1
|
Rezaeiasl Z, Zavareh MS. Diabetic wounds and short-chain fatty acids. J Diabetes Metab Disord 2025; 24:45. [PMID: 39801685 PMCID: PMC11723878 DOI: 10.1007/s40200-025-01560-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
Diabetes mellitus is a debilitating and worrisome chronic disease with many complications such as cardiovascular disease, kidney damage, blindness and diabetic wounds. Despite advances in the treatment of diabetic wounds, there are still concerns regarding the management of diabetic wound healing, particularly the inflammatory phase. In addition to many treatments with successful effects on wound healing in diabetic patients, short-chain fatty acids (SCFA) acetate, propionate, butyrate, valproate and valerate and their by-products have recently been proposed as new treatments for wound healing in diabetic patients. We provide an overview of the most recent studies on the effectiveness of the above-mentioned SCFAs in the treatment of diabetic wounds as well as possible effects on cytokines in this area of study.
Collapse
Affiliation(s)
- Zahra Rezaeiasl
- Institute for Basic Sciences, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Mahmoud Salami Zavareh
- Institute for Basic Sciences, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| |
Collapse
|
2
|
Kim K, Yang J, Li C, Yang CY, Hu P, Liu Y, Huang YY, Sun X, Chi M, Huang C, Sun X, Zhao L, Wang X. Anisotropic structure of nanofiber hydrogel accelerates diabetic wound healing via triadic synergy of immune-angiogenic-neurogenic microenvironments. Bioact Mater 2025; 47:64-82. [PMID: 39877154 PMCID: PMC11772153 DOI: 10.1016/j.bioactmat.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/07/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
Wound healing in chronic diabetic patients remains challenging due to the multiple types of cellular dysfunction and the impairment of multidimensional microenvironments. The physical signals of structural anisotropy offer significant potential for orchestrating multicellular regulation through physical contact and cellular mechanosensing pathways, irrespective of cell type. In this study, we developed a highly oriented anisotropic nanofiber hydrogel designed to provide directional guidance for cellular extension and cytoskeletal organization, thereby achieving pronounced multicellular modulation, including shape-induced polarization of macrophages, morphogenetic maturation of Schwann cells, oriented extracellular matrix (ECM) deposition by fibroblasts, and enhanced vascularization by endothelial cells. Additionally, we incorporated a VEGF-mimicking peptide to further reinforce angiogenesis, a pivotal phase that interlocks with immune regulation, neurogenesis, and tissue regeneration, ultimately contributing to optimized inter-microenvironmental crosstalk. In vivo studies validated that the anisotropic bioactive nanofiber hydrogel effectively accelerated diabetic wound healing by harnessing the triadic synergy of the immune-angiogenic-neurogenic microenvironments. Our findings highlight the promising potential of combining physical and bioactive signals for the modulation of various cell types and the refinement of the multidimensional microenvironment, offering a novel strategy for diabetic wound healing.
Collapse
Affiliation(s)
- Kunkoo Kim
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Jia Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Chengli Li
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 102218, Beijing, China
| | - Chun-Yi Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
- Center for Biomaterials and Regenerative Medicine, Wuzhen Laboratory, 314500, Tongxiang, China
| | - Peilun Hu
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 102218, Beijing, China
- Beijing Friendship Hospital, Capital Medical University, 102218, Beijing, China
| | - Yaosai Liu
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 102218, Beijing, China
| | - Yin-yuan Huang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
- Department of Biomedical Engineering, Washington University in St. Louis, 63130, St. Louis, Missouri, United States
| | - Xiaohan Sun
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Ming Chi
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Chenyu Huang
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 102218, Beijing, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
3
|
Luo R, Fan Y, Qi Y, Bai Y, Xiao M, Lv Y, Liang J, Tang M, Zhang J, Li Z, Luo D. Self-Manipulating Sodium Ion Gradient-Based Endogenic Electrical Stimulation Dressing for Wound Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419149. [PMID: 39951003 DOI: 10.1002/adma.202419149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/14/2025] [Indexed: 04/03/2025]
Abstract
Endogenous electric field (EF) originating from differences in ionic gradients plays a decisive role in the wound healing process. Based on this understanding, a self-manipulating sodium ion gradient-based endogenic electrical stimulation dressing (smig-EESD) is developed to achieve passive, non-invasive, endogenic electrical stimulation of wounds, which avoids the side effects of electrode occupancy, electrochemical reactions, and thermal effects present in traditional exogenous electrical stimulation. smig-EESD reduced the potential at the center of the wound by specifically absorbing Na+ in the exudate, ultimately strengthening the wound endogenous EF. Importantly, smig-EESD converted the active transport dependent on Na+/K+-ATPase into passive diffusion by adsorbing extracellular matrix Na+, and the saved ATP consumption promoted tissue repair process. smig-EESD regulated innate and adaptive immune responses by upregulating the secretion of multiple cytokines, thereby suppressing injury-associated inflammatory responses and reducing scar formation. smig-EESD reveals an endogenic electrical stimulation strategy that is independent of electrodes and circuits, and provides new insights into the future development of electronic medicine.
Collapse
Affiliation(s)
- Ruizeng Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, School of Biomedical Engineering, Tsinghua Medicine, Tsinghua University, Beijing, 100084, China
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yijie Fan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yilin Qi
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Bai
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Center on Nanoenergy Research, School of Physical Science & Technology, Guangxi University, Nanning, 530004, China
| | - Meng Xiao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujia Lv
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Jinrui Liang
- State Key Laboratory of Chemical Resource Engineering, Department of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mingcheng Tang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, School of Biomedical Engineering, Tsinghua Medicine, Tsinghua University, Beijing, 100084, China
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center on Nanoenergy Research, School of Physical Science & Technology, Guangxi University, Nanning, 530004, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| |
Collapse
|
4
|
Amini MA, Khodadadi I, Tavilani H, Abbasalipourkabir R, Azizi M, Rashidi K, Samadian H, Karimi J. Fabrication, characterization, and application of gelatin/alginate-based hydrogels incorporating selenium-doped deferoxamine-derived carbon quantum dots: In vitro and in vivo studies. Int J Biol Macromol 2025; 303:140569. [PMID: 39909275 DOI: 10.1016/j.ijbiomac.2025.140569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/16/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
This study developed a gelatin/alginate-based nanocomposite hydrogel (NC gel), incorporating selenium-doped deferoxamine-derived carbon quantum dots (Se.DFO-CQDs). Initially, Se.DFO-CQDs were synthesized and characterized through several tests, and subsequently, NC gels were created using an dual crosslinking method and analyzed through characterization tests such as SEM, EDX, FT-IR, XRD, tensile strength, water uptake, water vapor transmission rate, weight loss, porosity, blood compatibility, microbial penetration, and DPPH. In vivo studies revealed that NC gels containing Se.DFO-CQDs at 50 % and 0 % exhibited higher wound closure percentages than the control group. The highest wound closure percentage was observed in NC gels with Se.DFO-CQDs at 50 %, reaching 85.7 ± 3.98 % on the 7th day and 98.1 ± 3.95 % on the 14th day. Histological examinations demonstrated that NC gels with Se.DFO-CQDs at 50 % promoted more significant neovascularization, re-epithelialization, and collagen synthesis. Additionally, RT-qPCR results indicated that NC gels with Se.DFO-CQDs at 50 % significantly upregulated the mRNA expression of VEGF-A, bFGF, PDGF-b, and lncRNA GAS5 on the 7th day and COL1A1 on the 14th day. In conclusion, our findings suggest that the NC gels with Se.DFO-CQDs at 50 % show promise for enhancing wound healing and skin regeneration, potentially offering clinical applications.
Collapse
Affiliation(s)
- Mohammad Amin Amini
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidar Tavilani
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Azizi
- Cancer Research Center, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Khodabakhsh Rashidi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Samadian
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Jamshid Karimi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
5
|
Tian Z, Gu R, Xie W, Su X, Yuan Z, Wan Z, Wang H, Liu Y, Feng Y, Liu X, Huang J. Hydrogen bonding-mediated phase-transition gelatin-based bioadhesives to regulate immune microenvironment for diabetic wound healing. Bioact Mater 2025; 46:434-447. [PMID: 39850021 PMCID: PMC11755075 DOI: 10.1016/j.bioactmat.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Gelatin-based biomaterials have emerged as promising candidates for bioadhesives due to their biodegradability and biocompatibility. However, they often face limitations due to the uncontrollable phase transition of gelatin, which is dominated by hydrogen bonds between peptide chains. Here, we developed controllable phase transition gelatin-based (CPTG) bioadhesives by regulating the dynamic balance of hydrogen bonds between the peptide chains using 2-hydroxyethylurea (HU) and punicalagin (PA). These CPTG bioadhesives exhibited significant enhancements in adhesion energy and injectability even at 4 °C compared to traditional gelatin bioadhesives. The developed bioadhesives could achieve self-reinforcing interfacial adhesion upon contact with moist wound tissues. This effect was attributed to HU diffusion, which disrupted the dynamic balance of hydrogen bonds and therefore induced a localized structural densification. This process was further facilitated by the presence of pyrogallol from PA. Furthermore, the CPTG bioadhesive could modulate the immune microenvironment, offering antibacterial, antioxidant, and immune-adjustable properties, thereby accelerating diabetic wound healing, as confirmed in a diabetic wound rat model. This proposed design strategy is not only crucial for developing controllable phase-transition bioadhesives for diverse applications, but also paves the way for broadening the potential applications of gelatin-based biomaterials.
Collapse
Affiliation(s)
- Zhuoling Tian
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
- Nanchang Innovation Institute, Peking University, Nanchang, 330096, China
| | - Ruoheng Gu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Wenyue Xie
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Xing Su
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Zuoying Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Zhuo Wan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Hao Wang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Yaqian Liu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Yuting Feng
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Fifth Central Hospital of Tianjin, Tianjin, 300450, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
- Nanchang Innovation Institute, Peking University, Nanchang, 330096, China
| |
Collapse
|
6
|
Li Z, Chen R, Hao Z, E Y, Guo Q, Li J, Zhu S. Hydrogel inspired by "adobe" with antibacterial and antioxidant properties for diabetic wound healing. Mater Today Bio 2025; 31:101477. [PMID: 39885943 PMCID: PMC11780960 DOI: 10.1016/j.mtbio.2025.101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025] Open
Abstract
With the aging population, the incidence of diabetes is increasing. Diabetes often leads to restricted neovascularization, antibiotic-resistant bacterial infections, reduced wound perfusion, and elevated reactive oxygen species, resulting in impaired microenvironments and prolonged wound healing. Hydrogels are important tissue engineering materials for wound healing, known for their high water content and good biocompatibility. However, most hydrogels suffer from poor mechanical properties and difficulty in achieving sustained drug release, hindering their clinical application. Inspired by the incorporation of fibers to enhance the mechanical properties of "adobe," core-shell fibers were introduced into the hydrogel. This not only improves the mechanical strength of the hydrogel but also enables the possibility of sustained drug release. In this study, we first prepared core-shell fibers with PLGA (poly(lactic-co-glycolic acid)) and PCL (polycaprolactone). PLGA was loaded with P2 (Parathyroid hormone-related peptides-2), developed by our group, which promotes angiogenesis and cell proliferation. We then designed a QTG (QCS/TA/Gel, quaternary ammonium chitosan/tannic acid/gelatin) hydrogel, incorporating the core-shell fibers and the anti-inflammatory drug celecoxib into the QTG hydrogel. This hydrogel exhibits excellent antibacterial properties and biocompatibility, along with good mechanical performance. This hydrogel demonstrates excellent water absorption and swelling capabilities. In the early stages of wound healing, the hydrogel can absorb the wound exudate, maintaining the stability of the wound microenvironment. This hydrogel promotes neovascularization and collagen deposition, accelerating the healing of diabetic wounds, with a healing rate exceeding 95 % by day 14. Overall, this study provides a promising strategy for developing tissue engineering scaffolds for diabetic wound healing.
Collapse
Affiliation(s)
| | | | | | | | - Qi Guo
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shaobo Zhu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
7
|
Han M, Wang J, Wu Y, Liao J, Guo J, Tang Z. CEBPA as a potential hub gene for cutaneous inflammation in type 2 diabetes mellitus. Int J Biol Macromol 2025; 298:140080. [PMID: 39837449 DOI: 10.1016/j.ijbiomac.2025.140080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/29/2024] [Accepted: 01/17/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND The role of inflammation in the development of type 2 diabetes mellitus (T2DM) related skin complications necessitates further investigation. This study aims to explore the correlation between inflammation and cutaneous alterations in T2DM, enhancing comprehension of underlying mechanism involved. METHODS Utilizing bioinformatics, the GSE38396 and GSE92724 datasets were employed to identify differentially expressed genes (DEGs) and potential hub genes in T2DM-related skin inflammation. Subsequently, gene functional enrichment analysis was employed for functional annotation. Finally, we validated the regulatory impact of hub gene on inflammation during high glucose incubation using the in vitro model. RESULTS A comprehensive analysis identified 742 DEGs, including 9 hub genes and 4 potential biomarkers. Compared to the CON group, the expression of M2 macrophages was significantly upregulated in the T2DM group, while resting dendritic cells and eosinophils showed notable decreases, indicating a significant correlation with CEBPA. Furthermore, functional enrichment analysis revealed significant enrichment of DEGs in pathways linked to immunity and diabetes pathogenesis. Interestingly, overexpression of CEBPA demonstrated anti-inflammatory effects under hyperglycemic conditions, while silencing CEBPA expression appeared to worsen inflammation. CONCLUSION CEBPA emerges as a potential hub gene for skin inflammation in T2DM, shedding light on the underlying mechanisms of this condition.
Collapse
Affiliation(s)
- Mingzheng Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jingchun Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yijin Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Mao K, Yue M, Ma H, Li Z, Liu Y. Electro- and Magneto-Active Biomaterials for Diabetic Tissue Repair: Advantages and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501817. [PMID: 40159915 DOI: 10.1002/adma.202501817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Indexed: 04/02/2025]
Abstract
The diabetic tissue repair process is frequently hindered by persistent inflammation, infection risks, and a compromised tissue microenvironment, which lead to delayed wound healing and significantly impact the quality of life for diabetic patients. Electromagnetic biomaterials offer a promising solution by enabling the intelligent detection of diabetic wounds through electric and magnetic effects, while simultaneously improving the pathological microenvironment by reducing oxidative stress, modulating immune responses, and exhibiting antibacterial action. Additionally, these materials inherently promote tissue regeneration by regulating cellular behavior and facilitating vascular and neural repair. Compared to traditional biomaterials, electromagnetic biomaterials provide advantages such as noninvasiveness, deep tissue penetration, intelligent responsiveness, and multi-stimuli synergy, demonstrating significant potential to overcome the challenges of diabetic tissue repair. This review comprehensively examines the superiority of electromagnetic biomaterials in diabetic tissue repair, elucidates the underlying biological mechanisms, and discusses specific design strategies and applications tailored to the pathological characteristics of diabetic wounds, with a focus on skin wound healing and bone defect repair. By addressing current limitations and pursuing multi-faceted strategies, electromagnetic biomaterials hold significant potential to improve clinical outcomes and enhance the quality of life for diabetic patients.
Collapse
Affiliation(s)
- Kai Mao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Muxin Yue
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Huiping Ma
- Department of Stomatology, Zhengzhou Shuqing Medical College, 6 Gongming Road, Erqi District, Zhengzhou, 450064, P. R. China
| | - Zheng Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| |
Collapse
|
9
|
Dong Z, Li S, Huang Y, Chen T, Ding Y, Tan Q. RNA N 6-methyladenosine demethylase FTO promotes diabetic wound healing through TRIB3-mediated autophagy in an m 6A-YTHDF2-dependent manner. Cell Death Dis 2025; 16:222. [PMID: 40157922 PMCID: PMC11954964 DOI: 10.1038/s41419-025-07494-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/01/2025] [Accepted: 02/27/2025] [Indexed: 04/01/2025]
Abstract
N6-methyladenosine (m6A) RNA modification impaired autophagy results in delayed diabetic wound healing. In this study, it was found that fat mass and obesity-associated protein (FTO) was significantly downregulated in the epidermis of diabetic patients, STZ-induced mice and db/db mice (type I and II diabetic mice) with prolonged hyperglycemia, as well as in different types of keratinocyte cell lines treated with short-term high glucose medium. The knockout of FTO affected the biological functions of keratinocytes, including enhanced apoptosis, inhibited autophagy, and delayed wound healing, producing consistent results with high-glucose medium treatment. High-throughput analysis revealed that tribbles pseudokinase 3 (TRIB3) served as the downstream target gene of FTO. In addition, both in vitro and in vivo experiments, TRIB3 overexpression partially rescued biological functions caused by FTO-depletion, promoting keratinocyte migration and proliferation via autophagy. Epigenetically, FTO modulated m6A modification in the 3'UTR of TRIB3 mRNA and enhanced TRIB3 stability in a YTHDF2-dependent manner. Collectively, this study identifies FTO as an accelerator of diabetic wound healing and modulates autophagy via regulating TRIB3 in keratinocytes, thereby benefiting the development of a m6A-targeted therapy for refractory diabetic wounds.
Collapse
Affiliation(s)
- Zheng Dong
- Department of Burn and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Shiyan Li
- Department of Burn and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Yumeng Huang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, 210008, China
| | - Tianzhe Chen
- Department of Burn and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Youjun Ding
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, 210008, China
| | - Qian Tan
- Department of Burn and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
10
|
Xu Y, Xu X, Zhao Y, Tian Y, Ma Y, Zhang X, Li F, Zhao W, Ma J, Xu Q, Sun Q. A self-powered casein hydrogel E-dressing with synergistic photothermal therapy, electrical stimulation, and antibacterial effects for chronic wound management. Acta Biomater 2025:S1742-7061(25)00216-8. [PMID: 40157697 DOI: 10.1016/j.actbio.2025.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/26/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Triboelectric nanogenerators (TENGs) have recently demonstrated great application potential for accelerating wound healing in the field of medical research due to their unique electrical stimulation effect. Among the various types of TENGs, solid-liquid TENGs have attracted much attention due to their significant advantages, such as high contact-separation efficiency and a wide range of liquid motion. Therefore, this study innovatively proposed a solid-liquid biphasic TENG electronic dressing constructed from a casein hydrogel enhanced by the metal-organic framework Zeolitic Imidazolate Framework-8 (ZIF-8). This hydrogel dressing comprised sodium caseinate (SC)/multi-walled carbon nanotubes-polydopamine@polydopamine (MWCNT@PDA)/polyacrylamide (PAM)/ZIF-8. It ingeniously integrates multiple functions such as photothermal, photodynamic antibacterial, and electrical stimulation therapies, thereby establishing a new multimodal synergistic treatment paradigm. Notably, the addition of ZIF-8 not only controlled photothermal release of antibacterial agents but also facilitates the development of a distinctive solid-liquid biphasic operational modality in TENG system, achieving a 131 V peak output voltage through significant enhancement of electrical performance parameters. In addition, the TENG-based system adopts a non-contact electrical stimulation method for wound treatment, fundamentally reducing the risk of infection caused by direct contact. Experiments using mouse fibroblasts revealed that the simultaneous real-time use of near-infrared light and TENG can significantly improve the cell migration process. Empirical studies on animals demonstrated that it could accelerate tissue regeneration and wound healing by increasing collagen deposition and angiogenesis. Based on these results, this study provides new perspectives for the developing intelligent biomedical composites for future wound management. STATEMENT OF SIGNIFICANCE: Chronic wounds have become a major threat to global medical and health fields due to pathogenic infections. Traditional wound dressings mostly focus on passive healing, which has limited effectiveness. To overcome these limitations, we developed an electronic dressing of a casein-based hydrogel TENG enhanced by a MOF. This electronic dressing combines photothermal, photodynamic antibacterial, and electrical stimulation functions and efficiently promotes wound healing through multifunctional synergy. This research provides a promising solution for diabetic wound care and a broader field of chronic wound treatment. It is a solid step in the scientific exploration of interdisciplinary integration, offering new ideas for making the wound treatment field more intelligent, efficient, and precise.
Collapse
Affiliation(s)
- Yuhang Xu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyu Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Yuan Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - YaNing Tian
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yubo Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fanni Li
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wei Zhao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China.
| | - Qunna Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China.
| | - Qi Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
11
|
Kerr M, Wild D, Edmonds M, Boulton AJM. Cost effectiveness of topical wound oxygen therapy for chronic diabetic foot ulcers. J Diabetes Complications 2025; 39:109016. [PMID: 40147260 DOI: 10.1016/j.jdiacomp.2025.109016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/24/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
AIMS To estimate the cost effectiveness of Topical Wound Oxygen therapy (TWO2) for chronic diabetic foot ulcers. METHODS A Markov model was created to estimate the cost effectiveness of TWO2 over 2 years. Clinical outcome probabilities were estimated from a recent multi-national randomised controlled trial. Diabetic footcare costs were estimated for the National Health Service in England, based on national cost collections, published literature and expert opinion. Model inputs were varied in sensitivity analyses. RESULTS Base case results indicate that at a weekly TWO2 price of £650 for up to 12 weeks, total diabetic footcare costs over 2 years are £5038 lower for a patient treated with TWO2 than for standard care, and QALYs are 0.07 higher. Probabilistic sensitivity analysis estimates an 81 % likelihood that the treatment is cost effective at a willingness to pay threshold of £25,000 per QALY. CONCLUSIONS Base case results indicate that if the clinical outcomes in the RCT are replicated in routine care, TWO2 is a dominant treatment, with lower cost and improved outcomes relative to standard care. Sensitivity analysis shows a high probability that the treatment is cost effective at a willingness to pay threshold of £25,000 per QALY.
Collapse
Affiliation(s)
- Marion Kerr
- Insight Health Improvement Ltd., 16 Cambrian Road, Richmond, Surrey TW10 6JQ, UK.
| | - Daisy Wild
- Insight Health Improvement Ltd., 16 Cambrian Road, Richmond, Surrey TW10 6JQ, UK.
| | - Michael Edmonds
- Diabetic Foot Clinic, King's College Hospital, Denmark Hill, London SE5 9RS, UK.
| | - Andrew J M Boulton
- Diabetes, Endocrinology and Metabolism Centre, Manchester Royal Infirmary, Oxford Road, Manchester, M13 9WL, UK.
| |
Collapse
|
12
|
Forooshani PK, Razaviamri F, Smies A, Morath LM, Pinnaratip R, Bhuiyan MSA, Rajachar R, Goldman J, Lee BP. Accelerated dermal wound healing in diabetic mice by a H 2O 2-generating catechol-functionalized gelatin microgel. J Mater Chem B 2025; 13:3967-3979. [PMID: 40029170 DOI: 10.1039/d4tb01722f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Physically crosslinked gelatin microgels were functionalized with a bioadhesive molecule, catechol, to study the effect of in situ generated H2O2 on full-thickness wound repair in diabetic mice. Due to the physically crosslinked nature of the microgels, they transition into a hydrogel film upon hydration. The formation of a hydrogel film was confirmed by the changes in their morphology and viscoelastic properties. Additionally, these microgels released up to 86 μM of H2O2 as a result of catechol autoxidation. The generated H2O2 completely eradicated Staphylococcus epidermidis with an initial concentration of 103 CFU mL-1. These microgels were not cytotoxic and promoted VEGF upregulation in immortalized human keratinocytes (HaCaT) in vitro. When the microgels were applied to a full-thickness dermal wound in diabetic mice, dermal wound closure was accelerated over 14 days, achieving a wound closure of 90% based on the wound area. Microgel-treated wounds also resulted in complete re-epithelialization and regeneration of new dermal tissues with morphology and structure resembling those of native tissues. These results indicate that the release of micromolar concentrations of H2O2 can accelerate wound healing in a healing-impaired animal.
Collapse
Affiliation(s)
- Pegah Kord Forooshani
- Depart of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, 49931, USA.
| | - Fatemeh Razaviamri
- Depart of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, 49931, USA.
| | - Ariana Smies
- Depart of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, 49931, USA.
| | - Lea M Morath
- Depart of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, 49931, USA.
| | - Rattapol Pinnaratip
- Depart of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, 49931, USA.
| | - Md Saleh Akram Bhuiyan
- Depart of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, 49931, USA.
| | - Rupak Rajachar
- Depart of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, 49931, USA.
| | - Jeremy Goldman
- Depart of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, 49931, USA.
| | - Bruce P Lee
- Depart of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, 49931, USA.
| |
Collapse
|
13
|
Zhang S, Wang L, Feng Z, Wang Z, Wang Y, Wei B, Liu H, Zhao W, Li J. Engineered MXene Biomaterials for Regenerative Medicine. ACS NANO 2025; 19:9590-9635. [PMID: 40040439 DOI: 10.1021/acsnano.4c16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
MXene-based materials have attracted significant interest due to their distinct physical and chemical properties, which are relevant to fields such as energy storage, environmental science, and biomedicine. MXene has shown potential in the area of tissue regenerative medicine. However, research on its applications in tissue regeneration is still in its early stages, with a notable absence of comprehensive reviews. This review begins with a detailed description of the intrinsic properties of MXene, followed by a discussion of the various nanostructures that MXene can form, spanning from 0 to 3 dimensions. The focus then shifts to the applications of MXene-based biomaterials in tissue engineering, particularly in immunomodulation, wound healing, bone regeneration, and nerve regeneration. MXene's physicochemical properties, including conductivity, photothermal characteristics, and antibacterial properties, facilitate interactions with different cell types, influencing biological processes. These interactions highlight its potential in modulating cellular functions essential for tissue regeneration. Although the research on MXene in tissue regeneration is still developing, its versatile structural and physicochemical attributes suggest its potential role in advancing regenerative medicine.
Collapse
Affiliation(s)
- Shengmin Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Liang Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Zhichao Feng
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Zhiqi Wang
- Department of Head and Neck Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yingxue Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Benjie Wei
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Weiwei Zhao
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| |
Collapse
|
14
|
Don TM, Lee KT, Chen BY, Tang S, Huang YC, Chuang AEY. Physicochemical properties of bacterial cellulose/phototherapeutic polypyrrole/antibacterial chitosan composite membranes and their evaluation as chronic wound dressings. Int J Biol Macromol 2025; 308:142183. [PMID: 40107531 DOI: 10.1016/j.ijbiomac.2025.142183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Bacterial cellulose (BC) is a natural fiber membrane and has been applied in many biomedical applications. Herein, it was used as the main scaffold to prepare wound dressings for treating diabetic skin wounds. Polypyrrole (PPy) was first synthesized by in situ oxidative polymerization within BC membrane and applied as a photothermal agent, followed by coating with chitosan (CS) to improve the biocompatibility and antibacterial properties. SEM pictures revealed sub-micron PPy particles ranging from 100 to 200 nm were formed and attached to the BC fibrils, whereas CS formed a thin, porous layer on the surface. FTIR analysis showed that there was hydrogen bonding between BC, PPy and CS components. The crystalline structure of BC was maintained yet with decreased crystallinity by addition of PPy and CS. The water absorption capability and water vapor transmission rate decreased by PPy incorporation owing to its hydrophobic nature, but they were regained by addition of hydrophilic CS. The prepared BC/PPy/CS membrane was biocompatible toward L929 cells and maintained hemocompatibility. Additionally, both PPy and CS contributed to the antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, while they demonstrated a potential for synergistic antibacterial effects when combined. Finally, the near-infrared (NIR)-driven photothermal-hyperthermic effects by PPy on lesions upregulated heat-shock protein (HSP) expression and anti-inflammatory properties by CS boosted restoration of diabetic wounds in vivo without the addition of any antibiotics or anti-inflammatory drugs. The results thus support using the BC/PPy/CS membrane for diabetic wound regeneration.
Collapse
Affiliation(s)
- Trong-Ming Don
- Department of Chemical and Materials Engineering, Tamkang University, New Taipei City, Taiwan.
| | - Kuan-Ting Lee
- Department of Chemical and Materials Engineering, Tamkang University, New Taipei City, Taiwan.
| | - Bo-Yi Chen
- Department of Chemical and Materials Engineering, Tamkang University, New Taipei City, Taiwan.
| | - Shuoheng Tang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Yi-Cheng Huang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan.
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
15
|
Banerjee D, Vydiam K, Vangala V, Mukherjee S. Advancement of Nanomaterials- and Biomaterials-Based Technologies for Wound Healing and Tissue Regenerative Applications. ACS APPLIED BIO MATERIALS 2025; 8:1877-1899. [PMID: 40019109 DOI: 10.1021/acsabm.5c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Patients and healthcare systems face significant social and financial challenges due to the increasing number of individuals with chronic external and internal wounds that fail to heal. The complexity of the healing process remains a serious health concern, despite the effectiveness of conventional wound dressings in promoting healing. Recent advancements in materials science and fabrication techniques have led to the development of innovative dressings that enhance wound healing. To further expedite the healing process, novel approaches such as nanoparticles, 3D-printed wound dressings, and biomolecule-infused dressings have emerged, along with cell-based methods. Additionally, gene therapy technologies are being harnessed to generate stem cell derivatives that are more functional, selective, and responsive than their natural counterparts. This review highlights the significant potential of biomaterials, nanoparticles, 3D bioprinting, and gene- and cell-based therapies in wound healing. However, it also underscores the necessity for further research to address the existing challenges and integrate these strategies into standard clinical practice.
Collapse
Affiliation(s)
- Durba Banerjee
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Kalyan Vydiam
- United Therapeutics, Manchester, New Hampshire 0310, United States
| | - Venugopal Vangala
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Sudip Mukherjee
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
16
|
He SQ, Huang B, Xu F, Yang JJ, Li C, Liu FR, Yuan LQ, Lin X, Liu J. Functions and application of circRNAs in vascular aging and aging-related vascular diseases. J Nanobiotechnology 2025; 23:216. [PMID: 40098005 PMCID: PMC11917153 DOI: 10.1186/s12951-025-03199-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Circular RNAs (circRNAs), constituting a novel class of endogenous non-coding RNAs generated through the reverse splicing of mRNA precursors, possess the capacity to regulate gene transcription and translation. Recently, the pivotal role of circRNAs in controlling vascular aging, as well as the pathogenesis and progression of aging-related vascular diseases, has garnered substantial attention. Vascular aging plays a crucial role in the increased morbidity and mortality of the elderly. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are crucial components of the intima and media layers of the vascular wall, respectively, and are closely involved in the mechanisms underlying vascular aging and aging-related vascular diseases. The review aims to provide a comprehensive exploration of the connection between circRNAs and vascular aging, as well as aging-related vascular diseases. Besides, circRNAs, as potential diagnostic markers or therapeutic targets for vascular aging and aging-related vascular diseases, will be discussed thoroughly, along with the challenges and limitations of their clinical application. Investigating the role and molecular mechanisms of circRNAs in vascular aging and aging-related vascular diseases will provide a novel insight into early diagnosis and therapy, and even effective prognosis assessment of these conditions.
Collapse
Affiliation(s)
- Sha-Qi He
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Bei Huang
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jun-Jie Yang
- Department of Radiology, the Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, China
| | - Cong Li
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Feng-Rong Liu
- Department of Anesthesiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Xiao Lin
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| | - Jun Liu
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Clinical Research Center for Medical Imaging in Hunan Province, Quality Control Center in Hunan Province, Changsha, 410011, China.
| |
Collapse
|
17
|
Farid A, Mohsen A, Nasser B, Alaa H, Abdelaziz M, Mustafa M, Mansour M, Adel N, Magdy S, Mohsen S, Adel S, Ibrahim S, Abdel-Rahman S, Mohamed S, El-Karamany Y. Treatment of Staphylococcus aureus-infected diabetic wounds by melatonin loaded nanocarriers. AMB Express 2025; 15:46. [PMID: 40088373 PMCID: PMC11910460 DOI: 10.1186/s13568-025-01854-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 03/17/2025] Open
Abstract
One of the complication of diabetes mellitus is chronic wounds. The healing of wounds in diabetic patients is retarded by the elevation in the pro-inflammatory cytokines secretion and free radicles accumulation. Wound management in diabetic patients requires preventing bacterial biofilm development. Due to the wound healing activity of chitosan (CS), lecithin (Le) and melatonin (M), the present study aimed to load melatonin on CS/Le NPs and examine their effect on diabetic wounds infected with Staphylococcus aureus. Melatonin loaded chitosan/lecithin nanoparticles (M-CS/Le NPs) were physically characterized and their antioxidant, anti-inflammatory and antimicrobial activities were examined in vitro. Male Sprague Dawley rats included two division (non-diabetic and diabetic) which were further divided in nine groups. Diabetes induction and follow up throughout the experimental period was confirmed by measuring the levels of fructosamine and blood glucose. Full-thickness wounds was induced in both non-diabetic and diabetic animals followed by infection with Staphylococcus aureus according to the experimental design. The wound healing effect of M-CS/Le NPs was evaluated through measurements of the oxidative stress, inflammatory cytokines and apoptotic proteins. Our results showed the anti-microbial, free radical scavenging and hemolysis inhibition effects of M-CS/Le NPs in vitro. Moreover, the preparation of M-CS/Le NPs decreased the dose of used melatonin (when compared to free melatonin). M-CS/Le NPs significantly decreased the wound area percent in treated infected wounds of both non-diabetic and diabetic rats more than free melatonin or unloaded CS/Le NPs. In conclusion, M-CS/Le NPs promoted the wound healing in Staphylococcus aureus-infected wounds in diabetic rats.
Collapse
Affiliation(s)
- Alyaa Farid
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Ayah Mohsen
- Biochemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Bassant Nasser
- Biochemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Habiba Alaa
- Biotechnology/Biomolecular chemistry program, Faculty of Science, Cairo University, Giza, Egypt
| | - Mariam Abdelaziz
- Biotechnology/Biomolecular chemistry program, Faculty of Science, Cairo University, Giza, Egypt
| | - Maryam Mustafa
- Biotechnology/Biomolecular chemistry program, Faculty of Science, Cairo University, Giza, Egypt
| | - Mustafa Mansour
- Biotechnology/Biomolecular chemistry program, Faculty of Science, Cairo University, Giza, Egypt
| | - Nourhan Adel
- Biochemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Salma Magdy
- Biotechnology/Biomolecular chemistry program, Faculty of Science, Cairo University, Giza, Egypt
| | - Salma Mohsen
- Biotechnology/Biomolecular chemistry program, Faculty of Science, Cairo University, Giza, Egypt
| | - Samah Adel
- Biochemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Sarah Ibrahim
- Biochemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Sohaila Mohamed
- Biochemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Yomna El-Karamany
- Biotechnology/Biomolecular chemistry program, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
18
|
Lu T, Liu A, Li C, Li Y, Yang B, Liu Q, Jiang H. Brown adipose tissue transplantation ameliorates hindlimb ischemic damage in diabetic mice. Sci Rep 2025; 15:8820. [PMID: 40087510 PMCID: PMC11909270 DOI: 10.1038/s41598-025-93261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
Peripheral arterial disease (PAD) is a common complication associated with diabetes, which can lead to foot ischemia. The condition is often accompanied by infection and necrosis, ultimately leading to diabetic foot ulcers and the risk of amputation. Brown adipose tissue (BAT) and its secreted cytokines play an essential role in the regulation of glucose homeostasis, the modulation of inflammatory responses, and vascular endothelial cell proliferation. The transplantation of BAT into ischemic regions may offer therapeutic benefits in alleviating the symptoms associated with PAD. A diabetic mouse model was established via intraperitoneal administration of streptozocin. Subsequently, a diabetic lower limb ulcer model was constructed by transection of the femoral artery and ligation of the femoral vein. BAT harvested from the subscapular region of the mouse was employed as an adipose graft. The research utilized Laser Doppler monitoring, Western blot analysis, hematoxylin-eosin (HE) staining, immunofluorescence staining, and enzyme-linked immunosorbent assay (ELISA) to evaluate blood flow recovery in ischemic regions, histopathological changes, angiogenesis and tissue remodeling, inflammatory responses, and M1/M2 macrophage polarization. BAT transplantation significantly enhanced blood flow recovery in ischemic regions of diabetic lower limb ulcer mice while concurrently reducing necrotic tissue. Pathological analyses demonstrate that BAT transplantation mitigates ischemic tissue damage, stimulates angiogenesis, and supports tissue remodeling. Furthermore, the Western blotting, immunofluorescence, and ELISA results revealed that BAT transplantation significantly reduces inflammatory levels in ischemic tissues, increases the expression of angiogenic factors, and promotes the polarization of macrophages from the M1 to the M2 phenotype. The research has demonstrated that BAT transplantation can mitigate ischemic injury in diabetic lower limb ulcer mice, attenuate inflammatory responses, and facilitate the restoration of blood flow. These effects may be linked to alterations in macrophage polarization.
Collapse
Affiliation(s)
- Ting Lu
- Center for Basic and Translational Research, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China
| | - Amin Liu
- Center for Basic and Translational Research, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China
| | - Chunchun Li
- Center for Basic and Translational Research, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China
| | - Yi Li
- Center for Basic and Translational Research, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China
| | - Bin Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, Zhejiang, PR China
| | - Qian Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, Zhejiang, PR China.
| | - Hua Jiang
- Department of Otolaryngology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China.
| |
Collapse
|
19
|
Rong Y, Zhao Z, Lv D, Yin R, Lu L, Xu Z, Ren L, Zhao P, Hu Z, Tao J, Cao X, Tang B. Tailored Metal-Phenolic Network with Hypoglycemic Polyphenol for Promoting Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15163-15176. [PMID: 40025657 DOI: 10.1021/acsami.4c22878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Diabetic foot ulcer is a common and serious complication of diabetes, with a high risk of amputation, recurrence, and mortality. Aiming at the characteristics of diabetic wounds and based on the result of network pharmacology, a tailored ligand cyanidin-3-O-glucoside (C3G) was selected to construct a metal-phenolic network (CM) through the self-assembly reaction with manganese ions. CM integrates the pharmacological advantages of C3G in antidiabetes and the anti-inflammatory activity of metal-phenolic networks by simulating the metal coordination structure of antioxidant enzymes. Reasonably, the wound areas of db/db mice with CM treatment rapidly decreased to 3.06% at day 14, accompanied by the improvement of tissue microenvironment. Mechanism investigation indicated that CM can not only reduce inflammation activation and immunoreaction but also increase gene transcripts in glucose metabolism, response to hypoxia, and angiogenesis. It is believed that this work opens a way for designing disease-specific metal-phenolic networks, and the CM with high biosafety promotes the clinical treatment of diabetic wounds.
Collapse
Affiliation(s)
- Yanchao Rong
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zirui Zhao
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Dongming Lv
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Rong Yin
- Department of Dermatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ling Lu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhongye Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lei Ren
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhicheng Hu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoling Cao
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Bing Tang
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
20
|
Li H, Lin Z, Ouyang L, Lin C, Zeng R, Liu G, Zhou W. Lipid nanoparticle: advanced drug delivery systems for promotion of angiogenesis in diabetic wounds. J Liposome Res 2025; 35:76-85. [PMID: 39007863 DOI: 10.1080/08982104.2024.2378962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/10/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Diabetic wound is one of the most challenge in healthcare, requiring innovative approaches to promote efficient healing. In recent years, lipid nanoparticle-based drug delivery systems have emerged as a promising strategy for enhancing diabetic wound repair by stimulating angiogenesis. These nanoparticles offer unique advantages, including improved drug stability, targeted delivery, and controlled release, making them promising in enhancing the formation of new blood vessels. In this review, we summarize the emerging advances in the utilization of lipid nanoparticles to deliver angiogenic agents and promote angiogenesis in diabetic wounds. Furthermore, we provide an in-depth exploration of key aspects, including the intricate design and fabrication of lipid nanoparticles, their underlying mechanisms of action, and a comprehensive overview of preclinical studies. Moreover, we address crucial considerations pertaining to safety and the translation of these innovative systems into clinical practice. By synthesizing and analyzing the available knowledge, our review offers valuable insights into the future prospects and challenges associated with utilizing the potential of lipid nanoparticle-based drug delivery systems for promoting robust angiogenesis in the intricate process of diabetic wound healing.
Collapse
Affiliation(s)
- Hui Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Lizhi Ouyang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Chuanlu Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Ruiyin Zeng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Wenjuan Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
21
|
Ali S, Mirza R, Shah KU, Javed A, Dilawar N. "Harnessing green synthesized zinc oxide nanoparticles for dual action in wound management: Antibiotic delivery and healing Promotion". Microb Pathog 2025; 200:107314. [PMID: 39848301 DOI: 10.1016/j.micpath.2025.107314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/02/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Wound infections are characterized by the invasion of microorganisms into bodily tissues, leading to inflammation and potentially affecting any type of wound, including surgical incisions and chronic ulcers. If left untreated, they can delay recovery and cause tissue damage. Healthcare providers face challenges in treating these infections, which necessitate efficient treatment plans involving microbiological testing and clinical evaluation. The effectiveness of conventional treatments like antibiotics is limited by resistance. Various forms of nanotechnology have been developed, each exhibiting unique properties that address particular issues with conventional therapies. Among all the Nanocarriers, zinc oxide nanoparticles (ZnO NPs), offer promising treatments for persistent wound infections. ZnO NPs possess strong antibacterial, antioxidant, anti-inflammatory, and anti-diabetic properties, making them suitable for wound care applications. These nanoparticles can be produced economically and environmentally using green synthesis techniques that minimize toxicity and are biocompatible. While chemical and physical techniques offer precise control over nanoparticle characteristics, they often involve hazardous substances and energy-intensive procedures. The antibacterial qualities, low toxicity, and biological compatibility of green-synthesized ZnO NPs make them a promising treatment for wound infections. Their use in scaffolds, drug delivery systems, and wound dressings provides a viable approach to combat antibiotic resistance and enhance wound treatment outcomes. Furthermore research is necessary to fully realize the benefits of ZnO NPs in clinical practice.
Collapse
Affiliation(s)
- Sajid Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Rashna Mirza
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Kifayat Ullah Shah
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Aqeedat Javed
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Naz Dilawar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
22
|
You W, Cai Z, Xiao F, Zhao J, Wang G, Wang W, Chen Z, Hu W, Chen Y, Wang Z. Biomolecular Microneedle Initiates Fe 3O 4/MXene Heterojunction-Mediated Nanozyme-Like Reactions and Bacterial Ferroptosis to Repair Diabetic Wounds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417314. [PMID: 39846375 PMCID: PMC11923907 DOI: 10.1002/advs.202417314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Indexed: 01/24/2025]
Abstract
Reactive oxygen species (ROS) play a dual role in wound healing. They act as crucial signaling molecules and antimicrobial agents when present at moderate levels. However, excessive levels of ROS can hinder the healing process for individuals with diabetes. As a result, targeting ROS levels to maintain redox balance has become a promising strategy for improving wound recovery. Currently, no biomaterials have been reported to simultaneously up-regulate and down-regulate ROS to achieve broad-spectrum antibacterial and antioxidant properties. Inspired by the site-dependent effect of nanomaterials, a micron-sized ferroferric oxide (Fe3O4)/MXene (FM) heterojunction is synthesized using a hydrothermal method. The FM heterojunction could scavenge extracellular ROS by activating catalase (CAT)-like and superoxide dismutase (SOD)-like nanozyme activities. Meanwhile, FM heterojunction could release ferric ions and ferrous ions by defect engineering to induce bacterial ferroptosis, up-regulating intercellular ROS, and lipid peroxidation. For applications in vivo, FM heterojunction is incorporated into the tips of gelatin methacryloyl (GelMA)-based microneedle (termed as GFM microneedle) using a two-step casting technique. The results showed that GFM microneedle combined with photothermal therapy could improve S. aureus-infected skin regeneration in diabetic rats. The effectiveness and safety of GFM microneedle are not less favorable than that of a commercial wound dressing. This study provides a proof-of-concept for heterojunction-mediated regenerative medicine via a site-dependent ROS-targeting strategy.
Collapse
Affiliation(s)
- Wenjie You
- Department of Urology, Institute of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
- Orthopedic Hospital, Postdoctoral Innovation Practice Base, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- School of Materials Science and Engineering, Stem Cells and Tissue Engineering Manufacture Center, Hubei University, Wuhan, 430062, China
| | - Zichao Cai
- Orthopedic Hospital, Postdoctoral Innovation Practice Base, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Feng Xiao
- Orthopedic Hospital, Postdoctoral Innovation Practice Base, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Jiaxin Zhao
- Orthopedic Hospital, Postdoctoral Innovation Practice Base, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Guanyi Wang
- Department of Urology, Institute of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wang Wang
- Department of Urology, Institute of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zesheng Chen
- Department of Urology, Institute of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Weikang Hu
- School of Materials Science and Engineering, Stem Cells and Tissue Engineering Manufacture Center, Hubei University, Wuhan, 430062, China
| | - Yun Chen
- Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Zijian Wang
- Department of Urology, Institute of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
23
|
Da Silva J, Figueiredo A, Tseng YH, Carvalho E, Leal EC. Bone Morphogenetic Protein 7 Improves Wound Healing in Diabetes by Decreasing Inflammation and Promoting M2 Macrophage Polarization. Int J Mol Sci 2025; 26:2036. [PMID: 40076659 PMCID: PMC11900347 DOI: 10.3390/ijms26052036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Diabetic foot ulcers (DFUs) are a devastating complication of diabetes, presenting limited treatment success rates due to their complex pathophysiology. Bone morphogenetic protein 7 (BMP7) confers tissue protective and regenerative functions, but its potential role in diabetic wound healing is unknown. The aim of this study was to investigate the effects of topical BMP7 treatment in wound healing using a streptozotocin-induced diabetic mouse model. The expression of markers of wound healing progression were detected using RT-PCR or immunohistochemistry. Overall, BMP7 improved wound closure, as well as maturation of granulation tissue and collagen deposition, as evidenced by hematoxylin and eosin and Masson's trichrome histological analysis. The expression of inflammatory markers (IL-6, TNF-α) and matrix metalloproteinase-9 were decreased in BMP7-treated wounds, together with the number of pro-inflammatory M1 macrophages and T lymphocytes. The number of anti-inflammatory M2 macrophages was increased in BMP7-treated wounds. Moreover, BMP7 decreased oxidative stress and increased Ki67+ cells and CD31+ cells, indicating induced proliferation and angiogenesis in the wound bed compared to the control wounds. Finally, BMP7 activated the ERK pathway and suppressed the p38 pathway in diabetic wounds. Together, our data suggest that BMP7 enhanced skin wound healing in diabetes by decreasing local inflammation and oxidative stress, which promoted a regenerative environment for collagen deposition, wound maturation, cell proliferation, and angiogenesis. These findings underline BMP7 as a potential therapeutic agent for the treatment of skin wounds in diabetes.
Collapse
Affiliation(s)
- Jessica Da Silva
- Doctoral Program in Experimental Biology and Biomedicine (PDBEB), Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal;
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.F.); (E.C.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3030-788 Coimbra, Portugal
| | - Ana Figueiredo
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.F.); (E.C.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3030-788 Coimbra, Portugal
| | - Yu-Hua Tseng
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Eugenia Carvalho
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.F.); (E.C.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3030-788 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ermelindo C. Leal
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.F.); (E.C.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3030-788 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
24
|
Zhu Y, Chen P, Zhang Z, He X, Wang R, Fang Q, Xu Z, He W. aFGF gene-modified adipose-derived mesenchymal stem cells promote healing of full-thickness skin defects in diabetic rats. Stem Cell Res Ther 2025; 16:93. [PMID: 40001190 PMCID: PMC11863861 DOI: 10.1186/s13287-025-04241-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Chronic diabetic wounds pose a significant clinical challenge due to the limited efficacy of current treatments. This study aimed to investigate the role and potential mechanisms of adipose-derived mesenchymal stem cells (ADSCs) overexpressing acidic fibroblast growth factor (aFGF) in diabetic wound healing in a rat model. METHODS ADSCs were genetically modified to achieve stable overexpression of aFGF. Varying doses of aFGF-ADSCs (1 × 106, 2 × 106, 3 × 106, 4 × 106) were injected into the muscular tissue surrounding diabetic rat wounds. We assessed aFGF expression and its impact on various stages of wound healing, including angiogenesis, inflammatory response, epithelialization, and collagen deposition. Transcriptomic sequencing was performed to explore the underlying mechanisms driving enhanced wound healing. RESULTS Lentiviral transduction successfully induced stable aFGF overexpression in ADSCs. In vivo experiments revealed that varying doses of aFGF-ADSCs markedly enhanced wound healing in diabetic rats in a dose-dependent manner. The dose of 3 × 10⁶ aFGF-ADSCs demonstrated the most significant effect. In the 3 × 106 aFGF-ADSCs group, expression levels of aFGF, CD31, and CD163 were significantly higher than in other groups (p < 0.05), while CD86 expression was significantly lower (p < 0.05). CONCLUSION Single doses of aFGF-ADSCs comprehensively improved various aspects of wound repair in diabetic rats, offering a potential new approach for treating chronic diabetic wounds. The mechanism of action involves promoting angiogenesis, modulating inflammatory responses, accelerating epithelialization, and optimizing collagen deposition.
Collapse
Affiliation(s)
- Yiren Zhu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Pinhua Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Department of Emergency Trauma Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fujian Trauma Medicine Center, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Emergency Medicine, Fuzhou, Fujian, 350001, China
| | - Zhengchao Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Department of Emergency Trauma Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fujian Trauma Medicine Center, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Emergency Medicine, Fuzhou, Fujian, 350001, China
| | - XueYi He
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Department of Emergency Trauma Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fujian Trauma Medicine Center, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Emergency Medicine, Fuzhou, Fujian, 350001, China
| | - Ruoli Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Department of Emergency Trauma Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fujian Trauma Medicine Center, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Emergency Medicine, Fuzhou, Fujian, 350001, China
| | - Qi Fang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Department of Emergency Trauma Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fujian Trauma Medicine Center, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Emergency Medicine, Fuzhou, Fujian, 350001, China
| | - Zhixian Xu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Department of Emergency Trauma Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fujian Trauma Medicine Center, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Emergency Medicine, Fuzhou, Fujian, 350001, China
| | - Wubing He
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China.
- Department of Emergency Trauma Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China.
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, 350001, China.
- Fujian Trauma Medicine Center, Fuzhou, Fujian, 350001, China.
- Fujian Key Laboratory of Emergency Medicine, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
25
|
Afridi MI, Tu H. The Roles of Distinct Transcriptional Factors in the Innate Immunity of C. elegans. Cells 2025; 14:327. [PMID: 40072056 PMCID: PMC11899719 DOI: 10.3390/cells14050327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Deleterious molecules or factors produced by pathogens can hinder the normal physiological functioning of organisms. In response to these survival challenges, organisms rely on innate immune signaling as their first line of defense, which regulates immune-responsive genes and antimicrobial peptides to protect against pathogenic infections. These genes are under the control of transcription factors, which are known to regulate the transcriptional activity of genes after binding to their regulatory sequences. Previous studies have employed Caenorhabditis elegans as a host-pathogen interaction model to demonstrate the essential role of different transcription factors in the innate immunity of worms. In this review, we summarize the advances made regarding the functioning of distinct transcription factors in the innate immune response upon pathogen infection. Finally, we discuss the open questions in the field, whose resolutions have the potential to expand our understanding of the mechanisms underlying the innate immunity of organisms.
Collapse
Affiliation(s)
- Muhammad Irfan Afridi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China;
| | - Haijun Tu
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| |
Collapse
|
26
|
Jin W, Li Y, Yu M, Ren D, Han C, Guo S. Advances of exosomes in diabetic wound healing. BURNS & TRAUMA 2025; 13:tkae078. [PMID: 39980588 PMCID: PMC11836438 DOI: 10.1093/burnst/tkae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/11/2024] [Accepted: 11/09/2024] [Indexed: 02/22/2025]
Abstract
Poor wound healing is a refractory process that places an enormous medical and financial burden on diabetic patients. Exosomes have recently been recognized as crucial players in the healing of diabetic lesions. They have excellent stability, homing effects, biocompatibility, and reduced immunogenicity as novel cell-free therapies. In addition to transporting cargos to target cells to enhance intercellular communication, exosomes are beneficial in nearly every phase of diabetic wound healing. They participate in modulating the inflammatory response, accelerating proliferation and reepithelization, increasing angiogenesis, and regulating extracellular matrix remodeling. Accumulating evidence indicates that hydrogels or dressings in conjunction with exosomes can prolong the duration of exosome residency in diabetic wounds. This review provides an overview of the mechanisms, delivery, clinical application, engineering, and existing challenges of the use of exosomes in diabetic wound repair. We also propose future directions for biomaterials incorporating exosomes: 2D or 3D scaffolds, biomaterials loaded with wound healing-promoting gases, intelligent biomaterials, and the prospect of systematic application of exosomes. These findings may might shed light on future treatments and enlighten some studies to improve quality of life among diabetes patients.
Collapse
Affiliation(s)
- Weixue Jin
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jiang Hong Road, Binjiang District, Hangzhou 310009, Zhejiang, China
| | - Yi Li
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jiang Hong Road, Binjiang District, Hangzhou 310009, Zhejiang, China
| | - Meirong Yu
- Center for Basic and Translational Research, Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jie Fang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
| | - Danyang Ren
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jiang Hong Road, Binjiang District, Hangzhou 310009, Zhejiang, China
| | - Chunmao Han
- Department of Burns and Wound Repair, Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jie Fang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, 88 Jie Fang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
| | - Songxue Guo
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jiang Hong Road, Binjiang District, Hangzhou 310009, Zhejiang, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, 88 Jie Fang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
| |
Collapse
|
27
|
Mackay K, Thompson R, Parker M, Pedersen J, Kelly H, Loynd M, Giffen E, Baker A. The role of hyperbaric oxygen therapy in the treatment of diabetic foot ulcers - A literature review. J Diabetes Complications 2025; 39:108973. [PMID: 39970800 DOI: 10.1016/j.jdiacomp.2025.108973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
Diabetic Foot Ulcers (DFUs) are chronic foot wounds, in a person with diabetes, which are associated with peripheral arterial insufficiency and/or peripheral neuropathy of the lower limb. Recent UK audit figures report that approximately 50-60 % of DFUs remain unhealed after 12 weeks. Previous research has suggested that ischaemia plays a key role in the pathophysiology of many chronic wounds, including DFUs. For this reason, hyperbaric oxygen therapy (HOT) has been investigated. The study aimed to investigate 1) Current understanding of the physiology of normal wound healing and the pathological mechanisms that occur in DFUs to interrupt these processes; 2) Effectiveness of current DFU treatment approaches; 3) Effectiveness from clinical trials and meta-analyses for any demonstrated therapeutic benefits of HOT in the treatment of DFUs, 4) Patient selection criteria for HOT, and patients who stand to benefit most from treatment. The review found that wound healing is a complex process, involving many cells and signalling molecules, and it remains incompletely understood. However, current evidence suggests that hyperglycaemia, hypoxia, chronic inflammation (due to infection, immune-cell dysfunction or other causes), peripheral neuropathy, and macro- and micro-vascular dysfunction may all adversely affect DFU healing. The review found that current NICE guidelines do not approve HOT therapy in the UK for DFU's, despite encouraging clinical research findings. HOT shows theoretical promise and has been successfully used in the treatment of individual DFUs for several decades. Despite this, there remains a lack of strong clinical evidence of benefits to encourage HOT's wider use. The review found that there were four important patient selection criteria for HOT treatment, including glycaemic control, possible contraindications and complications associated with treatment, ulcer severity and resistance to first and second line treatments. The review concluded that further high-quality clinical research is needed to improve the evidence base.
Collapse
Affiliation(s)
- Ken Mackay
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | - Rhiannon Thompson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | - Matthew Parker
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, United Kingdom.
| | - James Pedersen
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | - Hayden Kelly
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | - Mairi Loynd
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | - Emily Giffen
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | - Angus Baker
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, United Kingdom
| |
Collapse
|
28
|
Shaw R, Patel K, Chimthanawala NMA, Sathaye S, Maji SK. Peptide-Based Functional Amyloid Hydrogel Enhances Wound Healing in Normal and Diabetic Rat Models. Adv Healthc Mater 2025:e2403560. [PMID: 39935087 DOI: 10.1002/adhm.202403560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/23/2025] [Indexed: 02/13/2025]
Abstract
The inability to heal on time is a key component of chronic wounds, which can result in economic, psychological, and physiological burdens. Hydrogels based on amyloid can imitate the extracellular matrix and function as scaffolds for healing wounds. In this direction, a wound dressing inspired by peptide-based amyloid hydrogel is fabricated here. The results demonstrate that the amyloid hydrogel improves the three essential components of skin tissue regeneration: cell migration, proliferation, and collagen remodeling, both in vitro and in vivo. Furthermore, the amyloid hydrogel accelerates wound healing and promotes wound closure within 9 and 15 d in normal and diabetic rats, respectively. Microscopic evaluation of the wound region demonstrates the ultimate stages of regeneration and skin reformation toward normal skin compared to the untreated wound. Hematoxylin and eosin-stained hydrogel-treated wound sites reveal faster dermal bridging, angiogenesis, and epidermal repair in both acute and chronic conditions. The hydrogel creates an environment that encourages the growth of dermal fibroblasts and the release of cytokines, decreasing inflammation with concomitant enhancement of collagen production at the site of injury. Thus, these findings suggest that amyloid-based hydrogel can be a promising candidate for application in acute and chronic wound healing.
Collapse
Affiliation(s)
- Ranjit Shaw
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076, India
| | - Komal Patel
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076, India
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases (SCAN), IIT Bombay, Powai, Mumbai, 400076, India
| | - Niyamat M A Chimthanawala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Sadhana Sathaye
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076, India
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases (SCAN), IIT Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
29
|
Kang M, Ko UH, Oh EJ, Kim HM, Chung HY, Shin JH. Tension-sensitive HOX gene expression in fibroblasts for differential scar formation. J Transl Med 2025; 23:168. [PMID: 39930512 PMCID: PMC11808978 DOI: 10.1186/s12967-025-06191-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Scar formation is a common end-point of the wound healing process, but its mechanisms, particularly in relation to abnormal scars such as hypertrophic scars and keloids, remain not fully understood. This study unveils a novel mechanistic insight into scar formation by examining the differential expression of Homeobox (HOX) genes in response to mechanical forces in fibroblasts derived from normal skin, hypertrophic scars, and keloids. METHODS We isolated fibroblasts from different scar types and conducted RNA sequencing (RNA-Seq) to identify differential gene expression patterns among the fibroblasts. Computational modeling provided insight into tension alterations following injury, and these findings were complemented by in vitro experiments where fibroblasts were subjected to exogenous tensile stress to investigate the link between mechanical tension and cellular behavior. RESULTS Our study revealed differential HOX gene expression among fibroblasts derived from normal skin, hypertrophic scars, and keloids. Computational simulations predicted injury-induced tension reduction in the skin, and in vitro experiments revealed a negative correlation between tension and fibroblast proliferation. Importantly, we discovered that applying mechanical tension to fibroblasts can modulate HOX gene expression, suggesting a pivotal role of mechanical cues in scar formation and wound healing. CONCLUSION This study proposes a model wherein successful wound healing and scar formation are critically dependent on maintaining tensional homeostasis in the skin, mediated by tension-sensitive HOX genes. Our findings highlight the potential of targeting mechanotransduction pathways and tension-sensitive HOX gene expression as therapeutic strategies for abnormal scar prevention and treatment, offering a new perspective on the complex process of scar formation.
Collapse
Affiliation(s)
- Minwoo Kang
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Ung Hyun Ko
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Eun Jung Oh
- Department of Plastic & Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Hyun Mi Kim
- Department of Plastic & Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Ho Yun Chung
- Department of Plastic & Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
30
|
Yue H, Zhang X, Zhao Z, Gong S, Shao S. Pro-healing impact of liraglutide on skin wounds in normoglycemic mice. Int Immunopharmacol 2025; 147:114050. [PMID: 39798474 DOI: 10.1016/j.intimp.2025.114050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Recent studies demonstrated that glucagon-like peptide-1 receptor agonists (GLP-1RA) have promising prospects in promoting wound healing. In this study, we intend to investigate the pro-healing effect and potential molecular mechanism of topical administration of GLP-1RA liraglutide on wounds in normoglycemic mice. Two full-thickness wounds were created on the back of the C57BL/6 mice. The "lower" wounds were topically infiltrated with liraglutide every day after injury; while the "upper" wounds were infiltrated with saline solution. Wound area was measured daily during the 10-day study period. The wound tissue was stained with H&E and immunofluorescence. Western blotting was performed to detect the markers in macrophages. The results showed that topical administration of liraglutide resulted in a rapid reduction of wound size. The capillary density and the expression of vascular endothelial growth factor (VEGF)-A were significantly increased in liraglutide-treated wounds. Findings from immunofluorescence and Western blotting revealed that liraglutide promoted phenotypic polarization of macrophages from M1 to M2. We further identified that M2a macrophages predominantly presented in the early and middle stages of inflammation phase and M2d macrophages presented in the middle and late stages. Our study suggested that GLP-1RA liraglutide could promote wound healing in normoglycemic mice, which is partly attributed to the modulation of the macrophage polarization from M1 subtype to M2 subtype.
Collapse
Affiliation(s)
- Han Yue
- Division of Endocrinology, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, 430030, PR China; Branch of National Clinical Research Center for Metabolic Diseases, Hubei, PR China
| | - Xiaoling Zhang
- Division of Endocrinology, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, 430030, PR China; Branch of National Clinical Research Center for Metabolic Diseases, Hubei, PR China
| | - Zhiyi Zhao
- Division of Endocrinology, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, 430030, PR China; Branch of National Clinical Research Center for Metabolic Diseases, Hubei, PR China
| | - Song Gong
- Division of Endocrinology, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, 430030, PR China; Branch of National Clinical Research Center for Metabolic Diseases, Hubei, PR China
| | - Shiying Shao
- Division of Endocrinology, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, 430030, PR China; Branch of National Clinical Research Center for Metabolic Diseases, Hubei, PR China.
| |
Collapse
|
31
|
Ran F, Mu K, Zhou L, Peng L, Liu G, Liu Y, Pang Y, Feng G, Guo C, Wang T, Luo Q. Plant-Derived B-CGT Hydrogel Accelerates Diabetic Wound Healing Through Multitarget Modulation of Inflammation, Angiogenesis, and Tissue Remodeling. Gels 2025; 11:104. [PMID: 39996646 PMCID: PMC11854240 DOI: 10.3390/gels11020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/12/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Diabetic wound healing presents significant challenges due to impaired angiogenesis, chronic inflammation, and cellular dysfunction. Building on previous research, this study further explores the potential of a plant-derived glucosyloxybenzyl 2-isobutylmalates (B-CGT) hydrogel in promoting diabetic wound healing. Network pharmacology and molecular docking analyses suggest that B-CGT may regulate key mechanisms, such as apoptosis, inflammation, and matrix remodeling, through core targets including SIRT1, CASP8, and MMP8. In vivo studies further demonstrated that B-CGT hydrogel significantly accelerated wound closure in diabetic mice, enhanced angiogenesis, promoted collagen deposition, and achieved immune balance by modulating macrophage polarization, thereby shifting the inflammatory environment toward a repair state. Moreover, B-CGT hydrogel significantly improved the wound microenvironment by upregulating VEGF expression and exerting antioxidant effects. By combining theoretical predictions with experimental validation, this study elucidates the multi-target synergistic regulatory mechanisms of B-CGT hydrogel. These findings provide new research directions for addressing immune imbalance and angiogenesis defects in diabetic wound healing and lay a scientific foundation for the optimization and application of chronic wound treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | - Gang Liu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (F.R.); (K.M.); (Y.P.)
| | - Yuchen Liu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (F.R.); (K.M.); (Y.P.)
| | | | | | | | | | | |
Collapse
|
32
|
Upadhyay NK, Keshri GK, Gupta A. Hippophae rhamnoides L. leaf extract augments dermal wound healing in streptozocin-induced diabetic rats. J Wound Care 2025; 34:146-153. [PMID: 39928468 DOI: 10.12968/jowc.2021.0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
OBJECTIVE The present investigation was undertaken to determine the healing efficacy of Hippophae rhamnoides L. (sea buckthorn (SBT)) leaf aqueous lyophilised extract (SBTL-ALE) on a diabetic wound model in rats. The effect of SBTL-ALE was also evaluated on human epithelial cell lines (A431) by using in vitro wound closure and transwell migration assays. METHOD A total of four full-thickness excision-type wounds were created on the dorsal surface of streptozocin-induced diabetic rats. The animals were divided into two groups: control rats treated with soft white petroleum jelly and experimental rats treated with SBTL-ALE (5.0%, weight/weight) ointment applied topically, twice daily for seven days. RESULTS SBTL-ALE significantly (p<0.05) accelerated the migration of epithelial cells in in vitro wound closure and transwell migration assays. Further, SBTL-ALE augmented the healing process by significantly (p<0.05) enhanced wound area contraction, faster complete epithelial closure, increased hydroxyproline (collagen) and hexosamine levels in diabetic rats. Histopathological findings confirmed the healing potential of SBTL-ALE. Immunohistochemical analyses showed increased expression of transforming growth factor (TGF)-β and α-smooth muscle actin in SBTL-ALE-treated wounds of diabetic rats. Superoxide dismutase, catalase and reduced glutathione levels increased, whereas reactive oxygen levels were decreased significantly (p<0.05) in SBTL-ALE-treated wounds compared to diabetic controls, which conferred redox homeostasis. CONCLUSION Our results suggest that SBTL-ALE accelerated transdermal wound healing in diabetic rats by increasing the rate of wound contraction, enhancing levels of collagen, hexosamine and endogenous antioxidants, and reducing oxidative stress.
Collapse
Affiliation(s)
- Nitin K Upadhyay
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Gaurav K Keshri
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Asheesh Gupta
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| |
Collapse
|
33
|
Nazari M, Taremi S, Elahi R, Mostanadi P, Esmeilzadeh A. Therapeutic Properties of M2 Macrophages in Chronic Wounds: An Innovative Area of Biomaterial-Assisted M2 Macrophage Targeted Therapy. Stem Cell Rev Rep 2025; 21:390-422. [PMID: 39556244 DOI: 10.1007/s12015-024-10806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Wound healing is a dynamic, multi-stage process essential for restoring skin integrity. Dysregulated wound healing is often linked to impaired macrophage function, particularly in individuals with chronic underlying conditions. Macrophages, as key regulators of wound healing, exhibit significant phenotypic diversity, ranging from the pro-healing M2 phenotype to the pro-inflammatory M1 phenotype. Imbalances in the M1/M2 ratio or hyperactivation of the M1 phenotype can delay the normal healing. Consequently, strategies aimed at suppressing the M1 phenotype or promoting the shift of local skin macrophages toward the M2 phenotype can potentially treat chronic non-healing wounds. This manuscript provides an overview of macrophages' role in normal and pathological wound-healing processes. It examines various therapeutic approaches targeting M2 macrophages, such as ex vivo-activated macrophage therapy, immunopharmacological strategies, and biomaterial-directed macrophage polarization. However, it also highlights that M2 macrophage therapies and immunopharmacological interventions may have drawbacks, including rapid phenotypic changes, adverse effects on other skin cells, biotoxicity, and concerns related to biocompatibility, stability, and drug degradation. Therefore, there is a need for more targeted macrophage-based therapies that ensure optimal biosafety, allowing for effective reprogramming of dysregulated macrophages and improved therapeutic outcomes. Recent advances in nano-biomaterials have demonstrated promising regenerative potential compared to traditional treatments. This review discusses the progress of biomaterial-assisted macrophage targeting in chronic wound repair and addresses the challenges faced in its clinical application. Additionally, it explores novel design concepts for combinational therapies, such as incorporating regenerative particles like exosomes into dressing materials or encapsulating them in microneedling systems to enhance wound healing rates.
Collapse
Affiliation(s)
- Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Siavash Taremi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parsa Mostanadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
34
|
Hong X, Cai L, Li L, Zheng D, Lin J, Liang Z, Fu W, Liang D, Zeng T, Sun K, Wang W, Chen S, Ren M, Yan L. Keratinocyte-derived small extracellular vesicles delay diabetic wound healing by triggering fibroblasts autophagy. Arch Physiol Biochem 2025; 131:11-23. [PMID: 38828847 DOI: 10.1080/13813455.2024.2358020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
Keratinocyte and fibroblast dysfunctions contribute to delayed healing of diabetic wounds. Small extracellular vesicles (sEV) are key mediators of intercellular communication and are involved in the pathogenesis of several diseases. Recent findings suggest that sEV derived from high-glucose-treated keratinocyte (HaCaT-HG-sEV) can transport LINC01435 to inhibit tube formation and migration of HUVECs, thereby delaying wound healing. This study aimed to elucidate sEV-related communication mechanisms between keratinocytes and fibroblasts during diabetic wound healing. HaCaT-HG-sEV treatment and LINC01435 overexpression significantly decreased fibroblast collagen level and migration ability but significantly increased fibroblast autophagy. However, treatment with an autophagy inhibitor suppressed LINC01435 overexpression-induced decrease in collagen levels in fibroblasts. In diabetic mice, HaCaT-HG-sEV treatment decreased collagen levels and increased the expression of the autophagy-related proteins Beclin-1 and LC3 at the wound site, thereby delaying wound healing. Conclusively, LINC01435 in keratinocyte-derived sEV activates fibroblast autophagy and reduces fibroblast collagen synthesis, leading to impaired diabetic wound healing.
Collapse
Affiliation(s)
- Xiaosi Hong
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Leiqin Cai
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lanlan Li
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dinghao Zheng
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianghong Lin
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhuoxian Liang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wan Fu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Diefei Liang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tingting Zeng
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kan Sun
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wei Wang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Endocrinology, Shenshan Medical center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Sifan Chen
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, China
| | - Meng Ren
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Li Yan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
35
|
Zhang C, Zhang X, Li F, Li B, Zhang M, Li W, Zhuge P, Yao J, Zhang Y, Chen S, Fang Y, Cai C. Thermosensitive Hydrogel Integrated with Bimetallic Nano-Enzymes for Modulating the Microenvironment in Diabetic Wound Beds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411575. [PMID: 39686701 PMCID: PMC11809323 DOI: 10.1002/advs.202411575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/29/2024] [Indexed: 12/18/2024]
Abstract
Effective regulation and reconstruction of the microenvironment are critical for the regeneration of chronic wounds. Diabetic wounds, in particular, pose a significant clinical challenge due to increased oxidative stress and dysfunctional healing processes. In this study, a novel therapeutic strategy is developed using 3D copper-magnesium bimetallic antioxidant nano-enzymes (Cu/Mg-MOF) to mitigate reactive oxygen species (ROS) and restore redox balance through electron transfer. To optimize delivery, a thermo-sensitive hydrogel composed of chitosan (CS) and ε-polylysine (PL) is designed, serving as an efficient carrier for the nano-enzymes. This Cu/Mg-MOF@CS/PL hydrogel exhibits excellent physical properties, including injectability, softness, and biocompatibility, making it ideal for application in diabetic wounds. In a diabetic wound model, treatment with Cu/Mg-MOF@CS/PL hydrogel significantly accelerated wound healing, with a closure rate of 90.6% by day 14, compared to just 55.4% in the untreated group. The hydrogel effectively promoted key aspects of wound healing, such as collagen deposition, re-epithelialization, angiogenesis, and immunomodulation. These findings underscore the potential of the Cu/Mg-MOF@CS/PL hydrogel as a promising therapeutic system for enhancing the healing of diabetic wounds.
Collapse
Affiliation(s)
- Chuwei Zhang
- Department of Burn and Plastic SurgeryDepartment of Wound Repair SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu226001China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of the Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Xiaoyi Zhang
- Office of Good Clinical PracticeAffiliated Hospital of Nantong UniversityNantong, Jiangsu226001China
| | - Fei Li
- Department of Burn and Plastic SurgeryDepartment of Wound Repair SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu226001China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of the Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Bo Li
- Department of Burn and Plastic SurgeryDepartment of Wound Repair SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu226001China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of the Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Mengnan Zhang
- Department of Burn and Plastic SurgeryDepartment of Wound Repair SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu226001China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of the Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Wanqian Li
- Department of Burn and Plastic SurgeryDepartment of Wound Repair SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu226001China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of the Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Pan Zhuge
- Department of Burn and Plastic SurgeryDepartment of Wound Repair SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu226001China
- Department of OtolaryngologyAffiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiang321000China
| | - Jingye Yao
- Department of Burn and Plastic SurgeryDepartment of Wound Repair SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu226001China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of the Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Yi Zhang
- Department of Burn and Plastic SurgeryDepartment of Wound Repair SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu226001China
| | - Shixuan Chen
- Department of Burn and Plastic SurgeryDepartment of Wound Repair SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu226001China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of the Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Yongjin Fang
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of the Chinese Academy of SciencesWenzhouZhejiang325000China
- Department of OtolaryngologyAffiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiang321000China
| | - Chao Cai
- Department of Burn and Plastic SurgeryDepartment of Wound Repair SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu226001China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of the Chinese Academy of SciencesWenzhouZhejiang325000China
| |
Collapse
|
36
|
Du M, Xia Y, Sun J, Yu M, Wang L, Yan S, Zhang Q. Progress on oxygen-releasing bioactive polymeric scaffolds in tissue engineering and biomedical treatment: A review. Int J Biol Macromol 2025; 291:139090. [PMID: 39716696 DOI: 10.1016/j.ijbiomac.2024.139090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
Tissue engineering presents promising avenues for addressing issues related to tissue defects and regenerative medicine. However, the translational efficacy of tissue engineering in clinical settings remains limited, primarily due to the inadequate survival rates of implanted tissue scaffolds. This is attributed to the grafts' inability to adequately supply oxygen and their dependence on the diffusion of oxygen from surrounding tissues for tissue regeneration. The integration of oxygen-releasing materials in human tissue engineering is anticipated to enhance the hypoxic microenvironment for tissue regeneration. In recent years, a variety of oxygen-producing or oxygen-carrying biomacromolecules, including gelatin, chitosan, and alginate, have been developed, offering innovative strategies for controlled drug release efficacy, regenerative medicine, and biological systems engineering. This review examines applications of these oxygen-releasing biological macromolecules, primarily derived from natural polymeric materials, in diverse facets of human tissue engineering including skin, heart tissue, tumor therapy. We also highlight recent advancements in this field, with an emphasis on current challenges, potential solutions, and future perspectives.
Collapse
Affiliation(s)
- Mengjie Du
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yijing Xia
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
| | - Jingjing Sun
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Meng Yu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China.
| | - Shuqin Yan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Qiang Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
37
|
Zou M, Chen C, Wang M, Lei C, Wang Y, Luo F, Huang D, Wang M, Zheng H, Wang B, Lin Z, Weng Z. Facile Fabrication of Injectable Multifunctional Hydrogels Based on Gallium-Polyphenol Networks with Superior Antibacterial Activity for Promoting Infected Wound Healing. Adv Healthc Mater 2025:e2404283. [PMID: 39888269 DOI: 10.1002/adhm.202404283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Multifunctional hydrogels hold significant promise for promoting the healing of infected wounds but often fall short in inhibiting antibiotic-resistant pathogens, and their clinical translation is limited by complex preparation processes and high costs. In this study, a multifunctional hydrogel is developed by combining metal-phenolic networks (MPNs) formed by tannic acid (TA) and gallium ions (Ga3⁺) with chitosan (CS) through a simple one-step method. The resulting CS-TA-Ga3⁺ (CTG) hydrogel is cost-effective and exhibits desirable properties, including injectability, self-healing, pH responsiveness, hemostasis, antioxidant, anti-inflammatory, and antibacterial activities. Importantly, the CTG hydrogels are effective against antibiotic-resistant pathogens due to the unique antibacterial mechanism of Ga3⁺. In vivo studies demonstrate that the CTG hydrogel promotes follicle formation and collagen deposition, accelerating the healing of infected wounds by inhibiting blood loss, suppressing bacterial growth, and modulating the inflammatory microenvironment. These findings highlight the CTG hydrogel's potential as an advanced and translational dressing for enhancing the healing of infected wounds.
Collapse
Affiliation(s)
- Minglang Zou
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Cuiping Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Mingda Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Chen Lei
- Department of Plastic and Cosmetic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Yongming Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Fang Luo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Meishui Wang
- Department of Plastic and Cosmetic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Houbing Zheng
- Department of Plastic and Cosmetic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Biao Wang
- Department of Plastic and Cosmetic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Department of Plastic and Cosmetic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
38
|
Luo J, Wu T, Zhang J, Liang Z, Shao W, Wang D, Li L, Zuo D, Zhou J. D-mannose promotes diabetic wound healing through inhibiting advanced glycation end products formation in keratinocytes. Mol Med 2025; 31:15. [PMID: 39827347 PMCID: PMC11748336 DOI: 10.1186/s10020-025-01070-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/05/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Diabetic chronic foot ulcers pose a significant therapeutic challenge around the world, resulting in adverse effects and complications in patients. D-mannose is enriched in cirtus peel and exerts beneficial effects among various diseases, especially against inflammation-related disorders. METHODS Here, we examined the potential effect of D-mannose during wound healing process in streptozotocin (STZ)-induced diabetes mice in vivo and by culturing keratinocytes under high glucose condition in vitro. The skin lesion healing was recorded in photos and evaluated by histochemical staining. What's more, the advanced glycation end products (AGEs) concentration in blood and mice skin was quantified. Apoptotic cells were assessed by flow cytometry and Western blotting. Inflammatory cytokines and cellular differential gene expression levels were measured by real-time PCR. The expression of the AMPK/Nrf2/HO-1 signaling-related molecules was determined by Western blotting. RESULTS We first found that topical supplementation of D-mannose remarkably improved skin wound healing in diabetes mice. Furthermore, both in vivo and in vitro experiments demonstrated that D-mannose reduced the AGEs generation. Mechanistically, D-mannose inhibited AGEs, then upregulated AMPK/Nrf2/HO-1 signaling in the context of high glucose to maintain keratinocyte normal functions, which positively influenced macrophage and fibroblast to accelerate diabetic wound healing. Noteworthily, these protective effects of D-mannose were abolished by the pretreatment with inhibitors of AGEs or AMPK. CONCLUSION As far as we know, this is the first study exploring the protective role of D-mannose on diabetic wound healing via topical supplementation. We find that D-mannose protects keratinocytes from high glucose stimulation via inhibition of AGEs formation as well as orchestrates inflammatory microenvironment in diabetic wounded skin, suggesting its supplementation as a potential therapy to promote refractory wound healing in diabetic patients.
Collapse
Affiliation(s)
- Jialiang Luo
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Dermatology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tianxing Wu
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhicheng Liang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Weijie Shao
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Di Wang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Lei Li
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Daming Zuo
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
39
|
Zhang YW, Sun L, Wang YN, Zhan SY. Role of macrophage polarization in diabetic foot ulcer healing: A bibliometric study. World J Diabetes 2025; 16:99755. [PMID: 39817209 PMCID: PMC11718451 DOI: 10.4239/wjd.v16.i1.99755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Diabetic foot ulcers (DFUs) are a significant contributor to disability and mortality in diabetic patients. Macrophage polarization and functional regulation are promising areas of research and show therapeutic potential in the field of DFU healing. However, the complex mechanism, the difficulty in clinical translation, and the large heterogeneity present significant challenges. Hence, this study was to comprehensively analyze the publication status and trends of studies on macrophage polarization and DFU healing. AIM To examine the relevant literature on macrophage polarization in DFU healing. METHODS A bibliometric analysis was conducted using the Web of Science database. Relevant literature was retrieved from the Web of Science Core Collection database between 2013 to 2023 using literature visualization and analysis software (VOSviewer and CiteSpace) and bibliometric online platforms. The obtained literature was then subjected to visualization and analysis of different countries/regions, institutions, journals, authors, and keywords to reveal the research's major trends and focus. RESULTS The number of publications on the role of macrophage polarization in DFU healing increased rapidly from 2013 to 2023, especially in the latter period. Chinese researchers were the most prolific in this field, with 217 publications, while American researchers had been engaged in this field for a longer period. Qian Tan of Nanjing Drum Tower Hospital and Qian Ding of Nanjing University were the first to publish in this field. Shanghai Jiao Tong University was the institution with the most publications (27). The keywords "bone marrow", "adjustment, replacement, response, tissue repair", and "activation, repair, differentiation" appeared more frequently. The study of macrophage polarization in DFU healing focused on the regulatory mechanism, gene expression, and other aspects. CONCLUSION This study through the bibliometric method reveals the research trends and development trends in this field of macrophage polarization in DFU healing from 2013 to 2023 in the Web of Science Core Collection database. The key hotspots in this field mainly include the regulation of macrophage activation, gene expression, wound tissue repair, and new wound materials. This study provides references for future research directions.
Collapse
Affiliation(s)
- You-Wen Zhang
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Lei Sun
- Department of Surgery, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, Shandong Province, China
| | - Yan-Nan Wang
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Shi-Yu Zhan
- Department of Surgery, Longkou Traditional Chinese Medicine Hospital, Yantai 265701, Shandong Province, China
| |
Collapse
|
40
|
Li Z, Zhang C, Wang L, Zhang Q, Dong Y, Sha X, Wang B, Zhu Z, Wang W, Wang Y, Zhou Y, Zhang Y. Chitooligosaccharides promote diabetic wound healing by mediating fibroblast proliferation and migration. Sci Rep 2025; 15:556. [PMID: 39747336 PMCID: PMC11697320 DOI: 10.1038/s41598-024-84398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Diabetic wounds are notoriously difficult to heal due to impaired cell repair mechanisms, reduced angiogenesis, and a heightened risk of infection. Fibroblasts play a vital role in wound healing by producing extracellular matrix (ECM) components and various growth factors, but their function is inhibited in diabetic wounds. Chitooligosaccharides (COS), intermediate products of chitosan degradation, have shown efficacy in promoting tissue repair, yet their role in diabetic wound healing remains underexplored. In a mouse model of diabetic wounds, COS treatment demonstrated substantial bioactivity in accelerating wound healing by enhancing fibroblast proliferation and migration. Additionally, COS increased collagen III deposition and angiogenesis at the wound sites. The COS also mitigated inflammatory responses by controlling leukocyte infiltration and bacterial infection. Mechanistically, COS regulated fibroblast activity via the PI3K/Akt signaling pathway, providing a novel bioactive material for chronic wound healing.
Collapse
Affiliation(s)
- Zihan Li
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
- Medical College, Nantong University, Nantong, People's Republic of China
| | - Chuwei Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
- Medical College, Nantong University, Nantong, People's Republic of China
| | - Lei Wang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
- Department of Burn and Plastic Surgery, Zhongda Hospital Affiliated Southeast University, Nanjing, People's Republic of China
| | - Qingrong Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military, Chongqing, People's Republic of China
| | - Yipeng Dong
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xinyu Sha
- Affiliated Hospital of Jiangnan University, Wuxi, People's Republic of China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Bolin Wang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
- Medical College, Nantong University, Nantong, People's Republic of China
| | - Zhihan Zhu
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
- Medical College, Nantong University, Nantong, People's Republic of China
| | | | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China.
| | - Youlang Zhou
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China.
- The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, People's Republic of China.
| | - Yi Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China.
| |
Collapse
|
41
|
Chen C, Yang J, Shang R, Tang Y, Cai X, Chen Y, Liu Z, Hu W, Zhang W, Zhang X, Huang Y, Hu X, Yin W, Lu Q, Sheng H, Fan D, Ju Z, Luo G, He W. Orchestration of Macrophage Polarization Dynamics by Fibroblast-Secreted Exosomes during Skin Wound Healing. J Invest Dermatol 2025; 145:171-184.e6. [PMID: 38838771 DOI: 10.1016/j.jid.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 06/07/2024]
Abstract
Macrophages undertake pivotal yet dichotomous functions during skin wound healing, mediating both early proinflammatory immune activation and late anti-inflammatory tissue remodeling processes. The timely phenotypic transition of macrophages from inflammatory M1 to proresolving M2 activation states is essential for efficient healing. However, the endogenous mechanisms calibrating macrophage polarization in accordance with the evolving tissue milieu remain undefined. In this study, we reveal an indispensable immunomodulatory role for fibroblast-secreted exosomes in directing macrophage activation dynamics. Fibroblast-derived exosomes permitted spatiotemporal coordination of macrophage phenotypes independent of direct intercellular contact. Exosomes enhanced macrophage sensitivity to both M1 and M2 polarizing stimuli, yet they also accelerated timely switching from M1 to M2 phenotypes. Exosome inhibition dysregulated macrophage responses, resulting in aberrant inflammation and impaired healing, whereas provision of exogenous fibroblast-derived exosomes corrected defects. Topical application of fibroblast-derived exosomes onto chronic diabetic wounds normalized dysregulated macrophage activation to resolve inflammation and restore productive healing. Our findings elucidate fibroblast-secreted exosomes as remote programmers of macrophage polarization that calibrate immunological transitions essential for tissue repair. Harnessing exosomes represents a previously unreported approach to steer productive macrophage activation states with immense therapeutic potential for promoting healing in chronic inflammatory disorders.
Collapse
Affiliation(s)
- Cheng Chen
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Jiacai Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Ruoyu Shang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yuanyang Tang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xin Cai
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yunxia Chen
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Zhihui Liu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Wengang Hu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Weiguang Zhang
- Department of Intensive Care, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaorong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yong Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Xiaohong Hu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Wenjing Yin
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China; Academy of Biological Engineering, Chongqing University, Chongqing, China
| | - Qudong Lu
- Department of Urology, Army 73rd Group Military Hospital, Xiamen, China
| | - Hao Sheng
- Department of Urology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dejiang Fan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China.
| | - Weifeng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China.
| |
Collapse
|
42
|
Yang J, Li S. Application of self-assembled antibacterial nanofiber loaded oriented artificial skin in infected diabetic-related wound regeneration. J Biomater Appl 2025; 39:661-668. [PMID: 39297741 DOI: 10.1177/08853282241267253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Diabetic patients develop wounds that exhibit delayed healing, prolonged inflammatory responses, and slower epithelialization kinetics compared to non-diabetic patients. Diabetic foot ulcers(DFUs) affect approximately 18.6 million people worldwide. The presence of a high glucose microenvironment in DFUs results in the significant accumulation of bacterial infection and advanced glycation end products (AGEs). To solve this, a self-assemble antibacterial nanofiber(ANF) loaded oriential artificial skin (ANF@OAS) was introduced in this research, which is consisted of L/D-phenylalanine derivatives coupled the natural antimicrobial peptides. The ANF@OAS can effectively reduce AGEs production and suppress multiple resistant bacteria. Additionally, the ANF@OAS can suppress infection and stimulate wound healing in infected diabetic mice.
Collapse
Affiliation(s)
- Jie Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, China
| | - Shengyun Li
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
43
|
Zhang Z, Yang D, Shen F, Xue TT, Jiang JS, Luo Y, Zhang Y, Song JK, Kuai L, Wang MX, Li B, Ru Y. Epidermal keratinocytes-specific PD-L1 knockout causes delayed healing of diabetic wounds. Int Immunopharmacol 2024; 143:113540. [PMID: 39510031 DOI: 10.1016/j.intimp.2024.113540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/14/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Diabetic ulcers (DUs) is a common complication of diabetes, for which the morbidity and mortality increasing annually worldwide. The deficiency of PD-L1 in keratinocytes (KCs) may be linked to the diabetic wound healing impediments. OBJECTIVE Our study utilized transgenic mice to assess the functions of epidermal KCs-specific PD-L1 in DUs treatment. METHODS AND RESULTS Epidermal KCs-specific PD-L1 knockouted mice demonstrate deteriorated healing rates, concomitant with exacerbated inflammatory infiltration and excessive angiogenesis. The streptozotocin-induced murine diabetes model was used to imitate DUs in-vivo context, and the delayed healing was found under diabetic conditions. We then generated transgenic mice overexpressing PD-L1 in the epidermis. PD-L1 overexpression accelerate the DUs healing process accompanied by a reduction in inflammatory infiltration and a corresponding decreasion of angiogenesis. Therefore, overexpression of PD-L1 accelerates the healing process of DUs. CONCLUSION In sum, epidermal KCs-specific PD-L1 plays vital roles in epidermis regeneration, inflammatory infiltration, and angiogenesis during DUs restoration, and would not be easily to format fibrous scar. Our study elucidated a new therapeutic idea for slow-healing wound care.
Collapse
Affiliation(s)
- Zhan Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Dermatology, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Dan Yang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Fang Shen
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Ting-Ting Xue
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Dermatology, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Jing-Si Jiang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Dermatology, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ying Zhang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Jian-Kun Song
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Dermatology, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ming-Xia Wang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China.
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Dermatology, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China.
| | - Yi Ru
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China.
| |
Collapse
|
44
|
Mizuno S, Takabayashi M, Makihara H, Ogai K, Tsukui K, Ito Y, Kawakami T, Hara Y, Fujita A, Tokudome Y, Akase T, Kato Y, Shimada T, Sai Y. Effect of changes in skin properties due to diabetes mellitus on the titration period of transdermal fentanyl: single-center retrospective study and diabetic animal model study. J Pharm Health Care Sci 2024; 10:80. [PMID: 39696707 DOI: 10.1186/s40780-024-00402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND In the dose titration of transdermal fentanyl to prevent unrelieved pain, it is important to consider not only dose adjustment, but also the titration period, which is influenced by the time required to reach the steady state. Many patients with cancer pain experience comorbidities that might affect the skin properties and influence transdermal absorption. We hypothesized that skin changes due to diabetes mellitus (DM) would affect the titration period of transdermal fentanyl. We conducted a retrospective study and diabetic animal model study to test this hypothesis. METHODS In the retrospective study, the titration period was defined in terms of "dose change" and "number of rescue opioids" in patients initiated on transdermal fentanyl. Multiple logistic regression analysis was performed to analyze the relation between the titration period and comorbidities, including DM. In the diabetic animal model study, intercellular lipids of stratum corneum (SC) were analyzed in Goto-Kakizaki (GK) rats, a model of DM, and the pharmacokinetics of intravenously or transdermally administered fentanyl was examined. RESULTS In the retrospective study, the titration period ranged from 5 to 39 days (n = 387), and the patients taking a longer period (6 days or more) was significantly related to in patients with unspecified DM: AOR (95% confidence interval), 0.438 (0.217-0.884). In the diabetic animal model study, the ceramides (CERs) content in the SC was decreased by approximately 30% in GK rats compared to Wistar rats. The absorption rate constant (ka) of fentanyl administered transdermally was increased approximately 1.4-fold in GK rats, though there was no difference in transdermal bioavailability (F) or systemic clearance (CLtot). CONCLUSION Our results suggest that the steady state of transdermally administered fentanyl is reached sooner in cancer patients with DM as a comorbidity. Earlier pain assessment and dose adjustment may be possible in these patients.
Collapse
Affiliation(s)
- Satoshi Mizuno
- Department of Clinical Pharmacokinetics, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| | - Makiko Takabayashi
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| | - Hiroko Makihara
- Department of Biochemistry, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
- Department of Biological Science and Nursing, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kazuhiro Ogai
- Department of Bio-Engineering Nursing, Graduate School of Nursing, Ishikawa Prefectural Nursing University, Kahoku, Japan
| | - Kei Tsukui
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuriko Ito
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| | - Takahiro Kawakami
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| | - Yusuke Hara
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| | - Arimi Fujita
- Department of Clinical Pharmacokinetics, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan
| | - Yoshihiro Tokudome
- Laboratory of Cosmetic Sciences, Institute of Ocean Energy, Saga University, Saga, Japan
| | - Tomoko Akase
- Department of Biological Science and Nursing, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yukio Kato
- Department of Molecular Pharmacotherapeutics, Faculty of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Tsutomu Shimada
- Department of Clinical Pharmacy and Healthcare Science, Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Science, Kanazawa University, Kanazawa, Japan
| | - Yoshimichi Sai
- Department of Clinical Pharmacokinetics, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan.
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8641, Japan.
- AI Hospital/Macro Signal Dynamics Research and Development Center, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
45
|
Li L, Li H, Wang J, Xie Y, Gao M, Yang Z, Li C. An Asymmetric Bacterial Cellulose Membrane Incorporating CuPt Nanozymes and Curcumin for Accelerating Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67166-67177. [PMID: 39586586 DOI: 10.1021/acsami.4c10720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Damaged skin compromises its ability to effectively prevent the invasion of harmful bacteria into the tissue, leading to bacterial infection of the wound and hindering the healing process. To address this challenge, we have developed a multifunctional asymmetric wound dressing (CuPt-Cur-ABC) that effectively addresses the lack of bactericidal activity and the release of active ingredients in conventional bacterial cellulose (BC), which can be employed to create a barrier of defense between the wound and its surrounding environment. Compared with BC, asymmetric bacterial cellulose (ABC) used starch as a pore-causing agent, forming holes of different sizes at the top and bottom, which enhanced the ability of ABC to load and moderate-release drugs. First, as-synthesized CuPt nanozymes with an octopod nanoframe structure had multiple enzymatic activities including peroxidase-like, catalase-like, and glutathione peroxidase-like activities. Then, CuPt and curcumin (Cur) were loaded into ABC under ultrasound. Under 808 nm laser irradiation, the nanocomposites possessed good photothermal properties. So the photothermal therapy combined with chemodynamic therapy and inherent antibacterial performance of Cur achieved 99.3% and 99.6% in vitro bactericidal efficacy against Staphylococcus aureus and Escherichia coli, respectively. Moderate release of Cur can clear the excess reactive oxygen species and promote the polarization of macrophages toward the M2 type. In vivo experiments additionally confirmed that the constructed wound dressing achieved multiple functions, including effective antibacterial activity, reversing the inflammatory microenvironment, and promoting wound healing.
Collapse
Affiliation(s)
- Lei Li
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Haoze Li
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Junrong Wang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Yulin Xie
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Minghong Gao
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Zhongjun Yang
- Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, PR China
| | - Chunxia Li
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| |
Collapse
|
46
|
Liu H, Mei H, Jiang H, Jiang L, Lin K, Jiang M, Ding N, Li X, Gao Z, Liu B, Lin W, Li J, Zhou J. Bioprinted Symbiotic Dressings: A Lichen-Inspired Approach to Diabetic Wound Healing with Enhanced Bioactivity and Structural Integrity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407105. [PMID: 39663708 DOI: 10.1002/smll.202407105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/13/2024] [Indexed: 12/13/2024]
Abstract
Providing oxygen and preventing infection at wound sites are effective ways to heal diabetic chronic wounds. Inspired by natural lichens, a bioprinted biogenic hydrogel (BBH) containing microalgae and probiotics is developed for diabetic chronic wound therapeutics, which offers prolonged biogenetic oxygen supply by microalgae and infection inhibition by probiotics. The rational design of symbiotic BBH with customizable structure and microorganism composition enhances wound resilience against elevated glucose levels and hypoxia, leading to the increased migration ability of fibroblasts and the angiogenic potential of human umbilical vein endothelial cells. Notably, BBH-treated diabetic wounds exhibit dense vascular distribution, reduced hypoxia levels and inflammatory responses, and enhanced epithelial differentiation and keratinization abilities. Consequently, the BBH achieves rapid tissue repairing within 3 d and restores approximately 90% of the whole skin structure within 12 d. This work presents an engineered platform for regulating biological microenvironment of diabetic wounds and provides insights for developing bioprinted hybrid microorganism systems.
Collapse
Affiliation(s)
- Hai Liu
- College of Biomass Science and Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Hongxiang Mei
- College of Biomass Science and Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hejin Jiang
- College of Biomass Science and Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Linli Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Kaifeng Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Minwen Jiang
- College of Biomass Science and Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Ning Ding
- College of Biomass Science and Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Xiaojie Li
- College of Biomass Science and Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Ziqi Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wei Lin
- College of Biomass Science and Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Juan Li
- College of Biomass Science and Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiajing Zhou
- College of Biomass Science and Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
47
|
Arai K, Yoshida S, Furuichi E, Iwanaga S, Mir TA, Yoshida T. Transplanted artificial amnion membrane enhanced wound healing in third-degree burn injury diabetic mouse model. Regen Ther 2024; 27:170-180. [PMID: 38571890 PMCID: PMC10987674 DOI: 10.1016/j.reth.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Wound healing is severely compromised in patients with diabetes owing to factors such poor blood circulation, delayed immune response, elevated blood sugar levels, and neuropathy. Although the development of new wound healing products and prevention of serious complications such as infections in wounds have received substantial interest, wound healing remains a challenge in regenerative medicine. Burn wounds, especially third-degree burns, are difficult to treat because they are associated with immune and inflammatory reactions and distributive shock. Wound care and treatment that protects the burn site from infection and allows wound healing can be achieved with bioengineered wound dressings. However, few studies have reported effective dressings for third-degree burn wounds, making it important to develop new dressing materials. Methods In this study, we developed an artificial amniotic membrane (AM) using epithelial and mesenchymal cells derived from human amnion as a novel dressing material. The artificial AM was applied to the wound of a diabetic third-degree burn model and its wound healing ability was evaluated. Results This artificial amnion produced multiple growth factors associated with angiogenesis, fibroblast proliferation, and anti-inflammation. In addition, angiogenesis and granulation tissue formation were promoted in the artificial AM-treated mouse group compared with the control group. Furthermore, the inflammatory phase was prolonged in the control group. Conclusions Our preliminary results indicate that the artificial AM might be useful as a new dressing for refractory ulcers and third-degree burns. This artificial AM-based material represents great potential for downstream clinical research and treatment of diabetes patients with third-degree burns.
Collapse
Affiliation(s)
- Kenichi Arai
- Department of Clinical Biomaterial Applied Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Satoshi Yoshida
- Department of Medical Oncology, Toyama University Hospital, Toyama, Japan
| | - Etsuko Furuichi
- Department of Clinical Biomaterial Applied Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Shintaroh Iwanaga
- Division of Biomedical System Engineering, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Tanveer Ahmad Mir
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Toshiko Yoshida
- Department of Clinical Biomaterial Applied Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
48
|
Sun L, Wei S, Wang C, Zhang Y, Zan X, Li L, Zhang C. Procyanidin capsules provide a new option for long-term ROS scavenging in chronic inflammatory diseases. Mater Today Bio 2024; 29:101310. [PMID: 39534678 PMCID: PMC11554635 DOI: 10.1016/j.mtbio.2024.101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/13/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Chronic inflammatory diseases such as diabetic wounds and osteoarthritis are significant threats to human health. Failure to scavenge longstanding excessive reactive oxygen species (ROS) is an important cause of chronic inflammatory diseases, yet existing treatments that provide long-lasting therapeutic effects are limited. Here, procyanidin capsules were synthesized in a simple one-step way using calcium carbonate as a template. The biosafety of procyanidin capsules in vitro and in vivo was monitored by cytotoxicity and pathological sections. The therapeutic effect of procyanidin capsules in diabetic wounds and osteoarthritis was accessed by pathological evaluation combined with the quantification of inflammatory markers. The data showed that procyanidin capsules could long-term scavenge excessive ROS and effectively promote articular cartilage repair in osteoarthritis, accelerating diabetic wound healing. Lastly, transcriptome analysis suggested that procyanidin capsules commonly regulated adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling in diabetic wounds and osteoarthritis. This study provides a straightforward protocol for creating procyanidin capsules, while presenting a promising new therapeutic option for long-term scavenging ROS in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Linxiao Sun
- Department of Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Shaoyin Wei
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, China
| | - Chenglong Wang
- Department of Orthopaedics Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yipiao Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, No. 18, Chaowang Road, Gongshu District, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, 313200, China
| | - Xingjie Zan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, China
| | - Lianxin Li
- Department of Orthopaedics Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Chunwu Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| |
Collapse
|
49
|
Pan X, Zong Q, Liu C, Wu H, Fu B, Wang Y, Sun W, Zhai Y. Konjac glucomannan exerts regulatory effects on macrophages and its applications in biomedical engineering. Carbohydr Polym 2024; 345:122571. [PMID: 39227106 DOI: 10.1016/j.carbpol.2024.122571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024]
Abstract
Konjac glucomannan (KGM) molecular chains contain a small amount of acetyl groups and a large number of hydroxyl groups, thereby exhibiting exceptional water retention and gel-forming properties. To meet diverse requirements, KGM undergoes modification processes such as oxidation, acetylation, grafting, and cationization, which reduce its viscosity, enhance its mechanical strength, and improve its water solubility. Researchers have found that KGM and its derivatives can regulate the polarization of macrophages, inducing their transformation into classically activated M1-type macrophages or alternatively activated M2-type macrophages, and even facilitating the interconversion between M1 and M2 phenotypes. Concurrently, the modulation of macrophage polarization states holds significant importance for chronic wound healing, inflammatory bowel disease (IBD), antitumor therapy, tissue engineering scaffolds, oral vaccines, pulmonary delivery, and probiotics. Therefore, KGM has the advantages of both immunomodulatory effects (biological activity) and gel-forming properties (physicochemical properties), giving it significant advantages in a variety of biomedical engineering applications.
Collapse
Affiliation(s)
- Xi Pan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qida Zong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun Liu
- Hainan Institute for Drug Control, Haikou 570311, China
| | - Huiying Wu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bo Fu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ye Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wei Sun
- Department of Biomedical Engineering, School of Pharmaceutical University, Shenyang 110016, China.
| | - Yinglei Zhai
- Department of Biomedical Engineering, School of Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
50
|
Dixit R, Chaudhary NK, Mishra PK, Srivastava P, Bhartiya SK, Pratap A, Basu S, Shukla VK. Study on Blood Serum Levels of Heavy and Trace Metals in Chronic Non-Healing Wounds. INT J LOW EXTR WOUND 2024; 23:524-532. [PMID: 35037502 DOI: 10.1177/15347346221074161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wound healing is a complex, highly regulated process that is important in sustaining the skin barrier function. The etiologic relation of specific metals is not adequately described for chronic non-healing wounds. The aim of this study was to estimate heavy and trace metals in chronic non-healing wound and their association with wound healing. The levels of zinc, selenium, copper, magnesium, chromium, cadmium, iron, and lead were estimated in serum of chronic non-healing wound patients using atomic absorption spectrophotometry. The tests were carried out in 50 patients with chronic non-healing wound and thirty healthy volunteers as control. The serum levels of elements namely zinc, selenium, copper, magnesium, and chromium were significantly reduced in chronic non-healing wounds (P < .001) as compared to control. Lead and cadmium levels had shown the significantly increasing trend in chronic non-healing wound cases (P < .001). The present study demonstrated a significant decrease in serum, levels of selenium, zinc, copper, magnesium, iron, and chromium levels in patients with chronic non-healing wound indicating an association between these elements and wound healing. To summarize the findings of our research, hence trace elements were decreasing in chronic non-healing wound patients suggesting their role in wound healing.
Collapse
Affiliation(s)
- Ruhi Dixit
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Naveen Kumar Chaudhary
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Pradeep Kumar Mishra
- Department of Chemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Satyanam Kumar Bhartiya
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Arvind Pratap
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Somprakas Basu
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vijay Kumar Shukla
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|