1
|
Zangerolamo L, Carvalho M, Solon C, Sidarta-Oliveira D, Soares GM, Marmentini C, Boschero AC, Tseng YH, Velloso LA, Barbosa HCL. Central FGF19 signaling enhances energy homeostasis and adipose tissue thermogenesis through sympathetic activation in obese mice. Am J Physiol Endocrinol Metab 2025; 328:E524-E542. [PMID: 40059865 DOI: 10.1152/ajpendo.00488.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/17/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
Fibroblast growth factor 19 (FGF19) signaling in the brain is associated with body weight loss, reduced food intake, and improved glycemic control in obese mice through unclear mechanisms. Here, we investigated the effects of central FGF19 administration on peripheral tissues, focusing on adipose tissue and its contributions to body weight loss. Using single-cell RNA sequencing of the adult murine hypothalamus, we found that FGF19 has the potential to target multiple cell populations, including astrocytes-tanycytes, microglia, neurons, and oligodendrocytes. Central delivery of FGF19 decreased body weight gain and ameliorated glucose-insulin homeostasis in diet-induced obese (DIO) mice. These results were accompanied by increased energy expenditure and reduced peripheric inflammation. Notably, these effects were attributable to the increased activity of thermogenic adipocytes, as upregulated thermogenic markers in brown and inguinal adipose tissue and improved cold tolerance were induced by central FGF19. However, under blunted sympathetic activity, the described effects were abolished. Moreover, cold exposure induced upregulation of FGF19 receptors and coreceptors specifically in the hypothalamus, suggesting a critical metabolic adaptation for thermoregulation and energy homeostasis. Our findings indicate that central FGF19 signaling improves energy homeostasis in DIO mice, at least in part, by stimulating sympathetic activity and adipose tissue thermogenesis. These findings highlight FGF19's potential as a therapeutic target for obesity and metabolic disorders.NEW & NOTEWORTHY Although most studies associate central fibroblast growth factor 19 (FGF19) with reduced food intake, our findings highlight its role in enhancing thermogenesis in white and brown adipose tissues through sympathetic activation. Central FGF19 not only regulates feeding but also drives peripheral adaptations critical for energy homeostasis and body weight control under obesogenic conditions. These insights underscore the significance of top-down mechanisms in FGF19 action and its therapeutic potential for combating obesity.
Collapse
Affiliation(s)
- Lucas Zangerolamo
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Marina Carvalho
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Carina Solon
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Davi Sidarta-Oliveira
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Gabriela M Soares
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Carine Marmentini
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Antonio C Boschero
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Helena C L Barbosa
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| |
Collapse
|
2
|
Orioli L, Thissen JP. Myokines as potential mediators of changes in glucose homeostasis and muscle mass after bariatric surgery. Front Endocrinol (Lausanne) 2025; 16:1554617. [PMID: 40171198 PMCID: PMC11958187 DOI: 10.3389/fendo.2025.1554617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Myokines are bioactive peptides released by skeletal muscle. Myokines exert auto-, para-, or endocrine effects, enabling them to regulate many aspects of metabolism in various tissues. However, the contribution of myokines to the dramatic changes in glucose homeostasis and muscle mass induced by bariatric surgery has not been established. Our review highlights that myokines such as brain-derived neurotrophic factor (BDNF), meteorin-like protein (Metrnl), secreted protein acidic and rich in cysteine (SPARC), apelin (APLN) and myostatin (MSTN) may mediate changes in glucose homeostasis and muscle mass after bariatric surgery. Our review also identifies myonectin as an interesting candidate for future studies, as this myokine may regulate lipid metabolism and muscle mass after bariatric surgery. These myokines may provide novel therapeutic targets and biomarkers for obesity, type 2 diabetes and sarcopenia.
Collapse
Affiliation(s)
- Laura Orioli
- Research Laboratory of Endocrinology, Diabetes, and Nutrition, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jean-Paul Thissen
- Research Laboratory of Endocrinology, Diabetes, and Nutrition, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
3
|
Wang DX, Huang WT, Shi JF, Liu F, Jiang WY, Chen KY, Zhang SY, Li XK, Lin L. FGF21, a modulator of astrocyte reactivity, protects against ischemic brain injury through anti-inflammatory and neurotrophic pathways. Acta Pharmacol Sin 2025:10.1038/s41401-024-01462-x. [PMID: 40021824 DOI: 10.1038/s41401-024-01462-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 03/03/2025]
Abstract
Ischemic stroke is a frequent cause of mortality and disability, and astrocyte reactivity is closely associated with injury outcomes. Fibroblast growth factor 21 (FGF21), an endogenous regulator, has been shown to perform pleiotropic functions in central nervous system (CNS) disorders. However, studies on neurological diseases have paid little attention to the effects and detailed mechanisms of FGF21 in astrocytes. Here, we found elevated serum levels of FGF21 in stroke patients and transient middle cerebral artery occlusion (tMCAO) mice. In the peri-infarct cortex, microglia and astrocytes serve as sources of FGF21 in addition to neurons. MRI and neurobehavioral assessments of wild-type (WT) and FGF21-/- tMCAO model mice revealed a deteriorated consequence of the loss of FGF21, with exacerbated brain infarction and neurological deficits. Additionally, combined with the pharmacological treatment of WT mice with recombinant human FGF21 (rhFGF21) after tMCAO, FGF21 was identified to suppress astrocytic activation and astrocyte-mediated inflammatory responses after brain ischemia and participated in controlling the infiltration of peripheral inflammatory cells (including macrophages, neutrophils, monocytes, and T cells) by modulating chemokines expression (such as Ccl3, Cxcl1, and Cxcl2) in astrocytes. Furthermore, rhFGF21 was shown to boost the production of neurotrophic factors (BDNF and NGF) in astrocytes, and by which rescued neuronal survival and promoted synaptic protein expression (postsynaptic density protein-95 (PSD-95), synaptotagmin 1 (SYT1), and synaptophysin) in neurons after ischemic injury. Overall, our findings implicate that FGF21 acts as a suppressor of astrocyte activation, and exerts anti-inflammatory and neurotrophic effects after ischemic brain injury through its action on astrocytes, offering an alternative therapeutic target.
Collapse
Affiliation(s)
- Dong-Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wen-Ting Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jun-Feng Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Fei Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wen-Yi Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ke-Yang Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shu-Yang Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiao-Kun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
4
|
Papadakis GE, Favre L, Zouaghi Y, Vionnet N, Niederländer NJ, Adamo M, Acierno JS, Berdous D, Boizot A, Meylan J, Ivanisevic J, Paccou E, Gallart-Ayala H, Reyns T, Van Caeneghem E, Lapauw B, Pasquier J, Aleman Y, Mantziari S, Salamin O, Nicoli R, Kuuranne T, Fiers T, Hagmann P, Santoni F, Messina A, Pitteloud N. Multiomics unravels the complexity of male obesity: a prospective observational study. J Transl Med 2025; 23:138. [PMID: 39885510 PMCID: PMC11783726 DOI: 10.1186/s12967-024-06040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/25/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Obesity is associated with varying degrees of metabolic dysfunction. In this study, we aimed to discover markers of the severity of metabolic impairment in men with obesity via a multiomics approach. METHODS Thirty-two morbidly men with obesity who were candidates for Roux-en-Y gastric bypass (RYGB) surgery were prospectively followed. Nine healthy adults served as controls. Deep phenotyping, including targeted metabolomics, transcriptomics, and brain magnetic resonance imaging (MRI), was performed. RESULTS Testosterone emerged as a key contributor to phenotypic variability via principal component analysis and was therefore used to further categorize obese patients as having or not having hypogonadotropic hypogonadism (HH). Despite having comparable body mass indices, obese individuals with HH presented with worse metabolic defects than obese individuals without HH, including higher insulin resistance, as well as MRI signs of hypothalamic inflammation and a specific blood transcriptomics signature. The upregulated genes were involved mainly in inflammation, mitochondrial function, and protein translation. Integration of gene expression and clinical data revealed high FGF21 and low cortisol levels as the top markers correlated with the transcriptomic signature of metabolic risk. Following RYGB-induced substantial weight loss, testosterone levels markedly increased in both obese individuals with and without HH, challenging the current definition of hypogonadism. A longitudinal study in a subset of men with obesity following bariatric surgery revealed a unique FGF21 trajectory with a sharp peak at one month post-RYGB that correlated with metabolic and reproductive improvements. CONCLUSIONS Combining clinical, biochemical, and molecular markers allows adequate stratification of metabolic risk in men with obesity and provides novel tools for personalized care.
Collapse
Affiliation(s)
- Georgios E Papadakis
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 21, CH-1005, Lausanne, Switzerland
| | - Lucie Favre
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 21, CH-1005, Lausanne, Switzerland
| | - Yassine Zouaghi
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 21, CH-1005, Lausanne, Switzerland
| | - Nathalie Vionnet
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland
| | - Nicolas J Niederländer
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 21, CH-1005, Lausanne, Switzerland
| | - Michela Adamo
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 21, CH-1005, Lausanne, Switzerland
| | - James S Acierno
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 21, CH-1005, Lausanne, Switzerland
| | - Dassine Berdous
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 21, CH-1005, Lausanne, Switzerland
| | - Alexia Boizot
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland
| | - Jenny Meylan
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 19, CH-1005, Lausanne, Switzerland
| | - Emmanuelle Paccou
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 19, CH-1005, Lausanne, Switzerland
| | - Tim Reyns
- Department of Clinical Chemistry, Ghent University Hospital, 9000, Ghent, Belgium
| | - Elise Van Caeneghem
- Department of Clinical Chemistry, Ghent University Hospital, 9000, Ghent, Belgium
| | - Bruno Lapauw
- Department of Clinical Chemistry, Ghent University Hospital, 9000, Ghent, Belgium
| | - Jérôme Pasquier
- Center for Primary Care and Public Health, University of Lausanne, CH-1011, Lausanne, Switzerland
| | - Yasser Aleman
- Division of Radio-Diagnostics and Interventional Radiology, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Styliani Mantziari
- Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 21, CH-1005, Lausanne, Switzerland
- Department of Visceral Surgery, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Olivier Salamin
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne University Hospital and University of Geneva, Chemin de La Vulliette 4, CH-1000, Lausanne, Switzerland
| | - Raul Nicoli
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne University Hospital and University of Geneva, Chemin de La Vulliette 4, CH-1000, Lausanne, Switzerland
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne University Hospital and University of Geneva, Chemin de La Vulliette 4, CH-1000, Lausanne, Switzerland
| | - Tom Fiers
- Department of Clinical Chemistry, Ghent University Hospital, 9000, Ghent, Belgium
| | - Patric Hagmann
- Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 21, CH-1005, Lausanne, Switzerland
- Division of Radio-Diagnostics and Interventional Radiology, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Federico Santoni
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 21, CH-1005, Lausanne, Switzerland
| | - Andrea Messina
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 21, CH-1005, Lausanne, Switzerland
| | - Nelly Pitteloud
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland.
- Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 21, CH-1005, Lausanne, Switzerland.
| |
Collapse
|
5
|
Patt M, Karkossa I, Krieg L, Massier L, Makki K, Tabei S, Karlas T, Dietrich A, Gericke M, Stumvoll M, Blüher M, von Bergen M, Schubert K, Kovacs P, Chakaroun RM. FGF21 and its underlying adipose tissue-liver axis inform cardiometabolic burden and improvement in obesity after metabolic surgery. EBioMedicine 2024; 110:105458. [PMID: 39608059 PMCID: PMC11638646 DOI: 10.1016/j.ebiom.2024.105458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/20/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND This research investigates the determinants of circulating FGF21 levels in a cohort reflecting metabolic disease progression, examining the associations of circulating FGF21 with morphology and function of adipose tissue (AT), and with metabolic adjustments following metabolic surgery. METHODS We measured serum FGF21 in 678 individuals cross-sectionally and in 189 undergoing metabolic surgery longitudinally. Relationships between FGF21 levels, AT histology, transcriptomes and proteomes, cardiometabolic risk factors, and post-surgery metabolic adjustments were assessed using univariate and multivariate analyses, causal mediation analysis, and network integration of AT transcriptomes and proteomes. FINDINGS FGF21 levels were linked to central adiposity, subclinical inflammation, insulin resistance, and cardiometabolic risk, and were driven by circulating leptin and liver enzymes. Higher FGF21 were linked with AT dysfunction reflected in fibro-inflammatory and lipid dysmetabolism pathways. Specifically, visceral AT inflammation was tied to both FGF21 elevation and liver dysfunction. Post-surgery, FGF21 peaked transitorily at three months. Mediation analysis highlighted an underlying increased AT catabolic state with elevated free fatty acids (FFA), contributing to higher liver stress and FGF21 levels (total effect of free fatty acids on FGF21 levels: 0.38, p < 0.01; proportion mediation via liver 32%, p < 0.01). In line with this, histological AT fibrosis linked with less pronounced FGF21 responses and reduced fat loss post-surgery (FFA and visceral AT fibrosis: rho = -0.31, p = 0.030; FFA and fat-mass loss: rho = 0.17, p = 0.020). INTERPRETATION FGF21 reflects the liver's disproportionate metabolic stress response in both central adiposity and after metabolic surgery, with its dynamics reflecting an AT-liver crosstalk. FUNDING This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through CRC 1052, project number 209933838, CRC1382 and a Walther-Benjamin Fellowship and by a junior research grant by the Medical Faculty, University of Leipzig, and by the Federal Ministry of Education and Research (BMBF), Germany, FKZ: 01EO1501. Part of this work was supported by the European Union's Seventh Framework Program for research, technological development and demonstration under grant agreement HEALTH-F4-2012-305312 and by the CRC1382 and the Novo Nordisk Foundation and by the Deutsche Forschungsgemeinschaft (DFG, German Research foundation) project number 530364326.
Collapse
Affiliation(s)
- Marie Patt
- University of Leipzig Medical Centre, Medical Department III-Endocrinology, Nephrology, Rheumatology, Leipzig, Germany
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Laura Krieg
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Lucas Massier
- University of Leipzig Medical Centre, Medical Department III-Endocrinology, Nephrology, Rheumatology, Leipzig, Germany; Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Kassem Makki
- INSERM U1060, INRAE UMR1397, Université de Lyon, France
| | - Shirin Tabei
- Institute of Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany; Centre of Brain, Behaviour, and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Thomas Karlas
- Division of Gastroenterology, Medical Department II, University of Leipzig Medical Centre, Leipzig, Germany
| | - Arne Dietrich
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Centre, Leipzig, Germany
| | - Martin Gericke
- Leipzig University, Institute of Anatomy, Leipzig, Germany
| | - Michael Stumvoll
- University of Leipzig Medical Centre, Medical Department III-Endocrinology, Nephrology, Rheumatology, Leipzig, Germany; Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Matthias Blüher
- University of Leipzig Medical Centre, Medical Department III-Endocrinology, Nephrology, Rheumatology, Leipzig, Germany; Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany; Institute of Biochemistry, Leipzig University, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Peter Kovacs
- University of Leipzig Medical Centre, Medical Department III-Endocrinology, Nephrology, Rheumatology, Leipzig, Germany; Deutsches Zentrum für Diabetesforschung e.V., 85764, Neuherberg, Germany
| | - Rima M Chakaroun
- University of Leipzig Medical Centre, Medical Department III-Endocrinology, Nephrology, Rheumatology, Leipzig, Germany; Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Centre for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
6
|
Gronskaia SA, Rusyaeva NV, Belaya ZE, Melnichenko GA. [Non-classical hormones from the fibroblast growth factor family]. PROBLEMY ENDOKRINOLOGII 2024; 70:23-33. [PMID: 39509633 DOI: 10.14341/probl13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/13/2024] [Accepted: 04/27/2024] [Indexed: 11/15/2024]
Abstract
Fibroblast growth factors (FGFs) are a group of signaling molecules named for their ability to promote the growth and proliferation of fibroblasts and various other cell types. Typically, FGFs exert their effects locally by binding to receptors within the tissues where they are synthesized. However, certain members of this family, such as FGF 19, FGF 21, and FGF 23, diverge from this pattern. Following synthesis, these FGFs enter the bloodstream and act on distant organs and tissues by binding to their receptors and associated cofactors, thereby classified as non-classical hormones within the FGF family.The biological functions of FGFs are diverse and contingent upon the specific receptors and cofactors involved in their signaling pathways. For instance, FGF 19 and FGF 21 play crucial roles in regulating glucose and lipid metabolism, whereas FGF 23 primarily influences phosphorus metabolism. Given their varied roles, FGFs present promising targets for therapeutic interventions and drug development.This review aims to consolidate current understanding of FGF family hormones, elucidating their biological impacts and exploring their potential applications as therapeutic targets.
Collapse
|
7
|
Bouju A, Nusse R, Wu PV. A primer on the pleiotropic endocrine fibroblast growth factor FGF19/FGF15. Differentiation 2024; 140:100816. [PMID: 39500656 DOI: 10.1016/j.diff.2024.100816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 12/14/2024]
Abstract
Fibroblast Growth Factor 19 (FGF19) is a member of the Fibroblast Growth Factor (FGF) family, known for its role in various cellular processes including embryonic development and metabolic regulation. FGF19 functions as an endocrine factor, influencing energy balance, bile acid synthesis, glucose and lipid metabolism, as well as cell proliferation. FGF19 has a conserved structure typical of FGFs but exhibits unique features. Unlike most FGFs, which act locally, FGF19 travels through the bloodstream to distant targets including the liver. Its interaction with the β-Klotho (KLB) co-receptor and FGF Receptor 4 (FGFR4) in hepatocytes or FGFR1c in extrahepatic tissues initiates signaling cascades crucial for its biological functions. Although the mouse ortholog, FGF15, diverges significantly from human FGF19 in protein sequence and receptor binding, studies of FGF15-deficient mice have led to a better understanding of the proteins' role in bile acid regulation, metabolism, and embryonic development. Overexpression studies in transgenic mice have further revealed roles in not only ameliorating metabolic diseases but also in promoting hepatocyte proliferation and tumorigenesis. This review summarizes the gene and protein structure of FGF19/15, its expression patterns, phenotypes in mutant models, and implication in human diseases, providing insights into potential therapeutic strategies targeting the FGF19 signaling pathway.
Collapse
Affiliation(s)
- Agathe Bouju
- Department of Developmental Biology, Howard Hughes Medical Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA; Sorbonne University, Paris, France
| | - Roel Nusse
- Department of Developmental Biology, Howard Hughes Medical Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Peng V Wu
- Department of Developmental Biology, Howard Hughes Medical Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA; Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
8
|
Aydin Ö, Meijnikman AS, de Jonge PA, van Stralen K, Börger H, Okur K, Iqbal Z, Warmbrunn MV, Acherman YIZ, Bruin S, Winkelmeijer M, Schimmel AWM, Holst JJ, Poulsen SS, Bäckhed F, Nieuwdorp M, Groen AK, Gerdes VEA. Post-Bariatric Hypoglycemia: an Impaired Metabolic Response to a Meal. Obes Surg 2024; 34:3796-3806. [PMID: 39153140 PMCID: PMC11481667 DOI: 10.1007/s11695-024-07309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 08/19/2024]
Abstract
AIMS/HYPOTHESIS Post-bariatric hypoglycemia (PBH) is caused by postprandial hyperinsulinemia, due to anatomical alterations and changes in post-prandial metabolism after bariatric surgery. The mechanisms underlying the failing regulatory and compensatory systems are unclear. In this study, we investigated the differences in post-prandial hormones and metabolic profiles between patients with and without PBH. METHODS We performed a mixed meal test (MMT) in 63 subjects before and 1 year after Roux-en-Y gastric bypass (RYGB) surgery. Blood was withdrawn at 0, 10, 20, 30, 60, and 120 min after ingestion of a standardized meal. Glucose, insulin, GLP-1, FGF-19, and FGF-21 were measured and untargeted metabolomics analysis was performed on blood plasma to analyze which hormonal and metabolic systems were altered between patients with and without PBH. RESULTS Out of 63, a total of 21 subjects (33%) subjects developed PBH (glucose < 3.1 mmol/L) after surgery. Decreased glucose and increased insulin excursions during MMT were seen in PBH (p < 0.05). GLP-1, FGF-19, and FGF-21 were elevated after surgery (p < 0.001), but did not differ between PBH and non-PBH groups. We identified 20 metabolites possibly involved in carbohydrate metabolism which differed between the two groups, including increased carnitine and acylcholines in PBH. CONCLUSION Overall, 33% of the subjects developed PBH 1 year after RYGB surgery. While GLP-1, FGF-19, and FGF-21 were similar in PBH and non-PBH patients, metabolomics analysis revealed changes in carnitine and acyclcholines that are possibly involved in energy metabolism, which may play a role in the occurrence of PBH.
Collapse
Affiliation(s)
- Ömrüm Aydin
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Abraham S Meijnikman
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Patrick A de Jonge
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Karlijn van Stralen
- Department of Scientific Research, Spaarne Gasthuis, Hoofddorp, the Netherlands
| | - Hanneke Börger
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Kadriye Okur
- Department of Bariatric Surgery, Spaarne Gasthuis, Hoofddorp, the Netherlands
| | - Zainab Iqbal
- Cardiometabolic Research, Vrije Universiteit, Amsterdam, the Netherlands
| | - Moritz V Warmbrunn
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Yair I Z Acherman
- Department of Bariatric Surgery, Spaarne Gasthuis, Hoofddorp, the Netherlands
| | - Sjoerd Bruin
- Department of Bariatric Surgery, Spaarne Gasthuis, Hoofddorp, the Netherlands
| | - Maaike Winkelmeijer
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Alinda W M Schimmel
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
| | - Steen S Poulsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fredrik Bäckhed
- Department of Cardiovascular and Metabolic Research, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Albert K Groen
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Victor E A Gerdes
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands.
- Department of Bariatric Surgery, Spaarne Gasthuis, Hoofddorp, the Netherlands.
- Department of Internal Medicine, Spaarne Gasthuis, Hoofddorp, the Netherlands.
| |
Collapse
|
9
|
Truong VNY, Liu C, Myers J, Miller M, Yang A, Lee J, Welborn N, Johnston AN. Comparison of fibroblast growth factor 19 concentrations between dogs with and without gallbladder mucoceles. J Vet Intern Med 2024; 38:2518-2522. [PMID: 39134090 PMCID: PMC11423440 DOI: 10.1111/jvim.17165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/25/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Fibroblast growth factor 19 (FGF19) is an enterohepatic hormone the synthesis of which is stimulated by bile acid activation of the nuclear farnesoid X receptor (FXR) in ileal enterocytes. Increased production of FGF19 downregulates hepatocyte bile acid synthesis and gluconeogenesis, while concurrently upregulating hepatocyte glycogenesis and gallbladder (GB) filling. The physiologic impact of this regulatory cycle is illustrated in cholecystectomized humans, in whom the disturbed meal-related flux of GB bile decreases serum FGF19 concentrations. OBJECTIVE Determine if serum FGF19 concentrations are lower in dogs with clinical GB mucoceles (GBMs) than in control dogs. ANIMALS Seven dogs with GBM diagnosed using abdominal ultrasonography, biochemical markers, and GB histopathology. Forty-two control dogs without gastrointestinal or hepatobiliary disorders also were evaluated. Health status of controls was assessed by physical examination and diagnostic hematologic and biochemical test results. METHODS Prospective cross-sectional study to compare fasting plasma or serum FGF19 concentrations between groups. Concentrations of FGF19 were quantified by a commercially available FGF19 ELISA. RESULTS Concentrations of FGF19 were significantly lower in dogs with clinical GBM (median, 14.0 pg/mL; range, 12.8-67.2) than in control dogs (median, 145.3 pg/mL; range, 36.5-285.1). CONCLUSIONS AND CLINICAL IMPORTANCE In dogs, GBM is associated with significantly decreased serum FGF19 concentrations. We speculate that this finding reflects compromised GB contraction and decreased enterohepatic circulation of bile flow. Subnormal FGF19 concentrations may influence bile acid synthesis and hepatic metabolism.
Collapse
Affiliation(s)
- Vy Ngoc Yen Truong
- Veterinary Clinical SciencesLouisiana State University School of Veterinary MedicineBaton RougeLouisianaUSA
- Veterinary Biomedical SciencesSeoul National University School of Veterinary MedicineSeoulSouth Korea
| | - Chin‐Chi Liu
- Veterinary Clinical SciencesLouisiana State University School of Veterinary MedicineBaton RougeLouisianaUSA
| | - Jillian Myers
- Veterinary Clinical SciencesLouisiana State University School of Veterinary MedicineBaton RougeLouisianaUSA
- Large Animal Clinical SciencesTexas A&M University College of Veterinary Medicine and Biomedical SciencesCollege StationTexasUSA
| | - Mayzie Miller
- Veterinary Clinical SciencesLouisiana State University School of Veterinary MedicineBaton RougeLouisianaUSA
- Department of Biomedical and Diagnostic Sciences, College of Veterinary MedicineUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Amanda Yang
- Veterinary Clinical SciencesLouisiana State University School of Veterinary MedicineBaton RougeLouisianaUSA
- Assessments, Accountability, and Analytics, Louisiana Department of EducationBaton RougeLouisianaUSA
| | - Jeongha Lee
- Pathobiological Sciences and Louisiana Animal Disease Diagnostic LaboratoryLouisiana State University School of Veterinary MedicineBaton RougeLouisianaUSA
| | - Nancy Welborn
- Veterinary Clinical SciencesLouisiana State University School of Veterinary MedicineBaton RougeLouisianaUSA
| | - Andrea N. Johnston
- Veterinary Clinical SciencesLouisiana State University School of Veterinary MedicineBaton RougeLouisianaUSA
| |
Collapse
|
10
|
Wean J, Baranwal S, Miller N, Shin JH, O'Rourke RW, Burant CF, Seeley RJ, Rothberg AE, Bozadjieva-Kramer N. Gut-muscle communication links FGF19 levels to the loss of lean muscle mass following rapid weight loss. DIABETES & METABOLISM 2024; 50:101570. [PMID: 39134173 DOI: 10.1016/j.diabet.2024.101570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/18/2024]
Abstract
OBJECTIVE Optimal weight loss involves decreasing adipose tissue while preserving lean muscle mass. Identifying molecular mediators that preserve lean muscle mass is therefore a clinically important goal. We have shown that circulating, postprandial FGF19 levels are lower in patients with obesity and decrease further with comorbidities such as type 2 diabetes and MASLD. Preclinical studies have shown that FGF15 (mouse ortholog of human FGF19) is necessary to protect against lean muscle mass loss following metabolic surgery-induced weight loss in a mouse model of diet-induced obesity. We evaluated if non-surgical weight loss interventions also lead to increased systemic levels of FGF19 and whether FGF19 levels are predictive of lean muscle mass following rapid weight loss in human subjects with obesity. RESEARCH DESIGN AND METHODS Weight loss was induced in 176 subjects with obesity via a very low-energy diet, VLED (800 kcal/d) in the form of total liquid meal replacement for 3-4 months. We measured plasma FGF19 levels at baseline and following VLED-induced weight loss. Multiple linear regression was performed to assess if FGF19 levels were predictive of lean mass at baseline (obesity) and following VLED. RESULTS Postprandial levels of FGF19 increased significantly following VLED-weight loss. Multiple linear regression analysis showed that baseline (obesity) FGF19 levels, but not post VLED FGF19 levels, significantly predicted the percent of lean muscle mass after VLED-induced weight loss, while controlling for age, sex, and the baseline percent lean mass. CONCLUSION These data identify gut-muscle communication and FGF19 as a potentially important mediator of the preservation of lean muscle mass during rapid weight loss.
Collapse
Affiliation(s)
- Jordan Wean
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Salisha Baranwal
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Nicole Miller
- Department of Internal Medicine, Metabolism Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, United States
| | - Jae Hoon Shin
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Robert W O'Rourke
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States; Veterans Affairs Ann Arbor Healthcare System, Research Service, Ann Arbor, MI, United States
| | - Charles F Burant
- Department of Internal Medicine, Metabolism Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, United States
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Amy E Rothberg
- Department of Internal Medicine, Metabolism Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, United States
| | - Nadejda Bozadjieva-Kramer
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States; Veterans Affairs Ann Arbor Healthcare System, Research Service, Ann Arbor, MI, United States.
| |
Collapse
|
11
|
Carvalho MBD, Jorge GMCP, Zanardo LW, Hamada LM, Izabel LDS, Santoro S, Magdalon J. The role of FGF19 in metabolic regulation: insights from preclinical models to clinical trials. Am J Physiol Endocrinol Metab 2024; 327:E279-E289. [PMID: 39017679 DOI: 10.1152/ajpendo.00156.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Fibroblast growth factor 19 (FGF19) is a hormone synthesized in enterocytes in response to bile acids. This review explores the pivotal role of FGF19 in metabolism, addressing the urgent global health concern of obesity and its associated pathologies, notably type 2 diabetes. The intriguing inverse correlation between FGF19 and body mass or visceral adiposity, as well as its rapid increase following bariatric surgery, emphasizes its potential as a therapeutic target. This article meticulously examines the impact of FGF19 on metabolism by gathering evidence primarily derived from studies conducted in animal models or cell lines, using both FGF19 treatment and genetic modifications. Overall, these studies demonstrate that FGF19 has antidiabetic and antiobesogenic effects. A thorough examination across metabolic tissues, including the liver, adipose tissue, skeletal muscle, and the central nervous system, is conducted, unraveling the intricate interplay of FGF19 across diverse organs. Moreover, we provide a comprehensive overview of clinical trials involving an FGF19 analog called aldafermin, emphasizing promising results in diseases such as nonalcoholic steatohepatitis and diabetes. Therefore, we aim to foster a deeper understanding of FGF19 role and encourage further exploration of its clinical applications, thereby advancing the field and offering innovative approaches to address the escalating global health challenge of obesity and related metabolic conditions.
Collapse
Affiliation(s)
- Marcela Botelho de Carvalho
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Luiza Wolf Zanardo
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Leticia Miho Hamada
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Larissa Dos Santos Izabel
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Juliana Magdalon
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
12
|
Al-Regaiey KA, Iqbal M, Alzaid MA, Alkaoud OA, Alhadyani MA, Alagel OA, Alshehri SS, Altamimi I, Alsofayan SM. Evaluating Fibroblast Growth Factor 21 (FGF21) Levels Post-Gastric Sleeve Surgery in Obese Patients. Cureus 2024; 16:e66122. [PMID: 39100807 PMCID: PMC11298160 DOI: 10.7759/cureus.66122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2024] [Indexed: 08/06/2024] Open
Abstract
Background and objectives Obesity is a major global health concern linked with increased risk of chronic diseases. This study aimed to assess the levels of fibroblast growth factor 21 (FGF21) in subjects with obesity after gastric sleeve surgery and explore its correlation with lipid and glycemic parameters. Methods This retrospective cohort study included 28 obese male subjects aged 25 to 50 years, undergoing gastric sleeve surgery. Plasma levels of FGF21 were measured by enzyme-linked immunosorbent assay (ELISA) before and six to 12 months after surgery. Other parameters including body mass index (BMI), fasting glucose, lipid profile, and insulin were also assessed and homeostatic model assessment (HOMA) was used to estimate insulin resistance. Results There was a significant increase in systemic FGF21 levels after surgery (45.12 vs. 126.16 pg/mL, p = 0.007). There was also a notable reduction in BMI (51.55 vs. 39.14, p < 0.001), insulin levels (20.06 vs. 8.85 mIU/L, p < 0.001), HOMA scores (6.94 to 2.49, p < 0.001), and glucose levels (7.33 vs. 6.08, p = 0.039). Lipid profile analysis post-surgery showed an increase in total cholesterol (4.38 vs. 5.09 mmol/L, p < 0.001) and high-density lipoprotein (HDL) (0.88 vs. 1.52 mmol/L, p < 0.001), with a decrease in triglycerides (1.75 vs. 1.01 mmol/L, p = 0.007). FGF21 positively correlated with growth hormone (GH), p = 0.0015, r = 0.59, and with insulin like growth factor 1 (IGF-1), p = 0.03, r = 0.431. Conclusion FGF21 levels were increased following gastric sleeve surgery in obese male patients and were positively correlated with growth hormone and insulin IGF-1. These findings provide insights into the metabolic alterations following bariatric surgery and highlight the potential role of FGF21 as an important molecule in obesity management and treatment.
Collapse
|
13
|
Wahlström A, Aydin Ö, Olsson LM, Sjöland W, Henricsson M, Lundqvist A, Marschall HU, Franken R, van de Laar A, Gerdes V, Meijnikman AS, Hofsø D, Groen AK, Hjelmesæth J, Nieuwdorp M, Bäckhed F. Alterations in bile acid kinetics after bariatric surgery in patients with obesity with or without type 2 diabetes. EBioMedicine 2024; 106:105265. [PMID: 39096744 PMCID: PMC11345581 DOI: 10.1016/j.ebiom.2024.105265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Bariatric surgery is an effective treatment option for obesity and provides long-term weight loss and positive effects on metabolism, but the underlying mechanisms are poorly understood. Alterations in bile acid metabolism have been suggested as a potential contributing factor, but comprehensive studies in humans are lacking. METHODS In this study, we analysed the postprandial responses of bile acids, C4 and FGF19 in plasma, and excretion of bile acids in faeces, before and after bariatric surgery in patients (n = 38; 74% females) with obesity with or without type 2 diabetes from the BARIA cohort. FINDINGS We observed that total fasting plasma bile acid levels increased, and faecal excretion of bile acids decreased after surgery suggesting increased reabsorption of bile acids. Consistent with increased bile acid levels after surgery we observed increased postprandial levels of FGF19 and suppression of the bile acid synthesis marker C4, suggesting increased FXR activation in the gut. We also noted that a subset of bile acids had altered postprandial responses before and after surgery. Finally, fasting plasma levels of 6α-hydroxylated bile acids, which are TGR5 agonists and associated with improved glucose metabolism, were increased after surgery and one of them, HDCA, covaried with diabetes remission in an independent cohort. INTERPRETATION Our findings provide new insights regarding bile acid kinetics and suggest that bariatric surgery in humans alters bile acid profiles leading to activation of FXR and TGR5, which may contribute to weight loss, improvements in glucose metabolism, and diabetes remission. FUNDING Novo Nordisk Fonden, Leducq Foundation, Swedish Heart-Lung Foundation, Knut and Alice Wallenberg Foundation, the ALF-agreement, ZonMw.
Collapse
Affiliation(s)
- Annika Wahlström
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden
| | - Ömrüm Aydin
- Department of Internal and Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands; Department of Internal Medicine, Spaarne Gasthuis, Hoofddorp, the Netherlands
| | - Lisa M Olsson
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden
| | - Wilhelm Sjöland
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden
| | - Marcus Henricsson
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden
| | - Annika Lundqvist
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden
| | - Hanns-Ulrich Marschall
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden
| | - Rutger Franken
- Department of Surgery, Spaarne Hospital, Hoofddorp, the Netherlands
| | | | - Victor Gerdes
- Department of Internal and Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Abraham S Meijnikman
- Department of Internal and Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Dag Hofsø
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway
| | - Albert K Groen
- Experimental Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Jøran Hjelmesæth
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway; Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Norway
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands; Experimental Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Fredrik Bäckhed
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark; Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden.
| |
Collapse
|
14
|
Fiorenza M, Checa A, Sandsdal RM, Jensen SBK, Juhl CR, Noer MH, Bogh NP, Lundgren JR, Janus C, Stallknecht BM, Holst JJ, Madsbad S, Wheelock CE, Torekov SS. Weight-loss maintenance is accompanied by interconnected alterations in circulating FGF21-adiponectin-leptin and bioactive sphingolipids. Cell Rep Med 2024; 5:101629. [PMID: 38959886 PMCID: PMC11293340 DOI: 10.1016/j.xcrm.2024.101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/25/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
Weight loss is often followed by weight regain. Characterizing endocrine alterations accompanying weight reduction and regain may disentangle the complex biology of weight-loss maintenance. Here, we profile energy-balance-regulating metabokines and sphingolipids in adults with obesity undergoing an initial low-calorie diet-induced weight loss and a subsequent weight-loss maintenance phase with exercise, glucagon-like peptide-1 (GLP-1) analog therapy, both combined, or placebo. We show that circulating growth differentiation factor 15 (GDF15) and C16:0-C18:0 ceramides transiently increase upon initial diet-induced weight loss. Conversely, circulating fibroblast growth factor 21 (FGF21) is downregulated following weight-loss maintenance with combined exercise and GLP-1 analog therapy, coinciding with increased adiponectin, decreased leptin, and overall decrements in ceramide and sphingosine-1-phosphate levels. Subgroup analyses reveal differential alterations in FGF21-adiponectin-leptin-sphingolipids between weight maintainers and regainers. Clinically, cardiometabolic health outcomes associate with selective metabokine-sphingolipid remodeling signatures. Collectively, our findings indicate distinct FGF21, GDF15, and ceramide responses to diverse phases of weight change and suggest that weight-loss maintenance involves alterations within the metabokine-sphingolipid axis.
Collapse
Affiliation(s)
- Matteo Fiorenza
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Antonio Checa
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Rasmus M Sandsdal
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Simon B K Jensen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christian R Juhl
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mikkel H Noer
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nicolai P Bogh
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Julie R Lundgren
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Charlotte Janus
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bente M Stallknecht
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital-Amager and Hvidovre, 2650 Hvidovre, Denmark
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Signe S Torekov
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
15
|
Bozadjieva-Kramer N, Shin JH, Li Z, Rupp AC, Miller N, Kernodle S, Lanthier N, Henry P, Seshadri N, Myronovych A, MacDougald OA, O’Rourke RW, Kohli R, Burant CF, Rothberg AE, Seeley RJ. Intestinal FGF15 regulates bile acid and cholesterol metabolism but not glucose and energy balance. JCI Insight 2024; 9:e174164. [PMID: 38587078 PMCID: PMC11128213 DOI: 10.1172/jci.insight.174164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/21/2024] [Indexed: 04/09/2024] Open
Abstract
Fibroblast growth factor 15/19 (FGF15/19, mouse/human ortholog) is expressed in the ileal enterocytes of the small intestine and released postprandially in response to bile acid absorption. Previous reports of FGF15-/- mice have limited our understanding of gut-specific FGF15's role in metabolism. Therefore, we studied the role of endogenous gut-derived FGF15 in bile acid, cholesterol, glucose, and energy balance. We found that circulating levels of FGF19 were reduced in individuals with obesity and comorbidities, such as type 2 diabetes and metabolic dysfunction-associated fatty liver disease. Gene expression analysis of ileal FGF15-positive cells revealed differential expression during the obesogenic state. We fed standard chow or a high-fat metabolic dysfunction-associated steatohepatitis-inducing diet to control and intestine-derived FGF15-knockout (FGF15INT-KO) mice. Control and FGF15INT-KO mice gained similar body weight and adiposity and did not show genotype-specific differences in glucose, mixed meal, pyruvate, and glycerol tolerance. FGF15INT-KO mice had increased systemic bile acid levels but decreased cholesterol levels, pointing to a primary role for gut-derived FGF15 in regulating bile acid and cholesterol metabolism when exposed to obesogenic diet. These studies show that intestinal FGF15 plays a specific role in bile acid and cholesterol metabolism regulation but is not essential for energy and glucose balance.
Collapse
Affiliation(s)
- Nadejda Bozadjieva-Kramer
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
- Department of Surgery and
| | | | - Ziru Li
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, USA
| | - Alan C. Rupp
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole Miller
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Nicolas Lanthier
- Hepato-Gastroenterology Department, Saint-Luc University Clinics, and
- Laboratory of Hepatology and Gastroenterology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Paulina Henry
- Pathological Anatomy Department, Institute of Pathology and Genetics, Gosselies, Belgium
| | | | | | - Ormond A. MacDougald
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert W. O’Rourke
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
- Department of Surgery and
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Charles F. Burant
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Amy E. Rothberg
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
16
|
Cai J, Chen D, Luo W, Xu F, Feng X, Zhang L, Liu H, Shen J, Ye H. The association between diverse serum folate with MAFLD and liver fibrosis based on NHANES 2017-2020. Front Nutr 2024; 11:1366843. [PMID: 38567253 PMCID: PMC10986760 DOI: 10.3389/fnut.2024.1366843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Background Metabolically Associated Fatty Liver Disease (MAFLD) marks a progression from the previous paradigm of Non-Alcoholic Fatty Liver Disease (NAFLD), presenting a redefined diagnostic framework that accentuates metabolic factors while recognizing non-alcoholic contributors. In our investigation, our principal aim was to scrutinize the conceivable correlation between diverse serum folate levels and the prevalence of MAFLD and liver fibrosis. Methods In our investigation, we conducted an extensive analysis utilizing data derived from the National Health and Nutrition Examination Survey (NHANES) across the years 2017-2020. We aimed to investigate the association between different serum folate concentrations and the prevalence of MAFLD and liver fibrosis by comprehensive multivariate analysis. This analytical approach considered various variables, encompassing sociodemographic characteristics, lifestyle factors, hypertension, and diabetes. By including these potential confounders in our analysis, we aimed to ensure the stability of the findings regarding the association between different serum folate concentrations and the development of MAFLD and liver fibrosis. Results In our investigation, we utilized multiple linear regression models to thoroughly analyze the data, revealing noteworthy insights. Evidently, elevated levels of both total folate and 5-MTHF exhibited a distinct negative correlation with CAP, while 5-MTHF demonstrated a notable negative correlation with LSM. Furthermore, multiple logistic regression models were employed for an in-depth examination of the data. As the concentrations of total folate and 5-MTHF in the serum increased, a substantial decrease in the likelihood of MAFLD and liver fibrosis occurrence was observed. Conclusion The findings of this investigation robustly suggest the prevalence of MAFLD and liver fibrosis decreased significantly with the increase of serum concentrations of total folate and 5-MTHF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianwei Shen
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hua Ye
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
17
|
Zhang CY, Yang M. Roles of fibroblast growth factors in the treatment of diabetes. World J Diabetes 2024; 15:392-402. [PMID: 38591079 PMCID: PMC10999039 DOI: 10.4239/wjd.v15.i3.392] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/16/2023] [Accepted: 01/25/2024] [Indexed: 03/15/2024] Open
Abstract
Diabetes affects about 422 million people worldwide, causing 1.5 million deaths each year. However, the incidence of diabetes is increasing, including several types of diabetes. Type 1 diabetes (5%-10% of diabetic cases) and type 2 diabetes (90%-95% of diabetic cases) are the main types of diabetes in the clinic. Accumulating evidence shows that the fibroblast growth factor (FGF) family plays important roles in many metabolic disorders, including type 1 and type 2 diabetes. FGF consists of 23 family members (FGF-1-23) in humans. Here, we review current findings of FGFs in the treatment of diabetes and management of diabetic complications. Some FGFs (e.g., FGF-15, FGF-19, and FGF-21) have been broadly investigated in preclinical studies for the diagnosis and treatment of diabetes, and their therapeutic roles in diabetes are currently under investigation in clinical trials. Overall, the roles of FGFs in diabetes and diabetic complications are involved in numerous processes. First, FGF intervention can prevent high-fat diet-induced obesity and insulin resistance and reduce the levels of fasting blood glucose and triglycerides by regulating lipolysis in adipose tissues and hepatic glucose production. Second, modulation of FGF expression can inhibit renal and cardiac fibrosis by regulating the expression of extracellular matrix components, promote diabetic wound healing process and bone repair, and inhibit cancer cell proliferation and migration. Finally, FGFs can regulate the activation of glucose-excited neurons and the expression of thermogenic genes.
Collapse
Affiliation(s)
- Chun-Ye Zhang
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
- NextGen Precision Health Institution, University of Missouri, Columbia, MO 65212, United States
| |
Collapse
|
18
|
Zangerolamo L, Carvalho M, Velloso LA, Barbosa HCL. Endocrine FGFs and their signaling in the brain: Relevance for energy homeostasis. Eur J Pharmacol 2024; 963:176248. [PMID: 38056616 DOI: 10.1016/j.ejphar.2023.176248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Since their discovery in 2000, there has been a continuous expansion of studies investigating the physiology, biochemistry, and pharmacology of endocrine fibroblast growth factors (FGFs). FGF19, FGF21, and FGF23 comprise a subfamily with attributes that distinguish them from typical FGFs, as they can act as hormones and are, therefore, referred to as endocrine FGFs. As they participate in a broad cross-organ endocrine signaling axis, endocrine FGFs are crucial lipidic, glycemic, and energetic metabolism regulators during energy availability fluctuations. They function as powerful metabolic signals in physiological responses induced by metabolic diseases, like type 2 diabetes and obesity. Pharmacologically, FGF19 and FGF21 cause body weight loss and ameliorate glucose homeostasis and energy expenditure in rodents and humans. In contrast, FGF23 expression in mice and humans has been linked with insulin resistance and obesity. Here, we discuss emerging concepts in endocrine FGF signaling in the brain and critically assess their putative role as therapeutic targets for treating metabolic disorders.
Collapse
Affiliation(s)
- Lucas Zangerolamo
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Marina Carvalho
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Helena C L Barbosa
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil.
| |
Collapse
|
19
|
Ziqubu K, Dludla PV, Mabhida SE, Jack BU, Keipert S, Jastroch M, Mazibuko-Mbeje SE. Brown adipose tissue-derived metabolites and their role in regulating metabolism. Metabolism 2024; 150:155709. [PMID: 37866810 DOI: 10.1016/j.metabol.2023.155709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
The discovery and rejuvenation of metabolically active brown adipose tissue (BAT) in adult humans have offered a new approach to treat obesity and metabolic diseases. Beyond its accomplished role in adaptive thermogenesis, BAT secretes signaling molecules known as "batokines", which are instrumental in regulating whole-body metabolism via autocrine, paracrine, and endocrine action. In addition to the intrinsic BAT metabolite-oxidizing activity, the endocrine functions of these molecules may help to explain the association between BAT activity and a healthy systemic metabolic profile. Herein, we review the evidence that underscores the significance of BAT-derived metabolites, especially highlighting their role in controlling physiological and metabolic processes involving thermogenesis, substrate metabolism, and other essential biological processes. The conversation extends to their capacity to enhance energy expenditure and mitigate features of obesity and its related metabolic complications. Thus, metabolites derived from BAT may provide new avenues for the discovery of metabolic health-promoting drugs with far-reaching impacts. This review aims to dissect the complexities of the secretory role of BAT in modulating local and systemic metabolism in metabolic health and disease.
Collapse
Affiliation(s)
- Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Sihle E Mabhida
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Babalwa U Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
20
|
Léniz A, Fernández-Quintela A, Arranz S, Portune K, Tueros I, Arana E, Castaño L, Velasco O, Portillo MP. Altered Red Blood Cell Fatty Acid and Serum Adipokine Profiles in Subjects with Obesity. Biomedicines 2023; 11:3320. [PMID: 38137540 PMCID: PMC10742039 DOI: 10.3390/biomedicines11123320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Adipokines, as well as the fatty acid profile of red blood cell (RBC) membranes, are known to play important roles in the development and progression of metabolic complications induced by obesity. Thus, the objective of this study is to compare the serum adipokine profile and the RBC membrane fatty acid profile of normal-weight and obese adults, and to analyze their relationship with serum biochemical parameters. METHODS An observational case-control study was performed in 75 normal-weight and obese adult subjects. Biochemical serum parameters, eight serum adipokines and the RBC membrane fatty acid profiles were measured. Associations between parameters were established using regression analysis. RESULTS Subjects with obesity showed increased levels of leptin, fibroblast growth factor 21 (FGF21) and overexpressed nephroblastoma (NOV/CCN3), decreased adiponectin, and similar levels of vaspin and chemerin compared to normal-weight subjects. Significant positive and negative correlations were found with triglycerides and high-density lipoprotein-cholesterol (HDL-c), respectively. An increase in the total ω-6 fatty acids in the RBC membrane fatty acid profiles in subjects with obesity was observed, because of higher levels of both dihomo-γ-linolenic acid (DGLA) and arachidonic acid (AA), and decreased total ω-3 fatty acids, mainly due to lower levels of docosahexaenoic acid (DHA). The ω-6/ω-3 ratio in the RBCs was significantly higher, suggesting an inflammatory status, as was also suggested by a reduced adiponectin level. A negative association between DGLA and adiponectin, and a positive association between DHA and serum triglycerides, was observed. CONCLUSIONS Important alterations in serum adipokine and RBC fatty acid profiles are found in subjects with obesity.
Collapse
Affiliation(s)
- Asier Léniz
- Vitoria-Gasteiz Nursing School, Osakidetza-Basque Health Service, 01009 Vitoria-Gasteiz, Spain;
- BIOARABA Institute of Health, 01006 Vitoria-Gasteiz, Spain;
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain
- Lucio Lascaray Research Centre, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain
- Department Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Alfredo Fernández-Quintela
- BIOARABA Institute of Health, 01006 Vitoria-Gasteiz, Spain;
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain
- Lucio Lascaray Research Centre, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain
- Department Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Sara Arranz
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (S.A.)
| | - Kevin Portune
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (S.A.)
| | - Itziar Tueros
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (S.A.)
| | - Eunate Arana
- Hospital Universitario Cruces, BIOBIZKAIA Institute of Health, 48903 Barakaldo, Spain (O.V.)
| | - Luis Castaño
- Hospital Universitario Cruces, BIOBIZKAIA Institute of Health, 48903 Barakaldo, Spain (O.V.)
- Department Pediatrics, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- CIBER Diabetes and Associated Metabolic Diseases (CIBERdem), Institute of Health Carlos III, 48903 Barakaldo, Spain
- CIBER Rare Diseases (CIBERer), Institute of Health Carlos III, 48903 Barakaldo, Spain
- European Reference Network on Rare Endocrine Conditions (ENDO-ERN), 48903 Barakaldo, Spain
| | - Olaia Velasco
- Hospital Universitario Cruces, BIOBIZKAIA Institute of Health, 48903 Barakaldo, Spain (O.V.)
- Department Pediatrics, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- CIBER Diabetes and Associated Metabolic Diseases (CIBERdem), Institute of Health Carlos III, 48903 Barakaldo, Spain
- CIBER Rare Diseases (CIBERer), Institute of Health Carlos III, 48903 Barakaldo, Spain
- European Reference Network on Rare Endocrine Conditions (ENDO-ERN), 48903 Barakaldo, Spain
| | - María P. Portillo
- BIOARABA Institute of Health, 01006 Vitoria-Gasteiz, Spain;
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain
- Lucio Lascaray Research Centre, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain
- Department Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
21
|
Aguas-Ayesa M, Yárnoz-Esquiroz P, Olazarán L, Perdomo CM, García-Goñi M, Andrada P, Escalada J, Silva C, Marcos A, Frühbeck G. Evaluation of Dietary and Alcohol Drinking Patterns in Patients with Excess Body Weight in a Spanish Cohort: Impact on Cardiometabolic Risk Factors. Nutrients 2023; 15:4824. [PMID: 38004218 PMCID: PMC10675718 DOI: 10.3390/nu15224824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Unhealthy dietary habits and sedentarism coexist with a rising incidence of excess weight and associated comorbidities. We aimed to analyze the dietary and drinking patterns of patients with excess weight, their main characteristics, plausible gender differences and impact on cardiometabolic risk factors, with a particular focus on the potential contribution of beer consumption. Data from 200 consecutive volunteers (38 ± 12 years; 72% females) living with overweight or class I obesity attending the obesity unit to lose weight were studied. Food frequency questionnaires and 24 h recalls were used. Reduced-rank regression (RRR) analysis was applied to identify dietary patterns (DPs). Anthropometry, total and visceral fat, indirect calorimetry, physical activity level, comorbidities and circulating cardiometabolic risk factors were assessed. Study participants showed high waist circumference, adiposity, insulin resistance, dyslipidemia, pro-inflammatory adipokines and low anti-inflammatory factors like adiponectin and interleukin-4. A low-fiber, high-fat, energy-dense DP was observed. BMI showed a statistically significant (p < 0.05) correlation with energy density (r = 0.80) as well as percentage of energy derived from fat (r = 0.61). Excess weight was associated with a DP low in vegetables, legumes and whole grains at the same time as being high in sweets, sugar-sweetened beverages, fat spreads, and processed meats. RRR analysis identified a DP characterized by high energy density and saturated fat exhibiting negative loadings (>-0.30) for green leafy vegetables, legumes, and fruits at the same time as showing positive factor loadings (>0.30) for processed foods, fat spreads, sugar-sweetened beverages, and sweets. Interestingly, for both women and men, wine represented globally the main source of total alcohol intake (p < 0.05) as compared to beer and distillates. Beer consumption cannot be blamed as the main culprit of excess weight. Capturing the DP provides more clinically relevant and useful information. The focus on consumption of single nutrients does not resemble real-world intake behaviors.
Collapse
Affiliation(s)
- Maite Aguas-Ayesa
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
| | - Patricia Yárnoz-Esquiroz
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Laura Olazarán
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Carolina M. Perdomo
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
| | - Marta García-Goñi
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Patricia Andrada
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Javier Escalada
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Camilo Silva
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Ascensión Marcos
- Immunonutrition Research Group, Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN)—CSIC, 28040 Madrid, Spain
| | - Gema Frühbeck
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
22
|
Cai Y, Yang Q, Yu Y, Yang F, Bai R, Fan X. Efficacy and underlying mechanisms of berberine against lipid metabolic diseases: a review. Front Pharmacol 2023; 14:1283784. [PMID: 38034996 PMCID: PMC10684937 DOI: 10.3389/fphar.2023.1283784] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
Lipid-lowering therapy is an important tool for the treatment of lipid metabolic diseases, which are increasing in prevalence. However, the failure of conventional lipid-lowering drugs to achieve the desired efficacy in some patients, and the side-effects of these drug regimens, highlight the urgent need for novel lipid-lowering drugs. The liver and intestine are important in the production and removal of endogenous and exogenous lipids, respectively, and have an important impact on circulating lipid levels. Elevated circulating lipids predisposes an individual to lipid deposition in the vascular wall, affecting vascular function. Berberine (BBR) modulates liver lipid production and clearance by regulating cellular targets such as cluster of differentiation 36 (CD36), acetyl-CoA carboxylase (ACC), microsomal triglyceride transfer protein (MTTP), scavenger receptor class B type 1 (SR-BI), low-density lipoprotein receptor (LDLR), and ATP-binding cassette transporter A1 (ABCA1). It influences intestinal lipid synthesis and metabolism by modulating gut microbiota composition and metabolism. Finally, BBR maintains vascular function by targeting proteins such as endothelial nitric oxide synthase (eNOS) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). This paper elucidates and summarizes the pharmacological mechanisms of berberine in lipid metabolic diseases from a multi-organ (liver, intestine, and vascular system) and multi-target perspective.
Collapse
Affiliation(s)
- Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaoning Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| | - Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaodi Fan
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, China
| |
Collapse
|
23
|
Tuero C, Becerril S, Ezquerro S, Neira G, Frühbeck G, Rodríguez A. Molecular and cellular mechanisms underlying the hepatoprotective role of ghrelin against NAFLD progression. J Physiol Biochem 2023; 79:833-849. [PMID: 36417140 DOI: 10.1007/s13105-022-00933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022]
Abstract
The underlying mechanisms for the development and progression of nonalcoholic fatty liver disease (NAFLD) are complex and multifactorial. Within the last years, experimental and clinical evidences support the role of ghrelin in the development of NAFLD. Ghrelin is a gut hormone that plays a major role in the short-term regulation of appetite and long-term regulation of adiposity. The liver constitutes a target for ghrelin, where this gut-derived peptide triggers intracellular pathways regulating lipid metabolism, inflammation, and fibrosis. Interestingly, circulating ghrelin levels are altered in patients with metabolic diseases, such as obesity, type 2 diabetes, and metabolic syndrome, which, in turn, are well-known risk factors for the pathogenesis of NAFLD. This review summarizes the molecular and cellular mechanisms involved in the hepatoprotective action of ghrelin, including the reduction of hepatocyte lipotoxicity via autophagy and fatty acid β-oxidation, mitochondrial dysfunction, endoplasmic reticulum stress and programmed cell death, the reversibility of the proinflammatory phenotype in Kupffer cells, and the inactivation of hepatic stellate cells. Together, the metabolic and inflammatory pathways regulated by ghrelin in the liver support its potential as a therapeutic target to prevent NAFLD in patients with metabolic disorders.
Collapse
Affiliation(s)
- Carlota Tuero
- Department of General Surgery, Clínica Universidad de Navarra, School of Medicine, University of Navarra, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Silvia Ezquerro
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
| | - Gabriela Neira
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain.
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
24
|
De Luca A, Delaye JB, Fauchier G, Bourbao-Tournois C, Champion H, Bourdon G, Dupont J, Froment P, Dufour D, Ducluzeau PH. 3-Month Post-Operative Increase in FGF21 is Predictive of One-Year Weight Loss After Bariatric Surgery. Obes Surg 2023; 33:2468-2474. [PMID: 37391682 DOI: 10.1007/s11695-023-06702-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
PURPOSE The association between bariatric surgery outcome and blood levels of fibroblast growth factor 21 (FGF21) remains controversial. Many patients displayed stable or decreased FGF21 one year after bariatric surgery. Nevertheless, there is often an early increase FGF21 concentration in the post-surgery period. The aim of this study was to investigate the relationship between 3-month FGF21 response and percentage total weight loss at one year after bariatric surgery. MATERIALS AND METHODS In this prospective monocentric study, a total of 144 patients with obesity grade 2-3 were included; 61% of them underwent a sleeve gastrectomy and 39% a Roux-en-Y gastric bypass. Data analysis was carried out to determine the relation between 3-month plasma FGF21 response and weight loss one year after bariatric surgery. Multiple adjustments were done including degree of weight loss after 3 months. RESULTS FGF21 significantly increased between baseline and Month 3 (n = 144, p < 10-3), then decreased between Month 3 and Month 6 (n = 142, p = 0.047) and was not different from baseline at Month 12 (n = 142, p = 0.86). The 3-month-FGF21 response adjusted to body weight loss was not different between types of bariatric surgery. The 3-month-FGF21 response was associated to body weight loss at Month 6 (r = -0.19, p = 0.02) and Month 12 (r = -0.34, p < 10-4). After multiple regression analysis, only Month 12 body weight loss remained associated to 3-month FGF21 response (r = -0.3, p = 0.02). CONCLUSION This study showed that the magnitude of changes in FGF21 at 3 months after bariatric surgery emerged as an independent predictor of one-year body weight loss irrespective of the type of surgery.
Collapse
Affiliation(s)
- Arnaud De Luca
- Unité d'endocrinologie-Diabétologie-Nutrition, CHRU de Tours, 37044, Tours, France
- INSERM UMR 1069, Nutrition, Croissance Et Cancer, 37000, Tours, France
| | - Jean-Baptiste Delaye
- Laboratoire de Biochimie Et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France
| | - Grégoire Fauchier
- Unité d'endocrinologie-Diabétologie-Nutrition, CHRU de Tours, 37044, Tours, France
- INRAE, UMR 85 Physiologie de La Reproduction Et Des Comportements, 37380, Nouzilly, France
| | | | - Hélène Champion
- Unité d'endocrinologie-Diabétologie-Nutrition, CHRU de Tours, 37044, Tours, France
| | - Guillaume Bourdon
- INRAE, UMR 85 Physiologie de La Reproduction Et Des Comportements, 37380, Nouzilly, France
| | - Joëlle Dupont
- INRAE, UMR 85 Physiologie de La Reproduction Et Des Comportements, 37380, Nouzilly, France
| | - Pascal Froment
- INRAE, UMR 85 Physiologie de La Reproduction Et Des Comportements, 37380, Nouzilly, France
| | - Diane Dufour
- Laboratoire de Biochimie Et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France
| | - Pierre-Henri Ducluzeau
- Unité d'endocrinologie-Diabétologie-Nutrition, CHRU de Tours, 37044, Tours, France
- INRAE, UMR 85 Physiologie de La Reproduction Et Des Comportements, 37380, Nouzilly, France
| |
Collapse
|
25
|
Yang M, Liu C, Jiang N, Liu Y, Luo S, Li C, Zhao H, Han Y, Chen W, Li L, Xiao L, Sun L. Fibroblast growth factor 21 in metabolic syndrome. Front Endocrinol (Lausanne) 2023; 14:1220426. [PMID: 37576954 PMCID: PMC10414186 DOI: 10.3389/fendo.2023.1220426] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Metabolic syndrome is a complex metabolic disorder that often clinically manifests as obesity, insulin resistance/diabetes, hyperlipidemia, and hypertension. With the development of social and economic systems, the incidence of metabolic syndrome is increasing, bringing a heavy medical burden. However, there is still a lack of effective prevention and treatment strategies. Fibroblast growth factor 21 (FGF21) is a member of the human FGF superfamily and is a key protein involved in the maintenance of metabolic homeostasis, including reducing fat mass and lowering hyperglycemia, insulin resistance and dyslipidemia. Here, we review the current regulatory mechanisms of FGF21, summarize its role in obesity, diabetes, hyperlipidemia, and hypertension, and discuss the possibility of FGF21 as a potential target for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
26
|
Liu FS, Wang S, Guo XS, Ye ZX, Zhang HY, Li Z. State of art on the mechanisms of laparoscopic sleeve gastrectomy in treating type 2 diabetes mellitus. World J Diabetes 2023; 14:632-655. [PMID: 37383590 PMCID: PMC10294061 DOI: 10.4239/wjd.v14.i6.632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/01/2023] [Accepted: 04/24/2023] [Indexed: 06/14/2023] Open
Abstract
Obesity and type-2 diabetes mellitus (T2DM) are metabolic disorders. Obesity increases the risk of T2DM, and as obesity is becoming increasingly common, more individuals suffer from T2DM, which poses a considerable burden on health systems. Traditionally, pharmaceutical therapy together with lifestyle changes is used to treat obesity and T2DM to decrease the incidence of comorbidities and all-cause mortality and to increase life expectancy. Bariatric surgery is increasingly replacing other forms of treatment of morbid obesity, especially in patients with refractory obesity, owing to its many benefits including good long-term outcomes and almost no weight regain. The bariatric surgery options have markedly changed recently, and laparoscopic sleeve gastrectomy (LSG) is gradually gaining popularity. LSG has become an effective and safe treatment for type-2 diabetes and morbid obesity, with a high cost-benefit ratio. Here, we review the me-chanism associated with LSG treatment of T2DM, and we discuss clinical studies and animal experiments with regard to gastrointestinal hormones, gut microbiota, bile acids, and adipokines to clarify current treatment modalities for patients with obesity and T2DM.
Collapse
Affiliation(s)
- Fa-Shun Liu
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Song Wang
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Xian-Shan Guo
- Department of Endocrinology, Xinxiang Central Hospital, Xinxiang 453000, Henan Province, China
| | - Zhen-Xiong Ye
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Hong-Ya Zhang
- Central Laboratory, Yangpu District Control and Prevention Center, Shanghai 200090, China
| | - Zhen Li
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| |
Collapse
|
27
|
Carson MD, Warner AJ, Geiser VL, Hathaway-Schrader JD, Alekseyenko AV, Marshall J, Westwater C, Novince CM. Prolonged Antibiotic Exposure during Adolescence Dysregulates Liver Metabolism and Promotes Adiposity in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:796-812. [PMID: 36906264 PMCID: PMC10284030 DOI: 10.1016/j.ajpath.2023.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/24/2023] [Accepted: 02/16/2023] [Indexed: 03/12/2023]
Abstract
Antibiotic administration during early life has been shown to have lasting effects on the gut microbiota, which have been linked to sustained alterations in liver metabolism and adiposity. Recent investigations have discerned that the gut microbiota continues to develop toward an adult-like profile during adolescence. However, the impact of antibiotic exposure during adolescence on metabolism and adiposity is unclear. Herein, a retrospective analysis of Medicaid claims data was performed, which indicated that tetracycline class antibiotics are commonly prescribed for the systemic treatment of adolescent acne. The purpose of this was to discern the impact of a prolonged tetracycline antibiotic exposure during adolescence on the gut microbiota, liver metabolism, and adiposity. Male C57BL/6T specific pathogen-free mice were administered a tetracycline antibiotic during the pubertal/postpubertal adolescent growth phase. Groups were euthanized at different time points to assess immediate and sustained antibiotic treatment effects. Antibiotic exposure during adolescence caused lasting genera-level shifts in the intestinal bacteriome and persistent dysregulation of metabolic pathways in the liver. Dysregulated hepatic metabolism was linked to sustained disruption of the intestinal farnesoid X receptor-fibroblast growth factor 15 axis, a gut-liver endocrine axis that supports metabolic homeostasis. Antibiotic exposure during adolescence increased subcutaneous, visceral, and marrow adiposity, which intriguingly manifested following antibiotic therapy. This preclinical work highlights that prolonged antibiotic courses for the clinical treatment of adolescent acne may have unintended deleterious effects on liver metabolism and adiposity.
Collapse
Affiliation(s)
- Matthew D Carson
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Endocrinology, Department of Pediatrics, College of Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Periodontics, Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Amy J Warner
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Endocrinology, Department of Pediatrics, College of Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Periodontics, Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Vincenza L Geiser
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Endocrinology, Department of Pediatrics, College of Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Periodontics, Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Endocrinology, Department of Pediatrics, College of Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Periodontics, Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Alexander V Alekseyenko
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Biomedical Informatics Center, Program for Human Microbiome Research, Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, South Carolina; Department of Healthcare Leadership and Management, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina
| | - Julie Marshall
- Division of Population Oral Health, Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Caroline Westwater
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Chad M Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Endocrinology, Department of Pediatrics, College of Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Periodontics, Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
28
|
Bai X, Wang J, Ding S, Yang S, Pei B, Yao M, Zhu X, Jiang M, Zhang M, Mu W, Guo S. Embelin protects against apoptosis and inflammation by regulating PI3K/Akt signaling in IL-1β-stimulated human nucleus pulposus cells. Tissue Cell 2023; 82:102089. [PMID: 37075678 DOI: 10.1016/j.tice.2023.102089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/20/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
Embelin is a natural benzoquinone compound that displays a beneficial effect in various inflammatory-related diseases. However, the effect of embelin on degeneration of intervertebral disc (IDD), a chronic inflammatory disorder, has not been reported. This study was attempted to explore the therapeutic action of embelin on IDD in vitro. Network pharmacology analysis was performed for evaluating the link between embelin and IDD. The human nucleus pulposus cells (NPCs) were stimulated with IL-1β to induce inflammation. Cell viability of NPCs was assessed by CCK-8 assay. Western blotting was conducted to detect the expression levels of PI3K, p-PI3K, Akt, p-Akt, cleaved caspase-3, caspase-3, Bax, Bcl-2, p65 and p-p65. Apoptotic deaths of NPCs were examined by TUNEL assay. The production of COX-2, IL-6, IL-8, and TNF-α was examined by ELISA. It can be seen that 16 overlapping genes were selected from 109 possible targets of embelin and 342 possible targets of IDD. KEGG pathway enrichment analysis showed that the PI3K/Akt signaling pathway was a close link between embelin and IDD. We found that embelin dose-dependently improved the cell viability in IL-1β-stimulated NPCs. Embelin elevated the relative levels of p-PI3K/PI3K and p-Akt/Akt in IL-1β-stimulated NPCs. IL-1β induced a significant increase in apoptotic deaths of NPCs, which was attenuated by embelin treatment. IL-1β-induced alternations in expression levels of apoptotic-related proteins including cleaved caspase-3, Bax and Bcl-2 were prevented by embelin treatment. Pretreatment with LY294002 (an inhibitor of PI3K) reversed the inhibitory effect of embelin on IL-1β-induced apoptosis in NPCs. Embelin treatment caused inhibitory effects on the IL-1β-stimulated production of COX-2, IL-6, IL-8, and TNF-α, which were abolished by LY294002 treatment. Furthermore, embelin treatment prevented IL-1β-induced phosphorylation of p65 in NPCs, while LY294002 elevated the embelin-caused decrease in p-p65/p65 level. Overall, embelin protected human NPCs against IL-1β-stimulated apoptosis and inflammation by regulating the PI3K/Akt signaling pathway. These findings provided new ideas for the clinical usage of embelin in the prevention and treatment of IDD.
Collapse
Affiliation(s)
- Xiaoliang Bai
- The Fifth Department of Orthopedics, Baoding NO.1 Central Hospital, Baoding, Hebei 071000, China
| | - Jie Wang
- The Fifth Department of Orthopedics, Baoding NO.1 Central Hospital, Baoding, Hebei 071000, China
| | - Siguang Ding
- The Fifth Department of Orthopedics, Baoding NO.1 Central Hospital, Baoding, Hebei 071000, China
| | - Shuai Yang
- The Fifth Department of Orthopedics, Baoding NO.1 Central Hospital, Baoding, Hebei 071000, China
| | - Bo Pei
- The Fifth Department of Orthopedics, Baoding NO.1 Central Hospital, Baoding, Hebei 071000, China
| | - Mingyan Yao
- Department of Endocrinology, Baoding NO.1 Central Hospital, Baoding, Hebei 071000, China
| | - Xiaojuan Zhu
- Department of Geriatrics, Baoding NO.1 Central Hospital, Baoding, Hebei 071000, China
| | - Meichao Jiang
- The Fifth Department of Orthopedics, Baoding NO.1 Central Hospital, Baoding, Hebei 071000, China
| | - Mingyuan Zhang
- Department of Orthopedics, Laishui County TCM Hospital, Baoding, Hebei 074199, China
| | - Weina Mu
- Department of Ultrasonography, Baoding NO.1 Central Hospital, Baoding, Hebei 071000, China
| | - Shuqin Guo
- Department of Endocrinology, Baoding NO.1 Central Hospital, Baoding, Hebei 071000, China.
| |
Collapse
|
29
|
Björkander S, Klevebro S, Hernandez‐Pacheco N, Kere M, Ekström S, Sparreman Mikus M, van Hage M, James A, Kull I, Bergström A, Mjösberg J, Tibbitt CA, Melén E. Obese asthma phenotypes display distinct plasma biomarker profiles. Clin Transl Allergy 2023; 13:e12238. [PMID: 36973952 PMCID: PMC10032201 DOI: 10.1002/clt2.12238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/06/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Obese asthma is a complex phenotype and further characterization of the pathophysiology is needed. This study aimed to explore inflammation-related plasma biomarkers in lean and overweight/obese asthmatics. METHODS We elucidated levels of inflammation-related plasma proteins in obese asthma phenotypes in the population-based cohort BAMSE (Swedish: Children, Allergy, Milieu, Stockholm, Epidemiology) using data from 2069 24-26-year-olds. Subjects were divided into lean asthma (n = 166), lean controls (n = 1440), overweight/obese asthma (n = 73) and overweight/obese controls (n = 390). Protein levels (n = 92) were analysed using the Olink Proseek Multiplex Inflammation panel. RESULTS Of the 92 included proteins, 41 were associated with lean and/or overweight/obese asthma. The majority of proteins associated with overweight/obese asthma also associated with overweight/obesity among non-asthmatics. Beta-nerve growth factor (BetaNGF), interleukin 10 (IL-10), and matrix metalloproteinase 10 (MMP10) were associated only with lean asthma while C-C motif chemokine 20 (CCL20), fibroblast growth factor 19 (FGF19), interleukin 5 (IL-5), leukemia inhibitory factor (LIF), tumor necrosis factor ligand superfamily member 9 (TNFRSF9), and urokinase-type plasminogen activator (uPA) were associated only with overweight/obese asthma. Overweight/obesity modified the association between asthma and 3 of the proteins: fibroblast growth factor 21 (FGF21), interleukin 4 (IL-4), and urokinase-type plasminogen activator (uPA). In the overweight/obese group, interleukin-6 (IL-6) was associated with non-allergic asthma but not allergic asthma. CONCLUSION These data indicate distinct plasma protein phenotypes in lean and overweight/obese asthmatics which, in turn, can impact upon therapeutic approaches.
Collapse
Grants
- Region Stockholm, ALF project, Clinical postdoctoral appointment (SK), and database maintenance
- Hjärt-Lungfonden
- European Academy of Allergy and Clinical Immunology, Medium-Term Research Fellowship (NHP)
- Thermo Fisher Scientific, reagents for the allergen-specific IgE analyses
- Insamlingsstiftelsen Cancer- och Allergifonden
- 757919 H2020 European Research Council
- LTRF202101-00861 European Respiratory Society (NHP)
- 2016-01646 Svenska Forskningsrådet Formas
- 2017-00526 Forskningsrådet om Hälsa, Arbetsliv och Välfärd
- 2016-03086 Vetenskapsrådet
- 2018-02524 Vetenskapsrådet
- 2019-01060 Vetenskapsrådet
- 2020-02170 Vetenskapsrådet
- Astma- och Allergiförbundet
- Region Stockholm, ALF project, Clinical postdoctoral appointment (SK), and database maintenance
- Hjärt‐Lungfonden
- European Academy of Allergy and Clinical Immunology, Medium‐Term Research Fellowship (NHP)
- Thermo Fisher Scientific, reagents for the allergen‐specific IgE analyses
- Insamlingsstiftelsen Cancer‐ och Allergifonden
- H2020 European Research Council
- European Respiratory Society (NHP)
- Svenska Forskningsrådet Formas
- Forskningsrådet om Hälsa, Arbetsliv och Välfärd
- Vetenskapsrådet
- Astma‐ och Allergiförbundet
Collapse
Affiliation(s)
- Sophia Björkander
- Department of Clinical Science and EducationSödersjukhusetKarolinska InstitutetStockholmSweden
| | - Susanna Klevebro
- Department of Clinical Science and EducationSödersjukhusetKarolinska InstitutetStockholmSweden
- Sachs' Children and Youth HospitalSödersjukhusetStockholmSweden
| | - Natalia Hernandez‐Pacheco
- Department of Clinical Science and EducationSödersjukhusetKarolinska InstitutetStockholmSweden
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
| | - Maura Kere
- Department of Clinical Science and EducationSödersjukhusetKarolinska InstitutetStockholmSweden
| | - Sandra Ekström
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
- Centre for Occupational and Environmental Medicine, Region StockholmStockholmSweden
| | | | - Marianne van Hage
- Department of Medicine, SolnaDivision of Immunology and AllergyKarolinska Institutet and Karolinska University HospitalStockholmSweden
| | - Anna James
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Inger Kull
- Department of Clinical Science and EducationSödersjukhusetKarolinska InstitutetStockholmSweden
- Sachs' Children and Youth HospitalSödersjukhusetStockholmSweden
| | - Anna Bergström
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
- Centre for Occupational and Environmental Medicine, Region StockholmStockholmSweden
| | - Jenny Mjösberg
- Department of Medicine HuddingeCentre for Infectious MedicineKarolinska InstitutetStockholmSweden
| | | | - Erik Melén
- Department of Clinical Science and EducationSödersjukhusetKarolinska InstitutetStockholmSweden
- Sachs' Children and Youth HospitalSödersjukhusetStockholmSweden
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| |
Collapse
|
30
|
Baratte C, Willemetz A, Ribeiro-Parenti L, Carette C, Msika S, Bado A, Czernichow S, Le Gall M, Poghosyan T. Analysis of the Efficacy and the Long-term Metabolic and Nutritional Status of Sleeve Gastrectomy with Transit Bipartition Compared to Roux-en-Y Gastric Bypass in Obese Rats. Obes Surg 2023; 33:1121-1132. [PMID: 36729363 DOI: 10.1007/s11695-023-06477-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
PURPOSE Sleeve gastrectomy with transit bipartition (SG-TB) could be an attractive alternative to Roux-en-Y gastric bypass (RYGB) on weight loss and improvement of comorbidities in patients with obesity. However, there is little long-term data. Translational research on a rat model could allow long-term projection to assess efficacy and safety of SG-TB. The aim of this research was to evaluate the long-term efficacy and safety of SG-TB compared to RYGB and SHAM in rat model. MATERIALS AND METHODS Ninety-four male obese Wistar rats were distributed into 3 groups: SG-TB (n = 34), RYGB (n = 32), and SHAM (control group, n = 28). The percentage of total weight loss (%TWL), coprocalorimetry, glucose and insulin tolerance test, insulin, GLP-1, PYY, and GIP before and after surgery were assessed. The animals were followed over 6 months (equivalent to 16 years in humans). RESULTS At 6 months, %TWL was significantly greater(p = 0.025) in the SG-TB group compared to the RYGB group. There was no difference between the groups (p = 0.86) in malabsorption 15 and 120 days postoperatively. Glucose tolerance was significantly improved (p = 0.03) in the SG-TB and RYGB groups compared to the preoperative state. Insulin secretion, at 3 months, was significantly more important in the SG-TB group (p = 0.0003), compared to the RYGB and SHAM groups. GLP-1 secretion was significantly increased in the SG-TB and RYGB groups compared to the preoperative state (p = 0.001) but similar between SG-TB and RYGB animals (p = 0.72). CONCLUSION In a rat model, at long term compared to RYGB, SG-TB provides greater and better-maintained weight loss and an increased insulin secretion without impairing nutritional status.
Collapse
Affiliation(s)
- Clement Baratte
- Université de Paris Cité, F-75015, Paris, France.,INSERM, U1149, Centre de Recherche sur l'Inflammation, 75018, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Service de chirurgie digestive, œsogastrique et bariatrique, Centre Spécialisé Obésité (CSO) Ile de France Nord, Hôpital Bichat-Claude Bernard, 16 rue Henri Huchard, 75018, Paris, France
| | - Alexandra Willemetz
- Université de Paris Cité, F-75015, Paris, France.,INSERM, U1149, Centre de Recherche sur l'Inflammation, 75018, Paris, France
| | - Lara Ribeiro-Parenti
- Université de Paris Cité, F-75015, Paris, France.,INSERM, U1149, Centre de Recherche sur l'Inflammation, 75018, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Service de chirurgie digestive, œsogastrique et bariatrique, Centre Spécialisé Obésité (CSO) Ile de France Nord, Hôpital Bichat-Claude Bernard, 16 rue Henri Huchard, 75018, Paris, France
| | - Claire Carette
- Université de Paris Cité, F-75015, Paris, France.,Assistance Publique-Hôpitaux de Paris, service de Nutrition, Centre Spécialisé Obésité (CSO) Ile de France Sud, Hôpital Européen Georges Pompidou, 75015, Paris, France
| | - Simon Msika
- Université de Paris Cité, F-75015, Paris, France.,INSERM, U1149, Centre de Recherche sur l'Inflammation, 75018, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Service de chirurgie digestive, œsogastrique et bariatrique, Centre Spécialisé Obésité (CSO) Ile de France Nord, Hôpital Bichat-Claude Bernard, 16 rue Henri Huchard, 75018, Paris, France
| | - Andre Bado
- Université de Paris Cité, F-75015, Paris, France.,INSERM, U1149, Centre de Recherche sur l'Inflammation, 75018, Paris, France
| | - Sebastien Czernichow
- Université de Paris Cité, F-75015, Paris, France.,Assistance Publique-Hôpitaux de Paris, service de Nutrition, Centre Spécialisé Obésité (CSO) Ile de France Sud, Hôpital Européen Georges Pompidou, 75015, Paris, France.,Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004, Paris, France
| | - Maude Le Gall
- Université de Paris Cité, F-75015, Paris, France.,INSERM, U1149, Centre de Recherche sur l'Inflammation, 75018, Paris, France
| | - Tigran Poghosyan
- Université de Paris Cité, F-75015, Paris, France. .,INSERM, U1149, Centre de Recherche sur l'Inflammation, 75018, Paris, France. .,Assistance Publique-Hôpitaux de Paris (AP-HP), Service de chirurgie digestive, œsogastrique et bariatrique, Centre Spécialisé Obésité (CSO) Ile de France Nord, Hôpital Bichat-Claude Bernard, 16 rue Henri Huchard, 75018, Paris, France.
| |
Collapse
|
31
|
The Questionable IFSO Position Statement. Obes Surg 2023; 33:665-667. [PMID: 36529832 DOI: 10.1007/s11695-022-06407-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
|
32
|
Castela I, Morais J, Barreiros-Mota I, Silvestre MP, Marques C, Rodrigues C, Ismael S, Araújo JR, Ângelo-Dias M, Martins C, Borrego LM, Monteiro R, Coutinho SR, Calhau C, Martins C, Faria A, Pestana D, Teixeira D. Decreased adiponectin/leptin ratio relates to insulin resistance in adults with obesity. Am J Physiol Endocrinol Metab 2023; 324:E115-E119. [PMID: 36351292 DOI: 10.1152/ajpendo.00273.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Adipose tissue dysfunction is a key mechanism that leads to adiposity-based chronic disease. This study aimed to investigate the reliability of the adiponectin/leptin ratio (AdipoQ/Lep) as an adipose tissue and metabolic function biomarker in adults with obesity, without diabetes. Data were collected from a clinical trial conducted in 28 adults with obesity (mean body mass index: 35.4 ± 3.7 kg/m2) (NCT02169778). With the use of a forward stepwise multiple linear regression model to explore the relationship between AdipoQ/Lep and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), it was observed that 48.6% of HOMA-IR variance was explained by triacylglycerols, AdipoQ/Lep, and waist-to-hip ratio (P < 0.001), AdipoQ/Lep being the strongest independent predictor (Beta = -0.449, P < 0.001). A lower AdipoQ/Lep was correlated with higher body mass index (Rs = -0.490, P < 0.001), body fat mass (Rs = -0.486, P < 0.001), waist-to-height ratio (Rs = -0.290, P = 0.037), and plasma resistin (Rs = -0.365, P = 0.009). These data highlight the central role of adipocyte dysfunction in the pathogenesis of insulin resistance and emphasize that AdipoQ/Lep may be a promising early marker of insulin resistance development in adults with obesity.NEW & NOTEWORTHY Adiponectin/leptin ratio, triacylglycerols, and waist-to-hip ratio explained almost half of HOMA-IR variance in the context of obesity. This study provides evidence to support adipose tissue dysfunction as a central feature of the pathophysiology of obesity and insulin resistance. Early identification of individuals at higher risk of developing metabolic complications through adipose tissue dysfunction assessment and the staging of obesity and its transient phenotypes can contribute to improve therapeutic decision-making.
Collapse
Affiliation(s)
- Inês Castela
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- CHRC, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- CINTESIS@RISE, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Juliana Morais
- CINTESIS@RISE, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- UniC@RISE-Cardiovascular Research Centre, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Inês Barreiros-Mota
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- CHRC, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Marta P Silvestre
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- CINTESIS@RISE, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Cláudia Marques
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- CINTESIS@RISE, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Catarina Rodrigues
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- CHRC, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Shámila Ismael
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- CHRC, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- CINTESIS@RISE, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - João R Araújo
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- CINTESIS@RISE, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Miguel Ângelo-Dias
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- CHRC, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Catarina Martins
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- CHRC, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Luís Miguel Borrego
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- CHRC, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- Immunoallergy Department, Hospital da Luz-Lisboa, Lisbon, Portugal
| | - Rosário Monteiro
- CINTESIS@RISE, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- Health Centre Grouping Porto Ocidental, Family Health Unit Homem do Leme, Porto, Portugal
- Department of Community Medicine, Health Information and Decision, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Sílvia Ribeiro Coutinho
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Public Health Nutrition at the Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Conceição Calhau
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- CINTESIS@RISE, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Cátia Martins
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Centre for Obesity, Department of Surgery, St. Olavs University Hospital, Trondheim, Norway
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ana Faria
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- CHRC, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- CINTESIS@RISE, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Diogo Pestana
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- CINTESIS@RISE, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Diana Teixeira
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- CHRC, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- CINTESIS@RISE, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
33
|
Jin L, Yang R, Geng L, Xu A. Fibroblast Growth Factor-Based Pharmacotherapies for the Treatment of Obesity-Related Metabolic Complications. Annu Rev Pharmacol Toxicol 2023; 63:359-382. [PMID: 36100222 DOI: 10.1146/annurev-pharmtox-032322-093904] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The fibroblast growth factor (FGF) family, which comprises 22 structurally related proteins, plays diverse roles in cell proliferation, differentiation, development, and metabolism. Among them, two classical members (FGF1 and FGF4) and two endocrine members (FGF19 and FGF21) are important regulators of whole-body energy homeostasis, glucose/lipid metabolism, and insulin sensitivity. Preclinical studies have consistently demonstrated the therapeutic benefits of these FGFs for the treatment of obesity, diabetes, dyslipidemia, and nonalcoholic steatohepatitis (NASH). Several genetically engineered FGF19 and FGF21 analogs with improved pharmacodynamic and pharmacokinetic properties have been developed and progressed into various stages of clinical trials. These FGF analogs are effective in alleviating hepatic steatosis, steatohepatitis, and liver fibrosis in biopsy-confirmed NASH patients, whereas their antidiabetic and antiobesity effects are mildand vary greatly in different clinical trials. This review summarizes recent advances in biopharmaceutical development of FGF-based therapies against obesity-related metabolic complications, highlights major challenges in clinical implementation, and discusses possible strategies to overcome these hurdles.
Collapse
Affiliation(s)
- Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ranyao Yang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Leiluo Geng
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China;
| |
Collapse
|
34
|
Kuckuck S, van der Valk ES, Scheurink AJW, Lengton R, Mohseni M, Visser JA, Iyer AM, van den Berg SAA, van Rossum EFC. Levels of hormones regulating appetite and energy homeostasis in response to a 1.5-Year combined lifestyle intervention for obesity. Front Physiol 2023; 14:1010858. [PMID: 36891140 PMCID: PMC9986487 DOI: 10.3389/fphys.2023.1010858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Background: Weight loss can induce changes in appetite-regulating hormone levels, possibly linked to increases in appetite and weight regain. However, hormonal changes vary across interventions. Here, we studied levels of appetite-regulating hormones during a combined lifestyle intervention (CLI: healthy diet, exercise and cognitive behavioral therapy). Methods: We measured levels of long-term adiposity-related hormones (leptin, insulin, high-molecular-weight (HMW) adiponectin) and short-term appetite hormones (PYY, cholecystokinin, gastric-inhibitory polypeptide, pancreatic polypeptide, FGF21, AgRP) in overnight-fasted serum of 39 patients with obesity. Hormone levels were compared between T0 (baseline), T1 (after 10 weeks) and T2 (end of treatment, 1.5 years). T0-T1 hormone changes were correlated with T1-T2 anthropometric changes. Results: Initial weight loss at T1 was maintained at T2 (-5.0%, p < 0.001), and accompanied by decreased leptin and insulin levels at T1 and T2 (all p < 0.05) compared to T0. Most short-term signals were not affected. Only PP levels were decreased at T2 compared to T0 (p < 0.05). Most changes in hormone levels during initial weight loss did not predict subsequent changes in anthropometrics, except for T0-T1 decreases in FGF21 levels and T0-T1 increases in HMW adiponectin levels tended to be associated with larger T1-T2 increases in BMI (p < 0.05 and p = 0.05, respectively). Conclusion: CLI-induced weight loss was associated with changes in levels of long-term adiposity-related hormones towards healthy levels, but not with orexigenic changes in most short-term appetite signals. Our data indicates that the clinical impact of alterations in appetite-regulating hormones during modest weight loss remains questionable. Future studies should investigate potential associations of weight-loss-induced changes in FGF21 and adiponectin levels with weight regain.
Collapse
Affiliation(s)
- Susanne Kuckuck
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Eline S van der Valk
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Anton J W Scheurink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Robin Lengton
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Mostafa Mohseni
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jenny A Visser
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Anand M Iyer
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sjoerd A A van den Berg
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Elisabeth F C van Rossum
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
35
|
Berardi G, Vitiello A, Abu-Abeid A, Schiavone V, Franzese A, Velotti N, Musella M. Micronutrients Deficiencies in Candidates of Bariatric Surgery: Results from a Single Institution over a 1-Year Period. Obes Surg 2023; 33:212-218. [PMID: 36331725 PMCID: PMC9834098 DOI: 10.1007/s11695-022-06355-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Micronutrient deficiencies represent a common condition after bariatric surgery (BS). The prevalence of these nutritional disorders before BS is still debated. The aim of our study was to retrospectively evaluate the prevalence of micronutrient deficiencies in candidates for BS. METHODS A prospectively maintained database of our institution was searched to find all patients who underwent surgery between January and December 2021. The following data were collected: age, gender, body mass index (BMI), obesity-associated diseases, and preoperative serum levels of vitamin B12, folate, and vitamin D. RESULTS A total of 174 patients were included in our study. Mean age and BMI were 39.2 ± 11.4 years and 44.3 ± 7.1 kg/m2, respectively. One hundred and thirty-nine patients (79.9%) had at least one preoperative micronutrient disorder, with vitamin D deficiency being the most common (116, 66.7%), followed by a deficit of folate (76, 43.7%) and vitamin B12 (10, 5.7%). Forty-seven (27%) individuals had insufficient levels of vitamin D. Comparison of deficiencies between sexes showed that vitamin B12 < 20 ng/ml was significantly more frequent in women (p = 0.03). DLP showed a mild significant effect on folate levels (p = 0.01), while the association of HNT and T2DM had a mild significant effect on vitamin B12 (p = 0.02). CONCLUSIONS Preoperative micronutrient deficiencies were frequently found in candidates for BS. Approximately 90% of patients had deficient or insufficient serum levels of vitamin D preoperatively. Almost half of the patients had a preoperative deficit of folate, and vitamin B12 deficiency was significantly more frequent in the female population. It is mandatory to screen all patients undergoing BS for vitamin deficiencies before surgery.
Collapse
Affiliation(s)
- Giovanna Berardi
- Advanced Biomedical Sciences Department, Naples “Federico II” University, AOU “Federico II”—via S.Pansini, 80131 Naples, Italy
| | - Antonio Vitiello
- Advanced Biomedical Sciences Department, Naples “Federico II” University, AOU “Federico II”—via S.Pansini, 80131 Naples, Italy
| | - Adam Abu-Abeid
- Division of General Surgery, Affiliated to Sackler Faculty of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv University, 6 Weizman Street, 64230906 Tel Aviv, Israel
| | - Vincenzo Schiavone
- Advanced Biomedical Sciences Department, Naples “Federico II” University, AOU “Federico II”—via S.Pansini, 80131 Naples, Italy
| | - Antonio Franzese
- Advanced Biomedical Sciences Department, Naples “Federico II” University, AOU “Federico II”—via S.Pansini, 80131 Naples, Italy
| | - Nunzio Velotti
- Advanced Biomedical Sciences Department, Naples “Federico II” University, AOU “Federico II”—via S.Pansini, 80131 Naples, Italy
| | - Mario Musella
- Advanced Biomedical Sciences Department, Naples “Federico II” University, AOU “Federico II”—via S.Pansini, 80131 Naples, Italy
| |
Collapse
|
36
|
Yang S, Ye Z, Liu M, Zhang Y, Wu Q, Zhou C, Zhang Z, He P, Zhang Y, Li H, Liu C, Qin X. Associations of different serum folate forms with indices of nonalcoholic fatty liver disease and advanced fibrosis. Obes Res Clin Pract 2023; 17:58-65. [PMID: 36746711 DOI: 10.1016/j.orcp.2023.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023]
Abstract
OBJECTIVE We aim to examine the associations of different serum folate forms (total folate, 5-methyltetrahydrofolate [5-mTHF] and unmetabolized folic acid [UMFA]), with the prevalence of nonalcoholic fatty liver disease (NAFLD) and advanced fibrosis. METHODS This cross-sectional analysis was conducted in 6610 participants aged ≥ 18 years from the 2011-2018 National Health and Nutrition Examination Survey (NHANES) database. NAFLD was defined as a United States fatty liver index (USFLI) ≥ 30. Advanced fibrosis was defined as a Fibrosis-4 score (FIB-4) > 3.25, a NAFLD Fibrosis Score (NFS) > 0.676, and a Hepamet Fibrosis Score (HFS) ≥ 0.47, respectively. RESULTS The prevalence of NAFLD was 34.5%. Overall, serum total folate and 5-mTHF were inversely associated with the prevalence of NAFLD (both P for trend across quartiles <0.001). A similar trend was found for advanced fibrosis based on NFS and HFS (both P for trend across quartiles <0.05). However, a higher concentration of UMFA was significantly related to a higher prevalence of NAFLD (P for trend across quartiles =0.004). A similar relation was found for advanced fibrosis based on NFS (P for trend across quartiles =0.024). CONCLUSIONS Higher concentrations of serum total folate and 5-mTHF were associated with a lower prevalence of NAFLD and advanced fibrosis, while a higher concentration of UMFA was related to a higher prevalence of NAFLD.
Collapse
Affiliation(s)
- Sisi Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; National Clinical Research Center for Kidney Disease, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Guangzhou 510515, China; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Ziliang Ye
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; National Clinical Research Center for Kidney Disease, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Guangzhou 510515, China; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Mengyi Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; National Clinical Research Center for Kidney Disease, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Guangzhou 510515, China; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Yanjun Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; National Clinical Research Center for Kidney Disease, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Guangzhou 510515, China; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Qimeng Wu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; National Clinical Research Center for Kidney Disease, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Guangzhou 510515, China; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Chun Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; National Clinical Research Center for Kidney Disease, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Guangzhou 510515, China; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Zhuxian Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; National Clinical Research Center for Kidney Disease, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Guangzhou 510515, China; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Panpan He
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; National Clinical Research Center for Kidney Disease, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Guangzhou 510515, China; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Yuanyuan Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; National Clinical Research Center for Kidney Disease, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Guangzhou 510515, China; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Huan Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; National Clinical Research Center for Kidney Disease, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Guangzhou 510515, China; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Chengzhang Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; National Clinical Research Center for Kidney Disease, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Guangzhou 510515, China; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China; Institute of Biomedicine, Anhui Medical University, Hefei 230032, China
| | - Xianhui Qin
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; National Clinical Research Center for Kidney Disease, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Guangzhou 510515, China; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China.
| |
Collapse
|
37
|
Seo SH, Lee D, Lee SH, Choi KY. Blockade of CXXC5-dishevelled interaction inhibits adipogenic differentiation, obesity, and insulin resistance in mice. Sci Rep 2022; 12:20669. [PMID: 36450849 PMCID: PMC9712602 DOI: 10.1038/s41598-022-25315-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Obesity has become a major risk factor for developing metabolic diseases, including insulin resistance, type 2 diabetes, and hypertension. Growing pieces of evidence indicate that the Wnt/β-catenin signaling pathway plays an important role in adipogenesis and obesity. Activation of the Wnt/β-catenin signaling pathway inhibits adipogenesis by suppressing the differentiation of committed preadipocytes into mature adipocytes. CXXC5 is highly induced with suppression of Wnt/β-catenin signaling in early adipogenic differentiation. In addition, silencing CXXC5 in vitro increased β-catenin and decremented the major adipogenic differentiation markers. KY19334, a small molecule that activates the Wnt/β-catenin pathway via inhibition of CXXC5- Dishevelled (Dvl) protein-protein interaction (PPI), suppressed adipogenic differentiation. Administration of KY19334 ameliorated obesity by 26 ± 1.3% and insulin resistance by 23.45 ± 7.09% and reduced adipocyte hypertrophy by 80.87 ± 5.30% in high-fat diet (HFD)-fed mice. In addition, KY19334 accelerated the browning of adipose tissue and promoted hepatic glucose homeostasis in HFD-fed mice. In conclusion, activation of the Wnt/β-catenin signaling by inhibiting the interaction of CXXC5 and Dvl by small molecule-mediated interference is a potential therapeutic approach for treating obesity and insulin resistance.
Collapse
Affiliation(s)
- Seol Hwa Seo
- grid.15444.300000 0004 0470 5454Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - Dasung Lee
- grid.15444.300000 0004 0470 5454Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | | | - Kang-Yell Choi
- grid.15444.300000 0004 0470 5454Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea ,CK Regeon Inc, Seoul, 03722 Republic of Korea
| |
Collapse
|
38
|
Plasma FGF21 Levels Are Not Associated with Weight Loss or Improvements in Metabolic Health Markers upon 12 Weeks of Energy Restriction: Secondary Analysis of an RCT. Nutrients 2022; 14:nu14235061. [PMID: 36501091 PMCID: PMC9735516 DOI: 10.3390/nu14235061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Recent studies suggest that circulating fibroblast growth factor 21 (FGF21) may be a marker of metabolic health status. We performed a secondary analysis of a 12-week randomized controlled trial to investigate the effects of two energy restriction (ER) diets on fasting and postprandial plasma FGF21 levels, as well as to explore correlations of plasma FGF21 with metabolic health markers, (macro)nutrient intake and sweet-taste preference. Abdominally obese subjects aged 40-70 years (n = 110) were randomized to one of two 25% ER diets (high-nutrient-quality diet or low-nutrient-quality diet) or a control group. Plasma FGF21 was measured in the fasting state and 120 min after a mixed meal. Both ER diets did not affect fasting or postprandial plasma FGF21 levels despite weight loss and accompanying health improvements. At baseline, the postprandial FGF21 response was inversely correlated to fasting plasma glucose (ρ = -0.24, p = 0.020) and insulin (ρ = -0.32, p = 0.001), HOMA-IR (ρ = -0.34, p = 0.001), visceral adipose tissue (ρ = -0.24, p = 0.046), and the liver enzyme aspartate aminotransferase (ρ = -0.23, p = 0.021). Diet-induced changes in these markers did not correlate to changes in plasma FGF21 levels upon intervention. Baseline higher habitual polysaccharide intake, but not mono- and disaccharide intake or sweet-taste preference, was related to lower fasting plasma FGF21 (p = 0.022). In conclusion, we found no clear evidence that fasting plasma FGF21 is a marker for metabolic health status. Circulating FGF21 dynamics in response to an acute nutritional challenge may reflect metabolic health status better than fasting levels.
Collapse
|
39
|
Asthana P, Guo X, Wong HLX. MT1-MMP – A potential drug target for the management of the obesity. Expert Opin Ther Targets 2022; 26:761-765. [DOI: 10.1080/14728222.2022.2147271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Pallavi Asthana
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xuanming Guo
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | | |
Collapse
|
40
|
Patel S, Haider A, Alvarez-Guaita A, Bidault G, El-Sayed Moustafa JS, Guiu-Jurado E, Tadross JA, Warner J, Harrison J, Virtue S, Scurria F, Zvetkova I, Blüher M, Small KS, O'Rahilly S, Savage DB. Combined genetic deletion of GDF15 and FGF21 has modest effects on body weight, hepatic steatosis and insulin resistance in high fat fed mice. Mol Metab 2022; 65:101589. [PMID: 36064109 PMCID: PMC9486046 DOI: 10.1016/j.molmet.2022.101589] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Obesity in humans and mice is associated with elevated levels of two hormones responsive to cellular stress, namely GDF15 and FGF21. Over-expression of each of these is associated with weight loss and beneficial metabolic changes but where they are secreted from and what they are required for physiologically in the context of overfeeding remains unclear. METHODS Here we used tissue selective knockout mouse models and human transcriptomics to determine the source of circulating GDF15 in obesity. We then generated and characterized the metabolic phenotypes of GDF15/FGF21 double knockout mice. RESULTS Circulating GDF15 and FGF21 are both largely derived from the liver, rather than adipose tissue or skeletal muscle, in obese states. Combined whole body deletion of FGF21 and GDF15 does not result in any additional weight gain in response to high fat feeding but it does result in significantly greater hepatic steatosis and insulin resistance than that seen in GDF15 single knockout mice. CONCLUSIONS Collectively the data suggest that overfeeding activates a stress response in the liver which is the major source of systemic rises in GDF15 and FGF21. These hormones then activate pathways which reduce this metabolic stress.
Collapse
Affiliation(s)
- Satish Patel
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK; MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| | - Afreen Haider
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK; MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| | - Anna Alvarez-Guaita
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - Guillaume Bidault
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | | | - Esther Guiu-Jurado
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - John A Tadross
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK; East Midlands and East of England Genomic Laboratory Hub & Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - James Warner
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - James Harrison
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Samuel Virtue
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - Fabio Scurria
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - Ilona Zvetkova
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - Matthias Blüher
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Campus, London, SE1 7EH, UK
| | - Stephen O'Rahilly
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK; MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - David B Savage
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK; MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| |
Collapse
|
41
|
Mentxaka A, Gómez-Ambrosi J, Ramírez B, Rodríguez A, Becerril S, Neira G, Valentí V, Moncada R, Silva C, Unamuno X, Cienfuegos JA, Escalada J, Frühbeck G, Catalán V. Netrin-1 Promotes Visceral Adipose Tissue Inflammation in Obesity and Is Associated with Insulin Resistance. Nutrients 2022; 14:nu14204372. [PMID: 36297056 PMCID: PMC9611559 DOI: 10.3390/nu14204372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Netrin (NTN)-1 exhibits pro- and anti-inflammatory roles in different settings, playing important roles in the obesity-associated low-grade chronic inflammation. We aimed to determine the impact of NTN-1 on obesity and obesity-associated type 2 diabetes, as well as its role in visceral adipose tissue (VAT) inflammation. A total of 91 subjects were enrolled in this case-control study. Circulating levels of NTN-1 and its receptor neogenin (NEO)-1 were determined before and after weight loss achieved by caloric restriction and bariatric surgery. mRNA levels of NTN1 and NEO1 were assessed in human VAT, liver, and peripheral blood mononuclear cells. In vitro studies in human visceral adipocytes and human monocytic leukemia cells (THP-1)-derived macrophages were performed to analyze the impact of inflammation-related mediators on the gene expression levels of NTN1 and its receptor NEO1 as well as the effect of NTN-1 on inflammation. Increased (p < 0.001) circulating concentrations of NTN-1 in obesity decreased (p < 0.05) after diet-induced weight loss being also associated with a reduction in glucose (p < 0.01) and insulin levels (p < 0.05). Gene expression levels of NTN1 and NEO1 were upregulated (p < 0.05) in the VAT from patients with obesity with the highest expression in the stromovascular fraction cells compared with mature adipocytes (p < 0.01). NTN1 expression levels were enhanced (p < 0.01) under hypoxia and by inflammatory factors in both adipocytes and macrophages. Adipocyte-conditioned media strongly upregulated (p < 0.001) the mRNA levels of NTN1 in macrophages. The treatment of adipocytes with NTN-1 promoted the upregulation (p < 0.05) of pro-inflammatory and chemotactic molecules as well as its receptor NEO1. Collectively, these findings suggest that NTN-1 regulates VAT chronic inflammation and insulin resistance in obesity.
Collapse
Affiliation(s)
- Amaia Mentxaka
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Gabriela Neira
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Víctor Valentí
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Department of Surgery, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Rafael Moncada
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Department of Anesthesia, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Camilo Silva
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Xabier Unamuno
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
| | | | - Javier Escalada
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Correspondence: (G.F.); (V.C.); Tel.: +34-948-25-54-00 (ext. 4484) (G.F.)
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Correspondence: (G.F.); (V.C.); Tel.: +34-948-25-54-00 (ext. 4484) (G.F.)
| |
Collapse
|
42
|
Becerril S, Tuero C, Cienfuegos JA, Rodríguez A, Catalán V, Ramírez B, Valentí V, Moncada R, Unamuno X, Gómez-Ambrosi J, Frühbeck G. Improved Adipose Tissue Function after Single Anastomosis Duodeno-Ileal Bypass with Sleeve-Gastrectomy (SADI-S) in Diet-Induced Obesity. Int J Mol Sci 2022; 23:ijms231911641. [PMID: 36232953 PMCID: PMC9570280 DOI: 10.3390/ijms231911641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
Bariatric surgery has been recognized as the safest and most effective procedure for controlling type 2 diabetes (T2D) and obesity in carefully selected patients. The aim of the present study was to compare the effects of Sleeve Gastrectomy (SG) and Single Anastomosis Duodenoileal Bypass with SG (SADI-S) on the metabolic profile of diet-induced obese rats. A total of 35 four-week-old male Wistar rats were submitted to surgical interventions (sham operation, SG and SADI-S) after 4 months of being fed a high-fat diet. Body weight, metabolic profile and the expression of molecules involved in the control of subcutaneous white (SCWAT), brown (BAT) and beige (BeAT) adipose tissue function were analyzed. SADI-S surgery was associated with significantly decreased amounts of total fat pads (p < 0.001) as well as better control of lipid and glucose metabolism compared to the SG counterparts. An improved expression of molecules involved in fat browning in SCWAT and in the control of BAT and BeAT differentiation and function was observed following SADI-S. Together, our findings provide evidence that the enhanced metabolic improvement and their continued durability after SADI-S compared to SG rely, at least in part, on the improvement of the BeAT phenotype and function.
Collapse
Affiliation(s)
- Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Correspondence:
| | - Carlota Tuero
- Department of Surgery, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Javier A. Cienfuegos
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Surgery, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Víctor Valentí
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Surgery, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Rafael Moncada
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Anesthesia, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Xabier Unamuno
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Medical Engineering Laboratory, University of Navarra, 31008 Pamplona, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
43
|
McCullough D, Harrison T, Boddy LM, Enright KJ, Amirabdollahian F, Schmidt MA, Doenges K, Quinn K, Reisdorph N, Mazidi M, Lane KE, Stewart CE, Davies IG. The Effect of Dietary Carbohydrate and Fat Manipulation on the Metabolome and Markers of Glucose and Insulin Metabolism: A Randomised Parallel Trial. Nutrients 2022; 14:3691. [PMID: 36145067 PMCID: PMC9505524 DOI: 10.3390/nu14183691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
High carbohydrate, lower fat (HCLF) diets are recommended to reduce cardiometabolic disease (CMD) but low carbohydrate high fat (LCHF) diets can be just as effective. The effect of LCHF on novel insulin resistance biomarkers and the metabolome has not been fully explored. The aim of this study was to investigate the impact of an ad libitum 8-week LCHF diet compared with a HCLF diet on CMD markers, the metabolome, and insulin resistance markers. n = 16 adults were randomly assigned to either LCHF (n = 8, <50 g CHO p/day) or HCLF diet (n = 8) for 8 weeks. At weeks 0, 4 and 8, participants provided fasted blood samples, measures of body composition, blood pressure and dietary intake. Samples were analysed for markers of cardiometabolic disease and underwent non-targeted metabolomic profiling. Both a LCHF and HCLF diet significantly (p < 0.01) improved fasting insulin, HOMA IR, rQUICKI and leptin/adiponectin ratio (p < 0.05) levels. Metabolomic profiling detected 3489 metabolites with 78 metabolites being differentially regulated, for example, an upregulation in lipid metabolites following the LCHF diet may indicate an increase in lipid transport and oxidation, improving insulin sensitivity. In conclusion, both diets may reduce type 2 diabetes risk albeit, a LCHF diet may enhance insulin sensitivity by increasing lipid oxidation.
Collapse
Affiliation(s)
- Deaglan McCullough
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QS, UK
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Tanja Harrison
- Department of Clinical Sciences and Nutrition, University of Chester, Chester CH1 4BJ, UK
| | - Lynne M. Boddy
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Kevin J. Enright
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | | | - Michael A. Schmidt
- Advanced Pattern Analysis and Countermeasures Group, Boulder, CO 80302, USA
- Sovaris Aerospace, Boulder, CO 80302, USA
| | - Katrina Doenges
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| | - Kevin Quinn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| | - Nichole Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| | - Mohsen Mazidi
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Department of Twin Research & Genetic Epidemiology, South Wing St Thomas’, King’s College London, London SE1 7EH, UK
| | - Katie E. Lane
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Claire E. Stewart
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Ian G. Davies
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
44
|
Harris BHL, Macaulay VM, Harris DA, Klenerman P, Karpe F, Lord SR, Harris AL, Buffa FM. Obesity: a perfect storm for carcinogenesis. Cancer Metastasis Rev 2022; 41:491-515. [PMID: 36038791 PMCID: PMC9470699 DOI: 10.1007/s10555-022-10046-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022]
Abstract
Obesity-related cancers account for 40% of the cancer cases observed in the USA and obesity is overtaking smoking as the most widespread modifiable risk factor for carcinogenesis. Here, we use the hallmarks of cancer framework to delineate how obesity might influence the carcinogenic hallmarks in somatic cells. We discuss the effects of obesity on (a) sustaining proliferative signaling; (b) evading growth suppressors; (c) resisting cell death; (d) enabling replicative immortality; (e) inducing angiogenesis; (f) activating invasion and metastasis; (g) reprogramming energy metabolism; and (h) avoiding immune destruction, together with its effects on genome instability and tumour-promoting inflammation. We present the current understanding and controversies in this evolving field, and highlight some areas in need of further cross-disciplinary focus. For instance, the relative importance of the many potentially causative obesity-related factors is unclear for each type of malignancy. Even within a single tumour type, it is currently unknown whether one obesity-related factor consistently plays a predominant role, or if this varies between patients or, even in a single patient with time. Clarifying how the hallmarks are affected by obesity may lead to novel prevention and treatment strategies for the increasingly obese population.
Collapse
Affiliation(s)
- Benjamin H L Harris
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
- St Anne's College, 56 Woodstock Rd, Oxford, OX2 6HS, UK.
| | - Valentine M Macaulay
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX3 9DU, UK
| | | | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
| | - Simon R Lord
- Early Phase Clinical Trials Unit, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Adrian L Harris
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | | |
Collapse
|
45
|
Qian Z, Zhang Y, Yang N, Nie H, Yang Z, Luo P, Wei X, Guan Y, Huang Y, Yan J, Ruan L, Zhang C, Zhang L. Close association between lifestyle and circulating FGF21 levels: A systematic review and meta-analysis. Front Endocrinol (Lausanne) 2022; 13:984828. [PMID: 36093108 PMCID: PMC9453313 DOI: 10.3389/fendo.2022.984828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022] Open
Abstract
Background The impact of lifestyle factors on circulating fibroblast growth factor 21 (cFGF21) remains unclear. We conducted this systematic review and meta-analysis to evaluate the association between lifestyle factors and cFGF21 levels. Methods We included studies that evaluated the effects of different lifestyles on cFGF21 concentration in adults, which included smoking, exercise, diets, alcohol consumption and weight loss. Random effects models or fixed effects models were used for meta-analysis to calculate the standardized mean difference (SMD) and 95% confidence interval according to the heterogeneity among studies. Study quality was assessed using the Newcastle-Ottawa Scale for cohort studies, the Joanna Briggs Institution Checklist for cross-sectional studies, and the PEDro scale for experimental studies. Results A total of 50 studies with 1438 individuals were included. Overall, smoking, a hypercaloric carbohydrate-rich diet, a hypercaloric fat-rich diet, amino acid or protein restriction, excessive fructose intake and alcohol consumption significantly upregulated cFGF21 levels (p<0.05), whereas fish oil intake and calorie restriction with sufficient protein intake significantly decreased cFGF21 (p<0.05). Compared to the preexercise cFGF21 level, the cFGF21 level significantly increased within 3 hours postexercise (p<0.0001), while it significantly decreased in the blood sampled >6 h postexercise (p=0.01). Moreover, higher exercise intensity resulted in higher upregulation of cFGF21 at 1-hour post exercise (p=0.0006). Conclusion FGF21 could serve as a potential biomarker for the assessment of different lifestyle interventions. When it is used for this purpose, a standard study protocol needs to be established, especially taking into consideration the intervention types and the sampling time post-intervention. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021254758, identifier CRD42021254758.
Collapse
Affiliation(s)
- Zonghao Qian
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Yucong Zhang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Ni Yang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Hao Nie
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Zhen Yang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Pengcheng Luo
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Xiuxian Wei
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Yuqi Guan
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Yi Huang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Jinhua Yan
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Lei Ruan
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Cuntai Zhang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Le Zhang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| |
Collapse
|
46
|
Cazac GD, Lăcătușu CM, Mihai C, Grigorescu ED, Onofriescu A, Mihai BM. New Insights into Non-Alcoholic Fatty Liver Disease and Coronary Artery Disease: The Liver-Heart Axis. Life (Basel) 2022; 12:1189. [PMID: 36013368 PMCID: PMC9410285 DOI: 10.3390/life12081189] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents the hepatic expression of the metabolic syndrome and is the most prevalent liver disease. NAFLD is associated with liver-related and extrahepatic morbi-mortality. Among extrahepatic complications, cardiovascular disease (CVD) is the primary cause of mortality in patients with NAFLD. The most frequent clinical expression of CVD is the coronary artery disease (CAD). Epidemiological data support a link between CAD and NAFLD, underlain by pathogenic factors, such as the exacerbation of insulin resistance, genetic phenotype, oxidative stress, atherogenic dyslipidemia, pro-inflammatory mediators, and gut microbiota. A thorough assessment of cardiovascular risk and identification of all forms of CVD, especially CAD, are needed in all patients with NAFLD regardless of their metabolic status. Therefore, this narrative review aims to examine the available data on CAD seen in patients with NAFLD, to outline the main directions undertaken by the CVD risk assessment and the multiple putative underlying mechanisms implicated in the relationship between CAD and NAFLD, and to raise awareness about this underestimated association between two major, frequent and severe diseases.
Collapse
Affiliation(s)
- Georgiana-Diana Cazac
- Unit of Diabetes, Nutrition and Metabolic Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Cristina-Mihaela Lăcătușu
- Unit of Diabetes, Nutrition and Metabolic Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Cătălina Mihai
- Institute of Gastroenterology and Hepatology, “Sf. Spiridon” Emergency Hospital, 700111 Iași, Romania
- Unit of Medical Semiology and Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena-Daniela Grigorescu
- Unit of Diabetes, Nutrition and Metabolic Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Alina Onofriescu
- Unit of Diabetes, Nutrition and Metabolic Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Bogdan-Mircea Mihai
- Unit of Diabetes, Nutrition and Metabolic Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| |
Collapse
|
47
|
Abstract
Despite decades of obesity research and various public health initiatives, obesity remains a major public health concern. Our most drastic but most effective treatment of obesity is bariatric surgery with weight loss and improvements in co-morbidities, including resolution of type 2 diabetes (T2D). However, the mechanisms by which surgery elicits metabolic benefits are still not well understood. One proposed mechanism is through signals generated by the intestine (nutrients, neuronal, and/or endocrine) that communicate nutrient status to the brain. In this review, we discuss the contributions of gut-brain communication to the physiological regulation of body weight and its impact on the success of bariatric surgery. Advancing our understanding of the mechanisms that drive bariatric surgery-induced metabolic benefits will ultimately lead to the identification of novel, less invasive strategies to treat obesity.
Collapse
Affiliation(s)
- Maigen Bethea
- Department of Pediatrics, Nutrition Section, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave. Research Complex 1 South 7th Floor, Aurora, CO, 80045, USA
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave. Research Complex 1 South 7th Floor, Aurora, CO, 80045, USA
| | - Darleen A Sandoval
- Department of Pediatrics, Nutrition Section, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave. Research Complex 1 South 7th Floor, Aurora, CO, 80045, USA.
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave. Research Complex 1 South 7th Floor, Aurora, CO, 80045, USA.
| |
Collapse
|
48
|
Khalil M, Shanmugam H, Abdallah H, John Britto JS, Galerati I, Gómez-Ambrosi J, Frühbeck G, Portincasa P. The Potential of the Mediterranean Diet to Improve Mitochondrial Function in Experimental Models of Obesity and Metabolic Syndrome. Nutrients 2022; 14:3112. [PMID: 35956289 PMCID: PMC9370259 DOI: 10.3390/nu14153112] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
The abnormal expansion of body fat paves the way for several metabolic abnormalities including overweight, obesity, and diabetes, which ultimately cluster under the umbrella of metabolic syndrome (MetS). Patients with MetS are at an increased risk of cardiovascular disease, morbidity, and mortality. The coexistence of distinct metabolic abnormalities is associated with the release of pro-inflammatory adipocytokines, as components of low-to-medium grade systemic inflammation and increased oxidative stress. Adopting healthy lifestyles, by using appropriate dietary regimens, contributes to the prevention and treatment of MetS. Metabolic abnormalities can influence the function and energetic capacity of mitochondria, as observed in many obesity-related cardio-metabolic disorders. There are preclinical studies both in cellular and animal models, as well as clinical studies, dealing with distinct nutrients of the Mediterranean diet (MD) and dysfunctional mitochondria in obesity and MetS. The term "Mitochondria nutrients" has been adopted in recent years, and it depicts the adequate nutrients to keep proper mitochondrial function. Different experimental models show that components of the MD, including polyphenols, plant-derived compounds, and polyunsaturated fatty acids, can improve mitochondrial metabolism, biogenesis, and antioxidant capacity. Such effects are valuable to counteract the mitochondrial dysfunction associated with obesity-related abnormalities and can represent the beneficial feature of polyphenols-enriched olive oil, vegetables, nuts, fish, and plant-based foods, as the main components of the MD. Thus, developing mitochondria-targeting nutrients and natural agents for MetS treatment and/or prevention is a logical strategy to decrease the burden of disease and medications at a later stage. In this comprehensive review, we discuss the effects of the MD and its bioactive components on improving mitochondrial structure and activity.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Harshitha Shanmugam
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| | - Hala Abdallah
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| | - Jerlin Stephy John Britto
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| | - Ilaria Galerati
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-A.); (G.F.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-A.); (G.F.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| |
Collapse
|
49
|
Impact on the Nutritional Status and Inflammation of Patients with Cancer Hospitalized after the SARS-CoV-2 Lockdown. Nutrients 2022; 14:nu14132754. [PMID: 35807934 PMCID: PMC9268830 DOI: 10.3390/nu14132754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
Many studies have demonstrated that malnutrition has a negative impact on quality of life and mortality in patients with cancer. During the SARS-CoV-2 lockdown, dietary intake changes were detected in the Spanish population, reflecting an increase in the consumption of fruit, bread, flours, and eggs. The present study analyzed the nutritional status of 728 patients with cancer admitted once the SARS-CoV-2 lockdown finished, comparing it with the previous year as well as with mortality rates. The Malnutrition Universal Screening Tool (MUST) was applied in the first 24 h after admission. Age, gender, days of stay, circulating concentrations of albumin, cholesterol, C-reactive protein (CRP), lymphocytes, prealbumin, and mortality data were analyzed. Patients with cancer admitted between June and December of 2020 exhibited no statistical differences in BMI, age, or gender as compared to patients admitted in 2019. Statistically significant differences in nutritional status (p < 0.05), albumin (p < 0.001), and CRP (p = 0.005) levels regarding lockdown were observed in relation with a small non-significant reduction in mortality. In conclusion, following the SARS-CoV-2 lockdown, an improved nutritional status in cancer patients at admission was observed with a decrease in the percentage of weight loss and CRP levels together with an increase in albumin levels compared to oncological patients admitted the previous year.
Collapse
|
50
|
Lin IC, Liu H. Impact of Bariatric Surgery on Outcomes of Patients with Rheumatoid Arthritis: a Propensity Score-Matched Analysis of US Nationwide Inpatient Sample, 2005-2018. Obes Surg 2022; 32:2966-2974. [PMID: 35768690 DOI: 10.1007/s11695-022-06177-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Obesity has been considered one of the risk factors with more critical disease progression and poor treatment response in rheumatoid arthritis (RA). We herein utilized an extensive, nationally representative database to examine the impact of bariatric surgery on clinical outcomes in RA patients. MATERIALS AND METHODS This retrospective analysis utilized nationally representative data of the Healthcare Cost and Utilization Project-National Inpatient Sample database (HCUP-NIS) from 2005 to 2018. Associations between bariatric surgery and in-hospital outcomes of RA patients were determined by the univariate and multivariate logistic regression analyses. RESULTS After 1:4 propensity score (PS) matching, totally 33,075 hospitalized adults with RA were included as primary cohort for subsequent analyses. Among them, 6615 patients had prior bariatric surgery and 26,460 patients had not. After adjusting for relevant confounders in the multivariate analysis, prior bariatric surgery was significantly and independently associated with reduced odds for any morbidity and in-hospital mortality (aOR: 0.41, 95% CI: 0.27-0.61, p < 0.01) as compared with no prior bariatric surgery. Adults with RA who had prior bariatric surgery also had a significantly lower odds for having unfavorable discharge and prolonged length of stay (LOS) as compared with those without bariatric surgery (aOR: 0.43, 95% CI: 0.39-0.46, p < 0.01). CONCLUSIONS Prior bariatric surgery is associated with better in-patient outcomes among RA, including in-hospital mortality, major morbidities, discharge destination, and LOS.
Collapse
Affiliation(s)
- I-Chen Lin
- Division of Colorectal Surgery, Department of Surgery, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi City, 600, Taiwan
| | - Hsien Liu
- Division of General Surgery, Department of Surgery, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi City, 600, Taiwan.
| |
Collapse
|