1
|
Guan H, Yang X, Yang M, Wang H. Targeting MAPK14 in microglial cells: neuroimmune implications of Panax ginseng in post-stroke inflammation. J Pharm Pharmacol 2025; 77:170-187. [PMID: 38902954 DOI: 10.1093/jpp/rgae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/20/2024] [Indexed: 06/22/2024]
Abstract
AIM This study investigates the molecular mechanisms through which Panax ginseng and Panax notoginseng saponin (PNS) mitigate neuroinflammatory damage and promote neural repair postischemic stroke, utilizing bioinformatics, and experimental approaches. BACKGROUND Cerebral infarction significantly contributes to disability worldwide, with chronic neuroinflammation worsening cognitive impairments and leading to neurodegenerative diseases. Addressing neuroimmune interactions is crucial for slowing disease progression and enhancing patient recovery, highlighting the need for advanced research in neuroimmune regulatory mechanisms and therapeutic strategies. OBJECTIVE To elucidate the effects of the traditional Chinese medicine components Panax ginseng and PNS on neuroinflammatory damage following ischemic stroke, focusing on the molecular pathways involved in mitigating inflammation and facilitating neural repair. METHODS The study employs single-cell sequencing and transcriptomic analysis to investigate gene expression changes associated with cerebral infarction. Gene set enrichment analysis and weighted gene co-expression network analysis are used to identify key molecular markers and core genes. Furthermore, pharmacological profiling, including functional assays, assesses the impact of Ginsenoside-Rc, a PNS derivative, on microglial cell viability, cytokine production, and reactive oxygen species (ROS) levels. RESULTS Our analysis revealed that MAPK14 is a critical mediator in the neuroinflammatory response to ischemic stroke. Ginsenoside-Rc potentially targets and modulates MAPK14 activity to suppress inflammation. Experimental validation showed that Ginsenoside-Rc treatment, combined with MAPK14 silencing, significantly alters MAPK14 expression and mitigates neuroinflammatory damage, evidenced by reduced microglial cell death, inflammatory factor secretion, and ROS production. CONCLUSION Ginsenoside-Rc's modulation of MAPK14 offers a promising therapeutic strategy for reducing neuroinflammation and potentially improving cognitive recovery post-ischemic stroke. This supports the therapeutic application of the traditional Chinese medicine Sanqi in ischemic stroke care, providing a theoretical and experimental foundation for its use. OTHERS Future work will focus on extending these findings through clinical trials to evaluate the efficacy and safety of Ginsenoside-Rc in human subjects, aiming to translate these promising preclinical results into practical therapeutic interventions for ischemic stroke recovery.
Collapse
Affiliation(s)
- Hongxu Guan
- Department of Neurology, Second Affiliated Hospital, Shandong First Medical University, Tai'an 271000, China
| | - Xiaoting Yang
- Taishan Nursing Vocational College, Tai'an 271000, China
| | - Mingfeng Yang
- Key Laboratory of Cerebral Microcirculation in Shandong First Medical University, Tai'an, Shandong 271000, China
| | - Haitao Wang
- Department of Neurology, Second Affiliated Hospital, Shandong First Medical University, Tai'an 271000, China
| |
Collapse
|
2
|
Xu Z, Huang J, Shi K, Lu Y. Panax notoginseng saponins improves lipid metabolism and prevents atherosclerosis in mice with steroid-resistant lupus nephritis via the SIRT1/PPARγ signaling pathway. J Steroid Biochem Mol Biol 2025; 245:106631. [PMID: 39522615 DOI: 10.1016/j.jsbmb.2024.106631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Steroids serve as the primary medication for treating lupus nephritis (LN), however, steroid-resistance (SR) occurs sporadically in clinical practice, significantly affecting the therapeutic effect and long-term prognosis of patients. Our previous study found that panax notoginseng saponins (PNS) could partially reverse SR in LN. To further explore the role of PNS in reversing SR and reducing cardiovascular complications in LN, we conducted this study. Lupus mice were induced into SR while simultaneously receiving PNS. SIRT1-siRNA, SIRT1-siRNA NC, normal and lupus mice were used as control groups. Urine protein levels were measured at week 0, 4 and 8. Lipid metabolism-related biomarkers and renal function were assessed. The apoptosis rate of abdominal aortic endothelial cells was detected using flow-cytometry. The expression levels of PPARγ and SIRT1 were measured using RT-PCR and Western Blotting. Immunohistochemistry was performed to examine ACAT1 and VCAM-1 expressions. The results showed that compared to the SR lupus mice, the lupus mice treated with low/high dose PNS presented lower levels of urinary protein, serum creatinine, and blood lipids, a lower apoptosis rate of abdominal aortic endothelial cells, and decreased levels of ACAT1 and VCAM-1 PI in liver tissue, while the high-dose PNS exhibited more evidently. The PPARγ expression in SIRT1-siRNA group, as well as in low-dose and high-dose PNS groups was higher than that in the lupus and SR lupus group. In contrast, the expression of SIRT1 showed the opposite trend. Therefore, we conclude that PNS has the efficacy of reversing SR and ameliorating dyslipidemia in LN by modulating the SIRT1/PPARγ signaling pathway.
Collapse
Affiliation(s)
- Zheng Xu
- the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou.
| | - Jie Huang
- the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou
| | - Kaishun Shi
- the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou
| | - Ying Lu
- the Second Clinical Medical College of Zhejiang Chinese Medical University, Binwen Road 546, Binjiang District, Hangzhou 310053, China.
| |
Collapse
|
3
|
Wu Y, Xu Y, Xu L. Pharmacological therapy targeting the immune response in atherosclerosis. Int Immunopharmacol 2024; 141:112974. [PMID: 39168023 DOI: 10.1016/j.intimp.2024.112974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease characterized by the formation of atherosclerotic plaques that consist of numerous cells including smooth muscle cells, endothelial cells, immune cells, and foam cells. The most abundant innate and adaptive immune cells, including neutrophils, monocytes, macrophages, B cells, and T cells, play a pivotal role in the inflammatory response, lipoprotein metabolism, and foam cell formation to accelerate atherosclerotic plaque formation. In this review, we have discussed the underlying mechanisms of activated immune cells in promoting AS and reviewed published clinical trials for the treatment of AS by suppressing immune cell activation. We have also presented some crucial shortcomings of current clinical trials. Lastly, we have discussed the therapeutic potential of novel compounds, including herbal medicine and dietary food, in alleviating AS in animals. Despite these limitations, further clinical trials and experimental studies will enhance our understanding of the mechanisms modulated by immune cells and promote widespread drug use to treat AS by suppressing immune system-induced inflammation.
Collapse
Affiliation(s)
- Yirong Wu
- Department of Cardiology, Hangzhou First People's Hospital, 310006 Zhejiang, China
| | - Yizhou Xu
- Department of Cardiology, Hangzhou First People's Hospital, 310006 Zhejiang, China.
| | - Linhao Xu
- Department of Cardiology, Hangzhou First People's Hospital, 310006 Zhejiang, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Translational Medicine Research Center, Hangzhou First People's Hospital, Hangzhou 310006, Zhejiang, China.
| |
Collapse
|
4
|
Liao HH, Livneh H, Huang HL, Hung JY, Lu MC, Guo HR, Tsai TY. Reduced risk of dementia in patients with type 2 diabetes mellitus using Chinese herbal medicine: A nested case-control study. World J Diabetes 2023; 14:1632-1642. [DOI: 10.4239/wjd.v14.i11.1632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/14/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Dementia is a prevalent condition in type 2 diabetes mellitus (T2DM) patients. While Chinese herbal medicine (CHM) is often employed as complementary therapy for glycemic control, its effect in controlling likelihood of dementia has not yet been fully elucidated.
AIM To compare the risk of dementia between T2DM patients with and without CHM treatment.
METHODS We undertook a nested case-control study and obtained data on patients 20-70 years of age who received medical care for T2DM between 2001 and 2010 from the National Health Insurance Research database in Taiwan. Cases, defined as those with dementia that occurred at least one year after the diagnosis of T2DM, were randomly matched to controls without dementia from the study cohort at a 1:1 ratio. We applied conditional logistic regression to explore the associations between CHM treatment and dementia.
RESULTS A total of 11699 dementia cases were matched to 11699 non-dementia controls. We found that adding CHM to conventional care was related to a lower risk of dementia [adjusted odds ratio (OR) = 0.51], and high-intensity CHM treatment was associated with an adjusted OR of 0.22.
CONCLUSION This study shows that the cumulative CHM exposure was inversely associated with dementia risk in an exposure-response manner, implying that CHM treatment may be embraced as a disease management approach for diabetic patients to prevent dementia.
Collapse
Affiliation(s)
- Hou-Hsun Liao
- Department of Chinese Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404333, Taiwan
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien 62247, Taiwan
| | - Hanoch Livneh
- Department of Special and Counselor Education, Portland State University, Portland, OR 97207, United States
| | - Hua-Lung Huang
- Department of Rehabilitation, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| | - Jui-Yu Hung
- Department of Nursing, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| | - Ming-Chi Lu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| | - How-Ran Guo
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan 70428, Taiwan
- Occupational Safety, Health, and Medicine Research Center, National Cheng Kung University, Tainan 70428, Taiwan
| | - Tzung-Yi Tsai
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien 62247, Taiwan
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| |
Collapse
|
5
|
Shi X, Feng L, Li Y, Qin M, Li T, Cheng Z, Zhang X, Zhou C, Cheng S, Zhang C, Gao Y. Efficacy and safety of Panax notoginseng saponins (Xuesaitong) for patients with acute ischemic stroke: a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol 2023; 14:1280559. [PMID: 37908976 PMCID: PMC10614024 DOI: 10.3389/fphar.2023.1280559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023] Open
Abstract
Background: Stroke is the major cause of mortality and permanent disability and is associated with an astonishing economic burden worldwide. In the past few decades, accumulated evidence has indicated that Xuesaitong (XST) has therapeutic benefits in cases of acute ischemic stroke (AIS). Our study aimed to provide the best current body of evidence of the efficacy and safety of XST for patients with AIS. Methods: This is a systematic review and meta-analysis of randomized controlled trials (RCTs). We searched eight electronic databases from inception to 17 July 2023 for relevant RCTs. The investigators independently screened trials, extracted data, and assessed the risk of bias. A meta-analysis was conducted using RevMan 5.3 and STATA 16.0 software. Results: In total, 46 RCTs involving 7,957 patients were included. The results showed that XST improved the long-term functional outcomes with lower modified Rankin Scale (mRS) scores (MD = -0.67; 95% CI [-0.92 to -0.42]; p < 0.00001) and a higher proportion of functional independence (mRS ≤2) (RR = 1.08; 95% CI [1.05 to 1.12]; p < 0.00001). Low-quality evidence indicated that XST improved the activities of daily living (MD = 10.17; 95% CI [7.28 to 13.06]; p < 0.00001), improved the neurological impairment (MD = -3.39; 95% CI [-3.94 to -2.84]; p < 0.00001), and enhanced the total efficiency rate (RR = 1.19; 95% CI [1.15 to 1.23]; p < 0.00001). No significant difference was found in the all-cause mortality or incidence of adverse events between the XST and control groups. The certainty of evidence was estimated as moderate to very low. Conclusion: Presently, the administration of XST within 14 days of AIS is associated with favorable long-term functional outcomes. In addition, XST can improve activities of daily living, alleviate neurological deficits, and has shown good tolerability. However, the current evidence is too weak, and the confidence of evidence synthesis was restricted by the high risk of bias. Given the insufficient evidence, appropriately sized and powered RCTs investigating the efficacy and safety of XST for patients with AIS are warranted. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=446208, CRD42023446208.
Collapse
Affiliation(s)
- Xinyi Shi
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Luda Feng
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yixuan Li
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mingzhen Qin
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Li
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Zixin Cheng
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xuebin Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Congren Zhou
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Sisong Cheng
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chi Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Gao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Song X, Wang X, Wang D, Zheng Z, Li J, Li Y. Natural drugs targeting inflammation pathways can be used to treat atherosclerosis. Front Pharmacol 2022; 13:998944. [PMID: 36386165 PMCID: PMC9663817 DOI: 10.3389/fphar.2022.998944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
Atherosclerosis (AS) is the chronic gradual degradation of arteries in combination with inflammation. Currently, the main research focus has been on interactions between inflammatory cells, inflammatory mediators, and immune mechanisms, while some studies have reported natural drugs were exerting a critical role against AS, whereas the usage of natural drugs was always limited by various factors such as poor penetration across biological barriers, low bioavailability, and unclear mechanisms. Herein, we reviewed the potential targets for inflammation against AS, discussed the underlying mechanisms of natural drugs for AS, particularly highlighted the dilemma of current research, and finally, offered perspectives in this field.
Collapse
Affiliation(s)
- Xiayinan Song
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine Jinan, Jinan, China
| | - Xiaoming Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Danyang Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine Jinan, Jinan, China
| | - Zhenzhen Zheng
- Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Jie Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine Jinan, Jinan, China
- *Correspondence: Jie Li, Yunlun Li,
| | - Yunlun Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine Jinan, Jinan, China
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Jie Li, Yunlun Li,
| |
Collapse
|
7
|
Huang YW, Zhang M, Wang LT, Nie Y, Yang JB, Meng WL, Wang XJ, Sheng J. 20( S)-Protopanaxadiol decreases atherosclerosis in ApoE KO mice by increasing the levels of LDLR and inhibiting its binding with PCSK9. Food Funct 2022; 13:7020-7028. [PMID: 35723202 DOI: 10.1039/d2fo00392a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chinese medicinal and edible plants such as Panax notoginseng and ginseng are widely used for the treatment of atherosclerosis (AS). AS is the main pathological basis of cardiac-cerebral vascular disease, which seriously threatens human health and quality of life. Low-density lipoprotein (LDL) is the main pathogenic factor of AS. The LDL receptor (LDLR) is an important protein that functions to mediate the uptake and degradation of plasma LDL. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) can mediate the internalization and degradation of LDLR. So, increasing the LDLR level by inhibiting PCSK9 is an important means of prevention and treatment of AS. In this study, by combining interaction technology (surface plasmon resonance, SPR) of small molecule compounds with membrane receptor proteins, cell experiments, and in vivo experiments, it is proved for the first time that 20(S)-protopanaxadiol (PPD), as a hydrolytic product of Panax notoginseng saponins in the intestinal tract, can bind to the extracellular domain of LDLR and inhibit the role of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) in mediating LDLR degradation. The results showed that PPD significantly reduced aortic plaques and hepatic steatosis in HFD-fed ApoE KO mice. LDLR protein levels were elevated in the liver tissues isolated from PPD-treated HFD-fed ApoE KO mice and PPD-treated HepG2 cells. Our findings demonstrated that PPD significantly increased LDLR levels and reduced AS in the HFD-fed ApoE KO mice on account of LDLR degradation being inhibited by PPD inhibiting the interaction between PCSK9 and LDLR.
Collapse
Affiliation(s)
- Ye-Wei Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,College of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Meng Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Li-Tian Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yan Nie
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jin-Bo Yang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Wen-Luer Meng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xuan-Jun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,College of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650201, China
| |
Collapse
|
8
|
Hyun SH, Bhilare KD, In G, Park CK, Kim JH. Effects of Panax ginseng and ginsenosides on oxidative stress and cardiovascular diseases: pharmacological and therapeutic roles. J Ginseng Res 2022; 46:33-38. [PMID: 35058725 PMCID: PMC8753520 DOI: 10.1016/j.jgr.2021.07.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/21/2021] [Indexed: 01/04/2023] Open
Abstract
Traditionally, Asian ginseng or Korean ginseng, Panax ginseng has long been used in Korea and China to treat various diseases. The main active components of Panax ginseng is ginsenoside, which is known to have various pharmacological treatment effects such as antioxidant, vascular easing, anti-allergic, anti-inflammatory, anti-diabetes, and anticancer. Most reactive oxygen species (ROS) cause chronic diseases such as myocardial symptoms and cause fatal oxidative damage to cell membrane lipids and proteins. Therefore, many studies that inhibit the production of oxidative stress have been conducted in various fields of physiology, pathophysiology, medicine and health, and disease. Recently, ginseng or ginsenosides have been known to act as antioxidants in vitro and in vivo results, which have a beneficial effect on preventing cardiovascular disease. The current review aims to provide mechanisms and inform precious information on the effects of ginseng and ginsenosides on the prevention of oxidative stress and cardiovascular disease in animals and clinical trials.
Collapse
Affiliation(s)
- Sun Hee Hyun
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Kiran D. Bhilare
- College of Veterinary Medicine, Biosafety Research Institute, Jeonbuk National University, Jeollabuk-do, Republic of Korea
| | - Gyo In
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Chae-Kyu Park
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
- Corresponding author. College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeollabuk-do, Republic of Korea.
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Jeonbuk National University, Jeollabuk-do, Republic of Korea
- Corresponding author. Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, 34128, Republic of Korea.
| |
Collapse
|
9
|
Liu W, Zhou L, Feng L, Zhang D, Zhang C, Gao Y. BuqiTongluo Granule for Ischemic Stroke, Stable Angina Pectoris, Diabetic Peripheral Neuropathy with Qi Deficiency and Blood Stasis Syndrome: Rationale and Novel Basket Design. Front Pharmacol 2021; 12:764669. [PMID: 34733163 PMCID: PMC8558407 DOI: 10.3389/fphar.2021.764669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/30/2021] [Indexed: 12/30/2022] Open
Abstract
Background: BuqiTongluo (BQTL) granules are herbal phenotypic drugs for Qi deficiency and blood stasis (QDBS) syndrome. Its discovery relied primarily on knowledge of observable phenotypic changes associated with diseases. Although BQTL granules have been widely advocated by Chinese Medicine (CM) practitioners, its use lacks empirical support. Aim of the study: In this basket trial, the efficacy of BQTL granules in multiple diseases that have the QDBS syndrome in common will be compared with placebo. Materials and Methods: The BuqiTongluo granule for Qi deficiency and blood stasis syndrome (BOSS) study is a basket herbal trial (ClinicalTrials.gov, NCT04408261). It will be a double-blinded, randomized, placebo-controlled, parallel, multicenter, clinical trial. In total, 432 patients (1:1:1 ischemic stroke, stable angina pectoris, and diabetic peripheral neuropathy), who meet the operationalized diagnostic criteria for QDBS syndrome, have been recruited and randomized in a ratio of 1:1 to receive 6 weeks’ treatment with BQTL granules or placebo. The primary outcome is the change in the QDBS syndrome score at week 6 from baseline. Secondary outcomes include objective outcome measures for the three diseases and adverse events. Omics will help to understand these responses by molecular events. Conclusion: QDBS syndrome is a common phenotypic marker that was hypothesized to predict whether patients with multiple diseases would respond to this targeted therapy. No previous basket trial has assessed the potential efficacy of an herbal intervention for multiple diseases. The unique promise of the trial is its ability to exploit a disease phenotype to discover novel treatments for three diseases for which the root cause is unknown, complex, or multifactorial, and for which scientific understanding is insufficient to provide valid molecular targets.
Collapse
Affiliation(s)
- Weidi Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Li Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Luda Feng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dandan Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Chi Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Gao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | | |
Collapse
|
10
|
Malekmohammad K, Bezsonov EE, Rafieian-Kopaei M. Role of Lipid Accumulation and Inflammation in Atherosclerosis: Focus on Molecular and Cellular Mechanisms. Front Cardiovasc Med 2021; 8:707529. [PMID: 34552965 PMCID: PMC8450356 DOI: 10.3389/fcvm.2021.707529] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis is a chronic lipid-driven and maladaptive inflammatory disease of arterial intima. It is characterized by the dysfunction of lipid homeostasis and signaling pathways that control the inflammation. This article reviews the role of inflammation and lipid accumulation, especially low-density lipoprotein (LDL), in the pathogenesis of atherosclerosis, with more emphasis on cellular mechanisms. Furthermore, this review will briefly highlight the role of medicinal plants, long non-coding RNA (lncRNA), and microRNAs in the pathophysiology, treatment, and prevention of atherosclerosis. Lipid homeostasis at various levels, including receptor-mediated uptake, synthesis, storage, metabolism, efflux, and its impairments are important for the development of atherosclerosis. The major source of cholesterol and lipid accumulation in the arterial wall is proatherogenic modified low-density lipoprotein (mLDL). Modified lipoproteins, such as oxidized low-density lipoprotein (ox-LDL) and LDL binding with proteoglycans of the extracellular matrix in the intima of blood vessels, cause aggregation of lipoprotein particles, endothelial damage, leukocyte recruitment, foam cell formation, and inflammation. Inflammation is the key contributor to atherosclerosis and participates in all phases of atherosclerosis. Also, several studies have shown that microRNAs and lncRNAs have appeared as key regulators of several physiological and pathophysiological processes in atherosclerosis, including regulation of HDL biogenesis, cholesterol efflux, lipid metabolism, regulating of smooth muscle proliferation, and controlling of inflammation. Thus, both lipid homeostasis and the inflammatory immune response are closely linked, and their cellular and molecular pathways interact with each other.
Collapse
Affiliation(s)
| | - Evgeny E. Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, Moscow, Russia
- Institute for Atherosclerosis Research, Moscow, Russia
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
11
|
Yang Q, Li J, Ma W, Zhang S, Hou S, Wang Z, Li X, Gao W, Rengel Z, Chen Q, Cui X. Melatonin increases leaf disease resistance and saponin biosynthesis in Panax notogiseng. JOURNAL OF PLANT PHYSIOLOGY 2021; 263:153466. [PMID: 34216845 DOI: 10.1016/j.jplph.2021.153466] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 05/27/2023]
Abstract
Panax notoginseng (Bruk.) FH Chen is a valuable traditional herb in China, with saponins being the main medicinal components in its roots. However, leaf diseases are a major factor limiting growth and production of P. notoginseng. Melatonin is a ubiquitous signaling molecule associated with abiotic stress resistance. In this study, we investigated the role of melatonin in leaf disease resistance of P. notoginseng in field conditions. Additionally, saponin concentrations were analyzed to evaluate the suitability of melatonin use in agricultural practice. Our results showed that exogenous application of melatonin promoted the endogenous phytomelatonin accumulation via upregulation of genes involved in its biosynthesis. The application of 10 μM melatonin decreased the incidence of leaf diseases (gray mold, round spot, and black spot) by about 40% compared with the solvent control, which might have been due to the increased expression of genes associated with immunity and disease resistance. Furthermore, concentrations of saponins and expression of their biosynthesis-related genes were significantly increased by melatonin. Taken together, the data presented here suggested that melatonin could be used in agricultural management of P. notoginseng because it increased leaf disease resistance and biosynthesis of saponins.
Collapse
Affiliation(s)
- Qian Yang
- Laboratory of Sustainable Utilization of Panax notoginseng Resources, State Administration of Traditional Chinese Medicine, Key Laboratory of Panax notoginseng in Yunnan Province, Panax notoginseng Research Institute in Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China
| | - Jianbin Li
- Laboratory of Sustainable Utilization of Panax notoginseng Resources, State Administration of Traditional Chinese Medicine, Key Laboratory of Panax notoginseng in Yunnan Province, Panax notoginseng Research Institute in Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China
| | - Wenna Ma
- Laboratory of Sustainable Utilization of Panax notoginseng Resources, State Administration of Traditional Chinese Medicine, Key Laboratory of Panax notoginseng in Yunnan Province, Panax notoginseng Research Institute in Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China
| | - Siqi Zhang
- Laboratory of Sustainable Utilization of Panax notoginseng Resources, State Administration of Traditional Chinese Medicine, Key Laboratory of Panax notoginseng in Yunnan Province, Panax notoginseng Research Institute in Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China
| | - Suying Hou
- Laboratory of Sustainable Utilization of Panax notoginseng Resources, State Administration of Traditional Chinese Medicine, Key Laboratory of Panax notoginseng in Yunnan Province, Panax notoginseng Research Institute in Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China
| | - Zirui Wang
- Laboratory of Sustainable Utilization of Panax notoginseng Resources, State Administration of Traditional Chinese Medicine, Key Laboratory of Panax notoginseng in Yunnan Province, Panax notoginseng Research Institute in Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China
| | - Xiaolei Li
- Analytic & Testing Research Center of Yunnan, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China
| | - Wei Gao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia; Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
| | - Qi Chen
- Laboratory of Sustainable Utilization of Panax notoginseng Resources, State Administration of Traditional Chinese Medicine, Key Laboratory of Panax notoginseng in Yunnan Province, Panax notoginseng Research Institute in Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China.
| | - Xiuming Cui
- Laboratory of Sustainable Utilization of Panax notoginseng Resources, State Administration of Traditional Chinese Medicine, Key Laboratory of Panax notoginseng in Yunnan Province, Panax notoginseng Research Institute in Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China.
| |
Collapse
|
12
|
Feng L, Han F, Zhou L, Wu S, Du Y, Zhang D, Zhang C, Gao Y. Efficacy and Safety of Panax Notoginseng Saponins (Xueshuantong) in Patients With Acute Ischemic Stroke (EXPECT) Trial: Rationale and Design. Front Pharmacol 2021; 12:648921. [PMID: 33967788 PMCID: PMC8101545 DOI: 10.3389/fphar.2021.648921] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Although revascularization treatment is recommended as the first-line therapy for patients with non-minor acute ischemic stroke (AIS), it only benefits a minority of patients. Previous studies have reported the positive effects of Panax notoginseng saponins (PNS) (Xueshuantong lyophilized powder) on AIS, however, there have been no rigorous trials. This study aims to assess the efficacy and safety of PNS therapy for patients with AIS. Methods: The Evaluation of Xueshuantong in Patients with acutE ischemiC sTroke (EXPECT) trial is a multicenter, randomized, placebo-controlled, double-blind study aiming to enroll 480 patients in China. Eligible patients with AIS within 72 h of symptom onset will randomly receive either PNS or PNS placebo for 10 days and subsequently be followed up to 90 days. The primary outcome will be a change in the National Institute of Health Stroke Scale (NIHSS) score from baseline to 10 post-randomization days. The secondary outcomes include early neurological improvement (proportion of patients with NIHSS score 0–1), and Patient-Reported Outcomes Scale for Stroke score at 10 post-randomization days, the proportion of patients with life independence (modified Rankin Scale score of 0–1), the proportion of patients with a favorable outcome (Barthel Index ≥90), and Stroke-Specific Quality of Life score at 90 days. Adverse events or clinically significant changes in vital signs and laboratory parameters, regardless of the severity, will be recorded during the trial to assess the safety of PNS. Conclusions: To our knowledge, this study is the first double-blind trial to assess the efficacy and safety of PNS in patients with AIS. Findings of the EXPECT trial will be valuable in improving evidence regarding the clinical application of PNS therapy in patients with AIS ineligible for revascularization treatment in the reperfusion era.
Collapse
Affiliation(s)
- Luda Feng
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China.,Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Fang Han
- Office of Academic Research, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Li Zhou
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shengxian Wu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Office of State Drug Clinical Trial Institution, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yawei Du
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dandan Zhang
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Chi Zhang
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China.,Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Gao
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China.,Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Chávez-Castillo M, Ortega Á, Duran P, Pirela D, Marquina M, Cano C, Salazar J, Gonzalez MC, Bermúdez V, Rojas-Quintero J, Velasco M. Phytotherapy for Cardiovascular Disease: A Bench-to-Bedside Approach. Curr Pharm Des 2021; 26:4410-4429. [PMID: 32310044 DOI: 10.2174/1381612826666200420160422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/13/2020] [Indexed: 11/22/2022]
Abstract
At present, cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide, and global trends suggest that this panorama will persist or worsen in the near future. Thus, optimization of treatment strategies and the introduction of novel therapeutic alternatives for CVD represent key objectives in contemporary biomedical research. In recent years, phytotherapy-defined as the therapeutic use of whole or minimally modified plant components-has ignited large scientific interest, with a resurgence of abundant investigation on a wide array of medicinal herbs (MH) for CVD and other conditions. Numerous MH have been observed to intervene in the pathophysiology of CVD via a myriad of molecular mechanisms, including antiinflammatory, anti-oxidant, and other beneficial properties, which translate into the amelioration of three essential aspects of the pathogenesis of CVD: Dyslipidemia, atherosclerosis, and hypertension. Although the preclinical data in this scenario is very rich, the true clinical impact of MH and their purported mechanisms of action is less clear, as large-scale robust research in this regard is in relatively early stages and faces important methodological challenges. This review offers a comprehensive look at the most prominent preclinical and clinical evidence currently available concerning the use of MH in the treatment of CVD from a bench-to-bedside approach.
Collapse
Affiliation(s)
- Mervin Chávez-Castillo
- Psychiatric Hospital of Maracaibo, Maracaibo, Venezuela,Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Pablo Duran
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Daniela Pirela
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - María Marquina
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Climaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | | | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Joselyn Rojas-Quintero
- Pulmonary and Critical Care Medicine Department, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Manuel Velasco
- Clinical Pharmacology Unit, School of Medicine José María Vargas, Central University of Venezuela, Caracas,
Venezuela
| |
Collapse
|
14
|
Zuo X, Li Q, Ya F, Ma LJ, Tian Z, Zhao M, Fan D, Zhao Y, Mao YH, Wan JB, Yang Y. Ginsenosides Rb2 and Rd2 isolated from Panax notoginseng flowers attenuate platelet function through P2Y 12-mediated cAMP/PKA and PI3K/Akt/Erk1/2 signaling. Food Funct 2021; 12:5793-5805. [PMID: 34041517 DOI: 10.1039/d1fo00531f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Saponins derived from Panax notoginseng root are widely used as herbal medicines and dietary supplements due to their wide range of health benefits. However, the effects of those from Panax notoginseng flowers (PNF) on platelet function and thrombus formation remain largely unknown. Using a series of platelet function assays, we found that G-Rb2 and G-Rd2, among the ten PNF saponin monomers, significantly inhibited human platelet aggregation and activation induced by adenosine diphosphate (ADP) in vitro. The 50% inhibitory concentration (IC50) of G-Rb2 and G-Rd2 against ADP-induced platelet aggregation was 85.5 ± 4.5 μg mL-1 and 51.4 ± 4.6 μg mL-1, respectively. Mechanistically, G-Rb2 and G-Rd2 could effectively modulate platelet P2Y12-mediated signaling by up-regulating cAMP/PKA signaling and down-regulating PI3K/Akt/Erk1/2 signaling pathways. Co-incubation of the P2Y12 antagonist cangrelor with either G-Rb2 or G-Rd2 did not show significant additive inhibitory effects. G-Rb2 and G-Rd2 also substantially suppressed thrombus growth in a FeCl3-induced murine arteriole thrombosis model in vivo. Interestingly, G-Rd2 generally exhibited more potent inhibitory effects on platelet function and thrombus formation than G-Rb2. Thus, our data suggest that PNF-derived G-Rb2 and G-Rd2 effectively attenuate platelet hyperactivity through modulating signaling pathways downstream of P2Y12, which indicates G-Rb2 and G-Rd2 may play important preventive roles in thrombotic diseases.
Collapse
Affiliation(s)
- Xiao Zuo
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China. and Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, China and Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province 510080, China
| | - Qing Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China. and Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, China and Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province 510080, China
| | - Fuli Ya
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China. and Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, China and Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province 510080, China
| | - Li-Juan Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.
| | - Zezhong Tian
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China. and Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, China and Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province 510080, China
| | - Mingzhu Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China. and Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, China and Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province 510080, China
| | - Die Fan
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China. and Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, China and Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province 510080, China
| | - Yimin Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China. and Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, China and Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province 510080, China
| | - Yu-Heng Mao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China. and Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, China and Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province 510080, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.
| | - Yan Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China. and Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, China and Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province 510080, China
| |
Collapse
|
15
|
Long W, Liao H, Huang X, Liu Q, Tang Y, Lu L, Liu J, Yuan T, Ling Y, Hong Y, Duan J, Lin W, Xian S, Yang Z. Efficacy and safety of high-dose Xueshuantong injection (lyophilised) in reducing the incidence of major adverse cardiovascular events in patients with unstable angina: a protocol of a randomised, parallel-arm, controlled, double-blind and multicentre clinical trial based on dual antiplatelet therapy. BMJ Open 2020; 10:e038074. [PMID: 32847917 PMCID: PMC7451462 DOI: 10.1136/bmjopen-2020-038074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Unstable angina (UA), referred to as acute coronary syndrome (ACS), causes unexpected chest pain. Xueshuantong injection (lyophilised) (XST) is a traditional Chinese herbal injection having the potential to treat ACS. However, no clinical trial has been performed in this field. This clinical trial aims to examine the efficacy and safety of XST. METHODS AND ANALYSIS This is a randomised, parallel-arm, controlled, double-blind and multicentre clinical trial. A total of 1200 participants with UA will be enrolled in a 1:1 ratio, with 600 patients included in the XST treatment group and 600 with 1/20th dose in the control group. The efficacy assessment and major adverse cardiovascular events will be observed, and the frequency of angina attack, angina pectoris will be examined at the start and end of the run-in period. All adverse events will be recorded, regardless of the severity, to assess the safety of XST. The baseline characteristics of patients will be summarised and compared using the t test or non-parametric statistical test. Qualitative data will be analysed using the χ2 or Fisher exact tests, Cochran-Mantel-Hasenszel test and Wilcoxon test. ETHICS AND DISSEMINATION This trial has been approved by the Research Ethics Committee of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China (approval number: ZYYEC [2017] 0021). Written informed consent will be obtained from all participants. The results of this trial will be disseminated to the public through academic conferences and peer-reviewed journals. TRIAL REGISTRATION This study was registered on the Chinese Clinical Trial Registry (http://www.chictr.org.cn/) with the ID ChiCTR1800015911.
Collapse
Affiliation(s)
- Wenjie Long
- Department of Geriatrics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huili Liao
- Department of Geriatrics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xi Huang
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qingqing Liu
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yaqing Tang
- National Drug Clinical Trial Agency Office, Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Liming Lu
- Clinical Research and Data Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jianhong Liu
- Department of Geriatrics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Tianhui Yuan
- National Drug Clinical Trial Agency Office, Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Yan Ling
- Department of Geriatrics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yu Hong
- Department of Geriatrics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiao Duan
- Department of Geriatrics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Weiji Lin
- Department of Geriatrics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shaoxiang Xian
- Department of Geriatrics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhongqi Yang
- Department of Geriatrics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Fereydouni Z, Amirinezhad Fard E, Mansouri K, Mohammadi Motlagh HR, Mostafaie A. Saponins from Tribulus terrestris L. Extract Down-regulate the Expression of ICAM-1, VCAM-1 and E-selectin in Human Endothelial Cell Lines. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2020; 9:73-83. [PMID: 32832486 PMCID: PMC7422852 DOI: 10.22088/ijmcm.bums.9.1.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Atherosclerosis is an inflammatory disease in which intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin (SELE) are consistently expressed in the vascular endothelium. Several evidence support the crucial role of adhesion molecules in the development of atherosclerosis and plaque instability. Due to the anti-inflammatory activity of Tribulus terrestris (TT), the present study investigated the effect of aqueous extract and saponin fraction of TT on the expression of ICAM-1, VCAM-1, and SELE genes in endothelial cells during normal and lipopolysaccharide (LPS) induced conditions. Human umbilical vein endothelial cells (HUVEC) and human bone marrow endothelial cells (HBMEC) were cultured, stimulated by LPS, and treated with aqueous extract and saponin fraction of TT. Finally, the expression of ICAM-1, VCAM-1, and SELE genes were measured using quantitative real-time polymerase chain reaction. LPS-induced HUVECs and HBMECs significantly increased the expression of ICAM-1, VCAM-1, and SELE in comparison with control groups (P<0.001). Treatment of LPS-induced HUVECs and HBMECs by aqueous extract and saponin fraction of TT decreased the expression of all three mentioned genes significantly (P<0.001) in comparison with LPS-induced cells. Taken together, our data suggest that TT has an anti-inflammatory effect. In vivo study about anti-inflammatory effect of this herb may provide new insights into the development of a herbal drug for the prevention/therapy of atherosclerosis.
Collapse
Affiliation(s)
- Zahra Fereydouni
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elahe Amirinezhad Fard
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamid-Reza Mohammadi Motlagh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Mostafaie
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
17
|
Li Y, Sun D, Zheng Y, Cheng Y. Swimming exercise activates aortic autophagy and limits atherosclerosis in ApoE -/- mice. Obes Res Clin Pract 2020; 14:264-270. [PMID: 32444302 DOI: 10.1016/j.orcp.2020.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The aim of this study was to investigate the beneficial effect of swimming exercise on autophagy and atherosclerosis in mice aorta, so as to clarify the possible causal relationship between autophagy activation and atherosclerosis. METHODS The body weight was monitored regularly. Hematoxylin-eosin staining and Oil Red O staining was conducted to observe vascular morphology and plaque burden respectively. The levels of serum total cholesterol (TC), triglyceride (TG), soluble intercellular adhesion molecule-1 (sICAM-1), matrix metalloproteinase-9 (MMP-9) and interleukin-6 (IL-6) was examined via Enzyme-linked immu-nosorbent assays (ELISA). The mRNA expression level of autophagy markers, including LC3 and Beclin-1, was examined by real-time quantitative polymerase chain reaction (RT-PCR). The expressions of LC3-II/LC3-I and Beclin-1 are detected by Western blotting and immunohistochemistry. RESULTS Compared with the model group, long-term swimming exercise decreased the weight gain of ApoE-/- mice, improved the structural disorder of artery, reduced the load of atherosclerotic lesion, and attenuated the concentrations of serum TC, TG, sICAM-1, MMP-9, and IL-6. In addition, the expression of autophagy markers LC3 and Beclin-1 increased significantly at the mRNA and protein levels. CONCLUSION Long-term swimming exercise could activate the autophagy and reduce atherosclerotic lesion in the aorta of ApoE-/- mice. Autophagy activation may be one of the mechanisms by which atherosclerosis is improved through exercise.
Collapse
Affiliation(s)
- Yang Li
- Department of Cardiology, Binzhou Medical University Hospital, Binzhou, China
| | - Dakang Sun
- Clinical Medical Laboratory, Binzhou Medical University Hospital, Binzhou, China
| | - Yuanyuan Zheng
- Department of Cardiology, Binzhou Medical University Hospital, Binzhou, China
| | - Yanli Cheng
- Department of Cardiology, Binzhou Medical University Hospital, Binzhou, China.
| |
Collapse
|
18
|
Li F, Zhang T, He Y, Gu W, Yang X, Zhao R, Yu J. Inflammation inhibition and gut microbiota regulation by TSG to combat atherosclerosis in ApoE -/- mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 247:112232. [PMID: 31606534 DOI: 10.1016/j.jep.2019.112232] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/20/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 2,3,5,4'-Tetrahydroxy-stilbene-2-O-β-D-glucoside (TSG) is the main active component of Polygoni Multiflori Radix, a root of the homonymous plant widely used in traditional Chinese medicine. TSG has protective effects on the liver, reduces cholesterol and possesses anti-oxidant, anti-tumor, and anti-atherosclerotic properties. However, the pharmacological effects and mechanisms of action of Polygonum multiflorum on atherosclerosis (AS) have not been studied yet. PURPOSE The aim of this research was to study the effects of Polygoni Multiflori Radix Praeparata (PMRP) and its major active chemical constituent TSG on AS in ApoE-deficient (ApoE-/-) mice fed with high fat diets to provide a scientific basis in the use of PMRP and TSG against cardiovascular diseases. METHODS High fat diet induced AS in ApoE-/- mice were treated with PMRP, TSG (low and high doses), and simvastatin (SIM) for 8 weeks. At the end of the treatment, mouse serum lipid levels, triglycerides (TG), and total cholesterol (TC) were measured by an oxidase method (other indicators were determined by ELISA), while the content in oxidized low density lipoprotein (ox-LDL) and the expression of inflammatory factors such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), vascular cell adhesion molecule-1 (VCAM-1), and monocyte chemotactic protein-1 (MCP-1) in the serum and aortic samples were measured by ELISA. Atherosclerotic plaque morphology was evaluated by oil red O in thoracic aorta. In addition, 16S rDNA-V4 hypervariable region genome sequence of all microbes in the fecal sample from each group was analyzed to evaluate potential structure changes in the gut microbiota after treatment with PMRP and TSG. RESULTS TSG markedly inhibited AS plaque formation in ApoE-/- mice. Furthermore, PMRP and TSG improved lipid accumulation by reducing TG and ox-LDL levels. TSG inhibited inflammation by the down-regulation of IL-6, TNF-α, VCAM-1 and MCP-1 expression in serum, and PMRP inhibited inflammation by reducing VCAM-1, ICAM-1 and CCRA expression in aortic tissue. In addition, TSG reduced or prevented AS by the regulation of the composition of the overall gut microbiota, such as Firmicutes, Bacteroidetes, Tenericutes, Proteobacteria phyla, Akkermensia genera and Helicobacter pylori. CONCLUSION PMRP and TSG improved lipid accumulation and inflammation, and regulated the intestinal microbial imbalance in ApoE-/- mice. TSG exerted a preventive effect in the development and progression of AS.
Collapse
Affiliation(s)
- Fengjiao Li
- Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan Province, China
| | - Ting Zhang
- Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan Province, China
| | - Yanran He
- Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan Province, China
| | - Wen Gu
- Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan Province, China
| | - Xingxin Yang
- Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan Province, China
| | - Ronghua Zhao
- Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan Province, China
| | - Jie Yu
- Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan Province, China.
| |
Collapse
|
19
|
Nagar H, Kang SK, Choi SW, Song HJ, Choi SJ, Piao S, Kim S, Lee I, Kim CS. Antihypertensive Effects of Rg3-Enriched Korean Vitamin Ginseng in Spontaneously Hypertensive Rats. Nat Prod Commun 2020. [DOI: 10.1177/1934578x19900712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ginseng is well known to treat various diseases. Ginsenoside Rg3 exhibits a variety of pharmacological activities including cardiovascular protective effects. Vitamins utilized as supplements have minimal interactions with other drugs making them attractive targets for therapeutics. Here, we prepared Rg3-enriched Korean ginseng catalyzed by vitamin (REKVG) and evaluated its ability to improve hypertension in spontaneously hypertensive rats (SHRs). The ginsenoside content in both Korean Red ginseng (KRG) and REKVG were analyzed using high-performance liquid chromatography (HPLC). Male SHRs and Wistar-Kyoto rats (WKYs) were randomly divided into 6 groups (WKY saline, WKY KRG, WKY REKVG, SHR saline, SHR KRG, and SHR REKVG). KRG and REKVG were orally administered once daily to the rats at a dose of 10 mg/kg for 6 weeks, and blood pressure was measured in live rats using the tail-cuff method. Human umbilical vein endothelial cells were used for the in vitro experiment. HPLC chromatograms revealed that the concentration of ginsenoside Rg3 in REKVG was much higher than that in KRG. The administration of REKVG significantly decreased the systolic blood pressure in SHRs at the end of 6 weeks as compared to KRG. Further, REKVG use resulted in a dose-dependent increase in Akt and endothelial nitric oxide synthase (eNOS) phosphorylation and NO production in endothelial cells. In addition, the administration of REKVG significantly increased Akt and eNOS phosphorylation and increased plasma NO levels in SHRs. We conclude that REKVG effectively lowers the blood pressure in rats and therefore could be considered for use in preventing or improving hypertension.
Collapse
Affiliation(s)
- Harsha Nagar
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of BK21Plus CNU Integrative Biomedical Education Initiative, Chungnam National University, Daejeon, Republic of Korea
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Shin Kwang Kang
- Department of Thoracic and Cardiovascular Surgery, Chungnam National University, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Si Wan Choi
- Division of Cardiology, Internal Medicine, School of Medicine, Chungnam National University, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Hee-Jung Song
- Department of Neurology, School of Medicine, Chungnam National University, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Su-Jeong Choi
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Shuyu Piao
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seonhee Kim
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of BK21Plus CNU Integrative Biomedical Education Initiative, Chungnam National University, Daejeon, Republic of Korea
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ikjun Lee
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of BK21Plus CNU Integrative Biomedical Education Initiative, Chungnam National University, Daejeon, Republic of Korea
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Cuk-Seong Kim
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of BK21Plus CNU Integrative Biomedical Education Initiative, Chungnam National University, Daejeon, Republic of Korea
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
20
|
20( S)-Protopanaxadiol Saponins Mainly Contribute to the Anti-Atherogenic Effects of Panax notoginseng in ApoE Deficient Mice. Molecules 2019; 24:molecules24203723. [PMID: 31623159 PMCID: PMC6832312 DOI: 10.3390/molecules24203723] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis mainly contributes to cardiovascular disease, a leading cause of global morbidity and mortality. Panax notoginseng saponins (PNS) are proved to therapeutically attenuate the formation of atherosclerotic lesions. According to different sapogenin, PNS are generally classified into 20(S)-protopanaxadiol saponins (PDS) and 20(S)-protopanaxatriol saponins (PTS). It was reported that PDS and PTS might exert diverse or even antagonistic bioactivities. In this study, the probable effects of PTS and PDS on atherosclerotic development were investigated and compared in ApoE-deficient mice (ApoE-/-). Male mice were gavaged daily by PNS (200 mg/kg/d), PTS (100 mg/kg/d), or PDS (100 mg/kg/d), respectively for eight weeks. The treatments of PNS and PDS, but not PTS, showed decreased atherosclerotic lesions in the entire aorta by 45.6% and 41.3%, respectively, as evaluated by an en-face method. Both PNS and PDS can improve the plaque vulnerability, as evidenced by the increased collagen fiber, increased expression of α- smooth muscle actin (α-SMA), and decreased Cluster of differentiation 14 (CD14). Additionally, PDS also inhibit the nuclear factor kappa B (NF-κB)-mediated vascular inflammation in the aorta. In conclusion, PDS, but not PTS, might mainly contribute to the anti-atherosclerosis of P. notoginseng.
Collapse
|
21
|
Malekmohammad K, Sewell RDE, Rafieian-Kopaei M. Antioxidants and Atherosclerosis: Mechanistic Aspects. Biomolecules 2019; 9:E301. [PMID: 31349600 PMCID: PMC6722928 DOI: 10.3390/biom9080301] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/07/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease which is a major cause of coronary heart disease and stroke in humans. It is characterized by intimal plaques and cholesterol accumulation in arterial walls. The side effects of currently prescribed synthetic drugs and their high cost in the treatment of atherosclerosis has prompted the use of alternative herbal medicines, dietary supplements, and antioxidants associated with fewer adverse effects for the treatment of atherosclerosis. This article aims to present the activity mechanisms of antioxidants on atherosclerosis along with a review of the most prevalent medicinal plants employed against this multifactorial disease. The wide-ranging information in this review article was obtained from scientific databases including PubMed, Web of Science, Scopus, Science Direct and Google Scholar. Natural and synthetic antioxidants have a crucial role in the prevention and treatment of atherosclerosis through different mechanisms. These include: The inhibition of low density lipoprotein (LDL) oxidation, the reduction of reactive oxygen species (ROS) generation, the inhibition of cytokine secretion, the prevention of atherosclerotic plaque formation and platelet aggregation, the preclusion of mononuclear cell infiltration, the improvement of endothelial dysfunction and vasodilation, the augmentation of nitric oxide (NO) bioavailability, the modulation of the expression of adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) on endothelial cells, and the suppression of foam cell formation.
Collapse
Affiliation(s)
- Khojasteh Malekmohammad
- Department of Animal Sciences, Faculty of Basic Sciences, Shahrekord University, Shahrekord 8818634141, Iran
| | - Robert D E Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8813833435, Iran.
| |
Collapse
|
22
|
Huang Y, Guo B, Shi B, Gao Q, Zhou Q. Chinese Herbal Medicine Xueshuantong Enhances Cerebral Blood Flow and Improves Neural Functions in Alzheimer's Disease Mice. J Alzheimers Dis 2019; 63:1089-1107. [PMID: 29710701 PMCID: PMC6004915 DOI: 10.3233/jad-170763] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reduced cerebral blood flow in Alzheimer's disease (AD) may occur in early AD, which contributes to the pathogenesis and/or pathological progression of AD. Reversing this deficit may have therapeutic potential. Certain traditional Chinese herbal medicines (e.g., Saponin and its major component Xueshuantong [XST]) increase blood flow in humans, but whether they could be effective in treating AD patients has not been tested. We found that systemic XST injection elevated cerebral blood flow in APP/PS1 transgenic mice using two-photon time-lapse imaging in the same microvessels before and after injection. Subchronic XST treatment led to improved spatial learning and memory and motor performance in the APP/PS1 mice, suggesting improved neural plasticity and functions. Two-photon time lapse imaging of the same plaques revealed a reduction in plaque size after XST treatment. In addition, western blots experiments showed that XST treatment led to reduced processing of amyloid-β protein precursor (AβPP) and enhanced clearance of amyloid-β (Aβ) without altering the total level of AβPP. We also found increased synapse density in the immediate vicinity of amyloid plaques, suggesting enhanced synaptic function. We conclude that targeting cerebral blood flow can be an effective strategy in treating AD.
Collapse
Affiliation(s)
- Yangmei Huang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Baihong Guo
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Bihua Shi
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Qingtao Gao
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Qiang Zhou
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
23
|
Kim JY, Shim SH. Medicinal Herbs Effective Against Atherosclerosis: Classification According to Mechanism of Action. Biomol Ther (Seoul) 2019; 27:254-264. [PMID: 30917628 PMCID: PMC6513182 DOI: 10.4062/biomolther.2018.231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/23/2019] [Accepted: 02/27/2019] [Indexed: 11/06/2022] Open
Abstract
Atherosclerosis is a widespread and chronic progressive arterial disease that has been regarded as one of the major causes of death worldwide. It is caused by the deposition of cholesterol, fats, and other substances in the tunica intima which leads to narrowing of the blood vessels, loss of elasticity, and arterial wall thickening, thus causing difficulty in blood flow. Natural products have been used as one of the most important strategies for the treatment and prevention of cardiovascular diseases for a long time. In recent decades, as interests in natural products including medicinal herbs have increased, many studies regarding natural compounds that are effective against atherosclerosis have been conducted. The purpose of this review is to provide a brief over-view of the natural compounds that have been used for the treatment and prevention of atherosclerosis, and their mechanisms of action based on recent research.
Collapse
Affiliation(s)
- Jae-Yong Kim
- Colleage of Pharmacy, Duksung Woman's University, Seoul 01369, Republic of Korea
| | - Sang Hee Shim
- Colleage of Pharmacy, Duksung Woman's University, Seoul 01369, Republic of Korea
| |
Collapse
|
24
|
Feng S, Cheng H, Xu Z, Feng S, Yuan M, Huang Y, Liao J, Ding C. Antioxidant and anti-aging activities and structural elucidation of polysaccharides from Panax notoginseng root. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Liu MW, Huang YQ, Qu YP, Wang DM, Tang DY, Fang TW, Su MX, Wang YQ. Protective effects of Panax notoginseng saponins in a rat model of severe acute pancreatitis occur through regulation of inflammatory pathway signaling by upregulation of miR-181b. Int J Immunopathol Pharmacol 2018. [PMCID: PMC6407166 DOI: 10.1177/2058738418818630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Panax notoginseng saponins are extracted from Chinese
ginseng—Panax notoginseng Ledeb—and are known to have
therapeutic anti-inflammatory effects. However, the precise mechanism behind
their anti-inflammatory effects remains relatively unknown. To better understand
how Panax notoginseng saponins exert their therapeutic benefit,
we tested them in a rat model of severe acute pancreatitis (SAP). Rats received
a tail vein injection of Panax notoginseng saponins and were
administered 5% sodium taurocholate 2 h later. Pancreatic tissue was then
harvested and levels of miR-181b, FSTL1, TREM1, TLR4, TRAF6, IRAK1, p-Akt,
p-p38MAPK, NF-κBp65, and p-IκB-α were determined using Western blot and
quantitative real-time polymerase chain reaction (qRT-PCR). Enzyme-linked
immunosorbent assays were used to determine serum levels of tumor necrosis
factor-α (TNF-α), TREM1, interleukin (IL)-6, ACAM-1, IL-8, and IL-12 and
DNA-bound levels of NF-KB65 and TLR4 in pancreatic and ileum tissue. Serum
levels of lipase and amylase, pancreatic myeloperoxidase (MPO) activity, and
pancreatic water content were also measured. Hematoxylin and eosin staining was
used for all histological analyses. Results indicated upregulation of miR-181b,
but negligible levels of FSTL1, p-p38MAPK, TLR4, TRAF6, p-Akt, IRAK1, TREM1,
p-NF-κBp65, and p-IκB-α, as well as negligible DNA-bound levels of NF-KB65 and
TLR4. We also observed lower levels of IL-8, IL-6, ACAM-1, TNF-α, MPO, and IL-12
in the Panax notoginseng saponin–treated group when compared
with controls. In addition, Panax notoginseng saponin–treated
rats had significantly reduced serum levels of lipase and amylase. Histological
analyses confirmed that Panax notoginseng saponin treatment
significantly reduced taurocholate-induced pancreatic inflammation.
Collectively, our results suggest that Panax notoginseng
saponin treatment attenuated acute pancreatitis and pancreatic inflammation by
increasing miR-181b signaling. These findings suggest that Panax
notoginseng saponins have therapeutic potential in the treatment of
taurocholate-induced SAP.
Collapse
Affiliation(s)
- Ming-wei Liu
- Department of Emergency Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yun-qiao Huang
- Department of Emergency Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ya-ping Qu
- Postgraduate Department, Kunming Medical University, Kunming, China
| | - Dong-mei Wang
- Yunnan Green Field Biopharmaceutical Co., Ltd., Kunming, China
| | - Deng-yun Tang
- Yunnan Green Field Biopharmaceutical Co., Ltd., Kunming, China
- Skin Disease Prevention Institute of Wenshan Zhuang and Miao Autonomous Prefecture, Yunnan, China
| | - Tian-wen Fang
- Postgraduate Department, Kunming Medical University, Kunming, China
| | - Mei-xian Su
- Skin Disease Prevention Institute of Wenshan Zhuang and Miao Autonomous Prefecture, Yunnan, China
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yan-qiong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
26
|
The Herb-Drug Interaction of Clopidogrel and Xuesaitong Dispersible Tablet by Modulation of the Pharmacodynamics and Liver Carboxylesterase 1A Metabolism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5651989. [PMID: 30498515 PMCID: PMC6220743 DOI: 10.1155/2018/5651989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/31/2018] [Accepted: 10/01/2018] [Indexed: 12/03/2022]
Abstract
Objective Clopidogrel and Xuesaitong dispersible tablet (XST) have been clinically proven to be effective for treating cardiocerebrovascular disease. The present study was to investigate the herb-drug interaction of Clopidogrel and XST by modulation of the pharmacodynamics and liver Carboxylesterase 1A(CES1A) metabolism. Methods 30 male SD rats were randomly divided into a control group (equal volumes of saline, 6 rats for mRNA analysis), a clopidogrel group (clopidogrel with dose 30 mg/kg), and a combination group (clopidogrel and XST, with dose 30 and 50 mg/kg respectively, each group continuous administration once daily for 30 days). The clopidogrel and combination group comprised 12 rats, with 6 designated for mRNA analysis and 6 for the pharmacokinetic study. The 2-bromo-3'-methoxyacetophenone- (MPB-) derivatized clopidogrel active thiol metabolite (CAMD) was measured by UHPLC-MS/MS for pharmacokinetics (n=6). The expression of CES1A mRNA was examined with real-time RT-PCR (n=6). Molecular simulation was used to investigate the inhibition effect of XST on the CES1A protein. The CAMD pharmacodynamics and CES1A metabolism were investigated to evaluated the herb-drug interaction. Results Clopidogrel and XST coadministration appreciably increased the Cmax, AUC, and MRT of CAMD. However, the expression of CES1A mRNA was decreased accordingly. It also indicated that the bioactive components in XST had good interaction with the CES1A metabolism target by molecular simulation. The animal study indicated that clopidogrel and XST coadministration produced significant herb-drug interactions at active CAMD pharmacokinetic and CES1A metabolic enzyme aspect. Conclusion 30-days dose of coadministration altered hepatic CES1A protein and resulted in reduced plasma levels of active CAMD. both the decreased CES1A mRNA expression and the inhibition on the protein were due to the combination of XST, which accordingly upregulated the pharmacokinetics of plasma active CAMD.
Collapse
|
27
|
Effects of Panax Notoginseng Saponins on Esterases Responsible for Aspirin Hydrolysis In Vitro. Int J Mol Sci 2018; 19:ijms19103144. [PMID: 30322078 PMCID: PMC6213075 DOI: 10.3390/ijms19103144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/24/2018] [Accepted: 10/09/2018] [Indexed: 12/02/2022] Open
Abstract
Herb–drug interactions strongly challenge the clinical combined application of herbs and drugs. Herbal products consist of complex pharmacological-active ingredients and perturb the activity of drug-metabolizing enzymes. Panax notoginseng saponins (PNS)-based drugs are often combined with aspirin in vascular disease treatment in China. PNS was found to exhibit inhibitory effects on aspirin hydrolysis using Caco-2 cell monolayers. In the present study, a total of 22 components of PNS were separated and identified by UPLC-MS/MS. Using highly selective probe substrate analysis, PNS exerted robust inhibitory potency on human carboxylesterase 2 (hCE2), while had a minor influence on hCE1, butyrylcholinesterase (BChE) and paraoxonase (PON). These effects were also verified through molecular docking analysis. PNS showed a concentration-dependent inhibitory effect on hydrolytic activity of aspirin in HepaRG cells. The protein level of hCE2 in HepaRG cells was suppressed after PNS treatment, while the level of BChE or PON1 in the extracellular matrix were elevated after PNS treatment. Insignificant effect was observed on the mRNA expression of the esterases. These findings are important to understand the underlying efficacy and safety of co-administration of PNS and aspirin in clinical practice.
Collapse
|
28
|
Kim JH. Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. J Ginseng Res 2018; 42:264-269. [PMID: 29983607 PMCID: PMC6026386 DOI: 10.1016/j.jgr.2017.10.004] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 01/18/2023] Open
Abstract
Panax ginseng, also called Asian or Korean ginseng, has long been traditionally used in Korea and China to treat various diseases. The major active ingredients of P. ginseng are ginsenosides, which have been shown to have a variety of therapeutic effects, including antioxidation, anti-inflammatory, vasorelaxation, antiallergic, antidiabetic, and anticancer. To date, approximately 40 ginsenoside components have been reported. Current research is concentrating on using a single ginseng compound, one of the ginsenosides, instead of the total ginseng compounds, to determine the mechanisms of ginseng and ginsenosides. Recent in vitro and in vivo results show that ginseng has beneficial effects on cardiac and vascular diseases through efficacy, including antioxidation, control of vasomotor function, modulation of ion channels and signal transduction, improvement of lipid profiles, adjustment of blood pressure, improvement in cardiac function, and reduction in platelet adhesion. This review aims to provide valuable information on the traditional uses of ginseng and ginsenosides, their therapeutic applications in animal models and humans, and the pharmacological action of ginseng and ginsenosides.
Collapse
Affiliation(s)
- Jong-Hoon Kim
- Department of Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
29
|
Xu Y, Tan HY, Li S, Wang N, Feng Y. Panax notoginseng for Inflammation-Related Chronic Diseases: A Review on the Modulations of Multiple Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:971-996. [PMID: 29976083 DOI: 10.1142/s0192415x18500519] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Panax notoginseng (P. notoginseng) is a well-known and commonly used Chinese herbal medicine in Asian countries. As one of the major species in the Panax genus, it has a distinct chemical composition and medical application compared with other species. P. notoginseng attracts attention and interest due to its potential therapeutic effects not only on blood diseases, but also other kinds of human chronic disorders. This paper critically reviewed the latest advance of knowledge on the pharmacological effects of P. notoginseng on a variety of chronic diseases including inflammatory bowel disease, arthritis, ischemia, atherosclerosis, Alzheimer disease and trauma, as well as hyperlipidemia, diabetes, and so on. As inflammation is considered the fundamental factor involved in the pathogenesis of chronic diseases, our review therefore focuses on understanding the involvement of classical inflammatory pathways underlying the mechanism of action of P. notoginseng. Potential clinical application was also discussed. Furthermore, by combining with network pharmacology, we introduced the major bioactive components of P. notoginseng, analyzed their cellular targets and associated signaling pathways. In conclusion, this review identified inflammatory pathway as the key signaling for determining the efficacy of P. notoginseng on chronic diseases. It is speculated that P. notoginseng is a multi-targeted agent with an anti-inflammatory property in the adjuvant and alternative treatment of human chronic diseases.
Collapse
Affiliation(s)
- Yu Xu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, P. R. China
| | - Hor-Yue Tan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, P. R. China
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, P. R. China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, P. R. China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, P. R. China
| |
Collapse
|
30
|
Dai G, Jiang Z, Bai Y, Zhang Q, Zhu L, Bai X, Ju W, Pan R. Pharmacokinetic herb-drug interaction of Xuesaitong dispersible tablet and aspirin after oral administration in blood stasis model rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 26:62-68. [PMID: 28257666 DOI: 10.1016/j.phymed.2017.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/22/2016] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Xuesaitong dispersible tablet (XST) product has been clinically proven to be effective for treating cardio-cerebrovascular disease. Furthermore, herb-drug interactions between the XST product and drugs that are commonly co-administered, such as aspirin (ASA), must be explored to ensure safe clinical use. STUDY DESIGN AND METHODS The current study aims to investigate whether the XST product interacts with ASA when they are administered concomitantly to ensure safety and efficacy. A ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed for the simultaneous determination of ginsenoside Rg1 (Rg1), ginsenoside Rd (Rd), notoginsenoside R1 (R1) and salicylic acid (SA) in rat plasma to investigate the pharmacokinetic interaction of XST and ASA in blood stasis model rats. RESULTS AND CONCLUSION The ASA and XST combination noticeably altered R1 and Rg1 absorption, distribution and disposition. This study indicates that co-administration of XST and ASA can cause an apparent herb-drug pharmacokinetic interaction in blood stasis model rats.
Collapse
Affiliation(s)
- Guoliang Dai
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Zhitao Jiang
- Department of Pharmacy Office, Zhangjiagang Hospital of Traditional Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Yongtao Bai
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Qian Zhang
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Lei Zhu
- Department of gastroenterology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Xiaohui Bai
- Department of Nephrology, Liyang Hospital of Traditional Chinese Medicine, Liyang, China
| | - Wenzheng Ju
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China.
| | - Ronghua Pan
- Department of Nephrology, Liyang Hospital of Traditional Chinese Medicine, Liyang, China.
| |
Collapse
|
31
|
Wu T, Sun J, Kagota S, Maruyama K, Wakuda H, Shinozuka K. Panax notoginseng saponins ameliorate impaired arterial vasodilation in SHRSP.Z-Lepr(fa) /lzmDmcr rats with metabolic syndrome. Clin Exp Pharmacol Physiol 2016; 43:459-67. [PMID: 26784885 DOI: 10.1111/1440-1681.12547] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 01/14/2023]
Abstract
Panax notoginseng saponins (PNS) are major components of Panax notoginseng, a herb with established clinical efficacy against vascular diseases. SHRSP.Z-Lepr(fa) /IzmDmcr (SHRSP.ZF) rats, a new animal model for metabolic syndrome, display an impaired vasorelaxation response in aortas and mesenteric arteries that is mediated by nitric oxide (NO). This study investigated whether PNS and its components can ameliorate this vascular dysfunction in SHRSP.ZF rats. In an in vitro study, in the presence or absence of PNS and its components, vasodilation in response to nitroprusside was determined from myographs under isometric tension conditions in aortas and mesenteric arteries from male SHRSP.ZF rats at 18-20 weeks of age. In an in vivo study, PNS (30 mg/kg per day) was orally administered to SHRSP.ZF rats from 8 to 20 weeks of age. In vitro treatment with PNS and Ginsenoside Rb1 increased nitroprusside-induced relaxation of aortas and mesenteric arteries in SHRSP.ZF rats. The PNS-induced increase was not affected by a nitric oxide (NO) synthase inhibitor or endothelium denudation. Relaxation in response to a cell-permeable cGMP analogue was increased by PNS, but cGMP accumulation by nitroprusside was not altered. In vivo treatment with PNS in SHRSP.ZF rats lowered blood pressure and increased relaxation and the expression of soluble guanylyl cyclase protein in arteries, without affecting metabolic abnormalities. These results indicate that PNS causes an increase in vasodilation in response to NO and a decrease in blood pressure, resulting in protection against vascular dysfunction in SHRSP.ZF rats. PNS might be beneficial in alleviating impaired vasodilation in metabolic syndrome.
Collapse
Affiliation(s)
- Ting Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jianning Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Satomi Kagota
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Kana Maruyama
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Hirokazu Wakuda
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Kazumasa Shinozuka
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| |
Collapse
|
32
|
Dai G, Jiang Z, Zhu L, Zhang Q, Zong Y, Liu S, Li C, Ju W. Simultaneous determination of notoginsenoside R1 and ginsenoside Re in rat plasma by ultra high performance liquid chromatography with tandem mass spectrometry and its application to a pharmacokinetic study. J Sep Sci 2016; 39:3368-74. [PMID: 27412519 DOI: 10.1002/jssc.201600522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/03/2016] [Accepted: 07/03/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Guoliang Dai
- Department of Clinical Pharmacology; Affiliated Hospital of Nanjing University of Traditional Chinese Medicine; Nanjing China
| | - Zhitao Jiang
- Department of Pharmacy Office; Zhangjiagang Hospital of Traditional Chinese Medicine; Zhangjiagang China
| | - Lijing Zhu
- Department of Clinical Pharmacology; Affiliated Hospital of Nanjing University of Traditional Chinese Medicine; Nanjing China
| | - Qian Zhang
- Department of Clinical Pharmacology; Affiliated Hospital of Nanjing University of Traditional Chinese Medicine; Nanjing China
| | - Yang Zong
- Department of Clinical Pharmacology; Affiliated Hospital of Nanjing University of Traditional Chinese Medicine; Nanjing China
| | - Shijia Liu
- Department of Clinical Pharmacology; Affiliated Hospital of Nanjing University of Traditional Chinese Medicine; Nanjing China
| | - Changyin Li
- Department of Clinical Pharmacology; Affiliated Hospital of Nanjing University of Traditional Chinese Medicine; Nanjing China
| | - Wenzheng Ju
- Department of Clinical Pharmacology; Affiliated Hospital of Nanjing University of Traditional Chinese Medicine; Nanjing China
| |
Collapse
|
33
|
Wang T, Guo R, Zhou G, Zhou X, Kou Z, Sui F, Li C, Tang L, Wang Z. Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) F.H. Chen: A review. JOURNAL OF ETHNOPHARMACOLOGY 2016; 188:234-58. [PMID: 27154405 DOI: 10.1016/j.jep.2016.05.005] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng (Burk.) F.H. Chen is a widely used traditional Chinese medicine known as Sanqi or Tianqi in China. This plant, which is distributed primarily in the southwest of China, has wide-ranging pharmacological effects and can be used to treat cardiovascular diseases, pain, inflammation and trauma as well as internal and external bleeding due to injury. AIMS OF THE REVIEW This paper provides up-to-date information on investigations of this plant, including its botany, ethnopharmacology, phytochemistry, pharmacology and toxicology. The possible uses and perspectives for future investigation of this plant are also discussed. MATERIALS AND METHODS The relevant information on Panax notoginseng (Burk.) F.H. Chen was collected from numerous resources, including classic books about Chinese herbal medicine, and scientific databases, including Pubmed, SciFinder, ACS, Ebsco, Elsevier, Taylor, Wiley and CNKI. RESULTS More than 200 chemical compounds have been isolated from Panax notoginseng (Burk.) F.H. Chen, including saponins, flavonoids and cyclopeptides. The plant has pharmacological effects on the cardiovascular system, immune system as well as anti-inflammatory, anti-atherosclerotic, haemostatic and anti-tumour activities, etc. CONCLUSIONS Panax notoginseng is a valuable traditional Chinese medical herb with multiple pharmacological effects. This review summarizes the botany, ethnopharmacology, phytochemistry, pharmacology and toxicology of P. notoginseng, and presents the constituents and their corresponding chemical structures found in P. notoginseng comprehensively for the first time. Future research into its phytochemistry of bio-active components should be performed by using bioactivity-guided isolation strategies. Further work on elucidation of the structure-function relationship among saponins, understanding of multi-target network pharmacology of P. notoginseng, as well as developing its new clinical usage and comprehensive utilize will enhance the therapeutic potentials of P. notoginseng.
Collapse
Affiliation(s)
- Ting Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16, Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China
| | - Rixin Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16, Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China
| | - Guohong Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16, Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China
| | - Xidan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16, Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China
| | - Zhenzhen Kou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16, Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16, Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16, Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China
| | - Liying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16, Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China.
| | - Zhuju Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16, Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China.
| |
Collapse
|
34
|
Anticancer Activities of Protopanaxadiol- and Protopanaxatriol-Type Ginsenosides and Their Metabolites. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5738694. [PMID: 27446225 PMCID: PMC4944051 DOI: 10.1155/2016/5738694] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/27/2016] [Indexed: 01/30/2023]
Abstract
Recently, most anticancer drugs are derived from natural resources such as marine, microbial, and botanical sources, but the low success rates of chemotherapies and the development of multidrug resistance emphasize the importance of discovering new compounds that are both safe and effective against cancer. Ginseng types, including Asian ginseng, American ginseng, and notoginseng, have been used traditionally to treat various diseases, due to their immunomodulatory, neuroprotective, antioxidative, and antitumor activities. Accumulating reports have shown that ginsenosides, the major active component of ginseng, were helpful for tumor treatment. 20(S)-Protopanaxadiol (PDS) and 20(S)-protopanaxatriol saponins (PTS) are two characteristic types of triterpenoid saponins in ginsenosides. PTS holds capacity to interfere with crucial metabolism, while PDS could affect cell cycle distribution and prodeath signaling. This review aims at providing an overview of PTS and PDS, as well as their metabolites, regarding their different anticancer effects with the proposal that these compounds might be potent additions to the current chemotherapeutic strategy against cancer.
Collapse
|
35
|
Exploring mechanisms of Panax notoginseng saponins in treating coronary heart disease by integrating gene interaction network and functional enrichment analysis. Chin J Integr Med 2016; 22:589-96. [DOI: 10.1007/s11655-016-2472-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Indexed: 10/21/2022]
|
36
|
Ge F, Huang Z, Yu H, Wang Y, Liu D. Transformation of Panax notoginsengsaponins by steaming and Trichoderma longibrachiatum. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2015.1102611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Wang M, Zhang XJ, Liu F, Hu Y, He C, Li P, Su H, Wan JB. Saponins isolated from the leaves of Panax notoginseng protect against alcoholic liver injury via inhibiting ethanol-induced oxidative stress and gut-derived endotoxin-mediated inflammation. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.09.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
38
|
Chinese Herbal Compounds for the Prevention and Treatment of Atherosclerosis: Experimental Evidence and Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:752610. [PMID: 26089946 PMCID: PMC4451781 DOI: 10.1155/2015/752610] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/15/2014] [Indexed: 12/21/2022]
Abstract
Atherosclerosis is a leading cause of disability and death worldwide. Research into the disease has led to many compelling hypotheses regarding the pathophysiology of atherosclerotic lesion formation and the resulting complications such as myocardial infarction and stroke. Herbal medicine has been widely used in China as well as other Asian countries for the treatment of cardiovascular diseases for hundreds of years; however, the mechanisms of action of Chinese herbal medicine in the prevention and treatment of atherosclerosis have not been well studied. In this review, we briefly describe the mechanisms of atherogenesis and then summarize the research that has been performed in recent years regarding the effectiveness and mechanisms of antiatherogenic Chinese herbal compounds in an attempt to build a bridge between traditional Chinese medicine and cellular and molecular cardiovascular medicine.
Collapse
|
39
|
Ding RB, Tian K, Cao YW, Bao JL, Wang M, He C, Hu Y, Su H, Wan JB. Protective effect of panax notoginseng saponins on acute ethanol-induced liver injury is associated with ameliorating hepatic lipid accumulation and reducing ethanol-mediated oxidative stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2413-22. [PMID: 25665731 DOI: 10.1021/jf502990n] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The aim of present study was to evaluate the effects of Panax notoginseng saponins (PNS) against acute ethanol-induced liver injury and further to elucidate its probable mechanisms. Mice were treated with PNS (100 or 300 mg/kg) once daily for seven consecutive days priors to ethanol gavage (4.7 g/kg) every 12 h for a total of three doses. Acute alcohol gavage dramatically significantly increased serum activities of alanine aminotransferase (ALT) (23.4 ± 5.0 IU/L vs 11.7 ± 4.1 IU/L) and aspartate aminotransferase (AST) (52.6 ± 14.9 IU/L vs 31.1 ± 12.9 IU/L), and hepatic triglyceride level (4.04 ± 0.64 mg/g vs 1.92 ± 0.34 mg/g), these elevations were significantly diminished by pretreatment with PNS at dose of 100 mg/kg or 300 mg/kg. Alcohol exposure markedly induced the lipolysis of white adipose tissue (WAT), up-regulated protein expression of the phosphorylated hormone-sensitive lipase (p-HSL, p < 0.01), and total HSL (p < 0.01), and enhanced fatty acid uptake capacity in liver as indicated by increasing hepatic CD36 expression (p < 0.01), these effects were attenuated by PNS treatment. Additionally, PNS suppressed the elevation of reactive oxygen species (ROS) production and malondialdehyde (MDA) content, reduced TNF-α and IL-6 levels, restored glutathione (GSH) level, enhanced the superoxide dismutase (SOD) activity in liver, and abrogated cytochrome P450 2E1 (CYP2E1) induction. These data demonstrated that pretreatment with PNS protected against acute ethanol-induced liver injury, possibly through ameliorating hepatic lipid accumulation and reducing CYP2E1-mediated oxidative stress. Our findings also suggested that PNS may be potential to be developed as an effective agent for acute ethanol-induced liver injury.
Collapse
Affiliation(s)
- Ren-Bo Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Simultaneous determination of notoginsenoside R1, ginsenoside Rg1, ginsenoside Re and 20(S) protopanaxatriol in beagle dog plasma by ultra high performance liquid mass spectrometry after oral administration of a Panax notoginseng saponin preparation. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 974:42-7. [DOI: 10.1016/j.jchromb.2014.10.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/25/2014] [Accepted: 10/21/2014] [Indexed: 11/17/2022]
|
41
|
Yang BR, Hong SJ, Lee SMY, Cong WH, Wan JB, Zhang ZR, Zhang QW, Zhang Y, Wang YT, Lin ZX. Pro-angiogenic activity of notoginsenoside R1 in human umbilical vein endothelial cells in vitro and in a chemical-induced blood vessel loss model of zebrafish in vivo. Chin J Integr Med 2014; 22:420-9. [PMID: 25533511 DOI: 10.1007/s11655-014-1954-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE This study aimed at investigating whether notoginsenoside R1 (R1), a unique saponin found in Panax notoginseng could promote angiogenic activity on human umbilical vein endothelial cells (HUVECs) and elucidate their potential molecular mechanisms. In addition, vascular restorative activities of R1 was assessed in a chemically-induced blood vessel loss model in zebrafish. METHODS The in vitro angiogenic effect of R1 was compared with other previously reported angiogenic saponins Rg1 and Re. The HUVECs proliferation in the presence of R1 was determined by cell proliferation kit II (XTT) assay. R1, Rg1 and Re-induced HUVECs invasion across polycarbonate membrane was stained with Hoechst-33342 and quantified microscopically. Tube formation assay using matrigelcoated wells was performed to evaluate the pro-angiogenic actions of R1. In order to understand the mechanism underlying the pro-angiogenic effect, various pathway inhibitors such as SU5416, wortmannin (wort) or L-Nω-nitro- L-arginine methyl ester hydrochloride (L-NAME), SH-6 were used to probe the possible involvement of signaling pathway in the R1 mediated HUVECs proliferation. In in vivo assays, zebrafish embryos at 21 hpf were pre-treated with vascular endothelial growth factor (VEGF) receptor kinase inhibitor II (VRI) for 3 h only and subsequently post-treated with R1 for 48 h, respectively. The intersegmental vessels (ISVs) in zebrafish were assessed for the restorative effect of R1 on defective blood vessels. RESULTS R1 could stimulate the proliferation of HUVECs. In the chemoinvasion assay, R1 significantly increased the number of cross-membrane HUVECs. In addition, R1 markedly enhanced the tube formation ability of HUVECs. The proliferative effects of these saponins on HUVECs were effectively blocked by the addition of SU5416 (a VEGF-KDR/Flk-1 inhibitor). Similarly, pre-treatment with wort [a phosphatidylinositol 3-kinase (PI3K)-kinase inhibitor], L-NAME [an endothelial nitric oxide synthase (eNOS) inhibitor] or SH-6 (an Akt pathway inhibitor) significantly abrogated the R1 induced proliferation of HUVECs. In chemicallyinduced blood vessel loss model in zebrafish, R1 significantly rescue the damaged ISVs. CONCLUSION R1, similar to Rg1 and Re, had been showed pro-angiogenic action, possibly via the activation of the VEGF-KDR/Flk-1 and PI3K-Akt-eNOS signaling pathways. Our findings also shed light on intriguing pro-angiogenic effect of R1 under deficient angiogenesis condition in a pharmacologic-induced blood vessels loss model in zebrafish. The present study in vivo and in vitro provided scientific evidence to explain the ethnomedical use of Panax notoginseng in the treatment of cardiovascular diseases, traumatic injuries and wound healing.
Collapse
Affiliation(s)
- Bin-Rui Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Si-Jia Hong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.,School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Wei-Hong Cong
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhe-Rui Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yi Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
42
|
Rabbit sera containing compound danshen dripping pill attenuate leukocytes adhesion to TNF-alpha--activated human umbilical vein endothelial cells by suppressing endothelial ICAM-1 and VCAM-1 expression through NF-kappaB signaling pathway. J Cardiovasc Pharmacol 2014; 63:323-32. [PMID: 24710469 DOI: 10.1097/fjc.0000000000000046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The adherence to circulating leukocytes, such as monocytes and neutrophils, to vascular endothelial cells is of central importance to the pathogenesis of various cardiovascular diseases (CVDs) including atherosclerosis and myocardial ischemia-reperfusion injury. Compound danshen dripping pill (CDDP; Fufang Danshen Diwan in Chinese), namely cardiotonic pill, is extensively used for CVDs medication in China and some other countries. Here, we sought to investigate the effect of CDDP on leukocytes binding to vascular endothelial cells and elaborate the possibly underlying mechanism. Using seropharmacological method, rabbit sera containing CDDP were shown to mitigate the adhesiveness of monocytes and neutrophils to tumor necrosis factor alpha-stimulated human umbilical vein endothelial cells in dose and time-dependent manners, alleviate the levels of intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 messenger RNA and protein dose dependently and also encumber IκBα degradation, p65 nuclear translocation, nuclear factor-kappaB (NF-κB) DNA-binding activity, and NF-κB-responsive gene transcription in tumor necrosis factor alpha-activated human umbilical vein endothelial cells. This study suggests that CDDP protects against CVDs potentially by attenuation of leukocytes-endothelium adhesion cascade via lessening endothelial cell adhesion molecules expression and NF-κB signaling pathway activity.
Collapse
|
43
|
Gui Q, Yang Y, Ying S, Zhang M. Xueshuantong improves cerebral blood perfusion in elderly patients with lacunar infarction. Neural Regen Res 2014; 8:792-801. [PMID: 25206726 PMCID: PMC4146085 DOI: 10.3969/j.issn.1673-5374.2013.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/25/2013] [Indexed: 11/18/2022] Open
Abstract
A total of 64 patients with acute lacunar infarction were enrolled within 24 hours of onset. The patients received conventional therapy (antiplatelet drugs and hypolipidemic drugs) alone or conventional therapy plus 450 mg Xueshuantong once a day. The main ingredient of the Xueshuantong lyophilized powder used for injection was Panax notoginseng saponins. Assessments were made at admission and at discharge using the National Institutes of Health Stroke Scale, the Activity of Daily Living and the Mini-Mental State Examination. Additionally, the relative cerebral blood flow, relative cerebral blood volume and relative mean transit time in the region of interest were calculated within 24 hours after the onset of lacunar infarction, using dynamic susceptibility contrast magnetic resonance perfusion imaging technology. Patients underwent a follow-up MRI scan after 4 weeks of treatment. There was an improvement in the Activity of Daily Living scores and a greater reduction in the scores on the National Institutes of Health Stroke Scale in the treatment group than in the control group. However, the Mini-Mental State Examination scores showed no significant differences after 4 weeks of treatment. Compared with the control group, the relative cerebral blood flow at discharge had increased and showed a greater improvement in the treatment group. Furthermore, there was a reduction in the relative mean transit time at discharge and the value was lower in the treatment group than in the control group. The experimental findings indicate that Xueshuantong treatment improves neurological deficits in elderly patients with lacunar infarction, and the mechanism may be related to increased cerebral perfusion.
Collapse
Affiliation(s)
- Qifeng Gui
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Yunmei Yang
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Shihong Ying
- Department of Radiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Minming Zhang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| |
Collapse
|
44
|
Korean red ginseng extract alleviates atherosclerotic lesions in apolipoprotein E knockout mice. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0174-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
45
|
Lee CH, Kim JH. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J Ginseng Res 2014; 38:161-6. [PMID: 25378989 PMCID: PMC4213864 DOI: 10.1016/j.jgr.2014.03.001] [Citation(s) in RCA: 281] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/12/2014] [Accepted: 03/18/2014] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Ginseng is widely used for its promising healing and restorative properties as well as for its possible tonic effect in traditional medicine. Nowadays, many studies focus on purified individual ginsenoside, an important constituent in ginseng, and study its specific mechanism of action instead of whole-plant extracts on cardiovascular diseases (CVDs). Of the various ginsenosides, purified ginsenosides such as Rb1, Rg1, Rg3, Rh1, Re, and Rd are the most frequently studied. Although there are many reports on the molecular mechanisms and medical applications of ginsenosides in the treatment of CVDs, many concerns exist in their application. This review discusses current works on the countless pharmacological functions and the potential benefits of ginseng in the area of CVDs. RESULTS Both in vitro and in vivo results indicate that ginseng has potentially positive effects on heart disease through its various properties including antioxidation, reduced platelet adhesion, vasomotor regulation, improving lipid profiles, and influencing various ion channels. To date, approximately 40 ginsenosides have been identified, and each has a different mechanism of action owing to the differences in chemical structure. This review aims to present comprehensive information on the traditional uses, phytochemistry, and pharmacology of ginseng, especially in the control of hypertension and cardiovascular function. In addition, the review also provides an insight into the opportunities for future research and development on the biological activities of ginseng.
Collapse
Affiliation(s)
- Chang Ho Lee
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul, Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
46
|
Jia C, Xiong M, Wang P, Cui J, Du X, Yang Q, Wang W, Chen Y, Zhang T. Notoginsenoside R1 attenuates atherosclerotic lesions in ApoE deficient mouse model. PLoS One 2014; 9:e99849. [PMID: 24933211 PMCID: PMC4059705 DOI: 10.1371/journal.pone.0099849] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/17/2014] [Indexed: 01/08/2023] Open
Abstract
Aims Atherosclerosis is the primary cause of cardiovascular diseases and stroke. The current study evaluated the interventional effects of a naturally occurring compound Notoginsenoside R1 (NR1) on atherosclerosis in ApoE−/− mice. Methods and Results The atherosclerotic lesion was significantly alleviated by NR1 treatment and this attenuation was marked by reduction in lipid deposition, fibrosis and oxidative stress. Increased serum levels of GSH and SOD and decreased level of MDH were observed in NR1-treated ApoE−/− mice. NR1 treatment also significantly decreased the levels of CHO, TG, ox-LDL and increased the level of HDL. Additionally, the levels of inflammatory cytokines including IL-2, IL-6, TNF-α and γ-IFN were markedly reduced in NR1-treated ApoE−/− mice. Furthermore, significantly increased aortic expression of miR-26a, miR-21, miR-126a, miR-132, miR-146 and miR-155 and decreased expression of miR-20a and miR-92a were observed in the vehicle-treated ApoE−/− mice. While NR1 treatment led to a significant reduction in the expression of miR-21, miR-26a, miR-126 and increased expression of miR-20a. Conclusion Collectively, our results demonstrated for the first time the anti-atherosclerotic effects of NR1, which could be in part mediated through its multiple targeting effects on inflammation, oxidative stress, lipid metabolism and microRNA expression. These results therefore justify further evaluation of NR1 as a therapeutic agent treating atherosclerosis.
Collapse
Affiliation(s)
- Chenglin Jia
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Minqi Xiong
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peiwei Wang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingang Cui
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoye Du
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinbo Yang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjian Wang
- Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Yu Chen
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * E-mail: (TZ); (YC)
| | - Teng Zhang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * E-mail: (TZ); (YC)
| |
Collapse
|
47
|
Choi K, Yoon J, Lim HK, Ryoo S. Korean red ginseng water extract restores impaired endothelial function by inhibiting arginase activity in aged mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:95-101. [PMID: 24757370 PMCID: PMC3994309 DOI: 10.4196/kjpp.2014.18.2.95] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 11/25/2022]
Abstract
Cardiovascular disease is the prime cause of morbidity and mortality and the population ages that may contribute to increase in the occurrence of cardiovascular disease. Arginase upregulation is associated with impaired endothelial function in aged vascular system and thus may contribute to cardiovascular disease. According to recent research, Korean Red Ginseng water extract (KRGE) may reduce cardiovascular disease risk by improving vascular system health. The purpose of this study was to examine mechanisms contributing to age-related vascular endothelial dysfunction and to determine whether KRGE improves these functions in aged mice. Young (10±3 weeks) and aged (55±5 weeks) male mice (C57BL/6J) were orally administered 0, 10, or 20 mg/mouse/day of KRGE for 4 weeks. Animals were sacrificed and the aortas were removed. Endothelial arginase activity, nitric oxide (NO) generation and reactive oxygen species (ROS) production, endothelial nitric oxide synthase (eNOS) coupling, vascular tension, and plasma peroxynitrite production were measured. KRGE attenuated arginase activity, restored nitric oxide (NO) generation, reduced ROS production, and enhanced eNOS coupling in aged mice. KRGE also improved vascular tension in aged vessels, as indicated by increased acetylcholine-induced vasorelaxation and improved phenylephrine-stimulated vasoconstriction. Furthermore, KRGE prevented plasma peroxynitrite formation in aged mice, indicating reduced lipid peroxidation. These results suggest KRGE exerts vasoprotective effects by inhibiting arginase activity and augmenting NO signaling and may be a useful treatment for age-dependent vascular diseases.
Collapse
Affiliation(s)
- Kwanhoon Choi
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju 220-701, Korea
| | - Jeongyeon Yoon
- Department of Biology, Kangwon National University, Chuncheon 200-701, Korea
| | - Hyun Kyo Lim
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju 220-701, Korea
| | - Sungwoo Ryoo
- Department of Biology, Kangwon National University, Chuncheon 200-701, Korea
| |
Collapse
|
48
|
Liu J, Wang Y, Qiu L, Yu Y, Wang C. Saponins ofPanax notoginseng: chemistry, cellular targets and therapeutic opportunities in cardiovascular diseases. Expert Opin Investig Drugs 2014; 23:523-39. [DOI: 10.1517/13543784.2014.892582] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Shang Q, Xu H, Liu Z, Chen K, Liu J. Oral Panax notoginseng Preparation for Coronary Heart Disease: A Systematic Review of Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:940125. [PMID: 24023585 PMCID: PMC3762143 DOI: 10.1155/2013/940125] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/13/2013] [Accepted: 07/13/2013] [Indexed: 11/18/2022]
Abstract
This systematic review aims to evaluate current evidence for the benefit and side effect of oral Panax notoginseng preparation for coronary heart disease (CHD). We included 17 randomized clinical trials (17 papers and 1747 participants). Comparing with no intervention on the basis of conventional therapy, oral Panax notoginseng did not show significant effect on reducing cardiovascular events, but it could alleviate angina pectoris (including improving the symptoms of angina pectoris [RR 1.20; 95% CI 1.12 to 1.28; 7 trials, n = 791], improving electrocardiogram [RR 1.35; 95% CI 1.19 to 1.53; 8 trials, n = 727], decreasing the recurrence of angina pectoris [RR 0.38; 95% CI 0.16 to 0.94; 1 trials, n = 60], duration of angina pectoris [RR -1.88; 95% CI -2.08 to -1.69; 2 trials, n = 292], and dosage of nitroglycerin [MD -1.13; 95% CI -1.70 to -0.56; 2 trials, n = 212]); oral Panax notoginseng had no significant difference compared with isosorbide dinitrate on immediate effect for angina pectoris [RR 0.96; 95% CI 0.81 to 1.15; 1 trial, n = 80]. In conclusion, oral Panax notoginseng preparation could relieve angina pectoris related symptoms. However, the small sample size and potential bias of most trials influence the convincingness of this conclusion. More rigorous trials with high quality are needed to give high level of evidence, especially for the potential benefit of cardiovascular events.
Collapse
Affiliation(s)
- Qinghua Shang
- Beijing University of Chinese Medicine, Beijing 100029, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Hao Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Zhaolan Liu
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Keji Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Jianping Liu
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
50
|
Wu JH, Leung GPH, Kwan YW, Sham TT, Tang JY, Wang YH, Wan JB, Lee SMY, Chan SW. Suppression of diet-induced hypercholesterolaemia by saponins from Panax notoginseng in rats. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|