periodontitis therapy in the prevention and treatment of CKD. P.gingivalis promotes ferroptosis in kidneys and accelerates the progression of CKD through NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Xue Li
- Medical College, Anhui University of Science and Technology, Huainan, 232007, China
- Department of Oral Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology Fudan University, Shanghai, 200002, China
| | - Chao Yao
- Department of Oral Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, China
| | - Dong-Mei Lan
- Department of Oral Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, China
| | - Yan Wang
- Medical College, Anhui University of Science and Technology, Huainan, 232007, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology Fudan University, Shanghai, 200002, China.
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200433, China.
| | - Sheng-Cai Qi
- Medical College, Anhui University of Science and Technology, Huainan, 232007, China.
- Department of Oral Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology Fudan University, Shanghai, 200002, China.
| |
Collapse
|
19
|
Gupta S, Mandal S, Banerjee K, Almarshood H, Pushpakumar SB, Sen U. Complex Pathophysiology of Acute Kidney Injury (AKI) in Aging: Epigenetic Regulation, Matrix Remodeling, and the Healing Effects of H 2S. Biomolecules 2024; 14:1165. [PMID: 39334931 PMCID: PMC11429536 DOI: 10.3390/biom14091165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The kidney is an essential excretory organ that works as a filter of toxins and metabolic by-products of the human body and maintains osmotic pressure throughout life. The kidney undergoes several physiological, morphological, and structural changes with age. As life expectancy in humans increases, cell senescence in renal aging is a growing challenge. Identifying age-related kidney disorders and their cause is one of the contemporary public health challenges. While the structural abnormalities to the extracellular matrix (ECM) occur, in part, due to changes in MMPs, EMMPRIN, and Meprin-A, a variety of epigenetic modifiers, such as DNA methylation, histone alterations, changes in small non-coding RNA, and microRNA (miRNA) expressions are proven to play pivotal roles in renal pathology. An aged kidney is vulnerable to acute injury due to ischemia-reperfusion, toxic medications, altered matrix proteins, systemic hemodynamics, etc., non-coding RNA and miRNAs play an important role in renal homeostasis, and alterations of their expressions can be considered as a good marker for AKI. Other epigenetic changes, such as histone modifications and DNA methylation, are also evident in AKI pathophysiology. The endogenous production of gaseous molecule hydrogen sulfide (H2S) was documented in the early 1980s, but its ameliorative effects, especially on kidney injury, still need further research to understand its molecular mode of action in detail. H2S donors heal fibrotic kidney tissues, attenuate oxidative stress, apoptosis, inflammation, and GFR, and also modulate the renin-angiotensin-aldosterone system (RAAS). In this review, we discuss the complex pathophysiological interplay in AKI and its available treatments along with future perspectives. The basic role of H2S in the kidney has been summarized, and recent references and knowledge gaps are also addressed. Finally, the healing effects of H2S in AKI are described with special emphasis on epigenetic regulation and matrix remodeling.
Collapse
Affiliation(s)
- Shreyasi Gupta
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Subhadeep Mandal
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Kalyan Banerjee
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Hebah Almarshood
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Sathnur B Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
20
|
Xue JD, Gao J, Tang AF, Feng C. Shaping the immune landscape: Multidimensional environmental stimuli refine macrophage polarization and foster revolutionary approaches in tissue regeneration. Heliyon 2024; 10:e37192. [PMID: 39296009 PMCID: PMC11408064 DOI: 10.1016/j.heliyon.2024.e37192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
In immunology, the role of macrophages extends far beyond their traditional classification as mere phagocytes; they emerge as pivotal architects of the immune response, with their function being significantly influenced by multidimensional environmental stimuli. This review investigates the nuanced mechanisms by which diverse external signals ranging from chemical cues to physical stress orchestrate macrophage polarization, a process that is crucial for the modulation of immune responses. By transitioning between pro-inflammatory (M1) and anti-inflammatory (M2) states, macrophages exhibit remarkable plasticity, enabling them to adapt to and influence their surroundings effectively. The exploration of macrophage polarization provides a compelling narrative on how these cells can be manipulated to foster an immune environment conducive to tissue repair and regeneration. Highlighting cutting-edge research, this review presents innovative strategies that leverage the dynamic interplay between macrophages and their environment, proposing novel therapeutic avenues that harness the potential of macrophages in regenerative medicine. Moreover, this review critically evaluates the current challenges and future prospects of translating macrophage-centered strategies from the laboratory to clinical applications.
Collapse
Affiliation(s)
- Jing-Dong Xue
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Jing Gao
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ai-Fang Tang
- Department of Geratology, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Chao Feng
- Department of Reproductive Medicine, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| |
Collapse
|
21
|
Lou Y, Luan YT, Rong WQ, Gai Y. Corilagin alleviates podocyte injury in diabetic nephropathy by regulating autophagy via the SIRT1-AMPK pathway. World J Diabetes 2024; 15:1916-1931. [PMID: 39280180 PMCID: PMC11372637 DOI: 10.4239/wjd.v15.i9.1916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the most frequent chronic microvascular consequence of diabetes, and podocyte injury and malfunction are closely related to the development of DN. Studies have shown that corilagin (Cor) has hepatoprotective, anti-inflammatory, antibacterial, antioxidant, anti-hypertensive, anti-diabetic, and anti-tumor activities. AIM To explore the protective effect of Cor against podocyte injury in DN mice and the underlying mechanisms. METHODS Streptozotocin and a high-fat diet were combined to generate DN mice models, which were then divided into either a Cor group or a DN group (n = 8 in each group). Mice in the Cor group were intraperitoneally injected with Cor (30 mg/kg/d) for 12 wk, and mice in the DN group were treated with saline. Biochemical analysis was used to measure the blood lipid profiles. Hematoxylin and eosin staining was used to detect pathological changes in kidney tissue. Immunohistochemistry and Western blotting were used to assess the protein expression of nephrin and podocin. Mouse podocyte cells (MPC5) were cultured and treated with glucose (5 mmol/L), Cor (50 μM), high glucose (HG) (30 mmol/L), and HG (30 mmol/L) plus Cor (50 μM). Real-time quantitative PCR and Western blotting were performed to examine the effects of Cor on podocyte autophagy. RESULTS Compared with the control group, the DN mice models had increased fasting blood glucose, glycosylated hemoglobin, triglycerides, and total cholesterol, decreased nephrin and podocin expression, increased apoptosis rate, elevated inflammatory cytokines, and enhanced oxidative stress. All of the conditions mentioned above were alleviated after intervention with Cor. In addition, Cor therapy improved SIRT1 and AMPK expression (P < 0.001), inhibited reactive oxygen species and oxidative stress, and elevated autophagy in HG-induced podocytes (P < 0.01). CONCLUSION Cor alleviates podocyte injury by regulating autophagy via the SIRT1-AMPK pathway, thereby exerting its protective impact on renal function in DN mice.
Collapse
Affiliation(s)
- Yu Lou
- Department of Preventive Treatment of Disease, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Yu-Ting Luan
- Department of Infectious Diseases, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Wen-Qing Rong
- Department of General Practice (Including Medical Oncology), Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Yun Gai
- Department of General Practice (Including Medical Oncology), Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| |
Collapse
|
22
|
Liu J, Su G, Chen X, Chen Q, Duan C, Xiao S, Zhou Y, Fang L. PRRSV infection facilitates the shedding of soluble CD163 to induce inflammatory responses. Vet Microbiol 2024; 296:110189. [PMID: 39047452 DOI: 10.1016/j.vetmic.2024.110189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), which poses substantial threats to the global pig industry, is primarily characterized by interstitial pneumonia. Cluster of differentiation 163 (CD163) is the essential receptor for PRRSV infection. Metalloproteinase-mediated cleavage of CD163 leads to the shedding of soluble CD163 (sCD163), thereby inhibiting PRRSV proliferation. However, the exact cleavage site in CD163 and the potential role of sCD163 in inflammatory responses during PRRSV infection remain unclear. Herein, we found that PRRSV infection increased sCD163 levels, as demonstrated in primary alveolar macrophages (PAMs), immortalized PAM (IPAM) cell lines, and sera from PRRSV-infected piglets. With LC-MS/MS, Arg-1041/Ser-1042 was identified as the cleavage site in porcine CD163, and an IPAM cell line with precise mutation at the cleavage site was constructed. Using the precisely mutated IPAM cells, we found that exogenous addition of sCD163 protein promoted inflammatory responses, while mutation at the CD163 cleavage site suppressed inflammatory responses. Consistently, inhibition of sCD163 using its neutralizing antibodies reduced PRRSV infection-triggered inflammatory responses. Importantly, sCD163 promoted cell polarization from M2 to M1 phenotype, which in turn facilitated inflammatory responses. Taken together, our findings identify sCD163 as a novel proinflammatory mediator and provide valuable insights into the mechanisms underlying the induction of inflammatory responses by PRRSV infection.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Porcine respiratory and reproductive syndrome virus/immunology
- Swine
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, CD/immunology
- Porcine Reproductive and Respiratory Syndrome/immunology
- Porcine Reproductive and Respiratory Syndrome/virology
- Macrophages, Alveolar/virology
- Macrophages, Alveolar/immunology
- Inflammation/virology
- Cell Line
Collapse
Affiliation(s)
- Jiao Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Guanning Su
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiaolei Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Quangang Chen
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou 221000, China; School of Life Sciences, Xuzhou Medical University, Xuzhou 221000, China
| | - Chenrui Duan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yanrong Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
23
|
Li ZL, Li XY, Zhou Y, Wang B, Lv LL, Liu BC. Renal tubular epithelial cells response to injury in acute kidney injury. EBioMedicine 2024; 107:105294. [PMID: 39178744 PMCID: PMC11388183 DOI: 10.1016/j.ebiom.2024.105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid and significant decrease in renal function that can arise from various etiologies, and is associated with high morbidity and mortality. The renal tubular epithelial cells (TECs) represent the central cell type affected by AKI, and their notable regenerative capacity is critical for the recovery of renal function in afflicted patients. The adaptive repair process initiated by surviving TECs following mild AKI facilitates full renal recovery. Conversely, when injury is severe or persistent, it allows the TECs to undergo pathological responses, abnormal adaptive repair and phenotypic transformation, which will lead to the development of renal fibrosis. Given the implications of TECs fate after injury in renal outcomes, a deeper understanding of these mechanisms is necessary to identify promising therapeutic targets and biomarkers of the repair process in the human kidney.
Collapse
Affiliation(s)
- Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Xin-Yan Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yan Zhou
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Bin Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
24
|
Hu Z, Chen D, Yan P, Zheng F, Zhu H, Yuan Z, Yang X, Zuo Y, Chen C, Lu H, Wu L, Lyu J, Bai Y. Puerarin suppresses macrophage M1 polarization to alleviate renal inflammatory injury through antagonizing TLR4/MyD88-mediated NF-κB p65 and JNK/FoxO1 activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155813. [PMID: 38905846 DOI: 10.1016/j.phymed.2024.155813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Acute kidney injury (AKI) is a clinically common and serious renal dysfunction, characterized by inflammation and damage to tubular epithelial cells. Puerarin, an isoflavone derivative isolated from Pueraria lobata, has been proven to possess exceptional effectiveness in reducing inflammation. However, the effects and underlying mechanisms of puerarin on AKI remain uncertain. PURPOSE This study investigated the possible therapeutic effects of puerarin on AKI and explored its underlying mechanism. STUDY DESIGN AND METHODS The effects of puerarin on AKI and macrophage polarization were investigated in lipopolysaccharide (LPS)-induced or unilateral ureteral obstruction (UUO)-induced mouse models in vivo and LPS-treated macrophages (Raw264.7) in vitro. Additionally, the effects of puerarin on inflammation-related signaling pathways were analyzed. RESULTS Administration of puerarin effectively alleviated kidney dysfunction and reduced inflammatory response in LPS-induced and UUO-induced AKI. In vitro, puerarin treatment inhibited the polarization of M1 macrophages and the release of inflammatory factors in Raw264.7 cells stimulated by LPS. Mechanistically, puerarin downregulated the activities of NF-κB p65 and JNK/FoxO1 signaling pathways. The application of SRT1460 to activate FoxO1 or anisomycin to activate JNK eliminated puerarin-mediated inhibition of JNK/FoxO1 signaling, leading to suppression of macrophage M1 polarization and reduction of inflammatory factors. Further studies showed that puerarin bound to Toll/interleukin-1 receptor (TIR) domain of MyD88 protein, hindering its binding with TLR4, ultimately resulting in downstream NF-κB p65 and JNK/FoxO1 signaling inactivation. CONCLUSIONS Puerarin antagonizes NF-κB p65 and JNK/FoxO1 activation via TLR4/MyD88 pathway, thereby suppressing macrophage polarization towards M1 phenotype and alleviating renal inflammatory damage.
Collapse
Affiliation(s)
- Zujian Hu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, PR China
| | - Dong Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Penghua Yan
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, PR China
| | - Fan Zheng
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, PR China
| | - Hengyue Zhu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Ziwei Yuan
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, PR China
| | - Xuejia Yang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yidan Zuo
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, PR China
| | - Chaosheng Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Hong Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Lianfeng Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China.
| | - Yongheng Bai
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, PR China; Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
25
|
Torrico S, Hotter G, Muñoz Á, Calle P, García M, Poch E, Játiva S. PBMC therapy reduces cell death and tissue fibrosis after acute kidney injury by modulating the pattern of monocyte/macrophage survival in tissue. Biomed Pharmacother 2024; 178:117186. [PMID: 39067165 DOI: 10.1016/j.biopha.2024.117186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
In this study, we investigated if the therapeutic potential of peripheral blood mononuclear cell (PBMC) therapy in a murine model of ischemic AKI is related with the survival pattern of monocyte/macrophages in tissue. CD-1 mice were subjected to bilateral renal ischemia followed by reperfusion to induce AKI. M2-polarized PBMCs isolated from CD-1 mice were administered intravenously at different time points post-injury. Our results demonstrate that early administration of PBMC therapy attenuates renal tissue damage, reduces tissue cell death and prevents fibrosis development. Reduction of tissue pyroptosis was observed by reduction on NLRP3 inflammasome activation and decreasing IL-1beta and Caspase-1 expression in the kidney. Furthermore, the therapy was shown to mitigate ferroptosis by inducing GPX4 overexpression. Early administration of PBMCs increased the survival pattern of renal tissue-macrophages, promoting a "pro-survival phenotype" resulting in decreased pyroptotic marker NLRP3, IL-1beta and Caspase 1 and increased anti-ferroptotic gene GPX4. Conversely, delayed administration of PBMC therapy exhibits diminished efficacy in preventing cell death and fibrosis in tissue and provoked a decrease in the pro-survival phenotype of both monocyte /macrophages in tissue. Our findings highlight the therapeutic potential of PBMC therapy in mitigating AKI and preventing CKD progression by modulating tissue-resident macrophage survival and reducing their cell death pathways. The fact that the effectiveness of the therapy depends on the time of administration after the injury underscores the importance of early intervention in AKI management.
Collapse
Affiliation(s)
- Selene Torrico
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; M2rlab-XCELL, Madrid 28010, Spain; Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Georgina Hotter
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; CIBER-BBN, Networking Center on Bioengineering, Biomaterials and Nanomedicine, Zaragoza 50018, Spain
| | - Ángeles Muñoz
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
| | - Priscila Calle
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; M2rlab-XCELL, Madrid 28010, Spain
| | - Miriam García
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; M2rlab-XCELL, Madrid 28010, Spain
| | - Esteban Poch
- Nefrologia i Trasplantament Renal, Hospital Clínic, IDIBAPS, Universidad de Barcelona, Barcelona 08036, Spain
| | - Soraya Játiva
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; M2rlab-XCELL, Madrid 28010, Spain.
| |
Collapse
|
26
|
Arjune S, Lettenmeier K, Todorova P, Späth MR, Majjouti M, Mahabir E, Grundmann F, Müller RU. Inflammatory Cytokine Levels in Patients with Autosomal Dominant Polycystic Kidney Disease. KIDNEY360 2024; 5:1289-1298. [PMID: 39046800 PMCID: PMC11441812 DOI: 10.34067/kid.0000000000000525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Key Points Higher levels of IL-6, IL-8, monocyte chemoattractant protein-1, TNF-α , and IFN-γ in patients with autosomal dominant polycystic kidney disease highlight inflammation's role in disease progression. Elevated inflammatory markers in autosomal dominant polycystic kidney disease could serve as biomarkers for progression and targets for therapy. Background Autosomal dominant polycystic kidney disease (ADPKD) is a genetic ciliopathy that causes adult-onset progressive renal failure. Inflammation and the resulting fibrosis play a crucial role in the pathogenesis. In recent years, an increasing number of inflammatory markers, such as monocyte chemoattractant protein-1 (MCP-1) and TNF-α , that are associated with the development and progression of ADPKD have been identified. The objective of this study was to identify and evaluate potential proinflammatory biomarkers in patients with ADPKD from the German AD(H)PKD registry. Methods In this exploratory pilot study, serum concentrations of IL-1β , IL-2, IL-6, IL-8, IL-10, IL-13, IFN-γ , MCP-1, and TNF-α were measured by multiplex immunoassay in 233 adults patients with ADPKD from the German AD(H)PKD registry and compared with an age- and sex-matched healthy control group (n =30). Results IL-6, IL-8, MCP-1, TNF-α , and IFN-γ concentrations were significantly higher in patients with ADPKD than in healthy controls. In addition, sex influenced the concentrations of MCP-1 and TNF-α in the ADPKD and control groups (MCP-1 male=134.8 pg/L, female=75.11 pg/L; P = 0.0055; TNF-α male=26.22 pg/L, female=21.08 pg/L; P = 0.0038). Conclusions Patients with ADPKD have significantly higher levels of IL-6, IL-8, MCP-1, TNF-α , and IFN-γ compared with healthy individuals. These findings underline that inflammation may play a crucial role in the pathogenesis of ADPKD and may be a potential target, both as biomarkers and for therapeutic interventions. Clinical Trial registration number: NCT02497521 .
Collapse
Affiliation(s)
- Sita Arjune
- Department II of Internal Medicine, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
- Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Katharina Lettenmeier
- Department II of Internal Medicine, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Polina Todorova
- Department II of Internal Medicine, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Martin Richard Späth
- Department II of Internal Medicine, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Mohamed Majjouti
- Comparative Medicine, Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Esther Mahabir
- Comparative Medicine, Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Franziska Grundmann
- Department II of Internal Medicine, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
- Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
27
|
Liu J, Zheng B, Cui Q, Zhu Y, Chu L, Geng Z, Mao Y, Wan L, Cao X, Xiong Q, Guo F, Yang DC, Hsu S, Chen C, Yan X. Single-Cell Spatial Transcriptomics Unveils Platelet-Fueled Cycling Macrophages for Kidney Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308505. [PMID: 38838052 PMCID: PMC11304276 DOI: 10.1002/advs.202308505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/14/2024] [Indexed: 06/07/2024]
Abstract
With the increasing incidence of kidney diseases, there is an urgent need to develop therapeutic strategies to combat post-injury fibrosis. Immune cells, including platelets, play a pivotal role in this repair process, primarily through their released cytokines. However, the specific role of platelets in kidney injury and subsequent repair remains underexplored. Here, the detrimental role of platelets in renal recovery following ischemia/reperfusion injury and its contribution to acute kidney injury to chronic kidney disease transition is aimed to investigated. In this study, it is shown that depleting platelets accelerates injury resolution and significantly reduces fibrosis. Employing advanced single-cell and spatial transcriptomic techniques, macrophages as the primary mediators modulated by platelet signals is identified. A novel subset of macrophages, termed "cycling M2", which exhibit an M2 phenotype combined with enhanced proliferative activity is uncovered. This subset emerges in the injured kidney during the resolution phase and is modulated by platelet-derived thrombospondin 1 (THBS1) signaling, acquiring profibrotic characteristics. Conversely, targeted inhibition of THBS1 markedly downregulates the cycling M2 macrophage, thereby mitigating fibrotic progression. Overall, this findings highlight the adverse role of platelet THBS1-boosted cycling M2 macrophages in renal injury repair and suggest platelet THBS1 as a promising therapeutic target for alleviating inflammation and kidney fibrosis.
Collapse
Affiliation(s)
- Jun Liu
- Pediatric Institute of Soochow UniversityChildren's Hospital of Soochow UniversitySoochow UniversitySuzhou215025China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine and Offspring HealthThe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu School of Nanjing Medical UniversitySuzhou215002China
| | - Qingya Cui
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of HematologyThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Yu Zhu
- Pediatric Institute of Soochow UniversityChildren's Hospital of Soochow UniversitySoochow UniversitySuzhou215025China
| | - Likai Chu
- Pediatric Institute of Soochow UniversityChildren's Hospital of Soochow UniversitySoochow UniversitySuzhou215025China
| | - Zhi Geng
- Pediatric Institute of Soochow UniversityChildren's Hospital of Soochow UniversitySoochow UniversitySuzhou215025China
| | - Yiming Mao
- Department of Thoracic SurgerySuzhou Kowloon HospitalShanghai Jiao Tong University School of MedicineSuzhou215028China
| | - Lin Wan
- Pediatric Institute of Soochow UniversityChildren's Hospital of Soochow UniversitySoochow UniversitySuzhou215025China
| | - Xu Cao
- Pediatric Institute of Soochow UniversityChildren's Hospital of Soochow UniversitySoochow UniversitySuzhou215025China
| | - Qianwei Xiong
- Pediatric Institute of Soochow UniversityChildren's Hospital of Soochow UniversitySoochow UniversitySuzhou215025China
| | - Fujia Guo
- Department of MicrobiologyImmunology & Molecular GeneticsUniversity of CaliforniaLos AngelesCA90095USA
| | - David C Yang
- Department of Internal MedicineDivision of NephrologyUniversity of CaliforniaDavisCA95616USA
| | - Ssu‐Wei Hsu
- Department of Internal MedicineDivision of NephrologyUniversity of CaliforniaDavisCA95616USA
| | - Ching‐Hsien Chen
- Department of Internal MedicineDivision of NephrologyUniversity of CaliforniaDavisCA95616USA
- Department of Internal MedicineDivision of Pulmonary and Critical Care MedicineUniversity of California DavisDavisCA95616USA
| | - Xiangming Yan
- Pediatric Institute of Soochow UniversityChildren's Hospital of Soochow UniversitySoochow UniversitySuzhou215025China
| |
Collapse
|
28
|
Ren Y, Zhou L, Li X, Zhu X, Zhang Z, Sun X, Xue X, Dai C. Taz/Tead1 Promotes Alternative Macrophage Activation and Kidney Fibrosis via Transcriptional Upregulation of Smad3. J Immunol Res 2024; 2024:9512251. [PMID: 39108258 PMCID: PMC11303051 DOI: 10.1155/2024/9512251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 09/17/2024] Open
Abstract
Macrophage alternative activation is involved in kidney fibrosis. Previous researches have documented that the transcriptional regulators Yes-associated protein (Yap)/transcriptional coactivator with PDZ-binding motif (Taz) are linked to organ fibrosis. However, limited knowledge exists regarding the function and mechanisms of their downstream molecules in regulating macrophage activation and kidney fibrosis. In this paper, we observed that the Hippo pathway was suppressed in macrophages derived from fibrotic kidneys in mice. Knockout of Taz or Tead1 in macrophages inhibited the alternative activation of macrophages and reduced kidney fibrosis. Additionally, by using bone marrow-derived macrophages (BMDMs), we investigated that knockout of Taz or Tead1 in macrophages impeded both cell proliferation and migration. Moreover, deletion of Tead1 reduces p-Smad3 and Smad3 abundance in macrophages. And chromatin immunoprecipitation (ChIP) assays showed that Tead1 could directly bind to the promoter region of Smad3. Collectively, these results indicate that Tead1 knockout in macrophages could reduce TGFβ1-induced phosphorylation Smad3 via transcriptional downregulation of Smad3, thus suppressing macrophage alternative activation and IRI-induced kidney fibrosis.
Collapse
Affiliation(s)
- Yizhi Ren
- Department of Clinical GeneticsThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Lu Zhou
- Center for kidney diseasesThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Xinyuan Li
- Center for kidney diseasesThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Xingwen Zhu
- Center for kidney diseasesThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Zhiheng Zhang
- School of StomatologyXuzhou Medical University, No. 209 Tongshan Road, Xuzhou 221000, Jiangsu, China
| | - Xiaoli Sun
- Department of Clinical GeneticsThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Xian Xue
- Department of Clinical GeneticsThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Chunsun Dai
- Department of Clinical GeneticsThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
- Center for kidney diseasesThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| |
Collapse
|
29
|
Zhao L, Tang S, Chen F, Ren X, Han X, Zhou X. Regulation of macrophage polarization by targeted metabolic reprogramming for the treatment of lupus nephritis. Mol Med 2024; 30:96. [PMID: 38914953 PMCID: PMC11197188 DOI: 10.1186/s10020-024-00866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Lupus nephritis (LN) is a severe and common manifestation of systemic lupus erythematosus (SLE) that is frequently identified with a poor prognosis. Macrophages play an important role in its pathogenesis. Different macrophage subtypes have different effects on lupus-affected kidneys. Based on their origin, macrophages can be divided into monocyte-derived macrophages (MoMacs) and tissue-resident macrophages (TrMacs). During nephritis, TrMacs develop a hybrid pro-inflammatory and anti-inflammatory functional phenotype, as they do not secrete arginase or nitric oxide (NO) when stimulated by cytokines. The infiltration of these mixed-phenotype macrophages is related to the continuous damage caused by immune complexes and exposure to circulating inflammatory mediators, which is an indication of the failure to resolve inflammation. On the other hand, MoMacs differentiate into M1 or M2 cells under cytokine stimulation. M1 macrophages are pro-inflammatory and secrete pro-inflammatory cytokines, while the M2 main phenotype is essentially anti-inflammatory and promotes tissue repair. Conversely, MoMacs undergo differentiation into M1 or M2 cells in response to cytokine stimulation. M1 macrophages are considered pro-inflammatory cells and secrete pro-inflammatory mediators, whereas the M2 main phenotype is primarily anti-inflammatory and promotes tissue repair. Moreover, based on cytokine expression, M2 macrophages can be further divided into M2a, M2b, and M2c phenotypes. M2a and M2c have anti-inflammatory effects and participate in tissue repair, while M2b cells have immunoregulatory and pro-inflammatory properties. Further, memory macrophages also have a role in the advancement of LN. Studies have demonstrated that the polarization of macrophages is controlled by multiple metabolic pathways, such as glycolysis, the pentose phosphate pathway, fatty acid oxidation, sphingolipid metabolism, the tricarboxylic acid cycle, and arginine metabolism. The changes in these metabolic pathways can be regulated by substances such as fish oil, polyenylphosphatidylcholine, taurine, fumaric acid, metformin, and salbutamol, which inhibit M1 polarization of macrophages and promote M2 polarization, thereby alleviating LN.
Collapse
Affiliation(s)
- Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road No. 56, Yingze District, Taiyuan, Shanxi, 030001, China
| | - Shuqin Tang
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road No. 56, Yingze District, Taiyuan, Shanxi, 030001, China
| | - Fahui Chen
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Xiya Ren
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road No. 56, Yingze District, Taiyuan, Shanxi, 030001, China
| | - Xiutao Han
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Shuangta East Street No. 29, Yingze District, Taiyuan, Shanxi, 030012, China.
| |
Collapse
|
30
|
Islamuddin M, Qin X. Renal macrophages and NLRP3 inflammasomes in kidney diseases and therapeutics. Cell Death Discov 2024; 10:229. [PMID: 38740765 PMCID: PMC11091222 DOI: 10.1038/s41420-024-01996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Macrophages are exceptionally diversified cell types and perform unique features and functions when exposed to different stimuli within the specific microenvironment of various kidney diseases. In instances of kidney tissue necrosis or infection, specific patterns associated with damage or pathogens prompt the development of pro-inflammatory macrophages (M1). These M1 macrophages contribute to exacerbating tissue damage, inflammation, and eventual fibrosis. Conversely, anti-inflammatory macrophages (M2) arise in the same circumstances, contributing to kidney repair and regeneration processes. Impaired tissue repair causes fibrosis, and hence macrophages play a protective and pathogenic role. In response to harmful stimuli within the body, inflammasomes, complex assemblies of multiple proteins, assume a pivotal function in innate immunity. The initiation of inflammasomes triggers the activation of caspase 1, which in turn facilitates the maturation of cytokines, inflammation, and cell death. Macrophages in the kidneys possess the complete elements of the NLRP3 inflammasome, including NLRP3, ASC, and pro-caspase-1. When the NLRP3 inflammasomes are activated, it triggers the activation of caspase-1, resulting in the release of mature proinflammatory cytokines (IL)-1β and IL-18 and cleavage of Gasdermin D (GSDMD). This activation process therefore then induces pyroptosis, leading to renal inflammation, cell death, and renal dysfunction. The NLRP3-ASC-caspase-1-IL-1β-IL-18 pathway has been identified as a factor in the development of the pathophysiology of numerous kidney diseases. In this review, we explore current progress in understanding macrophage behavior concerning inflammation, injury, and fibrosis in kidneys. Emphasizing the pivotal role of activated macrophages in both the advancement and recovery phases of renal diseases, the article delves into potential strategies to modify macrophage functionality and it also discusses emerging approaches to selectively target NLRP3 inflammasomes and their signaling components within the kidney, aiming to facilitate the healing process in kidney diseases.
Collapse
Affiliation(s)
- Mohammad Islamuddin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
31
|
Speirs ZC, Loynes CA, Mathiessen H, Elks PM, Renshaw SA, Jørgensen LVG. What can we learn about fish neutrophil and macrophage response to immune challenge from studies in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109490. [PMID: 38471626 DOI: 10.1016/j.fsi.2024.109490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Fish rely, to a high degree, on the innate immune system to protect them against the constant exposure to potential pathogenic invasion from the surrounding water during homeostasis and injury. Zebrafish larvae have emerged as an outstanding model organism for immunity. The cellular component of zebrafish innate immunity is similar to the mammalian innate immune system and has a high degree of sophistication due to the needs of living in an aquatic environment from early embryonic stages of life. Innate immune cells (leukocytes), including neutrophils and macrophages, have major roles in protecting zebrafish against pathogens, as well as being essential for proper wound healing and regeneration. Zebrafish larvae are visually transparent, with unprecedented in vivo microscopy opportunities that, in combination with transgenic immune reporter lines, have permitted visualisation of the functions of these cells when zebrafish are exposed to bacterial, viral and parasitic infections, as well as during injury and healing. Recent findings indicate that leukocytes are even more complex than previously anticipated and are essential for inflammation, infection control, and subsequent wound healing and regeneration.
Collapse
Affiliation(s)
- Zoë C Speirs
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Catherine A Loynes
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Heidi Mathiessen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Philip M Elks
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Stephen A Renshaw
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Louise von Gersdorff Jørgensen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark.
| |
Collapse
|
32
|
Wang Y, Li C, Chen J, Cui X, Wang B, Wang Y, Wang D, Liu J, Li J. Pyxinol Fatty Acid Ester Derivatives J16 against AKI by Selectively Promoting M1 Transition to M2c Macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7074-7088. [PMID: 38525502 DOI: 10.1021/acs.jafc.3c06979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Acute kidney injury (AKI) is a common, multicause clinical condition that, if ignored, often progresses to chronic kidney disease (CKD) and end-stage kidney disease, with a mortality rate of 40-50%. However, there is a lack of universal treatment for AKI. Inflammation is the basic pathological change of early kidney injury, and inflammation can exacerbate AKI. Macrophages are the primary immune cells involved in the inflammatory microenvironment of kidney disease. Therefore, regulating the function of macrophages is a crucial breakthrough for the AKI intervention. Our team chemically modified pyxinol, an ocotillol-type ginsenoside, to prepare PJ16 with higher solubility and bioavailability. In vitro, using a model of macrophages stimulated by LPS, it was found that PJ16 could regulate macrophage function, including inhibiting the secretion of inflammatory factors, promoting phagocytosis, inhibiting M1 macrophages, and promoting M1 transition to the M2c macrophage. Further investigation revealed that PJ16 may shield renal tubular epithelial cells (HK-2) damaged by LPS in vitro. Based on this, PJ16 was validated in the animal model of unilateral ureteral obstruction, which showed that it improves renal function and inhibits renal tissue fibrosis by decreasing inflammatory responses, reducing macrophage inflammatory infiltration, and preferentially upregulating M2c macrophages. In conclusion, our study is the first to show that PJ16 resists AKI and fibrosis by mechanistically regulating macrophage function by modulating the phenotypic transition from M1 to M2 macrophages, mainly M2c macrophages.
Collapse
Affiliation(s)
- Yaru Wang
- Department of Pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Changcheng Li
- Department of Pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Jingyi Chen
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130022, China
| | - Xiaoli Cui
- Department of Pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Binghuan Wang
- Department of Pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Yuezeng Wang
- Department of Pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Dayu Wang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130022, China
| | - Jinping Liu
- Research Center of Natural Drug, School of Pharmaceutical Sciences of Jilin University, Changchun, Jilin 130012, China
| | - Jing Li
- Department of Pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
33
|
Wang X, Rao J, Chen X, Wang Z, Zhang Y. Identification of Shared Signature Genes and Immune Microenvironment Subtypes for Heart Failure and Chronic Kidney Disease Based on Machine Learning. J Inflamm Res 2024; 17:1873-1895. [PMID: 38533476 PMCID: PMC10964169 DOI: 10.2147/jir.s450736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Background A complex interrelationship exists between Heart Failure (HF) and chronic kidney disease (CKD). This study aims to clarify the molecular mechanisms of the organ-to-organ interplay between heart failure and CKD, as well as to identify extremely sensitive and specific biomarkers. Methods Differentially expressed tandem genes were identified from HF and CKD microarray datasets and enrichment analyses of tandem perturbation genes were performed to determine their biological functions. Machine learning algorithms are utilized to identify diagnostic biomarkers and evaluate the model by ROC curves. RT-PCR was employed to validate the accuracy of diagnostic biomarkers. Molecular subtypes were identified based on tandem gene expression profiling, and immune cell infiltration of different subtypes was examined. Finally, the ssGSEA score was used to build the ImmuneScore model and to assess the differentiation between subtypes using ROC curves. Results Thirty-three crosstalk genes were associated with inflammatory, immune and metabolism-related signaling pathways. The machine-learning algorithm identified 5 hub genes (PHLDA1, ATP1A1, IFIT2, HLTF, and MPP3) as the optimal shared diagnostic biomarkers. The expression levels of tandem genes were negatively correlated with left ventricular ejection fraction and glomerular filtration rate. The CIBERSORT results indicated the presence of severe immune dysregulation in patients with HF and CKD, which was further validated at the single-cell level. Consensus clustering classified HF and CKD patients into immune and metabolic subtypes. Twelve immune genes associated with immune subtypes were screened based on WGCNA analysis, and an ImmuneScore model was constructed for high and low risk. The model accurately predicted different molecular subtypes of HF or CKD. Conclusion Five crosstalk genes may serve as potential biomarkers for diagnosing HF and CKD and are involved in disease progression. Metabolite disorders causing activation of a large number of immune cells explain the common pathogenesis of HF and CKD.
Collapse
Affiliation(s)
- Xuefu Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Jin Rao
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Xiangyu Chen
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Zhinong Wang
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Yufeng Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
34
|
Youssef N, Noureldein MH, Riachi ME, Haddad A, Eid AA. Macrophage polarization and signaling in diabetic kidney disease: a catalyst for disease progression. Am J Physiol Renal Physiol 2024; 326:F301-F312. [PMID: 38153850 DOI: 10.1152/ajprenal.00266.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/29/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes affecting millions of people worldwide. Macrophages, a critical immune cell type, are central players in the development and progression of DKD. In this comprehensive review, we delve into the intricate role of macrophages in DKD, examining how they can become polarized into proinflammatory M1 or anti-inflammatory M2 phenotypes. We explore the signaling pathways involved in macrophage recruitment and polarization in the kidneys, including the key cytokines and transcription factors that promote M1 and M2 polarization. In addition, we discuss the latest clinical studies investigating macrophages in DKD and explore the potential of hypoglycemic drugs for modulating macrophage polarization. By gaining a deeper understanding of the mechanisms that regulate macrophage polarization in DKD, we may identify novel therapeutic targets for this debilitating complication of diabetes. This review provides valuable insights into the complex interplay between macrophages and DKD, shedding light on the latest developments in this important area of research. This review aims to enhance understanding of the role that macrophages play in the pathogenesis of DKD.
Collapse
Affiliation(s)
- Natalie Youssef
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- American University of Beirut Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohamed H Noureldein
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- American University of Beirut Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mansour E Riachi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- American University of Beirut Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| | - Antony Haddad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- American University of Beirut Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- American University of Beirut Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
35
|
Sandersfeld M, Büttner-Herold M, Ferrazzi F, Amann K, Benz K, Daniel C. Macrophage subpopulations in pediatric patients with lupus nephritis and other inflammatory diseases affecting the kidney. Arthritis Res Ther 2024; 26:46. [PMID: 38331818 PMCID: PMC10851514 DOI: 10.1186/s13075-024-03281-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Macrophages play an important role in the pathogenesis of lupus nephritis (LN), but less is known about macrophage subtypes in pediatric LN. Here we compared renal inflammation in LN with other inflammatory pediatric kidney diseases and assessed whether inflammation correlates with clinical parameters. METHODS Using immunofluorescence microscopy, we analyzed renal biopsies from 20 pediatric patients with lupus nephritis (ISN/RPS classes II-V) and pediatric controls with other inflammatory kidney diseases for infiltration with M1-like (CD68 + /CD206 - , CD68 + /CD163 -), M2a-like (CD206 + /CD68 +), and M2c-like macrophages (CD163 + /CD68 +) as well as CD3 + T-cells, CD20 + B-cells, and MPO + neutrophilic granulocytes. In addition, the correlation of macrophage infiltration with clinical parameters at the time of renal biopsy, e.g., eGFR and serum urea, was investigated. Macrophage subpopulations were compared with data from a former study of adult LN patients. RESULTS The frequency of different macrophage subtypes in biopsies of pediatric LN was dependent on ISN/RPS class and showed the most pronounced M1-like macrophage infiltration in patients with LN class IV, whereas M2c-like macrophages were most abundant in class III and IV. Interestingly, on average, only half as many macrophages were found in renal biopsies of pediatric LN compared to adult patients with LN. The distribution of frequencies of macrophage subpopulations, however, was different for CD68 + CD206 + (M2a-like) but comparable for CD68 + CD163 - (M1-like) CD68 + CD163 + (M2c-like) cells in pediatric and adult patients. Compared to other inflammatory kidney diseases in children, fewer macrophages and other inflammatory cells were found in kidney biopsies of LN. Depending on the disease, the frequency of individual immune cell types varied, but we were unable to confirm disease-specific inflammatory signatures in our study due to the small number of pediatric cases. Worsened renal function, measured as elevated serum urea and decreased eGFR, correlated particularly strongly with the number of CD68 + /CD163 - M1-like macrophages and CD20 + B cells in pediatric inflammatory kidney disease. CONCLUSION Although M1-like macrophages play a greater role in pediatric LN patients than in adult LN patients, M2-like macrophages appear to be key players and are more abundant in other pediatric inflammatory kidney diseases compared to LN.
Collapse
Affiliation(s)
- Mira Sandersfeld
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstr. 8-10, Erlangen, 91054, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstr. 8-10, Erlangen, 91054, Germany
| | - Fulvia Ferrazzi
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstr. 8-10, Erlangen, 91054, Germany
- Institute of Pathology, FAU Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstr. 8-10, Erlangen, 91054, Germany
| | - Kerstin Benz
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstr. 8-10, Erlangen, 91054, Germany
- Department of Pediatrics, FAU Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstr. 8-10, Erlangen, 91054, Germany.
| |
Collapse
|
36
|
Cohen C, Mhaidly R, Croizer H, Kieffer Y, Leclere R, Vincent-Salomon A, Robley C, Anglicheau D, Rabant M, Sannier A, Timsit MO, Eddy S, Kretzler M, Ju W, Mechta-Grigoriou F. WNT-dependent interaction between inflammatory fibroblasts and FOLR2+ macrophages promotes fibrosis in chronic kidney disease. Nat Commun 2024; 15:743. [PMID: 38272907 PMCID: PMC10810789 DOI: 10.1038/s41467-024-44886-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
Chronic kidney disease (CKD) is a public health problem driven by myofibroblast accumulation, leading to interstitial fibrosis. Heterogeneity is a recently recognized characteristic in kidney fibroblasts in CKD, but the role of different populations is still unclear. Here, we characterize a proinflammatory fibroblast population (named CXCL-iFibro), which corresponds to an early state of myofibroblast differentiation in CKD. We demonstrate that CXCL-iFibro co-localize with macrophages in the kidney and participate in their attraction, accumulation, and switch into FOLR2+ macrophages from early CKD stages on. In vitro, macrophages promote the switch of CXCL-iFibro into ECM-secreting myofibroblasts through a WNT/β-catenin-dependent pathway, thereby suggesting a reciprocal crosstalk between these populations of fibroblasts and macrophages. Finally, the detection of CXCL-iFibro at early stages of CKD is predictive of poor patient prognosis, which shows that the CXCL-iFibro population is an early player in CKD progression and demonstrates the clinical relevance of our findings.
Collapse
Affiliation(s)
- Camille Cohen
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Rana Mhaidly
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Hugo Croizer
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Yann Kieffer
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Renaud Leclere
- Department of Diagnostic and Theragnostic Medicine, Institut Curie Hospital Group, 26, rue d'Ulm, F-75248, Paris, France
| | - Anne Vincent-Salomon
- Department of Diagnostic and Theragnostic Medicine, Institut Curie Hospital Group, 26, rue d'Ulm, F-75248, Paris, France
| | - Catherine Robley
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Dany Anglicheau
- Department of Nephrology and Kidney Transplantation, Necker Hospital, AP-HP, Paris Cité University, Inserm U1151, 149 rue de Sèvres, 75015, Paris, France
| | - Marion Rabant
- Department of Pathology, Necker Hospital, AP-HP, Paris Cité University, 149 rue de Sèvres, 75015, Paris, France
| | - Aurélie Sannier
- Department of Pathology, AP-HP, Bichat-Claude Bernard Hospital, Paris Cité University, Inserm, U1148, 46, rue Henri Huchard, 75877, Paris, France
| | - Marc-Olivier Timsit
- Department of Urology, Européen George Pompidou Hospital, APHP, Paris Cité University, Paris, France
| | - Sean Eddy
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Matthias Kretzler
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Wenjun Ju
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Fatima Mechta-Grigoriou
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France.
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France.
| |
Collapse
|
37
|
Rendra E, Uhlig S, Moskal I, Thielemann C, Klüter H, Bieback K. Adipose Stromal Cell-Derived Secretome Attenuates Cisplatin-Induced Injury In Vitro Surpassing the Intricate Interplay between Proximal Tubular Epithelial Cells and Macrophages. Cells 2024; 13:121. [PMID: 38247813 PMCID: PMC10814170 DOI: 10.3390/cells13020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
(1) Background: The chemotherapeutic drug cisplatin exerts toxic side effects causing acute kidney injury. Mesenchymal stromal cells can ameliorate cisplatin-induced kidney injury. We hypothesize that the MSC secretome orchestrates the vicious cycle of injury and inflammation by acting on proximal tubule epithelial cells (PTECs) and macrophages individually, but further by counteracting their cellular crosstalk. (2) Methods: Conditioned medium (CM) from adipose stromal cells was used, first assessing its effect on cisplatin injury in PTECs. Second, the effects of cisplatin and the CM on macrophages were measured. Lastly, in an indirect co-culture system, the interplay between the two cell types was assessed. (3) Results: First, the CM rescued PTECs from cisplatin-induced apoptosis by reducing oxidative stress and expression of nephrotoxicity genes. Second, while cisplatin exerted only minor effects on macrophages, the CM skewed macrophage phenotypes to the anti-inflammatory M2-like phenotype and increased phagocytosis. Finally, in the co-culture system, the CM suppressed PTEC death by inhibiting apoptosis and nuclei fragmentation. The CM lowered TNF-α release, while cisplatin inhibited macrophage phagocytosis, PTECs, and the CM to a greater extent, thus enhancing it. The CM strongly dampened the inflammatory macrophage cytokine secretion triggered by PTECs. (4) Conclusions: ASC-CM surpasses the PTEC-macrophage crosstalk in cisplatin injury. The positive effects on reducing cisplatin cytotoxicity, on polarizing macrophages, and on fine-tuning cytokine secretion underscore MSCs' CM benefit to prevent kidney injury progression.
Collapse
Affiliation(s)
- Erika Rendra
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
| | - Stefanie Uhlig
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
- Flow Core Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Isabell Moskal
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
| | - Corinna Thielemann
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
- Flow Core Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
38
|
Yamamoto K, Oda T, Uchida T, Takechi H, Oshima N, Kumagai H. Evaluating the State of Glomerular Disease by Analyzing Urinary Sediments: mRNA Levels and Immunofluorescence Staining for Various Markers. Int J Mol Sci 2024; 25:744. [PMID: 38255818 PMCID: PMC10815027 DOI: 10.3390/ijms25020744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Renal biopsy is the gold standard for making the final diagnosis and for predicting the progression of renal disease, but monitoring disease status by performing biopsies repeatedly is impossible because it is an invasive procedure. Urine tests are non-invasive and may reflect the general condition of the whole kidney better than renal biopsy results. We therefore investigated the diagnostic value of extensive urinary sediment analysis by immunofluorescence staining for markers expressed on kidney-derived cells (cytokeratin: marker for tubular epithelial cells, synaptopodin: marker for podocytes, claudin1: marker for parietal epithelial cells, CD68: marker for macrophages (MΦ), neutrophil elastase: marker for neutrophils). We further examined the expression levels of the mRNAs for these markers by real-time reverse transcription polymerase chain reaction. We also examined the levels of mRNAs associated with the M1 (iNOS, IL-6) and M2 (CD163, CD204, CD206, IL-10) MΦ phenotypes. Evaluated markers were compared with clinical and histological findings for the assessment of renal diseases. Claudin1- and CD68-positive cell counts in urinary sediments were higher in patients with glomerular crescents (especially cellular crescents) than in patients without crescents. The relative levels of mRNA for CD68 and the M2 MΦ markers (CD163, CD204, CD206, and IL-10) in urinary sediments were also higher in patients with glomerular crescents. These data suggest that immunofluorescence staining for claudin1 and CD68 in urinary sediments and the relative levels of mRNA for CD68 and M2 MΦ markers in urinary sediments are useful for evaluating the state of glomerular diseases.
Collapse
Affiliation(s)
- Kojiro Yamamoto
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa 359-8513, Japan; (K.Y.); (H.T.); (N.O.); (H.K.)
| | - Takashi Oda
- Department of Nephrology, Tokyo Medical University Hachioji Medical Center, Hachioji 193-0998, Japan;
| | - Takahiro Uchida
- Department of Nephrology, Tokyo Medical University Hachioji Medical Center, Hachioji 193-0998, Japan;
| | - Hanako Takechi
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa 359-8513, Japan; (K.Y.); (H.T.); (N.O.); (H.K.)
| | - Naoki Oshima
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa 359-8513, Japan; (K.Y.); (H.T.); (N.O.); (H.K.)
| | - Hiroo Kumagai
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa 359-8513, Japan; (K.Y.); (H.T.); (N.O.); (H.K.)
- Department of Nephrology, Sayama General Clinic, Sayama 350-1305, Japan
| |
Collapse
|
39
|
Liu Y, Kors L, Butter LM, Stokman G, Claessen N, Zuurbier CJ, Girardin SE, Leemans JC, Florquin S, Tammaro A. NLRX1 Prevents M2 Macrophage Polarization and Excessive Renal Fibrosis in Chronic Obstructive Nephropathy. Cells 2023; 13:23. [PMID: 38201227 PMCID: PMC10778504 DOI: 10.3390/cells13010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Chronic kidney disease often leads to kidney dysfunction due to renal fibrosis, regardless of the initial cause of kidney damage. Macrophages are crucial players in the progression of renal fibrosis as they stimulate inflammation, activate fibroblasts, and contribute to extracellular matrix deposition, influenced by their metabolic state. Nucleotide-binding domain and LRR-containing protein X (NLRX1) is an innate immune receptor independent of inflammasomes and is found in mitochondria, and it plays a role in immune responses and cell metabolism. The specific impact of NLRX1 on macrophages and its involvement in renal fibrosis is not fully understood. METHODS To explore the specific role of NLRX1 in macrophages, bone-marrow-derived macrophages (BMDMs) extracted from wild-type (WT) and NLRX1 knockout (KO) mice were stimulated with pro-inflammatory and pro-fibrotic factors to induce M1 and M2 polarization in vitro. The expression levels of macrophage polarization markers (Nos2, Mgl1, Arg1, and Mrc1), as well as the secretion of transforming growth factor β (TGFβ), were measured using RT-PCR and ELISA. Seahorse-based bioenergetics analysis was used to assess mitochondrial respiration in naïve and polarized BMDMs obtained from WT and NLRX1 KO mice. In vivo, WT and NLRX1 KO mice were subjected to unilateral ureter obstruction (UUO) surgery to induce renal fibrosis. Kidney injury, macrophage phenotypic profile, and fibrosis markers were assessed using RT-PCR. Histological staining (PASD and Sirius red) was used to quantify kidney injury and fibrosis. RESULTS Compared to the WT group, an increased gene expression of M2 markers-including Mgl1 and Mrc1-and enhanced TGFβ secretion were found in naïve BMDMs extracted from NLRX1 KO mice, indicating functional polarization towards the pro-fibrotic M2 subtype. NLRX1 KO naïve macrophages also showed a significantly enhanced oxygen consumption rate compared to WT cells and increased basal respiration and maximal respiration capacities that equal the level of M2-polarized macrophages. In vivo, we found that NLRX1 KO mice presented enhanced M2 polarization markers together with enhanced tubular injury and fibrosis demonstrated by augmented TGFβ levels, fibronectin, and collagen accumulation. CONCLUSIONS Our findings highlight the unique role of NLRX1 in regulating the metabolism and function of macrophages, ultimately protecting against excessive renal injury and fibrosis in UUO.
Collapse
Affiliation(s)
- Ye Liu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Pathology, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Lotte Kors
- Department of Pathology, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Loes M. Butter
- Department of Pathology, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Geurt Stokman
- Department of Pathology, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Nike Claessen
- Department of Pathology, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Coert J. Zuurbier
- Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Stephen E. Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Jaklien C. Leemans
- Department of Pathology, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Sandrine Florquin
- Department of Pathology, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Alessandra Tammaro
- Department of Pathology, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
40
|
Fang H, Xu S, Wang Y, Yang H, Su D. Endogenous stimuli-responsive drug delivery nanoplatforms for kidney disease therapy. Colloids Surf B Biointerfaces 2023; 232:113598. [PMID: 37866237 DOI: 10.1016/j.colsurfb.2023.113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Kidney disease is one of the most life-threatening health problems, affecting millions of people in the world. Commonly used steroids and immunosuppressants often fall exceptionally short of outcomes with inescapable systemic toxicity. With the booming research in nanobiotechnology, stimuli-responsive nanoplatform has come an appealing therapeutic strategy for kidney disease. Endogenous stimuli-responsive materials have shown profuse promise owing to their enhanced spatiotemporal control and precise to the location of the lesion. This review focuses on recent advances stimuli-responsive drug delivery nano-architectonics for kidney disease. First, a brief introduction of pathogenesis of kidney disease and pathological microenvironment were provided. Then, various endogenous stimulus involved in drug delivery nanoplatforms including pH, ROS, enzymes, and glucose were categorized based on the pathological mechanisms of kidney disease. Next, we separately summarized literature examples of endogenous stimuli-responsive nanomaterials, and outlined the design strategies and response mechanisms. Finally, the paper was concluded by discussing remaining challenges and future perspectives of endogenous stimuli-responsive drug delivery nanoplatform for expediting the speed of development and clinical applications.
Collapse
Affiliation(s)
- Hufeng Fang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China.
| | - Shan Xu
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Yu Wang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Hao Yang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Dan Su
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China.
| |
Collapse
|
41
|
Han M, Wang Y, Huang X, Li P, Liang X, Wang R, Bao K. Identification of hub genes and their correlation with immune infiltrating cells in membranous nephropathy: an integrated bioinformatics analysis. Eur J Med Res 2023; 28:525. [PMID: 37974210 PMCID: PMC10652554 DOI: 10.1186/s40001-023-01311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/24/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Membranous nephropathy (MN) is a chronic glomerular disease that leads to nephrotic syndrome in adults. The aim of this study was to identify novel biomarkers and immune-related mechanisms in the progression of MN through an integrated bioinformatics approach. METHODS The microarray data were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) between MN and normal samples were identified and analyzed by the Gene Ontology analysis, the Kyoto Encyclopedia of Genes and Genomes analysis and the Gene Set Enrichment Analysis (GSEA) enrichment. Hub The hub genes were screened and identified by the weighted gene co-expression network analysis (WGCNA) and the least absolute shrinkage and selection operator (LASSO) algorithm. The receiver operating characteristic (ROC) curves evaluated the diagnostic value of hub genes. The single-sample GSEA analyzed the infiltration degree of several immune cells and their correlation with the hub genes. RESULTS We identified a total of 574 DEGs. The enrichment analysis showed that metabolic and immune-related functions and pathways were significantly enriched. Four co-expression modules were obtained using WGCNA. The candidate signature genes were intersected with DEGs and then subjected to the LASSO analysis, obtaining a total of 6 hub genes. The ROC curves indicated that the hub genes were associated with a high diagnostic value. The CD4+ T cells, CD8+ T cells and B cells significantly infiltrated in MN samples and correlated with the hub genes. CONCLUSIONS We identified six hub genes (ZYX, CD151, N4BP2L2-IT2, TAPBP, FRAS1 and SCARNA9) as novel biomarkers for MN, providing potential targets for the diagnosis and treatment.
Collapse
Affiliation(s)
- Miaoru Han
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yi Wang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Xiaoyan Huang
- Guangdong-Hong Kong-Macau Joint Lab On Chinese Medicine and Immune Disease Research, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ping Li
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xing Liang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Rongrong Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Kun Bao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Guangdong-Hong Kong-Macau Joint Lab On Chinese Medicine and Immune Disease Research, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
42
|
Xiong Y, Zhong Q, Zhang Y, Qin F, Yuan J. The Association between the Platelet to White Blood Cell Ratio and Chronic Kidney Disease in an Aging Population: A Four-Year Follow-Up Study. J Clin Med 2023; 12:7073. [PMID: 38002686 PMCID: PMC10672662 DOI: 10.3390/jcm12227073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/30/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
INTRODUCTION The platelet to white blood cell ratio (PWR) has been reported to be a prognostic factor for some diseases, such as subarachnoid hemorrhage. However, the association between the PWR and chronic kidney disease (CKD) remains unknown. To investigate the cross-sectional and longitudinal association between the PWR and CKD, this study was performed. METHODS This study used datasets from a national prospective cohort in China (China Health and Retirement Longitudinal Study). A retrospective cohort from 2011 to 2015 was constructed. The PWR was stratified as a categorical variable according to tertiles (T1-T3 groups). CKD was defined as an estimated glomerular filtration rate < 60 mL min-1/1.73/m2. Univariate and multivariate logistic regressions and restricted cubic spline regression were adopted to assess the linear and non-linear association between the PWR and CKD. Propensity score matching was used to balance the discrepancies between covariates. Subgroup and interactive analyses were performed to explore potential interactive effects of covariates. Missing values were interpolated using random forest. The PWR was also stratified according to the median and quartiles as sensitivity analyses. RESULTS A total of 8600 participants were included in this study. In the full model, the odds ratios (ORs) of prevalent CKD were 0.78 (95% CI = 0.62-0.97, p < 0.05) for the T2 group and 0.59 (95% CI = 0.46-0.76, p < 0.001) for the T3 group. There were significant interactive effects of marital status and smoking in the PWR-CKD association (both p for interaction < 0.05). An L-shaped, non-linear association was detected between the PWR and prevalent CKD in the overall population, participants ≥ 60 years, and females subgroups (all p for non-linear < 0.05). All sensitivity analyses supported the negative association between the PWR and prevalent CKD. In the 2011-2015 follow-up cohort, the ORs of incident CKD were 0.73 (95% CI = 0.49-1.08, p > 0.05) and 0.31 (95% CI = 0.18-0.51, p < 0.001) for the T2 and T3 groups, respectively, in the full model. CONCLUSIONS A high PWR is associated with a reduced risk of prevalent and incident CKD. The PWR may serve as a predictor for CKD, facilitating the early identification and intervention of kidney function decline.
Collapse
Affiliation(s)
- Yang Xiong
- Department of Urology and Andrology Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Qian Zhong
- Department of Endocrinology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yangchang Zhang
- Department of Public Health, Capital Medical University, Beijing 100054, China
| | - Feng Qin
- Department of Urology and Andrology Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Jiuhong Yuan
- Department of Urology and Andrology Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
43
|
Dou F, Liu Q, Lv S, Xu Q, Wang X, Liu S, Liu G. FN1 and TGFBI are key biomarkers of macrophage immune injury in diabetic kidney disease. Medicine (Baltimore) 2023; 102:e35794. [PMID: 37960829 PMCID: PMC10637504 DOI: 10.1097/md.0000000000035794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/04/2023] [Indexed: 11/15/2023] Open
Abstract
The pathogenesis of diabetic kidney disease (DKD) is complex, and the existing treatment methods cannot control disease progression well. Macrophages play an important role in the development of DKD. This study aimed to search for biomarkers involved in immune injury induced by macrophages in DKD. The GSE96804 dataset was downloaded and analyzed by the CIBERSORT algorithm to understand the differential infiltration of macrophages between DKD and normal controls. Weighted gene co-expression network analysis was used to explore the correlation between gene expression modules and macrophages in renal tissue of DKD patients. Protein-protein interaction network and machine learning algorithm were used to screen the hub genes in the key modules. Subsequently, the GSE30528 dataset was used to further validate the expression of hub genes and analyze the diagnostic effect by the receiver operating characteristic curve. The clinical data were applied to explore the prognostic significance of hub genes. CIBERSORT analysis showed that macrophages increased significantly in DKD renal tissue samples. A total of ten modules were generated by weighted gene co-expression network analysis, of which the blue module was closely associated with macrophages. The blue module mainly played an important role in biological processes such as immune response and fibrosis. Fibronectin 1 (FN1) and transforming growth factor beta induced (TGFBI) were identified as hub genes of DKD patients. Receiver operating characteristic curve analysis was performed in the test cohort: FN1 and TGFBI had larger area under the curve values (0.99 and 0.88, respectively). Clinical validation showed that 2 hub genes were negatively correlated with the estimated glomerular filtration rate in DKD patients. In addition, FN1 and TGFBI showed a strong positive correlation with macrophage alternative activation. FN1 and TGFBI are promising biomarkers for the diagnosis and treatment of DKD patients, which may participate in immune response and fibrosis induced by macrophages.
Collapse
Affiliation(s)
- Fulin Dou
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, China
| | - Qingzhen Liu
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, China
| | - Shasha Lv
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, China
| | - Qiaoying Xu
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, China
| | - Xueling Wang
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, China
| | - Shanshan Liu
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, China
| | - Gang Liu
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, China
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
44
|
da Silva TB, Rendra E, David CAW, Bieback K, Cross MJ, Wilm B, Liptrott NJ, Murray P. Umbilical cord mesenchymal stromal cell-derived extracellular vesicles lack the potency to immunomodulate human monocyte-derived macrophages in vitro. Biomed Pharmacother 2023; 167:115624. [PMID: 37783151 DOI: 10.1016/j.biopha.2023.115624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been reported to display efficacy in a variety of preclinical models, but without long-term engraftment, suggesting a role for secreted factors, such as MSC-derived extracellular vesicles (EVs). MSCs are known to elicit immunomodulatory effects, an important aspect of which is their ability to affect macrophage phenotype. However, it is not clear if these effects are mediated by MSC-derived EVs, or other factors secreted by the MSCs. Here, we use flow cytometry to assess the effects of human umbilical cord (hUC) MSC-derived EVs on the expression of pro-inflammatory (CD80) and anti-inflammatory (CD163) surface markers in human monocyte-derived macrophages (hMDMs). hUC-MSC-derived EVs did not change the surface marker expression of the hMDMs. In contrast, when hMDMs were co-incubated with hUC-MSCs in indirect co-cultures, changes were observed in the expression of CD14, CD80 and CD163, particularly in M1 macrophages, suggesting that soluble factors are necessary to elicit a shift in phenotype. However, even though EVs did not alter the surface marker expression of macrophages, they promoted angiogenesis and phagocytic capacity increased proportionally to increases in EV concentration. Taken together, these results suggest that hUC-MSC-derived EVs are not sufficient to alter macrophage phenotype and that additional MSC-derived factors are needed.
Collapse
Affiliation(s)
- Tamiris Borges da Silva
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, L69 3GE Liverpool, UK
| | - Erika Rendra
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Christopher A W David
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany; Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Michael J Cross
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GL, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, L69 3GE Liverpool, UK
| | - Neill J Liptrott
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, L69 3GE Liverpool, UK.
| |
Collapse
|
45
|
Amador-Martínez I, Aparicio-Trejo OE, Bernabe-Yepes B, Aranda-Rivera AK, Cruz-Gregorio A, Sánchez-Lozada LG, Pedraza-Chaverri J, Tapia E. Mitochondrial Impairment: A Link for Inflammatory Responses Activation in the Cardiorenal Syndrome Type 4. Int J Mol Sci 2023; 24:15875. [PMID: 37958859 PMCID: PMC10650149 DOI: 10.3390/ijms242115875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiorenal syndrome type 4 (CRS type 4) occurs when chronic kidney disease (CKD) leads to cardiovascular damage, resulting in high morbidity and mortality rates. Mitochondria, vital organelles responsible for essential cellular functions, can become dysfunctional in CKD. This dysfunction can trigger inflammatory responses in distant organs by releasing Damage-associated molecular patterns (DAMPs). These DAMPs are recognized by immune receptors within cells, including Toll-like receptors (TLR) like TLR2, TLR4, and TLR9, the nucleotide-binding domain, leucine-rich-containing family pyrin domain-containing-3 (NLRP3) inflammasome, and the cyclic guanosine monophosphate (cGMP)-adenosine monophosphate (AMP) synthase (cGAS)-stimulator of interferon genes (cGAS-STING) pathway. Activation of these immune receptors leads to the increased expression of cytokines and chemokines. Excessive chemokine stimulation results in the recruitment of inflammatory cells into tissues, causing chronic damage. Experimental studies have demonstrated that chemokines are upregulated in the heart during CKD, contributing to CRS type 4. Conversely, chemokine inhibitors have been shown to reduce chronic inflammation and prevent cardiorenal impairment. However, the molecular connection between mitochondrial DAMPs and inflammatory pathways responsible for chemokine overactivation in CRS type 4 has not been explored. In this review, we delve into mechanistic insights and discuss how various mitochondrial DAMPs released by the kidney during CKD can activate TLRs, NLRP3, and cGAS-STING immune pathways in the heart. This activation leads to the upregulation of chemokines, ultimately culminating in the establishment of CRS type 4. Furthermore, we propose using chemokine inhibitors as potential strategies for preventing CRS type 4.
Collapse
Affiliation(s)
- Isabel Amador-Martínez
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico; (I.A.-M.); (A.K.A.-R.)
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| | - Bismarck Bernabe-Yepes
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Ana Karina Aranda-Rivera
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico; (I.A.-M.); (A.K.A.-R.)
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Alfredo Cruz-Gregorio
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Laura Gabriela Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Edilia Tapia
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| |
Collapse
|
46
|
Zhu X, Zhao Y, Liu Y, Shi W, Yang J, Liu Z, Zhang X. Macrophages release IL11-containing filopodial tip vesicles and contribute to renal interstitial inflammation. Cell Commun Signal 2023; 21:293. [PMID: 37853428 PMCID: PMC10585809 DOI: 10.1186/s12964-023-01327-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023] Open
Abstract
Macrophage filopodia, which are dynamic nanotube-like protrusions, have mainly been studied in the context of pathogen clearance. The mechanisms by which they facilitate intercellular communication and mediate tissue inflammation remain poorly understood. Here, we show that macrophage filopodia produce a unique membrane structure called "filopodial tip vesicle" (FTV) that originate from the tip of macrophages filopodia. Filopodia tip-derived particles contain numerous internal-vesicles and function as cargo storage depots via nanotubular transport. Functional studies indicate that the shedding of FTV from filopodia tip allows the delivery of many molecular signalling molecules to fibroblasts. We observed that FTV derived from M1 macrophages and high glucose (HG)-stimulated macrophages (HG/M1-ftv) exhibit an enrichment of the chemokine IL11, which is critical for fibroblast transdifferentiation. HG/M1-ftv induce renal interstitial fibrosis in diabetic mice, while FTV inhibition or targeting FTV IL11- alleviates renal interstitial fibrosis, suggesting that the HG/M1-ftvIL11 pathway may be a novel mechanism underlying renal fibrosis in diabetic nephropathy. Collectively, FTV release could represent a novel function by which filopodia contribute to cell biological processes, and FTV is potentially associated with macrophage filopodia-related fibrotic diseases. Video Abstract.
Collapse
Affiliation(s)
- Xiaodong Zhu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yu Zhao
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yuqiu Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Wen Shi
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Junlan Yang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Zhihong Liu
- Jinling Hospital, National Clinical Research Center of Kidney Diseases, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Xiaoliang Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
47
|
Yang H, Cheng H, Dai R, Shang L, Zhang X, Wen H. Macrophage polarization in tissue fibrosis. PeerJ 2023; 11:e16092. [PMID: 37849830 PMCID: PMC10578305 DOI: 10.7717/peerj.16092] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/23/2023] [Indexed: 10/19/2023] Open
Abstract
Fibrosis can occur in all major organs with relentless progress, ultimately leading to organ failure and potentially death. Unfortunately, current clinical treatments cannot prevent or reverse tissue fibrosis. Thus, new and effective antifibrotic therapeutics are urgently needed. In recent years, a growing body of research shows that macrophages are involved in fibrosis. Macrophages are highly heterogeneous, polarizing into different phenotypes. Some studies have found that regulating macrophage polarization can inhibit the development of inflammation and cancer. However, the exact mechanism of macrophage polarization in different tissue fibrosis has not been fully elucidated. This review will discuss the major signaling pathways relevant to macrophage-driven fibrosis and profibrotic macrophage polarization, the role of macrophage polarization in fibrosis of lung, kidney, liver, skin, and heart, potential therapeutics targets, and investigational drugs currently in development, and hopefully, provide a useful review for the future treatment of fibrosis.
Collapse
Affiliation(s)
- Huidan Yang
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| | - Hao Cheng
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| | - Rongrong Dai
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| | - Lili Shang
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| | - Xiaoying Zhang
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| | - Hongyan Wen
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| |
Collapse
|
48
|
La Russa D, Barberio L, Marrone A, Perri A, Pellegrino D. Caloric Restriction Mitigates Kidney Fibrosis in an Aged and Obese Rat Model. Antioxidants (Basel) 2023; 12:1778. [PMID: 37760081 PMCID: PMC10525959 DOI: 10.3390/antiox12091778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Caloric restriction is an effective intervention to protract healthspan and lifespan in several animal models from yeast to primates, including humans. Caloric restriction has been found to induce cardiometabolic adaptations associated with improved health and to delay the onset and progression of kidney disease in different species, particularly in rodent models. In both aging and obesity, fibrosis is a hallmark of kidney disease, and epithelial-mesenchymal transition is a key process that leads to fibrosis and renal dysfunction during aging. In this study, we used an aged and obese rat model to evaluate the effect of long-term (6 months) caloric restriction (-40%) on renal damage both from a structural and functional point of view. Renal interstitial fibrosis was analyzed by histological techniques, whereas effects on mesenchymal (N-cadherin, Vimentin, Desmin and α-SMA), antioxidant (SOD1, SOD2, Catalase and GSTP1) inflammatory (YM1 and iNOS) markers and apoptotic/cell cycle (BAX, BCL2, pJNK, Caspase 3 and p27) pathways were investigated using Western blot analysis. Our results clearly showed that caloric restriction promotes cell cycle division and reduces apoptotic injury and fibrosis phenotype through inflammation attenuation and leukocyte infiltration. In conclusion, we highlight the beneficial effects of caloric restriction to preserve elderly kidney function.
Collapse
Affiliation(s)
- Daniele La Russa
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (L.B.); (A.M.); (D.P.)
- LARSO (Analysis and Research on Oxidative Stress Laboratory), University of Calabria, 87036 Rende, Italy
| | - Laura Barberio
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (L.B.); (A.M.); (D.P.)
- LARSO (Analysis and Research on Oxidative Stress Laboratory), University of Calabria, 87036 Rende, Italy
| | - Alessandro Marrone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (L.B.); (A.M.); (D.P.)
| | - Anna Perri
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Daniela Pellegrino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (L.B.); (A.M.); (D.P.)
- LARSO (Analysis and Research on Oxidative Stress Laboratory), University of Calabria, 87036 Rende, Italy
| |
Collapse
|
49
|
Strizova Z, Benesova I, Bartolini R, Novysedlak R, Cecrdlova E, Foley L, Striz I. M1/M2 macrophages and their overlaps - myth or reality? Clin Sci (Lond) 2023; 137:1067-1093. [PMID: 37530555 PMCID: PMC10407193 DOI: 10.1042/cs20220531] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
Macrophages represent heterogeneous cell population with important roles in defence mechanisms and in homoeostasis. Tissue macrophages from diverse anatomical locations adopt distinct activation states. M1 and M2 macrophages are two polarized forms of mononuclear phagocyte in vitro differentiation with distinct phenotypic patterns and functional properties, but in vivo, there is a wide range of different macrophage phenotypes in between depending on the microenvironment and natural signals they receive. In human infections, pathogens use different strategies to combat macrophages and these strategies include shaping the macrophage polarization towards one or another phenotype. Macrophages infiltrating the tumours can affect the patient's prognosis. M2 macrophages have been shown to promote tumour growth, while M1 macrophages provide both tumour-promoting and anti-tumour properties. In autoimmune diseases, both prolonged M1 activation, as well as altered M2 function can contribute to their onset and activity. In human atherosclerotic lesions, macrophages expressing both M1 and M2 profiles have been detected as one of the potential factors affecting occurrence of cardiovascular diseases. In allergic inflammation, T2 cytokines drive macrophage polarization towards M2 profiles, which promote airway inflammation and remodelling. M1 macrophages in transplantations seem to contribute to acute rejection, while M2 macrophages promote the fibrosis of the graft. The view of pro-inflammatory M1 macrophages and M2 macrophages suppressing inflammation seems to be an oversimplification because these cells exploit very high level of plasticity and represent a large scale of different immunophenotypes with overlapping properties. In this respect, it would be more precise to describe macrophages as M1-like and M2-like.
Collapse
Affiliation(s)
- Zuzana Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Iva Benesova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Robin Bartolini
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, U.K
| | - Rene Novysedlak
- Third Department of Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Eva Cecrdlova
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Lily Koumbas Foley
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, U.K
| | - Ilja Striz
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
50
|
Su M, Sang S, Liang T, Li H. PPARG: A Novel Target for Yellow Tea in Kidney Stone Prevention. Int J Mol Sci 2023; 24:11955. [PMID: 37569334 PMCID: PMC10418378 DOI: 10.3390/ijms241511955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Kidney stones are a common urological disorder with increasing prevalence worldwide. The treatment of kidney stones mainly relies on surgical procedures or extracorporeal shock wave lithotripsy, which can effectively remove the stones but also result in some complications and recurrence. Therefore, finding a drug or natural compound that can prevent and treat kidney stones is an important research topic. In this study, we aimed to investigate the effects of yellow tea on kidney stone formation and its mechanisms of action. We induced kidney stones in rats by feeding them an ethylene glycol diet and found that yellow tea infusion reduced crystal deposits, inflammation, oxidative stress, and fibrosis in a dose-dependent manner. Through network pharmacology and quantitative structure-activity relationship modeling, we analyzed the interaction network between the compounds in yellow tea and kidney stone-related targets and verified it through in vitro and in vivo experiments. Our results showed that flavonoids in yellow tea could bind directly or indirectly to peroxisome proliferator-activated receptor gamma (PPARG) protein and affect kidney stone formation by regulating PPARG transcription factor activity. In conclusion, yellow tea may act as a potential PPARG agonist for the prevention and treatment of renal oxidative damage and fibrosis caused by kidney stones.
Collapse
Affiliation(s)
- Mingjie Su
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200438, China
- MOE Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China
| | - Siyao Sang
- MOE Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China
| | - Taotao Liang
- Department of Hematology, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Hui Li
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200438, China
- MOE Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China
- Fudan-Datong Institute of Chinese Origin, Shanxi Academy of Advanced Research and Innovation, Datong 037006, China
| |
Collapse
|