1
|
Alkan S, Guney SC, Akcura C, Ozdemir N, Hekimsoy Z. Should adrenal incidentaloma patients be evaluated for muscle mass, function, and quality? A cross-sectional study. Endocrine 2025; 88:616-626. [PMID: 39864048 PMCID: PMC12069484 DOI: 10.1007/s12020-025-04170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
PURPOSE Our study evaluated skeletal muscle mass, function and quality among mild autonomous cortisol secretion (MACS) patients and non-functioning adrenal incidentaloma (NFAI) patients in comparison with the control group without adrenal mass. METHODS 63 NFAI (49 female, 14 male) and 31 MACS (24 female, 7 male) patients were included in the study. As the control group, 44 patients (31 women, 13 men) who were known to have no radiological adrenal pathology on computed tomography or magnetic resonance imaging performed for other reasons were selected. After recording the laboratory parameters of the patients, anthropometric measurements, handgrip strength test with dynamometer, SARC-F survey and bioelectrical impedance analysis (BIA) measurements were performed. RESULTS There was no statistical difference among the groups in terms of age, gender, and BMI parameters. Handgrip strength (HGS), skeletal muscle mass (SMM) index (SMM/BMI), and skeletal muscle quality (HGS/SMM), values used to evaluate muscle strength and quality, were found to be significantly lower in both the MACS and NFAI groups compared to the control group (p = 0.004, p = 0.012 and p = 0.034 respectively). This significance was also present in women subgroup analyses (p = 0.002, p = 0.037 and p = 0.039 respectively), but these parameters lost their statistical significance in men. In the correlation analysis of the female subgroup, 24-h free urine cortisol value was inversely proportional to skeletal muscle quality (rs = -0.417, p = 0.008). CONCLUSION Our study showed that there is a decrease in muscle mass and function in female AI patients, and this decrease is more severe in MACS patients. These results may suggest that mild cortisol excess also has negative effects on skeletal muscle metabolism.
Collapse
Affiliation(s)
- Samet Alkan
- Department of Endocrinology and Metabolic Diseases, Manisa Celal Bayar University Hospital, Manisa, Turkey.
| | - Sedat Can Guney
- Department of Endocrinology and Metabolic Diseases, Manisa Celal Bayar University Hospital, Manisa, Turkey
| | - Can Akcura
- Department of Endocrinology and Metabolic Diseases, Manisa Celal Bayar University Hospital, Manisa, Turkey
| | - Nilufer Ozdemir
- Department of Endocrinology and Metabolic Diseases, Manisa Celal Bayar University Hospital, Manisa, Turkey
| | - Zeliha Hekimsoy
- Department of Endocrinology and Metabolic Diseases, Manisa Celal Bayar University Hospital, Manisa, Turkey
| |
Collapse
|
2
|
Zhao X, Zhu M, Wang Z, Gao M, Long Y, Zhou S, Wang W. The Alleviative Effect of Sodium Butyrate on Dexamethasone-Induced Skeletal Muscle Atrophy. Cell Biol Int 2025; 49:508-521. [PMID: 39936899 DOI: 10.1002/cbin.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/18/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Skeletal muscle mass is significantly negatively regulated by glucocorticoids. Following glucocorticoid administration, the balance between protein synthesis and breakdown in skeletal muscle is disrupted, shifting towards a predominance of catabolic metabolism. Short-chain fatty acids like sodium butyrate have been found to regulate inflammatory reactions and successively activate signaling pathways. The preventive benefits of sodium butyrate against dexamethasone-induced skeletal muscle atrophy and myotube atrophy models were examined in this work, and the underlying mechanism was clarified. A total of 32 6-week-old C57BL/6 inbred male mice were randomly assigned to one of four groups and treated with dexamethasone to induce muscle atrophy and sodium butyrate. We found that sodium succinate alleviated dexamethasone-induced myotube atrophy in the myotube atrophy model by lowering the gene expression of two E3 ubiquitin ligases, Atrogin-1 and MURF1, and activating the AKT/mTOR signaling pathway. Pertussis toxin reversed this effect, indicating that G protein-coupled receptors were involved in sodium butyrate's action as a mediator. Additionally, pre-treatment with sodium butyrate lowered weight and muscle mass loss in a mouse model of skeletal muscle atrophy, dramatically decreased the MURF1 gene expression and decreased the nuclear translocation of the glucocorticoid receptor. In conclusion, this study shows that sodium butyrate inhibits the expression of atrophy genes, thus preventing the breakdown of proteins and the loss of muscle mass, while also inhibiting weight loss, in animal models.
Collapse
Affiliation(s)
- Xingchen Zhao
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Mingqiang Zhu
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Zifan Wang
- College of Animal Science and Veterinary, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Ming Gao
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Yifei Long
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Shuo Zhou
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Wei Wang
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
- College of Animal Science and Veterinary, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Aisyah R, Katsuya S, Miyata K, Chen Z, Horii M, Kudo A, Kumrungsee T, Tsubota J, Yanaka N. β-hydroxybutyrate attenuates diabetic renal and muscular pathologies in a streptozotocin-induced diabetic model. Nutrition 2025; 137:112792. [PMID: 40373454 DOI: 10.1016/j.nut.2025.112792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 05/17/2025]
Abstract
Diabetes and its associated complications are the leading cause of mortality worldwide. Strategies have been rapidly developed to reduce diabetic complications and the overall quality of life of patients with diabetes. β-hydroxybutyrate (BHB), the most abundant ketone body generated from fatty acids in the liver, provides energy sources under nutrient deprivation and has various potential health benefits as a functional food. However, its role in diabetic pathologies is unclear. In this study, we examined the effect of BHB on the kidney and muscle functions in streptozotocin (STZ)-induced diabetic mice. BHB supplementation exerted anti-inflammatory effects on the kidneys and improved renal tubule injury and fibrosis in STZ-induced mice. Furthermore, BHB alleviated diabetes-induced muscle atrophy, indicated by the increased fiber area and normalized fiber area distribution in BHB-supplemented STZ-treated mice. Our study demonstrates the beneficial effects of BHB in improving diabetic complications, particularly diabetic nephropathy and myopathy, and highlights the potential of BHB as a functional food for the treatment of diabetes.
Collapse
Affiliation(s)
- Rahmawati Aisyah
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Shohei Katsuya
- Energy Technology Laboratories, OSAKA GAS Co., Ltd., Osaka, Japan
| | - Kenshu Miyata
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Zhenhgyu Chen
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Mayu Horii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Ayane Kudo
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | | | - Jun Tsubota
- Energy Technology Laboratories, OSAKA GAS Co., Ltd., Osaka, Japan
| | - Noriyuki Yanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
4
|
Kim K, Oh H, Do Y, Yoo G, Heo W, Park J, Yang H, Yoon S, Byun M, Hwang E, Hong J. Transcriptional Co-Activator With PDZ Binding Motif (TAZ) Inhibits Dexamethasone-Induced Muscle Atrophy via mTOR Signalling. J Cachexia Sarcopenia Muscle 2025; 16:e13790. [PMID: 40159627 PMCID: PMC11955411 DOI: 10.1002/jcsm.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/12/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Glucocorticoid therapy has a beneficial effect in several diseases, but chronic treatment has adverse effects, including muscle atrophy, which refers to the gradual decrease in muscle mass, size and strength. It is important to know how the muscle atrophy occurs, but the underlying mechanism is not yet fully understood. This study shows that dexamethasone decreases levels of the transcriptional co-activator with PDZ binding motif (TAZ), which facilitates dexamethasone-induced muscle atrophy. METHODS To induce muscle atrophy, C2C12 myotubes were treated with dexamethasone, and mice were fed with water containing dexamethasone. Muscle atrophy was analysed for the expression of myosin heavy chain, MuRF1 and Atrogin-1 using immunofluorescence staining, immunoblot analysis and qRT-PCR. Muscle tissue was analysed by haematoxylin and eosin staining. Adeno-associated virus was used for overexpression of wild-type and mutant TAZ. RESULTS TAZ levels decrease in dexamethasone-treated mice (0.36-fold, p < 0.001) and C2C12 myotubes (0.44-fold, p = 0.024). Overexpression of the TAZ mutant, which resists its proteolytic degradation, inhibits dexamethasone-induced muscle atrophy. Atrogin-1 and MuRF1 interact with TAZ and facilitate its degradation in dexamethasone-treated C2C12 myotubes. TAZ mutant stimulates protein synthesis through activation of mTOR signalling via induction of RhebL1 (DEX; Con vs, TAZ4SA: 5.1-fold, p < 0.001) in dexamethasone-treated mice. Ginsenoside Rb3 increases TAZ levels in dexamethasone-treated mice (1.49-fold, p = 0.007) and C2C12 myotubes (1.63-fold, p = 0.01), which stimulates mTOR signalling and inhibits dexamethasone-induced muscle atrophy. CONCLUSIONS Our results demonstrate a novel regulatory mechanism of dexamethasone-induced muscle atrophy by TAZ, suggesting that stabilisation of TAZ in muscle cells ameliorates the muscle atrophy. These results suggest that TAZ may be a drug target for the dexamethasone-induced muscle atrophy.
Collapse
Affiliation(s)
- Kyung Min Kim
- Division of Life SciencesKorea UniversitySeoulSouth Korea
| | - Ho Taek Oh
- Division of Life SciencesKorea UniversitySeoulSouth Korea
| | - Youjin Do
- Division of Life SciencesKorea UniversitySeoulSouth Korea
| | - Gi Don Yoo
- Division of Life SciencesKorea UniversitySeoulSouth Korea
| | - Woong Heo
- Division of Life SciencesKorea UniversitySeoulSouth Korea
| | - Jeekeon Park
- Division of Life SciencesKorea UniversitySeoulSouth Korea
| | - Hyejin Yang
- Division of Life SciencesKorea UniversitySeoulSouth Korea
| | - Suh Jin Yoon
- College of Pharmacy and Graduate School of Pharmaceutical SciencesEwha Woman's UniversitySeoulSouth Korea
| | - Mi Ran Byun
- College of PharmacyDaegu Catholic UniversityGyeongsanSouth Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical SciencesEwha Woman's UniversitySeoulSouth Korea
- Program in Innovative Biomaterials ConvergenceEwha Womans UniversitySeoulSouth Korea
| | - Jeong‐Ho Hong
- Division of Life SciencesKorea UniversitySeoulSouth Korea
| |
Collapse
|
5
|
Smith HA, Templeman I, Davis M, Slater T, Clayton DJ, Varley I, James LJ, Middleton B, Johnston JD, Karagounis LG, Tsintzas K, Thompson D, Gonzalez JT, Walhin JP, Betts JA. Characterizing 24-Hour Skeletal Muscle Gene Expression Alongside Metabolic and Endocrine Responses Under Diurnal Conditions. J Clin Endocrinol Metab 2025; 110:e1017-e1030. [PMID: 38779872 PMCID: PMC11913097 DOI: 10.1210/clinem/dgae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
CONTEXT Skeletal muscle plays a central role in the storage, synthesis, and breakdown of nutrients, yet little research has explored temporal responses of this human tissue, especially with concurrent measures of systemic biomarkers of metabolism. OBJECTIVE To characterize temporal profiles in skeletal muscle expression of genes involved in carbohydrate metabolism, lipid metabolism, circadian clocks, and autophagy and descriptively relate them to systemic metabolites and hormones during a controlled laboratory protocol. METHODS Ten healthy adults (9M/1F, [mean ± SD] age 30 ± 10 years; BMI 24.1 ± 2.7 kg·m-2) rested in the laboratory for 37 hours with all data collected during the final 24 hours (08:00-08:00 hours). Participants ingested hourly isocaloric liquid meal replacements alongside appetite assessments during waking before a sleep opportunity from 22:00 to 07:00 hours. Blood samples were collected hourly for endocrine and metabolite analyses, with muscle biopsies occurring every 4 hours from 12:00 to 08:00 hours the following day to quantify gene expression. RESULTS Plasma insulin displayed diurnal rhythmicity peaking at 18:04 hours. Expression of skeletal muscle genes involved in carbohydrate metabolism (Name, Acrophase [hours]: GLUT4, 14:40; PPARGC1A, 16:13; HK2, 18:24) and lipid metabolism (FABP3, 12:37; PDK4, 05:30; CPT1B, 12:58) displayed 24-hour rhythmicity that reflected the temporal rhythm of insulin. Equally, circulating glucose (00:19 hours), nonesterified fatty acids (04:56), glycerol (04:32), triglyceride (23:14), urea (00:46), C-terminal telopeptide (05:07), and cortisol (22:50) concentrations also all displayed diurnal rhythmicity. CONCLUSION Diurnal rhythms were present in human skeletal muscle gene expression as well systemic metabolites and hormones under controlled diurnal conditions. The temporal patterns of genes relating to carbohydrate and lipid metabolism alongside circulating insulin are consistent with diurnal rhythms being driven in part by the diurnal influence of cyclic feeding and fasting.
Collapse
Affiliation(s)
- Harry A Smith
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - Iain Templeman
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - Max Davis
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - Tommy Slater
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK, NG1 4FQ
| | - David J Clayton
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK, NG1 4FQ
| | - Ian Varley
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK, NG1 4FQ
| | - Lewis J James
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK, LE11 3TU
| | - Benita Middleton
- Section of Chronobiology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK, GU2 7XH
| | - Jonathan D Johnston
- Section of Chronobiology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK, GU2 7XH
| | - Leonidas G Karagounis
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
- Mary MacKillop Institute for Health Research (MMIHR), Australian Catholic University (ACU), Melbourne, VIC 3000, Australia
| | - Kostas Tsintzas
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK, NG7 2UH
| | - Dylan Thompson
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - Javier T Gonzalez
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - Jean-Philippe Walhin
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - James A Betts
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| |
Collapse
|
6
|
Yang YJ, Jeon SR. Metabolic musculoskeletal disorders in patients with inflammatory bowel disease. Korean J Intern Med 2025; 40:181-195. [PMID: 40102707 PMCID: PMC11938716 DOI: 10.3904/kjim.2024.359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 03/20/2025] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, is a chronic inflammatory disorder that affects not only the gastrointestinal tract but also extraintestinal organs, leading to various extraintestinal manifestations and complications. Among these, musculoskeletal disorders such as osteoporosis, sarcopenia, and axial and peripheral spondyloarthritis are the most commonly observed. These conditions arise from complex mechanisms, including chronic inflammation, malnutrition, gut dysbiosis, and glucocorticoid use, all of which contribute to reduced bone density, muscle loss, and joint inflammation. Osteoporosis and sarcopenia may co-occur as osteosarcopenia, a condition that heightens the risk of fractures, impairs physical performance, and diminishes quality of life, particularly in elderly patients with IBD. Holistic management strategies, including lifestyle modifications, calcium, and vitamin D supplementation, resistance training, and pharmacological interventions, are essential for mitigating the impact of these conditions. Spondyloarthritis, which affects both axial and peripheral joints, further complicates disease management and significantly compromises joint health. Timely diagnosis and appropriate medical interventions, such as administration of nonsteroidal anti-inflammatory drugs and biologics, are critical for preventing chronic joint damage and disability. Moreover, a multidisciplinary approach that addresses both metabolic and inflammatory aspects is essential for optimizing physical function and improving treatment outcomes in patients who have IBD with musculoskeletal involvement.
Collapse
Affiliation(s)
- Young Joo Yang
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon,
Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon,
Korea
| | - Seong Ran Jeon
- Digestive Disease Center, Institute for Digestive Research, Soonchunhyang University College of Medicine, Seoul,
Korea
| |
Collapse
|
7
|
Moriyama S, Kondo M, Awamura R, Hieda M, Fukata M. Role of Cardio-Oncology Rehabilitation in Hematopoietic Stem Cell Transplantation and Chimeric Antigen Receptor T-Cell (CAR-T) Therapy. Circ Rep 2025; 7:59-65. [PMID: 39931708 PMCID: PMC11807699 DOI: 10.1253/circrep.cr-24-0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 02/13/2025] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) and chimeric antigen receptor T-cell (CAR-T) therapy often lead to severe sarcopenia and cachexia during treatment, making it difficult to maintain exercise tolerance. Consequently, "cancer rehabilitation" programs have been implemented to sustain and improve physical activity and motor function. Hematologic malignancies often involve the use of cardiotoxic drugs. Moreover, graft-vs.-host disease associated with allo-HSCT and the cytokine release syndrome in CAR-T therapy elevate the risk of cardiovascular complications. Thus, establishing "cardio-oncology rehabilitation" (CORE) is essential to support cancer patients and survivors. CORE is expected to enhance quality of life, improve cardiopulmonary function, reduce cancer and cardiac events recurrence, and prolong survival. Our institution conducts cardiopulmonary exercise testing before HSCT and CAR-T therapy, with exercise prescriptions based on heart rate at the anaerobic threshold and guidance on resistance exercises. This report discusses current trends in CORE for patients undergoing HSCT and CAR-T therapy, along with future challenges.
Collapse
Affiliation(s)
- Shohei Moriyama
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital Fukuoka Japan
| | - Moe Kondo
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital Fukuoka Japan
| | - Ryuichi Awamura
- Department of Rehabilitation, Kyushu University Hospital Fukuoka Japan
| | - Michinari Hieda
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital Fukuoka Japan
| | - Mitsuhiro Fukata
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital Fukuoka Japan
| |
Collapse
|
8
|
Li X, Yao X, Zhao W, Wei B, Zhang R, Yan G, Ma M, Wang Z, Liu X, Liu Y, Wang G, Li H, Kong Q, Wang J, Mu L. Muscle fiber types switched during the development of experimental autoimmune myasthenia gravis via the PI3K/Akt signaling pathway. Mol Immunol 2025; 178:41-51. [PMID: 39832429 DOI: 10.1016/j.molimm.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/25/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
As one of the largest organs of our human body, skeletal muscle has good research prospects in myasthenia gravis (MG), the symptoms of which include systemic skeletal muscle weakness. Skeletal muscle is composed of two types of muscle fibers. Different fiber subtypes can be converted into each other; however, the underlying mechanism is not yet clear. In this paper, we firstly established an experimental autoimmune myasthenia gravis (EAMG) rat model and found that the skeletal muscle fibers of the EAMG group were atrophied, with a change in the proportion of fiber subtypes, which switched from type IIa to type I in the EAMG group at the peak stage, as verified by histological and molecular analyses. Second-generation sequencing results predicted that the PI3K-Akt signaling pathway might be involved in the switch, and the mRNA expression levels of the PI3K-Akt pathway-related genesNr4a1, IL2rb, Col1A1 and Ddit4 were significantly different. In conclusion, this study indicates that the switch of muscle fiber subtypes in MG via the PI3K-Akt signaling pathway may be a potential target for the treatment of MG-related skeletal muscle atrophy in the future.
Collapse
MESH Headings
- Animals
- Signal Transduction
- Proto-Oncogene Proteins c-akt/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Myasthenia Gravis, Autoimmune, Experimental/pathology
- Myasthenia Gravis, Autoimmune, Experimental/metabolism
- Myasthenia Gravis, Autoimmune, Experimental/immunology
- Rats
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/metabolism
- Female
- Muscle, Skeletal/pathology
- Muscle, Skeletal/metabolism
- Rats, Inbred Lew
- Muscular Atrophy/pathology
Collapse
Affiliation(s)
- Xinrong Li
- Department of Neurobiology, Harbin Medical University Provincial Key Lab of Neurobiology, School of Basic Medical Science, Harbin Medical University, Heilongjiang, China
| | - Xiuhua Yao
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Wei Zhao
- Department of Neurobiology, Harbin Medical University Provincial Key Lab of Neurobiology, School of Basic Medical Science, Harbin Medical University, Heilongjiang, China
| | - Bo Wei
- Department of Neurobiology, Harbin Medical University Provincial Key Lab of Neurobiology, School of Basic Medical Science, Harbin Medical University, Heilongjiang, China
| | - Ran Zhang
- Department of Neurobiology, Harbin Medical University Provincial Key Lab of Neurobiology, School of Basic Medical Science, Harbin Medical University, Heilongjiang, China
| | - Geng Yan
- Department of Neurobiology, Harbin Medical University Provincial Key Lab of Neurobiology, School of Basic Medical Science, Harbin Medical University, Heilongjiang, China
| | - Mingyu Ma
- Department of Neurobiology, Harbin Medical University Provincial Key Lab of Neurobiology, School of Basic Medical Science, Harbin Medical University, Heilongjiang, China
| | - Zhenhai Wang
- Department of Neurobiology, Harbin Medical University Provincial Key Lab of Neurobiology, School of Basic Medical Science, Harbin Medical University, Heilongjiang, China
| | - Xijun Liu
- Department of Neurobiology, Harbin Medical University Provincial Key Lab of Neurobiology, School of Basic Medical Science, Harbin Medical University, Heilongjiang, China
| | - Yumei Liu
- Department of Neurobiology, Harbin Medical University Provincial Key Lab of Neurobiology, School of Basic Medical Science, Harbin Medical University, Heilongjiang, China
| | - Guangyou Wang
- Department of Neurobiology, Harbin Medical University Provincial Key Lab of Neurobiology, School of Basic Medical Science, Harbin Medical University, Heilongjiang, China
| | - Hulun Li
- Department of Neurobiology, Harbin Medical University Provincial Key Lab of Neurobiology, School of Basic Medical Science, Harbin Medical University, Heilongjiang, China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University Provincial Key Lab of Neurobiology, School of Basic Medical Science, Harbin Medical University, Heilongjiang, China
| | - Jinghua Wang
- Department of Neurobiology, Harbin Medical University Provincial Key Lab of Neurobiology, School of Basic Medical Science, Harbin Medical University, Heilongjiang, China; Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| | - Lili Mu
- Department of Neurobiology, Harbin Medical University Provincial Key Lab of Neurobiology, School of Basic Medical Science, Harbin Medical University, Heilongjiang, China.
| |
Collapse
|
9
|
Yue H, Huan Y, Ren P, Yu X, Tang Q, Xue C, Xu J. Astaxanthin ameliorates dexamethasone-induced skeletal muscle atrophy and disorders of glucolipid metabolism. Biochem Biophys Res Commun 2025; 743:151138. [PMID: 39673970 DOI: 10.1016/j.bbrc.2024.151138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Long-term use of glucocorticoids, such as dexamethasone, can lead to skeletal muscle atrophy and disturbances in glucolipid metabolism. Astaxanthin, a ketocarotenoid, has a variety of physiological activities. In this study, we investigated the effects of astaxanthin on dexamethasone-induced skeletal muscle atrophy and disorders of glycolipid metabolism. Male C57Bl/6J mice were administered dexamethasone alone or supplemented with different doses of astaxanthin (30 mg/kg/d, 60 mg/kg/d, 120 mg/kg/d) for 4 weeks. The results showed that astaxanthin improved locomotor performance and attenuated dexamethasone-induced reductions in skeletal muscle mass and cross-sectional area in mice. Further exploration of the mechanism revealed that astaxanthin was able to balance the catabolism and synthesis of skeletal muscle proteins and protect mitochondria by reducing the expression of the mitochondrial autophagy-associated proteins Lc3B and BNIP3. In addition, astaxanthin reduced the accumulation of fatty acid metabolites and visceral fat and improved the ability of skeletal muscle to utilize sugars, suggesting that astaxanthin may alleviate dexamethasone-induced disturbances in glycolipid metabolism. This study illustrates that astaxanthin can alleviate skeletal muscle atrophy and metabolic disturbances induced by long-term dexamethasone treatment. This suggests that astaxanthin may be a functional dietary supplement to reduce the side effects of glucocorticoid therapy.
Collapse
Affiliation(s)
- Han Yue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266400, China
| | - Yuchen Huan
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266400, China
| | - Pengfei Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266400, China
| | - Xinyue Yu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266400, China
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266400, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266400, China; Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266400, China
| |
Collapse
|
10
|
Ulla A, Rahman MM, Uchida T, Kayaki H, Nishitani Y, Yoshino S, Kuwahara H, Nikawa T. 3-(4-Hydroxy-3-methoxyphenyl) propionic acid mitigates dexamethasone-induced muscle atrophy by attenuating Atrogin-1 and MuRF-1 expression in mouse C2C12 skeletal myotubes. J Clin Biochem Nutr 2025; 76:16-24. [PMID: 39896162 PMCID: PMC11782781 DOI: 10.3164/jcbn.23-70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 06/24/2024] [Indexed: 02/04/2025] Open
Abstract
3-(4-Hydroxy-3-methoxyphenyl) propionic acid is an in vivo metabolite of 4-hydroxy-3-methoxycinnamic acid which is abundantly found in coffee bean, rice bran, fruits, and vegetables. Previous studies reported that polyphenols and their metabolites exhibit positive effects on muscle health. Thus, the effect of 3-(4-hydroxy-3-methoxyphenyl) propionic acid on muscle atrophy induced by dexamethasone was investigated using mouse C2C12 skeletal myotubes. Dexamethasone treatment (10 μM) reduced the diameter and myosin heavy chain protein expression in C2C12 myotubes; it also increased muscle atrophy-associated ubiquitin ligases, such as muscle atrophy F-box protein 1/Atrogin-1 and muscle ring finger protein-1, along with their upstream regulator Krüppel-like factor 15. Dexamethasone dephosphorylated FoxO3a transcription factor and increased total FoxO3a expression. Interestingly, 10 μM 3-(4-hydroxy-3-methoxyphenyl) propionic acid treatment significantly attenuated dexamethasone-induced reduction in myotube thickness and muscle protein degradation and suppressed muscle atrophy-associated ubiquitin ligases. 3-(4-Hydroxy-3-methoxyphenyl) propionic acid also prevented dexamethasone-induced Krüppel-like factor 15 and FoxO3a expression. In conclusion, these results suggest that in vivo metabolite of polyphenols per se could be the real origin of the anti-muscular atrophy activity, as 3-(4-hydroxy-3-methoxyphenyl) propionic acid ameliorated glucocorticoid-induced muscle atrophy by suppressing Atrogin-1 and MuRF-1.
Collapse
Affiliation(s)
- Anayt Ulla
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Md Mizanur Rahman
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Takayuki Uchida
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hiroyuki Kayaki
- Research Center, Maruzen Pharmaceuticals Co., Ltd., 1089-8 Sagata, Shinichi-cho, Fukuyama, Hiroshima 729-3102, Japan
| | - Yosuke Nishitani
- Research Center, Maruzen Pharmaceuticals Co., Ltd., 1089-8 Sagata, Shinichi-cho, Fukuyama, Hiroshima 729-3102, Japan
| | - Susumu Yoshino
- Research Center, Maruzen Pharmaceuticals Co., Ltd., 1089-8 Sagata, Shinichi-cho, Fukuyama, Hiroshima 729-3102, Japan
| | - Hiroshige Kuwahara
- Research Center, Maruzen Pharmaceuticals Co., Ltd., 1089-8 Sagata, Shinichi-cho, Fukuyama, Hiroshima 729-3102, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
11
|
Grima-Terrén M, Campanario S, Ramírez-Pardo I, Cisneros A, Hong X, Perdiguero E, Serrano AL, Isern J, Muñoz-Cánoves P. Muscle aging and sarcopenia: The pathology, etiology, and most promising therapeutic targets. Mol Aspects Med 2024; 100:101319. [PMID: 39312874 DOI: 10.1016/j.mam.2024.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Sarcopenia is a progressive muscle wasting disorder that severely impacts the quality of life of elderly individuals. Although the natural aging process primarily causes sarcopenia, it can develop in response to other conditions. Because muscle function is influenced by numerous changes that occur with age, the etiology of sarcopenia remains unclear. However, recent characterizations of the aging muscle transcriptional landscape, signaling pathway disruptions, fiber and extracellular matrix compositions, systemic metabolomic and inflammatory responses, mitochondrial function, and neurological inputs offer insights and hope for future treatments. This review will discuss age-related changes in healthy muscle and our current understanding of how this can deteriorate into sarcopenia. As our elderly population continues to grow, we must understand sarcopenia and find treatments that allow individuals to maintain independence and dignity throughout an extended lifespan.
Collapse
Affiliation(s)
- Mercedes Grima-Terrén
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Silvia Campanario
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Ignacio Ramírez-Pardo
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Andrés Cisneros
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Xiaotong Hong
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | | | - Antonio L Serrano
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Joan Isern
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Pura Muñoz-Cánoves
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain.
| |
Collapse
|
12
|
Huang Y, Cai H, Han Y, Yang P. Mechanisms of Heat Stress on Neuroendocrine and Organ Damage and Nutritional Measures of Prevention and Treatment in Poultry. BIOLOGY 2024; 13:926. [PMID: 39596881 PMCID: PMC11591812 DOI: 10.3390/biology13110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Heat stress (HS) due to high temperatures has adverse effects on poultry, including decreased feed intake, lower feed efficiency, decreased body weight, and higher mortality. There are complex mechanisms behind heat stress in poultry involving the neuroendocrine system, organ damage, and other physiological systems. HS activates endocrine glands, such as the pituitary, adrenal, thyroid, and gonadal, by the action of the hypothalamus and sympathetic nerves, ultimately causing changes in hormone levels: HS leads to increased corticosterone levels, changes in triiodothyronine and thyroxine levels, decreased gonadotropin levels, reduced ovarian function, and the promotion of catecholamine release, which ultimately affects the normal productive performance of poultry. Meanwhile, heat stress also causes damage to the liver, lungs, intestines, and various immune organs, severely impairing organ function in poultry. Nutrient additives to feed are important measures of prevention and treatment, including natural plants and extracts, probiotics, amino acids, and other nutrients, which are effective in alleviating heat stress in poultry. Future studies need to explore the specific mechanisms through which heat stress impacts the neuroendocrine system in poultry and the interrelationships between the axes and organ damage so as to provide an effective theoretical basis for the development of preventive and treatment measures.
Collapse
Affiliation(s)
| | | | | | - Peilong Yang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.H.); (H.C.); (Y.H.)
| |
Collapse
|
13
|
Jia P, Che J, Xie X, Han Q, Ma Y, Guo Y, Zheng Y. The role of ZEB1 in mediating the protective effects of metformin on skeletal muscle atrophy. J Pharmacol Sci 2024; 156:57-68. [PMID: 39179335 DOI: 10.1016/j.jphs.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 08/26/2024] Open
Abstract
Metformin is an important antidiabetic drug that has the potential to reduce skeletal muscle atrophy and promote the differentiation of muscle cells. However, the exact molecular mechanism underlying these functions remains unclear. Previous studies revealed that the transcription factor zinc finger E-box-binding homeobox 1 (ZEB1), which participates in tumor progression, inhibits muscle atrophy. Therefore, we hypothesized that the protective effect of metformin might be related to ZEB1. We investigated the positive effect of metformin on IL-1β-induced skeletal muscle atrophy by regulating ZEB1 in vitro and in vivo. Compared with the normal cell differentiation group, the metformin-treated group presented increased myotube diameters and reduced expression levels of atrophy-marker proteins. Moreover, muscle cell differentiation was hindered, when we artificially interfered with ZEB1 expression in mouse skeletal myoblast (C2C12) cells via ZEB1-specific small interfering RNA (si-ZEB1). In response to inflammatory stimulation, metformin treatment increased the expression levels of ZEB1 and three differentiation proteins, MHC, MyoD, and myogenin, whereas si-ZEB1 partially counteracted these effects. Moreover, marked atrophy was induced in a mouse model via the administration of lipopolysaccharide (LPS) to the skeletal muscles of the lower limbs. Over a 4-week period of intragastric administration, metformin treatment ameliorated muscle atrophy and increased the expression levels of ZEB1. Metformin treatment partially alleviated muscle atrophy and stimulated differentiation. Overall, our findings may provide a better understanding of the mechanism underlying the effects of metformin treatment on skeletal muscle atrophy and suggest the potential of metformin as a therapeutic drug.
Collapse
Affiliation(s)
- Peiyu Jia
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200040, China
| | - Ji Che
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200040, China
| | - Xiaoting Xie
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Qi Han
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200040, China
| | - Yantao Ma
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200040, China
| | - Yong Guo
- Department of Anesthesiology and Critical Care Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Yongjun Zheng
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
14
|
Pallotta I, Stec MJ, Schriver B, Golann DR, Considine K, Su Q, Barahona V, Napolitano JE, Stanley S, Garcia M, Feric NT, Durney KM, Aschar‐Sobbi R, Bays N, Shavlakadze T, Graziano MP. Electrical stimulation of biofidelic engineered muscle enhances myotube size, force, fatigue resistance, and induces a fast-to-slow-phenotype shift. Physiol Rep 2024; 12:e70051. [PMID: 39384537 PMCID: PMC11464147 DOI: 10.14814/phy2.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 10/11/2024] Open
Abstract
Therapeutic development for skeletal muscle diseases is challenged by a lack of ex vivo models that recapitulate human muscle physiology. Here, we engineered 3D human skeletal muscle tissue in the Biowire II platform that could be maintained and electrically stimulated long-term. Increasing differentiation time enhanced myotube formation, modulated myogenic gene expression, and increased twitch and tetanic forces. When we mimicked exercise training by applying chronic electrical stimulation, the "exercised" skeletal muscle tissues showed increased myotube size and a contractility profile, fatigue resistance, and gene expression changes comparable to in vivo models of exercise training. Additionally, tissues also responded with expected physiological changes to known pharmacological treatment. To our knowledge, this is the first evidence of a human engineered 3D skeletal muscle tissue that recapitulates in vivo models of exercise. By recapitulating key features of human skeletal muscle, we demonstrated that the Biowire II platform may be used by the pharmaceutical industry as a model for identifying and optimizing therapeutic drug candidates that modulate skeletal muscle function.
Collapse
Affiliation(s)
| | | | | | | | | | - Qi Su
- Regeneron PharmaceuticalsTarrytownNew YorkUSA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Simonson M, Cueff G, Thibaut MM, Giraudet C, Salles J, Chambon C, Boirie Y, Bindels LB, Gueugneau M, Guillet C. Skeletal Muscle Proteome Modifications following Antibiotic-Induced Microbial Disturbances in Cancer Cachexia. J Proteome Res 2024; 23:2452-2473. [PMID: 38965921 DOI: 10.1021/acs.jproteome.4c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Cancer cachexia is an involuntary loss of body weight, mostly of skeletal muscle. Previous research favors the existence of a microbiota-muscle crosstalk, so the aim of the study was to evaluate the impact of microbiota alterations induced by antibiotics on skeletal muscle proteins expression. Skeletal muscle proteome changes were investigated in control (CT) or C26 cachectic mice (C26) with or without antibiotic treatment (CT-ATB or C26-ATB, n = 8 per group). Muscle protein extracts were divided into a sarcoplasmic and myofibrillar fraction and then underwent label-free liquid chromatography separation, mass spectrometry analysis, Mascot protein identification, and METASCAPE platform data analysis. In C26 mice, the atrogen mafbx expression was 353% higher than CT mice and 42.3% higher than C26-ATB mice. No effect on the muscle protein synthesis was observed. Proteomic analyses revealed a strong effect of antibiotics on skeletal muscle proteome outside of cachexia, with adaptative processes involved in protein folding, growth, energy metabolism, and muscle contraction. In C26-ATB mice, proteome adaptations observed in CT-ATB mice were blunted. Differentially expressed proteins were involved in other processes like glucose metabolism, oxidative stress response, and proteolysis. This study confirms the existence of a microbiota-muscle axis, with a muscle response after antibiotics that varies depending on whether cachexia is present.
Collapse
Affiliation(s)
- Mathilde Simonson
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, 28 place Henri-Dunant, BP 38, cedex 1, Clermont-Ferrand 63001, France
| | - Gwendal Cueff
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, 28 place Henri-Dunant, BP 38, cedex 1, Clermont-Ferrand 63001, France
| | - Morgane M Thibaut
- MNUT Research group, Louvain Drug Research Institute, Université catholique de Louvain, LDRI, Avenue Mounier 73/B1.73.11, Brussels 1200, Belgium
| | - Christophe Giraudet
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, 28 place Henri-Dunant, BP 38, cedex 1, Clermont-Ferrand 63001, France
| | - Jérôme Salles
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, 28 place Henri-Dunant, BP 38, cedex 1, Clermont-Ferrand 63001, France
| | - Christophe Chambon
- Animal Products Quality Unit (QuaPA), INRAE, Clermont-Ferrand 63122, France
- Metabolomic and Proteomic Exploration Facility, Clermont Auvergne University, INRAE, Clermont-Ferrand 63122, France
| | - Yves Boirie
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, 28 place Henri-Dunant, BP 38, cedex 1, Clermont-Ferrand 63001, France
- CHU Clermont-Ferrandservice de Nutrition clinique, Université Clermont Auvergne, Service de nutrition clinique, CHU de Clermont-Ferrand. 58, rue Montalember, Cedex 1, Clermont-Ferrand 63003, France
| | - Laure B Bindels
- MNUT Research group, Louvain Drug Research Institute, Université catholique de Louvain, LDRI, Avenue Mounier 73/B1.73.11, Brussels 1200, Belgium
- Welbio Department, WEL Research Institute, avenue Pasteur, 6, Wavre 1300, Belgium
| | - Marine Gueugneau
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, 28 place Henri-Dunant, BP 38, cedex 1, Clermont-Ferrand 63001, France
| | - Christelle Guillet
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, 28 place Henri-Dunant, BP 38, cedex 1, Clermont-Ferrand 63001, France
| |
Collapse
|
16
|
Jang JH, Jung HH, Oh NS. Enhanced protective effect of whey protein fermented with Lacticaseibacillus rhamnosus IM36 on dexamethasone-induced myotube atrophy. Food Sci Biotechnol 2024; 33:2243-2254. [PMID: 39130659 PMCID: PMC11315874 DOI: 10.1007/s10068-024-01640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 08/13/2024] Open
Abstract
This study investigated the preventive potential of whey protein fermented with Lacticaseibacillus rhamnosus IM36 (FWP) against muscle atrophy induced by dexamethasone (DEX). FWP exhibited enhanced antioxidant activities compared with those of unfermented whey protein, effectively suppressing DEX-induced reactive oxygen species production. FWP was treated before the administration of 100 μM DEX on C2C12 myotubes and compared to unfermented whey (WP). DEX significantly inhibited myotube viability and muscle protein synthesis and enhanced degradation. FWP exhibited a dose-dependent attenuation of cell viability loss compared with that of WP. Additionally, FWP stimulated the formation of myotubes and muscle protein synthesis by upregulating myogenesis and insulin-like growth factor-1 expression. Furthermore, FWP significantly attenuated forkhead box protein O3a-mediated ubiquitin ligases and autophagy of lysosomes activated by DEX, inhibiting pathways that lead to muscle protein breakdown. These findings suggest that FWP enhances antioxidant activity and prevented DEX-induced muscle atrophy by regulating muscle protein homeostasis. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01640-x.
Collapse
Affiliation(s)
- Ji Hun Jang
- Department of Food and Biotechnology, Korea University, Sejong, 30019 Korea
| | - Hyeon Ho Jung
- Department of Food and Biotechnology, Korea University, Sejong, 30019 Korea
| | - Nam Su Oh
- Department of Food and Biotechnology, Korea University, Sejong, 30019 Korea
| |
Collapse
|
17
|
Shimada H, Powell TL, Jansson T. Regulation of placental amino acid transport in health and disease. Acta Physiol (Oxf) 2024; 240:e14157. [PMID: 38711335 PMCID: PMC11162343 DOI: 10.1111/apha.14157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
Abnormal fetal growth, i.e., intrauterine growth restriction (IUGR) or fetal growth restriction (FGR) and fetal overgrowth, is associated with increased perinatal morbidity and mortality and is strongly linked to the development of metabolic and cardiovascular disease in childhood and later in life. Emerging evidence suggests that changes in placental amino acid transport may contribute to abnormal fetal growth. This review is focused on amino acid transport in the human placenta, however, relevant animal models will be discussed to add mechanistic insights. At least 25 distinct amino acid transporters with different characteristics and substrate preferences have been identified in the human placenta. Of these, System A, transporting neutral nonessential amino acids, and System L, mediating the transport of essential amino acids, have been studied in some detail. Importantly, decreased placental Systems A and L transporter activity is strongly associated with IUGR and increased placental activity of these two amino acid transporters has been linked to fetal overgrowth in human pregnancy. An array of factors in the maternal circulation, including insulin, IGF-1, and adiponectin, and placental signaling pathways such as mTOR, have been identified as key regulators of placental Systems A and L. Studies using trophoblast-specific gene targeting in mice have provided compelling evidence that changes in placental Systems A and L are mechanistically linked to altered fetal growth. It is possible that targeting specific placental amino acid transporters or their upstream regulators represents a novel intervention to alleviate the short- and long-term consequences of abnormal fetal growth in the future.
Collapse
Affiliation(s)
- Hiroshi Shimada
- Department of Obstetrics and Gynecology University of Colorado, Anschutz Medical Campus, Aurora, CO, US
- Departments of Obstetrics & Gynecology, Sapporo Medical University, Sapporo, Japan
| | - Theresa L Powell
- Department of Obstetrics and Gynecology University of Colorado, Anschutz Medical Campus, Aurora, CO, US
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, US
| | - Thomas Jansson
- Department of Obstetrics and Gynecology University of Colorado, Anschutz Medical Campus, Aurora, CO, US
| |
Collapse
|
18
|
Sato R, Vatic M, Peixoto da Fonseca GW, Anker SD, von Haehling S. Biological basis and treatment of frailty and sarcopenia. Cardiovasc Res 2024:cvae073. [PMID: 38828887 DOI: 10.1093/cvr/cvae073] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 06/05/2024] Open
Abstract
In an ageing society, the importance of maintaining healthy life expectancy has been emphasized. As a result of age-related decline in functional reserve, frailty is a state of increased vulnerability and susceptibility to adverse health outcomes with a serious impact on healthy life expectancy. The decline in skeletal muscle mass and function, also known as sarcopenia, is key in the development of physical frailty. Both frailty and sarcopenia are highly prevalent in patients not only with advanced age but also in patients with illnesses that exacerbate their progression like heart failure (HF), cancer, or dementia, with the prevalence of frailty and sarcopenia in HF patients reaching up to 50-75% and 19.5-47.3%, respectively, resulting in 1.5-3 times higher 1-year mortality. The biological mechanisms of frailty and sarcopenia are multifactorial, complex, and not yet fully elucidated, ranging from DNA damage, proteostasis impairment, and epigenetic changes to mitochondrial dysfunction, cellular senescence, and environmental factors, many of which are further linked to cardiac disease. Currently, there is no gold standard for the treatment of frailty and sarcopenia, however, growing evidence supports that a combination of exercise training and nutritional supplement improves skeletal muscle function and frailty, with a variety of other therapies being devised based on the underlying pathophysiology. In this review, we address the involvement of frailty and sarcopenia in cardiac disease and describe the latest insights into their biological mechanisms as well as the potential for intervention through exercise, diet, and specific therapies.
Collapse
Affiliation(s)
- Ryosuke Sato
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Mirela Vatic
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Guilherme Wesley Peixoto da Fonseca
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, Brazil
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Stefan D Anker
- Department of Cardiology (CVK) of German Heart Center Charité; German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| |
Collapse
|
19
|
Kim YI, Lee H, Kim MJ, Jung CH, Kim YS, Ahn J. Identification of Peucedanum japonicum Thunb. extract components and their protective effects against dexamethasone-induced muscle atrophy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155449. [PMID: 38518644 DOI: 10.1016/j.phymed.2024.155449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/21/2023] [Accepted: 02/11/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Peucedanum japonicum Thunb. (PJ) is a vegetable widely consumed in East Asia and is known to have anticancer and anti-inflammatory effects. However, the effect of PJ on muscle atrophy remains elusive. PURPOSE This study aimed to investigate the effect of PJ and its active compound on dexamethasone (DEX)-induced muscle atrophy. METHODS We performed qualitative and quantitative analysis of PJ using ultra-performance liquid chromatography-mass spectrometry tandem mass spectrometry (UPLC-MS/MS) and high-performance liquid chromatography (HPLC), respectively. The efficacy of PJ and its main compound 4-caffeoylquinic acid (CQA) on muscle atrophy was evaluated in DEX-induced myotube atrophy and DEX-induced muscle atrophy in mouse myoblasts (C2C12) and C57BL/6 mice, in vitro and in vivo, respectively. RESULTS The UPLC-MS/MS and HPLC data showed that the concentration of 4-CQA in PJ was 18.845 mg/g. PJ and 4-CQA treatments significantly inhibited DEX-induced myotube atrophy by decreasing protein synthesis and glucocorticoid translocation to the nucleus in C2C12 myotubes. In addition, PJ enhanced myogenesis by upregulating myogenin and myogenic differentiation 1 in C2C12 cells. PJ supplementation effectively increased muscle function and mass, downregulated atrogenes, and decreased proteasome activity in C57BL/6 mice. Additionally, PJ effectively decreased the nuclear translocation of forkhead transcription factor 3 alpha by inhibiting glucocorticoid receptor. CONCLUSION Overall, PJ and its active compound 4-CQA alleviated skeletal muscle atrophy by inhibiting protein degradation. Hence, our findings present PJ as a potential novel pharmaceutical candidate for the treatment of muscle atrophy.
Collapse
Affiliation(s)
- Young In Kim
- Aging and Metabolism Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, South Korea; Department of Food Science and Technology, Jeonbuk National University, Jeonju-si, South Korea
| | - Hyunjung Lee
- Aging and Metabolism Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, South Korea
| | - Min Jung Kim
- Aging and Metabolism Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, South Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, South Korea; Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon, South Korea
| | - Young-Soo Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju-si, South Korea
| | - Jiyun Ahn
- Aging and Metabolism Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, South Korea; Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
20
|
El-far AS, Kamiya M, Saneyasu T, Honda K. Effects of Amino Acid Supplementation to a Low-Protein Diet on the Growth Performance and Protein Metabolism-related Factors in Broiler Chicks. J Poult Sci 2024; 61:2024014. [PMID: 38726100 PMCID: PMC11074001 DOI: 10.2141/jpsa.2024014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/03/2024] [Indexed: 05/12/2024] Open
Abstract
A low-protein (LP) diet may alleviate the environmental impact of chicken meat production by reducing nitrogen excretion and ammonia emissions. Thus, this study investigated the effect of a 15% reduced protein diet with or without amino acid (AA) supplementation on the growth performance of broiler chicks from 10 to 35 days of age and the underlying mechanism for loss of skeletal muscle mass. Thirty-six male broiler chicks were allocated to three experimental groups based on body weight: control, LP, and essential AA-supplemented LP (LP+AA). The body weight gain, feed conversion ratio, and weight of breast muscles and legs significantly decreased only in the LP group at the end of the feeding period. Plasma uric acid levels were significantly lower in the LP+AA group than those of the other groups. In the LP group, mRNA levels of microtubule-associated protein 1 light chain 3 isoform B were significantly higher in the pectoralis major, whereas those of atrogin-1, muscle RING-finger protein-1, and myoblast determination protein 1 were significantly higher in the biceps femoris compared to those in the control group. There were no significant differences in insulin-like growth factor 1 mRNA levels in the liver or skeletal muscle between groups. These findings suggested that supplementation with essential AAs ameliorated the impaired effects of an LP diet on growth performance in broiler chicks, and that the transcriptional changes in proteolytic genes in skeletal muscles might be related to the impaired effects of the LP diet.
Collapse
Affiliation(s)
- Asmaa S. El-far
- Graduate School of
Agricultural Science, Kobe University, Kobe
657-8501, Japan
- Faculty of
Veterinary Medicine, Damanhour University,
Damanhour, Egypt
| | - Maho Kamiya
- Graduate School of
Agricultural Science, Kobe University, Kobe
657-8501, Japan
| | - Takaoki Saneyasu
- Graduate School of
Agricultural Science, Kobe University, Kobe
657-8501, Japan
| | - Kazuhisa Honda
- Graduate School of
Agricultural Science, Kobe University, Kobe
657-8501, Japan
| |
Collapse
|
21
|
Jang JH, Joung JY, Pack SP, Oh NS. Preventive effect of fermented whey protein mediated by Lactobacillus gasseri IM13 via the PI3K/AKT/FOXO pathway in muscle atrophy. J Dairy Sci 2024; 107:2606-2619. [PMID: 37977441 DOI: 10.3168/jds.2023-24027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
This study investigated the preventive effects of whey protein fermented with Lactobacillus gasseri IM13 (F-WP) against dexamethasone (DEX)-induced muscle atrophy. C2C12 muscle cells were treated with F-WP followed by DEX treatment. Dexamethasone treatment inhibited myotube formation and the expression of myogenic regulatory factors; however, pretreatment with F-WP attenuated DEX-induced damage. The F-WP significantly activated the phosphorylation of the IGF-1/PI3K/AKT pathway and improved muscle homeostasis suppressed by DEX. Moreover, F-WP alleviated the phosphorylation of mTOR, S6K1, and 4E-BP1 and enhanced muscle protein synthesis. Muscle-specific ubiquitin ligases and autophagy lysosomes, which were activated by the dephosphorylation of FOXO3a by DEX treatment, were significantly attenuated by F-WP pretreatment of myotubes. For peptidomic analysis, F-WP was fractionated using preparative HPLC (prep-HPLC), and the AA sequences of 11 peptides were identified using MALDI-TOF/MS/MS. In conclusion, fermentation of whey protein by the specific probiotic strain IM13 produced bioactive peptides with high antioxidant and anti-sarcopenic-sarcopenic effects, which markedly enhanced myogenesis and muscle protein synthesis while diminishing muscle protein degradation compared with intact whey protein.
Collapse
Affiliation(s)
- Ji Hun Jang
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea
| | - Jae Yeon Joung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Korea
| | - Nam Su Oh
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea.
| |
Collapse
|
22
|
Prado CM, Batsis JA, Donini LM, Gonzalez MC, Siervo M. Sarcopenic obesity in older adults: a clinical overview. Nat Rev Endocrinol 2024; 20:261-277. [PMID: 38321142 DOI: 10.1038/s41574-023-00943-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 02/08/2024]
Abstract
Sarcopenic obesity is characterized by a concurrent decline in muscle mass and function, along with increased adipose tissue. Sarcopenic obesity is a growing concern in older adults owing to significant health consequences, including implications for mortality, comorbidities and risk of developing geriatric syndromes. A 2022 consensus statement established a new definition and diagnostic criteria for sarcopenic obesity. The pathophysiology of this condition involves a complex interplay between muscle, adipose tissue, hormonal changes, inflammation, oxidative stress and lifestyle factors, among others. Sarcopenic obesity is treated with a range of management approaches, such as lifestyle interventions, exercise, nutrition and medical therapies. Emerging therapies that were developed for treating other conditions may be relevant to sarcopenic obesity, including novel pharmacological agents and personalized approaches such as precision medicine. In this Review, we synthesize the current knowledge of the clinical importance of sarcopenic obesity, its assessment and diagnosis, along with current and emerging management strategies.
Collapse
Affiliation(s)
- Carla M Prado
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| | - John A Batsis
- Division of Geriatric Medicine, School of Medicine, and Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lorenzo M Donini
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - M Cristina Gonzalez
- Postgraduate Program in Nutrition and Food, Pelotas, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Mario Siervo
- School of Population Health, Curtin University, Perth, Western Australia, Australia
- Curtin Dementia Centre of Excellence, enAble Institute, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
23
|
Cai Q, Sahu R, Ueberschlag-Pitiot V, Souali-Crespo S, Charvet C, Silem I, Cottard F, Ye T, Taleb F, Metzger E, Schuele R, Billas IML, Laverny G, Metzger D, Duteil D. LSD1 inhibition circumvents glucocorticoid-induced muscle wasting of male mice. Nat Commun 2024; 15:3563. [PMID: 38670969 PMCID: PMC11053113 DOI: 10.1038/s41467-024-47846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Synthetic glucocorticoids (GC), such as dexamethasone, are extensively used to treat chronic inflammation and autoimmune disorders. However, long-term treatments are limited by various side effects, including muscle atrophy. GC activities are mediated by the glucocorticoid receptor (GR), that regulates target gene expression in various tissues in association with cell-specific co-regulators. Here we show that GR and the lysine-specific demethylase 1 (LSD1) interact in myofibers of male mice, and that LSD1 connects GR-bound enhancers with NRF1-associated promoters to stimulate target gene expression. In addition, we unravel that LSD1 demethylase activity is required for triggering starvation- and dexamethasone-induced skeletal muscle proteolysis in collaboration with GR. Importantly, inhibition of LSD1 circumvents muscle wasting induced by pharmacological levels of dexamethasone, without affecting their anti-inflammatory activities. Thus, our findings provide mechanistic insights into the muscle-specific GC activities, and highlight the therapeutic potential of targeting GR co-regulators to limit corticotherapy-induced side effects.
Collapse
Affiliation(s)
- Qingshuang Cai
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France
| | - Rajesh Sahu
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France
| | | | - Sirine Souali-Crespo
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France
| | - Céline Charvet
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France
| | - Ilyes Silem
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France
| | - Félicie Cottard
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France
| | - Tao Ye
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France
| | - Fatima Taleb
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France
| | - Eric Metzger
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, D-79106, Freiburg, Germany
| | - Roland Schuele
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, D-79106, Freiburg, Germany
| | - Isabelle M L Billas
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France
| | - Gilles Laverny
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France
| | - Daniel Metzger
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France
| | - Delphine Duteil
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France.
| |
Collapse
|
24
|
Mughal S, Sabater-Arcis M, Artero R, Ramón-Azcón J, Fernández-Costa JM. Taurine activates the AKT-mTOR axis to restore muscle mass and contractile strength in human 3D in vitro models of steroid myopathy. Dis Model Mech 2024; 17:dmm050540. [PMID: 38655653 PMCID: PMC11073513 DOI: 10.1242/dmm.050540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/06/2024] [Indexed: 04/26/2024] Open
Abstract
Steroid myopathy is a clinically challenging condition exacerbated by prolonged corticosteroid use or adrenal tumors. In this study, we engineered a functional three-dimensional (3D) in vitro skeletal muscle model to investigate steroid myopathy. By subjecting our bioengineered muscle tissues to dexamethasone treatment, we reproduced the molecular and functional aspects of this disease. Dexamethasone caused a substantial reduction in muscle force, myotube diameter and induced fatigue. We observed nuclear translocation of the glucocorticoid receptor (GCR) and activation of the ubiquitin-proteasome system within our model, suggesting their coordinated role in muscle atrophy. We then examined the therapeutic potential of taurine in our 3D model for steroid myopathy. Our findings revealed an upregulation of phosphorylated AKT by taurine, effectively countering the hyperactivation of the ubiquitin-proteasomal pathway. Importantly, we demonstrate that discontinuing corticosteroid treatment was insufficient to restore muscle mass and function. Taurine treatment, when administered concurrently with corticosteroids, notably enhanced contractile strength and protein turnover by upregulating the AKT-mTOR axis. Our model not only identifies a promising therapeutic target, but also suggests combinatorial treatment that may benefit individuals undergoing corticosteroid treatment or those diagnosed with adrenal tumors.
Collapse
Affiliation(s)
- Sheeza Mughal
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac 10-12, E08028 Barcelona, Spain
| | - Maria Sabater-Arcis
- University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Dr Moliner 50, E46100 Burjassot, Valencia, Spain
- Translational Genomics Group, Incliva Health Research Institute, Dr Moliner 50, E46100 Burjassot, Valencia, Spain
- Joint Unit Incliva- CIPF, Dr Moliner 50, E46100 Burjassot, Valencia, Spain
| | - Ruben Artero
- University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Dr Moliner 50, E46100 Burjassot, Valencia, Spain
- Translational Genomics Group, Incliva Health Research Institute, Dr Moliner 50, E46100 Burjassot, Valencia, Spain
- Joint Unit Incliva- CIPF, Dr Moliner 50, E46100 Burjassot, Valencia, Spain
| | - Javier Ramón-Azcón
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac 10-12, E08028 Barcelona, Spain
- Institució Catalana de Reserca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, E08010 Barcelona, Spain
| | - Juan M. Fernández-Costa
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac 10-12, E08028 Barcelona, Spain
| |
Collapse
|
25
|
Lee J, Wang ZM, Messi ML, Milligan C, Furdui CM, Delbono O. Sex differences in single neuron function and proteomics profiles examined by patch-clamp and mass spectrometry in the locus coeruleus of the adult mouse. Acta Physiol (Oxf) 2024; 240:e14123. [PMID: 38459766 PMCID: PMC11021178 DOI: 10.1111/apha.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
AIMS This study aimed to characterize the properties of locus coeruleus (LC) noradrenergic neurons in male and female mice. We also sought to investigate sex-specific differences in membrane properties, action potential generation, and protein expression profiles to understand the mechanisms underlying neuronal excitability variations. METHODS Utilizing a genetic mouse model by crossing Dbhcre knock-in mice with tdTomato Ai14 transgenic mice, LC neurons were identified using fluorescence microscopy. Neuronal functional properties were assessed using patch-clamp recordings. Proteomic analyses of individual LC neuron soma was conducted using mass spectrometry to discern protein expression profiles. Data are available via ProteomeXchange with identifier PXD045844. RESULTS Female LC noradrenergic neurons displayed greater membrane capacitance than those in male mice. Male LC neurons demonstrated greater spontaneous and evoked action potential generation compared to females. Male LC neurons exhibited a lower rheobase and achieved higher peak frequencies with similar current injections. Proteomic analysis revealed differences in protein expression profiles between sexes, with male mice displaying a notably larger unique protein set compared to females. Notably, pathways pertinent to protein synthesis, degradation, and recycling, such as EIF2 and glucocorticoid receptor signaling, showed reduced expression in females. CONCLUSIONS Male LC noradrenergic neurons exhibit higher intrinsic excitability compared to those from females. The discernible sex-based differences in excitability could be ascribed to varying protein expression profiles, especially within pathways that regulate protein synthesis and degradation. This study lays the groundwork for future studies focusing on the interplay between proteomics and neuronal function examined in individual cells.
Collapse
Affiliation(s)
- Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Zhong-Min Wang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - María Laura Messi
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Carol Milligan
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
26
|
Okubo M, Morishita M, Odani T, Sakaguchi H, Kikutani T, Kokabu S. The importance of taste on swallowing function. Front Nutr 2024; 11:1356165. [PMID: 38385009 PMCID: PMC10879290 DOI: 10.3389/fnut.2024.1356165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
The world's population is aging. Pneumonia is the leading cause of death among the older adults, with aspiration pneumonia being particularly common. Aspiration pneumonia is caused by a decline in swallowing function. Causes can include age-related sarcopenia of swallowing muscles, cognitive decline, cerebrovascular and other diseases or even changes in individual taste preference. Currently, the main treatment approach for dysphagia is resistance training of swallowing-related muscles. This approach has not been effective and establishment of novel methods are required. In this review, we introduce and discuss the relationship between taste, taste preference, carbonation and swallowing function. Taste and preference improve swallowing function. Recently, it has been shown that a carbonated beverage that combines the functionality of a thickening agent, the appeal of taste, and the stimulation of carbonation improves swallowing function. This may be very useful in the recovery of swallowing function. It is important to note that deliciousness is based not only on taste and preference, but also on visual information such as food form. Umami taste receptors are expressed not only in taste buds but also in skeletal muscle and small intestine. These receptors may be involved in homeostasis of the amino acid metabolic network, i.e., the process of amino acid ingestion, intestine absorption, and storage in skeletal muscle. Proper stimulation of umami receptors in organs other than taste buds may help maintain nutritional status and muscle mass. Umami receptors are therefore a potential therapeutic target for dysphagia.
Collapse
Affiliation(s)
- Masahiko Okubo
- Department of Dentistry and Oral Surgery, Ongata Hospital, Hachioji, Tokyo, Japan
| | - Motoyoshi Morishita
- Department of Physical Therapy, Faculty of Rehabilitation, Reiwa Health Sciences University, Fukuoka, Japan
| | - Tomoko Odani
- Department of Dentistry, Kawaguchi Cupola Rehabilitation Hospital, Kawaguchi, Saitama, Japan
| | - Hideo Sakaguchi
- Department of Dentistry, Ryohoku Hospital, Hachioji, Tokyo, Japan
| | - Takeshi Kikutani
- Division of Clinical Oral Rehabilitation, Nippon Dental University Graduate School of Life Dentistry, Iidabashi, Tokyo, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Japan
| |
Collapse
|
27
|
Petry ÉR, Dresch DDF, Carvalho C, Medeiros PC, Rosa TG, de Oliveira CM, Martins LAM, Guma FCR, Marroni NP, Wannmacher CMD. Oral glutamine supplementation relieves muscle loss in immobilized rats, altering p38MAPK and FOXO3a signaling pathways. Nutrition 2024; 118:112273. [PMID: 38096603 DOI: 10.1016/j.nut.2023.112273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/05/2023] [Accepted: 10/22/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Skeletal muscle synthesizes, stores, and releases body L-glutamine (GLN). Muscle atrophy due to disabling diseases triggers the activation of proteolytic and pro-apoptotic cell signaling, thus impairing the body's capacity to manage GLN content. This situation has a poor therapeutic prognosis. OBJECTIVE Evaluating if oral GLN supplementation can attenuate muscle wasting mediated by elevated plasma cortisol and activation of caspase-3, p38MAPK, and FOXO3a signaling pathways in soleus and gastrocnemius muscles of rats submitted to 14-day bilateral hindlimbs immobilization. METHODS Animals were randomly distributed into six groups: non-immobilized rats (Control), control orally supplemented with GLN (1 g kg-1) in solution with L-alanine (ALA: 0.61 g kg-1; GLN+ALA), control orally supplemented with dipeptide L-alanyl-L-glutamine (DIP; 1.49 g kg-1), hindlimbs immobilized rats (IMOB), IMOB orally GLN+ALA supplemented (GLN+ALA-IMOB), and IMOB orally DIP supplemented (DIP-IMOB). Plasma and muscle GLN concentration, plasma cortisol level, muscle caspase-3 activity, muscle p38MAPK and FOXO3a protein content (total and phosphorylated forms), and muscle cross-sectional area (CSA) were measured. RESULTS Compared to controls, IMOB rats presented: a) increased plasma cortisol levels; b) decreased plasma and muscle GLN concentration; c) increased muscle caspase-3 activity; d) increased total and phosphorylated p38MAPK protein content; e) increased FOXO3a and decreased phosphorylated FOXO3a protein content; f) reduced muscle weight and CSA befitting to atrophy. Oral supplementation with GLN+ALA and DIP was able to significantly attenuate these effects. CONCLUSIONS These findings attest that oral GLN supplementation in GLN+ALA solution or DIP forms attenuates rats' skeletal muscle mass wasting caused by disuse-mediated muscle atrophy.
Collapse
Affiliation(s)
- Éder Ricardo Petry
- Department of Cellular and Molecular Physiology, College of Medicine, Penn State University, Hershey, Pennsylvania, USA; Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Department of Biochemistry, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Diego de Freitas Dresch
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Clarice Carvalho
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Patricia Calçada Medeiros
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Tatiana Gomes Rosa
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Faculdades Integradas de Taquara (FACCAT), Taquara, Rio Grande do Sul, Brazil
| | - Cleverson Morais de Oliveira
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Department of Biochemistry, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leo Anderson Meira Martins
- Laboratory of Endocrine and Tumor Molecular Biology, Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Brazil; Post-Graduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Fátima Costa Rodrigues Guma
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Department of Biochemistry, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Norma Possas Marroni
- Post-Graduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil; Post-Graduate Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Pulmonological Sciences: Inflammation, Experimental Research Center, Clinical Hospital of Porto Alegre (HCPA), UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Clóvis Milton Duval Wannmacher
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Department of Biochemistry, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
28
|
Larson KR, Jayakrishnan D, Soto Sauza KA, Goodson ML, Chaffin AT, Davidyan A, Pathak S, Fang Y, Gonzalez Magaña D, Miller BF, Ryan KK. FGF21 Induces Skeletal Muscle Atrophy and Increases Amino Acids in Female Mice: A Potential Role for Glucocorticoids. Endocrinology 2024; 165:bqae004. [PMID: 38244215 PMCID: PMC10849119 DOI: 10.1210/endocr/bqae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/27/2023] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
Fibroblast growth factor-21 (FGF21) is an intercellular signaling molecule secreted by metabolic organs, including skeletal muscle, in response to intracellular stress. FGF21 crosses the blood-brain barrier and acts via the nervous system to coordinate aspects of the adaptive starvation response, including increased lipolysis, gluconeogenesis, fatty acid oxidation, and activation of the hypothalamic-pituitary-adrenocortical (HPA) axis. Given its beneficial effects for hepatic lipid metabolism, pharmaceutical FGF21 analogues are used in clinical trials treatment of fatty liver disease. We predicted pharmacologic treatment with FGF21 increases HPA axis activity and skeletal muscle glucocorticoid signaling and induces skeletal muscle atrophy in mice. Here we found a short course of systemic FGF21 treatment decreased muscle protein synthesis and reduced tibialis anterior weight; this was driven primarily by its effect in female mice. Similarly, intracerebroventricular FGF21 reduced tibialis anterior muscle fiber cross-sectional area; this was more apparent among female mice than male littermates. In agreement with the reduced muscle mass, the topmost enriched metabolic pathways in plasma collected from FGF21-treated females were related to amino acid metabolism, and the relative abundance of plasma proteinogenic amino acids was increased up to 3-fold. FGF21 treatment increased hypothalamic Crh mRNA, plasma corticosterone, and adrenal weight, and increased expression of glucocorticoid receptor target genes known to reduce muscle protein synthesis and/or promote degradation. Given the proposed use of FGF21 analogues for the treatment of metabolic disease, the study is both physiologically relevant and may have important clinical implications.
Collapse
Affiliation(s)
- Karlton R Larson
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Devi Jayakrishnan
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Karla A Soto Sauza
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Michael L Goodson
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Aki T Chaffin
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Arik Davidyan
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
- Department of Biological Sciences, California State University Sacramento, Sacramento, CA 95819, USA
| | - Suraj Pathak
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Yanbin Fang
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Diego Gonzalez Magaña
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Benjamin F Miller
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Karen K Ryan
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
29
|
Wang Y, Dong Z, An Z, Jin W. Cancer cachexia: Focus on cachexia factors and inter-organ communication. Chin Med J (Engl) 2024; 137:44-62. [PMID: 37968131 PMCID: PMC10766315 DOI: 10.1097/cm9.0000000000002846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 11/17/2023] Open
Abstract
ABSTRACT Cancer cachexia is a multi-organ syndrome and closely related to changes in signal communication between organs, which is mediated by cancer cachexia factors. Cancer cachexia factors, being the general name of inflammatory factors, circulating proteins, metabolites, and microRNA secreted by tumor or host cells, play a role in secretory or other organs and mediate complex signal communication between organs during cancer cachexia. Cancer cachexia factors are also a potential target for the diagnosis and treatment. The pathogenesis of cachexia is unclear and no clear effective treatment is available. Thus, the treatment of cancer cachexia from the perspective of the tumor ecosystem rather than from the perspective of a single molecule and a single organ is urgently needed. From the point of signal communication between organs mediated by cancer cachexia factors, finding a deeper understanding of the pathogenesis, diagnosis, and treatment of cancer cachexia is of great significance to improve the level of diagnosis and treatment. This review begins with cancer cachexia factors released during the interaction between tumor and host cells, and provides a comprehensive summary of the pathogenesis, diagnosis, and treatment for cancer cachexia, along with a particular sight on multi-organ signal communication mediated by cancer cachexia factors. This summary aims to deepen medical community's understanding of cancer cachexia and may conduce to the discovery of new diagnostic and therapeutic targets for cancer cachexia.
Collapse
Affiliation(s)
- Yongfei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zikai Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ziyi An
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Weilin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
30
|
Murao M, Imano T, Sato Y, Nakajima M. Uphill running preferred over downhill running for recovery from glucocorticoid-induced muscle atrophy. Steroids 2024; 201:109337. [PMID: 37977489 DOI: 10.1016/j.steroids.2023.109337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Masanobu Murao
- Research institute of health and welfare, Kibi international university, 8 Iga-machi, Takahashi-city, Okayama 716-8508, Japan; Rehabilitation unit, Kyoto university hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto-city, Kyoto 606-8507, Japan.
| | - Tetsuo Imano
- Research institute of health and welfare, Kibi international university, 8 Iga-machi, Takahashi-city, Okayama 716-8508, Japan; Department of physical therapy, Hiroshima international and medical welfare collage, 14-22 Hijiyamahonmachi, Minami-ku, Hiroshima-city, Hiroshima 732-0816, Japan
| | - Yoshinobu Sato
- Research institute of health and welfare, Kibi international university, 8 Iga-machi, Takahashi-city, Okayama 716-8508, Japan; Studio TAIKA, 28-6 Shinyuno, Kannabe-cho, Fukuyama-city, Hiroshima 720-2122, Japan
| | - Masaaki Nakajima
- Research institute of health and welfare, Kibi international university, 8 Iga-machi, Takahashi-city, Okayama 716-8508, Japan
| |
Collapse
|
31
|
Takeuchi Y, Murayama Y, Aita Y, Mehrazad Saber Z, Karkoutly S, Tao D, Katabami K, Ye C, Shikama A, Masuda Y, Izumida Y, Miyamoto T, Matsuzaka T, Kawakami Y, Shimano H, Yahagi N. GR-KLF15 pathway controls hepatic lipogenesis during fasting. FEBS J 2024; 291:259-271. [PMID: 37702262 DOI: 10.1111/febs.16957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/10/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
During periods of fasting, the body undergoes a metabolic shift from carbohydrate utilization to the use of fats and ketones as an energy source, as well as the inhibition of de novo lipogenesis and the initiation of gluconeogenesis in the liver. The transcription factor sterol regulatory element-binding protein-1 (SREBP-1), which plays a critical role in the regulation of lipogenesis, is suppressed during fasting, resulting in the suppression of hepatic lipogenesis. We previously demonstrated that the interaction of fasting-induced Kruppel-like factor 15 (KLF15) with liver X receptor serves as the essential mechanism for the nutritional regulation of SREBP-1 expression. However, the underlying mechanisms of KLF15 induction during fasting remain unclear. In this study, we show that the glucocorticoid receptor (GR) regulates the hepatic expression of KLF15 and, subsequently, lipogenesis through the KLF15-SREBP-1 pathway during fasting. KLF15 is necessary for the suppression of SREBP-1 by GR, as demonstrated through experiments using KLF15 knockout mice. Additionally, we show that GR is involved in the fasting response, with heightened binding to the KLF15 enhancer. It has been widely known that the hypothalamic-pituitary-adrenal (HPA) axis regulates the secretion of glucocorticoids and plays a significant role in the metabolic response to undernutrition. These findings demonstrate the importance of the HPA-axis-regulated GR-KLF15 pathway in the regulation of lipid metabolism in the liver during fasting.
Collapse
Affiliation(s)
- Yoshinori Takeuchi
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Yuki Murayama
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuichi Aita
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Zahra Mehrazad Saber
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Samia Karkoutly
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Duhan Tao
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kyoka Katabami
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Chen Ye
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akito Shikama
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yukari Masuda
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshihiko Izumida
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takafumi Miyamoto
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasushi Kawakami
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Naoya Yahagi
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
32
|
Harrigan ME, Filous AR, Vadala CP, Webb A, Pietrzak M, Sahenk Z, Prüss H, Reiser PJ, Popovich PG, Arnold WD, Schwab JM. Lesion level-dependent systemic muscle wasting after spinal cord injury is mediated by glucocorticoid signaling in mice. Sci Transl Med 2023; 15:eadh2156. [PMID: 38117902 DOI: 10.1126/scitranslmed.adh2156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
An incomplete mechanistic understanding of skeletal muscle wasting early after spinal cord injury (SCI) precludes targeted molecular interventions. Here, we demonstrated systemic wasting that also affected innervated nonparalyzed (supralesional) muscles and emerged within 1 week after experimental SCI in mice. Systemic muscle wasting caused muscle weakness, affected fast type 2 myofibers preferentially, and became exacerbated after high (T3) compared with low (T9) thoracic paraplegia, indicating lesion level-dependent ("neurogenic") mechanisms. The wasting of nonparalyzed muscle and its rapid onset and severity beyond what can be explained by disuse implied unknown systemic drivers. Muscle transcriptome and biochemical analysis revealed a glucocorticoid-mediated catabolic signature early after T3 SCI. SCI-induced systemic muscle wasting was mitigated by (i) endogenous glucocorticoid ablation (adrenalectomy) and (ii) pharmacological glucocorticoid receptor (GR) blockade and was (iii) completely prevented after T3 relative to T9 SCI by genetic muscle-specific GR deletion. These results suggest that neurogenic hypercortisolism contributes to a rapid systemic and functionally relevant muscle wasting syndrome early after paraplegic SCI in mice.
Collapse
Affiliation(s)
- Markus E Harrigan
- Department of Neurology, Spinal Cord Injury Division (Paraplegiology), College of Medicine, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
- Medical Scientist Training Program, College of Medicine, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
- Neuroscience Research Institute, Ohio State University, Columbus, OH 43210, USA
- Belford Center for Spinal Cord Injury, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Angela R Filous
- Department of Neurology, Spinal Cord Injury Division (Paraplegiology), College of Medicine, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
- Neuroscience Research Institute, Ohio State University, Columbus, OH 43210, USA
- Belford Center for Spinal Cord Injury, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Christopher P Vadala
- Department of Neurology, Spinal Cord Injury Division (Paraplegiology), College of Medicine, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
- Neuroscience Research Institute, Ohio State University, Columbus, OH 43210, USA
- Belford Center for Spinal Cord Injury, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Amy Webb
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Zarife Sahenk
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics and Neurology, Nationwide Children's Hospital and Ohio State University, Columbus, OH 43205, USA
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin, 10117 Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Peter J Reiser
- Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH 43210, USA
| | - Phillip G Popovich
- Neuroscience Research Institute, Ohio State University, Columbus, OH 43210, USA
- Belford Center for Spinal Cord Injury, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
- Department of Neuroscience, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - W David Arnold
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO 65212, USA
| | - Jan M Schwab
- Department of Neurology, Spinal Cord Injury Division (Paraplegiology), College of Medicine, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
- Neuroscience Research Institute, Ohio State University, Columbus, OH 43210, USA
- Belford Center for Spinal Cord Injury, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
- Department of Neuroscience, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
- Department of Physical Medicine and Rehabilitation, Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
33
|
Prekovic S, Chalkiadakis T, Roest M, Roden D, Lutz C, Schuurman K, Opdam M, Hoekman L, Abbott N, Tesselaar T, Wajahat M, Dwyer AR, Mayayo‐Peralta I, Gomez G, Altelaar M, Beijersbergen R, Győrffy B, Young L, Linn S, Jonkers J, Tilley W, Hickey T, Vareslija D, Swarbrick A, Zwart W. Luminal breast cancer identity is determined by loss of glucocorticoid receptor activity. EMBO Mol Med 2023; 15:e17737. [PMID: 37902007 PMCID: PMC10701603 DOI: 10.15252/emmm.202317737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/31/2023] Open
Abstract
Glucocorticoid receptor (GR) is a transcription factor that plays a crucial role in cancer biology. In this study, we utilized an in silico-designed GR activity signature to demonstrate that GR relates to the proliferative capacity of numerous primary cancer types. In breast cancer, the GR activity status determines luminal subtype identity and has implications for patient outcomes. We reveal that GR engages with estrogen receptor (ER), leading to redistribution of ER on the chromatin. Notably, GR activation leads to upregulation of the ZBTB16 gene, encoding for a transcriptional repressor, which controls growth in ER-positive breast cancer and associates with prognosis in luminal A patients. In relation to ZBTB16's repressive nature, GR activation leads to epigenetic remodeling and loss of histone acetylation at sites proximal to cancer-driving genes. Based on these findings, epigenetic inhibitors reduce viability of ER-positive breast cancer cells that display absence of GR activity. Our findings provide insights into how GR controls ER-positive breast cancer growth and may have implications for patients' prognostication and provide novel therapeutic candidates for breast cancer treatment.
Collapse
Affiliation(s)
- Stefan Prekovic
- Division of Oncogenomics, Oncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Center for Molecular MedicineUMC UtrechtUtrechtThe Netherlands
| | | | - Merel Roest
- Division of Oncogenomics, Oncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Daniel Roden
- Cancer Ecosystems ProgramGarvan Institute of Medical ResearchDarlinghurstNSWAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUNSW SydneySydneyNSWAustralia
| | - Catrin Lutz
- Division of Molecular Pathology, Oncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Karianne Schuurman
- Division of Oncogenomics, Oncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Mark Opdam
- Division of Molecular Pathology, Oncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Liesbeth Hoekman
- Mass Spectrometry/Proteomics FacilityThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Nina Abbott
- Division of Oncogenomics, Oncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Tanja Tesselaar
- Division of Oncogenomics, Oncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Maliha Wajahat
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical SchoolUniversity of AdelaideAdelaideSAAustralia
| | - Amy R Dwyer
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical SchoolUniversity of AdelaideAdelaideSAAustralia
| | - Isabel Mayayo‐Peralta
- Division of Oncogenomics, Oncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Gabriela Gomez
- School of Pharmacy and Biomolecular SciencesThe Royal College of Surgeons University of Medicine and Health SciencesDublinIreland
| | - Maarten Altelaar
- Mass Spectrometry/Proteomics FacilityThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Roderick Beijersbergen
- Division of Molecular Carcinogenesis and Robotics and Screening CentreNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Balázs Győrffy
- TTK Cancer Biomarker Research GroupInstitute of EnzymologyBudapestHungary
- Department of Bioinformatics and 2nd Department of PediatricsSemmelweis UniversityBudapestHungary
| | - Leonie Young
- Endocrine Oncology Research Group, Department of SurgeryThe Royal College of Surgeons University of Medicine and Health SciencesDublinIreland
- Beaumont RCSI Cancer CentreBeaumont HospitalDublinIreland
| | - Sabine Linn
- Division of Molecular Pathology, Oncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Wayne Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical SchoolUniversity of AdelaideAdelaideSAAustralia
- Freemasons Centre for Male Health and WellbeingUniversity of AdelaideAdelaideSAAustralia
| | - Theresa Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical SchoolUniversity of AdelaideAdelaideSAAustralia
| | - Damir Vareslija
- School of Pharmacy and Biomolecular SciencesThe Royal College of Surgeons University of Medicine and Health SciencesDublinIreland
- Beaumont RCSI Cancer CentreBeaumont HospitalDublinIreland
| | - Alexander Swarbrick
- Cancer Ecosystems ProgramGarvan Institute of Medical ResearchDarlinghurstNSWAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUNSW SydneySydneyNSWAustralia
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| |
Collapse
|
34
|
Ieko T, Fujiki J, Hasegawa Y, Iwasaki T, Iwano H, Maeda N. Mechanism of skeletal muscle atrophy by muscle fiber types in male rats under long-term fasting stress. Steroids 2023; 200:109328. [PMID: 37863411 DOI: 10.1016/j.steroids.2023.109328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Fasting induces metabolic changes in muscles, which are differentiated by muscle fiber type. In this study, the mechanism of fasting-induced muscle atrophy in rats was examined to determine the differences between muscle fiber types in energy production. Fasting for 96 h did not alter the weight of the soleus (SOL), a fiber type I muscle, but did significantly reduce the weight of gastrocnemius (GM), a fiber type II muscle. GM, SOL and blood pregnenolone and testosterone levels decreased under fasting, which induced energy deprivation, whereas corticosterone (CORT) levels significantly increased. However, the expression of 3β-HSD and P45011β in GM was unaffected by fasting. The decrease in GM weight may be due to decreased levels of testosterone and reduced synthesis of mammalian target of rapamycin (mTOR). Significant increases in CORT both GM and SOL were associated with increases in the amount of branched-chain amino acids available for energy production. However, decreased levels of mTOR and IGF1 and increased levels of CORT and IL-6 in SOL suggest that GM proteolysis was followed by SOL proteolysis for additional energy production. In conclusion, IGF1 levels decreased significantly in SOL, whereas those of IL-6 significantly increased in SOL and blood but decreased in GM. Blood branched-chain amino acids (BCAA) levels were unaffected due to fasting, whereas an increase was noted in the levels of BCAA in GM and SOL. These results show that fasting for 96 h restricts energy supply, producing fast-twitch muscle atrophy followed by slow-twitch muscle atrophy.
Collapse
Affiliation(s)
- Takahiro Ieko
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Hokkaido 069-8501, Japan
| | - Jumpei Fujiki
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Hokkaido 069-8501, Japan
| | - Yasuhiro Hasegawa
- Laboratory of Meat Science, Department of Food Science and Human Wellness, Rakuno Gakuen University, Hokkaido 069-8501, Japan
| | - Tomohito Iwasaki
- Laboratory of Meat Science, Department of Food Science and Human Wellness, Rakuno Gakuen University, Hokkaido 069-8501, Japan
| | - Hidetomo Iwano
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Hokkaido 069-8501, Japan
| | - Naoyuki Maeda
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Hokkaido 069-8501, Japan; Laboratory of Meat Science, Department of Food Science and Human Wellness, Rakuno Gakuen University, Hokkaido 069-8501, Japan.
| |
Collapse
|
35
|
Aslam MA, Ma EB, Huh JY. Pathophysiology of sarcopenia: Genetic factors and their interplay with environmental factors. Metabolism 2023; 149:155711. [PMID: 37871831 DOI: 10.1016/j.metabol.2023.155711] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Sarcopenia is a geriatric disorder characterized by a progressive decline in muscle mass and function. This disorder has been associated with a range of adverse health outcomes, including fractures, functional deterioration, and increased mortality. The pathophysiology of sarcopenia is highly complex and multifactorial, involving both genetic and environmental factors as key contributors. This review consolidates current knowledge on the genetic factors influencing the pathogenesis of sarcopenia, particularly focusing on the altered gene expression of structural and metabolic proteins, growth factors, hormones, and inflammatory cytokines. While the influence of environmental factors such as physical inactivity, chronic diseases, smoking, alcohol consumption, and sleep disturbances on sarcopenia is relatively well understood, there is a dearth of studies examining their mechanistic roles. Therefore, this review emphasizes the interplay between genetic and environmental factors, elucidating their cumulative role in exacerbating the progression of sarcopenia beyond their individual effects. The unique contribution of this review lies in synthesizing the latest evidence on the genetic factors and their interaction with environmental factors, aiming to inform the development of novel therapeutic or preventive interventions for sarcopenia.
Collapse
Affiliation(s)
- Muhammad Arif Aslam
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Eun Bi Ma
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Joo Young Huh
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
36
|
Yang Y, Yang X, Huang Y, Liu S, Niu Y, Fu L. Resistance exercise alleviates dexamethasone-induced muscle atrophy via Sestrin2/MSTN pathway in C57BL/6J mice. Exp Cell Res 2023; 432:113779. [PMID: 37709247 DOI: 10.1016/j.yexcr.2023.113779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023]
Abstract
AIM It has long been recognized that resistance exercise can substantially increase skeletal muscle mass and strength, but whether it can protect against glucocorticoid-induced muscle atrophy and its potential mechanism is yet to be determined. This study aimed to investigate the protective effects of resistance exercise in dexamethasone-induced muscle atrophy and elucidate the possible function of exercise-induced protein Sestrin2 in this process. METHODS Eight-week-old male C57BL/6J mice carried out the incremental mouse ladder exercise for 11 weeks. Two weeks before the end of the intervention, mice were daily intraperitoneally injected with dexamethasone. Body composition, muscle mass, and exercise performance were examined to evaluate muscle atrophy. In vitro, C2C12 cells were used for RT-qPCR, Western Blot, and immunofluorescence experiments to elucidate the potential mechanism. RESULTS Our results showed that long-term resistance exercise is an effective intervention for dexamethasone-induced muscle atrophy. We also found that Sestrin2 plays a vital role in dexamethasone-induced muscle atrophy. In both animal (P = .0006) and cell models (P = .0266), dexamethasone intervention significantly reduced the protein expression of Sestrin2, which was increased (P = .0112) by resistance exercise. Inversely, overexpression of Sestrin2 improved (P < .0001) dexamethasone-induced myotube cell atrophy by reducing the activation of the ubiquitin-proteasome pathway via inhibiting Forkhead box O3 (FoxO3a) and myostatin (MSTN)/small mother against decapentaplegic (Smad) signaling pathways. CONCLUSION Taken together, our results indicated that Sestrin2 may serve as an effective molecule that mimics the protective effect of resistance exercise on dexamethasone-induced muscle atrophy.
Collapse
Affiliation(s)
- Yang Yang
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, 300070, China
| | - Xuege Yang
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, 300070, China
| | - Yating Huang
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, 300070, China
| | - Sujuan Liu
- Department of Anatomy and Histology, School of Basic Medical Science, Tianjin Medical University, Tianjin, 300070, China
| | - Yanmei Niu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, 300070, China
| | - Li Fu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, 300070, China; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
37
|
Gao S, Huang S, Zhang Y, Fang G, Liu Y, Zhang C, Li Y, Du J. The transcriptional regulator KLF15 is necessary for myoblast differentiation and muscle regeneration by activating FKBP5. J Biol Chem 2023; 299:105226. [PMID: 37673339 PMCID: PMC10622842 DOI: 10.1016/j.jbc.2023.105226] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023] Open
Abstract
Successful muscle regeneration following injury is essential for functional homeostasis of skeletal muscles. Krüppel-like factor 15 (KLF15) is a metabolic transcriptional regulator in the muscles. However, little is known regarding its function in muscle regeneration. Here, we examined microarray datasets from the Gene Expression Omnibus database, which indicated downregulated KLF15 in muscles from patients with various muscle diseases. Additionally, we found that Klf15 knockout (Klf15KO) impaired muscle regeneration following injury in mice. Furthermore, KLF15 expression was robustly induced during myoblast differentiation. Myoblasts with KLF15 deficiency showed a marked reduction in their fusion capacity. Unbiased transcriptome analysis of muscles on day 7 postinjury revealed downregulated genes involved in cell differentiation and metabolic processes in Klf15KO muscles. The FK506-binding protein 51 (FKBP5), a positive regulator of myoblast differentiation, was ranked as one of the most strongly downregulated genes in the Klf15KO group. A mechanistic search revealed that KLF15 binds directly to the promoter region of FKBP5 and activates FKBP5 expression. Local delivery of FKBP5 rescued the impaired muscle regeneration in Klf15KO mice. Our findings reveal a positive regulatory role of KLF15 in myoblast differentiation and muscle regeneration by activating FKBP5 expression. KLF15 signaling may be a novel therapeutic target for muscle disorders associated with injuries or diseases.
Collapse
Affiliation(s)
- Shijuan Gao
- Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shan Huang
- Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yanhong Zhang
- Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Guangming Fang
- Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yan Liu
- Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Congcong Zhang
- Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Yulin Li
- Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Jie Du
- Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
38
|
Kim NH, Lee JY, Kim CY. Protective Role of Ethanol Extract of Cibotium barometz (Cibotium Rhizome) against Dexamethasone-Induced Muscle Atrophy in C2C12 Myotubes. Int J Mol Sci 2023; 24:14798. [PMID: 37834245 PMCID: PMC10573348 DOI: 10.3390/ijms241914798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Sarcopenia is a progressive muscle disease characterized by the loss of skeletal muscle mass, strength, function, and physical performance. Since the disease code was assigned, attention has been focused on natural products that can protect against muscle atrophy. Cibotium barometz (Cibotium Rhizome) has been used as an herbal medicine for the treatment of bone or joint diseases in Asian countries. However, no studies have identified the mechanism of action of Cibotium Rhizome on muscle atrophy related to sarcopenia at the site of myotubes. The aim of this study was to investigate the improvement effect of the ethanol extract of Cibotium Rhizome (ECR) on dexamethasone-induced muscle atrophy in an in vitro cell model, i.e., the C2C12 myotubes. High-performance liquid chromatography was performed to examine the phytochemicals in ECR. Seven peaks in the ECR were identified, corresponding to the following compounds: protocatechuic acid, (+)-catechin hydrate, p-coumaric acid, ellagic acid, chlorogenic acid, caffeic acid, and ferulic acid. In atrophy-like conditions induced by 100 μM dexamethasone for 24 h in C2C12, ECR increased the expression of the myosin heavy chain, p-Akt, the p-mammalian target of rapamycin (mTOR), p-p70S6K, and repressed the expression of regulated in development and DNA damage responses 1 (REDD1), kruppel-like factor 15 (KLF 15), muscle atrophy F-box, and muscle-specific RING finger protein-1 in C2C12. In addition, ECR alleviated dexamethasone-induced muscle atrophy by repressing REDD1 and KLF15 transcription in C2C12 myotubes, indicating the need for further studies to provide a scientific basis for the development of useful therapeutic agents using ECR to alleviate the effects of skeletal muscle atrophy or sarcopenia.
Collapse
Affiliation(s)
- Na-Hyung Kim
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (N.-H.K.); (J.-Y.L.)
- Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Joo-Yeon Lee
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (N.-H.K.); (J.-Y.L.)
- Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Choon Young Kim
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (N.-H.K.); (J.-Y.L.)
- Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
39
|
Kim JY, Kwon YG, Kim YM. The stress-responsive protein REDD1 and its pathophysiological functions. Exp Mol Med 2023; 55:1933-1944. [PMID: 37653030 PMCID: PMC10545776 DOI: 10.1038/s12276-023-01056-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 09/02/2023] Open
Abstract
Regulated in development and DNA damage-response 1 (REDD1) is a stress-induced protein that controls various cellular functions, including metabolism, oxidative stress, autophagy, and cell fate, and contributes to the pathogenesis of metabolic and inflammatory disorders, neurodegeneration, and cancer. REDD1 usually exerts deleterious effects, including tumorigenesis, metabolic inflammation, neurodegeneration, and muscle dystrophy; however, it also exhibits protective functions by regulating multiple intrinsic cell activities through either an mTORC1-dependent or -independent mechanism. REDD1 typically regulates mTORC1 signaling, NF-κB activation, and cellular pro-oxidant or antioxidant activity by interacting with 14-3-3 proteins, IκBα, and thioredoxin-interacting protein or 75 kDa glucose-regulated protein, respectively. The diverse functions of REDD1 depend on cell type, cellular context, interaction partners, and cellular localization (e.g., mitochondria, endomembrane, or cytosol). Therefore, comprehensively understanding the molecular mechanisms and biological roles of REDD1 under pathophysiological conditions is of utmost importance. In this review, based on the published literature, we highlight and discuss the molecular mechanisms underlying the REDD1 expression and its actions, biological functions, and pathophysiological roles.
Collapse
Affiliation(s)
- Ji-Yoon Kim
- Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul, 04763, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
40
|
Chen H, Liu Z, Zha J, Zeng L, Tang R, Tang C, Cai J, Tan C, Liu H, Dong Z, Chen G. Glucocorticoid regulation of the mTORC1 pathway modulates CD4 + T cell responses during infection. Clin Transl Immunology 2023; 12:e1464. [PMID: 37649974 PMCID: PMC10463561 DOI: 10.1002/cti2.1464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/29/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Objectives Conventional glucocorticoid (GC) treatment poses significant risks for opportunistic infections due to its suppressive impact on CD4+ T cells. This study aimed to explore the mechanisms by which GCs modulate the functionality of CD4+ T cells during infection. Methods We consistently measured FOXP3, inflammatory cytokines and phospho-S6 ribosomal protein levels in CD4+ T cells from patients undergoing conventional GC treatment. Using Foxp3EGFP animals, we investigated the dynamic activation of the mechanistic target of rapamycin complex 1 (mTORC1) pathway and its correlation with the immunoregulatory function of CD4+ T cells under the influence of GCs. Results GCs dynamically altered the expression pattern of FOXP3 in CD4+ T cells, promoting their acquisition of an active T regulatory (Treg) cell phenotype upon stimulation. Mechanistically, GCs undermined the kinetics of the mTORC1 pathway, which was closely correlated with phenotype conversion and functional properties of CD4+ T cells. Dynamic activation of the mTORC1 signaling modified the GC-dampened immunoregulatory capacity of CD4+ T cells by phenotypically and functionally bolstering the FOXP3+ Treg cells. Interventions targeting the mTORC1 pathway effectively modulated the GC-dampened immunoregulatory capacity of CD4+ T cells. Conclusion These findings highlight a novel mTORC1-mediated mechanism underlying CD4+ T cell immunity in the context of conventional GC treatment.
Collapse
Affiliation(s)
- Huihui Chen
- Department of Ophthalmologythe Second Xiangya Hospital of Central South UniversityChangshaChina
- Clinical Immunology Research Center of Central South UniversityChangshaChina
| | - Zhiwen Liu
- Department of Nephrologythe Second Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Kidney Disease and Blood Purificationthe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jie Zha
- Department of Nephrologythe Second Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Kidney Disease and Blood Purificationthe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Li Zeng
- Department of Nephrologythe Second Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Kidney Disease and Blood Purificationthe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Runyan Tang
- Department of Nephrologythe Second Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Kidney Disease and Blood Purificationthe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Chengyuan Tang
- Department of Nephrologythe Second Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Kidney Disease and Blood Purificationthe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Juan Cai
- Department of Nephrologythe Second Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Kidney Disease and Blood Purificationthe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Chongqing Tan
- Department of Pharmacythe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Hong Liu
- Department of Nephrologythe Second Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Kidney Disease and Blood Purificationthe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Zheng Dong
- Department of Cellular Biology and AnatomyMedical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical CenterAugustaGAUSA
| | - Guochun Chen
- Clinical Immunology Research Center of Central South UniversityChangshaChina
- Department of Nephrologythe Second Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Kidney Disease and Blood Purificationthe Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
41
|
Correia CM, Præstholm SM, Havelund JF, Pedersen FB, Siersbæk MS, Ebbesen MF, Gerhart-Hines Z, Heeren J, Brewer J, Larsen S, Blagoev B, Færgeman NJ, Grøntved L. Acute Deletion of the Glucocorticoid Receptor in Hepatocytes Disrupts Postprandial Lipid Metabolism in Male Mice. Endocrinology 2023; 164:bqad128. [PMID: 37610219 DOI: 10.1210/endocr/bqad128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/09/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
Hepatic lipid metabolism is highly dynamic, and disruption of several circadian transcriptional regulators results in hepatic steatosis. This includes genetic disruption of the glucocorticoid receptor (GR) as the liver develops. To address the functional role of GR in the adult liver, we used an acute hepatocyte-specific GR knockout model to study temporal hepatic lipid metabolism governed by GR at several preprandial and postprandial circadian timepoints. Lipidomics analysis revealed significant temporal lipid metabolism, where GR disruption results in impaired regulation of specific triglycerides, nonesterified fatty acids, and sphingolipids. This correlates with increased number and size of lipid droplets and mildly reduced mitochondrial respiration, most noticeably in the postprandial phase. Proteomics and transcriptomics analyses suggest that dysregulated lipid metabolism originates from pronounced induced expression of enzymes involved in fatty acid synthesis, β-oxidation, and sphingolipid metabolism. Integration of GR cistromic data suggests that induced gene expression is a result of regulatory actions secondary to direct GR effects on gene transcription.
Collapse
Affiliation(s)
- Catarina Mendes Correia
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Stine Marie Præstholm
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Jesper Foged Havelund
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Felix Boel Pedersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Majken Storm Siersbæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Morten Frendø Ebbesen
- DaMBIC, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Zach Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research (CBMR), Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonathan Brewer
- DaMBIC, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Steen Larsen
- Xlab, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Nils Joakim Færgeman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
42
|
Su Q, Jin C, Yang Y, Wang J, Wang J, Zeng H, Chen Y, Zhou J, Wang Y. Association Between Autoimmune Diseases and Sarcopenia: A Two-Sample Mendelian Randomization Study. Clin Epidemiol 2023; 15:901-910. [PMID: 37650009 PMCID: PMC10464831 DOI: 10.2147/clep.s416778] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023] Open
Abstract
Purpose Observational studies have reported that autoimmune diseases are closely related to sarcopenia, but the causalities of autoimmune diseases with sarcopenia have not been established. We conducted this Mendelian randomization (MR) study to reveal the causal associations of overall autoimmune disease and five common autoimmune diseases with sarcopenia-related traits. Methods The publicly available summary-level data of autoimmune diseases and three sarcopenia-related traits were used for analysis. The causal effects of autoimmune diseases on sarcopenia-related traits were first identified in discovery samples using the inverse-variance-weighted method as the primary method, and the robustness of results was examined by additional sensitivity analyses. Replication MR analyses were then conducted using replication samples of five autoimmune diseases. Finally, the possibility of reverse causation was assessed by reverse MR analyses. Results In both the discovery and replication samples, we identified potential causal effects of rheumatoid arthritis (RA) on appendicular lean mass (ALM) and low grip strength (OR = 0.979, 95% CI: 0.964-0.995 for ALM; OR = 1.042, 95% CI: 1.013-1.072 for low grip strength), but not on walking pace. We also found that inflammatory bowel disease (IBD) and type 1 diabetes (T1D) were only causally negatively associated with ALM in the discovery stage (OR = 0.986, 95% CI: 0.974-0.999 for IBD; OR = 0.987, 95% CI: 0.975-0.999 for T1D), whereas systemic lupus erythematosus, multiple sclerosis, and overall autoimmune disease were not associated with any of the three sarcopenia-related traits. Additionally, reverse MR analysis only found an association between walking pace and overall autoimmune disease, but this association did not remain in the weighted-median method. Conclusion This study demonstrates that RA is causally associated with low grip strength and reduced ALM, and that IBD and T1D may be causally negatively related to ALM.
Collapse
Affiliation(s)
- Qing Su
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Chen Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yi Yang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jingxian Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Juejin Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Hao Zeng
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Yaqing Chen
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Junxi Zhou
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People’s Republic of China
| |
Collapse
|
43
|
Dunlap KR, Steiner JL, Hickner RC, Chase PB, Gordon BS. The duration of glucocorticoid treatment alters the anabolic response to high-force muscle contractions. J Appl Physiol (1985) 2023; 135:183-195. [PMID: 37289956 PMCID: PMC10312323 DOI: 10.1152/japplphysiol.00113.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/11/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023] Open
Abstract
Glucocorticoids induce a myopathy that includes loss of muscle mass and strength. Resistance exercise may reverse the muscle loss because it induces an anabolic response characterized by increases in muscle protein synthesis and potentially suppressing protein breakdown. Whether resistance exercise induces an anabolic response in glucocorticoid myopathic muscle is unknown, which is a problem because long-term glucocorticoid exposure alters the expression of genes that may prevent an anabolic response by limiting activation of pathways such as the mechanistic target of rapamycin in complex 1 (mTORC1). The purpose of this study was to assess whether high-force contractions initiate an anabolic response in glucocorticoid myopathic muscle. The anabolic response was analyzed by treating female mice with dexamethasone (DEX) for 7 days or 15 days. After treatment, the left tibialis anterior muscle of all mice was contracted via electrical stimulation of the sciatic nerve. Muscles were harvested 4 h after contractions. Rates of muscle protein synthesis were estimated using the SUnSET method. After 7 days of treatment, high-force contractions increased protein synthesis and mTORC1 signaling in both groups. After 15 days of treatment, high-force contractions activated mTORC1 signaling equally in both groups, but protein synthesis was only increased in control mice. The failure to increase protein synthesis may be because baseline synthetic rates were elevated in DEX-treated mice. The LC3 II/I ratio marker of autophagy was decreased by contractions regardless of treatment duration. These data show duration of glucocorticoid treatment alters the anabolic response to high-force contractions.NEW & NOTEWORTHY Glucocorticoid myopathy is the most common, toxic, noninflammatory myopathy. Our work shows that high-force contractions increase protein synthesis in skeletal muscle following short-term glucocorticoid treatment. However, longer duration glucocorticoid treatment results in anabolic resistance to high-force contractions despite activation of the mechanistic target of rapamycin in complex 1 (mTORC1) signaling pathway. This work defines potential limits for high-force contractions to activate the processes that would restore lost muscle mass in glucocorticoid myopathic patients.
Collapse
Affiliation(s)
- Kirsten R Dunlap
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Jennifer L Steiner
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, United States
| | - Robert C Hickner
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, United States
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States
| | - Bradley S Gordon
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
44
|
Nakagawara K, Takeuchi C, Ishige K. 5'-CMP and 5'-UMP alleviate dexamethasone-induced muscular atrophy in C2C12 myotubes. Biochem Biophys Rep 2023; 34:101460. [PMID: 37020790 PMCID: PMC10068009 DOI: 10.1016/j.bbrep.2023.101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Atrogin-1 and muscle RING finger 1 (MuRF1) are ubiquitin ligases specifically expressed during skeletal muscle atrophy and mediate muscle protein degradation. In contrast, PGC-1α (peroxisome proliferator-activated receptor γ coactivator 1α), which is a master regulator of mitochondrial biosynthesis, protects skeletal muscle from atrophy. Pyrimidine nucleoside 5'-monophosphates, such as cytidine 5'-monophosphate (5'-CMP) and uridine 5'-monophosphate (5'-UMP), induce PGC-1α expression and promote myotube formation in mouse C2C12 cells. In this study, we determined the effect of 5'-CMP and 5'-UMP on muscular atrophy in C2C12 myotube cells. 5'-UMP decreased Atrogin-1 and MuRF1 mRNA levels that were upregulated by dexamethasone treatment. 5'-CMP and 5'-UMP ameliorated dexamethasone-mediated atrophy in C2C12 myotubes. Furthermore, the combination of 5'-CMP and 5'-UMP further alleviated dexamethasone-mediated atrophy. In addition, cytidine and uridine, the precursors of 5'-CMP and 5'-UMP, markedly ameliorated dexamethasone-mediated atrophy. Considering nucleotide metabolism and absorption, the active metabolites underlying the observed effects of 5'-CMP and 5'-UMP appear to be cytidine and uridine. Our results indicate that 5'-CMP alleviates muscle atrophy by activating PGC-1α and differentiation, and 5'-UMP alleviates muscle atrophy by suppressing the activation of the myolytic system, whereas the combined use of both enhances the muscle atrophy inhibitory effect. 5'-CMP and 5'-UMP may be an effective and safe treatment for muscular atrophy.
Collapse
Affiliation(s)
- Kosuke Nakagawara
- Biochemicals Division, YAMASA Corporation, 2-10-1 Araoicho, Choshi, 288-0056, Japan
- Corresponding author.
| | - Chieri Takeuchi
- Diagnostics Division, YAMASA Corporation, 2-10-1 Araoicho, Choshi, 288-0056, Japan
| | - Kazuya Ishige
- Biochemicals Division, YAMASA Corporation, 2-10-1 Araoicho, Choshi, 288-0056, Japan
| |
Collapse
|
45
|
Batsukh S, Oh S, Rheu K, Lee BJ, Choi CH, Son KH, Byun K. Rice Germ Attenuates Chronic Unpredictable Mild Stress-Induced Muscle Atrophy. Nutrients 2023; 15:2719. [PMID: 37375622 DOI: 10.3390/nu15122719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic stress leads to hypothalamic-pituitary-adrenal axis dysfunction, increasing cortisol levels. Glucocorticoids (GCs) promote muscle degradation and inhibit muscle synthesis, eventually causing muscle atrophy. In this study, we aimed to evaluate whether rice germ supplemented with 30% γ-aminobutyric acid (RG) attenuates muscle atrophy in an animal model of chronic unpredictable mild stress (CUMS). We observed that CUMS raised the adrenal gland weight and serum adrenocorticotropic hormone (ACTH) and cortisol levels, and these effects were reversed by RG. CUMS also enhanced the expression of the GC receptor (GR) and GC-GR binding in the gastrocnemius muscle, which were attenuated by RG. The expression levels of muscle degradation-related signaling pathways, such as the Klf15, Redd-1, FoxO3a, Atrogin-1, and MuRF1 pathways, were enhanced by CUMS and attenuated by RG. Muscle synthesis-related signaling pathways, such as the IGF-1/AKT/mTOR/s6k/4E-BP1 pathway, were reduced by CUMS and enhanced by RG. Moreover, CUMS raised oxidative stress by enhancing the levels of iNOS and acetylated p53, which are involved in cell cycle arrest, whereas RG attenuated both iNOS and acetylated p53 levels. Cell proliferation in the gastrocnemius muscle was reduced by CUMS and enhanced by RG. The muscle weight, muscle fiber cross-sectional area, and grip strength were reduced by CUMS and enhanced by RG. Therefore, RG attenuated ACTH levels and cortisol-related muscle atrophy in CUMS animals.
Collapse
Affiliation(s)
- Sosorburam Batsukh
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Kyoungmin Rheu
- Marine Bioprocess Co., Ltd., Smart Marine BioCenter, Busan 46048, Republic of Korea
| | - Bae-Jin Lee
- Marine Bioprocess Co., Ltd., Smart Marine BioCenter, Busan 46048, Republic of Korea
| | - Chang Hu Choi
- Department of Thoracic and Cardiovascular Surgery, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
46
|
Kadakia KC, Hamilton-Reeves JM, Baracos VE. Current Therapeutic Targets in Cancer Cachexia: A Pathophysiologic Approach. Am Soc Clin Oncol Educ Book 2023; 43:e389942. [PMID: 37290034 PMCID: PMC11019847 DOI: 10.1200/edbk_389942] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Significant progress in our understanding of cancer cachexia has occurred in recent years. Despite these advances, no pharmacologic agent has achieved US Food and Drug Administration approval for this common and highly morbid syndrome. Fortunately, improved understanding of the molecular basis of cancer cachexia has led to novel targeted approaches that are in varying stages of drug development. This article reviews two major thematic areas that are driving these pharmacologic strategies, including those targeting signal mediators at the level of the CNS and skeletal muscle. Additionally, pharmacologic strategies are being tested in combination with targeted nutrients, nutrition therapy, and exercise to treat cancer cachexia. To this end, we highlight recently published and ongoing trials evaluating cancer cachexia therapies in these specific areas.
Collapse
Affiliation(s)
- Kunal C. Kadakia
- Department of Solid Tumor Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC
- Department of Supportive Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Jill M. Hamilton-Reeves
- Department of Urology, University of Kansas Medical Center, Kansas City, KS
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS
| | - Vickie E. Baracos
- Division of Palliative Care Medicine, Department of Oncology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
47
|
Lyu W, Kousaka M, Jia H, Kato H. Effects of Turmeric Extract on Age-Related Skeletal Muscle Atrophy in Senescence-Accelerated Mice. Life (Basel) 2023; 13:life13040941. [PMID: 37109470 PMCID: PMC10141758 DOI: 10.3390/life13040941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Muscle atrophy is one of the main causes of sarcopenia—the age-related loss of skeletal muscle. In this study, we investigated the effect of turmeric (Curcuma longa) extract (TE) supplementation on age-related muscle atrophy in a senescence-accelerated mouse model and explored the underlying mechanisms. Twenty-six-week-old male, senescence-accelerated mouse resistant (SAMR) mice received the AIN-93G basal diet, while twenty-six-week-old male, senescence-accelerated mouse prone 8 (SAMP8) mice received the AIN-93G basal diet or a 2% TE powder-supplemented diet for ten weeks. Our findings revealed that TE supplementation showed certain effects on ameliorating the decrease in body weight, tibialis anterior weight, and mesenteric fat tissue weight in SAMP8 mice. TE improved gene expression in the glucocorticoid receptor-FoxO signaling pathway in skeletal muscle, including redd1, klf15, foxo1, murf1, and mafbx. Furthermore, TE might have the certain potential on improving the dynamic balance between anabolic and catabolic processes by inhibiting the binding of glucocorticoid receptor or FoxO1 to the glucocorticoid response element or FoxO-binding element in the MuRF1 promoter in skeletal muscle, thereby promoting muscle mass and strength, and preventing muscle atrophy and sarcopenia prevention. Moreover, TE may have reduced mitochondrial damage and maintained cell growth and division by downregulating the mRNA expression of the genes mfn2 and tsc2. Thus, the results indicated TE’s potential for preventing age-related muscle atrophy and sarcopenia.
Collapse
Affiliation(s)
- Weida Lyu
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Marika Kousaka
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Huijuan Jia
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hisanori Kato
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
48
|
Habibian JS, Bolino MJ, Ferguson BS. HDAC8 regulates protein kinase D phosphorylation in skeletal myoblasts in response to stress signaling. Biochem Biophys Res Commun 2023; 650:81-86. [PMID: 36773343 PMCID: PMC9975084 DOI: 10.1016/j.bbrc.2023.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/15/2022] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
Skeletal muscle differentiation involves activation of quiescent satellite cells to proliferate, differentiate and fuse to form new myofibers; this requires coordination of myogenic transcription factors. Myogenic transcription is tightly regulated by various intracellular signaling pathways, which include members of the protein kinase D (PKD) family. PKD is a family of serine-threonine kinases that regulate gene expression, protein secretion, cell proliferation, differentiation and inflammation. PKD is a unique PKC family member that shares distant sequence homology to calcium-regulated kinases and plays an important role in muscle physiology. In this report, we show that class I histone deacetylase (HDAC) inhibition, and in particular HDAC8 inhibition, attenuated PKD phosphorylation in skeletal C2C12 myoblasts in response to phorbol ester, angiotensin II and dexamethasone signaling independent of changes in total PKD protein expression. As class I HDACs and PKD signaling are requisite for myocyte differentiation, these data suggest that HDAC8 functions as a potential feedback regulator of PKD phosphorylation to control myogenic gene expression.
Collapse
Affiliation(s)
- Justine S Habibian
- Department of Nutrition, The University of Nevada Reno, Reno, NV, 89557, USA; Cellular and Molecular Biology, The University of Nevada Reno, Reno, NV, 89557, USA
| | - Matthew J Bolino
- Department of Nutrition, The University of Nevada Reno, Reno, NV, 89557, USA; Cellular and Molecular Biology, The University of Nevada Reno, Reno, NV, 89557, USA
| | - Bradley S Ferguson
- Department of Nutrition, The University of Nevada Reno, Reno, NV, 89557, USA; Cellular and Molecular Biology, The University of Nevada Reno, Reno, NV, 89557, USA; Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, The University of Nevada Reno, Reno, NV, 89557, USA.
| |
Collapse
|
49
|
Gatti M, Dittlau KS, Beretti F, Yedigaryan L, Zavatti M, Cortelli P, Palumbo C, Bertucci E, Van Den Bosch L, Sampaolesi M, Maraldi T. Human Neuromuscular Junction on a Chip: Impact of Amniotic Fluid Stem Cell Extracellular Vesicles on Muscle Atrophy and NMJ Integrity. Int J Mol Sci 2023; 24:ijms24054944. [PMID: 36902375 PMCID: PMC10003237 DOI: 10.3390/ijms24054944] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Neuromuscular junctions (NMJs) are specialized synapses, crucial for the communication between spinal motor neurons (MNs) and skeletal muscle. NMJs become vulnerable in degenerative diseases, such as muscle atrophy, where the crosstalk between the different cell populations fails, and the regenerative ability of the entire tissue is hampered. How skeletal muscle sends retrograde signals to MNs through NMJs represents an intriguing field of research, and the role of oxidative stress and its sources remain poorly understood. Recent works demonstrate the myofiber regeneration potential of stem cells, including amniotic fluid stem cells (AFSC), and secreted extracellular vesicles (EVs) as cell-free therapy. To study NMJ perturbations during muscle atrophy, we generated an MN/myotube co-culture system through XonaTM microfluidic devices, and muscle atrophy was induced in vitro by Dexamethasone (Dexa). After atrophy induction, we treated muscle and MN compartments with AFSC-derived EVs (AFSC-EVs) to investigate their regenerative and anti-oxidative potential in counteracting NMJ alterations. We found that the presence of EVs reduced morphological and functional in vitro defects induced by Dexa. Interestingly, oxidative stress, occurring in atrophic myotubes and thus involving neurites as well, was prevented by EV treatment. Here, we provided and validated a fluidically isolated system represented by microfluidic devices for studying human MN and myotube interactions in healthy and Dexa-induced atrophic conditions-allowing the isolation of subcellular compartments for region-specific analyses-and demonstrated the efficacy of AFSC-EVs in counteracting NMJ perturbations.
Collapse
Affiliation(s)
- Martina Gatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Katarina Stoklund Dittlau
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU Leuven—University of Leuven, 3000 Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Francesca Beretti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence:
| | - Laura Yedigaryan
- Department of Development and Regeneration, Stem Cell and Developmental Biology, KU Leuven—University of Leuven, 3000 Leuven, Belgium
| | - Manuela Zavatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Pietro Cortelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40127 Bologna, Italy
| | - Carla Palumbo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Emma Bertucci
- Department of Medical and Surgical Sciences for Mothers, Children and Adults, Azienda Ospedaliero Universitaria Policlinico, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU Leuven—University of Leuven, 3000 Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Maurilio Sampaolesi
- Department of Development and Regeneration, Stem Cell and Developmental Biology, KU Leuven—University of Leuven, 3000 Leuven, Belgium
- Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
50
|
Dombrecht D, Van Daele U, Van Asbroeck B, Schieffelers D, Guns PJ, Gebruers N, Meirte J, van Breda E. Molecular mechanisms of post-burn muscle wasting and the therapeutic potential of physical exercise. J Cachexia Sarcopenia Muscle 2023; 14:758-770. [PMID: 36760077 PMCID: PMC10067483 DOI: 10.1002/jcsm.13188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
After a severe burn injury, a systemic stress response activates metabolic and inflammatory derangements that, among other, leads to muscle mass loss (muscle wasting). These negative effects on skeletal muscle continue for several months or years and are aggravated by short-term and long-term disuse. The dynamic balance between muscle protein synthesis and muscle protein breakdown (proteolysis) is regulated by complex signalling pathways that leads to an overall negative protein balance in skeletal muscle after a burn injury. Research concerning these molecular mechanisms is still scarce and inconclusive, understanding of which, if any, molecular mechanisms contribute to muscle wasting is of fundamental importance in designing of therapeutic interventions for burn patients as well. This review not only summarizes our present knowledge of the molecular mechanisms that underpin muscle protein balance but also summarizes the effects of exercise on muscle wasting post-burn as promising strategy to counteract the detrimental effects on skeletal muscle. Future research focusing on the pathways causing post-burn muscle wasting and the different effects of exercise on them is needed to confirm this hypothesis and to lay the foundation of therapeutic strategies.
Collapse
Affiliation(s)
- Dorien Dombrecht
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium
| | - Ulrike Van Daele
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium.,Oscare, Organisation for Burns, Scar After-Care and Research, Antwerp, Belgium
| | - Birgit Van Asbroeck
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium
| | - David Schieffelers
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Nick Gebruers
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium.,Multidisciplinary Edema Clinic, Antwerp University Hospital, Edegem, Belgium
| | - Jill Meirte
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium.,Oscare, Organisation for Burns, Scar After-Care and Research, Antwerp, Belgium
| | - Eric van Breda
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium
| |
Collapse
|