1
|
Ma X, Liang Y, Chen W, Zheng L, Lin H, Zhou T. The role of endothelin receptor antagonists in kidney disease. Ren Fail 2025; 47:2465810. [PMID: 40015728 PMCID: PMC11869344 DOI: 10.1080/0886022x.2025.2465810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 03/01/2025] Open
Abstract
Kidney diseases are among the most prevalent conditions worldwide, impacting over 850 million individuals. They are categorized into acute kidney injury and chronic kidney disease. Current preclinical and clinical trials have demonstrated that endothelin (ET) is linked to the onset and progression of kidney disease. In kidney diseases, pathological conditions such as hyperglycemia, acidosis, insulin resistance, and elevated angiotensin II levels lead to an increase in ET. This elevation activates endothelin receptor type A, resulting in harmful effects like proteinuria and a reduced glomerular filtration rate (GFR). Therefore, to slow the progression of kidney disease, endothelin receptor antagonists (ERAs) have been proposed as promising new therapies. Numerous studies have demonstrated the efficacy of ERAs in significantly reducing proteinuria and improving GFR, thereby slowing the progression of kidney diseases. This review discusses the mechanisms of action of ERAs in treating kidney disease, their efficacy and safety in preclinical and clinical studies, and explores future prospects for ERAs.
Collapse
Affiliation(s)
- Xiaoting Ma
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yuyang Liang
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Wenmin Chen
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Lingqian Zheng
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Haishan Lin
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Tianbiao Zhou
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| |
Collapse
|
2
|
Shi G, Sato K, Takahashi N, Ohno-Ohishi M, Murayama N, Yamaguchi C, Saigusa D, Nakazawa T. AAV2-driven endothelin induces chronic reduced retinal blood flow/retinal ganglion cell loss in rats. Life Sci Alliance 2025; 8:e202403087. [PMID: 40345829 PMCID: PMC12064852 DOI: 10.26508/lsa.202403087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/11/2025] Open
Abstract
Dysfunction of ocular blood flow (BF) is believed to be one of the causes of glaucomatous pathology. However, whether this dysfunction is indeed a cause or is actually a consequence of optic nerve degeneration remains controversial. Here, we established a new animal model of chronic BF reduction in the retina to mimic glaucoma. We found that retinal BF in rats, as measured with laser speckle flowgraphy, was significantly reduced 3 wk after an intravitreal injection of AAV2-human endothelin-1 (AAV2-hEDN1). The number of retinal ganglion cells was also reduced in rats that received AAV2-hEDN1 injection. Immunostaining signals for GFAP and the endothelin-B receptor were enhanced in the rat retinas after AAV2-hEDN1 injection. Moreover, mRNA levels of Ripk1/Ripk3 and Tnf in the retina increased, and glutathione levels in the aqueous humor decreased in rats that received AAV2-hEDN1 injection. Our findings demonstrate that endothelin-induced chronic retinal BF reduction leads to increased astrocyte activation and oxidative stress, which in turn induces retinal ganglion cell necroptosis. This suggests that methods to improve ocular BF have potential as novel therapies for glaucoma.
Collapse
Affiliation(s)
- Ge Shi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Nana Takahashi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Michiko Ohno-Ohishi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Namie Murayama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Chiaki Yamaguchi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharmaceutial Science, Teikyo University, Tokyo, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Miyagi, Japan
| |
Collapse
|
3
|
Chen T, Zhang H, Shan W, Zhou J, You Y. Liver sinusoidal endothelial cells in hepatic fibrosis: opportunities for future strategies. Biochem Biophys Res Commun 2025; 766:151881. [PMID: 40286764 DOI: 10.1016/j.bbrc.2025.151881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells that form the interface between the hepatic vasculature and parenchymal cells, playing a crucial role in maintaining hepatic homeostasis. Under pathological conditions, LSECs undergo capillarization, marked by the loss of fenestrae and formation of a basement membrane, thereby impairing microcirculation and promoting fibrosis. Beyond capillarization, LSECs experience a spectrum of pathological changes-including angiogenesis, endothelial-to-mesenchymal transition (EndMT), autophagy, and senescence-all of which contribute to fibrogenesis through distinct molecular pathways. Moreover, LSECs orchestrate liver fibrotic remodeling through dynamic crosstalk with hepatic stellate cells (HSCs), hepatocytes, Kupffer cells, and immune cells, exerting both pro- and anti-fibrotic effects. This review comprehensively summarizes LSECs dysfunction in hepatic fibrosis, with a particular focus on intercellular communication and emerging therapeutic strategies. Elucidating the regulatory networks that govern LSECs behavior may uncover new opportunities for the diagnosis and treatment of chronic liver disease.
Collapse
Affiliation(s)
- Ting Chen
- Department of human anatomy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Huan Zhang
- Department of human anatomy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Wenqi Shan
- Department of human anatomy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China.
| | - Yanwen You
- Department of human anatomy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
4
|
Brooks AJ, Gallego-López MDC, De Miguel C. Endothelin-1 signaling in the kidney: recent advances and remaining gaps. Am J Physiol Renal Physiol 2025; 328:F815-F827. [PMID: 40272184 DOI: 10.1152/ajprenal.00304.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 04/21/2025] [Indexed: 04/25/2025] Open
Abstract
The involvement of endothelin-1 (ET-1) in the maintenance of kidney function as well as its role in renal pathophysiology has been appreciated for decades; however, there still exist important gaps in knowledge in our understanding of the mechanistic pathways activated by this system in the kidney. The purpose of this article is to review recent advances in the field, as well as to underscore areas that need more investigation, with an emphasis on the interplay of ET-1 with inflammation, sex differences, circadian rhythms of renal function, the most recent clinical trials involving the ET-1 system, and the interaction between microRNAs and the ET-1 system.
Collapse
Affiliation(s)
- Abigail J Brooks
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - María Del Carmen Gallego-López
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Carmen De Miguel
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
5
|
Lockwood F, Lachaux M, Harouki N, Soulié M, Nicol L, Renet S, Dumesnil A, Vercauteren M, Bellien J, Iglarz M, Richard V, Mulder P. Dual ET A-ET B receptor antagonism improves metabolic syndrome-induced heart failure with preserved ejection fraction. Fundam Clin Pharmacol 2025; 39:e70006. [PMID: 40203840 PMCID: PMC11981691 DOI: 10.1111/fcp.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/19/2025] [Accepted: 03/05/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Metabolic syndrome (MetS) is a multifaceted disease associated with heart failure (HF), which affects the vascular system. The endothelin (ET) system is a key player in MetS and HF; therefore, targets for ET receptors are of therapeutic interest. OBJECTIVES This study sought to evaluate the effects of macitentan, a dual endothelin receptor antagonist (ERA), in a rat model of MetS-induced heart failure with preserved ejection fraction (HFpEF). METHODS We assessed in 12-week-old Zucker fa/fa rats the effects of macitentan (10 mg/kg/day as a food additive for short-term/7- or long-term/90-day treatment) on right ventricular (RV) and left ventricular (LV) function/remodelling (MRI), RV and LV haemodynamics (catheterization) and RV and LV coronary function (myograph). RESULTS After 7- and 90-days, untreated Zucker fa/fa rats presented isolated LV diastolic dysfunction (illustrated by elevated LV end-diastolic pressure [EDP] and LV end-diastolic pressure-volume relationship [EDPVR] without changes in LV EDPVR). This was associated with increased collagen deposition and impaired endothelium-dependent coronary artery relaxation. Macitentan 7- and 90-day treatment significantly decreased blood pressure and prevented LV, RV and coronary dysfunctions and long-term treatment reduced LV collagen density. Moreover, 7- and 90-day macitentan treatment significantly reduced cardiac inflammation and reactive oxygen species (ROS) production. CONCLUSIONS Dual ERA macitentan improved both LV and RV diastolic dysfunction. This was associated with improved coronary vasodilation, diminished cardiac oxidative stress and improved blood composition. These results suggest that antagonizing the ET system with macitentan is a promising approach to treat HFpEF and its complications.
Collapse
Affiliation(s)
- Francesca Lockwood
- Univ Rouen Normandie, INSERM U1096, EnVIRouenFrance
- Institute for Clinical Medicine, Medical FacultyUniversity of OsloOsloNorway
| | | | | | | | - Lionel Nicol
- Univ Rouen Normandie, INSERM U1096, EnVIRouenFrance
| | | | | | | | | | - Marc Iglarz
- Idorsia Pharmaceuticals Ltd.AllschwilSwitzerland
| | | | - Paul Mulder
- Univ Rouen Normandie, INSERM U1096, EnVIRouenFrance
| |
Collapse
|
6
|
Dubey N, Verma A, Goyal A, Vishwakarma V, Bhatiya J, Arya DS, Yadav HN. The role of endothelin and its receptors in cardiomyopathy: From molecular mechanisms to therapeutic insights. Pathol Res Pract 2025; 269:155932. [PMID: 40174273 DOI: 10.1016/j.prp.2025.155932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Cardiomyopathy is an anatomical and pathologic condition that is related to the cardiac muscle or left ventricular failure. A diverse range of illnesses known as cardiomyopathies often result in progressive heart failure with high morbidity and death rates. Primary cardiomyopathies are hereditary, mixed, or adopted. Secondary cardiomyopathies are infiltrative, harmful, or pathogenic. The activation of many paracrine, autocrine, and neuroendocrine factors is closely linked to pathological left ventricular (LV) deformation. After the myocardial injury, in the context of higher LV wall pressure and haemodynamic disturbance, these variables are raised. New therapy techniques have been focused on these novel targets after recent studies revealed that endothelin, nitric oxide or cytokines may be implicated in the remodelling process. Vasoconstrictive peptide endothelin-1 (ET-1) is mostly generated in the endothelium and works by binding to the ETA- and ETB-endothelin receptors (ET-Rs). The expression of both ET-Rs is widespread in cardiac tissues. Heart failure, pulmonary arterial hypertension, hypertension, cardiomyopathy, and coronary artery disease are just a few of the cardiovascular disorders for which the endothelin system has been shown to play a crucial role over the years. The occurrence, pathogenesis, and natural history of endothelin antagonists in cardiomyopathies are currently not well understood, and specific aspects of their treatment responses have not received comprehensive attention. Therefore, in this study, we address the variable degrees of success that have been achieved in treating cardiomyopathy using endothelin-targeting treatments, such as endothelin receptor antagonists.
Collapse
Affiliation(s)
- Nandini Dubey
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Vishal Vishwakarma
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Jagriti Bhatiya
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Dharamvir Singh Arya
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
7
|
Huang Z, Yu P, Hu J, Zhang W. Comparative Pharmacokinetics and Bioequivalence of 2 Formulations of Bosentan Dispersible Tablets in Healthy Chinese Volunteers Under Fasting and Fed Conditions. Clin Pharmacol Drug Dev 2025; 14:404-409. [PMID: 39828968 DOI: 10.1002/cpdd.1516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Bosentan is a dual endothelin receptor antagonist widely used in the treatment of pulmonary artery hypertension. However, there are few reports on the pharmacokinetics (PK) and bioequivalence of bosentan dispersible tablets (32 mg) in the Chinese population. This study aimed to evaluate the PK characteristics and bioequivalence of the test and reference formulations of bosentan dispersible tablets in healthy Chinese volunteers under fasting and fed conditions. A randomized, single-dose, 2-sequence, 2-period crossover study (fasting) and a 4-period replicate crossover study (fed) were conducted with 48 and 30 healthy volunteers, respectively. The bosentan plasma concentrations were measured by a validated ultra-performance liquid chromatography coupled with a tandem mass spectrometry method, and PK parameters were analyzed using noncompartmental methods. The bioequivalence statistical analysis showed that 90% confidence intervals for the geometric mean ratios of peak plasma concentration, area under the concentration-time curve (AUC) from time zero to the last measurable concentration, and AUC from time zero to infinity for the test and reference formulations were within the bioequivalence range of 80%-125% under both fasting and fed conditions. After the administration of bosentan dispersible tablets under fed conditions, the systemic exposure (based on AUC from time zero to infinity) was increased by approximately 15%-20%. These findings confirm the bioequivalence of the 2 formulations, and both formulations were well tolerated, with no safety-related adverse events reported. Given the wide therapeutic dose range of bosentan dispersible tablets for the treatment of pulmonary artery hypertension in children, the impact of food on its PK is not considered clinically significant.
Collapse
Affiliation(s)
- Zhaoming Huang
- Department of Medical Cosmetology, Xianning Central Hospital, The First Affiliated Hosptial of Hubei University of Science and Technology, Xianning, Hubei, P.R. China
| | - Panpan Yu
- Department of Medical Cosmetology, Xianning Central Hospital, The First Affiliated Hosptial of Hubei University of Science and Technology, Xianning, Hubei, P.R. China
| | - Jiawei Hu
- Office of Drug Clinical Trial Institution, Xianning Central Hospital, The First Affiliated Hosptial of Hubei University of Science And Technology, Xianning, Hubei, P.R. China
| | - Wanyong Zhang
- Department of Pathology, Xianning Central Hospital, The First Affiliated Hosptial of Hubei University of Science and Technology, Xianning, Hubei, P.R. China
| |
Collapse
|
8
|
Otani M, Kushida Y, Kuroda Y, Wakao S, Oguma Y, Sasaki K, Katahira S, Terai R, Ryoke R, Nonaka H, Kawashima R, Saiki Y, Dezawa M. New rat model of spinal cord infarction with long-lasting functional disabilities generated by intraspinal injection of endothelin-1. Stroke Vasc Neurol 2025; 10:e002962. [PMID: 38906547 DOI: 10.1136/svn-2023-002962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 06/04/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND The current method for generating an animal model of spinal cord (SC) infarction is highly invasive and permits only short-term observation, typically limited to 28 days. OBJECTIVE We aimed to establish a rat model characterised by long-term survival and enduring SC dysfunction by inducing selective ischaemic SC damage. METHODS In 8-week-old male Wistar rats, a convection-enhanced delivery technique was applied to selectively deliver endothelin-1 (ET-1) to the anterior horn of the SC at the Th13 level, leading to SC infarction. The Basso, Beattie and Bresnahan (BBB) locomotor score was assessed for 56 days. The SC was examined by a laser tissue blood flowmeter, MRI, immunohistochemistry, triphenyl tetrazolium chloride (TTC) staining, Western blots and TUNEL staining. RESULTS The puncture method was used to bilaterally inject 0.7 µL ET-1 (2.5 mg/mL) from the lateral SC into the anterior horns (40° angle, 1.5 mm depth) near the posterior root origin. Animals survived until day 56 and the BBB score was stably maintained (5.5±1.0 at day 14 and 6.2±1.0 at day 56). Rats with BBB scores ≤1 on day 1 showed stable scores of 5-6 after day 14 until day 56 while rats with BBB scores >1 on day 1 exhibited only minor dysfunction with BBB scores >12 after day 14. TTC staining, immunostaining and TUNEL staining revealed selective ischaemia and neuronal cell death in the anterior horn. T2-weighted MR images showed increasing signal intensity at the SC infarction site over time. Western blots revealed apoptosis and subsequent inflammation in SC tissue after ET-1 administration. CONCLUSIONS Selective delivery of ET-1 into the SC allows for more precise localisation of the infarcted area at the targeted site and generates a rat SC infarction model with stable neurological dysfunction lasting 56 days.
Collapse
Affiliation(s)
- Masayuki Otani
- Division of Cardiovascular Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yoshihiro Kushida
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yasumasa Kuroda
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yo Oguma
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Keisuke Sasaki
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Shintaro Katahira
- Division of Cardiovascular Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ryohei Terai
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Rie Ryoke
- Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Hiroi Nonaka
- Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Ryuta Kawashima
- Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Yoshikatsu Saiki
- Division of Cardiovascular Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
9
|
Dmour BA, Badescu MC, Tuchiluș C, Cianga CM, Constantinescu D, Dima N, Duca ȘT, Dmour A, Costache AD, Cepoi MR, Crișan A, Leancă SA, Loghin C, Șerban IL, Costache-Enache II. Can Endothelin-1 Help Address the Diagnostic and Prognostic Challenges in Multimorbid Acute Heart Failure Patients? Life (Basel) 2025; 15:628. [PMID: 40283182 PMCID: PMC12028425 DOI: 10.3390/life15040628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/02/2025] [Accepted: 04/06/2025] [Indexed: 04/29/2025] Open
Abstract
The management of acute heart failure (AHF) is becoming increasingly complex, especially in patients with multiple comorbidities. Endothelin-1 (ET-1), a vasoconstrictive peptide, is an important mediator of neurohormonal activation, endothelial dysfunction, and cardiac remodeling-key processes involved in the pathogenesis of AHF. The aim of our study was to evaluate the diagnostic and prognostic performance of ET-1 in multimorbid AHF patients, compared to established markers such as amino terminal pro B-type natriuretic peptide (NT-proBNP) and high-sensitivity cardiac troponin I (hs-cTnI). We conducted a single-center prospective study including 76 patients; 54 with AHF and 22 serving as controls. Upon admission, all patients underwent a comprehensive clinical, echocardiographic, and laboratory evaluation, including plasma ET-1 measurement using the enzyme-linked immunosorbent assay (ELISA) method. Receiver operating characteristic (ROC) curve and area under the curve (AUC) analysis were performed to assess the diagnostic and prognostic performance of ET-1 in comparison to NT-proBNP and hs-cTnI. ET-1 levels were considerably higher in AHF patients than in controls (p = 0.02), with an AUC of 0.954, showing comparable diagnostic accuracy with NT-proBNP (AUC = 0.997), alongside strong correlations with signs of systemic congestion, increased hospital stay, and ventricular dysfunction. ET-1 had the strongest predictive accuracy for in-hospital mortality (AUC = 0.781, p = 0.026), outperforming NT-proBNP and hs-cTnI. For 30-day mortality, ET-1 remained a reliable predictor (AUC = 0.784, p = 0.016). However, as the follow-up period extended to one year, its predictive power declined, confirming ET-1's prognostic efficacy only for short-term outcomes. Moreover, ET-1 levels were not influenced by the presence of comorbidities, demonstrating its potential as an independent biomarker. Our findings support that ET-1 is a valuable biomarker for both diagnosis and short-term prognosis in the assessment of multimorbid AHF patients.
Collapse
Affiliation(s)
- Bianca-Ana Dmour
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (B.-A.D.); (N.D.); (Ș.T.D.); (A.D.C.); (M.-R.C.); (S.A.L.); (I.I.C.-E.)
- Cardiology Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania;
| | - Minerva Codruta Badescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (B.-A.D.); (N.D.); (Ș.T.D.); (A.D.C.); (M.-R.C.); (S.A.L.); (I.I.C.-E.)
- III Internal Medicine Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
| | - Cristina Tuchiluș
- Department of Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Microbiology Laboratory, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Corina Maria Cianga
- Department of Immunology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.C.); (D.C.)
- Immunology Laboratory, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Daniela Constantinescu
- Department of Immunology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.C.); (D.C.)
- Immunology Laboratory, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Nicoleta Dima
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (B.-A.D.); (N.D.); (Ș.T.D.); (A.D.C.); (M.-R.C.); (S.A.L.); (I.I.C.-E.)
- III Internal Medicine Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
| | - Ștefania Teodora Duca
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (B.-A.D.); (N.D.); (Ș.T.D.); (A.D.C.); (M.-R.C.); (S.A.L.); (I.I.C.-E.)
- Cardiology Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania;
| | - Awad Dmour
- Department of Orthopedics and Traumatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Alexandru Dan Costache
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (B.-A.D.); (N.D.); (Ș.T.D.); (A.D.C.); (M.-R.C.); (S.A.L.); (I.I.C.-E.)
- Cardiovascular Rehabilitation Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Maria-Ruxandra Cepoi
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (B.-A.D.); (N.D.); (Ș.T.D.); (A.D.C.); (M.-R.C.); (S.A.L.); (I.I.C.-E.)
- Cardiology Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania;
| | - Adrian Crișan
- Cardiology Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania;
| | - Sabina Andreea Leancă
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (B.-A.D.); (N.D.); (Ș.T.D.); (A.D.C.); (M.-R.C.); (S.A.L.); (I.I.C.-E.)
- Cardiology Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania;
| | - Cătălin Loghin
- Department of Medicine, Division of Cardiovascular Medicine, UTHealth, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77225, USA;
| | - Ionela-Lăcrămioara Șerban
- Department of Morpho-Functional Sciences II, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Irina Iuliana Costache-Enache
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (B.-A.D.); (N.D.); (Ș.T.D.); (A.D.C.); (M.-R.C.); (S.A.L.); (I.I.C.-E.)
- Cardiology Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania;
| |
Collapse
|
10
|
Ozkara G, Aslan EI, Malikova F, Aydogan C, Ser OS, Kilicarslan O, Dalgic SN, Yildiz A, Ozturk O, Yilmaz-Aydogan H. Endothelin-converting Enzyme-1b Genetic Variants Increase the Risk of Coronary Artery Ectasia. Biochem Genet 2025; 63:1806-1823. [PMID: 38625594 DOI: 10.1007/s10528-024-10810-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Coronary artery ectasia (CAE), defined as a 1.5-fold or greater enlargement of a coronary artery segment compared to the adjacent normal coronary artery, is frequently associated with atherosclerotic coronary artery disease (CAD). Membrane-bound endothelin converting enzyme-1 (ECE-1) is involved in the maturation process of the most potent vasoconstrictor ET-1. Polymorphisms in the endothelin (ET) gene family have been shown associated with the development of atherosclerosis. This study aims to investigate the effects of rs213045 and rs2038089 polymorphisms in the ECE-1 gene which have been previously shown to be associated with atherosclerosis and hypertension (HT), in CAE patients. Ninety-six CAE and 175 patients with normal coronary arteries were included in the study. ECE-1b gene variations rs213045 and rs2038089 were determined by real-time PCR. The frequencies of rs213045 C > A (C338A) CC genotype (60.4% vs. 35.4%, p < 0.001) and rs2038089 T > C T allele (64.58% vs. 35.42%, p = 0.017) were higher in the CAE group compared to the control group. The multivariate regression analysis showed that the ECE-1b rs213045 CC genotype (p = 0.001), rs2038089 T allele (p = 0.017), and hypercholesterolemia (HC) (p = 0.001) are risk factors for CAE. Moreover, in nondiabetic individuals of the CAE and control groups, it was observed that the rs213045 CC genotype (p < 0.001), and rs2038089 T allele (p = 0.003) were a risk factor for CAE, but this relationship was not found in the diabetic subgroups of the study groups (p > 0.05). These results show that ECE-1b polymorphisms may be associated with the risk of CAE and this relationship may change according to the presence of type II diabetes.
Collapse
Affiliation(s)
- Gulcin Ozkara
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
- Department of Medical Biology, Bezmialem Vakif University, Faculty of Medicine, Topkapi Mahallesi, Adnan Menderes Vatan Bulvari, No:113, Istanbul, Turkey.
| | - Ezgi Irmak Aslan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Department of Medical Biochemistry, Istanbul Nisantasi University, Faculty of Medicine, Istanbul, Turkey
| | - Fidan Malikova
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Cagatay Aydogan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ozgur Selim Ser
- Department of Cardiology, Institute of Cardiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Onur Kilicarslan
- Department of Cardiology, Institute of Cardiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sadiye Nur Dalgic
- Department of Cardiology, Institute of Cardiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ahmet Yildiz
- Department of Cardiology, Institute of Cardiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Oguz Ozturk
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Hulya Yilmaz-Aydogan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
11
|
Akamatsu Y, Chida K, Miyoshi K, Kojima D, Yoshida K, Misaki T, Koji T, Fujiwara S, Kubo Y, Kashimura H, Ogasawara K. Effects of the Japanese traditional medicine Goreisan on adverse events affecting mucosal edema in patients with subarachnoid hemorrhage treated with clazosentan. Neurosurg Rev 2025; 48:293. [PMID: 40069304 DOI: 10.1007/s10143-025-03394-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/01/2025] [Accepted: 02/09/2025] [Indexed: 05/13/2025]
Abstract
Despite successful management of pulmonary complication with fluid restriction protocol in aneurysmal subarachnoid hemorrhage (aSAH) patients treated with clazosentan, management of symptoms related to mucosal edema, such as diarrhea, stuffy nose, and difficulty in breathing, remains challenging. Hence, we investigated the effect of Goreisan shown to be effective in the treatment of symptoms related with mucosal edema in aSAH patients treated with clazosentan. Patients with aSAH who received clazosentan for vasospasm after aneurysm obliteration were prospectively enrolled in the study. Fluid balance parameters and the incidence of vasospasm, pulmonary edema, mucosal edema-related symptom (such as diarrhea and swelling of the nasal mucosa) were compared between these patients treated with Goreisan (Group G) and without Goreisan (Group NG). As results, Groups NG and G comprised 29 and 40 consecutive patients, respectively. No significant differences in fluid intake, urine volume, frequency of furosemide injection, incidence of vasospasm, pulmonary edema, or discontinuation of clazosentan treatment between the two groups were found over the treatment course, although refractory hyponatremia occurred less frequently in Group G than in Group NG (0% and 10.3%, p = 0.039, respectively). The incidence of diarrhea and the relative mucosal thickness was also significantly lower in Group G than in Group NG (7.3% and 21.9%; p = 0.0004, 113.8% vs. 175.4%; p = 0.001). Clazosentan combined with diuretics and Goreisan effectively reduced diarrhea and nasal mucosal swelling in patients with aSAH. This protocol may offer a viable approach for managing clazosentan-associated adverse events in aSAH patients.
Collapse
Affiliation(s)
- Yosuke Akamatsu
- Department of Neurosurgery, Iwate Medical University School of Medicine, 2-1-1 Idaidori, Yahaba-cho, Yahaba, Iwate, 028-3694, Japan.
| | - Kohei Chida
- Department of Neurosurgery, Iwate Medical University School of Medicine, 2-1-1 Idaidori, Yahaba-cho, Yahaba, Iwate, 028-3694, Japan
| | - Kenya Miyoshi
- Department of Neurosurgery, Iwate Medical University School of Medicine, 2-1-1 Idaidori, Yahaba-cho, Yahaba, Iwate, 028-3694, Japan
| | - Daigo Kojima
- Department of Neurosurgery, Iwate Prefectural Chubu Hospital, Kitakami, Iwate, Japan
| | - Koji Yoshida
- Department of Neurosurgery, Hachinohe Red Cross Hospital, Hachinohe, Aomori, Japan
| | - Toshinari Misaki
- Department of Neurosurgery, Hachinohe Red Cross Hospital, Hachinohe, Aomori, Japan
| | - Takahiro Koji
- Department of Neurosurgery, Iwate Medical University School of Medicine, 2-1-1 Idaidori, Yahaba-cho, Yahaba, Iwate, 028-3694, Japan
| | - Shunrou Fujiwara
- Department of Neurosurgery, Iwate Medical University School of Medicine, 2-1-1 Idaidori, Yahaba-cho, Yahaba, Iwate, 028-3694, Japan
| | - Yoshitaka Kubo
- Department of Neurosurgery, Iwate Medical University School of Medicine, 2-1-1 Idaidori, Yahaba-cho, Yahaba, Iwate, 028-3694, Japan
| | - Hiroshi Kashimura
- Department of Neurosurgery, Iwate Prefectural Chubu Hospital, Kitakami, Iwate, Japan
| | - Kuniaki Ogasawara
- Department of Neurosurgery, Iwate Medical University School of Medicine, 2-1-1 Idaidori, Yahaba-cho, Yahaba, Iwate, 028-3694, Japan
| |
Collapse
|
12
|
Polyak P, Kwak J, Kertai MD, Anton JM, Assaad S, Dacosta ME, Dimitrova G, Gao WD, Henderson RA, Hollon MM, Jones N, Kucharski D, Low Y, Moriarty A, Neuburger P, Ngai JY, Cole SP, Rhee A, Richter E, Shapeton A, Sutherland L, Turner K, Wanat-Hawthorne AM, Wu IY, Shore-Lesserson L. Vasoplegic Syndrome in Cardiac Surgery: A Narrative Review of Etiologic Mechanisms and Therapeutic Options. J Cardiothorac Vasc Anesth 2025:S1053-0770(25)00192-2. [PMID: 40157894 DOI: 10.1053/j.jvca.2025.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 04/01/2025]
Abstract
Vasoplegic syndrome, a form of distributive shock that may manifest during or after cardiopulmonary bypass, is a serious complication that increases morbidity and mortality after cardiac surgery. No consensus definition exists, but vasoplegic syndrome is generally described as a state of pathologic vasodilation causing hypotension refractory to fluid resuscitation and vasopressor therapy, and resulting in organ malperfusion despite a normal or increased cardiac output. Diagnosis can be complex as there is a broad differential diagnosis for low systemic vascular resistance in the cardiac surgical patient. Interpretation of hemodynamic data can also be challenging in the setting of mixed shock states and mechanical support. This narrative review summarizes the pathophysiology of vasoplegic syndrome, the literature concerning its incidence and risk factors, the hemodynamic parameters important to the diagnosis of vasoplegic syndrome, a consensus definition of the syndrome, and a proposed goal-directed treatment framework.
Collapse
Affiliation(s)
| | - Jenny Kwak
- Loyola University Medical Center, Maywood, IL
| | | | | | - Sherif Assaad
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH
| | | | | | - Wei Dong Gao
- Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | - Nathan Jones
- Lahey Hospital, Tufts Medical Center, Boston, MA
| | | | | | - Allison Moriarty
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | | | | | - Amanda Rhee
- Mount Sinai Health System, Icahn School of Medicine, New York, NY
| | | | - Alexander Shapeton
- Veterans Affairs Boston Healthcare System, Tufts University School of Medicine, West Roxbury, MA
| | | | - Katja Turner
- Wexner Medical Center at The Ohio State University, Columbus, OH
| | | | - Isaac Y Wu
- University of Rochester Medical Center, Rochester, NY
| | | |
Collapse
|
13
|
Smeijer JD, Kohan DE, Dhaun N, Noronha IL, Liew A, Heerspink HJL. Endothelin receptor antagonists in chronic kidney disease. Nat Rev Nephrol 2025; 21:175-188. [PMID: 39643698 DOI: 10.1038/s41581-024-00908-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 12/09/2024]
Abstract
Endothelin-1 is a potent vasoconstrictor that has diverse physiological functions in the kidney, including in the regulation of blood flow and glomerular filtration, electrolyte homeostasis and endothelial function. Overexpression of endothelin-1 contributes to the pathophysiology of both diabetic and non-diabetic chronic kidney disease (CKD). Selective endothelin receptor antagonists (ERAs) that target the endothelin A (ETA) receptor have demonstrated benefits in animal models of kidney disease and in clinical trials. In patients with type 2 diabetes and CKD, the selective ETA ERA, atrasentan, reduced albuminuria and kidney function decline. Concerns about the increased risks of fluid retention and heart failure with ERA use have led to the design of further trials to optimize dosing and patient selection. More recent studies have shown that the dual ETA receptor and angiotensin receptor blocker, sparsentan, preserved kidney function with minimal fluid retention in patients with IgA nephropathy. Moreover, combined administration of a low dose of the ETA-selective ERA, zibotentan, with the sodium-glucose cotransporter 2 (SGLT2) inhibitor, dapagliflozin, enhanced albuminuria reduction and mitigated fluid retention in patients with CKD. Notably, sparsentan and aprocitentan have received FDA approval for the treatment of IgA nephropathy and treatment-resistant hypertension, respectively. This Review describes our current understanding of the use of ERAs in patients with CKD to guide their optimal safe and effective use in clinical practice.
Collapse
Affiliation(s)
- J David Smeijer
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Donald E Kohan
- Division of Nephrology, University of Utah Health, Salt Lake City, UT, USA
| | - Neeraj Dhaun
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Irene L Noronha
- Division of Nephrology, University of Sao Paulo Medical School, Sao Paulo, Brazil
- George Institute for Global Health, Sydney, New South Wales, Australia
| | - Adrian Liew
- George Institute for Global Health, Sydney, New South Wales, Australia
- Mount Elizabeth Novena Hospital, Singapore, Singapore
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
- George Institute for Global Health, Sydney, New South Wales, Australia.
| |
Collapse
|
14
|
Zhen J, Sun L, Ji L, Zhou S, Cui Y, Li Z. EDN1 facilitates cisplatin resistance of non-small cell lung cancer cells by regulating the TNF signaling pathway. World J Surg Oncol 2025; 23:71. [PMID: 40025550 PMCID: PMC11871734 DOI: 10.1186/s12957-025-03692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/28/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Cisplatin (DDP) is a commonly utilized chemotherapeutic agent. Nevertheless, the development of resistance to DDP significantly diminishes the effectiveness of DDP-based chemotherapy in patients with non-small cell lung cancer (NSCLC). In this study, we investigated the impact of endothelin 1 (EDN1) on the resistance to DDP in NSCLC. METHODS The proliferation, invasion, and migration of NSCLC cells were detected by cell counting kit-8 and Transwell migration and invasion assays. ELISA was performed to analyze the inflammatory cytokines concentrations. The related protein levels of tumor necrosis factor (TNF) signaling pathway were analyzed by Western blot. Besides, a xenograft tumor mice model was established to explore the role of EDN1 in vivo. RESULTS The results showed that DDP-resistance upregulated EDN1 expression, cell viability, invasion, migration, and inflammation in NSCLC cells, while the results were reversed after EDN1 inhibition. EDN1 affected DDP-resistance of NSCLC by regulating TNF signaling pathway. Overexpression of TNF receptor-1 (TNFR1) reversed the decreased cell viability, invasion, migration, and inflammation induced by silencing EDN1 in A549/DDP cells. Moreover, silencing EDN1 inhibited tumor growth and the protein levels of EDN1 and TNFR1. CONCLUSION EDN1 promoted DDP resistance in NSCLC cells through the modulation of the TNF signaling pathway, suggesting a potential therapeutic intervention strategy for NSCLC.
Collapse
Affiliation(s)
- Jie Zhen
- Department of Thoracic Surgery, Qidong People's Hospital, Qidong Liver Cancer Institute, Affiliated Qidong Hospital of Nantong University, Qidong, China
| | - Long Sun
- Department of Pathology, Qidong People's Hospital, Qidong Liver Cancer Institute, Affiliated Qidong Hospital of Nantong University, Qidong, China
| | - Li Ji
- Department of Blood Transfusion, Qidong People's Hospital, Qidong Liver Cancer Institute, Affiliated Qidong Hospital of Nantong University, Qidong, China
| | - Shaochong Zhou
- Department of Thoracic Surgery, Qidong People's Hospital, Qidong Liver Cancer Institute, Affiliated Qidong Hospital of Nantong University, Qidong, China
| | - Yijin Cui
- Department of Neurology, Qidong People's Hospital, Qidong Liver Cancer Institute, Affiliated Qidong Hospital of Nantong University, Qidong, China
| | - Zhenwei Li
- Department of Operating Room, Qidong People's Hospital, Qidong Liver Cancer Institute, Affiliated Qidong Hospital of Nantong University, No.753, Jianghai Middle Road, Qidong, Jiangsu, 226200, China.
| |
Collapse
|
15
|
Babcock MC, DuBose LE, Hildreth KL, Stauffer BL, Kohrt WM, Wenner MM, Moreau KL. Endothelial dysfunction in middle-aged and older men with low testosterone is associated with elevated circulating endothelin-1. Am J Physiol Regul Integr Comp Physiol 2025; 328:R253-R261. [PMID: 39887085 PMCID: PMC12121689 DOI: 10.1152/ajpregu.00218.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/07/2024] [Accepted: 01/26/2025] [Indexed: 02/01/2025]
Abstract
Low testosterone in middle-aged/older men contributes to accelerated vascular aging, including endothelial dysfunction. However, the mechanisms by which low testosterone affects endothelial dysfunction are not well understood. We sought to determine whether higher endothelin-1 (ET-1) levels are associated with reduced brachial artery flow-mediated dilation (FMD) in middle-aged/older men with low testosterone. Plasma ET-1 was quantified in 60 men categorized as young (n = 20, age = 30 ± 4 yr, testosterone = 510 ± 63 ng/dL), middle-aged/older with normal testosterone (n = 20, age = 59 ± 6 yr, testosterone = 512 ± 115 ng/dL), or middle-aged/older with low testosterone (n = 20, age = 60 ± 8 yr, testosterone = 265 ± 47 ng/dL). Endothelial function was determined via brachial artery FMD. Venous and arterial endothelial cells were harvested via endovascular biopsy in a subset of participants and stained for ET-1 expression. Middle-aged/older men with normal testosterone exhibited lower brachial artery FMD (5.7 ± 2.2%) compared with young men (7.3 ± 1.3%, P = 0.020), which was exaggerated in middle-aged/older men with low testosterone (4.0 ± 1.8%, P = 0.010 vs. middle-aged/older men with normal testosterone). Plasma ET-1 was not different between young (5.6 ± 0.9 ng/dL) and middle-aged/older men with normal testosterone (6.0 ± 1.4 ng/dL, P = 0.681) but was higher in middle-aged/older men with low testosterone (7.7 ± 2.8 ng/dL) compared with both groups (P < 0.001 vs. young men; P = 0.013 vs. middle-aged/older men with normal testosterone). There was no difference in venous (P = 0.616) or arterial (P = 0.222) endothelial cell ET-1 expression between groups. There was a significant inverse association between plasma ET-1 and FMD (r =-0.371, P = 0.004). These data suggest that the accelerated age-associated reduction in endothelial dysfunction in middle-aged/older men with low testosterone is related to higher circulating ET-1.NEW & NOTEWORTHY Middle-aged/older men with low testosterone have reduced vascular endothelial function compared with young and age-matched men with normal testosterone. In this manuscript, we demonstrate that men with low testosterone have higher plasma endothelin-1, which is associated with worse brachial artery flow-mediated dilation. The source of higher plasma endothelin-1 remains unknown; however, higher circulating endothelin-1 appears to be a mechanism contributing to reduced vascular endothelial function in men with low testosterone.
Collapse
Affiliation(s)
- Matthew C Babcock
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Lyndsey E DuBose
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kerry L Hildreth
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Brian L Stauffer
- Division of Cardiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Division of Cardiology, Denver Health Medical Center, Denver, Colorado, United States
| | - Wendy M Kohrt
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Eastern Colorado, Denver, Colorado, United States
| | - Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Kerrie L Moreau
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Eastern Colorado, Denver, Colorado, United States
| |
Collapse
|
16
|
Gusti Y, Liu W, Athar F, Cahill PA, Redmond EM. Endothelial Homeostasis Under the Influence of Alcohol-Relevance to Atherosclerotic Cardiovascular Disease. Nutrients 2025; 17:802. [PMID: 40077672 PMCID: PMC11901717 DOI: 10.3390/nu17050802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
Alcohol, in the form of ethyl alcohol or ethanol, is a widely consumed substance with significant implications for human health. Research studies indicate multifaceted effects of alcohol on the cardiovascular system with both protective and harmful effects on atherosclerotic cardiovascular disease (ASCVD), depending on the amount involved and the pattern of consumption. Among the critical components of the cardiovascular system are endothelial cells which line blood vessels. These cells are pivotal in maintaining vessel homeostasis, regulating blood flow, and preventing thrombosis. Their compromised function correlates with arterial disease progression and is predictive of cardiovascular events. Here we review research investigating how alcohol exposure affects the endothelium to gain insight into potential mechanisms mediating alcohol's influence on ASCVD underlying heart attacks and strokes. Studies highlight opposite effects of low versus high levels of alcohol on many endothelial functions. In general, low-to-moderate levels of alcohol (~5-25 mM) maintain the endothelium in a non-activated state supporting vascular homeostasis, while higher alcohol levels (≥50 mM) lead to endothelial dysfunction and promotes atherosclerosis. These biphasic endothelial effects of alcohol might underlie the varying impacts of different alcohol consumption patterns on ASCVD.
Collapse
Affiliation(s)
| | | | | | | | - Eileen M. Redmond
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642-8410, USA; (Y.G.); (W.L.); (F.A.); (P.A.C.)
| |
Collapse
|
17
|
Atanasova DY, Rashev PI, Mourdjeva MS, Pupaki DV, Hristova A, Dandov AD, Lazarov NE. Altered Expression Levels of Angiogenic Peptides in the Carotid Body of Spontaneously Hypertensive Rats. Int J Mol Sci 2025; 26:1620. [PMID: 40004084 PMCID: PMC11855809 DOI: 10.3390/ijms26041620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
The carotid body (CB), the main peripheral arterial chemoreceptor, exhibits considerable structural and neurochemical plasticity in response to pathological conditions such as high blood pressure. Previous studies have shown that morphological alterations in the hypertensive CB are characterized by enlarged parenchyma due to cellular hypertrophy and hyperplasia, and vasodilation. To test whether hypertension can also induce neoangiogenesis and modulate its chemosensory function, we examined the immunohistochemical expression of two angiogenic factors, vascular endothelial growth factor (VEGF) and endothelin-1 (ET), and their corresponding receptors in the CB of adult spontaneously hypertensive rats (SHRs), and compared their expression patterns to that of age-matched normotensive Wistar rats (NWR). We found an increased VEGF-A and B, and VEGFR-2 expression in glomus and endothelial cells in the enlarged CB glomeruli of SHRs compared with that in NWR. Conversely, weaker immunoreactivity to VEGFR-1 was detected in cell clusters of the hypertensive CB. The expression of endothelin-converting enzyme 1 and its receptor ETA was higher in a subset of glomus cells in the normotensive CB, while the immunoreactivity to the ETB receptor was enhanced in endothelial cells of CB blood vessels in SHRs. The elevated endothelial expression of VEGF and ET-1 suggests their role as local vascular remodeling factors in the adaptation to hypertension, though their involvement in the cellular rearrangement and modulation of chemosensory function could also be implied.
Collapse
Affiliation(s)
- Dimitrinka Y. Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
- Department of Anatomy, Faculty of Medicine, Trakia University, 6003 Stara Zagora, Bulgaria
| | - Pavel I. Rashev
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
- Institute of Biology and Immunology of Reproduction “Acad. Kiril Bratanov”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.S.M.); (D.V.P.)
| | - Milena S. Mourdjeva
- Institute of Biology and Immunology of Reproduction “Acad. Kiril Bratanov”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.S.M.); (D.V.P.)
| | - Despina V. Pupaki
- Institute of Biology and Immunology of Reproduction “Acad. Kiril Bratanov”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.S.M.); (D.V.P.)
| | - Anita Hristova
- Faculty of Medicine, Trakia University, 6003 Stara Zagora, Bulgaria;
| | - Angel D. Dandov
- Department of Anatomy and Histology, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Nikolai E. Lazarov
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
- Department of Anatomy and Histology, Medical University of Sofia, 1431 Sofia, Bulgaria;
| |
Collapse
|
18
|
Shirk S, Kozakiewicz ML, Sheehan KN, Xiang KR, Saha AK, Stamilio D, Zhang J, Koch AL, Namen AM. The endothelin-1 system among high-risk pregnant women with obstructive sleep apnea. J Sleep Res 2025:e70008. [PMID: 39925316 DOI: 10.1111/jsr.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/13/2025] [Accepted: 01/29/2025] [Indexed: 02/11/2025]
Abstract
Obstructive sleep apnea is associated with gestational hypertension. Elevated endothelin-1 is a proposed factor in the pathogenesis of gestational hypertension. However, the association between endothelin-1 and obstructive sleep apnea complicating pregnancy is unknown. In a prospective cohort of 60 pregnant patients with obesity but without confounding comorbid conditions (i.e. cardiac/pulmonary disease), plasma and placental samples were collected at delivery in 30 women with obstructive sleep apnea and 30 without. Endothelin-1 concentrations were evaluated using Western blot, quantitative real-time polymerase chain reaction, immunohistochemistry, and enzyme-linked immunosorbent assay. Multivariable analyses were conducted comparing endothelin-1 levels between obstructive sleep apnea and non-obstructive sleep apnea groups. There was no significant difference in band intensity or quantitative densitometric evaluation when comparing obstructive sleep apnea-positive and -negative groups (p = 0.42). mRNA expression of endothelin-1 did not differ in placental tissues between groups (p = 0.73). There was no significant difference in endothelin-1 median plasma concentrations between groups (p = 0.95). However, there was a significant sixfold increase in the rate of endothelin-1 elevation > 90th percentile (adjusted odds ratio 5.9, 95% confidence interval 1.05-32.7) after adjusting for confounding by body mass index. Additionally, lower pre-pregnancy body mass index (< 32 kg m-2) was associated with plasma endothelin-1 > 11 at delivery (p < 0.01), and class 3 obesity appeared protective for having elevated plasma endothelin-1 > 90th percentile (p = 0.03). Overall, in this prospective cohort of high-risk pregnant patients, obstructive sleep apnea was associated with an increased rate of markedly elevated (> 90th percentile) endothelin-1 plasma levels. Lower pre-pregnancy body mass index among patients with obesity was associated with elevated endothelin-1 plasma levels. Obstructive sleep apnea screening questionnaires focused on high body mass index may result in underestimated risk.
Collapse
Affiliation(s)
- Samantha Shirk
- Maternal Fetal Medicine Division, Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - Melissa L Kozakiewicz
- Maternal Fetal Medicine Division, Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - Kristin N Sheehan
- Department of Internal Medicine, Section of Pulmonology, Critical Care, Allergy and Immunologic Diseases, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - Kang Rui Xiang
- Department of Internal Medicine, Section of Pulmonology, Critical Care, Allergy and Immunologic Diseases, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - Amit K Saha
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - David Stamilio
- Maternal Fetal Medicine Division, Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - Jie Zhang
- Maternal Fetal Medicine Division, Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - Abigail L Koch
- Department of Internal Medicine, Section of Pulmonology, Critical Care, Allergy and Immunologic Diseases, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - Andrew M Namen
- Department of Internal Medicine, Section of Pulmonology, Critical Care, Allergy and Immunologic Diseases, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| |
Collapse
|
19
|
Sayer M, Webb DJ, Dhaun N. Novel pharmacological approaches to lowering blood pressure and managing hypertension. Nat Rev Cardiol 2025:10.1038/s41569-025-01131-4. [PMID: 39920248 DOI: 10.1038/s41569-025-01131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
Hypertension is the leading cause of death globally, primarily due to its strong association with cardiovascular disease. The global prevalence of hypertension has surged over the past three decades, driven by rising rates of diabetes mellitus and obesity. Despite current antihypertensive therapies, only a small proportion of patients with hypertension achieve adequate blood pressure control, necessitating novel therapeutic strategies. In this Review we explore the challenges and emerging opportunities in hypertension management. Aprocitentan, a dual endothelin receptor antagonist, is the first agent from a novel class of antihypertensive drug to be licensed since 2007 and exemplifies innovative treatments on the horizon. Here we also address the complex factors contributing to poor hypertension control, including genetic influences, lifestyle factors, therapeutic inertia and poor patient adherence. We discuss the limitations of existing therapies and highlight promising new pharmacological approaches to hypertension management. Integrating these novel treatments alongside current pharmaceuticals combined with improved diagnostic and management strategies could substantially reduce the global burden of hypertension and associated cardiovascular disease.
Collapse
Affiliation(s)
- Matthew Sayer
- Edinburgh Kidney, University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - David J Webb
- Edinburgh Kidney, University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Neeraj Dhaun
- Edinburgh Kidney, University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.
| |
Collapse
|
20
|
Okumura E, Nakaya K, Otsuka K, Jimbo H. Treatment Outcomes of Clazosentan Use During the Perioperative Period for Subarachnoid Hemorrhage. Cureus 2025; 17:e79497. [PMID: 40135022 PMCID: PMC11934823 DOI: 10.7759/cureus.79497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2025] [Indexed: 03/27/2025] Open
Abstract
Background Fasudil hydrochloride hydrate has been traditionally administered in the perioperative management of aneurysmal subarachnoid hemorrhage (aSAH) in Japan for the prevention of delayed cerebral ischemia (DCI) secondary to cerebral vasospasm. While clazosentan, a selective endothelin receptor antagonist, was introduced in April 2022 as an alternative therapeutic option for the same indication, comparative data regarding the therapeutic effectiveness between these agents remains limited. Therefore, this study investigated the differences in treatment outcomes between traditional fasudil hydrochloride hydrate and clazosentan in the perioperative management of aSAH. Materials and methods We retrospectively analyzed aSAH cases treated at our hospital from April 2020 to April 2024. Cases were stratified into either the conventional (fasudil hydrochloride hydrate) or clazosentan group. The primary endpoint was the frequency of DCI associated with cerebral vasospasm. The secondary endpoints were moderate or severe cerebral vasospasm within 14 days of aSAH onset, frequency of rescue therapy, modified Rankin scale (mRS) ≤3 at discharge and hospital stay duration. The postoperative incidence of symptomatic pulmonary edema and mortality assessed safety. Results The study analyzed 104 cases, 61 in the conventional group and 43 in the clazosentan group. The frequency of DCI did not differ between the conventional and clazosentan groups (three cases vs. one case, respectively). Similarly, no significant differences were observed in moderate or severe cerebral vasospasm, rescue therapy, or hospital stay duration. The conventional group had 29 cases with mRS ≤3 at discharge compared with 31 in the clazosentan group. A significantly higher incidence of symptomatic pulmonary edema was observed in the clazosentan group, with 15 cases vs. eight cases in the conventional group. No difference was observed in mortality at discharge. Conclusions We compared treatment outcomes between fasudil hydrochloride hydrate and clazosentan for aSAH. While clazosentan showed a non-significant trend toward lower DCI frequency, it was associated with increased symptomatic pulmonary edema. Given the study's limitations, larger-scale research with matched baseline characteristics is needed to definitively evaluate these agents' comparative efficacy.
Collapse
Affiliation(s)
- Eitaro Okumura
- Department of Neurosurgery, Tokyo Medical University Hachioji Medical Center, Hachioji, JPN
| | - Kohei Nakaya
- Department of Neurosurgery, Tokyo Medical University Hachioji Medical Center, Hachioji, JPN
| | - Kunitoshi Otsuka
- Department of Neurosurgery, Tokyo Medical University Hachioji Medical Center, Hachioji, JPN
| | - Hiroyuki Jimbo
- Department of Neurosurgery, Tokyo Medical University Hachioji Medical Center, Hachioji, JPN
| |
Collapse
|
21
|
Hou ZG, Xing MC, Luo JX, Xu YH, Zhang LH, Gao XW, Wang JJ, Hanafiah F, Khor W, Hao X, Zhao X, Wu CB. Single-cell transcriptome sequencing analysis of physiological and immune profiling of crucian carp (Carassius auratus) gills. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110087. [PMID: 39662647 DOI: 10.1016/j.fsi.2024.110087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/13/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Gills are the main respiratory organs of fish and bear important physiological and immunological functions, but the functional heterogeneity of interlamellar cell mass (ILCM) at the single-cell level has rarely been reported. Here, we identified 19 cell types from the gills of crucian carp (Carassius auratus) by single-cell RNA sequencing (scRNA-seq) in combination with histological analysis. We annotated ILCM and analyzed its functional heterogeneity at the single-cell level for the first time. Functional enrichment analysis and cell cycle analysis identified ILCM as a type of metabolically active cells in a state of constant proliferation, and identified the major pathways responsible for ILCM immunoregulation. Histological analysis revealed the morphology and positional relationships of 6 cell types. Meanwhile, the gene regulatory network of ILCM was established through weighted gene co-expression network analysis (WGCNA), and one transcription factor and five hub genes related to immunoregulation were identified. We found that pyroptosis might be an important pathway responsible for the immune response of ILCM. Our findings provide an insight into the physiological and immune functions of gills and ILCM at the single-cell level and lay a solid foundation for further exploration of the molecular mechanism of ILCM immunity functions.
Collapse
Affiliation(s)
- Zhi-Guang Hou
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China
| | - Meng-Chao Xing
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China
| | - Jia-Xing Luo
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China
| | - Yi-Huan Xu
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China
| | - Li-Han Zhang
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China.
| | - Xiao-Wei Gao
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China
| | - Jiang-Jiang Wang
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China
| | - Fazhan Hanafiah
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, University Malaysia Terengganu, Kuala Terengganu, Terengganu, 21030, Malaysia
| | - Waiho Khor
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, University Malaysia Terengganu, Kuala Terengganu, Terengganu, 21030, Malaysia
| | - Xin Hao
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China
| | - Xin Zhao
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China.
| | - Cheng-Bin Wu
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China.
| |
Collapse
|
22
|
Hedberg-Buenz A, Boese EA, Nyunt AW, Sears NC, Pouw AE, Wang K, Fingert JH. Increased aqueous humor levels of endothelin-1 in patients with open angle glaucoma. BMC Ophthalmol 2025; 25:46. [PMID: 39856599 PMCID: PMC11760677 DOI: 10.1186/s12886-025-03861-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Endothelin is a potent vasoconstrictor and contributes to the regulation of vascular perfusion. Aberrant endothelin-1 (ET-1) levels in aqueous humor have been reported across a variety of vascular diseases of the eye, including glaucoma. These findings suggest that dysregulation of ET-1 production may contribute to glaucoma pathophysiology. In this study, aqueous humor from patients undergoing ocular surgery was assayed for ET-1 abundance and related to the presence of glaucoma. PATIENTS Open angle glaucoma patients (n=62 total) from the ophthalmology clinics of the University of Iowa Hospitals and Clinics were enrolled in this study and organized into three distinct cohorts based on their diagnostic criteria, including those with primary open angle glaucoma (POAG, n=25 patients), normal tension glaucoma (NTG, n=17 patients), exfoliation glaucoma (XFG, n=8 patients), and normal controls (n=12 patients). METHODS Aqueous humor was collected intraoperatively from patients undergoing surgeries for glaucoma (including minimally invasive glaucoma surgeries, trabeculectomy, or glaucoma drainage device implantation) for samples in the glaucoma cohorts and cataract extraction for those in the control cohort. Aqueous humor was assayed by ELISA to measure and compare ET-1 abundance between the glaucoma cohorts and control cohort. ET-1 levels were also analyzed with linear regression to control for the covariates of age and sex. RESULTS ET-1 was significantly elevated in the aqueous humor of patients in the POAG (mean ± SD: 7.8 ± 5.1 pg/mL; p = 0.002) and NTG cohorts (6.1 ± 3.0 pg/mL; p = 0.030) compared to the control (4.0 ± 1.9 pg/mL). No significant difference in aqueous ET-1 was detected in the XFG cohort (6.2 ± 4.5 pg/mL; p = 0.230) compared to the control. Significantly higher ET-1 levels were detected in a merged grouping of all glaucoma cohorts (POAG, NTG, XFG) relative to controls (p = 0.021). Analysis of covariance indicated neither age nor sex was associated with ET-1 level (p = 0.60 and p = 0.27), respectively. Controlling for age and sex had minimal influence on the comparison of ET-1 levels in the POAG versus control cohort (p = 0.018) and nominal influence on the comparisons between the NTG (p = 0.089) or XFG cohort (p = 0.15) relative to the control. CONCLUSIONS Elevated ET-1 in aqueous humor was associated with POAG and NTG compared to controls amongst cohorts of patients at the University of Iowa. These data suggest that dysregulation of vascular perfusion may have a role in the pathophysiology of POAG. The analyses of NTG and XFG samples were limited by the relatively small sample sizes.
Collapse
Affiliation(s)
- Adam Hedberg-Buenz
- Institute for Vision Research, University of Iowa, Iowa City, IA, United States
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States
| | - Erin A Boese
- Institute for Vision Research, University of Iowa, Iowa City, IA, United States
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Angela W Nyunt
- Institute for Vision Research, University of Iowa, Iowa City, IA, United States
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Nathan C Sears
- Institute for Vision Research, University of Iowa, Iowa City, IA, United States
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Andrew E Pouw
- Institute for Vision Research, University of Iowa, Iowa City, IA, United States
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Kai Wang
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, United States
| | - John H Fingert
- Institute for Vision Research, University of Iowa, Iowa City, IA, United States.
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States.
- 3111B Medical Education and Research Facility, University of Iowa, 375 Newton Road, Iowa City, IA, 52242, United States.
| |
Collapse
|
23
|
Liu W, Zhang L, Liao W, Liu H, Liang W, Yan J, Huang Y, Jiang T, Wang Q, Zhang C. Unveiling the molecular and cellular links between obstructive sleep apnea-hypopnea syndrome and vascular aging. Chin Med J (Engl) 2025; 138:155-171. [PMID: 39647991 PMCID: PMC11745861 DOI: 10.1097/cm9.0000000000003352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Indexed: 12/10/2024] Open
Abstract
ABSTRACT Vascular aging (VA) is a common etiology of various chronic diseases and represents a major public health concern. Intermittent hypoxia (IH) associated with obstructive sleep apnea-hypopnea syndrome (OSAHS) is a primary pathological and physiological driver of OSAHS-induced systemic complications. A substantial proportion of OSAHS patients, estimated to be between 40% and 80%, have comorbidities such as hypertension, heart failure, coronary artery disease, pulmonary hypertension, atrial fibrillation, aneurysm, and stroke, all of which are closely associated with VA. This review examines the molecular and cellular features common to both OSAHS and VA, highlighting decreased melatonin secretion, impaired autophagy, increased apoptosis, increased inflammation and pyroptosis, increased oxidative stress, accelerated telomere shortening, accelerated stem cell depletion, metabolic disorders, imbalanced protein homeostasis, epigenetic alterations, and dysregulated neurohormonal signaling. The accumulation and combination of these features may underlie the pathophysiological link between OSAHS and VA, but the exact mechanisms by which OSAHS affects VA may require further investigation. Taken together, these findings suggest that OSAHS may serve as a novel risk factor for VA and related vascular disorders, and that targeting these features may offer therapeutic potential to mitigate the vascular risks associated with OSAHS.
Collapse
Affiliation(s)
- Wei Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Le Zhang
- Institute of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Wenhui Liao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Wukaiyang Liang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Jinhua Yan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Yi Huang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Tao Jiang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Qian Wang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| |
Collapse
|
24
|
Zagol-Ikapitte IA, Tabatabai MA, Wilus DM, Alcendor DJ. Plasma Endothelin-1 Levels: Non-Predictors of Alzheimer's Disease Reveal Age Correlation in African American Women. J Clin Med 2025; 14:635. [PMID: 39860641 PMCID: PMC11766246 DOI: 10.3390/jcm14020635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/04/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Alzheimer's disease (AD) and related dementias (ADRD) disproportionately impact racial and ethnic minorities. Contributing biological factors that explain this disparity have been elusive. Moreover, non-invasive biomarkers for early detection of AD are needed. Endothelin-1 (ET-1), a vasoconstrictive factor linked to cerebral vascular disease pathology and neuronal injury, could provide insights to better understand racial disparities in AD. As a potent vasoconstrictive peptide that regulates contractions in smooth muscle, endothelial cells, and pericytes, ET-1 may result in cerebral vascular constriction, leading to cerebral hypoperfusion; over time, this may result in neuronal injury, contributing to the pathology of AD. The role of the ET-1 system as a driver of ethnic disparities in AD requires further investigation. In the United States (U.S.), ET-1 dysregulation in Hispanic/Latinx (H/L) ethnic populations has largely been unexplored. Genetics linking ET-1 dysregulation and racial disparities in AD also require further investigation. In this study, we examined the role of the ET-1 protein in human plasma as a potential biomarker with predictive value for correlating with the development of AD by age, race, and sex. Methods: We examined ET-1 protein levels using quantitative mass spectrometry in AA and NHW patients with AD, along with controls. Results: A partial correlation between age at draw and ET-1, stratified by race and sex, while controlling for AD status, was significant for female AAs (r = 0.385, p = 0.016). When the data were not stratified but controlled for AD status, the partial correlation between age at draw and ET-1 was not significant (r = 0.108, p = 0.259). Conclusions: Based on the small number of plasma specimens and no plasma specimens from H/L individuals with AD, we conclude that ET-1 was clearly not a significant factor in predicting AD in this study and will require a larger scale study for validation.
Collapse
Affiliation(s)
- Irene A. Zagol-Ikapitte
- Proteomics Laboratory, Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | | | - Derek M. Wilus
- School of Global Health, Meharry Medical College, Nashville, TN 37208, USA
| | - Donald J. Alcendor
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology, and Physiology, Meharry Medical College, School of Medicine, Nashville, TN 37208, USA
| |
Collapse
|
25
|
Kajiwara S, Kawano T, Hasegawa Y, Nakamura Y, Sakata K, Kikuchi J, Hirohata M, Morioka M. Impact of Clazosentan on Vasospasm Reduction and Functional Recovery after Aneurysmal Subarachnoid Hemorrhage. Neurol Med Chir (Tokyo) 2025; 65:29-36. [PMID: 39581616 PMCID: PMC11807685 DOI: 10.2176/jns-nmc.2024-0204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/25/2024] [Indexed: 11/26/2024] Open
Abstract
In every hospital in Japan, until 2022, the primary treatment for preventing delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH) involved a combination of ozagrel sodium (Oz), fasudil hydrochloride (Fs), cilostazol, and statins. However, with the approval of clazosentan in January 2022, it has been used as a first-choice drug more frequently. Despite this shift, limited evidence exists regarding the use of clazosentan as the first choice for DCI prevention. In this study, we analyzed the efficacy and outcomes of these two treatments in aSAH patients. Patients treated with Oz+Fs were enrolled between January 2014 and March 2022. In April 2022, clazosentan was prescribed to prevent DCI. Clinical data were collected, and propensity-score matching was conducted based on the clazosentan group. The primary endpoint was the functional outcome at discharge and 6-12 months after admission; the secondary endpoints were the incidence of cerebral vasospasm (CV) and DCI. In this study, 221 patients were included, and 27 were selected from both groups after matching. The incidence of CV was significantly lower in the clazosentan group (11.1% vs. 55.6%, p<0.01), and the incidence of DCI tended to be lower in the clazosentan group (3.7% vs. 25.9%, p=0.05). No significant difference was observed in the primary endpoint of functional outcome at discharge; however, a significant improvement in functional outcome was observed in the clazosentan group at 6 months (96.3% vs. 70.4%, p<0.05). Clazosentan significantly reduced the incidence of CV and improved functional outcomes in patients with aSAH compared to Oz+Fs.
Collapse
Affiliation(s)
- Sosho Kajiwara
- Department of Neurosurgery, Kurume University School of Medicine
- Department of Neurosurgery, Saiseikai Fukuoka General Hospital
| | - Takayuki Kawano
- Department of Neurosurgery, Saiseikai Fukuoka General Hospital
| | - Yu Hasegawa
- Department of Neurosurgery, Kurume University School of Medicine
- Department of Pharmaceutical Sciences, School of Pharmacy at Fukuoka, International University of Health and Welfare
| | | | - Kiyohiko Sakata
- Department of Neurosurgery, Kurume University School of Medicine
| | - Jin Kikuchi
- Department of Neurosurgery, Kurume University School of Medicine
| | - Masaru Hirohata
- Department of Neurosurgery, Kurume University School of Medicine
| | - Motohiro Morioka
- Department of Neurosurgery, Kurume University School of Medicine
| |
Collapse
|
26
|
Palevsky HI, Butrous G, Elliott CG. Introducing Historical Vignettes in Pulmonary Circulation. Pulm Circ 2025; 15:e70061. [PMID: 39980709 PMCID: PMC11839388 DOI: 10.1002/pul2.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/10/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025] Open
Affiliation(s)
- Harold I. Palevsky
- Perelman School of Medicine of the University of Pennsylvania, Penn Presbyterian Medical CenterPhiladelphiaPennsylvaniaUSA
| | | | - C. Gregory Elliott
- Department of Pulmonary and Critical Care MedicineIntermountain Medical CenterMurrayUtahUSA
| |
Collapse
|
27
|
Mazaki Y, Horinouchi T, Onodera Y, Nam JM. Phosphorylation of annexin A2 at serine 25 is required for endothelin-1 stimulated cell proliferation and AKT activation in melanoma cells. Biochem Biophys Res Commun 2025; 743:151168. [PMID: 39675170 DOI: 10.1016/j.bbrc.2024.151168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Endothelin (ET)-1 contributes to melanoma progression via cell proliferation, invasion, and migration. We previously reported that annexin A2 (AnxA2) binds to ET receptors. In this study, we aimed to further investigate role of AnxA2 in melanoma cell proliferation after ET-1 stimulation. AnxA2 knockdown inhibited ET-1-stimulated cell proliferation and AKT activation in SK-MEL28 melanoma cells. ET-1 stimulation phosphorylated serine on AnxA2, and AnxA2 Ser25 phosphorylation-deficient mutant (AnxA2 S25A) cells showed lower ET-1-stimulated cell proliferation and AKT activation than the rescue AnxA2 knockdown (AnxA2 res) and AnxA2 Ser11 phosphorylation-deficient mutant (AnxA2 S11A) cells. Although AnxA2 S25A was localized to the plasma membrane, it exhibited lower colocalization with ET receptors than AnxA2 res and AnxA2 S11A on the plasma membrane. These results suggest that phosphorylation of AnxA2 Ser25 affects the colocalization of AnxA2 and ETRs and plays an important role in cell proliferation and AKT activation in ET-1 stimulated melanoma cells.
Collapse
Affiliation(s)
- Yuichi Mazaki
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Takahiro Horinouchi
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhito Onodera
- Radiation Oncology Division, Global Center for Biomedical Science and Engineering, Hokkaido University, Sapporo, Japan
| | - Jin-Min Nam
- Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Japan
| |
Collapse
|
28
|
Empitu MA, Rinastiti P, Kadariswantiningsih IN. Targeting endothelin signaling in podocyte injury and diabetic nephropathy-diabetic kidney disease. J Nephrol 2025; 38:49-60. [PMID: 39302622 DOI: 10.1007/s40620-024-02072-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Despite advances in diabetes management, there is an urgent need for novel therapeutic strategies since the current treatments remain insufficient in halting the progression of diabetic nephropathy-diabetic kidney disease (DN-DKD). This review is mainly addressed on the pivotal role of endothelin-1 in the pathophysiology of DN, with a specific focus on its effects on podocytes and the glomerular filtration barrier. Endothelin-1 promotes mesangial cell proliferation, sclerosis, and direct podocyte injury via the activation of endothelin type A and B receptors, that drive the progression of glomerulosclerosis in DN-DKD. Endothelin receptor antagonists, including drugs like atrasentan and sparsentan, have demonstrated nephroprotective effects in experimental models by reducing proteinuria and podocyte injury. The therapeutic potential to slow the progression of DN to end-stage kidney disease (ESKD) of these endothelin receptor antagonists in clinical practice is currently under evaluation. However, fluid retention and increased risk of heart failure associated with endothelin receptor antagonists need careful consideration. This review aims to provide an in-depth analysis of the pathophysiological role of endothelin and the emerging therapeutic implications of targeting this pathway in DN-DKD and discusses efficacy, safety, and the possibility of combining the new generation of endothelin receptor antagonists with the standard treatment of CKD and DN-DKD.
Collapse
Affiliation(s)
- Maulana Antiyan Empitu
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia
- Faculty of Health, Medicine and Natural Sciences (FIKKIA), Airlangga University, Banyuwangi, Indonesia
| | - Pranindya Rinastiti
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan
- Department of Clinical Pathology, Faculty of Medicine, Public Health, and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | | |
Collapse
|
29
|
Shirinsky VP. Vascular Endothelium at the Molecular Level: From Fundamental Knowledge Toward Medical Implementation. Biomedicines 2024; 13:2. [PMID: 39857586 PMCID: PMC11762819 DOI: 10.3390/biomedicines13010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
The concept of multiple physiologic roles played by a single layer of endothelium on the intimal face of blood vessels started gaining recognition in the 1960s [...].
Collapse
Affiliation(s)
- Vladimir P Shirinsky
- Institute of Experimental Cardiology Named After Academician V.N. Smirnov, National Medical Research Center of Cardiology Named After Academician E.I. Chazov, Moscow 121552, Russia
| |
Collapse
|
30
|
Liu Z, Xia Q, Wang C, Xu J, Tian K, Wang Z, Li L, Li Y, Shang H, Liu Q, Xin T. Biomimetic astrocyte cell membrane-fused nanovesicles for protecting neurovascular units in hypoxic ischemic encephalopathy. J Nanobiotechnology 2024; 22:766. [PMID: 39695691 DOI: 10.1186/s12951-024-03053-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Hypoxic ischemic encephalopathy (HIE) refers to neonatal hypoxic brain injury caused by severe asphyxia during the perinatal period. With a high incidence rate and poor prognosis, HIE accounts for 2.4% of the global disease burden, imposing a heavy burden on families and society. Current clinical treatment for HIE primarily focuses on symptomatic management and supportive care. Therefore, the developments of effective treatment strategies and new drug formulations are critical for improving the prognosis of HIE patients. In order to protect the compromised neurovascular units after HIE, we prepared membrane-fused nanovesicles for delivering rapamycin and si EDN1 (TRCAM@RAPA@si EDN1). Due to the homotypic targeting feature of membrane-fused nanovesicles, we employed astrocyte membranes as synthetic materials to improve the targeting of astrocytes in brain while reducing the clearance of nanovesicles by circulatory system. Additionally, the surface of cell membrane was modified with CXCR3 receptors, enhancing the homing of nanovesicles to infarcted lesions. Lipid vesicles were modified with TK and RVG29 transmembrane peptides, enabling responsive release of internal drugs and blood-brain barrier penetration. Internally loaded rapamycin could promote protective autophagy in astrocytes, improve cellular oxidative stress, while si EDN1 could reduce the expression level of endothelin gene, thereby reducing secondary damage to neurovascular units.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250021, China
| | - Qian Xia
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chanyue Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jiacan Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Kangqian Tian
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zhihai Wang
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Longji Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Yuchen Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Hao Shang
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Qian Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Tao Xin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China.
| |
Collapse
|
31
|
Allan JM, Fox BM, Kasztan M, Kelly GC, Molina PA, King MA, Colson J, Wells L, Bowman L, Blackburn M, Kutlar A, Harris RA, Pollock DM, Pollock JS. Enhanced vasoconstriction in sickle cell disease is dependent on ETA receptor activation. Clin Sci (Lond) 2024; 138:1505-1520. [PMID: 39526571 DOI: 10.1042/cs20240625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 11/03/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Sickle cell disease (SCD) carries a significant risk for poor vascular health and vascular dysfunction. High levels of vascular reactive oxygen species (ROS) as well as elevated plasma endothelin-1 (ET-1), a potent vasoconstrictor with actions via the ETA receptor, are both common phenotypes in SCD. Alpha-1 adrenergic receptor activation is a major mediator of stress-induced vasoconstriction. However, the mechanism of the SCD enhanced vasoconstrictive response is unknown. We hypothesized that SCD induces enhanced alpha-1 adrenergic mediated vasoconstriction through the ET-1/ETA receptor pathway in arterial tissues. Utilizing humanized SCD (HbSS) and genetic control (HbAA) mice, alpha-1a, but not alpha-1b or alpha-1d, receptor expression was significantly greater in aortic tissue from HbSS mice compared to HbAA mice. Significantly enhanced vasoconstriction in aortic and carotid arterial segments were observed from HbSS mice compared with HbAA mice. Treatment with ambrisentan, a selective ETA receptor antagonist, and a ROS scavenger normalized the aortic vasoconstrictive response in HbSS mice. In a randomized translational study, patients with SCD were treated with placebo or ambrisentan for 3 months, with the treatment group showing an increase in the percent brachial arterial diameter. Taken together, these data suggest that the ETA receptor pathway interaction with the adrenergic receptor pathway contributes to enhanced aortic vasoconstriction in SCD. Findings indicate the potential of ETA antagonism as a therapeutic avenue for improving vascular health in SCD.
Collapse
Affiliation(s)
- John Miller Allan
- Section of Cardiorenal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
| | - Brandon M Fox
- Section of Cardiorenal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
| | - Malgorzata Kasztan
- Section of Cardiorenal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
- Division of Hematology-Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
| | - Gillian C Kelly
- Section of Cardiorenal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
| | - Patrick A Molina
- Section of Cardiorenal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
| | - McKenzi A King
- Section of Cardiorenal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
| | - Jackson Colson
- Section of Cardiorenal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
| | - Leigh Wells
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
- Division of Hematology and Oncology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
| | - Latanya Bowman
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
- Division of Hematology and Oncology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
| | - Marsha Blackburn
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
- Division of Hematology and Oncology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
| | - Abdullah Kutlar
- Division of Hematology and Oncology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
| | - Ryan A Harris
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, U.S.A
| | - David M Pollock
- Section of Cardiorenal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
| | - Jennifer S Pollock
- Section of Cardiorenal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, U.S.A
| |
Collapse
|
32
|
Asenjo-Bueno A, Alcalde-Estévez E, Olmos G, Martínez-Miguel P, Ruiz-Torres MP, López-Ongil S. Respiratory dysfunction in old mice could be related to inflammation and lung fibrosis induced by hyperphosphatemia. Eur J Clin Invest 2024; 54:e14302. [PMID: 39155424 DOI: 10.1111/eci.14302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND With age, lungs undergo typical changes that lead to a deterioration of respiratory function. Our aim was to assess the role of age-associated hyperphosphatemia in these changes. METHODS We used C57BL6 mice to study an ageing model in vivo and human lung fibroblasts were treated with a phosphate donor, beta-glycerophosphate (BGP), to explore mechanisms involved. Respiratory function was registered with a double chamber plethysmograph. Lung structure was analysed by different staining, phosphate and cytokines levels by colorimeric kits, expression of fibrosis, inflammation and ET-1 system by western blot or RT-PCR. RESULTS Old mice showed hyperphosphatemia, along with lung fibrosis, loss of elastin, increased expression of pro-inflammatory cytokines and impaired respiratory function. BGP induced inflammation and fibrosis in fibroblasts through the activation and binding of NFkB to the MCP-1 or FN promoters. BGP increased ECE-1 expression by inducing NFkB binding to the ECE-1 promoter. QNZ, an NFkB inhibitor, blocked these effects. When ECE-1 was inhibited with phosphoramidon, BGP-induced inflammation and fibrosis were significantly reduced, suggesting a role for ET-1 in BGP-mediated effects.ET-1 produced effects similar to those of BGP, which were also dependent on NFkB. To study the pathophysiological relevance of hyperphosphatemia in vivo, a low-P diet was administered to a group of old animals, showing an improvement in fibrosis, inflammation and respiratory function compared to old mice on a standard diet. CONCLUSION These results suggest that age-related hyperphosphatemia induces inflammation, fibrosis, and impaired respiratory function in old mice; these effects appear to be mediated by ET-1 and NFkB activation.
Collapse
Affiliation(s)
- Ana Asenjo-Bueno
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Elena Alcalde-Estévez
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Gemma Olmos
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid, Spain
- Area 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, Madrid, Spain
| | - Patricia Martínez-Miguel
- Servicio de Nefrología del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - María Piedad Ruiz-Torres
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid, Spain
- Area 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, Madrid, Spain
| | - Susana López-Ongil
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid, Spain
- Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
33
|
Adao DMT, Ching C, Fish JE, Simmons CA, Billia F. Endothelial cell-cardiomyocyte cross-talk: understanding bidirectional paracrine signaling in cardiovascular homeostasis and disease. Clin Sci (Lond) 2024; 138:1395-1419. [PMID: 39492693 DOI: 10.1042/cs20241084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
To maintain homeostasis in the heart, endothelial cells and cardiomyocytes engage in dynamic cross-talk through paracrine signals that regulate both cardiac development and function. Here, we review the paracrine signals that endothelial cells release to regulate cardiomyocyte growth, hypertrophy and contractility, and the factors that cardiomyocytes release to influence angiogenesis and vascular tone. Dysregulated communication between these cell types can drive pathophysiology of disease, as seen in ischemia-reperfusion injury, diabetes, maladaptive hypertrophy, and chemotherapy-induced cardiotoxicity. Investingating the role of cross-talk is critical in developing an understanding of tissue homeostasis, regeneration, and disease pathogenesis, with the potential to identify novel targets for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Doris M T Adao
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario, Canada, M5S 3G9
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Ave., Toronto, Ontario, Canada, M5G 1M1
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
| | - Crizza Ching
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
- Institute of Medical Science, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
- Institute of Medical Science, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
- Peter Munk Cardiac Centre, University Health Network, 585 University Ave., Toronto, Ontario, Canada, M5G 2N2
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario, Canada, M5S 3G9
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Ave., Toronto, Ontario, Canada, M5G 1M1
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Rd., Toronto, Ontario, Canada, M5S 3G8
| | - Filio Billia
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
- Institute of Medical Science, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
- Peter Munk Cardiac Centre, University Health Network, 585 University Ave., Toronto, Ontario, Canada, M5G 2N2
| |
Collapse
|
34
|
Karakaya E, Abdul Y, Edwards J, Jamil S, Albayram O, Ergul A. Complex regulation of tau phosphorylation by the endothelin system in brain microvascular endothelial cells (BMVECs): link to barrier function. Clin Sci (Lond) 2024; 138:1329-1341. [PMID: 39356969 DOI: 10.1042/cs20240616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/04/2024]
Abstract
Endothelin-1 (ET-1), the most potent vasoconstrictor identified to date, contributes to cerebrovascular dysfunction. ET-1 levels in postmortem brain specimens from individuals diagnosed with Alzheimer's disease (AD) and related dementias (ADRD) were shown to be related to cerebral hypoxia and disease severity. ET-1-mediated vascular dysfunction and ensuing cognitive deficits have also been reported in experimental models of AD and ADRD. Moreover, studies also showed that ET-1 secreted from brain microvascular endothelial cells (BMVECs) can affect neurovascular unit integrity in an autocrine and paracrine manner. Vascular contributions to cognitive impairment and dementia (VCID) is a leading ADRD cause known to be free of neuronal tau pathology, a hallmark of AD. However, a recent study reported cytotoxic hyperphosphorylated tau (p-tau) accumulation, which fails to bind or stabilize microtubules in BMVECs in VCID. Thus, the study aimed to determine the impact of ET-1 on tau pathology, microtubule organization, and barrier function in BMVECs. Cells were stimulated with 1 μM ET-1 for 24 h in the presence/absence of ETA (BQ123; 20 μM) or ETB (BQ788; 20 μM) receptor antagonists. Cell lysates were assayed for an array of phosphorylation site-specific antibodies and microtubule organization/stabilization markers. ET-1 stimulation increased p-tau Thr231 but decreased p-tau Ser199, Ser262, Ser396, and Ser214 levels only in the presence of ETA or ETB antagonism. ET-1 also impaired barrier function in the presence of ETA antagonism. These novel findings suggest that (1) dysregulation of endothelial tau phosphorylation may contribute to cerebral microvascular dysfunction and (2) the ET system may be an early intervention target to prevent hyperphosphorylated tau-mediated disruption of BMVEC barrier function.
Collapse
Affiliation(s)
- Eda Karakaya
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, U.S.A
| | - Yasir Abdul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, U.S.A
| | - Jazlyn Edwards
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Sarah Jamil
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, U.S.A
| | - Onder Albayram
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Adviye Ergul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, U.S.A
| |
Collapse
|
35
|
Morishima T, Yamaguchi K, Goto K. Impact of moderate-intensity aerobic exercise in combined hypoxic and hot conditions on endothelial function. Clin Physiol Funct Imaging 2024; 44:415-425. [PMID: 38922727 DOI: 10.1111/cpf.12894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/19/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
There is no study that has investigated the impact of exercise in a combined hypoxic and hot environment on endothelial function. Therefore, we tested whether aerobic exercise in a combined hypoxic and hot conditions induces further enhancement of endothelial function. Twelve healthy males cycled at a constant workload (50% of their maximal oxygen uptake under normoxic/thermoneutral conditions) for 30 min in four different environments: exercise under normoxic condition (NOR: fraction of inspiratory oxygen or FiO2 = 20.9%, 20°C), exercise under hypoxic condition (HYP: FiO2 = 14.5%, 20°C), exercise under hot condition (HOT: FiO2 = 20.9%, 30°C), and exercise under combined hypoxia and hot conditions (HH: FiO2 = 14.5%, 30°C). Before, during, and after exercise, cardiovascular variables (e.g., heart rate, blood flow, and shear rate), blood variables, and endothelial function evaluated by flow-mediated dilation (FMD) were assessed. Heart rates were significantly higher throughout the HH trial's experimental period than the other trials (p < 0.05). However, in the HH trial, brachial artery blood flow and shear rate did not differ from those in other trials after exercise. Plasma catecholamines (epinephrine, norepinephrine, and dopamine) elevations in response to exercise were significantly higher in the HH trial than in the other three trials (p < 0.05). No considerable differences were observed in FMD responses among trials before and after the exercise. In conclusion, aerobic exercise in a combined hot and hypoxic environment further activated sympathetic nervous activity but did not considerably enhance blood flow, shear rate, or endothelial function.
Collapse
Affiliation(s)
- Takuma Morishima
- Faculty of Liberal Arts and Sciences, Chukyo University, Aichi, Japan
| | - Keiichi Yamaguchi
- Graduate School of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Kazushige Goto
- Graduate School of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| |
Collapse
|
36
|
Desingu V, Ravi S, Balagangadharan M, Nagarajan S, Kesavan P, Ramalingam K. Evaluation of the serum levels of endothelin-1 and lipid profile in chronic periodontitis patients, before and after periodontal therapy. J Indian Soc Periodontol 2024; 28:651-656. [PMID: 40313340 PMCID: PMC12043216 DOI: 10.4103/jisp.jisp_41_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 05/03/2025] Open
Abstract
Aim To evaluate the serum level of endothelin-1 (ET-1) and lipid profile in chronic periodontitis patients before and after periodontal therapy. Materials and Methods Sixty systemically healthy patients were divided into two groups, each with 30 patients. Group A with 30 healthy individuals and Group B with 30 chronic periodontitis patients. Group B was further divided into Group B1 and Group B2. Group B1 consisted of 15 patients with clinical attachment loss (CAL) of 1-2 mm treated by nonsurgical periodontal therapy. Group B2 of 15 patients with CAL of 3-4 mm, treated by periodontal flap surgery. Blood samples were collected before and 3 months following periodontal treatment to determine the serum level of ET-1 and lipid profile. Results There was a statistically significant difference in ET-1 and lipid profile levels before and after periodontal treatment in both Groups B1and B2. However, the difference was more significant in Group B2 than Group B1 (P < 0.001). Conclusion Serum ET-1 and lipid profile could be a potential biomarker for periodontal and cardiovascular diseases. Periodontal therapy could reduce the risk of cardiovascular disease by reducing ET-1 and lipid profile postoperatively.
Collapse
Affiliation(s)
- Vanathy Desingu
- Department of Periodontology, Indira Gandhi Institute of Dental Sciences, Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, India
| | - Saranyan Ravi
- Department of Periodontology, Vinayaka Mission’s Sankarachariyar Dental College, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem, Tamil Nadu, India
| | - Manovijay Balagangadharan
- Department of Periodontology, Vinayaka Mission’s Sankarachariyar Dental College, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem, Tamil Nadu, India
| | - Sayeeganesh Nagarajan
- Department of Periodontology, Vinayaka Mission’s Sankarachariyar Dental College, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem, Tamil Nadu, India
| | - Priya Kesavan
- Department of Periodontology, Vinayaka Mission’s Sankarachariyar Dental College, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem, Tamil Nadu, India
| | - Kurinchichelvan Ramalingam
- Department of Periodontology, Indira Gandhi Institute of Dental Sciences, Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, India
| |
Collapse
|
37
|
Chardon N, Nourredine M, Ledochowski S, Kurland NT, Dailler F, Ritzenthaler T, Nougier C, Balança B. Trajectory of mean platelet volume changes after aneurysmal subarachnoid hemorrhage in patients with or without delayed cerebral ischemia. Sci Rep 2024; 14:25122. [PMID: 39448701 PMCID: PMC11502662 DOI: 10.1038/s41598-024-75587-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
The morbidity of aneurysmal subarachnoid hemorrhage (aSAH) remains high, particularly because of secondary cerebral lesions that significantly aggravate the primary lesions. The main type of secondary lesions is delayed cerebral ischemia (DCI), in which platelets (PLT) appear to play a key role. Mean platelet volume (MPV) is an indirect marker of platelet activation. We aimed to determine the individual trajectories of MPV over time in patients with and without DCI during the course of aSAH. This is a single-center, retrospective, longitudinal analysis of individual trajectories of MPV over time, in a cohort of aSAH patients included in the Prospective, Observational Registry of Patient with Subarachnoid Hemorrhage in Neurocritical Care Unit (ProReSHA). A mixed-effects linear regression model was used to compare the trajectories of MPV and MPV/PLT ratio between patients who developed a DCI and those who did not. A total of 3634 MPV values were collected in 587 patients. The analysis of MPV as a function of DCI occurrence showed a significant difference in the trajectory over time between patients with DCI and those without, with an estimate of 0.02 (95%CI 0.01, 0.04, p = 0.009). The analysis of the MPV/PLT ratio as a function of DCI occurrence and other covariates showed a significant difference in the trajectory over time only for patients with a modified Fisher score less than 3, with an estimate of -0.59 (95%CI: -0.94, -0.23, p = 0.001). The individual trajectories of MPV over time differ between patients with DCI and those without. However, MPV values vary greatly over time and between patients. Thus it does not appear as a reliable biomarker for stratifying patients based on their specific risk of developing DCI. ClinicalTrials.gov identifier: (NCT02890004), registered in August 2016.
Collapse
Affiliation(s)
- Nicolas Chardon
- Département d'Anesthésie et Réanimation, Hopital Neurologique Pierre Wertheimer, Hospices Civils de Lyon (Lyon University Hospital), 59 Boulevard Pinel Bron, Lyon, 69500, France.
| | | | - Stanislas Ledochowski
- Service de Réanimation Polyvalente, Médipôle Lyon-Villeurbanne, Ramsay Santé, France
| | | | - Frédéric Dailler
- Département d'Anesthésie et Réanimation, Hopital Neurologique Pierre Wertheimer, Hospices Civils de Lyon (Lyon University Hospital), 59 Boulevard Pinel Bron, Lyon, 69500, France
| | - Thomas Ritzenthaler
- Département d'Anesthésie et Réanimation, Hopital Neurologique Pierre Wertheimer, Hospices Civils de Lyon (Lyon University Hospital), 59 Boulevard Pinel Bron, Lyon, 69500, France
| | - Christophe Nougier
- Laboratoire d'Hématologie-Hémostase, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Baptiste Balança
- Département d'Anesthésie et Réanimation, Hopital Neurologique Pierre Wertheimer, Hospices Civils de Lyon (Lyon University Hospital), 59 Boulevard Pinel Bron, Lyon, 69500, France
- Lyon Neurosciences Research Center, INSERM U1028/CNRS, UMR 5292, University of Lyon, Lyon, France
| |
Collapse
|
38
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
39
|
Cuttitta F, García-Sanmartín J, Feng Y, Sunday ME, Kim YS, Martínez A. Human Cripto-1 and Cripto-3 Protein Expression in Normal and Malignant Settings That Conflicts with Established Conventions. Cancers (Basel) 2024; 16:3577. [PMID: 39518018 PMCID: PMC11545644 DOI: 10.3390/cancers16213577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Cripto-1 (CR1) is a plurifunctional embryonic protein required for implantation and re-expressed in the adult during wound repair, inflammation, and tumorigenesis. CR1 and its predicted CR1 pseudogene product Cripto-3/CR3 are highly homologous proteins, and given this physical attribute, commercially available antibodies cannot discriminate between CR1 and CR3. Methods: A series of mouse monoclonal antibodies [MoAbs] were developed with a high-affinity binding that can differentiate human CR1/CR3 proteins and showed no measurable cross-reactivity. Results: Using these reagents, we confirm that CR3 is a bona fide translated protein found in human tumor tissue, cancer cell lysates, and in normal/cancer patient donor sera. We also reveal that CR1 and CR3 compete for binding to signal transduction protein Nodal, glucose-regulated protein 78Da (GRP78), and activin receptor-like kinase 4 (Alk4). Our discriminatory MoAbs provide new reagents to help clarify current CR1/CR3 protein expression vagaries in the Cripto field of study, challenging established CR1 conventions. In addition, our data validate CR3 involvement in human carcinogenesis and cell signaling pathways, with potential clinical relevance in determining cancer patient prognosis and disease severity.
Collapse
Affiliation(s)
- Frank Cuttitta
- Tumor Angiogenesis Unit, Mouse Cancer and Genetics Program, National Cancer Institute/Frederick Facility, Frederick, MD 21701, USA;
| | - Josune García-Sanmartín
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain; (J.G.-S.); (A.M.)
| | - Yang Feng
- Tumor Angiogenesis Unit, Mouse Cancer and Genetics Program, National Cancer Institute/Frederick Facility, Frederick, MD 21701, USA;
| | | | - Young S. Kim
- Cancer Prevention Science Branch, Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA;
| | - Alfredo Martínez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain; (J.G.-S.); (A.M.)
| |
Collapse
|
40
|
Jozwiak M, Lim SY, Si X, Monnet X. Biomarkers in cardiogenic shock: old pals, new friends. Ann Intensive Care 2024; 14:157. [PMID: 39414666 PMCID: PMC11485002 DOI: 10.1186/s13613-024-01388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/29/2024] [Indexed: 10/18/2024] Open
Abstract
In cardiogenic shock, biomarkers should ideally help make the diagnosis, choose the right therapeutic options and monitor the patient in addition to clinical and echocardiographic indices. Among "old" biomarkers that have been used for decades, lactate detects, quantifies, and follows anaerobic metabolism, despite its lack of specificity. Renal and liver biomarkers are indispensable for detecting the effect of shock on organ function and are highly predictive of poor outcomes. Direct biomarkers of cardiac damage such as cardiac troponins, B-type natriuretic and N-terminal pro-B-type natriuretic peptides have a good prognostic value, but they lack specificity to detect a cardiogenic cause of shock, as many factors influence their plasma concentrations in critically ill patients. Among the biomarkers that have been more recently described, dipeptidyl peptidase-3 is one of the most interesting. In addition to its prognostic value, it could represent a therapeutic target in cardiogenic shock in the future as a specific antibody inhibits its activity. Adrenomedullin is a small peptide hormone secreted by various tissues, including vascular smooth muscle cells and endothelium, particularly under pathological conditions. It has a vasodilator effect and has prognostic value during cardiogenic shock. An antibody inhibits its activity and so adrenomedullin could represent a therapeutic target in cardiogenic shock. An increasing number of inflammatory biomarkers are also of proven prognostic value in cardiogenic shock, reflecting the inflammatory reaction associated with the syndrome. Some of them are combined to form prognostic proteomic scores. Alongside clinical variables, biomarkers can be used to establish biological "signatures" characteristic of the pathophysiological pathways involved in cardiogenic shock. This helps describe patient subphenotypes, which could in the future be used in clinical trials to define patient populations responding specifically to a treatment.
Collapse
Affiliation(s)
- Mathieu Jozwiak
- Service de Médecine Intensive Réanimation, CHU de Nice, Hôpital L'Archet 1, 151 Route Saint Antoine de Ginestière, 06200, Nice, France.
- UR2CA, Unité de Recherche Clinique Côte d'Azur, Université Côte d'Azur, 06200, Nice, France.
| | - Sung Yoon Lim
- AP-HP, Service de Médecine Intensive-Réanimation, Hôpital de Bicêtre, DMU 4 CORREVE, Inserm UMR S_999, FHU SEPSIS, CARMAS, Université Paris-Saclay, 78 Rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Xiang Si
- AP-HP, Service de Médecine Intensive-Réanimation, Hôpital de Bicêtre, DMU 4 CORREVE, Inserm UMR S_999, FHU SEPSIS, CARMAS, Université Paris-Saclay, 78 Rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
- Department of Critical Care Medicine, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xavier Monnet
- AP-HP, Service de Médecine Intensive-Réanimation, Hôpital de Bicêtre, DMU 4 CORREVE, Inserm UMR S_999, FHU SEPSIS, CARMAS, Université Paris-Saclay, 78 Rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| |
Collapse
|
41
|
Popa IP, Clim A, Pînzariu AC, Lazăr CI, Popa Ș, Tudorancea IM, Moscalu M, Șerban DN, Șerban IL, Costache-Enache II, Tudorancea I. Arterial Hypertension: Novel Pharmacological Targets and Future Perspectives. J Clin Med 2024; 13:5927. [PMID: 39407987 PMCID: PMC11478071 DOI: 10.3390/jcm13195927] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Arterial hypertension (HTN) is one of the major global contributors to cardiovascular diseases and premature mortality, particularly due to its impact on vital organs and the coexistence of various comorbidities such as chronic renal disease, diabetes, cerebrovascular diseases, and obesity. Regardless of the accessibility of several well-established pharmacological treatments, the percentage of patients achieving adequate blood pressure (BP) control is still significantly lower than recommended levels. Therefore, the pharmacological and non-pharmacological management of HTN is currently the major focus of healthcare systems. Various strategies are being applied, such as the development of new pharmacological agents that target different underlying physiopathological mechanisms or associated comorbidities. Additionally, a novel group of interventional techniques has emerged in recent years, specifically for situations when blood pressure is not properly controlled despite the use of multiple antihypertensives in maximum doses or when patients are unable to tolerate or desire not to receive antihypertensive medications. Nonetheless, reducing the focus on antihypertensive medication development by the pharmaceutical industry and increasing recognition of ineffective HTN control due to poor drug adherence demands ongoing research into alternative approaches to treatment. The aim of this review is to summarize the potential novel pharmacological targets for the treatment of arterial hypertension as well as the future perspectives of the treatment strategy.
Collapse
Affiliation(s)
- Irene Paula Popa
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Andreea Clim
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Alin Constantin Pînzariu
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Cristina Iuliana Lazăr
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Ștefan Popa
- 2nd Department of Surgery–Pediatric Surgery and Orthopedics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ivona Maria Tudorancea
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Mihaela Moscalu
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Dragomir N. Șerban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Ionela Lăcrămioara Șerban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Irina-Iuliana Costache-Enache
- Department of Internal Medicine I, Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Ionuț Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| |
Collapse
|
42
|
Moustakas D, Mani I, Pouliakis A, Iacovidou N, Xanthos T. The Effects of IRL-1620 in Post-ischemic Brain Injury: A Systematic Review and Meta-analysis of Experimental Studies. Neurocrit Care 2024; 41:665-680. [PMID: 38724864 DOI: 10.1007/s12028-024-01994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/02/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Sovateltide (IRL-1620), an endothelin B receptor agonist, has previously demonstrated neuroprotective and neuroregenerative effects in animal models of acute ischemic stroke. Recently, clinical trials indicated that it could also be effective in humans with stroke. Here, we systematically investigate whether IRL-1620 may be used for the treatment of ischemia-induced brain injury. METHODS A systematic review was performed following the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. MEDLINE (PubMed) and Scopus databases were searched for eligible studies up to December 2022. The databases ClinicalTrials.gov and Pharmazz Inc. were screened for unpublished or ongoing trials. Only studies in English were evaluated for eligibility. Meta-analysis of the included studies was also conducted. RESULTS Finally, seven studies were included in the review, all in animal rat models because of scarcity of clinical trials. Six studies, all in middle cerebral artery occlusion (MCAO) models, were selected for meta-analysis. In the two studies assessing mortality, no deaths were reported in the IRL-1620 group 24 h after MCAO, whereas the vehicle group had almost a five times higher mortality risk (risk ratio 5.3, 95% confidence interval 0.7-40.1, I2 = 0%). In all five studies evaluating outcome on day 7 after MCAO, IRL-1620 was associated with statistically significantly lower neurological deficit and improved motor performance compared with the vehicle. Infract volume, differentiation potential of neuronal progenitor cells, and mitochondrial fate also improved with IRL-1620 administration. CONCLUSIONS According to the above, in animal MCAO models, IRL-1620 enhanced neurogenesis and neuroprotection and improved outcome. Future studies are needed to expand our understanding of its effects in human study participants with acute ischemic stroke as well as in other common causes of cerebral ischemia including cardiac arrest.
Collapse
Affiliation(s)
- Dimitris Moustakas
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Iliana Mani
- 2d Department of Internal Medicine, Medical School, Hippokration General Hospital, National and Kapodistrian University of Athens, Vas. Sofias 114, 11527, Athens, Greece.
| | - Abraham Pouliakis
- 2d Department of Pathology, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikoletta Iacovidou
- Neonatal Department, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Xanthos
- School of Health Sciences, University of West Attica, Athens, Greece
| |
Collapse
|
43
|
Mavridis T, Mavridi A, Karampela E, Galanos A, Gkiokas G, Iacovidou N, Xanthos T. Sovateltide (ILR-1620) Improves Motor Function and Reduces Hyperalgesia in a Rat Model of Spinal Cord Injury. Neurocrit Care 2024; 41:455-468. [PMID: 38443708 DOI: 10.1007/s12028-024-01950-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Spinal cord injury (SCI) presents a major global health challenge, with rising incidence rates and substantial disability. Although progress has been made in understanding SCI's pathophysiology and early management, there is still a lack of effective treatments to mitigate long-term consequences. This study investigates the potential of sovateltide, a selective endothelin B receptor agonist, in improving clinical outcomes in an acute SCI rat model. METHODS Thirty male Sprague-Dawley rats underwent sham surgery (group A) or SCI and treated with vehicle (group B) or sovateltide (group C). Clinical tests, including Basso, Beattie, and Bresnahan scoring, inclined plane, and allodynia testing with von Frey hair, were performed at various time points. Statistical analyses assessed treatment effects. RESULTS Sovateltide administration significantly improved motor function, reducing neurological deficits and enhancing locomotor recovery compared with vehicle-treated rats, starting from day 7 post injury. Additionally, the allodynic threshold improved, suggesting antinociceptive properties. Notably, the sovateltide group demonstrated sustained recovery, and even reached preinjury performance levels, whereas the vehicle group plateaued. CONCLUSIONS This study suggests that sovateltide may offer neuroprotective effects, enhancing neurogenesis and angiogenesis. Furthermore, it may possess anti-inflammatory and antinociceptive properties. Future clinical trials are needed to validate these findings, but sovateltide shows promise as a potential therapeutic strategy to improve functional outcomes in SCI. Sovateltide, an endothelin B receptor agonist, exhibits neuroprotective properties, enhancing motor recovery and ameliorating hyperalgesia in a rat SCI model. These findings could pave the way for innovative pharmacological interventions for SCI in clinical settings.
Collapse
Affiliation(s)
- Theodoros Mavridis
- First Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
- Department of Neurology, Tallaght University Hospital (TUH)/The Adelaide and Meath Hospital, Dublin, Incorporating the National Children's Hospital (AMNCH), Dublin, Ireland.
| | - Artemis Mavridi
- First Department of Pediatrics, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Antonis Galanos
- Laboratory for Research of the Musculoskeletal System, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - George Gkiokas
- Second Department of Surgery, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nicoletta Iacovidou
- Department of Neonatology, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Xanthos
- School of Health and Caring Sciences, University of West Attica, Athens, Greece
| |
Collapse
|
44
|
Steinhauser C, Yakac A, Markgraf W, Kromnik S, Döcke A, Talhofer P, Thiele C, Malberg H, Sommer U, Baretton GB, Füssel S, Thomas C, Putz J. Assessing Biomarkers of Porcine Kidneys under Normothermic Machine Perfusion-Can We Gain Insight into a Marginal Organ? Int J Mol Sci 2024; 25:10280. [PMID: 39408610 PMCID: PMC11476884 DOI: 10.3390/ijms251910280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
To identify potentially transplantable organs in a pool of marginal kidneys, 33 porcine slaughterhouse kidneys were perfused for 4 h with whole blood. During the normothermic perfusion, plasma, urine, and tissue samples were taken. Several biomarkers for tubule injury, endothelial activation, and inflammatory response were evaluated for a potential correlation with macroscopic appearance, histology, and filtration activity. Generally, biomarker levels increased during perfusion. TLR-4, EDN-1, and NGAL were not associated with any classification. In contrast, a steeper increase in NAG and IL-6 in plasma correlated with a poor macroscopic appearance at 4 h, indicating a higher inflammatory response in the kidneys with worse macroscopy early on, potentially due to more damage at the tubules. Although long-term effects on the graft could not be assessed in this setting, early observation under machine perfusion with whole blood was feasible. It allowed the assessment of kidneys under conditions comparable to reperfusion. This setting could give surgeons further insight into the quality of marginal kidneys and an opportunity to pre-treat them.
Collapse
Affiliation(s)
- Carla Steinhauser
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Abdulbaki Yakac
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Wenke Markgraf
- Institute of Biomedical Engineering, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Susanne Kromnik
- Institute of Biomedical Engineering, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Andreas Döcke
- Institute of Biomedical Engineering, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Philipp Talhofer
- Institute of Biomedical Engineering, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Christine Thiele
- Institute of Biomedical Engineering, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Hagen Malberg
- Institute of Biomedical Engineering, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Ulrich Sommer
- Institute of Pathology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Gustavo B. Baretton
- Institute of Pathology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Susanne Füssel
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Christian Thomas
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Juliane Putz
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01309 Dresden, Germany
| |
Collapse
|
45
|
DeMaria WG, Figueroa-Milla AE, Kaija A, Harrington AE, Tero B, Ryzhova L, Liaw L, Rolle MW. Endothelial Cells Increase Mesenchymal Stem Cell Differentiation in Scaffold-Free 3D Vascular Tissue. Tissue Eng Part A 2024. [PMID: 39109944 DOI: 10.1089/ten.tea.2024.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
In this study, we present a versatile, scaffold-free approach to create ring-shaped engineered vascular tissue segments using human mesenchymal stem cell-derived smooth muscle cells (hMSC-SMCs) and endothelial cells (ECs). We hypothesized that incorporation of ECs would increase hMSC-SMC differentiation without compromising tissue ring strength or fusion to form tissue tubes. Undifferentiated hMSCs and ECs were co-seeded into custom ring-shaped agarose wells using four different concentrations of ECs: 0%, 10%, 20%, and 30%. Co-seeded EC and hMSC rings were cultured in SMC differentiation medium for a total of 22 days. Tissue rings were then harvested for histology, Western blotting, wire myography, and uniaxial tensile testing to examine their structural and functional properties. Differentiated hMSC tissue rings comprising 20% and 30% ECs exhibited significantly greater SMC contractile protein expression, endothelin-1 (ET-1)-meditated contraction, and force at failure compared with the 0% EC rings. On average, the 0%, 10%, 20%, and 30% EC rings exhibited a contractile force of 0.745 ± 0.117, 0.830 ± 0.358, 1.31 ± 0.353, and 1.67 ± 0.351 mN (mean ± standard deviation [SD]) in response to ET-1, respectively. Additionally, the mean maximum force at failure for the 0%, 10%, 20%, and 30% EC rings was 88.5 ± 36. , 121 ± 59.1, 147 ± 43.1, and 206 ± 0.8 mN (mean ± SD), respectively. Based on these results, 30% EC rings were fused together to form tissue-engineered blood vessels (TEBVs) and compared with 0% EC TEBV controls. The addition of 30% ECs in TEBVs did not affect ring fusion but did result in significantly greater SMC protein expression (calponin and smoothelin). In summary, co-seeding hMSCs with ECs to form tissue rings resulted in greater contraction, strength, and hMSC-SMC differentiation compared with hMSCs alone and indicates a method to create a functional 3D human vascular cell coculture model.
Collapse
Affiliation(s)
- William G DeMaria
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Andre E Figueroa-Milla
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Abigail Kaija
- MaineHealth Institute for Research, Scarborough, Maine, USA
| | | | - Benjamin Tero
- MaineHealth Institute for Research, Scarborough, Maine, USA
- The Roux Institute, Northeastern University, Portland, Maine, USA
| | - Larisa Ryzhova
- MaineHealth Institute for Research, Scarborough, Maine, USA
| | - Lucy Liaw
- MaineHealth Institute for Research, Scarborough, Maine, USA
| | - Marsha W Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- The Roux Institute, Northeastern University, Portland, Maine, USA
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Hernandez R, Li X, Shi J, Dave TR, Zhou T, Chen Q, Zhou C. Paternal hypercholesterolemia elicits sex-specific exacerbation of atherosclerosis in offspring. JCI Insight 2024; 9:e179291. [PMID: 39253968 PMCID: PMC11385100 DOI: 10.1172/jci.insight.179291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/18/2024] [Indexed: 09/11/2024] Open
Abstract
Emerging studies suggest that various parental exposures affect offspring cardiovascular health, yet the specific mechanisms, particularly the influence of paternal cardiovascular disease (CVD) risk factors on offspring cardiovascular health, remain elusive. The present study explores how paternal hypercholesterolemia affects offspring atherosclerosis development using the LDL receptor-deficient (LDLR-/-) mouse model. We found that paternal high-cholesterol diet feeding led to significantly increased atherosclerosis in F1 female, but not male, LDLR-/- offspring. Transcriptomic analysis highlighted that paternal hypercholesterolemia stimulated proatherogenic genes, including Ccn1 and Ccn2, in the intima of female offspring. Sperm small noncoding RNAs (sncRNAs), particularly transfer RNA-derived (tRNA-derived) small RNAs (tsRNAs) and rRNA-derived small RNAs (rsRNAs), contribute to the intergenerational transmission of paternally acquired metabolic phenotypes. Using a newly developed PANDORA-Seq method, we identified that high-cholesterol feeding elicited changes in sperm tsRNA/rsRNA profiles that were undetectable by traditional RNA-Seq, and these altered sperm sncRNAs were potentially key factors mediating paternal hypercholesterolemia-elicited atherogenesis in offspring. Interestingly, high-cholesterol feeding altered sncRNA biogenesis-related gene expression in the epididymis but not testis of LDLR-/- sires; this may have led to the modified sperm sncRNA landscape. Our results underscore the sex-specific intergenerational effect of paternal hypercholesterolemia on offspring cardiovascular health and contribute to the understanding of chronic disease etiology originating from parental exposures.
Collapse
Affiliation(s)
- Rebecca Hernandez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Xiuchun Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
- Molecular Medicine Program, Department of Human Genetics, and
- Division of Urology, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Tejasvi R. Dave
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Qi Chen
- Molecular Medicine Program, Department of Human Genetics, and
- Division of Urology, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| |
Collapse
|
47
|
Lima AFR, Rodrigues D, Machado MR, Oliveira-Neto JT, Bressan AFM, Pedersoli CA, Alves JV, Silva-Neto JA, Barros PR, Dias TB, Garcia LV, Bruder-Nascimento A, Bruder-Nascimento T, Carneiro FS, Leiria LOS, Tostes RC, Costa RM. Endothelin-1 down-regulates nuclear factor erythroid 2-related factor-2 and contributes to perivascular adipose tissue dysfunction in obesity. Clin Sci (Lond) 2024; 138:1071-1087. [PMID: 39136472 DOI: 10.1042/cs20240624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024]
Abstract
Perivascular adipose tissue (PVAT) negatively regulates vascular muscle contraction. However, in the context of obesity, the PVAT releases vasoconstrictor substances that detrimentally affect vascular function. A pivotal player in this scenario is the peptide endothelin-1 (ET-1), which induces oxidative stress and disrupts vascular function. The present study postulates that obesity augments ET-1 production in the PVAT, decreases the function of the nuclear factor erythroid 2-related factor-2 (Nrf2) transcription factor, further increasing reactive oxygen species (ROS) generation, culminating in PVAT dysfunction. Male C57BL/6 mice were fed either a standard or a high-fat diet for 16 weeks. Mice were also treated with saline or a daily dose of 100 mg·kg-1 of the ETA and ETB receptor antagonist Bosentan, for 7 days. Vascular function was evaluated in thoracic aortic rings, with and without PVAT. Mechanistic studies utilized PVAT from all groups and cultured WT-1 mouse brown adipocytes. PVAT from obese mice exhibited increased ET-1 production, increased ECE1 and ETA gene expression, loss of the anticontractile effect, as well as increased ROS production, decreased Nrf2 activity, and downregulated expression of Nrf2-targeted antioxidant genes. PVAT of obese mice also exhibited increased expression of Tyr216-phosphorylated-GSK3β and KEAP1, but not BACH1 - negative Nrf2 regulators. Bosentan treatment reversed all these effects. Similarly, ET-1 increased ROS generation and decreased Nrf2 activity in brown adipocytes, events mitigated by BQ123 (ETA receptor antagonist). These findings place ET-1 as a major contributor to PVAT dysfunction in obesity and highlight that pharmacological control of ET-1 effects restores PVAT's cardiovascular protective role.
Collapse
Affiliation(s)
- Anna Flavia R Lima
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Daniel Rodrigues
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Mirele R Machado
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - José Teles Oliveira-Neto
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Alecsander F M Bressan
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Carina A Pedersoli
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Juliano V Alves
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Júlio A Silva-Neto
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Paula R Barros
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Thiago B Dias
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Luis V Garcia
- Department of Biomechanics, Medicine and Locomotive Apparatus Rehabilitation, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | | | | | - Fernando S Carneiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Luiz Osório S Leiria
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Rafael M Costa
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, U.S.A
- Institute of Health Sciences, Federal University of Jatai, Jatai, GO, Brazil
| |
Collapse
|
48
|
Netala VR, Teertam SK, Li H, Zhang Z. A Comprehensive Review of Cardiovascular Disease Management: Cardiac Biomarkers, Imaging Modalities, Pharmacotherapy, Surgical Interventions, and Herbal Remedies. Cells 2024; 13:1471. [PMID: 39273041 PMCID: PMC11394358 DOI: 10.3390/cells13171471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Cardiovascular diseases (CVDs) continue to be a major global health concern, representing a leading cause of morbidity and mortality. This review provides a comprehensive examination of CVDs, encompassing their pathophysiology, diagnostic biomarkers, advanced imaging techniques, pharmacological treatments, surgical interventions, and the emerging role of herbal remedies. The review covers various cardiovascular conditions such as coronary artery disease, atherosclerosis, peripheral artery disease, deep vein thrombosis, pulmonary embolism, cardiomyopathy, rheumatic heart disease, hypertension, ischemic heart disease, heart failure, cerebrovascular diseases, and congenital heart defects. The review presents a wide range of cardiac biomarkers such as troponins, C-reactive protein, CKMB, BNP, NT-proBNP, galectin, adiponectin, IL-6, TNF-α, miRNAs, and oxylipins. Advanced molecular imaging techniques, including chest X-ray, ECG, ultrasound, CT, SPECT, PET, and MRI, have significantly enhanced our ability to visualize myocardial perfusion, plaque characterization, and cardiac function. Various synthetic drugs including statins, ACE inhibitors, ARBs, β-blockers, calcium channel blockers, antihypertensives, anticoagulants, and antiarrhythmics are fundamental in managing CVDs. Nonetheless, their side effects such as hepatic dysfunction, renal impairment, and bleeding risks necessitate careful monitoring and personalized treatment strategies. In addition to conventional therapies, herbal remedies have garnered attention for their potential cardiovascular benefits. Plant extracts and their bioactive compounds, such as flavonoids, phenolic acids, saponins, and alkaloids, offer promising cardioprotective effects and enhanced cardiovascular health. This review underscores the value of combining traditional and modern therapeutic approaches to improve cardiovascular outcomes. This review serves as a vital resource for researchers by integrating a broad spectrum of information on CVDs, diagnostic tools, imaging techniques, pharmacological treatments and their side effects, and the potential of herbal remedies.
Collapse
Affiliation(s)
- Vasudeva Reddy Netala
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China (H.L.)
| | - Sireesh Kumar Teertam
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Huizhen Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China (H.L.)
| | - Zhijun Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China (H.L.)
| |
Collapse
|
49
|
ten Hove M, Smyris A, Booijink R, Wachsmuth L, Hansen U, Alic L, Faber C, Hӧltke C, Bansal R. Engineered SPIONs functionalized with endothelin a receptor antagonist ameliorate liver fibrosis by inhibiting hepatic stellate cell activation. Bioact Mater 2024; 39:406-426. [PMID: 38855059 PMCID: PMC11157122 DOI: 10.1016/j.bioactmat.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/11/2024] Open
Abstract
Endothelin-1/endothelin A receptor (ET-1/ETAR) pathway plays an important role in the progression of liver fibrosis by activating hepatic stellate cells (HSCs) - a key cell type involved in the pathogenesis of liver fibrosis. Inactivating HSCs by blocking the ET-1/ETAR pathway using a selective ETAR antagonist (ERA) represents a promising therapeutic approach for liver fibrosis. Unfortunately, small-molecule ERAs possess limited clinical potential due to poor bioavailability, short half-life, and rapid renal clearance. To improve the clinical applicability, we conjugated ERA to superparamagnetic iron-oxide nanoparticles (SPIONs) and investigated the therapeutic efficacy of ERA and ERA-SPIONs in vitro and in vivo and analyzed liver uptake by in vivo and ex vivo magnetic resonance imaging (MRI), HSCs-specific localization, and ET-1/ETAR-pathway antagonism in vivo. In murine and human liver fibrosis/cirrhosis, we observed overexpression of ET-1 and ETAR that correlated with HSC activation, and HSC-specific localization of ETAR. ERA and successfully synthesized ERA-SPIONs demonstrated significant attenuation in TGFβ-induced HSC activation, ECM production, migration, and contractility. In an acute CCl4-induced liver fibrosis mouse model, ERA-SPIONs exhibited higher liver uptake, HSC-specific localization, and ET-1/ETAR pathway antagonism. This resulted in significantly reduced liver-to-body weight ratio, plasma ALT levels, and α-SMA and collagen-I expression, indicating attenuation of liver fibrosis. In conclusion, our study demonstrates that the delivery of ERA using SPIONs enhances the therapeutic efficacy of ERA in vivo. This approach holds promise as a theranostic strategy for the MRI-based diagnosis and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Marit ten Hove
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Andreas Smyris
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Richell Booijink
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Lydia Wachsmuth
- Clinic of Radiology, University Hospital Muenster, Muenster, Germany
| | - Uwe Hansen
- Institute for Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Lejla Alic
- Department of Magnetic Detection and Imaging, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Cornelius Faber
- Clinic of Radiology, University Hospital Muenster, Muenster, Germany
| | - Carsten Hӧltke
- Clinic of Radiology, University Hospital Muenster, Muenster, Germany
| | - Ruchi Bansal
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| |
Collapse
|
50
|
Gonsalves AM, Baker SE, Jacob DW, Harper JL, Manrique‐Acevedo CM, Limberg JK. Effect of endothelin-1 on the blood pressure response to acute hypoxia and hyperoxia in healthy young men. Physiol Rep 2024; 12:e70004. [PMID: 39218615 PMCID: PMC11366443 DOI: 10.14814/phy2.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Endothelin-1 (ET-1) and its receptors are linked to increases in sensitivity of the chemoreceptors to hypoxic stress and the development of hypertension in preclinical models. We hypothesized ET receptor antagonism would lower resting blood pressure (BP) as well as the acute BP response to chemoreflex stress. Twenty-four men (31 ± 5 years, 26 ± 3 kg/m2) completed two study visits (control, bosentan). On each visit, BP was assessed under three conditions: (1) normoxia (FiO2 0.21), (2) chemoreflex excitation via hypoxia (FiO2 0.05-0.21), (3) chemoreflex inhibition via hyperoxia (FiO2 1.00). Bosentan increased plasma ET-1 (0.94 ± 0.90 to 1.27 ± 0.62 pg/mL, p = 0.004), supporting receptor blockade. Resting diastolic (73 ± 5 to 69 ± 7 mmHg, p = 0.007) and mean (93 ± 7 to 88 ± 7 mmHg, p = 0.005) BP were reduced following bosentan compared to control with no change in systolic BP (p = 0.507). The mean BP response to both acute hypoxia (-0.48 ± 0.38 to -0.25 ± 0.31 mmHg/%, p = 0.004) and hyperoxia (area under the curve -93 ± 108 to -27 ± 66 AU, p = 0.018) were attenuated following bosentan. Acute ET receptor inhibition attenuates the rise in BP during chemoreflex excitation as well as the fall in BP during chemoreflex inhibition in healthy young men. These data support a role for ET-1 in control of resting BP, possibly through a chemoreceptor-mediated mechanism.
Collapse
Affiliation(s)
- Anna M. Gonsalves
- Department of Nutrition and Exercise PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Sarah E. Baker
- Department of AnesthesiologyMayo ClinicRochesterMinnesotaUSA
| | - Dain W. Jacob
- Department of Nutrition and Exercise PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Jennifer L. Harper
- Department of Nutrition and Exercise PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Camila M. Manrique‐Acevedo
- Dalton Cardiovascular Research CenterUniversity of MissouriColumbiaMissouriUSA
- Department of MedicineUniversity of MissouriColumbiaMissouriUSA
- Research ServiceHarry S. Truman Memorial Veterans' HospitalColumbiaMissouriUSA
| | - Jacqueline K. Limberg
- Department of Nutrition and Exercise PhysiologyUniversity of MissouriColumbiaMissouriUSA
- Department of AnesthesiologyMayo ClinicRochesterMinnesotaUSA
- Dalton Cardiovascular Research CenterUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|