1
|
Hornero-Ramirez H, Morisette A, Marcotte B, Penhoat A, Lecomte B, Panthu B, Lessard Lord J, Thirion F, Van-Den-Berghe L, Blond E, Simon C, Caussy C, Feugier N, Doré J, Sanoner P, Meynier A, Desjardins Y, Pilon G, Marette A, Cani PD, Laville M, Vinoy S, Michalski MC, Nazare JA. Multifunctional dietary approach reduces intestinal inflammation in relation with changes in gut microbiota composition in subjects at cardiometabolic risk: the SINFONI project. Gut Microbes 2025; 17:2438823. [PMID: 39710576 DOI: 10.1080/19490976.2024.2438823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
The development of cardiometabolic (CM) diseases is associated with chronic low-grade inflammation, partly linked to alterations of the gut microbiota (GM) and reduced intestinal integrity. The SINFONI project investigates a multifunctional (MF) nutritional strategy's impact combining different bioactive compounds on inflammation, GM modulation and CM profile. In this randomized crossover-controlled study, 30 subjects at CM-risk consumed MF cereal-products, enriched with polyphenols, fibers, slowly-digestible starch, omega-3 fatty acids or Control cereal-products (without bioactive compounds) for 2 months. Metabolic endotoxemia (lipopolysaccharide (LPS), lipopolysaccharide-binding protein over soluble cluster of differentiation-14 (LBP/sCD14), systemic inflammation and cardiovascular risk markers, intestinal inflammation, CM profile and response to a one-week fructose supplementation, were assessed at fasting and post mixed-meal. GM composition and metabolomic analysis were conducted. Mixed linear models were employed, integrating time (pre/post), treatment (MF/control), and sequence/period. Compared to control, MF intervention reduced intestinal inflammation (fecal calprotectin, p = 0.007) and endotoxemia (fasting LPS, p < 0.05), without alteration of systemic inflammation. MF decreased serum branched-chain amino acids compared to control (p < 0.05) and increased B.ovatus, B.uniformis, A.butyriciproducens and unclassified Christensenellaceae.CAG-74 (p < 0.05). CM markers were unchanged. A 2-month dietary intervention combining multiple bioactive compounds improved intestinal inflammation and induced GM modulation. Such strategy appears as an effective strategy to target low-grade inflammation through multi-target approach.
Collapse
Affiliation(s)
- Hugo Hornero-Ramirez
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Arianne Morisette
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Bruno Marcotte
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Armelle Penhoat
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Béryle Lecomte
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Baptiste Panthu
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | | | | | - Laurie Van-Den-Berghe
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
| | - Emilie Blond
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
- Biochemistry Department, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Chantal Simon
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Cyrielle Caussy
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
- Endocrinology, Diabetes and Nutrition Department, Lyon South Hospital, Civil Hospices of Lyon, Pierre-Bénite, France
| | - Nathalie Feugier
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
| | - Joël Doré
- INRAE, MGP, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Sanoner
- iSymrise-Diana Food SAS, R&D, Naturals Food & Beverage, Rennes, France
| | - Alexandra Meynier
- Nutrition Research, Paris-Saclay Tech Center, Mondelez International R&D, Saclay, France
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Geneviève Pilon
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Québec, Canada
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada
| | - André Marette
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Québec, Canada
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada
| | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, (LDRI) Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Louvain Drug Research Institute; Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium
| | - Martine Laville
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Sophie Vinoy
- Nutrition Research, Paris-Saclay Tech Center, Mondelez International R&D, Saclay, France
| | - Marie-Caroline Michalski
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Julie-Anne Nazare
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| |
Collapse
|
2
|
Vaidya N, Agarwal R, Dipankar DG, Patkar H, Ganu G, Nagore D, Godse C, Mehta A, Mehta D, Nair S. Efficacy and Safety of Boswellia serrata and Apium graveolens L. Extract Against Knee Osteoarthritis and Cartilage Degeneration: A Randomized, Double-blind, Multicenter, Placebo-Controlled Clinical Trial. Pharm Res 2025; 42:249-269. [PMID: 39875757 PMCID: PMC11880083 DOI: 10.1007/s11095-025-03818-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/03/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Osteoarthritis is the prevailing form of inflammatory condition in joints of adults and the aging population, leading to long-term disability and chronic pain. Current therapeutic options have variable therapeutic efficacy and/or several side effects. METHODS A randomized, placebo-controlled, double-blind clinical trial was conducted in 62 participants using a nutraceutical [standardized Boswellia serrata Roxb. gum resin (300 mg) and Apium graveolens L. seed extract (250 mg)], to determine its safety and efficacy for supporting cartilage health and reduction in knee osteoarthritis symptoms. All participants were assessed for physical function and pain with the help of WOMAC, VAS, Physicians' Global Assessment for the six-minute walk test/pain. Knee X-ray, KOOS questionnaire score, and FACIT-F score were assessed. Additionally, inflammatory, cartilage degeneration and regeneration biomarkers in serum and urine were evaluated at baseline and after 90 days of treatment. RESULTS Oral administration of the nutraceutical resulted in prolonged symptomatic relief with reduced pain, stiffness, and swelling. Inflammatory (serum IL-7, IL-1, IL-6, hs-CRP, TNF-α, ESR) and cartilage degeneration biomarkers (serum CTX-II, COMP, MMP-3 and urinary CTX-II) were decreased in the nutraceutical group compared to baseline and placebo. Furthermore, serum N-propeptide of collagen IIA (PIIANP) and procollagen-type-C propeptide (PIICP) levels were increased in the nutraceutical group, suggesting collagen synthesis contributing to cartilage regeneration. At given doses for 90 days, there were no adverse effects based on the clinical examination, biochemical, hematological, and ECG analysis. CONCLUSIONS Taken together, the combination of Boswellia and celery could be a safe and promising herbal nutraceutical option for managing osteoarthritis and cartilage health effectively.
Collapse
Affiliation(s)
- Narendra Vaidya
- Lokmanya Medical Research Center and Hospital, Pune, 411033, India
| | - Ramshyam Agarwal
- Lokmanya Medical Research Center and Hospital, Pune, 411033, India
| | - D G Dipankar
- Dr. D. Y. Patil College of Ayurved & Research Centre, Pimpri-Chinchwad, 411018, India
| | | | | | | | - Chhaya Godse
- Phytoveda Pvt. Ltd., V.N. Purav Marg, Mumbai, 400022, India
- Viridis Biopharma Pvt. Ltd., Mumbai, 400022, India
| | - Anirudh Mehta
- Phytoveda Pvt. Ltd., V.N. Purav Marg, Mumbai, 400022, India
- Viridis Biopharma Pvt. Ltd., Mumbai, 400022, India
| | - Dilip Mehta
- Phytoveda Pvt. Ltd., V.N. Purav Marg, Mumbai, 400022, India
- Viridis Biopharma Pvt. Ltd., Mumbai, 400022, India
| | - Sujit Nair
- Phytoveda Pvt. Ltd., V.N. Purav Marg, Mumbai, 400022, India.
- Viridis Biopharma Pvt. Ltd., Mumbai, 400022, India.
| |
Collapse
|
3
|
Xiang M, Qiao L, Han Q, Zha Y, Sui X, Wang Q. Effects of Supplementation With Different Specificities of Dietary Fiber on Health-Related Indicators in Adults With Overweight or Obesity: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Nutr Rev 2025:nuae193. [PMID: 39821284 DOI: 10.1093/nutrit/nuae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
CONTEXT Dietary fiber (DF) exhibits variations in its chemical and physical complexity, as well as in its utilization by the gut microbiota. However, the impact of these differences on the health status of adults with overweight or obesity remains unclear. OBJECTIVE This meta-analysis aimed to explore the varying effects of supplementing with different specificities of DF on the health of adults with overweight or obesity, providing guidance on selecting DF supplementation to improve health status. DATA SOURCES The literature search encompassed 4 electronic databases-PubMed, Cochrane Library, Web of Science, and EMBASE-and was conducted between January 1, 2012, and November 10, 2023. Randomized controlled trials comparing DF with placebo treatment, without energy restriction, were included. DATA EXTRACTION Two independent reviewers extracted data using a standardized form, resolving discrepancies through discussion. The data included study characteristics, participant demographics, DF specifications, and outcome measures. DATA ANALYSIS Random-effects models and the generic inverse variance method were used to analyze data, assuming varying outcomes based on DF specificity. Meta-regression assessed the impact of population, duration, and dosage. Publication bias was evaluated using funnel plots and Egger's and Begg's tests. The analysis included 34 trials (n = 1804) examining DF supplementation at 1.5 to 40 g/day for 3 to 16 weeks. DF supplementation significantly reduced glycated hemoglobin (HbA1c) by 0.13%, fasting insulin by 0.82 μIU/mL, and homeostatic model assessment of insulin resistance (HOMA-IR) by 0.33 in adults with overweight or obesity. Subgroup analyses based on DF specificity revealed differences in effects on HbA1c, fasting insulin, and systolic blood pressure. The low-specificity subgroup showed significant heterogeneity in body weight, body mass index, HbA1c, fasting insulin, and HOMA-IR, with a decrease in fasting insulin by 1.09 μIU/mL. The low-to-intermediate-specificity subgroup had reductions in HbA1c by 0.8%, fasting insulin by 2.08 μIU/mL, and HOMA-IR by 0.61. The intermediate-specificity subgroup experienced a 2.85-kg decrease in body weight and a 9.03-mg/dL increase in LDL cholesterol. The mixed subgroup showed an increase in systolic blood pressure by 3.85 mmHg. CONCLUSION Supplementing with different specificities of DF may have distinct effects on health-related indicators in adults with overweight or obesity. Considering individuals' gut microbiota composition and specific health goals is recommended when selecting DF supplementation for adults with overweight or obesity. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42023432920.
Collapse
Affiliation(s)
- Mai Xiang
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing 100029, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing 100029, China
- College of Exercise Science, Beijing Sport University, Beijing 100084, China
| | - Li Qiao
- Beijing Competitor Sports Nutrition Research Institute, Beijing 100029, China
| | - Qi Han
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing 100029, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing 100029, China
| | - Yu Zha
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing 100029, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing 100029, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xuemei Sui
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| | - Qirong Wang
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing 100029, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing 100029, China
| |
Collapse
|
4
|
Gupta J, Abosaoda MK, Shukla M, Ballal S, Kumar A, Chahar M, Saini S, Kapila I, Hadpoori A. Effect of soluble fiber supplementation on lipid parameters in subjects with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Prostaglandins Other Lipid Mediat 2025; 176:106939. [PMID: 39689417 DOI: 10.1016/j.prostaglandins.2024.106939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND There is no consensus in the existing literature regarding the effect of soluble fiber on the lipid profile of patients with type 2 diabetes mellitus (T2DM). This systematic review and meta-analysis of randomized controlled trials aimed to assess the effect of soluble fiber on triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) in T2DM patients. METHODS PubMed/MEDLINE, Scopus, and ISI Web of sciences were searched for RCTs up to 4 May 2024. Data from RCTs were pooled using the generic inverse variance method and expressed as weighted mean differences (WMD) with 95 % confidence interval (CIs). RESULTS Pooled data from 38 RCTs reporting patient outcomes were evaluated for mean effects. Results indicated that soluble fiber significantly altered TG (WMD: -16.97 mg/dL, 95 % CI: -29.16 to -4.78, P = 0.021), HDL-C (WMD: 1.74 mg/dL, 95 % CI: 1.02-2.46, P < 0.001), LDL-C (WMD: -11.14 mg/dL, 95 % CI: -15.41 to -6.87, P < 0.001), and TC (WMD: -13.87 mg/dL, 95 % CI: -17.99 to -9.75, P = 0.027). CONCLUSIONS Soluble fiber supplementation has the potential to improve lipid profile in patients with T2DM, and may provide a feasible approach for improving metabolic health in T2DM patients.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, UP 281406, India.
| | - Munthar Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq; College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Pharmacy, The Islamic University of Babylon, Babylon, Babylon, Iraq
| | - Madhu Shukla
- Marwadi University Research Center, Department of Computer Engineering, Faculty of Engineering & Technology, Marwadi University, Rajkot, Gujarat 360003, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Suman Saini
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Ish Kapila
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India
| | | |
Collapse
|
5
|
Deehan EC, Al Antwan S, Witwer RS, Guerra P, John T, Monheit L. Revisiting the Concepts of Prebiotic and Prebiotic Effect in Light of Scientific and Regulatory Progress-A Consensus Paper From the Global Prebiotic Association. Adv Nutr 2024; 15:100329. [PMID: 39481540 PMCID: PMC11616045 DOI: 10.1016/j.advnut.2024.100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024] Open
Abstract
The term prebiotic has been used for almost 3 decades and has undergone numerous updates over the years. The scientific literature reveals that despite continuous efforts to establish a globally unified definition to guide jurisdictional regulations and product innovations, ambiguity continues to surround the terms prebiotic and prebiotic effect, leading to products that lack in full regulatory adherence being marketed worldwide. Thus, to reflect the current state of scientific research and knowledge and for the continuous advancement of the category, an update to the current prebiotic definition is warranted. This update includes removing the term selectivity, considering additional locations of action besides the gut, highlighting prebiotic performance benefits such as cognitive and athletic, and providing a clear standalone definition for prebiotic effect. The Global Prebiotic Association (GPA) is a leading information and industry hub committed to raising awareness about prebiotics, their emerging and well-established health benefits, and prebiotic product integrity and efficacy. In this position paper, GPA builds on previous prebiotic definitions to propose the following expanded definition for prebiotic: "a compound or ingredient that is utilized by the microbiota producing a health or performance benefit." In addition to prebiotic, GPA also defines prebiotic effect as "a health or performance benefit that arises from alteration of the composition and/or activity of the microbiota, as a direct or indirect result of the utilization of a specific and well-defined compound or ingredient by microorganisms." With these 2 definitions, GPA aims to paint a clearer picture for the term prebiotic, and by incorporating an industry point of view, these updated definitions may be used alongside current scientific and regulatory perspectives to move the category forward.
Collapse
Affiliation(s)
- Edward C Deehan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, United States; Nebraska Food for Health Center, University of Nebraska, Lincoln, NE, United States; Scientific & Technical Committee, Global Prebiotic Association, Chicago, IL, United States.
| | | | - Rhonda S Witwer
- Scientific & Technical Committee, Global Prebiotic Association, Chicago, IL, United States; ADM, Decatur, IL, United States
| | - Paula Guerra
- Scientific & Technical Committee, Global Prebiotic Association, Chicago, IL, United States; SGS Nutrasource, Guelph, Ontario, Canada.
| | - Tania John
- Scientific & Technical Committee, Global Prebiotic Association, Chicago, IL, United States; SGS Nutrasource, Guelph, Ontario, Canada
| | - Len Monheit
- Scientific & Technical Committee, Global Prebiotic Association, Chicago, IL, United States; Global Prebiotic Association/Industry Transparency Center, Chicago, IL, United States
| |
Collapse
|
6
|
Chen S, Peng D, Shan Y, Liu F, Du R, Bao Y, Yu H, Tu Y. Black Tea drinks with inulin and dextrin reduced postprandial plasma glucose fluctuations in patients with type 2 diabetes: an acute, randomized, placebo-controlled, single-blind crossover study. Nutr Diabetes 2024; 14:95. [PMID: 39616149 PMCID: PMC11608310 DOI: 10.1038/s41387-024-00351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND This study evaluated the effects of black tea drinks with inulin and dextrin (BTID) on postprandial plasma glucose (PG) in patients with type 2 diabetes mellitus (T2DM). METHODS An acute, randomized, double-blind, placebo-controlled, crossover clinical trial was carried out on T2DM patients. The subjects were randomly assigned to groups consuming placebo black tea powder or BTID (identically packaged) followed by a mixed meal tolerance test (MMTT). Afterwards, individuals who initially consumed BTID were given the placebo and those who initially consumed the placebo were given BTID. RESULTS A total of 35 patients were included in the study, and 32 completed the study. Compared to placebo, BTID significantly reduced the change in glycaemia at 30 min, 1, 2, and 3 h during the MMTT. In the analysis of PG fluctuations at 2 h during the MMTT, the proportion of patients with minor PG fluctuations (< 2.8 mmol/L) in the BTID group was 53.1%, significantly higher than the 28.1% in the placebo group. Binary logistic regression analysis revealed that the risk of significant PG fluctuations decreased by 65.5% after consuming BTID, with a corresponding odds ratio of 0.345 (P = 0.044, 95% CI 0.122-0.974). In addition, the areas under the curve for PG and insulin secretion after BTID administration were significantly smaller than that for placebo. CONCLUSIONS Compared to placebo, BTID significantly reduced the change in PG levels during the MMTT and decreased the risk of large PG fluctuations by 65.5%. These effects were associated to a significant reduction in postprandial insulin secretion and may help to improved insulin sensitivity and a lower β-cell burden.
Collapse
Affiliation(s)
- Si Chen
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China
| | - Danfeng Peng
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China
| | - Yingyi Shan
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China
| | - Fengjing Liu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China
- Haikou orthopedic and diabetes hospital, Haikou, 570300, China
| | - Ronghui Du
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China
| | - Haoyong Yu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China.
| | - Yinfang Tu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China.
- Haikou orthopedic and diabetes hospital, Haikou, 570300, China.
| |
Collapse
|
7
|
Kapusniak K, Wojcik M, Rosicka-Kaczmarek J, Miśkiewicz K, Pacholczyk-Sienicka B, Juszczak L. Molecular Structure and Properties of Resistant Dextrins from Potato Starch Prepared by Microwave Heating. Int J Mol Sci 2024; 25:11202. [PMID: 39456986 PMCID: PMC11508830 DOI: 10.3390/ijms252011202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The dextrinization of potato starch was performed using a sophisticated single-mode microwave reactor with temperature and pressure control using 10 cycles of heating with stirring between cycles. Microwave power from 150 to 250 W, a cycle time from 15 to 25 s, and two types of vessels with different internal diameters (12 and 24 mm) and therefore different thicknesses of the heated starch layer were used in order to estimate the impact of vessel size used for microwave dextrinization. The characteristics of resistant dextrins (RD) including solubility in water, total dietary fiber (TDF) content, color parameters, the share of various glycosidic bonds, and pasting and rheological properties were carried out. The applied conditions allowed us to obtain RDs with water solubility up to 74% at 20 °C, as well as TDF content up to 47%, with a predominance of low-molecular-weight soluble fiber fraction, with increased content of non-starch glycosidic bonds, negligible viscosity, and a slightly beige color. The geometry of the reaction vessel influenced the properties of dextrins obtained under the same heating power, time, and repetition amounts. Among the conditions used, the most favorable conditions were heating 10 times for 20 s at 200 W in a 10 mL vessel and the least favorable were 15 s cycles.
Collapse
Affiliation(s)
- Kamila Kapusniak
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland;
| | - Malwina Wojcik
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland;
| | - Justyna Rosicka-Kaczmarek
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (J.R.-K.); (K.M.)
| | - Karolina Miśkiewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (J.R.-K.); (K.M.)
| | - Barbara Pacholczyk-Sienicka
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Leslaw Juszczak
- Department of Food Analysis and Evaluation of Food Quality, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 30-149 Krakow, Poland;
| |
Collapse
|
8
|
Hall CV, Twelves JL, Saxena M, Scapozza L, Gurry T. Effects of a diverse prebiotic fibre supplement on HbA1c, insulin sensitivity and inflammatory biomarkers in pre-diabetes: a pilot placebo-controlled randomised clinical trial. Br J Nutr 2024; 132:68-76. [PMID: 38654680 PMCID: PMC11420881 DOI: 10.1017/s0007114524000904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Prebiotic fibre represents a promising and efficacious treatment to manage pre-diabetes, acting via complementary pathways involving the gut microbiome and viscosity-related properties. In this study, we evaluated the effect of using a diverse prebiotic fibre supplement on glycaemic, lipid and inflammatory biomarkers in patients with pre-diabetes. Sixty-six patients diagnosed with pre-diabetes (yet not receiving glucose-lowering medications) were randomised into treatment (thirty-three) and placebo (thirty-three) interventions. Participants in the treatment arm consumed 20 g/d of a diverse prebiotic fibre supplement, and participants in the placebo arm consumed 2 g/d of cellulose for 24 weeks. A total of fifty-one and forty-eight participants completed the week 16 and week 24 visits, respectively. The intervention was well tolerated, with a high average adherence rate across groups. Our results extend upon previous work, showing a significant change in glycated haemoglobin (HbA1c) in the treatment group but only in participants with lower baseline HbA1c levels (< 6 % HbA1c) (P = 0·05; treatment -0·17 ± 0·27 v. placebo 0·07 ± 0·29, mean ± sd). Within the whole cohort, we showed significant improvements in insulin sensitivity (P = 0·03; treatment 1·62 ± 5·79 v. placebo -0·77 ± 2·11) and C-reactive protein (P FWE = 0·03; treatment -2·02 ± 6·42 v. placebo 0·94 ± 2·28) in the treatment group compared with the placebo. Together, our results support the use of a diverse prebiotic fibre supplement for physiologically relevant biomarkers in pre-diabetes.
Collapse
Affiliation(s)
| | | | - Manish Saxena
- William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Thomas Gurry
- Myota GmbH, Berlin, Germany
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Howard EJ, Meyer RK, Weninger SN, Martinez T, Wachsmuth HR, Pignitter M, Auñon-Lopez A, Kangath A, Duszka K, Gu H, Schiro G, Laubtiz D, Duca FA. Impact of Plant-Based Dietary Fibers on Metabolic Homeostasis in High-Fat Diet Mice via Alterations in the Gut Microbiota and Metabolites. J Nutr 2024; 154:2014-2028. [PMID: 38735572 PMCID: PMC11282473 DOI: 10.1016/j.tjnut.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND The gut microbiota contributes to metabolic disease, and diet shapes the gut microbiota, emphasizing the need to better understand how diet impacts metabolic disease via gut microbiota alterations. Fiber intake is linked with improvements in metabolic homeostasis in rodents and humans, which is associated with changes in the gut microbiota. However, dietary fiber is extremely heterogeneous, and it is imperative to comprehensively analyze the impact of various plant-based fibers on metabolic homeostasis in an identical setting and compare the impact of alterations in the gut microbiota and bacterially derived metabolites from different fiber sources. OBJECTIVES The objective of this study was to analyze the impact of different plant-based fibers (pectin, β-glucan, wheat dextrin, resistant starch, and cellulose as a control) on metabolic homeostasis through alterations in the gut microbiota and its metabolites in high-fat diet (HFD)-fed mice. METHODS HFD-fed mice were supplemented with 5 different fiber types (pectin, β-glucan, wheat dextrin, resistant starch, or cellulose as a control) at 10% (wt/wt) for 18 wk (n = 12/group), measuring body weight, adiposity, indirect calorimetry, glucose tolerance, and the gut microbiota and metabolites. RESULTS Only β-glucan supplementation during HFD-feeding decreased adiposity and body weight gain and improved glucose tolerance compared with HFD-cellulose, whereas all other fibers had no effect. This was associated with increased energy expenditure and locomotor activity in mice compared with HFD-cellulose. All fibers supplemented into an HFD uniquely shifted the intestinal microbiota and cecal short-chain fatty acids; however, only β-glucan supplementation increased cecal butyrate concentrations. Lastly, all fibers altered the small-intestinal microbiota and portal bile acid composition. CONCLUSIONS These findings demonstrate that β-glucan consumption is a promising dietary strategy for metabolic disease, possibly via increased energy expenditure through alterations in the gut microbiota and bacterial metabolites in mice.
Collapse
Affiliation(s)
- Elizabeth J Howard
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - Rachel K Meyer
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, United States
| | - Savanna N Weninger
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - Taylor Martinez
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - Hallie R Wachsmuth
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Arturo Auñon-Lopez
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Archana Kangath
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Gabriele Schiro
- PANDA Core for Genomics and Microbiome Research, Steele Children's Research Center, University of Arizona, Tucson, AZ, United States
| | - Daniel Laubtiz
- PANDA Core for Genomics and Microbiome Research, Steele Children's Research Center, University of Arizona, Tucson, AZ, United States
| | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States; BIO5 Institute, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
10
|
Nitzke D, Czermainski J, Rosa C, Coghetto C, Fernandes SA, Carteri RB. Increasing dietary fiber intake for type 2 diabetes mellitus management: A systematic review. World J Diabetes 2024; 15:1001-1010. [PMID: 38766430 PMCID: PMC11099360 DOI: 10.4239/wjd.v15.i5.1001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/19/2024] [Accepted: 03/20/2024] [Indexed: 05/10/2024] Open
Abstract
BACKGROUND Type 2 diabetes is a chronic, non-communicable disease with a substantial global impact, affecting a significant number of individuals. Its etiology is closely tied to imbalanced dietary practices and sedentary lifestyles. Conversely, increasing die-tary fiber (DF) intake has consistently demonstrated health benefits in numerous studies, including improvements in glycemic control and weight management. AIM To investigate the efficacy of DF interventions in the management of type 2 diabetes mellitus (T2DM). METHODS A systematic literature review was conducted to explore the association between DF intake and the management of T2DM. Following the inclusion and exclusion criteria, a total of 26 studies were included in this review. RESULTS The main strategies implied to increased DF intake were: High DF diet plus acarbose (2 studies); DF supplements (14 studies); and high DF diets (10 studies). Overall, most studies indicated that increased DF intake resulted in im-provements in glycemic control and weight management in T2DM patients. CONCLUSION DF represents a valuable strategy in the treatment of type 2 diabetes, improving health outcomes. DF intake offers the potential to improve quality of life and reduce complications and mortality associated with diabetes. Likewise, through supplements or enriched foods, DF contributes significantly to the control of several markers such as HbA1c, blood glucose, triglycerides, low-density lipoprotein, and body weight.
Collapse
Affiliation(s)
- Douglas Nitzke
- Department of Nutrition, Centro Universitário CESUCA, Cachoeirinha 94935-630, Brazil
| | - Juliana Czermainski
- Department of Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90430-080, Brazil
| | - Carolina Rosa
- Department of Nutrition, Centro Universitário CESUCA, Cachoeirinha 94935-630, Brazil
| | - Chaline Coghetto
- Department of Nutrition, Centro Universitário CESUCA, Cachoeirinha 94935-630, Brazil
| | - Sabrina Alves Fernandes
- Postgraduate Program in Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Randhall B Carteri
- Department of Nutrition, Centro Universitário CESUCA, Cachoeirinha 94935-630, Brazil
- Postgraduate Program in Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| |
Collapse
|
11
|
Jayedi A, Aletaha A, Zeraattalab-Motlagh S, Shahinfar H, Mohammadpour S, Mirrafiei A, Jibril AT, Soltani A, Shab-Bidar S. Comparative efficacy and safety of probiotics, prebiotics, and synbiotics for type 2 diabetes management: A systematic review and network meta-analysis. Diabetes Metab Syndr 2024; 18:102923. [PMID: 38134725 DOI: 10.1016/j.dsx.2023.102923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/09/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
AIMS To compare the effects of probiotics, prebiotics, and synbiotics for type 2 diabetes (T2D) management. METHODS We searched PubMed, Scopus, CENTRAL, and grey literature sources to December 2022 for randomized trials of the impacts of probiotics, prebiotics, or synbiotics in patients with T2D. We performed network meta-analyses with a Bayesian framework to calculate mean difference [MD] and 95 % credible interval [CrI] and rated the certainty of evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. RESULTS 68 randomised trials were included. All results are presented in comparison to the placebo. Supplementation with probiotics (MD: -0.25 %, 95%CrI: -0.42, -0.08; GRADE = moderate) and synbiotics (MD: -0.31 %, 95%CrI: -0.61, -0.04; GRADE = very low) resulted in a trivial/unimportant decrease in glycated hemoglobin. Supplementation with probiotics (MD: -0.69 mmol/L, 95%CrI: -0.98, -0.40; GRADE = very low) and synbiotics (MD: -0.82 mmol/L, 95%CrI: -1.22, -0.43; GRADE = very low) resulted in a trivial/unimportant decrease in fasting plasma glucose. Supplementation with probiotics resulted in a small but important decrease in low-density lipoprotein cholesterol (MD: -0.19 mmol/L; 95%CrI: -0.34, -0.05; GRADE = very low). Supplementations had moderate effects on serum triglyceride (GRADE = low). CONCLUSIONS Existing evidence is uncertain and does not support supplementation with probiotics, prebiotics, and synbiotics for T2D management.
Collapse
Affiliation(s)
- Ahmad Jayedi
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Aletaha
- Evidence Based Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sheida Zeraattalab-Motlagh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Shahinfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Mohammadpour
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Mirrafiei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliyu Tijani Jibril
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Akbar Soltani
- Evidence Based Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Li F, Muhmood A, Akhter M, Gao X, Sun J, Du Z, Wei Y, Zhang T, Wei Y. Characterization, health benefits, and food applications of enzymatic digestion- resistant dextrin: A review. Int J Biol Macromol 2023; 253:126970. [PMID: 37730002 DOI: 10.1016/j.ijbiomac.2023.126970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/19/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Resistant dextrin or resistant maltodextrin (RD), a short-chain glucose polymer that is highly resistant to hydrolysis by human digestive enzymes, has shown broad developmental prospects in the food industry and has gained substantial attention owing to its lack of undesirable effects on the sensory features of food or the digestive system. However, comprehensive fundamental and application information on RD and how RD improves anti-diabetes and obesity have not yet been received. Therefore, the characterization, health benefits and application of RD in various fields are summarized and discussed in the current study. Typically, RD is prepared by the acid thermal method and possesses excellent physicochemical properties, including low viscosity, high solubility, storage stability, and low retro-gradation, which are correlated with its low molecular weight (Mw) and non-digestible glycosidic linkages. In contrast, RD prepared by the simultaneous debranching and crystallization method has low solubility and high crystallinity. The ingestion of RD can positively affect metabolic diseases (diabetes and obesity) in animals and humans by producing short-chain fatty acids (SCFAs), and facilitating the inflammatory response. Moreover, RD has been widely used in the beverage, dairy products, and dessert industries due to its nutritional value and textural properties without unacceptable quality loss. More studies are required to further explore RD application potential in the food industry and its role in the management of different chronic metabolic disorders.
Collapse
Affiliation(s)
- Fei Li
- College of Life Science, Qingdao University, Qingdao 266071, China; Shandong Luhua Group Co., Ltd., Laiyang 265200, China
| | - Atif Muhmood
- Department of Agroecology, Aarhus University, Denmark.
| | - Muhammad Akhter
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Xiang Gao
- College of Life Science, Qingdao University, Qingdao 266071, China; Shandong Huatao Food Co., Ltd., Weifang 262100, China.
| | - Jie Sun
- College of Life Science, Qingdao University, Qingdao 266071, China
| | - Zubo Du
- Shandong Luhua Group Co., Ltd., Laiyang 265200, China.
| | - Yuxi Wei
- College of Life Science, Qingdao University, Qingdao 266071, China.
| | - Ting Zhang
- Henan University of Technology, Grain College, Zhengzhou 450000, China
| | - Yunlu Wei
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
13
|
Perreau C, Thabuis C, Verstrepen L, Ghyselinck J, Marzorati M. Ex Vivo Colonic Fermentation of NUTRIOSE ® Exerts Immuno-Modulatory Properties and Strong Anti-Inflammatory Effects. Nutrients 2023; 15:4229. [PMID: 37836513 PMCID: PMC10574048 DOI: 10.3390/nu15194229] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/07/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
NUTRIOSE® (Roquette, Lestrem, France) is a resistant dextrin with well-established prebiotic effects. This study evaluated the indirect effects of pre-digested NUTRIOSE® on host immune response and gut barrier integrity. Fecal samples from eight healthy donors were inoculated in a Colon-on-a-plate® system (ProDigest, Ghent, Belgium) with or without NUTRIOSE® supplementation. Following 48 h fermentation, colonic suspensions were tested in a Caco-2/THP1-Blue™ co-culture system to determine their effects on gut barrier activity (transepithelial electrical resistance) and immune response following lipopolysaccharide stimulation. Additionally, changes in short-chain fatty acid levels (SCFA) and microbial community composition following a 48 h fermentation in the Colon-on-a-plate® system were measured. Across all donors, immune-mediated intestinal barrier damage was significantly reduced with NUTRIOSE®-supplemented colonic suspensions versus blank. Additionally, IL-6 and IL-10 levels were significantly increased, and the level of the neutrophil chemoattractant IL-8 was significantly decreased with NUTRIOSE®-supplemented colonic suspensions versus blank in the co-culture models following lipopolysaccharide stimulation. These beneficial effects of NUTRIOSE® supplementation were likely due to increased acetate and propionate levels and the enrichment of SCFA-producing bacteria. NUTRIOSE® was well fermented by the colonic bacteria of all eight donors and had protective effects on inflammation-induced disruption of the intestinal epithelial barrier and strong anti-inflammatory effects.
Collapse
Affiliation(s)
- Caroline Perreau
- Nutrition and Health R&D, Roquette, 1 rue de la Haute Loge, 62136 Lestrem, France; (C.P.); (C.T.)
| | - Clementine Thabuis
- Nutrition and Health R&D, Roquette, 1 rue de la Haute Loge, 62136 Lestrem, France; (C.P.); (C.T.)
| | - Lynn Verstrepen
- ProDigest, Technologiepark 82, 9052 Zwijnaarde, Belgium; (L.V.); (J.G.)
| | - Jonas Ghyselinck
- ProDigest, Technologiepark 82, 9052 Zwijnaarde, Belgium; (L.V.); (J.G.)
| | - Massimo Marzorati
- ProDigest, Technologiepark 82, 9052 Zwijnaarde, Belgium; (L.V.); (J.G.)
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
14
|
de Paiva IHR, da Silva RS, Mendonça IP, Duarte-Silva E, Botelho de Souza JR, Peixoto CA. Fructooligosaccharide (FOS) and Galactooligosaccharide (GOS) Improve Neuroinflammation and Cognition By Up-regulating IRS/PI3K/AKT Signaling Pathway in Diet-induced Obese Mice. J Neuroimmune Pharmacol 2023; 18:427-447. [PMID: 37382830 DOI: 10.1007/s11481-023-10069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/12/2023] [Indexed: 06/30/2023]
Abstract
Increasing evidence has indicated that prebiotics as an alternative treatment for neuropsychiatric diseases. This study evaluated the prebiotics Fructooligosaccharides (FOS) and Galactooligosaccharides (GOS) on the modulation of neuroinflammation and cognition in an experimental model of mice high-fat diet fed. Initially, mice were distributed in the following groups: (A) control standard diet (n = 15) and (B) HFD for 18 weeks (n = 30). In the 13th week, the mice were later divided into the following experimental groups: (A) Control (n = 15); (B) HFD (n = 14); and (C) HFD + Prebiotics (n = 14). From the 13th week, the HFD + Prebiotics group received a high-fat diet and a combination of FOS and GOS. In the 18th week, all animals performed the T-maze and Barnes Maze, and were later euthanized. Biochemical and molecular analyzes were performed to assess neuroinflammation, neurogenesis, synaptic plasticity, and intestinal inflammation. Mice fed HFD had higher blood glucose, triglyceridemia, cholesterolemia, and higher serum IL-1β associated with impaired learning and memory. These obese mice also showed activation of microglia and astrocytes and significant immunoreactivity of neuroinflammatory and apoptosis markers, such as TNF-α, COX-2, and Caspase-3, in addition to lower expression of neurogenesis and synaptic plasticity markers, such as NeuN, KI-67, CREB-p, and BDNF. FOS and GOS treatment significantly improved the biochemistry profile and decreased serum IL-1β levels. Treatment with FOS and GOS also reduced TNF-α, COX-2, Caspase-3, Iba-1, and GFAP-positive cells in the dentate gyrus, decreasing neuroinflammation and neuronal death caused by chronic HFD consumption. In addition, FOS and GOS promoted synaptic plasticity by increasing NeuN, p-CREB, BDNF, and KI-67, restoring spatial learning ability and memory. Moreover, FOS and GOS on HFD modulated the insulin pathway, which was proved by up-regulating IRS/PI3K/AKT signaling pathway, followed by a decreasing Aβ plate and Tau phosphorylation. Furthermore, the prebiotic intervention reshaped the HFD-induced imbalanced gut microbiota by modulating the composition of the bacterial community, markedly increasing Bacteroidetes. In addition, prebiotics decreased intestinal inflammation and leaky gut. In conclusion, FOS and GOS significantly modulated the gut microbiota and IRS/PI3K/AKT signaling pathway, decreased neuroinflammation, and promoted neuroplasticity improving spatial learning and memory. Schematic summarizing of the pathways by FOS and GOS improves memory and learning through the gut-brain axis. FOS and GOS improve the microbial profile, reducing intestinal inflammation and leaky gut in the distal colon. Specifically, the administration of FOS and GOS decreases the expression of TLR4, TNF-α, IL-1β, and MMP9 and increases the expression of occludin and IL-10. Prebiotics inhibit neuroinflammation, neuronal apoptosis, and reactive gliosis in the hippocampus but restore synaptic plasticity, neuronal proliferation, and neurogenesis.
Collapse
Affiliation(s)
- Igor Henrique Rodrigues de Paiva
- Laboratório de Ultraestrutura, Instituto Aggeu Magalhães, FIOCRUZ, Av. Moraes Rego s/n, Recife, CEP, 50670-420, Brazil.
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.
| | - Rodrigo Soares da Silva
- Laboratório de Ultraestrutura, Instituto Aggeu Magalhães, FIOCRUZ, Av. Moraes Rego s/n, Recife, CEP, 50670-420, Brazil
| | - Ingrid Prata Mendonça
- Laboratório de Ultraestrutura, Instituto Aggeu Magalhães, FIOCRUZ, Av. Moraes Rego s/n, Recife, CEP, 50670-420, Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Eduardo Duarte-Silva
- Laboratório de Ultraestrutura, Instituto Aggeu Magalhães, FIOCRUZ, Av. Moraes Rego s/n, Recife, CEP, 50670-420, Brazil
- Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Oswaldo Cruz Foundation (FIOCRUZ-PE)/Aggeu Magalhães Institute (IAM), Recife, PE, Brazil
| | | | - Christina Alves Peixoto
- Laboratório de Ultraestrutura, Instituto Aggeu Magalhães, FIOCRUZ, Av. Moraes Rego s/n, Recife, CEP, 50670-420, Brazil.
- Institute of Science and Technology On Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Maiya M, Adorno A, Toulabi SB, Tucker WJ, Patterson MA. Resistant starch improves cardiometabolic disease outcomes: A narrative review of randomized trials. Nutr Res 2023; 114:20-40. [PMID: 37149926 DOI: 10.1016/j.nutres.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 05/09/2023]
Abstract
Healthy dietary patterns with adequate fiber improve cardiometabolic (CM) outcomes and attenuate disease progression. Resistant starch (RS) is a fermentable fiber that affects CM outcomes; however, studies are heterogeneous and inconsistent. Thus, the purpose of this narrative review is to assess the impact of RS intake by type and amount on CM outcomes while considering subject characteristics and trial duration. Randomized crossover or parallel studies (n = 31) were selected and compared according to acute (1 day; n = 12), medium (>1-30 days; n = 8), or long (>30 days; n = 11) duration. Most acute trials in healthy adults showed improvements in postprandial glycemic outcomes irrespective of RS type or amount. However, a more pronounced reduction occurred when test meals did not match for available carbohydrate. Daily RS intake had a minimal effect on CM outcomes in medium duration trials, but insulin resistant adults had better glycemic control at 4 weeks. Several longer duration trials (8-12 weeks) showed favorable CM outcomes with daily RS intake in adults with type 2 diabetes (T2D), but not in those at risk for T2D. Furthermore, some studies reported improved lipids, inflammatory biomarkers, and heart rate. Future studies should consider matching for available carbohydrates between the RS and control groups to understand the gut microbiome's role. Furthermore, energy and fiber should be considered. Overall, the acute intake of RS improves glycemic outcomes, and consuming RS at for least 4 and up to 8 to 12 weeks in adults with prediabetes and T2D, respectively, appears to improve CM outcomes.
Collapse
Affiliation(s)
- Madhura Maiya
- Department of Health and Kinesiology, The University of Texas at Tyler, Tyler, Texas, USA
| | - Andrew Adorno
- Department of Nutrition and Food Sciences, Texas Woman's University Institute of Health Sciences, Houston, Texas, USA
| | - Sahar B Toulabi
- College of Agriculture Science, Colorado State University, Fort Collins, Colorado, USA
| | - Wesley J Tucker
- Department of Nutrition and Food Sciences, Texas Woman's University Institute of Health Sciences, Houston, Texas, USA; Institute for Women's Health, Texas Woman's University, Houston, Texas USA
| | - Mindy A Patterson
- Department of Nutrition and Food Sciences, Texas Woman's University Institute of Health Sciences, Houston, Texas, USA; Institute for Women's Health, Texas Woman's University, Houston, Texas USA.
| |
Collapse
|
16
|
Juhász AE, Greff D, Teutsch B, Gede N, Hegyi P, Horváth EM, Deák PÁ, Nyirády P, Ács N, Juhász R. Galactomannans are the most effective soluble dietary fibers in type 2 diabetes: a systematic review and network meta-analysis. Am J Clin Nutr 2023; 117:266-277. [PMID: 36811560 DOI: 10.1016/j.ajcnut.2022.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Soluble dietary fibers are known to reduce the levels of blood glucose and lipids in patients with type 2 diabetes mellitus (type 2 diabetes). Although several different dietary fiber supplements are utilized, to our knowledge, no previous study has ranked their efficacy yet. OBJECTIVES We performed this systematic review and network meta-analysis to rank the effects of different types of soluble dietary fibers. METHODS We performed our last systematic search on November 20, 2022. Eligible randomized controlled trials (RCTs) included adult patients with type 2 diabetes and compared the intake of soluble dietary fibers with that of another type of dietary fiber or no fiber. The outcomes were related to glycemic and lipid levels. The Bayesian method was used to perform a network meta-analysis and calculate the surface under the cumulative ranking (SUCRA) curve values to rank the interventions. The Grading of Recommendations Assessment, Development, and Evaluation system was applied to evaluate the overall quality of the evidence. RESULTS We identified 46 RCTs, including data from 2685 patients who received 16 types of dietary fibers as intervention. Galactomannans had the highest effect on reducing the levels of HbA1c (SUCRA: 92.33%) and fasting blood glucose (SUCRA: 85.92%). With regard to fasting insulin level, HOMA-IR, β-glucans (SUCRA: 73.45%), and psyllium (SUCRA: 96.67%) were the most effective interventions. Galactomannans were ranked first in reducing the levels of triglycerides (SUCRA: 82.77%) and LDL cholesterol (SUCRA: 86.56%). With regard to cholesterol and HDL cholesterol levels, xylo-oligosaccharides (SUCRA: 84.59%) and gum arabic (SUCRA: 89.06%) were the most effective fibers. Most comparisons had a low or moderate certainty of evidence. CONCLUSIONS Galactomannans were the most effective dietary fiber for reducing the levels of HbA1c, fasting blood glucose, triglycerides, and LDL cholesterol in patients with type 2 diabetes. This study was registered at PROSPERO as ID CRD42021282984.
Collapse
Affiliation(s)
- Anna E Juhász
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Dietetics and Nutrition Sciences, Semmelweis University, Budapest, Hungary
| | - Dorina Greff
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary; Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Brigitta Teutsch
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary; Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Noémi Gede
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Hegyi
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary; Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary; Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| | - Eszter M Horváth
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Pál Á Deák
- Department of Interventional Radiology, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Nyirády
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Nándor Ács
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Réka Juhász
- Department of Dietetics and Nutrition Sciences, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
17
|
Oh L, Ab Rahman S, Dubinsky K, Azanan MS, Ariffin H. Manipulating the Gut Microbiome as a Therapeutic Strategy to Mitigate Late Effects in Childhood Cancer Survivors. Technol Cancer Res Treat 2023; 22:15330338221149799. [PMID: 36624625 PMCID: PMC9834799 DOI: 10.1177/15330338221149799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Recent studies have identified causal links between altered gut microbiome, chronic inflammation, and inflammation-driven conditions such as diabetes and cardiovascular disease. Childhood cancer survivors (CCS) show late effects of therapy in the form of inflammaging-related disorders as well as microbial dysbiosis, supporting a hypothesis that the conditions are interconnected. Given the susceptibility of the gut microbiome to alteration, a number of therapeutic interventions have been investigated for the treatment of inflammatory conditions, though not within the context of cancer survivorship in children and adolescents. Here, we evaluate the potential for these interventions, which include probiotic supplementation, prebiotics/fiber-rich diet, exercise, and fecal microbiota transplantation for prevention and treatment of cancer treatment-related microbial dysbiosis in survivors. We also make recommendations to improve adherence and encourage long-term lifestyle changes for maintenance of healthy gut microbiome in CCS as a potential strategy to mitigate treatment-related late effects.
Collapse
Affiliation(s)
- Lixian Oh
- University of Malaya, Kuala Lumpur, Malaysia
| | | | | | | | - Hany Ariffin
- University of Malaya, Kuala Lumpur, Malaysia,Hany Ariffin, Department of Pediatrics,
University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
18
|
Soni S, Paari KA. A review on the immunomodulatory properties of functional nutraceuticals as dietary interventions for children to combat COVID-19 related infections. FOOD PRODUCTION, PROCESSING AND NUTRITION 2023; 5:17. [PMCID: PMC10076816 DOI: 10.1186/s43014-023-00133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
COVID-19 is a significant threat to humanity in the present day due to the rapid increase in the number of infections worldwide. While most children may be spared of the direct mortality effects of the disease, those with weak immune systems are prone to adverse effects. Child mortality increases due to the stress caused to the health care system that disrupts essential health care needs such as immunisation and antenatal care. The use of functional foods (FF) aids in disease-prevention as they are known to have protective effects against COVID-19 by boosting children’s cellular and humoral immunity. Plant components such as glycyrrhizin, epigallocatechin gallate, allicin, and fucoidan exhibit antiviral properties against various viruses, including SARS-CoV 2. Microbial foods that are made of probiotics, can enhance immunity against various respiratory viruses. Food enriched with additives such as lactoferrin, piperine, and zinc can boost immunity against COVID-19. With proper definitive drug therapy not available for treating COVID-19 and most of the disease management tools rely on symptoms and non-specific supportive care, developing a functional paediatric formulation will prevent further deterioration in infant health. It is wise to investigate the toxicological aspects of Functional Foods components especially when formulating for children. The safe limits of ingredients should be strictly followed during FFs formulation. Stronger regulations with advanced analytical techniques can help to formulate functional foods into the mainstream in child nutraceuticals. The purpose of this review is to compile collective information on the functional nutraceuticals specifically for infants and children up to the age of 10 years that could confer immunity against COVID-19 and other related viruses.
Collapse
Affiliation(s)
- Swati Soni
- Department of Life Sciences, CHRIST (Deemed to be) University, Central Campus, Hosur Road, Bangalore, Karnataka 560029 India
| | - Kuppusamy Alagesan Paari
- Department of Life Sciences, CHRIST (Deemed to be) University, Central Campus, Hosur Road, Bangalore, Karnataka 560029 India
| |
Collapse
|
19
|
Functional Nutrients to Ameliorate Neurogenic Muscle Atrophy. Metabolites 2022; 12:metabo12111149. [DOI: 10.3390/metabo12111149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Neurogenic muscle atrophy is a debilitating condition that occurs from nerve trauma in association with diseases or during aging, leading to reduced interaction between motoneurons and skeletal fibers. Current therapeutic approaches aiming at preserving muscle mass in a scenario of decreased nervous input include physical activity and employment of drugs that slow down the progression of the condition yet provide no concrete resolution. Nutritional support appears as a precious tool, adding to the success of personalized medicine, and could thus play a relevant part in mitigating neurogenic muscle atrophy. We herein summarize the molecular pathways triggered by denervation of the skeletal muscle that could be affected by functional nutrients. In this narrative review, we examine and discuss studies pertaining to the use of functional ingredients to counteract neurogenic muscle atrophy, focusing on their preventive or curative means of action within the skeletal muscle. We reviewed experimental models of denervation in rodents and in amyotrophic lateral sclerosis, as well as that caused by aging, considering the knowledge generated with use of animal experimental models and, also, from human studies.
Collapse
|
20
|
Paul P, Kaul R, Harfouche M, Arabi M, Al-Najjar Y, Sarkar A, Saliba R, Chaari A. The effect of microbiome-modulating probiotics, prebiotics and synbiotics on glucose homeostasis in type 2 diabetes: A systematic review, meta-analysis, and meta-regression of clinical trials. Pharmacol Res 2022; 185:106520. [DOI: 10.1016/j.phrs.2022.106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022]
|
21
|
Kong H, Yu L, Li C, Ban X, Gu Z, Li Z. Short-Clustered Maltodextrin Activates Ileal Glucose-Sensing and Induces Glucagon-like Peptide 1 Secretion to Ameliorate Glucose Homeostasis in Type 2 Diabetic Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12604-12619. [PMID: 36125960 DOI: 10.1021/acs.jafc.2c04978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Reconstructing molecular structure is an effective approach to attenuating glycemic response to starch. Previously, we rearranged α-1,4 and α-1,6-glycosidic bonds in starch molecules to produce short-clustered maltodextrin (SCMD). The present study revealed that SCMD slowly released glucose until the distal ileum. The activated ileal glucose-sensing enabled SCMD to be a potent inducer for glucagon-like peptide-1 (GLP-1). Furthermore, SCMD was found feasible to serve as the dominant dietary carbohydrate to rescue mice from diabetes. Interestingly, a mixture of normal maltodextrin and resistant dextrin (MD+RD), although it caused an attenuated glycemic response similar to that of SCMD, failed to ameliorate glucose homeostasis because it hardly induced GLP-1 secretion. The serum GLP-1 levels seen in MD+RD-fed mice (5.25 ± 1.51 pmol/L) were significantly lower than those seen in SCMD-fed mice (8.25 ± 2.01 pmol/L, p < 0.05). Further investigation revealed that the beneficial effects of SCMD could be abolished by a GLP-1 receptor (GLP-1R) antagonist. These results identify GLP-1R signaling as a critical contributor to SCMD-exerted health benefits and highlight the role of ileal glucose-sensing in designing dietary carbohydrates.
Collapse
Affiliation(s)
- Haocun Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Luxi Yu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
22
|
Carbohydrate-based functional ingredients derived from starch: Current status and future prospects. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Effects of probiotic/prebiotic/synbiotic supplementation on blood glucose profiles: a systematic review and meta-analysis of randomized controlled trials. Public Health 2022; 210:149-159. [PMID: 35970017 DOI: 10.1016/j.puhe.2022.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Previous studies have evaluated the effects of probiotic/prebiotic/synbiotic supplementation on blood glucose profiles among diabetic patients. However, the results were inconsistent. STUDY DESIGN Systematic review and meta-analysis. METHODS A systematic searching from PubMed, ISI Web of Science, Embase, and Cochrane Central was conducted to identify high-quality clinical trials investigating the effect of probiotic/prebiotic/synbiotic supplementation on blood glucose profiles [including fasting blood glucose (FBG), hemoglobin A1c (HbA1c), and homeostasis model assessment of insulin resistance (HOMA-IR)] up to December 2020. Subgroup analyses by types or durations of probiotic/prebiotic/synbiotic supplementation were conducted to investigate the different effects among different populations. RESULTS A total of 39 trials with 3517 participants were included in the final analyses. Among patients with type II diabetes (T2DM), the summarized standardized mean differences (SMDs) and 95% confidential intervals (95% CIs) of FBG, HbA1c, and HOMA-IR were -0.30 (95% CI: -0.65 to 0.05), -0.59 (95% CI: -0.88 to -0.30), and -0.68 (95% CI: -1.13 to -0.23), respectively. Among patients with gestational diabetes (GDM), the summary SMDs of FBG, HbA1c and HOMA-IR were -0.67 (95% CI: -1.23 to -0.11), -0.24 (95% CI: -0.57 to 0.08), and -1.06 (95% CI: -1.72 to -0.40), respectively. Similar improvements in blood glucose profiles were also found among persons with prediabetes or gestational woman with normal glucose, but not among patients with type I diabetes. Subgroup analyses showed similar results of probiotic supplementation for patients with T2DM and probiotic/synbiotic supplementation for patients with GDM. CONCLUSION Probiotic/prebiotic/synbiotic supplementation might improve the blood glucose profiles among patients with T2DM/GDM, persons with prediabetes, or gestational woman with normal glucose. Trials with more sophisticated design are needed to validate the results in the future. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42020161975.
Collapse
|
24
|
Saleh-Ghadimi S, Dehghan P, Sarmadi B, Maleki P. Improvement of sleep by resistant dextrin prebiotic in type 2 diabetic women coincides with attenuation of metabolic endotoxemia: involvement of gut-brain axis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5229-5237. [PMID: 35306660 DOI: 10.1002/jsfa.11876] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 03/12/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Resistant dextrin, as a prebiotic and functional food, may possess favorable effects in type 2 diabetes. This study was conducted to assess whether supplementation with resistant dextrin can improve sleep and quality of life in obese type 2 diabetic women. RESULTS In this randomized controlled trial, female obese type 2 diabetic patients (n = 76) were randomly assigned into intervention group (n = 38) and placebo group (n = 38), and received 10 g day-1 of resistant dextrin or maltodextrin for a period of 8 weeks, respectively. Sleep quality and quality of life (QOL) were assessed by Pittsburgh Sleep Quality Index (PSQI) and SF-36 health survey, respectively. Fasting blood samples were driven to measure serum bacterial endotoxin, fasting blood sugar, glycosylated hemoglobin (HbA1c), pro-inflammatory/anti-inflammatory biomarkers (IL-18, IL-6, IL-10, TNF-α), and biomarkers of hypothalamic-pituitary-adrenal (HPA) axis function [tryptophan (TRP), adrenocorticotropic hormone (ACTH), kynurenine (KYN), cortisol]. Supplementation with resistant dextrin improved sleep (P < 0.001) and QOL (P < 0.001) significantly. It also caused a significant decrease in levels of endotoxin, HbA1c, IL-18, IL-6, TNF-α and a significant increase in IL-10 levels. Significant and positive correlations were found between endotoxin (r = 0.488, P = 0.003), IL-6 (r = 0.436, P = 0.008), IL-18 (r = 0.475, P = 0.003), cortisol (r = 0.545, P = 0.048), KYN/TRP (r = 0.527, P = 0.001), and PSQI scores. CONCLUSIONS It is concluded that resistant dextrin improves sleep and QOL in obese women with type 2 diabetes. Its beneficial effects may be attributed in part to modulation of glycemia, metabolic endotoxemia and subsequently a decrease in biomarkers of inflammation and HPA axis activity. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sevda Saleh-Ghadimi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Sarmadi
- Department of Nutrition Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Parham Maleki
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Lee JH, Park JH. Host-microbial interactions in metabolic diseases: from diet to immunity. JOURNAL OF MICROBIOLOGY (SEOUL, KOREA) 2022; 60:561-575. [PMID: 35511325 DOI: 10.1007/s12275-022-2087-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022]
Abstract
Growing evidence suggests that the gut microbiome is an important contributor to metabolic diseases. Alterations in microbial communities are associated with changes in lipid metabolism, glucose homeostasis, intestinal barrier functions, and chronic inflammation, all of which can lead to metabolic disorders. Therefore, the gut microbiome may represent a novel therapeutic target for obesity, type 2 diabetes, and nonalcoholic fatty liver disease. This review discusses how gut microbes and their products affect metabolic diseases and outlines potential treatment approaches via manipulation of the gut microbiome. Increasing our understanding of the interactions between the gut microbiome and host metabolism may help restore the healthy symbiotic relationship between them.
Collapse
Affiliation(s)
- Ju-Hyung Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joo-Hong Park
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
26
|
Tawfick MM, Xie H, Zhao C, Shao P, Farag MA. Inulin fructans in diet: Role in gut homeostasis, immunity, health outcomes and potential therapeutics. Int J Biol Macromol 2022; 208:948-961. [PMID: 35381290 DOI: 10.1016/j.ijbiomac.2022.03.218] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/19/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022]
Abstract
Inulin consumption in both humans and animal models is recognized for its prebiotic action with the most consistent change that lies in enhancing the growth and functionality of Bifidobacterium bacteria, as well as its effect on host gene expression and metabolism. Further, inulin-type fructans are utilized in the colon by bacterial fermentation to yield short-chain fatty acids (SCFAs), which play important role in its biological effects both locally inside the gut and in systemic actions. The gut symbiosis sustained by inulin supplementation among other dietary fibers exerts preventive and/or therapeutic options for many metabolic disorders including obesity, type 2 diabetes mellitus, cardiometabolic diseases, kidney diseases and hyperuricemia. Although, gastrointestinal negative effects due to inulin consumption were reported, such as gastrointestinal symptoms in humans and exacerbated inflammatory bowel disease (IBD) in mice. This comprehensive review aims to present the whole story of how inulin functions as a prebiotic at cellular levels and the interplay between physiological, functional and immunological responses inside the animal or human gut as influenced by inulin in diets, in context to its structural composition. Such review is of importance to identify management and feed strategies to optimize gut health, for instance, consumption of the tolerated doses to healthy adults of 10 g/day of native inulin or 5 g/day of naturally inulin-rich chicory extract. In addition, inulin-drug interactions should be further clarified particularly if used as a supplement for the treatment of degenerative diseases (e.g., diabetes) over a long period. The combined effect of probiotics and inulin appears more effective, and more research on this synergy is still needed.
Collapse
Affiliation(s)
- Mahmoud M Tawfick
- Department of Microbiology and Immunology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11751, Egypt; Department of Microbiology and Immunology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Hualing Xie
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Ping Shao
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China.
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562 Cairo, Egypt.
| |
Collapse
|
27
|
Singh V, Park YJ, Lee G, Unno T, Shin JH. Dietary regulations for microbiota dysbiosis among post-menopausal women with type 2 diabetes. Crit Rev Food Sci Nutr 2022; 63:9961-9976. [PMID: 35635755 DOI: 10.1080/10408398.2022.2076651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Type 2 diabetes (T2D) and T2D-associated comorbidities, such as obesity, are serious universally prevalent health issues among post-menopausal women. Menopause is an unavoidable condition characterized by the depletion of estrogen, a gonadotropic hormone responsible for secondary sexual characteristics in women. In addition to sexual dimorphism, estrogen also participates in glucose-lipid homeostasis, and estrogen depletion is associated with insulin resistance in the female body. Estrogen level in the gut also regulates the microbiota composition, and even conjugated estrogen is actively metabolized by the estrobolome to maintain insulin levels. Moreover, post-menopausal gut microbiota is different from the pre-menopausal gut microbiota, as it is less diverse and lacks the mucolytic Akkermansia and short-chain fatty acid (SCFA) producers such as Faecalibacterium and Roseburia. Through various metabolites (SCFAs, secondary bile acid, and serotonin), the gut microbiota plays a significant role in regulating glucose homeostasis, oxidative stress, and T2D-associated pro-inflammatory cytokines (IL-1, IL-6). While gut dysbiosis is common among post-menopausal women, dietary interventions such as probiotics, prebiotics, and synbiotics can ease post-menopausal gut dysbiosis. The objective of this review is to understand the relationship between post-menopausal gut dysbiosis and T2D-associated factors. Additionally, the study also provided dietary recommendations to avoid T2D progression among post-menopausal women.
Collapse
Affiliation(s)
- Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Yeong-Jun Park
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Tatsuya Unno
- Department of Biotechnology, Jeju National University, Jeju, South Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
28
|
Paul P, Kaul R, Abdellatif B, Arabi M, Upadhyay R, Saliba R, Sebah M, Chaari A. The Promising Role of Microbiome Therapy on Biomarkers of Inflammation and Oxidative Stress in Type 2 Diabetes: A Systematic and Narrative Review. Front Nutr 2022; 9:906243. [PMID: 35711547 PMCID: PMC9197462 DOI: 10.3389/fnut.2022.906243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Background One in 10 adults suffer from type 2 diabetes (T2D). The role of the gut microbiome, its homeostasis, and dysbiosis has been investigated with success in the pathogenesis as well as treatment of T2D. There is an increasing volume of literature reporting interventions of pro-, pre-, and synbiotics on T2D patients. Methods Studies investigating the effect of pro-, pre-, and synbiotics on biomarkers of inflammation and oxidative stress in T2D populations were extracted from databases such as PubMed, Scopus, Web of Science, Embase, and Cochrane from inception to January 2022. Results From an initial screening of 5,984 hits, 47 clinical studies were included. Both statistically significant and non-significant results have been compiled, analyzed, and discussed. We have found various promising pro-, pre-, and synbiotic formulations. Of these, multistrain/multispecies probiotics are found to be more effective than monostrain interventions. Additionally, our findings show resistant dextrin to be the most promising prebiotic, followed closely by inulin and oligosaccharides. Finally, we report that synbiotics have shown excellent effect on markers of oxidative stress and antioxidant enzymes. We further discuss the role of metabolites in the resulting effects in biomarkers and ultimately pathogenesis of T2D, bring attention toward the ability of such nutraceuticals to have significant role in COVID-19 therapy, and finally discuss few ongoing clinical trials and prospects. Conclusion Current literature of pro-, pre- and synbiotic administration for T2D therapy is promising and shows many significant results with respect to most markers of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Pradipta Paul
- Division of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Ridhima Kaul
- Division of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Basma Abdellatif
- Division of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Maryam Arabi
- Division of Premedical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Rohit Upadhyay
- Department of Medicine—Nephrology and Hypertension, Tulane University, School of Medicine, New Orleans, LA, United States
| | - Reya Saliba
- Distributed eLibrary, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Majda Sebah
- Division of Premedical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Ali Chaari
- Division of Premedical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
29
|
Zhang L, Li X, Liu X, Wang X, Li X, Cheng X, Yan S, Zhu Y, Li R, Wen L, Wang J. Purified diet versus whole food diet and the inconsistent results in studies using animal models. Food Funct 2022; 13:4286-4301. [PMID: 35297926 DOI: 10.1039/d1fo04311k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In animal models, purified diets (PDs) and whole food diets (WFDs) are used for different purposes. In similar studies, different dietary patterns may lead to inconsistent results. The aim of this study was to evaluate and compare the effects of WFDs and PDs on changes in the metabolism of mice. We found that different dietary patterns produced different results in lipid metabolism experiments. Compared with those of the PD-fed mice, the WFD-fed mice had higher body weights and serum glucose, serum lipid, and liver lipid levels (p < 0.01), as well as low glucose tolerance (p < 0.01) and insulin sensitivity (p < 0.05). The body weight and fasting blood glucose increased by 20% in the WFD-fed mice, and the white adipose tissue weight increased by ∼50%. The WFD-fed mice also had a comparatively higher abundance of Lactobacillus, Turicibacter, Bifidobacterium, Desulfovibrio, and Candidatus saccharimonas (p < 0.01), which were positively correlated with lipid accumulation. Dietary patterns should be chosen cautiously in studies that use rodents as models. Inappropriate selection of animal dietary patterns may lead to experimental systematic errors and paradoxical results.
Collapse
Affiliation(s)
- Linyu Zhang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China.
| | - Xin Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China.
| | - Xiangyan Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China.
| | - Xianglin Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China.
| | - Xiaowen Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China.
| | - Xianyu Cheng
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China.
| | - Sisi Yan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China.
| | - Yuanyuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China.
| | - Rongfang Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China. .,Hunan Collaborative Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China. .,Hunan Collaborative Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Ji Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China. .,Changsha Lvye Biotechnology Co., Ltd, Changsha 410100, China
| |
Collapse
|
30
|
Lamiquiz-Moneo I, Pérez-Calahorra S, Gracia-Rubio I, Cebollada A, Bea AM, Fumanal A, Ferrer-Mairal A, Prieto-Martín A, Sanz-Fernández ML, Cenarro A, Civeira F, Mateo-Gallego R. Effect of the Consumption of Alcohol-Free Beers with Different Carbohydrate Composition on Postprandial Metabolic Response. Nutrients 2022; 14:nu14051046. [PMID: 35268021 PMCID: PMC8912682 DOI: 10.3390/nu14051046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/04/2022] Open
Abstract
Background: We investigated the postprandial effects of an alcohol-free beer with modified carbohydrate (CH) composition compared to regular alcohol-free beer. Methods: Two randomized crossover studies were conducted. In the first study, 10 healthy volunteers received 25 g of CH in four different periods, coming from regular alcohol-free beer (RB), alcohol-free beer enriched with isomaltulose and a resistant maltodextrin (IMB), alcohol-free beer enriched with resistant maltodextrin (MB), and a glucose-based beverage. In the second study, 20 healthy volunteers were provided with 50 g of CH from white bread (WB) plus water, or with 14.3 g of CH coming from RB, IMB, MB, and extra WB. Blood was sampled after ingestion every 15 min for 2 h. Glucose, insulin, incretin hormones, TG, and NEFAs were determined in all samples. Results: The increase in glucose, insulin, and incretin hormones after the consumption of IMB and MB was significantly lower than after RB. The consumption of WB with IMB and MB showed significantly less increase in glucose levels than WB with water or WB with RB. Conclusions: The consumption of an alcohol-free beer with modified CH composition led to a better postprandial response compared to a conventional alcohol-free beer.
Collapse
Affiliation(s)
- Itziar Lamiquiz-Moneo
- Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Universidad de Zaragoza, 50009 Zaragoza, Spain; (I.G.-R.); (A.M.B.); (A.C.); (F.C.); (R.M.-G.)
- Departamento de Anatomía e Histologías Humanas, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Correspondence: ; Tel.: +34-976-765-500 (ext. 142895)
| | - Sofia Pérez-Calahorra
- Departamento de Fisiatría y Enfermería, Facultad de Ciencias de la Salud y del Deporte, Universidad de Zaragoza, 22002 Huesca, Spain;
| | - Irene Gracia-Rubio
- Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Universidad de Zaragoza, 50009 Zaragoza, Spain; (I.G.-R.); (A.M.B.); (A.C.); (F.C.); (R.M.-G.)
| | - Alberto Cebollada
- Unidad de Biocomputación, Instituto Aragonés de Ciencias de la Salud (IACS Aragón), 50009 Zaragoza, Spain;
| | - Ana M. Bea
- Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Universidad de Zaragoza, 50009 Zaragoza, Spain; (I.G.-R.); (A.M.B.); (A.C.); (F.C.); (R.M.-G.)
| | - Antonio Fumanal
- Grupo Ágora—La Zaragozana S.A., 50007 Zaragoza, Spain; (A.F.); (A.P.-M.)
| | - Ana Ferrer-Mairal
- Instituto Agroalimentario de Aragón (IA2), 50013 Zaragoza, Spain;
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Ciencias de la Salud y del Deporte, Universidad de Zaragoza, 22002 Huesca, Spain
| | | | | | - Ana Cenarro
- Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Universidad de Zaragoza, 50009 Zaragoza, Spain; (I.G.-R.); (A.M.B.); (A.C.); (F.C.); (R.M.-G.)
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
| | - Fernando Civeira
- Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Universidad de Zaragoza, 50009 Zaragoza, Spain; (I.G.-R.); (A.M.B.); (A.C.); (F.C.); (R.M.-G.)
- Departamento de Medicina, Psiquiatría y Dermatología, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Rocio Mateo-Gallego
- Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Universidad de Zaragoza, 50009 Zaragoza, Spain; (I.G.-R.); (A.M.B.); (A.C.); (F.C.); (R.M.-G.)
- Departamento de Fisiatría y Enfermería, Facultad de Ciencias de la Salud y del Deporte, Universidad de Zaragoza, 22002 Huesca, Spain;
| |
Collapse
|
31
|
Wei Y, Zhang X, Meng Y, Wang Q, Xu H, Chen L. The Effects of Resistant Starch on Biomarkers of Inflammation and Oxidative Stress: A Systematic Review and Meta-Analysis. Nutr Cancer 2022; 74:2337-2350. [PMID: 35188032 DOI: 10.1080/01635581.2021.2019284] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yali Wei
- Department of Nutrition, Anhui No.2 Provincial People’s Hospital, Hefei, China
- Telemedicine Center, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Xiyu Zhang
- Telemedicine Center, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Nutrition, Shandong Provincial Hospital, Jinan, China
| | - Yan Meng
- Telemedicine Center, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Nutrition, Shandong Provincial Hospital, Jinan, China
| | - Qian Wang
- Telemedicine Center, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Nutrition, Shandong Provincial Hospital, Jinan, China
| | - Hongzhao Xu
- Department of Nutrition, Anhui No.2 Provincial People’s Hospital, Hefei, China
- Department of Nutrition, Shandong Provincial Hospital, Jinan, China
| | - Liyong Chen
- Department of Nutrition, Anhui No.2 Provincial People’s Hospital, Hefei, China
- Telemedicine Center, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Nutrition, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
32
|
Latino C, Gianatti EJ, Mehta S, Lo J, Devine A, Christophersen C. Does a high dietary intake of resistant starch affect glycaemic control and alter the gut microbiome in women with gestational diabetes? A randomised control trial protocol. BMC Pregnancy Childbirth 2022; 22:46. [PMID: 35042457 PMCID: PMC8764780 DOI: 10.1186/s12884-021-04366-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Gestational Diabetes Mellitus (GDM) is prevalent with lasting health implications for the mother and offspring. Medical nutrition therapy is the foundation of GDM management yet achieving optimal glycaemic control often requires treatment with medications, like insulin. New dietary strategies to improve GDM management and outcomes are required. Gut dysbiosis is a feature of GDM pregnancies, therefore, dietary manipulation of the gut microbiota may offer a new avenue for management. Resistant starch is a fermentable dietary fibre known to alter the gut microbiota and enhance production of short-chain fatty acids. Evidence suggests that short-chain fatty acids improve glycaemia via multiple mechanisms, however, this has not been evaluated in GDM. METHODS An open-label, parallel-group design study will investigate whether a high dietary resistant starch intake or resistant starch supplement improves glycaemic control and changes the gut microbiome compared with standard dietary advice in women with newly diagnosed GDM. Ninety women will be randomised to one of three groups - standard dietary treatment for GDM (Control), a high resistant starch diet or a high resistant starch diet plus a 16 g resistant starch supplement. Measurements taken at Baseline (24 to 30-weeks' gestation), Day 10 and Day 56 (approximately 36 weeks' gestation) will include fasting plasma glucose levels, microbial composition and short-chain fatty acid concentrations in stool, 3-day dietary intake records and bowel symptoms questionnaires. One-week post-natal data collection will include microbial composition and short-chain fatty acid concentrations of maternal and neonatal stools, microbial composition of breastmilk, birthweight, maternal and neonatal outcomes. Mixed model analysis of variance will assess change in glycaemia and permutation-based multivariate analysis of variance will assess changes in microbial composition within and between intervention groups. Distance-based linear modelling will identify correlation between change in stool microbiota, short-chain fatty acids and measures of glycaemia. DISCUSSION To improve outcomes for GDM dyads, evaluation of a high dietary intake of resistant starch to improve glycaemia through the gut microbiome needs to be established. This will expand the dietary interventions available to manage GDM without medication. TRIAL REGISTRATION Australian New Zealand Clinical Trial Registry, ACTRN12620000968976p . Registered 28 September 2020.
Collapse
Affiliation(s)
- Cathy Latino
- School of Medical & Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.
- Institute for Nutrition Research, Edith Cowan University, Joondalup, Western Australia, Australia.
- Department of Dietetics, Fiona Stanley Hospital, South Metropolitan Health Service, 11 Robin Warren Drive, Murdoch, 6150, Western Australia, Australia.
| | - Emily J Gianatti
- Department of Endocrinology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Shailender Mehta
- Department of Neonatology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
- School of Medicine, University of Notre Dame, Fremantle, Western Australia, Australia
| | - Johnny Lo
- School of Science, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Amanda Devine
- School of Medical & Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Institute for Nutrition Research, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Claus Christophersen
- School of Medical & Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Centre for Integrative Metabolomics and Computational Biology, Edith Cowan University, Joondalup, Western Australia, Australia
- WA Human Microbiome Collaboration Centre - TrEnD Lab, School of Molecular & Life Sciences, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
33
|
An R, Zong A, Chen S, Xu R, Zhang R, Jiang W, Liu L, Du F, Zhang H, Xu T. Effects of Oligosaccharides on Markers of Glycemic: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Food Funct 2022; 13:8766-8782. [DOI: 10.1039/d1fo03204f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To Investigate the effect of oligosaccharide on marker of glycemic including fasting blood glucose (FBG), fasting blood insulin (FBI), glycated hemoglobin (HbA1c), homeostasis model assessment of insulin resistance (HOMA-IR),...
Collapse
|
34
|
Lad N, Murphy A, Parenti C, Nelson C, Williams N, Sharpe G, McTernan P. Asthma and obesity: endotoxin another insult to add to injury? Clin Sci (Lond) 2021; 135:2729-2748. [PMID: 34918742 PMCID: PMC8689194 DOI: 10.1042/cs20210790] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022]
Abstract
Low-grade inflammation is often an underlying cause of several chronic diseases such as asthma, obesity, cardiovascular disease, and type 2 diabetes mellitus (T2DM). Defining the mediators of such chronic low-grade inflammation often appears dependent on which disease is being investigated. However, downstream systemic inflammatory cytokine responses in these diseases often overlap, noting there is no doubt more than one factor at play to heighten the inflammatory response. Furthermore, it is increasingly believed that diet and an altered gut microbiota may play an important role in the pathology of such diverse diseases. More specifically, the inflammatory mediator endotoxin, which is a complex lipopolysaccharide (LPS) derived from the outer membrane cell wall of Gram-negative bacteria and is abundant within the gut microbiota, and may play a direct role alongside inhaled allergens in eliciting an inflammatory response in asthma. Endotoxin has immunogenic effects and is sufficiently microscopic to traverse the gut mucosa and enter the systemic circulation to act as a mediator of chronic low-grade inflammation in disease. Whilst the role of endotoxin has been considered in conditions of obesity, cardiovascular disease and T2DM, endotoxin as an inflammatory trigger in asthma is less well understood. This review has sought to examine the current evidence for the role of endotoxin in asthma, and whether the gut microbiota could be a dietary target to improve disease management. This may expand our understanding of endotoxin as a mediator of further low-grade inflammatory diseases, and how endotoxin may represent yet another insult to add to injury.
Collapse
Affiliation(s)
- Nikita Lad
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Alice M. Murphy
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Cristina Parenti
- SHAPE Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Carl P. Nelson
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Neil C. Williams
- SHAPE Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Graham R. Sharpe
- SHAPE Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Philip G. McTernan
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| |
Collapse
|
35
|
Frampton J, Murphy KG, Frost G, Chambers ES. Higher dietary fibre intake is associated with increased skeletal muscle mass and strength in adults aged 40 years and older. J Cachexia Sarcopenia Muscle 2021; 12:2134-2144. [PMID: 34585852 PMCID: PMC8718023 DOI: 10.1002/jcsm.12820] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/25/2021] [Accepted: 09/05/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Skeletal muscle mass begins to decline from 40 years of age. Limited data suggest that dietary fibre may modify lean body mass (BM), of which skeletal muscle is the largest and most malleable component. We investigated the relationship between dietary fibre intake, skeletal muscle mass and associated metabolic and functional parameters in adults aged 40 years and older. METHODS We analysed cross-sectional data from the US National Health and Nutrition Examination Survey between 2011 and 2018 from adults aged 40 years and older. Covariate-adjusted multiple linear regression analyses were used to evaluate the association between dietary fibre intake and BM components (BM, body mass index [BMI], total lean mass, appendicular lean mass, bone mineral content, total fat, trunk fat; n = 6454), glucose homeostasis (fasting glucose, fasting insulin, HOMA2-IR; n = 5032) and skeletal muscle strength (combined grip strength; n = 5326). BM components and skeletal muscle strength were expressed relative to BM (per kg of BM). RESULTS Higher intakes of dietary fibre were significantly associated with increased relative total lean mass (β: 0.69 g/kg BM; 95% CI, 0.48-0.89 g/kg BM; P < 0.001), relative appendicular lean mass (β: 0.34 g/kg BM; 95% CI, 0.23-0.45 g/kg BM; P < 0.001), relative bone mineral content (β: 0.05 g/kg BM; 95% CI, 0.02-0.07 g/kg BM; P < 0.001) and relative combined grip strength (β: 0.002 kg/kg BM; 95% CI, 0.001-0.003 kg/kg BM; P < 0.001). Conversely, higher dietary fibre intakes were significantly associated with a lower BM (β: -0.20; 95% CI, -0.28 to -0.11 kg; P < 0.001), BMI (β: -0.08 kg/m2 ; 95%CI, -0.10 to -0.05 kg/m2 ), relative total fat (β: -0.68 g/kg BM; 95% CI, -0.89 to -0.47 g/kg BM; P < 0.001), relative trunk fat (β: -0.48 g/kg BM; 95%CI, -0.63 to -0.33 g/kg; P < 0.001), fasting glucose (β: -0.01 mmol/L; 95% CI, -0.02 to -0.00 mmol/L; P = 0.017), fasting insulin (β: -0.71 pmol/L; 95% CI, -1.01 to -0.41 pmol/L; P < 0.001) and HOMA2-IR (β: -0.02 AU; 95% CI, -0.02 to -0.01 AU; P < 0.001). CONCLUSIONS Higher dietary fibre intakes are associated with a lower BM and enhanced body composition, characterized by a reduction in fat mass and an increase in lean mass. Higher dietary fibre intakes were also associated with improvements in glucose homeostasis and skeletal muscle strength. Increasing dietary fibre intake may be a viable strategy to prevent age-associated declines in skeletal muscle mass.
Collapse
Affiliation(s)
- James Frampton
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.,Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Kevin G Murphy
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Gary Frost
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Edward S Chambers
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
36
|
Musazadeh V, Dehghan P, Saleh-Ghadimi S, Abbasalizad Farhangi M. Omega 3-rich Camelina sativa oil in the context of a weight loss program improves glucose homeostasis, inflammation and oxidative stress in patients with NAFLD: A randomised placebo-controlled clinical trial. Int J Clin Pract 2021; 75:e14744. [PMID: 34423525 DOI: 10.1111/ijcp.14744] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Over the past few years, the benefits of omega-3 fatty acids have been reported in the management of non-alcoholic fatty liver disease (NAFLD) complications.This study evaluated the effects of Camelina sativa oil (CSO) supplementation as one of the richest dietary sources of omega-3 fatty acids on glucose homeostasis,inflammation, metabolic endotoxemia, and oxidative stress in NAFLD patients. METHODS A total of 46 patients with NAFLD were allocated to either an intervention (20 g/d CSO) or placebo (20 g/d sunflower oil) group receiving a calorie-restricted diet for 12 weeks. Fasting plasma levels of glycemic indices, hs-CRP, lipopolysaccharide (LPS), antioxidant enzymes activity, total antioxidant capacity (TAC), malondialdehyde (MDA), 8-iso-prostaglandin F2α (8-iso-PGF2α), and uric acid were measured at baseline and post-intervention. RESULTS The CSO supplementation led to significant differences in insulin concentration, homeostasis model assessment of insulin resistance (HOMA-IR), hs-CRP, LPS, TAC, superoxide dismutase (SOD) activity, MDA and 8-iso-PGF2α between the two groups at end of the study (ANCOVA, P < .05). Hs-CRP decreased significantly in both groups (pair-t-test, P < .05). Insulin concentration, quantitative insulin sensitivity check index, LPS, TAC, SOD, glutathione peroxidase activity, MDA and 8-iso-PGF2α changed significantly only in CSO group (P < .05). CONCLUSION These findings indicate that CSO may improve glycemia, inflammation, metabolic endotoxemia, and oxidative stress status in patients with NAFLD.
Collapse
Affiliation(s)
- Vali Musazadeh
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Saleh-Ghadimi
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Abbasalizad Farhangi
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Włodarczyk M, Śliżewska K. Efficiency of Resistant Starch and Dextrins as Prebiotics: A Review of the Existing Evidence and Clinical Trials. Nutrients 2021; 13:nu13113808. [PMID: 34836063 PMCID: PMC8621223 DOI: 10.3390/nu13113808] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
In well-developed countries, people have started to pay additional attention to preserving healthy dietary habits, as it has become common knowledge that neglecting them may easily lead to severe health impairments, namely obesity, malnutrition, several cardiovascular diseases, type-2 diabetes, cancers, hypertensions, and inflammations. Various types of functional foods were developed that are enriched with vitamins, probiotics, prebiotics, and dietary fibers in order to develop a healthy balanced diet and to improve the general health of consumers. Numerous kinds of fiber are easily found in nature, but they often have a noticeable undesired impact on the sensory features of foods or on the digestive system. This led to development of modified dietary fibers, which have little to no impact on taste of foods they are added to. At the same time, they possess all the benefits similar to those of prebiotics, such as regulating gastrointestinal microbiota composition, increasing satiety, and improving the metabolic parameters of a human. In the following review, the evidence supporting prebiotic properties of modified starches, particularly resistant starches and their derivatives, resistant dextrins, was assessed and deliberated, which allowed drawing an interesting conclusion on the subject.
Collapse
Affiliation(s)
- Michał Włodarczyk
- Correspondence: (M.W.); (K.Ś.); Tel.: +48-783149289 (M.W.); +48-501742326 (K.Ś.)
| | - Katarzyna Śliżewska
- Correspondence: (M.W.); (K.Ś.); Tel.: +48-783149289 (M.W.); +48-501742326 (K.Ś.)
| |
Collapse
|
38
|
Therapeutic Potential of Various Plant-Based Fibers to Improve Energy Homeostasis via the Gut Microbiota. Nutrients 2021; 13:nu13103470. [PMID: 34684471 PMCID: PMC8537956 DOI: 10.3390/nu13103470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/19/2022] Open
Abstract
Obesity is due in part to increased consumption of a Western diet that is low in dietary fiber. Conversely, an increase in fiber supplementation to a diet can have various beneficial effects on metabolic homeostasis including weight loss and reduced adiposity. Fibers are extremely diverse in source and composition, such as high-amylose maize, β-glucan, wheat fiber, pectin, inulin-type fructans, and soluble corn fiber. Despite the heterogeneity of dietary fiber, most have been shown to play a role in alleviating obesity-related health issues, mainly by targeting and utilizing the properties of the gut microbiome. Reductions in body weight, adiposity, food intake, and markers of inflammation have all been reported with the consumption of various fibers, making them a promising treatment option for the obesity epidemic. This review will highlight the current findings on different plant-based fibers as a therapeutic dietary supplement to improve energy homeostasis via mechanisms of gut microbiota.
Collapse
|
39
|
Eslick S, Thompson C, Berthon B, Wood L. Short-chain fatty acids as anti-inflammatory agents in overweight and obesity: a systematic review and meta-analysis. Nutr Rev 2021; 80:838-856. [PMID: 34472619 DOI: 10.1093/nutrit/nuab059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
CONTEXT Short-chain fatty acids (SCFAs) derived from microbial fermentation of prebiotic soluble fibers are noted for their anti-inflammatory benefits against obese systemic inflammation. OBJECTIVE A systematic review and meta-analysis were undertaken to investigate the effect of SCFAs and prebiotic interventions on systemic inflammation in obesity. DATA SOURCES Relevant studies from 1947 to August 2019 were collected from the Cumulative Index to Nursing and Allied Health Literature, Embase, Medline, and Cochrane databases. Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. STUDY SELECTION Of 61 included studies, 29 were of humans and 32 of animals. DATA EXTRACTION Methodological quality of studies was assessed using the critical appraisal checklist of the Academy of Nutrition and Dietetics. Data pertaining to population, intervention type and duration, and markers of systemic inflammation were extracted from included studies. RESULTS Of 29 included human studies, 3 of 4 SCFA interventions and 11 of 25 prebiotic interventions resulted in a significant decrease in ≥1 biomarker of systemic inflammation. Of 32 included animal studies, 10 of 11 SCFA interventions and 18 of 21 prebiotic interventions resulted in a significant reduction of ≥1 biomarker of systemic inflammation. Meta-analysis revealed that prebiotics in humans reduced levels of plasma high-sensitivity C-reactive protein (standard mean difference [SMD], -0.83; 95%CI: -1.56 to -0.11; I2: 86%; P = 0.02) and plasma lipopolysaccharide (SMD, -1.20; 95%CI: -1.89 to -0.51; I2: 87%; P = 0.0006), and reduced TNF-α levels in animals (SMD, -0.63; 95%CI: -1.19 to -0.07; P = 0.03). Heterogeneity among supplement types, duration, and dose across studies was significant. CONCLUSION Evidence from this review and meta-analysis supports the use of SCFAs and prebiotics as novel aids in treatment of obese systemic inflammation. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42020148529.
Collapse
Affiliation(s)
- Shaun Eslick
- Level 2, Hunter Medical Research Institute, University of Newcastle, Kookaburra Circuit, New Lambton Heights, New South Wales, Australia
| | - Cherry Thompson
- Level 2, Hunter Medical Research Institute, University of Newcastle, Kookaburra Circuit, New Lambton Heights, New South Wales, Australia
| | - Bronwyn Berthon
- Level 2, Hunter Medical Research Institute, University of Newcastle, Kookaburra Circuit, New Lambton Heights, New South Wales, Australia
| | - Lisa Wood
- Level 2, Hunter Medical Research Institute, University of Newcastle, Kookaburra Circuit, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
40
|
Kavyani M, Saleh-Ghadimi S, Dehghan P, Abbasalizad Farhangi M, Khoshbaten M. Co-supplementation of camelina oil and a prebiotic is more effective for in improving cardiometabolic risk factors and mental health in patients with NAFLD: a randomized clinical trial. Food Funct 2021; 12:8594-8604. [PMID: 34338703 DOI: 10.1039/d1fo00448d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This trial evaluated the effects of co-supplementing Camelina sativa oil (CSO) and a prebiotic as modulators of the gut microbiota on cardiometabolic risk factors and mental health in NAFLD patients. In all, 44 subjects with NAFLD were allocated to either an intervention (20 g d-1 CSO + resistant dextrin) or a placebo (20 g d-1 CSO + maltodextrin) group and received a calorie-restricted diet (-500 kcal d-1) for 12 weeks. Fasting plasma levels of gucose, insulin, hs-CRP, endotoxin, antioxidant enzyme activity, total antioxidant capacity (TAC), malondialdehyde (MDA), 8-iso-prostaglandin F2α, and uric acid were measured at the baseline and post-intervention. The depression, anxiety and stress scale (DASS) and the general health questionnaire (GHQ) were used to assess mental health. Co-supplementing CSO and resistant dextrin significantly decreased the level of insulin concentration (-0.84 μU ml-1, p = 0.011), HOMA-IR (-0.27, p = 0.021), hs-CRP (-1.25 pg ml-1, p = 0.023), endotoxin (-3.70 EU mL-1, p = 0.001), cortisol (-2.43, p = 0.033), GHQ (-5.03, p = 0.035), DASS (-9.01, p = 0.024), and MDA (-0.54 nmol mL-1, p = 0.021) and increased the levels of TAC (0.16 mmol L-1, p = 0.032) and superoxide dismutase (106.32 U g-1 Hb, p = 0.45) in the intervention group compared with the placebo group. No significant changes were observed in the levels of other biomarkers. Co-supplementing CSO and resistant dextrin in combination with a low-calorie diet may improve metabolic risk factors and mental health in NAFLD patients.
Collapse
Affiliation(s)
- Maryam Kavyani
- Student research committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Saleh-Ghadimi
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Parvin Dehghan
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahdieh Abbasalizad Farhangi
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. and Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Khoshbaten
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
41
|
Yang C, Wang M, Tang X, Yang H, Li F, Wang Y, Li J, Yin Y. Effect of Dietary Amylose/Amylopectin Ratio on Intestinal Health and Cecal Microbes' Profiles of Weaned Pigs Undergoing Feed Transition or Challenged With Escherichia coli Lipopolysaccharide. Front Microbiol 2021; 12:693839. [PMID: 34354689 PMCID: PMC8329381 DOI: 10.3389/fmicb.2021.693839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background Dietary amylose/amylopectin ratio (DAR) plays an important role in piglets' intestinal health. It is controversial whether diarrhea could be relieved by changing DAR in weaning piglets. Methods Sixty (Landrace × Yorkshire) castrated male pigs (initial body weight (BW) 6.51 ± 0.64 kg) were randomly allocated to five groups (one pig per cage and 12 replicates per group) according to their BW. Piglets received diets with different DARs (0.00, 0.20, 0.40, 0.60, and 0.80) for 29 days. Feed transition occurs at day 15. The piglets were challenged with lipopolysaccharides (Escherichia coli LPS, 100 μg/kg BW) on day 29 by intraperitoneal injection at 12 h before slaughter. Chyme was collected for pH value, short-chain fatty acid (SCFA), and cecal microbe analysis using 16S rRNA gene sequencing; mucosa was sampled for detecting gene expression. Results Rate and degree of diarrhea were higher when DAR was 0.40 than when it was 0.20 and 0.80 during the third week (P < 0.05). The chyme pH value in the cecum was higher (P < 0.05) in 0.20 DAR than in 0.00 and 0.80 DARs, but with no significant difference compared with 0.40 and 0.60 DARs (P > 0.05). Cecal isobutyric acid and isovaleric acid concentrations were higher in 0.20 than in other groups (P < 0.01). Cecal SCFAs such as acetic acid, propionic acid, and total SCFA, concentrations were higher in 0.40 DAR than in 0.00, 0.60, and 0.80 DARs (P < 0.05), but with no significant difference when compared with 0.20 (P > 0.05). Cecal crypt depth was lower (P < 0.05) in 0.80 than in other groups, but not 0.40. Claudin mRNA expression in the mucosa of the ileum was higher in 0.20 than in other groups (P < 0.01). The alpha diversity of cecal microbe representative by goods coverage was higher in group 0.40 when compared with group 0.20 (P < 0.05). At the genus level, the abundances of the Ruminococcaceae_NK4A214_group and Anaerotruncus were higher but that of Cetobacterium was lower in the cecal chyme of group 0.20 than that of group 0.60 (P < 0.05), with no significant difference compared with other groups (P > 0.05). The diarrhea rate during the third week was negatively correlated with the abundances of Rikenellaceae_RC9_gut_group and X.Eubacterium_coprostanoligenes_group (P < 0.05). Conclusion Compared with diet high in amylose or amylopectin, diet with DAR 0.40 showed a worse degree of diarrhea in weaned piglets during feed transition. But the intestinal health will be improved the week after the microbes and metabolites are regulated by DAR.
Collapse
Affiliation(s)
- Can Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Hunan Health, College of Life Science, Hunan Normal University, Changsha, China.,Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in Nanyue Mountain Area, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Health Livestock, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Min Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Hunan Health, College of Life Science, Hunan Normal University, Changsha, China
| | - XiaoWu Tang
- College of Bioengineering, Hunan Vocational Technical College of Environment and Biology, Hengyang, China
| | - HuanSheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Hunan Health, College of Life Science, Hunan Normal University, Changsha, China
| | - FengNa Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Health Livestock, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - YanCan Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Hunan Health, College of Life Science, Hunan Normal University, Changsha, China
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Hunan Health, College of Life Science, Hunan Normal University, Changsha, China
| | - YuLong Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Hunan Health, College of Life Science, Hunan Normal University, Changsha, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Health Livestock, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
42
|
Mao T, Huang F, Zhu X, Wei D, Chen L. Effects of dietary fiber on glycemic control and insulin sensitivity in patients with type 2 diabetes: A systematic review and meta-analysis. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
43
|
Impact of dietary supplementation with resistant dextrin (NUTRIOSE ®) on satiety, glycaemia, and related endpoints, in healthy adults. Eur J Nutr 2021; 60:4635-4643. [PMID: 34170392 PMCID: PMC8572182 DOI: 10.1007/s00394-021-02618-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/09/2021] [Indexed: 10/24/2022]
Abstract
PURPOSE Resistant dextrin (RD) supplementation has been shown to alter satiety, glycaemia, and body weight, in overweight Chinese men; however, there are limited data on its effects in other demographic groups. Here, we investigated the effects of RD on satiety in healthy adults living in the United Kingdom. METHODS 20 normal weight and 16 overweight adults completed this randomised controlled cross-over study. Either RD (14 g/day NUTRIOSE® FB06) or maltodextrin control was consumed in mid-morning and mid-afternoon preload beverages over a 28-day treatment period with crossover after a 28-day washout. During 10-h study visits (on days 1, 14, and 28 of each treatment period), satietogenic, glycaemic and anorectic hormonal responses to provided meals were assessed. RESULTS Chronic supplementation with RD was associated with higher fasted satiety scores at day 14 (P = 0.006) and day 28 (P = 0.040), compared to control. RD also increased satiety after the mid-morning intervention drink, but it was associated with a reduction in post-meal satiety following both the lunch and evening meals (P < 0.01). The glycaemic response to the mid-morning intervention drink (0-30 min) was attenuated following RD supplementation (P < 0.01). Whilst not a primary endpoint we also observed lower systolic blood pressure at day 14 (P = 0.035) and 28 (P = 0.030), compared to day 1, following RD supplementation in the normal weight group. Energy intake and anthropometrics were unaffected. CONCLUSIONS RD supplementation modified satiety and glycaemic responses in this cohort, further studies are required to determine longer-term effects on body weight control and metabolic markers. CLINICALTRIALS. GOV REGISTRATION NCT02041975 (22/01/2014).
Collapse
|
44
|
Xu B, Fu J, Qiao Y, Cao J, Deehan EC, Li Z, Jin M, Wang X, Wang Y. Higher intake of microbiota-accessible carbohydrates and improved cardiometabolic risk factors: a meta-analysis and umbrella review of dietary management in patients with type 2 diabetes. Am J Clin Nutr 2021; 113:1515-1530. [PMID: 33693499 DOI: 10.1093/ajcn/nqaa435] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Microbiota-accessible carbohydrates (MACs) are critical substrates for intestinal microbes; the subsequent production of SCFAs may have some potential benefits for patients with type 2 diabetes mellitus (T2DM). OBJECTIVES We conducted a meta-analysis of randomized controlled trials (RCTs) to assess the effects of higher compared with lower MAC intakes on cardiovascular risk factors in T2DM patients and performed an umbrella review of RCTs to evaluate the evidence quality concerning existing dietary T2DM interventions. METHODS Publications were identified by searching MEDLINE, EMBASE, and CINAHL. In the meta-analysis, random-effects models were used to calculate pooled estimates, and sensitivity analyses, meta-regression, subgroup analyses, and Egger's test were performed. For the umbrella review, we summarized pooled estimates, 95% CIs, heterogeneity, and publication bias. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) and modified NutriGrade were used to assess the quality of evidence in the meta-analysis and umbrella review, respectively. RESULTS Forty-five RCTs with 1995 participants were included in the meta-analysis. High MAC intake significantly reduced glycated hemoglobin (HbA1c) (weighted mean difference [WMD] -0.436% [-0.556, -0.315]), fasting glucose (WMD -0.835 mmol/L [-1.048, -0.622]), total cholesterol (WMD -0.293 mmol/L [-0.397, -0.190]), triglycerides (WMD -0.118 mmol/L [-0.308, -0.058]), BMI (WMD -0.476 [-0.641, -0.312]), and systolic blood pressure (WMD -3.066 mmHg [-5.653, -0.478]), with a moderate-to-high quality of evidence, compared with low intake. Region, dose, and MAC type were key variables. The umbrella review of all dietary interventions for cardiovascular risk factors in patients with T2DM included 26 meta-analyses with 158 pooled estimates. The evidence quality of MACs, dietary fiber, high-protein diet, ω-3 (n-3), viscous fiber, vitamin D, and vitamin E intake was moderate to high. CONCLUSIONS When compared with lower intake, increased MAC intake improved glycemic control, blood lipid, body weight, and inflammatory markers for people with T2DM. This trial was registered at PROSPERO (https://www.crd.york.ac.uk/PROSPERO/#recordDetails) as CRD42019120531.
Collapse
Affiliation(s)
- Bocheng Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jie Fu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yanxiang Qiao
- Institute of Metabolic Diseases, the 5th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Jinping Cao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Edward C Deehan
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - Zhi Li
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Mingliang Jin
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
Zhang Z, Chen X, Cui B. Modulation of the fecal microbiome and metabolome by resistant dextrin ameliorates hepatic steatosis and mitochondrial abnormalities in mice. Food Funct 2021; 12:4504-4518. [PMID: 33885128 DOI: 10.1039/d1fo00249j] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Targeting the gut-liver axis by manipulating the intestinal microbiome is a promising therapy for nonalcoholic fatty liver disease (NAFLD). This study modulated the intestinal microbiota to explore whether resistant dextrin, as a potential prebiotic, could ameliorate high-fat diet (HFD)-induced hepatic steatosis in C57BL/6J mice. After two months of feeding, significant hepatic steatosis with mitochondrial dysfunction was observed in the HFD-fed mice. However, the concentrations of triglycerides and malondialdehyde in liver tissue and the levels of alanine aminotransferase and aspartate aminotransferase in the serum of mice fed an HFD plus resistant dextrin diet (HFID) were significantly decreased compared to the HFD-fed mice. Additionally, hepatic mitochondrial integrity and reactive oxygen species accumulation were improved in HFID-fed mice, ameliorating hepatic steatosis. The fecal microbiome of HFD-fed mice was enriched in Bifidobacterium, Lactobacillus, and Globicatella, while resistant dextrin increased the abundance of Parabacteroides, Blautia, and Dubosiella. Major changes in fecal metabolites were confirmed for HFID-fed mice, including those related to entero-hepatic circulation (i.e., bile acids), tryptophan metabolism (e.g., indole derivatives), and lipid metabolism (e.g., lipoic acid), as well as increased antioxidants including isorhapontigenin. Furthermore, resistant dextrin decreased inflammatory cytokine levels and intestinal permeability and ameliorated intestinal damage. Together, these findings augmented current knowledge on prebiotic treatment for NAFLD.
Collapse
Affiliation(s)
- Zheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | | | | |
Collapse
|
46
|
Xu B, Cao J, Fu J, Li Z, Jin M, Wang X, Wang Y. The effects of nondigestible fermentable carbohydrates on adults with overweight or obesity: a meta-analysis of randomized controlled trials. Nutr Rev 2021; 80:165-177. [PMID: 33997907 DOI: 10.1093/nutrit/nuab018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
CONTEXT Nondigestible fermentable carbohydrates (NDFCs) can be fermented by microbiota, thereby yielding metabolites that have a beneficial role in the prevention and treatment of obesity and its complications. However, to our knowledge, no meta-analysis has been conducted to evaluate the effects of NDFCs on obesity. OBJECTIVE To conduct a meta-analysis of randomized controlled trials (RCTs) to summarize existing evidence on the effects of numerous NDFCs on adiposity and cardiovascular risk factors in adults with overweight or obesity with ≥2 weeks of follow-up. DATA SOURCES The following databases were searched: MEDLINE, Embase, and CINAHL. DATA EXTRACTION Seventy-seven RCTs with 4535 participants were identified for meta-analysis from the 3 databases. DATA ANALYSIS The findings suggest that increased intake of NDFCs is significantly effective in reducing body mass index by 0.280 kg/m2, weight by 0.501 kg, hip circumference by 0.554 cm, waist circumference by 0.649 cm, systolic blood pressure by 1.725 mmHg, total cholesterol by 0.36 mmol/L, and low-density lipoprotein by 0.385 mmol/L, with evidence of moderate-to-high quality. CONCLUSION Convincing evidence from meta-analyses of RCTs indicates that increased NDFC intake improves adiposity, blood lipid levels, and systolic blood pressure in people with overweight and obesity.
Collapse
Affiliation(s)
- Bocheng Xu
- B. Xu, J. Cao, J. Fu, Z. Li, M. Jin, X. Wang, and Y. Wang are with the College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jinping Cao
- B. Xu, J. Cao, J. Fu, Z. Li, M. Jin, X. Wang, and Y. Wang are with the College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jie Fu
- B. Xu, J. Cao, J. Fu, Z. Li, M. Jin, X. Wang, and Y. Wang are with the College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhi Li
- B. Xu, J. Cao, J. Fu, Z. Li, M. Jin, X. Wang, and Y. Wang are with the College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Mingliang Jin
- B. Xu, J. Cao, J. Fu, Z. Li, M. Jin, X. Wang, and Y. Wang are with the College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xinxia Wang
- B. Xu, J. Cao, J. Fu, Z. Li, M. Jin, X. Wang, and Y. Wang are with the College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- B. Xu, J. Cao, J. Fu, Z. Li, M. Jin, X. Wang, and Y. Wang are with the College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Mateo-Gallego R, Moreno-Indias I, Bea AM, Sánchez-Alcoholado L, Fumanal AJ, Quesada-Molina M, Prieto-Martín A, Gutiérrez-Repiso C, Civeira F, Tinahones FJ. An alcohol-free beer enriched with isomaltulose and a resistant dextrin modulates gut microbiome in subjects with type 2 diabetes mellitus and overweight or obesity: a pilot study. Food Funct 2021; 12:3635-3646. [PMID: 33900319 DOI: 10.1039/d0fo03160g] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We aimed to study the effect of consuming an alcohol-free beer with modified carbohydrates composition (almost completely eliminating maltose and adding isomaltulose (16.5 g day-1) and resistant maltodextrin (5.28 g day-1)) in gut microbiome, compared to regular alcohol-free beer in subjects with T2DM or prediabetes and overweight/obesity. This is a pilot, randomized, double-blinded, crossover study including a sub-sample of a global study with 14 subjects: (a) consuming 66 cl day-1 of regular alcohol-free beer for the first 10 weeks and 66 cl day-1 of modified alcohol-free beer for the next 10 weeks; (b) the same described intervention in opposite order. BMI homogeneously decreased after both interventions. Glucose and HOMA-IR significantly decreased just after the participants consumed modified alcohol-free beer. These findings were in the same line as those reported in the global study. Dominant bacteria at baseline were Bacteroidetes, Firmicutes, Proteobacteria and Tenericutes. Parabacteroides, from the Porphymonadaceae family, resulted as the feature with the greatest difference between beers (ANCOM analysis, W = 15). Feature-volatility analysis confirmed the importance of Parabacteroides within the model. Alcohol-free beers consumption resulted in an enhancement of pathways related to metabolism according to PICRUSt analysis, including terpenoid-quinone, lipopolysaccharides and N-glycan biosynthesis. Thus, an alcohol-free beer including the substitution of regular carbohydrates for low doses of isomaltulose and the addition of maltodextrin within meals significantly impacts gut microbiota in diabetic subjects with overweight or obesity. This could, at least partially, explain the improvement in insulin resistance previously found after taking modified alcohol-free alcohol.Clinical Trial Registration: Registered under ClinicalTrials.gov identifier no. NCT03337828.
Collapse
Affiliation(s)
- Rocío Mateo-Gallego
- Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), CIBERCV, Zaragoza, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Rezende ESV, Lima GC, Naves MMV. Dietary fibers as beneficial microbiota modulators: A proposed classification by prebiotic categories. Nutrition 2021; 89:111217. [PMID: 33838493 DOI: 10.1016/j.nut.2021.111217] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/19/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Dietary fiber is a group of heterogeneous substances that are neither digested nor absorbed in the small intestine. Some fibers can be classified as prebiotics if they are metabolized by beneficial bacteria present in the hindgut microbiota. The aim of this review was to specify the prebiotic properties of different subgroups of dietary fibers (resistant oligosaccharides, non-starch polysaccharides, resistant starches, and associated substances) to classify them by prebiotic categories. Currently, only resistant oligosaccharides (fructans [fructooligosaccharides, oligofructose, and inulin] and galactans) are well documented as prebiotics in the literature. Other fibers are considered candidates to prebiotics or have prebiotic potential, and apparently some have no prebiotic effect on humans. This dietary fiber classification by the prebiotic categories contributes to a better understanding of these concepts in the literature, to the stimulation of the processing and consumption of foods rich in fiber and other products with prebiotic properties, and to the development of protocols and guidelines on food sources of prebiotics.
Collapse
Affiliation(s)
| | - Glaucia Carielo Lima
- School of Nutrition, Federal University of Goiás, St. Leste Universitário, Goiânia, Goiás, Brazil
| | | |
Collapse
|
49
|
Wang R, Li M, Strappe P, Zhou Z. Preparation, structural characteristics and physiological property of resistant starch. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 95:1-40. [PMID: 33745510 DOI: 10.1016/bs.afnr.2020.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Starch is of the most important carbohydrates in human diets for maintaining normal body's energy metabolisms. However, due to the increased number of chronic diseases worldwide, the further study of the starch property in the dietary formula becomes essential for revealing its association with preventing or intervening the occurrence of such diseases as diabetes, obesity, intestinal diseases and even cardiovascular diseases. Considering that different starches demonstrate different digestion property based on their individual structural characteristics, in particular, the existence of resistant starch (RS) attracts much more interests recently because of its being a major producer of short-chain fatty acids followed by gut microbial fermentation. Furthermore, the understanding of the interaction between RS and microbiota in the gut and its substantial influence on the regulation of diabetes, kidney, disease hypertension and others is still being under investigated. Therefore, this chapter summarized the fine structure of starch, resistant starch structural characteristics, formation and preparation of resistant starches and their corresponding physiological property.
Collapse
Affiliation(s)
- Rui Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Mei Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Padraig Strappe
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Zhongkai Zhou
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China; ARC Functional Grains Centre, Charles Sturt University, Wagga Wagga, NSW, Australia.
| |
Collapse
|
50
|
Qu H, Song L, Zhang Y, Gao ZY, Shi DZ. The Effect of Prebiotic Products on Decreasing Adiposity Parameters in Overweight and Obese Individuals: A Systematic Review and Meta- Analysis. Curr Med Chem 2021; 28:419-431. [PMID: 31886746 DOI: 10.2174/0929867327666191230110128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/09/2019] [Accepted: 11/10/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Prebiotics are substrates selectively utilized by host microorganisms to confer health benefits. The potential of prebiotics to decrease body weight in overweight/obese individuals was suggested by some clinical and animal studies. However, these studies were based on relatively small sample sizes and the precise effects of prebiotic products have not yet been evaluated. Therefore, the present meta-analysis of Randomized Controlled Trials (RCTs) was designed to comprehensively assess the effects of prebiotic products on overweight and obese individuals. METHODS PubMed, EMBASE and Cochrane Library were searched to identify RCT investigating the effects of prebiotic products on overweight and obese individuals. We calculated the pooled weighted mean difference (WMD) to assess the effects of prebiotic products on Body Mass Index (BMI), body weight, fat mass and inflammatory biomarkers. RESULTS Twelve RCTs with a total of 535 overweight and obese individuals were enrolled. Compared with placebo, prebiotic products decreased C reactive protein (WMD, -1.06 mg/L; 95%CI, -1.72 to - 0.40; p=0.002), tumour necrosis factor-α(WMD, -0.64 pg/mL; 95%CI, -1.11 to -0.18; p=0.006) and other inflammatory markers, such as interleukin-1β,lipopolysaccharide (p<0.05); whereas no reductions in BMI (WMD, -0.20 kg/m2; 95%CI, -0.58 to 0.19; p=0.32), body weight (WMD, -0.51 kg; 95%CI, -1.18 to 0.16; p=0.14) and fat mass (WMD, 0.11 kg; 95%CI, -0.04 to 0.25; p=0.15) were observed. CONCLUSION In the present analysis, comprehensive evidence suggested that prebiotic products did not decrease adiposity parameters (BMI, body weight and body fat mass), but they could decrease the levels of systemic inflammatory biomarkers, implying adherence to prebiotic products might be a promising complementary approach to managing inflammatory states in overweight and obese individuals.
Collapse
Affiliation(s)
- Hua Qu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lei Song
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhu-Ye Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Da-Zhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|