1
|
Kindlovits R, Sousa AC, Viana JL, Milheiro J, Oliveira BMPM, Marques F, Santos A, Teixeira VH. Evaluating the Therapeutic Potential of Exercise in Hypoxia and Low-Carbohydrate, High-Fat Diet in Managing Hypertension in Elderly Type 2 Diabetes Patients: A Novel Intervention Approach. Nutrients 2025; 17:522. [PMID: 39940380 PMCID: PMC11819692 DOI: 10.3390/nu17030522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES Type 2 diabetes mellitus (T2DM) is a chronic condition marked by hyperglycemia, which can affect metabolic, vascular, and hematological parameters. A low-carbohydrate, high-fat (LCHF) diet has been shown to improve glycemic control and blood pressure regulation. Exercise in hypoxia (EH) enhances insulin sensitivity, erythropoiesis, and angiogenesis. The combination of LCHF and EH may offer a promising strategy for managing T2DM and hypertension (HTN), although evidence remains limited. This study aimed to assess the effects of an eight-week normobaric EH intervention at 3000 m simulated altitude combined with an LCHF diet on hematological and lipid profiles, inflammation, and blood pressure in older patients with T2DM and HTN. METHODS Forty-two diabetic patients with HTN were randomly assigned to three groups: (1) control group (control diet + exercise in normoxia), (2) EH group (control diet + EH), and (3) intervention group (EH+LCHF) Baseline and eight-week measurements included systolic, diastolic, and mean blood pressure (SBP, DBP, MAP), hematological and lipid profiles, and inflammation biomarkers. RESULTS Blood pressure decreased after the intervention (p < 0.001), with no significant differences between groups (SBP: p = 0.151; DBP: p = 0.124; MAP: p = 0.18). No differences were observed in lipid profile or C-reactive protein levels (p > 0.05). Mean corpuscular hemoglobin (MCH) increased in the EH group (p = 0.027), while it decreased in the EH+LCHF group (p = 0.046). CONCLUSIONS Adding hypoxia or restricting carbohydrates did not provide additional benefits on blood pressure in T2DM patients with HTN. Further elucidation of the mechanisms underlying hematological adaptations is imperative. TRIAL REGISTRATION NUMBER NCT05094505.
Collapse
Affiliation(s)
- Raquel Kindlovits
- Faculty of Nutrition and Food Sciences (FCNAUP), University of Porto, 4200-465 Porto, Portugal; (B.M.P.M.O.); (A.S.); (V.H.T.)
| | - Ana Catarina Sousa
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University of Maia, 4475-690 Maia, Portugal; (A.C.S.); (J.L.V.)
| | - João Luís Viana
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University of Maia, 4475-690 Maia, Portugal; (A.C.S.); (J.L.V.)
| | - Jaime Milheiro
- Exercise Medical Centre Laboratory (CMEP), 4150-044 Porto, Portugal;
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, 4200-540 Porto, Portugal
| | - Bruno M. P. M. Oliveira
- Faculty of Nutrition and Food Sciences (FCNAUP), University of Porto, 4200-465 Porto, Portugal; (B.M.P.M.O.); (A.S.); (V.H.T.)
- Laboratory of Artificial Intelligence and Decision Support, Institute for Systems and Computer Engineering, Technology and Science (LIAAD, INESC-TEC), 4200-465 Porto, Portugal
| | - Franklim Marques
- Laboratory of Biochemistry, Department of Biological Sciences, UCIBIO, REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Alejandro Santos
- Faculty of Nutrition and Food Sciences (FCNAUP), University of Porto, 4200-465 Porto, Portugal; (B.M.P.M.O.); (A.S.); (V.H.T.)
- Institute for Research and Innovation in Health (i3S), 4200-135 Porto, Portugal
| | - Vitor Hugo Teixeira
- Faculty of Nutrition and Food Sciences (FCNAUP), University of Porto, 4200-465 Porto, Portugal; (B.M.P.M.O.); (A.S.); (V.H.T.)
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports (FADEUP), University of Porto, 4200-540 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| |
Collapse
|
2
|
Yang F, He Y, Zhao L, Huang J, Du F, Tian S, Zhang Y, Liu X, Chen B, Ge J, Jiang Z. Leptin drives glucose metabolism to promote cardiac protection via OPA1-mediated HDAC5 translocation and Glut4 transcription. Funct Integr Genomics 2025; 25:28. [PMID: 39875704 PMCID: PMC11774999 DOI: 10.1007/s10142-024-01515-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/17/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025]
Abstract
Metabolic reprogramming, the shifting from fatty acid oxidation to glucose utilization, improves cardiac function as heart failure (HF) progresses. Leptin plays an essential role in regulating glucose metabolism. However, the crosstalk between leptin and metabolic reprogramming is poorly understood. We tested the hypothesis that leptin improves cardiac function after myocardial infarction via enhancing glucose metabolism. In the isoproterenol (ISO)-induced heart failure model in vitro, H9c2 cell apoptosis was assessed by the TUNEL and Annexin V/PI staining assay. Leptin-mediated mitochondrial fusion was performed via TEM, and glucose oxidation was explored, as well as the ECAR, OCR, and protein expression of the vital metabolic enzymes. By blocking OPA1 expression or HDAC5 inhibition, the mitochondrial dynamic and glucose metabolic were detected to evaluate the role of OPA1 and HDAC5 in leptin-stimulated glucose metabolism. In the mouse model of HF in vivo, intraperitoneal leptin administration appreciably increased glucose oxidation and preserved cardiac function 56 days after coronary artery ligation. In vitro, we identified the OPA1-dependent HDAC5 nucleus export as a crucial process in boosting glucose utilization by activating MEF2 to upregulate Glut4 expression using the RNA interference technique in H9c2 cells. In vivo, leptin promotes glucose utilization and confers heart functional and survival benefits in chronic ischemic HF. The current study provided a novel insight into the role of leptin in metabolic reprogramming and revealed potential therapeutic targets for chronic HF.
Collapse
Affiliation(s)
- Fan Yang
- Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China
- Guizhou University Medical College, Guizhou Province, China
| | - Youfu He
- Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China
- Guizhou University Medical College, Guizhou Province, China
| | - Ling Zhao
- Health Management Center, Guizhou International General Hospital, Guizhou Province, China
| | - Jing Huang
- Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China
- Guizhou University Medical College, Guizhou Province, China
| | - Fawang Du
- Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China
- Guizhou University Medical College, Guizhou Province, China
| | - Shui Tian
- Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China
- Guizhou University Medical College, Guizhou Province, China
| | - Yang Zhang
- Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China
- Guizhou University Medical College, Guizhou Province, China
| | - Xinghui Liu
- Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China
- Guizhou University Medical College, Guizhou Province, China
| | - Baolin Chen
- Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China
- Guizhou University Medical College, Guizhou Province, China
| | - Junhua Ge
- Department of Cardiology, Qingdao Municipal Key Laboratory of Hypertension (Key Laboratory of Cardiovascular Medicine), The Affiliated Hospital of Qingdao University, Shandong Province, China.
| | - Zhi Jiang
- Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China.
- Guizhou University Medical College, Guizhou Province, China.
| |
Collapse
|
3
|
Xinliang Z, Achkasov EE, Gavrikov LK, Yuchen L, Zhang C, Dudnik EN, Rumyantseva O, Beeraka NM, Glazachev OS. Assessing the importance and safety of hypoxia conditioning for patients with occupational pulmonary diseases: A recent clinical perspective. Biomed Pharmacother 2024; 178:117275. [PMID: 39126774 DOI: 10.1016/j.biopha.2024.117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Occupational pulmonary diseases (OPDs) pose a significant global health challenge, contributing to high mortality rates. This review delves into the pathophysiology of hypoxia and the safety of intermittent hypoxic conditioning (IHC) in OPD patients. By examining sources such as PubMed, Relemed, NLM, Scopus, and Google Scholar, the review evaluates the efficacy of IHC in clinical outcomes for OPD patients. It highlights the complexities of cardiovascular and respiratory regulation dysfunctions in OPDs, focusing on respiratory control abnormalities and the impact of intermittent hypoxic exposures. Key areas include the physiological effects of hypoxia, the role of hypoxia-inducible factor-1 alpha (HIF-1α) in occupational lung diseases, and the links between brain ischemia, stroke, and OPDs. The review also explores the interaction between intermittent hypoxic exposures, mitochondrial energetics, and lung physiology. The potential of IHE to improve clinical manifestations and underlying pathophysiology in OPD patients is thoroughly examined. This comprehensive analysis aims to benefit molecular pathologists, pulmonologists, clinicians, and physicians by enhancing understanding of IHE's clinical benefits, from research to patient care, and improving clinical outcomes for OPD patients.
Collapse
Affiliation(s)
- Zhang Xinliang
- Chair of Sports Medicine and Rehabilitation, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia; Co-Chair of Normal Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Eugeny E Achkasov
- Chair of Sports Medicine and Rehabilitation, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Leonid K Gavrikov
- Volgograd State Medical University, 1, Pavshikh Bortsov Sq., Volgograd 400131, Russia.
| | - Li Yuchen
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Chen Zhang
- Chair of Epidemiology and Modern Technologies of Vaccination, Institute of Professional Education, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia
| | - Elena N Dudnik
- Co-Chair of Normal Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Olga Rumyantseva
- Izmerov Research Institute of Occupational Health, 31 Budeynniy Avenye, Moscow 105275, Russia.
| | - Narasimha M Beeraka
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA; Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia; Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Chiyyedu, Anantapuramu, Andhra Pradesh 515721, India.
| | - Oleg S Glazachev
- Co-Chair of Normal Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| |
Collapse
|
4
|
Kindlovits R, Sousa AC, Viana JL, Milheiro J, Marques F, Teixeira VH. Combined low-carbohydrate diet and long-term exercise in hypoxia in type 2 diabetes: A randomized controlled trial protocol to assess glycemic control, cardiovascular risk factors and body composition. Nutr Health 2024; 30:5-13. [PMID: 37499218 PMCID: PMC10924702 DOI: 10.1177/02601060231190663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background: Cardiovascular disease is the leading cause of mortality associated with diabetes, which is characterized by chronic hyperglycemia. Low-carbohydrate diet has gained popularity as an intervention in patients with type 2 diabetes mellitus, acting to improve glycemic profile and serum lipids. In its turn, exercise in hypoxia induces specific adaptations, mostly modulated via hypoxia-induced transcription factor signaling cascade, which increases with exposure to altitude, and promotes angiogenesis, glycogen supply, glucose tolerance, and raises GLUT-4 expression. Aim: Given that hyperglycemia decreases HIF-1α and it is better controlled when following a low-carbohydrate diet, this study aims to examine the hypothesis that a combination of both low-carbohydrate diet and chronic exercise in hypoxia in type 2 diabetes mellitus is associated with improved glycemic control and cardiovascular parameters, whose protocol is described. Methods: Patients with type 2 diabetes mellitus (n = 48) will be recruited and randomized into one of the three groups: (a) Control group: Control diet (low-fat and moderate-carbohydrate diet) + exercise in normoxia; (2) exercise in hypoxia group: Control diet + exercise in hypoxia; (3) intervention group: Low-carbohydrate diet (low-carbohydrate and high-fat diet) + exercise in hypoxia. Before and after 8 weeks of interventions, cardiopulmonary tests (Bruce protocol), body composition and blood pressure will be evaluated. Blood samples will be collected to measure hypoxia-induced transcription factor, C-reactive protein, glycemic and lipid profiles. Summary: This will be the first trial to examine the isolated and combined effect of chronic exercise in hypoxia and low-carbohydrate diet in type 2 diabetes mellitus. This trial will help to fill a significant research gap, guide future research and contribute to the combined nutrition and exercise approach to type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Raquel Kindlovits
- Faculty of Nutrition and Food Sciences, University of Porto, FCNAUP, Porto, Portugal
| | - Ana C Sousa
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, Maia, Portugal
| | - João L Viana
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, Maia, Portugal
| | | | - Franklim Marques
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, FFUP, Porto, Portugal
| | - Vitor H Teixeira
- Faculty of Nutrition and Food Sciences, University of Porto, FCNAUP, Porto, Portugal
- Research Center in Physical Activity, Health and Leisure, CIAFEL - Faculty of Sports, University of Porto, FADEUP, Portugal
- Laboratory for Integrative and Translational Research in Population Health, ITR, Porto, Portugal
| |
Collapse
|
5
|
Urdampilleta Otegui A, Roche Collado E. Intermittent hypoxia in sport nutrition, performance, health status and body composition. NUTR HOSP 2024; 41:224-229. [PMID: 38095103 DOI: 10.20960/nh.04692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Introduction Intermittent hypoxia refers to the discontinuous use of low oxygen levels in normobaric environment. These conditions can be reproduced in hypoxic tents or chambers while the individual is training in different physical activity protocols. Intermittent hypoxia can affect several body systems, impacting nutrition, physical performance, health status and body composition. Therefore, it is necessary to assess protocols, regarding time and frequency of exposure, passive exposure or training in hypoxia, and the simulated altitude. At the molecular level, the hypoxia-inducible factor-1α is the primary factor mediating induction of target genes, including vascular endothelial growth factor and erythropoietin. The goal of these molecular changes is to preserve oxygen supply for cardiac and neuronal function. In addition, hypoxia produces a sympathetic adrenal activation that can increase the resting metabolic rate. Altogether, these changes are instrumental in protocols designed to improve physical performance as well as functional parameters for certain pathological disorders. In addition, nutrition must adapt to the increased energy expenditure. In this last context, performing physical activity in intermittent hypoxia improves insulin sensitivity by increasing the presence of the glucose transporter GLUT-4 in muscle membranes. These changes could also be relevant for obesity and type 2 diabetes treatment. Also, the anorectic effect of intermittent hypoxia modulates serotonin and circulating leptin levels, which may contribute to regulate food intake and favor body weight adaptation for optimal sport performance and health. All these actions suggest that intermittent hypoxia can be a very effective tool in sports training as well as in certain clinical protocols.
Collapse
Affiliation(s)
| | - Enrique Roche Collado
- Department of Applied Biology-Nutrition. Institute of Bioengineering. Universidad Miguel Hernández
| |
Collapse
|
6
|
Zhao Y, Li C, Zhou S, He Y, Wang Y, Zhang Y, Wen L. Enhanced glucose utilization of skeletal muscle after 4 weeks of intermittent hypoxia in a mouse model of type 2 diabetes. PLoS One 2024; 19:e0296815. [PMID: 38271325 PMCID: PMC10810429 DOI: 10.1371/journal.pone.0296815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Intermittent hypoxia intervention (IHI) has been shown to reduces blood glucose and improves insulin resistance in type 2 diabetes (T2D) and has been suggested as a complementary or alternative intervention to exercise for individuals with limited mobility. Previous research on IHI has assessed cellular glucose uptake rather than utilization. The purpose of this study was to determine the effect of a 4-week IHI, with or without an aerobic exercise, on skeletal muscle glucose utilization as indicated by the changes in pyruvate, lactate, NAD+, and NADH, using a mouse model of diet-induced T2D. In addition, the effects of one exposure to hypoxia (acute) and of a 4-week IHI (chronic) were compared to explore their relationship. METHODS C57BL/6J mice were randomly assigned to normal control and high-fat-diet groups, and the mice that developed diet-induced diabetes were assigned to diabetes control, and intervention groups with 1 hour (acute) or 4 weeks (1 hour/day, 6 days/week) exposure to a hypoxic envrionment (0.15 FiO2), exercise (treadmill run) in normoxia, and exercise in hypoxia, respectively, with N = 7 in each group. The effects of the interventions on concentrations of fasting blood glucose, muscle glucose, GLUT4, lactate, pyruvate, nicotinamide adenine dinucleotide (NAD+), and NADH were measured, and statistically compared between the groups. RESULTS Compared with diabetes control group, the mice treated in the hypoxic environment for 4 weeks showed a significantly higher pyruvate levels and lower lactate/pyruvate ratios in the quadriceps muscle, and the mice exposed to hypoxia without or with aerobic exercise for either for 4 weeks or just 1 hour showed higher NAD+ levels and lower NADH/NAD+ ratios. CONCLUSIONS Exposure to moderate hypoxia for either one bout or 4 weeks significantly increased the body's mitochondrial NAD cyclethe in diabetic mice even in the absence of aerobic exercise. The hypoxia and exercise interventions exhibited synergistic effects on glycolysis. These findings provide mechanistic insights into the effects of IHI in respect of the management of hyperglycemia.
Collapse
Affiliation(s)
- Yuqi Zhao
- School of Social Sports and Health Sciences, Tianjin University of Sport, Tianjin, China
- School of Exercise and Health, Nanjing Sport Institute, Nanjing, Jiangsu, China
| | - Chaoqun Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Shi Zhou
- Faculty of Health, Southern Cross University, Lismore, Australia
| | - Youyu He
- School of Social Sports and Health Sciences, Tianjin University of Sport, Tianjin, China
| | - Yun Wang
- Faculty of Health, Southern Cross University, Lismore, Australia
| | - Yuan Zhang
- Faculty of Health, Southern Cross University, Lismore, Australia
| | - Li Wen
- School of Social Sports and Health Sciences, Tianjin University of Sport, Tianjin, China
- School of Exercise and Health, Nanjing Sport Institute, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Bagińska M, Kałuża A, Tota Ł, Piotrowska A, Maciejczyk M, Mucha D, Ouergui I, Kubacki R, Czerwińska-Ledwig O, Ambroży D, Witkowski K, Pałka T. The Impact of Intermittent Hypoxic Training on Aerobic Capacity and Biometric-Structural Indicators among Obese Women-A Pilot Study. J Clin Med 2024; 13:380. [PMID: 38256514 PMCID: PMC10816855 DOI: 10.3390/jcm13020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Obesity, a common lifestyle-related condition, is correlated with factors like inadequate physical activity. Its connection to diverse health issues presents a significant challenge to healthcare. This pilot study investigated the effects of hypoxic training on aerobic capacity and biometric-structural indicators in obese women. The secondary objective was to determine the feasibility, effectiveness, and safety of the planned research procedures and their potential for larger-scale implementation. MATERIAL AND METHODS Forty-one non-trained women with first-degree obesity were randomly assigned to even normobaric hypoxic training (H + E), normoxic training (E), passive exposure to hypoxia (H), and a control group (C). Training sessions were conducted three times a week for four weeks (12 training sessions). Body composition parameters were assessed, metabolic thresholds were determined, and maximal oxygen consumption (VO2max) was measured before and after interventions. RESULTS The results demonstrated that training in hypoxic conditions significantly affected somatic parameters, with the H + E group achieving the best outcomes in terms of weight reduction and improvements in body composition indicators (p < 0.001). Normoxic training also induced a positive impact on body weight and body composition, although the results were less significant compared to the H + E group (p < 0.001). Additionally, training in hypoxic conditions significantly improved the aerobic capacity among the participants (p < 0.001). The H + E group achieved the best results in enhancing respiratory endurance and oxygen consumption (p < 0.001). CONCLUSIONS The results of this pilot study suggest, that hypoxic training can be effective for weight reduction and improving the aerobic capacity in obese women. Despite study limitations, these findings indicate that hypoxic training could be an innovative approach to address obesity and related conditions. Caution is advised in interpreting the results, considering both the strengths and limitations of the pilot study. Before proceeding to a larger-scale study, the main study should be expanded, including aspects such as dietary control, monitoring physical activity, and biochemical blood analysis.
Collapse
Affiliation(s)
- Małgorzata Bagińska
- Institute of Biomedical Sciences, Department of Physiology and Biochemistry, University of Physical Education in Kraków, 31-571 Kraków, Poland (T.P.)
| | - Anna Kałuża
- Institute of Biomedical Sciences, Department of Physiology and Biochemistry, University of Physical Education in Kraków, 31-571 Kraków, Poland (T.P.)
| | - Łukasz Tota
- Institute of Biomedical Sciences, Department of Physiology and Biochemistry, University of Physical Education in Kraków, 31-571 Kraków, Poland (T.P.)
| | - Anna Piotrowska
- Department of Chemistry and Biochemistry, Faculty of Physiotherapy, University of Physical Education in Krakow, 31-571 Kraków, Poland
| | - Marcin Maciejczyk
- Institute of Biomedical Sciences, Department of Physiology and Biochemistry, University of Physical Education in Kraków, 31-571 Kraków, Poland (T.P.)
| | - Dariusz Mucha
- Department of Body Renovation and Body Posture Correction, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland
| | - Ibrahim Ouergui
- Sports Science, Health and Movement, High Institute of Sport and Physical Education of Kef, University of Jendouba, El Kef 7100, Tunisia
| | - Rafał Kubacki
- Faculty of Physical Education and Sports, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| | - Olga Czerwińska-Ledwig
- Department of Chemistry and Biochemistry, Faculty of Physiotherapy, University of Physical Education in Krakow, 31-571 Kraków, Poland
| | - Dorota Ambroży
- Institute of Sports Sciences, University of Physical Education in Krakow, 31-571 Kraków, Poland
| | - Kazimierz Witkowski
- Faculty of Physical Education and Sports, University of Physical Education in Wrocław, 31-571 Kraków, Poland
| | - Tomasz Pałka
- Institute of Biomedical Sciences, Department of Physiology and Biochemistry, University of Physical Education in Kraków, 31-571 Kraków, Poland (T.P.)
| |
Collapse
|
8
|
Alotaibi N, Althaqafi M, Alharbi A, Thallaj A, Ahmad A, Aldohayan A, Bamehriz F, Eldawlatly A. The impact of moderate versus deep neuromuscular blockade on the recovery characteristics following laparoscopic sleeve gastrectomy: A randomized double blind clinical trial. Saudi J Anaesth 2024; 18:6-11. [PMID: 38313732 PMCID: PMC10833021 DOI: 10.4103/sja.sja_104_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/06/2024] Open
Abstract
Background Anesthesia with deep neuromuscular block for laparoscopic surgery may result in less postoperative pain with lower intra-abdominal pressure. However, the results in the existing literature are controversial. This study aimed to evaluate the effect of deep versus moderate neuromuscular block (NMB) on the postoperative recovery characteristics after laparoscopic sleeve gastrectomy (LSG) for weight loss surgery. Methods This is parallel-group, randomized clinical trial. The study was conducted at a tertiary care center. Patients undergoing LSG were included. Patients were randomly assigned to either deep (post-tetanic count 1-2) or moderate (train-of-four 1-2) NMB group. The primary outcomes were numeric rating scale scores of the postoperative pain at rest and postoperative shoulder pain. The secondary outcomes were the length of hospital stay (LOS) and postoperative complications. The statistics were performed using StatsDirect statistical software (Version 2.7.9). Results Two groups were identified: Group D (deep NMB), 29 patients, and Group M (moderate NMB), 28 patients. The BMI mean values for groups D and M were 44 and 45 kg/m2 respectively (P > 0.05). The mean durations of surgery for were 46.7 min and 44.1 min for groups M and D, respectively (P > 0.05). The mean train-of-four (TOF) counts were 0.3 and 0 for groups M and D, respectively (P < 0.05). The mean times from giving reversal agent to tracheal extubation (minutes) were 6.5 and 6.58 min for groups M and D, respectively (P > 0.05). In the recovery room, the means of pain scores were 3 and 4 for groups M and D, respectively (P > 0.05). Upon admission to the surgical ward, the median values of the pain score were non-significant (P > 0.05) (95% CI: 0.4-0.7). The opioid consumption in the recovery room was non-significant between both groups (P > 0.05) (95% CI: 0.3-0.6). Postoperative shoulder pain was non-significant between both groups (P > 0.05) (95% CI: 0.4-0.7). The median values of surgeon opinion of both groups were non-significant (P > 0.05). Regarding the LOS, the mean values of groups D and M were 1.20 and 1.21 days, respectively (P > 0.05). Conclusions There was no significant difference between moderate and deep NMB techniques in terms of duration of the surgical procedure, postoperative pain, shoulder pain, and length of hospital stay. Further studies on a larger sample size are required to investigate the long-term recovery characteristics of patients with obesity undergoing LSG.
Collapse
Affiliation(s)
- Narjes Alotaibi
- Unaizah College of Medicine and Medical Sciences, Qassim University, Riyadh, Saudi Arabia
| | - Mahmoud Althaqafi
- Cardiac Anesthesia, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Abdullah Alharbi
- Consultant Anesthetist, Security Forces Hospital, Riyadh, Saudi Arabia
| | - Ahmed Thallaj
- Anesthesia, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Ahmad
- Anesthesia, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Aldohayan
- Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Fahad Bamehriz
- Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
9
|
Urdampilleta A, Mielgo-Ayuso J, Vielba-Trillo C, Roche E, Vicente-Salar N. Resistance and endurance training in intermittent hypoxia reduce body fat mass and blood pressure. J Sports Med Phys Fitness 2024; 64:66-72. [PMID: 37902805 DOI: 10.23736/s0022-4707.23.15323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
BACKGROUND Hypoxia is an environmental condition that occurs in sports performed at high altitude. Adaptation to hypoxia is accompanied by changes in body composition and cardiac function that could impair sport performance in altitude. These changes concern mainly to a reduction in muscle mass and an increased heart rate. In this context, a resistance training protocol in a normobaric hypoxia chamber has been implemented. Therefore, the aim of this study was to study the changes in body composition and cardiovascular variables after a training period in intermittent hypoxia. METHODS A single-blind experimental study was carried out for 3 weeks. Thirty-two participants were distributed in a control group resistance training in normoxia (N) at sea level and an experimental group resistance training in intermittent hypoxia (IH) between a simulated 5100-5800m during 15 sessions with a controlled diet. Anthropometry according to ISAK was used to determine body composition. Systolic and diastolic blood pressures and other cardiovascular parameters were monitored. RESULTS IH showed a reduction in body fat (from 8.9±1.9% to 8.2±1.7%) compared to N (from 8.4±1.5% to 8.1±1.4%) (P<0.001). In addition, significant changes in blood pressure were observed at the end compared to the beginning of the intervention in the IH (from 124.7±10.2 to 116.9±8.3 mmHg and 68.3±8.8 to 62.4±5.7 mmHg in systolic a diastolic blood pressure respectively). In addition, resting heart rate was significantly reduced in IH. However, partial oxygen saturation displayed no changes in both groups. CONCLUSIONS Altogether, the training protocol in intermittent hypoxia performed in the present report allowed to adjust body weight through fat mass reduction but maintaining muscle mass. In addition, a decrease in blood pressure and basal heart rate was observed.
Collapse
Affiliation(s)
- Aritz Urdampilleta
- Faculty of Health Sciences, Blanquerna - Ramon-Llull University, Barcelona, Spain
- ElikaEsport - Nutrition, Innovation and Sport, Barcelona, Spain
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, Burgos, Spain
| | - Claudia Vielba-Trillo
- Department of Applied Biology-Nutrition, Institute of Bioengineering, Alicante Institute for Health and Biomedical Research (ISABIAL), Miguel Hernandez University (Elche), Alicante, Spain
| | - Enrique Roche
- Department of Applied Biology-Nutrition, Institute of Bioengineering, Alicante Institute for Health and Biomedical Research (ISABIAL), Miguel Hernandez University (Elche), Alicante, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto De Salud Carlos III (ISCIII), Madrid, Spain
| | - Néstor Vicente-Salar
- Department of Applied Biology-Nutrition, Institute of Bioengineering, Alicante Institute for Health and Biomedical Research (ISABIAL), Miguel Hernandez University (Elche), Alicante, Spain -
| |
Collapse
|
10
|
Liu D, Gao X, Huang X, Fan Y, Wang YE, Zhang Y, Chen X, Wen J, He H, Hong Y, Liang Y, Zhang Y, Liu Z, Chen S, Li X. Moderate altitude exposure impacts host fasting blood glucose and serum metabolome by regulation of the intestinal flora. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167016. [PMID: 37714338 DOI: 10.1016/j.scitotenv.2023.167016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Moderate altitude exposure has shown beneficial effects on diabetes incidence but the underlying mechanisms are not understood. Our study aimed to investigate how the human gut microbiome impacted the serum metabolome and associated with glucose homeostasis in healthy Chinese individuals upon moderate-altitude exposure. Faecal microbiome composition was assessed using shotgun metagenomic sequencing. Serum metabolome was acquired by untargeted metabolomics technology, and amino acids (AAs) and propionic acid in serum were quantified by targeted metabolomics technology. The results indicated that the moderate-altitude exposed individuals presented lowered fasting blood glucose (FBG) and propionic acid, increased circulating L-Glutamine but decreased L-Glutamate and L-Valine, which correlated with enriched Bacteroidetes and decreased Proteobacteria. Additionally, the silico causality associations among gut microbiota, serum metabolome and host FBG were analyzed by mediation analysis. It showed that increased Bacteroides ovatus (B. ovatus) and decreased Escherichia coli (E. coli) were identified as the main antagonistic species driving the association between L-Glutamate and FBG in silico causality. Furthermore, the high-fat diet (HFD) fed mice subjected to faecal microbiota transplantation (FMT) were applied to validate the cause-in-fact effects of gut microbiota on the beneficial glucose response. We found that microbiome in the moderate-altitude exposed donor could predict the extent of the FBG response in recipient mice, which showed lowered FBG, L-Glutamate and Firmicutes/Bacteroidetes ratio. Our findings suggest that moderate-altitude exposure targeting gut microbiota and circulating metabolome, may pave novel avenues to counter dysglycemia.
Collapse
Affiliation(s)
- Dan Liu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Nyingchi People's Hospital, Tibet, China
| | - Xiaoyan Gao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaoran Huang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yanqun Fan
- Biotree Metabolomics Technology Research Center, Shanghai, China
| | - Yu-E Wang
- Nyingchi People's Hospital, Tibet, China
| | - Yuelin Zhang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xuanfu Chen
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Emergency Medicine Department of Guangdong Cardiovascular Institute, Guangzhou, China
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, China
| | - Haiwei He
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yimei Hong
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ying Liang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Nyingchi People's Hospital, Tibet, China
| | - Yuxiao Zhang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhipeng Liu
- Biotree Metabolomics Technology Research Center, Shanghai, China.
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, China.
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Nyingchi People's Hospital, Tibet, China.
| |
Collapse
|
11
|
Guo H, Cheng L, Duolikun D, Yao Q. Aerobic Exercise Training Under Normobaric Hypoxic Conditions to Improve Glucose and Lipid Metabolism in Overweight and Obese Individuals: A Systematic Review and Meta-Analysis. High Alt Med Biol 2023; 24:312-320. [PMID: 38127802 DOI: 10.1089/ham.2022.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Guo, Hai, Linjie Cheng, Dilihumaier Duolikun, and Qiaoling Yao. Aerobic exercise training under normobaric hypoxic conditions to improve glucose and lipid metabolism in overweight and obese individuals: a systematic review and meta-analysis. High Alt Med Biol. 24:312-320, 2023. Background: Obesity is a critical public health issue around the world, reaching epidemic proportions in some countries. However, only a few studies have examined the effects of hypoxic training on metabolic parameters in an obese population. This systematic review and meta-analysis aimed to determine the effects of aerobic exercise training under normobaric hypoxic conditions versus normoxic training in improving glucose and lipid metabolism in obese individuals. Methods: A systematic search of PubMed, EMBASE, Web of Science, and Wan Fang databases (up to August 2021) was performed to identify randomized controlled trials (RCTs) of overweight or obese human subjects eligible for inclusion. Main study endpoints were changes in body mass index (BMI), waist/hip (W/H) ratio, leptin, blood glucose and insulin levels, as well as blood lipids between hypoxic and normoxic conditioning. Results: Fourteen RCTs with a total of 413 subjects qualified for inclusion. Pooled analyses revealed that BMI (d = 0.38), W/H ratio (d = 0), blood glucose (d = 0.01), and triglyceride (d = -2.27) were not significantly different between aerobic exercise training under hypoxic and normoxic conditions. However, significant differences were found in heart rate at rest (d = -4.50) between aerobic exercise training under hypoxic versus normoxic conditions. Conclusions: In conclusion, no significant benefits were noted in aerobic exercise training under hypoxic conditions over normoxic conditions in overweight or obese individuals. However, the maximum training heart rate mm was significantly higher under hypoxic conditions than under normoxic conditions. Future studies with larger samples controlling for exercise-related parameters, and addressing the potential modifying effects of level of hypoxia, sex, or age on the role of hypoxic exercise training are warranted. PROSPERO registration number: CRD42020221680.
Collapse
Affiliation(s)
- Hai Guo
- Department of Physiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Perioperative Organ Protection Laboratory, Urumqi, China
| | - Linjie Cheng
- Department of Physiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Dilihumaier Duolikun
- Department of Physiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Qiaoling Yao
- Department of Physiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| |
Collapse
|
12
|
He Z, Qiang L, Liu Y, Gao W, Feng T, Li Y, Yan B, Girard O. Effect of Hypoxia Conditioning on Body Composition in Middle-Aged and Older Adults: A Systematic Review and Meta-Analysis. SPORTS MEDICINE - OPEN 2023; 9:89. [PMID: 37747653 PMCID: PMC10519915 DOI: 10.1186/s40798-023-00635-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND The effects of hypoxia conditioning, which involves recurrent exposure to hypoxia combined with exercise training, on improving body composition in the ageing population have not been extensively investigated. OBJECTIVE This meta-analysis aimed to determine if hypoxia conditioning, compared to similar training near sea level, maximizes body composition benefits in middle-aged and older adults. METHODS A literature search of PubMed, EMBASE, Web of Science, Scopus and CNKI (China National Knowledge Infrastructure) databases (up to 27th November 2022) was performed, including the reference lists of relevant papers. Three independent reviewers extracted study characteristics and health outcome measures. Search results were limited to original studies of the effects of hypoxia conditioning on body composition in middle-aged and older adults. RESULTS Twelve studies with a total of 335 participants were included. Hypoxia conditioning induced greater reductions in body mass index (MD = -0.92, 95%CI: -1.28 to -0.55, I2 = 0%, p < 0.00001) and body fat (SMD = -0.38, 95%CI: -0.68 to -0.07, I2 = 49%, p = 0.01) in middle-aged and older adults compared with normoxic conditioning. Hypoxia conditioning improved lean mass with this effect not being larger than equivalent normoxic interventions in either middle-aged or older adults (SMD = 0.07, 95%CI -0.12 to 0.25, I2 = 0%, p = 0.48). Subgroup analysis showed that exercise in moderate hypoxia (FiO2 > 15%) had larger effects than more severe hypoxia (FiO2 ≤ 15%) for improving body mass index in middle-aged and older adults. Hypoxia exposure of at least 60 min per session resulted in larger benefits for both body mass index and body fat. CONCLUSION Hypoxia conditioning, compared to equivalent training in normoxia, induced greater body fat and body mass index improvements in middle-aged and older adults. Adding hypoxia exposure to exercise interventions is a viable therapeutic solution to effectively manage body composition in ageing population.
Collapse
Affiliation(s)
- Zhijian He
- China Institute of Sport and Health Science, Beijing Sport University, No. 48 Xinxi Road, Haidian District, Beijing, 100084, China
- Department of Sports Teaching and Research, Lanzhou University, Lanzhou, China
| | - Lijun Qiang
- China Institute of Sport and Health Science, Beijing Sport University, No. 48 Xinxi Road, Haidian District, Beijing, 100084, China
- Ningxia Vocational College of Sports, Ningxia, China
| | - Yusheng Liu
- China Institute of Sport and Health Science, Beijing Sport University, No. 48 Xinxi Road, Haidian District, Beijing, 100084, China
- Tsinghua University High School (Guanghua), Beijing, China
| | - Wenfeng Gao
- Department of Sports Teaching and Research, Lanzhou University, Lanzhou, China
| | - Tao Feng
- Department of Sports Teaching and Research, Lanzhou University, Lanzhou, China
| | - Yang Li
- Department of Sports Teaching and Research, Lanzhou University, Lanzhou, China
| | - Bing Yan
- China Institute of Sport and Health Science, Beijing Sport University, No. 48 Xinxi Road, Haidian District, Beijing, 100084, China.
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
13
|
Leveque C, Mrakic Sposta S, Theunissen S, Germonpré P, Lambrechts K, Vezzoli A, Gussoni M, Levenez M, Lafère P, Guerrero F, Balestra C. Oxidative Stress Response Kinetics after 60 Minutes at Different Levels (10% or 15%) of Normobaric Hypoxia Exposure. Int J Mol Sci 2023; 24:10188. [PMID: 37373334 DOI: 10.3390/ijms241210188] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, the metabolic responses of hypoxic breathing for 1 h to inspired fractions of 10% and 15% oxygen were investigated. To this end, 14 healthy nonsmoking subjects (6 females and 8 males, age: 32.2 ± 13.3 years old (mean ± SD), height: 169.1 ± 9.9 cm, and weight: 61.6 ± 16.2 kg) volunteered for the study. Blood samples were taken before, and at 30 min, 2 h, 8 h, 24 h, and 48 h after a 1 h hypoxic exposure. The level of oxidative stress was evaluated by considering reactive oxygen species (ROS), nitric oxide metabolites (NOx), lipid peroxidation, and immune-inflammation by interleukin-6 (IL-6) and neopterin, while antioxidant systems were observed in terms of the total antioxidant capacity (TAC) and urates. Hypoxia abruptly and rapidly increased ROS, while TAC showed a U-shape pattern, with a nadir between 30 min and 2 h. The regulation of ROS and NOx could be explained by the antioxidant action of uric acid and creatinine. The kinetics of ROS allowed for the stimulation of the immune system translated by an increase in neopterin, IL-6, and NOx. This study provides insights into the mechanisms through which acute hypoxia affects various bodily functions and how the body sets up the protective mechanisms to maintain redox homeostasis in response to oxidative stress.
Collapse
Affiliation(s)
- Clément Leveque
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Laboratoire ORPHY, Université de Bretagne Occidentale, UFR Sciences et Techniques, 93837 Brest, France
| | - Simona Mrakic Sposta
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy
| | - Sigrid Theunissen
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Peter Germonpré
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Hyperbaric Centre, Queen Astrid Military Hospital, 1120 Brussels, Belgium
| | - Kate Lambrechts
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy
| | - Maristella Gussoni
- Institute of Chemical Sciences and Technologies "G. Natta", National Research Council (SCITEC-CNR), 20133 Milan, Italy
| | - Morgan Levenez
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Pierre Lafère
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
| | - François Guerrero
- Laboratoire ORPHY, Université de Bretagne Occidentale, UFR Sciences et Techniques, 93837 Brest, France
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1090 Brussels, Belgium
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| |
Collapse
|
14
|
Msg RR. Would Intermittent Hypoxia Add Significant Benefits to Simple Breathing Pranayama? Complement Med Res 2023; 30:362-364. [PMID: 37121231 DOI: 10.1159/000530874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Affiliation(s)
- Ram Rahim Msg
- PMAJ Integrated Medicine Hospital, Nejia Khera, India
| |
Collapse
|
15
|
Tee CCL, Cooke MB, Chong MC, Yeo WK, Camera DM. Mechanisms for Combined Hypoxic Conditioning and Divergent Exercise Modes to Regulate Inflammation, Body Composition, Appetite, and Blood Glucose Homeostasis in Overweight and Obese Adults: A Narrative Review. Sports Med 2023; 53:327-348. [PMID: 36441492 PMCID: PMC9877079 DOI: 10.1007/s40279-022-01782-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 11/29/2022]
Abstract
Obesity is a major global health issue and a primary risk factor for metabolic-related disorders. While physical inactivity is one of the main contributors to obesity, it is a modifiable risk factor with exercise training as an established non-pharmacological treatment to prevent the onset of metabolic-related disorders, including obesity. Exposure to hypoxia via normobaric hypoxia (simulated altitude via reduced inspired oxygen fraction), termed hypoxic conditioning, in combination with exercise has been increasingly shown in the last decade to enhance blood glucose regulation and decrease the body mass index, providing a feasible strategy to treat obesity. However, there is no current consensus in the literature regarding the optimal combination of exercise variables such as the mode, duration, and intensity of exercise, as well as the level of hypoxia to maximize fat loss and overall body compositional changes with hypoxic conditioning. In this narrative review, we discuss the effects of such diverse exercise and hypoxic variables on the systematic and myocellular mechanisms, along with physiological responses, implicated in the development of obesity. These include markers of appetite regulation and inflammation, body conformational changes, and blood glucose regulation. As such, we consolidate findings from human studies to provide greater clarity for implementing hypoxic conditioning with exercise as a safe, practical, and effective treatment strategy for obesity.
Collapse
Affiliation(s)
- Chris Chow Li Tee
- Division of Research and Innovation, National Sports Institute of Malaysia, Kuala Lumpur, Malaysia
- Sport and Exercise Medicine Group, Swinburne University, Room SPW224, Mail H21, PO Box 218, Hawthorn, VIC, 3122, Australia
| | - Matthew B Cooke
- Sport and Exercise Medicine Group, Swinburne University, Room SPW224, Mail H21, PO Box 218, Hawthorn, VIC, 3122, Australia
| | - Mee Chee Chong
- Sport and Exercise Medicine Group, Swinburne University, Room SPW224, Mail H21, PO Box 218, Hawthorn, VIC, 3122, Australia
| | - Wee Kian Yeo
- Division of Research and Innovation, National Sports Institute of Malaysia, Kuala Lumpur, Malaysia
| | - Donny M Camera
- Sport and Exercise Medicine Group, Swinburne University, Room SPW224, Mail H21, PO Box 218, Hawthorn, VIC, 3122, Australia.
| |
Collapse
|
16
|
Yuan H, Liu J, Gu Y, Ji X, Nan G. Intermittent hypoxia conditioning as a potential prevention and treatment strategy for ischemic stroke: Current evidence and future directions. Front Neurosci 2022; 16:1067411. [PMID: 36507357 PMCID: PMC9732261 DOI: 10.3389/fnins.2022.1067411] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2022] Open
Abstract
Ischemic stroke (IS) is the leading cause of disability and death worldwide. Owing to the aging population and unhealthy lifestyles, the incidence of cerebrovascular disease is high. Vascular risk factors include hypertension, diabetes, dyslipidemia, and obesity. Therefore, in addition to timely and effective reperfusion therapy for IS, it is crucial to actively control these risk factors to reduce the incidence and recurrence rates of IS. Evidence from human and animal studies suggests that moderate intermittent hypoxia (IH) exposure is a promising therapeutic strategy to ameliorate common vascular risk factors and comorbidities. Given the complex pathophysiological mechanisms underlying IS, effective treatment must focus on reducing injury in the acute phase and promoting repair in the recovery phase. Therefore, this review discusses the preclinical perspectives on IH conditioning as a potential treatment for neurovascular injury and highlights IH pre and postconditioning strategies for IS. Hypoxia conditioning reduces brain injury by increasing resistance to acute ischemic and hypoxic stress, exerting neuroprotective effects, and promoting post-injury repair and regeneration. However, whether IH produces beneficial effects depends not only on the hypoxic regimen but also on inter-subject differences. Therefore, we discuss the factors that may influence the effectiveness of IH treatment, including age, sex, comorbidities, and circadian rhythm, which can be used to help identify the optimal intervention population and treatment protocols for more accurate, individualized clinical translation. In conclusion, IH conditioning as a non-invasive, non-pharmacological, systemic, and multi-targeted intervention can not only reduce brain damage after stroke but can also be applied to the prevention and functional recovery of IS, providing brain protection at different stages of the disease. It represents a promising therapeutic strategy. For patients with IS and high-risk groups, IH conditioning is expected to develop as an adjunctive clinical treatment option to reduce the incidence, recurrence, disability, and mortality of IS and to reduce disease burden.
Collapse
Affiliation(s)
- Honghua Yuan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yuhang Gu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China,*Correspondence: Xunming Ji,
| | - Guangxian Nan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China,Guangxian Nan,
| |
Collapse
|
17
|
Hypoxia as a Double-Edged Sword to Combat Obesity and Comorbidities. Cells 2022; 11:cells11233735. [PMID: 36496995 PMCID: PMC9736735 DOI: 10.3390/cells11233735] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
The global epidemic of obesity is tightly associated with numerous comorbidities, such as type II diabetes, cardiovascular diseases and the metabolic syndrome. Among the key features of obesity, some studies have suggested the abnormal expansion of adipose-tissue-induced local endogenous hypoxic, while other studies indicated endogenous hyperoxia as the opposite trend. Endogenous hypoxic aggravates dysfunction in adipose tissue and stimulates secretion of inflammatory molecules, which contribute to obesity. In contrast, hypoxic exposure combined with training effectively generate exogenous hypoxic to reduce body weight and downregulate metabolic risks. The (patho)physiological effects in adipose tissue are distinct from those of endogenous hypoxic. We critically assess the latest advances on the molecular mediators of endogenous hypoxic that regulate the dysfunction in adipose tissue. Subsequently we propose potential therapeutic targets in adipose tissues and the small molecules that may reverse the detrimental effect of local endogenous hypoxic. More importantly, we discuss alterations of metabolic pathways in adipose tissue and the metabolic benefits brought by hypoxic exercise. In terms of therapeutic intervention, numerous approaches have been developed to treat obesity, nevertheless durability and safety remain the major concern. Thus, a combination of the therapies that suppress endogenous hypoxic with exercise plans that augment exogenous hypoxic may accelerate the development of more effective and durable medications to treat obesity and comorbidities.
Collapse
|
18
|
Effects of Six Weeks of Hypoxia Exposure on Hepatic Fatty Acid Metabolism in ApoE Knockout Mice Fed a High-Fat Diet. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101535. [PMID: 36294970 PMCID: PMC9605121 DOI: 10.3390/life12101535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease with a characteristic of abnormal lipid metabolism. In the present study, we employed apolipoprotein E knockout (ApoE KO) mice to investigate the effects of hypoxia exposure on hepatic fatty acid metabolism and to test whether a high-fat diet (HFD) would suppress the beneficial effect caused by hypoxia treatment. ApoE KO mice were fed a HFD for 12 weeks, and then were forwarded into a six-week experiment with four groups: HFD + normoxia, normal diet (ND) + normoxia, HFD + hypoxia exposure (HE), and ND + HE. The C57BL/6J wild type (WT) mice were fed a ND for 18 weeks as the baseline control. The hypoxia exposure was performed in daytime with normobaric hypoxia (11.2% oxygen, 1 h per time, three times per week). Body weight, food and energy intake, plasma lipid profiles, hepatic lipid contents, plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and molecular/biochemical makers and regulators of the fatty acid synthesis and oxidation in the liver were measured at the end of interventions. Six weeks of hypoxia exposure decreased plasma triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) contents but did not change hepatic TG and non-esterified fatty acid (NEFA) levels in ApoE KO mice fed a HFD or ND. Furthermore, hypoxia exposure decreased the mRNA expression of Fasn, Scd1, and Srebp-1c significantly in the HFD + HE group compared with those in the HFD + normoxia group; after replacing a HFD with a ND, hypoxia treatment achieved more significant changes in the measured variables. In addition, the protein expression of HIF-1α was increased only in the ND + HE group but not in the HFD + HE group. Even though hypoxia exposure did not affect hepatic TG and NEFA levels, at the genetic level, the intervention had significant effects on hepatic metabolic indices of fatty acid synthesis, especially in the ND + HE group, while HFD suppressed the beneficial effect of hypoxia on hepatic lipid metabolism in male ApoE KO mice. The dietary intervention of shifting HFD to ND could be more effective in reducing hepatic lipid accumulation than hypoxia intervention.
Collapse
|
19
|
Chen S, Su H, Liu X, Li Q, Yao Y, Cai J, Gao Y, Ma Q, Shi Y. Effects of exercise training in hypoxia versus normoxia on fat-reducing in overweight and/or obese adults: A systematic review and meta-analysis of randomized clinical trials. Front Physiol 2022; 13:940749. [PMID: 36082216 PMCID: PMC9447682 DOI: 10.3389/fphys.2022.940749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: Fat loss theory under various oxygen conditions has been disputed, and relevant systematic review studies are limited. This study is a systematic review and meta-analysis to assess whether hypoxic exercise training (HET) leads to superior fat-reducing compared with normoxic exercise training (NET). Methods: We searched PubMed, Web of Science, CNKI, ProQuest, Google Scholar, Cochrane Library, and EBSCOhost from inception to June 2022 for articles comparing the effects of hypoxic and normoxic exercise on body composition indicators, glycometabolism, and lipometabolism indicators in obese and overweight adults. Only randomized controlled trials (RCTs) were included. The effect sizes were expressed as standardized mean difference (SMD) and 95% confidence intervals (CI). Between-study heterogeneity was examined using the I2 test and evaluated publication bias via Egger’s regression test. The risk of bias assessment was performed for each included trial using Cochrane Evaluation Tool second generation. The meta-analysis was performed by using R 4.1.3 and RevMan 5.3 analytic tools. Results: A total of 19 RCTs with 444 subjects were analyzed according to the inclusion and exclusion criteria. Among them, there were 14 English literature and five Chinese literature. No significant difference in body composition (SMD -0.10, 95% CI -0.20 to -0.01), glycometabolism and lipid metabolism (SMD -0.01, 95% CI -0.13 to -0.10) has been observed when comparing the HET and NET groups. We only found low heterogeneity among trials assessing glycometabolism and lipometabolism (I2 = 20%, p = 0.09), and no publication bias was detected. Conclusion: The effects of HET and NET on fat loss in overweight or obese people are the same. The application and promotion of HET for fat reduction need further exploration.
Collapse
|
20
|
Feng J, Wang X, Lu Y, Yu C, Wang X, Feng L. BAIBA Involves in Hypoxic Training Induced Browning of White Adipose Tissue in Obese Rats. Front Physiol 2022; 13:882151. [PMID: 35832480 PMCID: PMC9272788 DOI: 10.3389/fphys.2022.882151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, obesity has become an important risk factor for human health; how to effectively prevent and reduce the occurrence of obesity is a hot research topic in recent years. Hypoxic training effectively improves abnormalities of lipid metabolism caused by obesity. The current study explored the effects of hypoxic training on BAIBA secretion and white fat browning in inguinal fat in obese rats. Analyses were performed by HPLC/MS/MS—MS/MS, RT-q PCR and western blot methods. The findings showed that 4 weeks of hypoxic training reduced body weight, Lee’s index, and regulated blood lipid profile in obese rats. Hypoxic training up-regulated BAIBA concentration in gastrocnemius muscle and circulation in obese rats. Hypoxic training significantly upregulated expression of PPARα and UCP-1 in inguinal fat of obese rats and increased white fat browning. The findings showed that BAIBA may involve in improveing blood lipid profile and white fat browning by modulating PPARα and UCP-1 expression.
Collapse
Affiliation(s)
- Junpeng Feng
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Xuebing Wang
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
- College of Physical Education, Guangxi University, Nanning, China
| | - Yingli Lu
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
- *Correspondence: Yingli Lu,
| | - Chang Yu
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| | - Xinyan Wang
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| | - Lianshi Feng
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
21
|
Intermittent Hypoxia as a Therapeutic Tool to Improve Health Parameters in Older Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095339. [PMID: 35564732 PMCID: PMC9103404 DOI: 10.3390/ijerph19095339] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/23/2022]
Abstract
Aging is associated with metabolic alterations, and with a loss of strength, muscle and bone mass. Moderate intermittent hypoxia has been proposed as a new tool to enhance health-related function. The aim of this study was to evaluate the effect of moderate intermittent hypoxia exposures on parameters related to cardiovascular and bone health in older adults. A total of 38 healthy older adults (aged 65-75 years) were divided into two groups: control group (C), and hypoxia group (H) that was subjected to an intermittent hypoxia exposure (at simulated altitude of 2500 m asl) during a 24-week period (3 days/week). Body composition, blood pressure, metabolic parameters (Cholesterol, triglycerides and glucose), C-reactive protein (CRP), vascular cell adhesion molecule-1 (VCAM-1), interleukin 8 (IL-8), interleukin 10 (IL-10), N-terminal propeptide of type I procollagen (PINP) and beta C-terminal telopeptide of collagen bone formation (b-CTX) were analyzed before and after the intervention. A repeated measures analysis of variance was performed to evaluate between-group differences. The results showed that the hypoxia group achieved after the intervention a decrease in fat mass, CRP (pro-inflammatory biomarker) and b-CTX (bone resorption biomarker), as well as an increase in PINP (bone formation biomarker). In conclusion, the intermittent hypoxia might be a useful therapeutic tool to deal with problems associated with aging, such as the increase in body fat, the loss of bone mass or low-grade inflammation.
Collapse
|
22
|
Bestavashvili A, Glazachev O, Bestavashvili A, Suvorov A, Zhang Y, Zhang X, Rozhkov A, Kuznetsova N, Pavlov C, Glushenkov D, Kopylov P. Intermittent Hypoxic-Hyperoxic Exposures Effects in Patients with Metabolic Syndrome: Correction of Cardiovascular and Metabolic Profile. Biomedicines 2022; 10:biomedicines10030566. [PMID: 35327372 PMCID: PMC8945352 DOI: 10.3390/biomedicines10030566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to evaluate efficacy and applicability of the “intermittent hypoxic-hyperoxic exposures at rest” (IHHE) protocol as an adjuvant method for metabolic syndrome (MS) cardiometabolic components. A prospective, single-center, randomized controlled clinical study was conducted on 65 patients with MS subject to optimal pharmacotherapy, who were randomly allocated to IHHE or control (CON) groups. The IHHE group completed a 3-week, 5 days/week program of IHHE, each treatment session lasting for 45 min. The CON group followed the same protocol, but was breathing room air through a facial mask instead. The data were collected 2 days before, and at day 2 after the 3-week intervention. As the primary endpoints, systolic (SBP) and diastolic (DBP) blood pressure at rest, as well as arterial stiffness and hepatic tissue elasticity parameters, were selected. After the trial, the IHHE group had a significant decrease in SBP and DBP (Cohen’s d = 1.15 and 0.7, p < 0.001), which became significantly lower (p < 0.001) than in CON. We have failed to detect any pre-post IHHE changes in the arterial stiffness parameters (judging by the Cohen’s d), but after the intervention, cardio-ankle vascular indexes (RCAVI and LCAVI) were significantly lowered in the IHHE group as compared with the CON. The IHHE group demonstrated a medium effect (0.68; 0.69 and 0.71 Cohen’s d) in pre-post decrease of Total Cholesterol (p = 0.04), LDL (p = 0.03), and Liver Steatosis (p = 0.025). In addition, the IHHE group patients demonstrated a statistically significant decrease in pre-post differences (deltas) of RCAVI, LCAVI, all antropometric indices, NTproBNP, Liver Fibrosis, and Steatosis indices, TC, LDL, ALT, and AST in comparison with CON (p = 0.001). The pre-post shifts in SBP, DBP, and HR were significantly correlated with the reduction degree in arterial stiffness (ΔRCAVI, ΔLCAVI), liver fibrosis and steatosis severity (ΔLFibr, ΔLS), anthropometric parameters, liver enzymes, and lipid metabolism in the IHHE group only. Our results suggested that IHHE is a safe, well-tolerated intervention which could be an effective adjuvant therapy in treatment and secondary prevention of atherosclerosis, obesity, and other components of MS that improve the arterial stiffness lipid profile and liver functional state in MS patients.
Collapse
Affiliation(s)
- Afina Bestavashvili
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (N.K.); (P.K.)
- Correspondence: ; Tel.: +7-916-338-3595
| | - Oleg Glazachev
- Department of Normal Physiology, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (O.G.); (X.Z.)
| | - Alexander Bestavashvili
- Department of Therapy, General Practice and Nuclear Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Alexander Suvorov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.); (A.R.)
| | - Yong Zhang
- The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology, TbalHarbin Medical University, Harbin 150081, China;
| | - Xinliang Zhang
- Department of Normal Physiology, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (O.G.); (X.Z.)
| | - Andrey Rozhkov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.); (A.R.)
| | - Natalia Kuznetsova
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (N.K.); (P.K.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.); (A.R.)
| | - Chavdar Pavlov
- Department of Therapy of the Institute of Professional Education, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Botkinskaya Hospital, 125284 Moscow, Russia
| | - Dmitriy Glushenkov
- Department of Internal Medicine, Gastroenterology and Hepatology, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Philippe Kopylov
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (N.K.); (P.K.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.); (A.R.)
| |
Collapse
|
23
|
Hormonal and metabolic responses of older adults to resistance training in normobaric hypoxia. Eur J Appl Physiol 2022; 122:1007-1017. [PMID: 35142944 DOI: 10.1007/s00421-022-04897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 01/06/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE In young adults, the hormonal responses to resistance exercise are amplified by normobaric hypoxia. Hormone concentrations and metabolism are typically dysregulated with age, yet the impact of hypoxia on these responses to resistance exercise are uncharacterised. Therefore, this study aimed to characterise the acute and chronic hormonal and metabolic responses of older adults to resistance training in normobaric hypoxia. METHODS Adults aged 60-75 years completed 8 weeks of resistance training in either normoxia (20.9% O2; n = 10) or normobaric hypoxia (14.4% O2, n = 10) twice weekly at 70% of their predicted 1-repetition maximum. Growth hormone, glucose, lactate, insulin, homeostatic model assessment of insulin resistance (HOMA-IR), cortisol, total testosterone, adrenaline, noradrenaline and dopamine were quantified at pre- and post-training, and in the 60 min following the first training session (untrained state) and the last training session (trained state). RESULTS Eight weeks of training in hypoxia did not affect the resting levels of the hormones or physiological factors measured. However, hypoxia significantly blunted the acute growth hormone response in the 15 min following the last training session at week eight (43.87% lower in the hypoxic group; p = 0.017). This novel and unexpected finding requires further investigation. All other hormones were unaffected acutely by hypoxia in the 60 min following the first and the last training session. CONCLUSION Chronic resistance training in normobaric hypoxia supresses the growth hormone response to exercise in older adults. All other hormones and metabolic markers were unaffected both acutely and chronically by hypoxia.
Collapse
|
24
|
Kong Z, Lei OK, Sun S, Li L, Shi Q, Zhang H, Nie J. Hypoxic repeated sprint interval training improves cardiorespiratory fitness in sedentary young women. J Exerc Sci Fit 2022; 20:100-107. [PMID: 35154334 PMCID: PMC8819388 DOI: 10.1016/j.jesf.2022.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Zhaowei Kong
- Faculty of Education, University of Macau, Macao, China
| | - On Kei Lei
- Faculty of Education, University of Macau, Macao, China
| | - Shengyan Sun
- Institute of Physical Education, Huzhou University, Huzhou, Zhejiang Province, China
| | - Lei Li
- School of Physical Education, Ludong University, Shandong Province, China
| | - Qingde Shi
- School of Health Sciences and Sports, Macao Polytechnic Institute, Macao, China
| | - Haifeng Zhang
- College of Physical Education, Hebei Normal University, Shijiazhuang, Hebei Province, China
| | - Jinlei Nie
- School of Health Sciences and Sports, Macao Polytechnic Institute, Macao, China
- Corresponding author. School of Health Sciences and Sports, Macao Polytechnic Institute, Rua de Luís Gonzaga Gomes, Macao, China.
| |
Collapse
|
25
|
Afina AB, Oleg SG, Alexander AB, Ines D, Alexander Yu S, Nikita VV, Denis ST, Daria GG, Zhang Y, Chavdar SP, Dmitriy VG, Elena AS, Irina VK, Philippe Yu K. The Effects of Intermittent Hypoxic-Hyperoxic Exposures on Lipid Profile and Inflammation in Patients With Metabolic Syndrome. Front Cardiovasc Med 2021; 8:700826. [PMID: 34513946 PMCID: PMC8429814 DOI: 10.3389/fcvm.2021.700826] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/23/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Patients with metabolic syndrome (MS) tend to suffer from comorbidities, and are often simultaneously affected by obesity, dysglycemia, hypertension, and dyslipidemia. This syndrome can be reversed if it is timely diagnosed and treated with a combination of risk factors-reducing lifestyle changes and a tailored pharmacological plan. Interval hypoxic-hyperoxic training (IHHT) has been shown as an effective program in reducing cardiovascular risk factors in patients with MS even in the absence of exercise. However, the influence of IHHT on the lipid profile and inflammation in this clinical population remains relatively unknown. Methods: A prospective, single-center, randomized controlled trial was conducted on 65 (33 men) patients with MS aged 29–74 years, who were randomly allocated to the IHHT or control (sham) experimental groups. The IHHT group completed a 3-week, 5 days/week intermittent exposure to hypoxia and hyperoxia. The control (sham) group followed the same protocol but was breathing room air instead. The primary endpoints were the lipid profile (concentrations of total cholesterol [TC], low-density lipoprotein [LDL], high-density lipoprotein [HDL], and triglycerides [TG]) and the inflammatory factors such as high-sensitivity C-reactive protein (hs-CRP), galectin-3, heat shock proteins (Hsp70). The secondary endpoints were alanine aminotransferase (ALT), aspartate aminotransferase (AST), N-terminal pro-hormone of brain natriuretic peptide level (NTproBNP), transforming growth factor beta-1 (TGF-beta1), heart-type fatty acid-binding protein (H-FABP), and nitric oxide synthase 2 (NOS2). Results: There were no differences between the two groups but the different baseline values have affected these results. The IHHT group demonstrated pre-post decrease in total cholesterol (p = 0.001), LDL (p = 0.001), and TG levels (p = 0.001). We have also found a decrease in the CRP-hs (p = 0.015) and Hsp70 (p = 0.006) in IHHT-group after intervention, and a significant decrease in pre-post (delta) differences of NTproBNP (p < 0.0001) in the IHHT group compared to the control group. In addition, the patients of the IHHT group showed a statistically significant decrease in pre-post differences of ALT and AST levels in comparison with the control group (p = 0.001). No significant IHHT complications or serious adverse events were observed. Conclusions: The IHHT appears to improve lipid profile and anti-inflammatory status. It is a safe, well-tolerated procedure, and could be recommended as an auxiliary treatment in patients suffering from MS, however, the experiment results were limited by the baseline group differences. Clinical Trial Registration:ClinicalTrials.gov, identifier [NCT04791397]. Evaluation of the effect of IHHT on vascular stiffness and elasticity of the liver tissue in patients with MS.
Collapse
Affiliation(s)
- A Bestavashvili Afina
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - S Glazachev Oleg
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - A Bestavashvili Alexander
- Department of Facultative Therapy, A.I. Nesterov of Medical Faculty, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dhif Ines
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Suvorov Alexander Yu
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - V Vorontsov Nikita
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - S Tuter Denis
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - G Gognieva Daria
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Yong Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - S Pavlov Chavdar
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - V Glushenkov Dmitriy
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - A Sirkina Elena
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - V Kaloshina Irina
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Kopylov Philippe Yu
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
26
|
Lopez-Pascual A, Trayhurn P, Martínez JA, González-Muniesa P. Oxygen in Metabolic Dysfunction and Its Therapeutic Relevance. Antioxid Redox Signal 2021; 35:642-687. [PMID: 34036800 DOI: 10.1089/ars.2019.7901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: In recent years, a number of studies have shown altered oxygen partial pressure at a tissue level in metabolic disorders, and some researchers have considered oxygen to be a (macro) nutrient. Oxygen availability may be compromised in obesity and several other metabolism-related pathological conditions, including sleep apnea-hypopnea syndrome, the metabolic syndrome (which is a set of conditions), type 2 diabetes, cardiovascular disease, and cancer. Recent Advances: Strategies designed to reduce adiposity and its accompanying disorders have been mainly centered on nutritional interventions and physical activity programs. However, novel therapies are needed since these approaches have not been sufficient to counteract the worldwide increasing rates of metabolic disorders. In this regard, intermittent hypoxia training and hyperoxia could be potential treatments through oxygen-related adaptations. Moreover, living at a high altitude may have a protective effect against the development of abnormal metabolic conditions. In addition, oxygen delivery systems may be of therapeutic value for supplying the tissue-specific oxygen requirements. Critical Issues: Precise in vivo methods to measure oxygenation are vital to disentangle some of the controversies related to this research area. Further, it is evident that there is a growing need for novel in vitro models to study the potential pathways involved in metabolic dysfunction to find appropriate therapeutic targets. Future Directions: Based on the existing evidence, it is suggested that oxygen availability has a key role in obesity and its related comorbidities. Oxygen should be considered in relation to potential therapeutic strategies in the treatment and prevention of metabolic disorders. Antioxid. Redox Signal. 35, 642-687.
Collapse
Affiliation(s)
- Amaya Lopez-Pascual
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Paul Trayhurn
- Obesity Biology Unit, University of Liverpool, Liverpool, United Kingdom.,Clore Laboratory, The University of Buckingham, Buckingham, United Kingdom
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain.,Precision Nutrition and Cardiometabolic Health, IMDEA Food, Madrid Institute for Advanced Studies, Madrid, Spain
| | - Pedro González-Muniesa
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain
| |
Collapse
|
27
|
Hypoxic Exercise Exacerbates Hypoxemia and Acute Mountain Sickness in Obesity: A Case Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179078. [PMID: 34501667 PMCID: PMC8430682 DOI: 10.3390/ijerph18179078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/14/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022]
Abstract
Acute mountain sickness (AMS) is a common syndrome characterized by headache, dizziness, loss of appetite, weakness, and nausea. As a major public health issue, obesity has increased in high altitude urban residents and intermittent commuters to high altitudes. The present study investigated acute hypoxic exposure and hypoxic exercise on hypoxemia severity and AMS symptoms in a physically active obese man. In this case analysis, peripheral oxygen saturation (SpO2) was used to evaluate hypoxemia, heart rate (HR) and blood pressure (BP) were used to reflect the function of autonomic nervous system (ANS), and Lake Louise scoring (LLS) was used to assess AMS. The results showed that acute hypoxic exposure led to severe hypoxemia (SpO2 = 72%) and tachycardia (HRrest = 97 bpm), and acute hypoxic exercise exacerbated severe hypoxemia (SpO2 = 59%) and ANS dysfunction (HRpeak = 167 bpm, SBP/DBP = 210/97 mmHg). At the end of the 6-h acute hypoxic exposure, the case developed severe AMS (LLS = 10) symptoms of headache, gastrointestinal distress, cyanosis, vomiting, poor appetite, and fatigue. The findings of the case study suggest that high physical activity level appears did not show a reliable protective effect against severe hypoxemia, ANS dysfunction, and severe AMS symptoms in acute hypoxia exposure and hypoxia exercise.
Collapse
|
28
|
Kim SW, Jung WS, Chung S, Park HY. Exercise intervention under hypoxic condition as a new therapeutic paradigm for type 2 diabetes mellitus: A narrative review. World J Diabetes 2021; 12:331-343. [PMID: 33889283 PMCID: PMC8040082 DOI: 10.4239/wjd.v12.i4.331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/25/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
This review aims to summarize the health benefits of exposure to hypoxic conditions during exercise in patients with type 2 diabetes mellitus (T2DM). Exposure to hypoxic conditions during exercise training positively changes the physiological response in healthy subjects. Exposure to hypoxic conditions during exercise could markedly increase skeletal muscle glucose uptake compared to that in normoxic conditions. Furthermore, post-exercise insulin sensitivity of T2DM patients increases more when exercising under hypoxic than under normoxic conditions. Regular exercise under short-term hypoxic conditions can improve blood glucose control at lower workloads than in normoxic conditions. Additionally, exercise training under short-term hypoxic conditions can maximize weight loss in overweight and obese patients. Previous studies on healthy subjects have reported that regular exercise under hypoxic conditions had a more positive effect on vascular health than exercising under normoxic conditions. However, currently, evidence indicating that exposure to hypoxic conditions could positively affect T2DM patients in the long-term is lacking. Therefore, further evaluations of the beneficial effects of exercise under hypoxic conditions on the human body, considering different cycle lengths, duration of exposures, sessions per day, and the number of days, are necessary. In this review, we conclude that there is evidence that exercise under hypoxic conditions can yield health benefits, which is potentially valuable in terms of clinical care as a new intervention for T2DM patients.
Collapse
Affiliation(s)
- Sung-Woo Kim
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, South Korea
| | - Won-Sang Jung
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, South Korea
| | - Sochung Chung
- Department of Pediatrics, Konkuk University Medical Center, Research Institute of Medical Science, Konkuk University, School of Medicine, Seoul 05029, South Korea
| | - Hun-Young Park
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, South Korea
- Department of Sports Science and Medicine, Konkuk University, Seoul 05029, South Korea
| |
Collapse
|
29
|
Khoury T, Ilan Y. Platform introducing individually tailored variability in nerve stimulations and dietary regimen to prevent weight regain following weight loss in patients with obesity. Obes Res Clin Pract 2021; 15:114-123. [PMID: 33653665 DOI: 10.1016/j.orcp.2021.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023]
Abstract
Prevention of weight regain following successful weight loss is a major challenge in the treatment of obesity, irrespective of the weight reduction method used. The majority of individuals regain the lost weight over time; thus, achieving long-term sustainability in weight loss remains an unresolved issue. A compensatory adaptation to the weight loss methods occurs in several body organs and partly explains the lack of sustainable effect. Variability is inherent in many biological systems, and patterns of variability constitute a body mechanism that is active at several levels, starting from the genes and cellular pathways through to the whole-organ level. This study aimed to describe a platform that introduces individually tailored variability in vagal nerve stimulation and dietary regimen to ensure prolonged and sustainable weight loss and prevent weight regain. The platform is intended to provide a method that can overcome the body's compensatory adaptation mechanisms while ensuring a prolonged beneficial effect.
Collapse
Affiliation(s)
- Tawfik Khoury
- Department of Gastroenterology, Galilee Medical Center, Nahariya, Israel; Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Yaron Ilan
- Department of Medicine, Hebrew University-Hadassah Medical Center, PO Box 12000, IL-91120, Jerusalem, Israel.
| |
Collapse
|
30
|
Chacaroun S, Borowik A, Vega-Escamilla Y Gonzalez I, Doutreleau S, Wuyam B, Belaidi E, Tamisier R, Pepin JL, Flore P, Verges S. Hypoxic Exercise Training to Improve Exercise Capacity in Obese Individuals. Med Sci Sports Exerc 2021; 52:1641-1649. [PMID: 32102058 DOI: 10.1249/mss.0000000000002322] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Combining exercise training with hypoxic exposure has been recently proposed as a new therapeutic strategy to improve health status of obese individuals. Whether hypoxic exercise training (HET) provides greater benefits regarding body composition and cardiometabolic parameters than normoxic exercise training (NET) remains, however, unclear. We hypothesized that HET would induce greater improvement in exercise capacity and health status than NET in overweight and obese individuals. METHODS Twenty-three subjects were randomized into 8-wk HET (11 men and 1 woman; age, 52 ± 12 yr; body mass index, 31.2 ± 2.4 kg·m) or NET (eight men and three women; age, 56 ± 11 yr; body mass index, 31.8 ± 3.2 kg·m) programs (three sessions per week; constant-load cycling at 75% of maximal heart rate; target arterial oxygen saturation for HET 80%, FiO2 ~0.13, i.e., ~3700 m a.s.l.). Before and after the training programs, the following evaluations were performed: incremental maximal and submaximal cycling tests, measurements of pulse-wave velocity, endothelial function, fasting glucose, insulin and lipid profile, blood NO metabolites and oxidative stress, and determination of body composition by magnetic resonance imaging. RESULTS Peak oxygen consumption and maximal power output increased significantly after HET only (peak oxygen consumption HET + 10% ± 11% vs NET + 1% ± 10% and maximal power output HET + 11% ± 7% vs NET + 3% ± 10%, P < 0.05). Submaximal exercise responses improved similarly after HET and NET. Except diastolic blood pressure which decreased significantly after both HET and NET, no change in vascular function, metabolic status and body composition was observed after training. Hypoxic exercise training only increased nitrite and reduced superoxide dismutase concentrations. CONCLUSIONS Combining exercise training and hypoxic exposure may provide some additional benefits to standard NET for obese individual health status.
Collapse
Affiliation(s)
- Samarmar Chacaroun
- Université Grenoble Alpes, Inserm, Grenoble Alpes University Hospital, Grenoble, FRANCE
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Resistance Training in Hypoxia as a New Therapeutic Modality for Sarcopenia-A Narrative Review. Life (Basel) 2021; 11:life11020106. [PMID: 33573198 PMCID: PMC7912455 DOI: 10.3390/life11020106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
Hypoxic training is believed to be generally useful for improving exercise performance in various athletes. Nowadays, exercise intervention in hypoxia is recognized as a new therapeutic modality for health promotion and disease prevention or treatment based on the lower mortality and prevalence of people living in high-altitude environments than those living in low-altitude environments. Recently, resistance training in hypoxia (RTH), a new therapeutic modality combining hypoxia and resistance exercise, has been attempted to improve muscle hypertrophy and muscle function. RTH is known to induce greater muscle size, lean mass, increased muscle strength and endurance, bodily function, and angiogenesis of skeletal muscles than traditional resistance exercise. Therefore, we examined previous studies to understand the clinical and physiological aspects of sarcopenia and RTH for muscular function and hypertrophy. However, few investigations have examined the combined effects of hypoxic stress and resistance exercise, and as such, it is difficult to make recommendations for implementing universal RTH programs for sarcopenia based on current understanding. It should also be acknowledged that a number of mechanisms proposed to facilitate the augmented response to RTH remain poorly understood, particularly the role of metabolic, hormonal, and intracellular signaling pathways. Further RTH intervention studies considering various exercise parameters (e.g., load, recovery time between sets, hypoxic dose, and intervention period) are strongly recommended to reinforce knowledge about the adaptational processes and the effects of this type of resistance training for sarcopenia in older people.
Collapse
|
32
|
Zhang C, Zhang B, Zhang X, Sun G, Sun X. Targeting Orphan Nuclear Receptors NR4As for Energy Homeostasis and Diabetes. Front Pharmacol 2020; 11:587457. [PMID: 33328994 PMCID: PMC7728612 DOI: 10.3389/fphar.2020.587457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
Orphan nuclear receptors are important members of the nuclear receptor family and may regulate cell proliferation, metabolism, differentiation, and apoptosis. NR4As, a subfamily of orphan nuclear receptors, have been reported to play key roles in carbohydrate and lipid metabolism and energy homeostasis. Popularity of obesity has resulted in a series of metabolic diseases such as diabetes and its complications. While imbalance of energy intake and expenditure is the main cause of obesity, the concrete mechanism of obesity has not been fully understood. It has been reported that NR4As have significant regulatory effects on energy homeostasis and diabetes and are expected to become new targets for discovering drugs for metabolic syndrome. A number of studies have demonstrated that abnormalities in metabolism induced by altered levels of NR4As may contribute to numerous diseases, such as chronic inflammation, tumorigenesis, diabetes and its complications, atherosclerosis, and other cardiovascular diseases. However, systematic reviews focusing on the roles of NR4As in mediating energy homeostasis and diabetes remain limited. Therefore, this article reviews the structure and regulation of NR4As and their critical function in energy homeostasis and diabetes, as well as small molecules that may regulate NR4As. Our work is aimed at providing valuable support for the research and development of drugs targeting NR4As for the treatment of obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Chenyang Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuelian Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
33
|
Implication of gut microbiota in the physiology of rats intermittently exposed to cold and hypobaric hypoxia. PLoS One 2020; 15:e0240686. [PMID: 33142314 PMCID: PMC7608931 DOI: 10.1371/journal.pone.0240686] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
This study examines the influence of intermittent exposure to cold, hypobaric hypoxia, and their combination, in gut microbiota and their metabolites in vivo, and explores their effects on the physiology of the host. Sprague-Dawley rats were exposed to cold (4°C), hypobaric hypoxia (462 torr), or both simultaneously, 4 h/day for 21 days. Biometrical and hematological parameters were monitored. Gut bacterial subgroups were evaluated by qPCR and short-chain fatty acids were determined by gas chromatography in caecum and feces. Cold increased brown adipose tissue, Clostridiales subpopulation and the concentration of butyric and isovaleric acids in caecum. Hypobaric hypoxia increased hemoglobin, red and white cell counts and Enterobacteriales, and reduced body and adipose tissues weights and Lactobacilliales. Cold plus hypobaric hypoxia counteracted the hypoxia-induced weight loss as well as the increase in white blood cells, while reducing the Bacteroidetes:Firmicutes ratio and normalizing the populations of Enterobacteriales and Lactobacilliales. In conclusion, intermittent cold and hypobaric hypoxia exposures by themselves modified some of the main physiological variables in vivo, while their combination kept the rats nearer to their basal status. The reduction of the Bacteroidetes:Firmicutes ratio and balanced populations of Enterobacteriales and Lactobacilliales in the gut may contribute to this effect.
Collapse
|
34
|
Jung K, Kim J, Park HY, Jung WS, Lim K. Hypoxic Pilates Intervention for Obesity: A Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197186. [PMID: 33008106 PMCID: PMC7579144 DOI: 10.3390/ijerph17197186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
This study examined the effect of Pilates training under hypoxia, a novel treatment method, for obesity. Thirty-two Korean women with obesity (age: 34–60 (47.5 ± 7.5) years) were randomly assigned to control (CON; n = 10), normoxic Pilates training (NPTG; n = 10), and hypoxic Pilates training groups (HPTG; n = 12). The NPTG and HPTG performed 50 min of Pilates training using a tubing band for 12 weeks (3 days/week) in their respective environmental conditions (NPTG: normoxic condition, inspired oxygen fraction (FiO2) = 20.9%; HPTG: moderate hypoxic condition, FiO2 = 14.5%). The CON maintained their daily lifestyle without intervention. All subjects underwent body composition, blood pressure, arterial stiffness, vascular endothelial function, cardiometabolic biomarker, hemorheological function, and aerobic performance measurements before and after the intervention. The HPTG showed a significant improvement in diastolic blood pressure, total cholesterol and triglyceride concentrations, flow-mediated dilation, and erythrocyte deformability and aggregation (all p < 0.05) compared with the CON and NPTG. However, compared with the CON and NPTG, the HPTG did not show improvement in other parameters. Hypoxic Pilates intervention is a novel and successful method for promoting endothelial and hemorheological functions in women with obesity.
Collapse
Affiliation(s)
- Kyounghwa Jung
- Department of Physical Education, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea;
| | - Jisu Kim
- Physical Activity and Performance Institute (PAPI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (J.K.); (H.-Y.P.); (W.-S.J.)
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Hun-Young Park
- Physical Activity and Performance Institute (PAPI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (J.K.); (H.-Y.P.); (W.-S.J.)
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Won-Sang Jung
- Physical Activity and Performance Institute (PAPI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (J.K.); (H.-Y.P.); (W.-S.J.)
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Kiwon Lim
- Department of Physical Education, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea;
- Physical Activity and Performance Institute (PAPI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (J.K.); (H.-Y.P.); (W.-S.J.)
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2450-3949
| |
Collapse
|
35
|
Li C, Liu H, Yang J, Mu J, Wang R, Zhao X. Effect of soybean milk fermented with Lactobacillus plantarum HFY01 isolated from yak yogurt on weight loss and lipid reduction in mice with obesity induced by a high-fat diet. RSC Adv 2020; 10:34276-34289. [PMID: 35519026 PMCID: PMC9056763 DOI: 10.1039/d0ra06977a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/09/2020] [Indexed: 01/28/2023] Open
Abstract
Soybean milk fermented with Lactobacillus plantarum HFY01 (LP-HFY01) was used for weight and lipid reduction in mice with obesity induced by a high-fat diet. We evaluated the gastrointestinal tolerance in vitro, organ index, body fat rate, pathological changes, serum index, mRNA expression and changes of isoflavones in soybean milk. Results indicated that LP-HFY01 exhibited good tolerance to pH 3.0 artificial gastric juice (69.87 ± 0.04%) and 0.3% bile salt (15.94 ± 0.3%). LP-HFY01-fermented soybean milk reduced the body fat rate and liver index of obese mice (p < 0.05). Organ sections showed that LP-HFY01-fermented soybean milk improved fatty degeneration and liver cell damage caused by a high-fat diet. LP-HFY01-fermented soybean milk inhibited increases in low-density lipoprotein cholesterol (LDL-c), triglyceride (TG), alkaline phosphatase (AKP), and glutamic oxaloacetic transaminase (GOT) and the decrease in high-density lipoprotein cholesterol (HDL-c) in the serum of obese mice, and inhibited CCAAT/enhancer-binding protein-α (C/EBP-α) and peroxisome proliferator-activated receptor-γ (PPAR-γ) mRNA expression, as well as activated cuprozinc-superoxide dismutase (SOD1) and lipoprotein lipase (LPL) mRNA expression in the liver and epididymal fat of obese mice (p < 0.05). Daidzin, glycitin, daidzein, glycitein, genistein, and genistin contents in soybean milk were determined before and after fermentation by high-performance liquid chromatography (HPLC); the daidzin and genistin contents in the fermented soybean milk decreased, whereas the daidzein and genistein contents increased significantly. Therefore, the LP-HFY01-fermented soybean milk strongly inhibits obesity induced by a high-fat diet, and shows good potential for utilization.
Collapse
Affiliation(s)
- Chong Li
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 China +86-23-6265-3650
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education Chongqing 400067 China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education Chongqing 400067 China
| | - Huilin Liu
- Department of Clinical Nutrition, Chongqing University Three Gorges Hospital Chongqing 500101 China
| | - Jiao Yang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 China +86-23-6265-3650
- College of Biological and Chemical Engineering, Chongqing University of Education Chongqing 400067 China
| | - Jianfei Mu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 China +86-23-6265-3650
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education Chongqing 400067 China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education Chongqing 400067 China
| | - Ranran Wang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 China +86-23-6265-3650
- College of Biological and Chemical Engineering, Chongqing University of Education Chongqing 400067 China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 China +86-23-6265-3650
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education Chongqing 400067 China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education Chongqing 400067 China
| |
Collapse
|
36
|
Muangritdech N, Hamlin MJ, Sawanyawisuth K, Prajumwongs P, Saengjan W, Wonnabussapawich P, Manimmanakorn N, Manimmanakorn A. Hypoxic training improves blood pressure, nitric oxide and hypoxia-inducible factor-1 alpha in hypertensive patients. Eur J Appl Physiol 2020; 120:1815-1826. [PMID: 32524226 DOI: 10.1007/s00421-020-04410-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE To examine the effects of intermittent hypoxic breathing at rest (IHR) or during exercise (IHT) on blood pressure and nitric oxide metabolites (NOx) and hypoxia-inducible factor-1 alpha levels (HIF-1α) over a 6-week period. METHODS 47 hypertensive patients were randomly allocated to three groups: hypertensive control (CON: n = 17; IHR: n = 15 and IHT: n = 15. The CON received no intervention; whereas, IH groups received eight events of hypoxia (FIO2 0.14), and normoxia (FIO2 0.21), 24-min hypoxia and 24-min normoxia, for 6 weeks. The baseline data were collected 2 days before the intervention; while, the post-test data were collected at days 2 and 28 after the 6-week intervention. RESULTS We observed a significant decrease of the SBP in both IH groups: IHR (- 12.0 ± 8.0 mmHg, p = 0.004 and - 9.9 ± 8.8 mmHg, p = 0.028, mean ± 95% CI) and IHT (- 13.0 ± 7.8 mmHg, p = 0.002 and - 10.0 ± 8.4 mmHg, p = 0.016) at days 2 and 28 post-intervention, respectively. Compared to CON, IHR and IHT had increased of NOx (IHR; 8.5 ± 7.6 μmol/L, p = 0.031 and IHT; 20.0 ± 9.1 μmol/L, p < 0.001) and HIF-1α (IHR; 170.0 ± 100.0 pg/mL, p = 0.002 and IHT; 340.5 ± 160.0 pg/mL, p < 0.001). At 2 days post-intervention, NOx and HIF-1α were negatively correlated with SBP in IHT. CONCLUSION IH programs may act as an alternative therapeutic strategy for hypertension patients probably through elevation of NOx and HIF-1α production.
Collapse
Affiliation(s)
- Nattha Muangritdech
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Michael J Hamlin
- Department of Tourism, Sport and Society, Lincoln University, Lincoln, New Zealand
| | | | - Piya Prajumwongs
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wisutthida Saengjan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Preetiwat Wonnabussapawich
- Sport and Exercise Science Program, Faculty of Science and Technology, Nakhonratchasima Rajabhat University, Nakhon Ratchasima, Thailand
| | - Nuttaset Manimmanakorn
- Department of Rehabilitation, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Apiwan Manimmanakorn
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
37
|
Chacaroun S, Borowik A, Doutreleau S, Belaidi E, Wuyam B, Tamisier R, Pépin JL, Flore P, Verges S. Cardiovascular and metabolic responses to passive hypoxic conditioning in overweight and mildly obese individuals. Am J Physiol Regul Integr Comp Physiol 2020; 319:R211-R222. [PMID: 32609532 DOI: 10.1152/ajpregu.00311.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although severe intermittent hypoxia (IH) is well known to induce deleterious cardiometabolic consequences, moderate IH may induce positive effects in obese individuals. The present study aimed to evaluate the effect of two hypoxic conditioning programs on cardiovascular and metabolic health status of overweight or obese individuals. In this randomized single-blind controlled study, 35 subjects (54 ± 9.3 yr, 31.7 ± 3.5 kg/m2) were randomized into three 8-wk interventions (three 1-h sessions per week): sustained hypoxia (SH), arterial oxygen saturation ([Formula: see text]) = 75%; IH, 5 min [Formula: see text] = 75% - 3 min normoxia; normoxia. Ventilation, heart rate, blood pressure, and tissue oxygenation were measured during the first and last hypoxic conditioning sessions. Vascular function, blood glucose and insulin, lipid profile, nitric oxide metabolites, and oxidative stress were evaluated before and after the interventions. Both SH and IH increased ventilation in hypoxia (+1.8 ± 2.1 and +2.3 ± 3.6 L/min, respectively; P < 0.05) and reduced normoxic diastolic blood pressure (-12 ± 15 and -13 ± 10 mmHg, respectively; P < 0.05), whereas changes in normoxic systolic blood pressure were not significant (+3 ± 9 and -6 ± 13 mmHg, respectively; P > 0.05). IH only reduced heart rate variability (e.g., root-mean-square difference of successive normal R-R intervals in normoxia -21 ± 35%; P < 0.05). Both SH and IH induced no significant change in body mass index, vascular function, blood glucose, insulin and lipid profile, nitric oxide metabolites, or oxidative stress, except for an increase in superoxide dismutase activity following SH. This study indicates that passive hypoxic conditioning in obese individuals induces some positive cardiovascular and respiratory improvements despite no change in anthropometric data and even a reduction in heart rate variability during IH exposure.
Collapse
Affiliation(s)
- Samarmar Chacaroun
- HP2 laboratory, Univiversité Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Anna Borowik
- HP2 laboratory, Univiversité Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Stephane Doutreleau
- HP2 laboratory, Univiversité Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Elise Belaidi
- HP2 laboratory, Univiversité Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Bernard Wuyam
- HP2 laboratory, Univiversité Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Renaud Tamisier
- HP2 laboratory, Univiversité Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Jean-Louis Pépin
- HP2 laboratory, Univiversité Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Patrice Flore
- HP2 laboratory, Univiversité Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Samuel Verges
- HP2 laboratory, Univiversité Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
38
|
Du X, Girard O, Fan RY, Ma F. Effects of Active and Passive Hypoxic Conditioning for 6 Weeks at Different Altitudes on Blood Lipids, Leptin, and Weight in Rats. High Alt Med Biol 2020; 21:243-248. [PMID: 32486854 DOI: 10.1089/ham.2020.0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Du, Xia, Olivier Girard, Rong yun Fan, and Fuhai Ma. Effects of active and passive hypoxic conditioning for 6 weeks at different altitudes on blood lipids, leptin, and weight in rats. High Alt Med Biol. 21:243-248, 2020. Objective: To compare the effects of 6 weeks of passive and active hypoxia exposure at different altitudes on lipid metabolism, leptin, and weight in rats. Materials and Methods: Eighty 9-week-old male Wistar rats were assigned to either non-exercise or exercise groups. Each group was subdivided into four categories (n = 10) based on hypoxic conditions: 0, 2200, 2200 + 3500, and 3500 m. Rats in the exercise group trained on a treadmill at a speed of 20-22 m/min (0° incline) for 90 minutes, 5 days per week for 6 weeks. Serum lipid and leptin levels and weight were measured following the intervention. Results: Total cholesterol (-8.2% ± 3.5%), low-density lipoproteins (-29.8% ± 8.1%), and triglyceride (TG) levels (-17.2% ± 3.8%) were lower, and high-density lipoproteins (+7.4% ± 4.0%) higher, in exercise versus non-exercise groups (all p < 0.001), independent of condition. TG levels were lower at altitude (-13.0% ± 27.3%, -10.9% ± 24.3%, and -9.2% ± 20.9% at 2200, 2200 + 3500, and 3500 m, respectively) compared to 0 m (p < 0.001). Hypoxic exposure decreased leptin with lower values at 2200 + 3500 m and 3500 m compared to 0 m (p < 0.05). Weight was lower in exercise than non-exercise groups (-8.2% ± 21.0%; p < 0.001), and at altitude (-2.7% ± 2.6%, -5.5% ± 3.7%, and -5.7% ± 2.7% at 2200, 2200 + 3500, and 3500 m, respectively) compared to 0 m. Conclusion: Regular aerobic exercise led to more favorable responses for lipid metabolism and weight control than the oxygenation conditions the animals are in.
Collapse
Affiliation(s)
- Xia Du
- Qinghai Provincial Sports Bureau, Qinghai Institute of Sports Science, Xi Ning, China.,China National Sports Bureau, Key Lab of Plateau Training in China General Administration of Sport, Xi Ning, China.,Qinghai Provincial Department of Science and Technology, Excellent Key Lab of Plateau Physical Education in Qinghai Province, Xi Ning, China
| | - Olivier Girard
- School of Human Sciences, Exercise and Sport Science, The University of Western Australia, Crawley, Australia
| | - Rong Yun Fan
- Qinghai Provincial Sports Bureau, Qinghai Institute of Sports Science, Xi Ning, China.,China National Sports Bureau, Key Lab of Plateau Training in China General Administration of Sport, Xi Ning, China.,Qinghai Provincial Department of Science and Technology, Excellent Key Lab of Plateau Physical Education in Qinghai Province, Xi Ning, China
| | - Fuhai Ma
- Qinghai Provincial Sports Bureau, Qinghai Institute of Sports Science, Xi Ning, China.,China National Sports Bureau, Key Lab of Plateau Training in China General Administration of Sport, Xi Ning, China.,Qinghai Provincial Department of Science and Technology, Excellent Key Lab of Plateau Physical Education in Qinghai Province, Xi Ning, China
| |
Collapse
|
39
|
Park HY, Jung WS, Kim J, Hwang H, Lim K. Twelve Weeks of Aerobic Exercise at the Lactate Threshold Improves Autonomic Nervous System Function, Body Composition, and Aerobic Performance in Women with Obesity. J Obes Metab Syndr 2020; 29:67-75. [PMID: 32045515 PMCID: PMC7118007 DOI: 10.7570/jomes19063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022] Open
Abstract
Background The present study examined the effects of a prolonged exercise intervention at the lactate threshold (LT) on body composition, aerobic performance, and the autonomic nervous system (ANS) in women with obesity. Methods A total of 36 obese Korean women aged 36 to 55 years (mean±standard deviation, 44.8±5.2 years) were randomly assigned to a control group (CON, n=18) or an experimental group (EXP, n=18); and EXP underwent aerobic exercise training three times a week at a heart rate corresponding to the LT (HR_LT) for 12 weeks. All dependent variables (body composition, aerobic performance, and ANS function parameters) were evaluated before and after training. Results Compared with the CON group, the EXP group showed significant improvement in body composition (body weight, -4.57 vs. -2.40 kg; body mass index, -1.79 vs. -0.96 kg/m2; %body fat, -4.63 vs. -1.41; fat-free mass, 3.24 vs. -0.08 kg), aerobic performance (oxygen consumption at LT, 5.74 vs. 0.12 mL/kg/min; maximal oxygen consumption, 5.41 vs. 2.14 mL/kg/min; treadmill speed at HR_LT, 1.40 vs. 0.29 km/hr; bicycle load at HR_LT, 18.62 vs. 4.52 w; and ANS function (mean RR, 50.83 vs. -15.04 ms; standard deviation of NN intervals, 5.08 vs. -0.55 ms; root mean square of successive differences, 6.42 vs. 1.87 ms; total power, 0.34 vs. 0.10 ms2; high frequency, 0.32 vs. -0.04 ms2; low frequency/high frequency, -0.09 vs. 0.01). Conclusion Aerobic exercise at the LT for 12 weeks is a practical method of improving body composition, aerobic performance, and ANS function for women with obesity.
Collapse
Affiliation(s)
- Hun-Young Park
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul, Korea.,Physical Activity and Performance Institute, Konkuk University, Seoul, Korea
| | - Won-Sang Jung
- Physical Activity and Performance Institute, Konkuk University, Seoul, Korea
| | - Jisu Kim
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul, Korea.,Physical Activity and Performance Institute, Konkuk University, Seoul, Korea
| | - Hyejung Hwang
- Physical Activity and Performance Institute, Konkuk University, Seoul, Korea
| | - Kiwon Lim
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul, Korea.,Physical Activity and Performance Institute, Konkuk University, Seoul, Korea.,Department of Physical Education, Konkuk University, Seoul, Korea
| |
Collapse
|
40
|
Hypoxia training improves hepatic steatosis partly by downregulation of CB1 receptor in obese mice. Biochem Biophys Res Commun 2020; 525:639-645. [PMID: 32122652 DOI: 10.1016/j.bbrc.2020.02.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/21/2020] [Indexed: 12/14/2022]
Abstract
Hypoxia training (HT) can reduce body weight and improve fatty liver. However, the mechanism is not clear. A previous study indicated that HT-induced weight loss might be associated with the endocannabinoid system (ECS), which has also been reported recently to be involved in the persistent lipid mediators after weight loss. The present study investigated the effects of HT, a new prospective weight-loss method, on nutritionally obese mice and demonstrated that HT significantly reduced body weight, fat mass, transcriptional expression of liver endocannabinoid receptor 1 (CB1), biosynthetic enzyme diacylglycerol lipase α (DAGLα) and improved the transcriptional expression of degrading enzyme monoacylglycerol lipase (MAGL). Liver endocannabinoids 2-arachidonoylglycerol (2-AG) but not anandamide (AEA) was evidently decreased in response to HT. Simultaneously, HT significantly reduced liver index, serum alanine aminotransferase (ALT) and liver fat contents. Western blot showed decreased expression of liver CB1, sterol regulatory element-binding protein-1 (SREBP-1), peroxisome proliferator-activated receptor γ (PPARγ) and increased expression of adipose triglyceride lipase (ATGL) and carnitine palmitoyltransferase-1 (CPT-1) levels after HT. However, intraperitoneal injection of CB1 receptor agonist WIN55212-2 offset the benefits by which HT reduced hepatic fat synthesis, with significant increased protein expression of SREBP-1 and PPARγ. Taken together, these findings reported the alleviation of obesity and hepatic steatosis through HT and provided a putative molecular mechanism by inhibiting the CB1-mediated fat synthesis.
Collapse
|
41
|
Susta D, Glazachev OS, Zapara MA, Dudnik EN, Samartseva VG. Redox Homeostasis in Humans Exposed to Intermittent Hypoxia-Normoxia and to Intermittent Hypoxia-Hyperoxia. High Alt Med Biol 2020; 21:45-51. [PMID: 32096667 DOI: 10.1089/ham.2019.0059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aim: Exposure to hypoxia is known to increase oxidative stress and to impair antioxidant defenses in humans. The aim of the study was to measure oxidative stress and antioxidant capacity in healthy humans after being acutely exposed to both intermittent hypoxia-normoxia (IHN) and intermittent hypoxia-hyperoxia (IHH). Methods: Twenty-one healthy, young male participants were exposed to both IHN and IHH (fraction of inspired oxygen [FIO2] 0.11 for up to 7 minutes followed by 3-5 minutes of exposure to normoxia (room air) or hyperoxia, FIO2 0.3-0.35) in a crossover design study. In each participant, oxidative stress and antioxidant capacity were measured before and after each exposure in both experimental conditions. Results: After IHN, compared with baseline, neither oxidative stress (289.1 ± 63.2 vs. 262.2 ± 85.2 UCarr) nor antioxidant capacity (2376.1 ± 452.9 vs. 2525.0 ± 400.7 UCor) was significantly different. After IHH, neither oxidative stress (285.1 ± 94.2 vs. 277.5 ± 86.7 UCarr) nor antioxidant capacity (2653.6 ± 492.7 vs. 2568.4 ± 427.4 UCor) was significantly different compared with baseline. When the two studied exposure modalities were compared, there was no significant difference between groups with respect to both oxidative stress and antioxidant capacity. Conclusions: These data suggest that exposing healthy individuals to short-term IHN and IHH does not increase oxidative stress and it does not impair antioxidant defenses.
Collapse
Affiliation(s)
- Davide Susta
- Physiology Department, IM Sechenov Medical University, Moscow, Russia.,School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | | | | | | | | |
Collapse
|
42
|
Merrill RM. Explaining the Inverse Association between Altitude and Obesity. J Obes 2020; 2020:1946723. [PMID: 32566273 PMCID: PMC7285248 DOI: 10.1155/2020/1946723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To better understand the inverse association between altitude and adult obesity. METHODS An ecological study design was used, involving 3,108 counties in the contiguous United States. Data were from several national sources, and assessment involved various statistical techniques, including multiple regression analysis. RESULTS Living in counties at higher altitude is associated with lower adult obesity. Compared with counties <500 meters, the percent of adult obesity decreases by 5.18% at 500-999 meters, 9.69% at 1,000-1,499 meters, 16.77% at 1,500-1,999 meters, 24.14% at 2,000-2,499 meters, and 35.28% at ≥2,500 meters. After adjusting for physical inactivity, smoking, and other variables, corresponding decreases in adult obesity with higher altitude groupings are 3.87%, 5.64%, 8.03%, 11.41%, and 17.54%, respectively. Various mechanisms are presented as possible explanations for the association between higher altitude and lower obesity. In addition, altitude may indirectly influence adult obesity, primarily through its relationship with physical inactivity and smoking. In an adjusted regression model, adult obesity was most strongly associated with physical inactivity followed by adult smoking and then altitude. Together they explain 39.04% of the variation in adult obesity. After accounting for these variables, sunlight, precipitation, ambient air temperature, education, income, food insecurity, limited access to healthy foods, race, sex, and rural living explain an additional 4.68% of the variation in adult obesity. CONCLUSIONS The inverse association between altitude and adult obesity remains significant after adjustment for several variables.
Collapse
Affiliation(s)
- Ray M. Merrill
- Department of Public Health, College of Life Sciences, Brigham Young University, Provo, USA
| |
Collapse
|
43
|
Park HY, Kim S, Kim Y, Park S, Nam SS. Effects of exercise training at lactate threshold and detraining for 12 weeks on body composition, aerobic performance, and stress related variables in obese women. J Exerc Nutrition Biochem 2019; 23:22-28. [PMID: 31743978 PMCID: PMC6823647 DOI: 10.20463/jenb.2019.0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 11/22/2022] Open
|
44
|
Hobbins L, Girard O, Gaoua N, Hunter S. Acute Psychophysiological Responses to Cyclic Variation of Intermittent Hypoxic Exposure in Adults with Obesity. High Alt Med Biol 2019; 20:262-270. [DOI: 10.1089/ham.2019.0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Liam Hobbins
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
| | - Olivier Girard
- Murdoch Applied Sports Science (MASS) Laboratory, School of Psychology and Exercise Science, Murdoch University, Perth, Australia
| | - Nadia Gaoua
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
| | - Steve Hunter
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
| |
Collapse
|
45
|
Camacho-Cardenosa M, Camacho-Cardenosa A, Timón R, Olcina G, Tomas-Carus P, Brazo-Sayavera J. Can Hypoxic Conditioning Improve Bone Metabolism? A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16101799. [PMID: 31117194 PMCID: PMC6572511 DOI: 10.3390/ijerph16101799] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022]
Abstract
Among other functions, hypoxia-inducible factor plays a critical role in bone–vascular coupling and bone formation. Studies have suggested that hypoxic conditioning could be a potential nonpharmacological strategy for treating skeletal diseases. However, there is no clear consensus regarding the bone metabolism response to hypoxia. Therefore, this review aims to examine the impact of different modes of hypoxia conditioning on bone metabolism. The PubMed and Web of Science databases were searched for experimental studies written in English that investigated the effects of modification of ambient oxygen on bone remodelling parameters of healthy organisms. Thirty-nine studies analysed the effect of sustained or cyclic hypoxia exposure on genetic and protein expression and mineralisation capacity of different cell models; three studies carried out in animal models implemented sustained or cyclic hypoxia; ten studies examined the effect of sustained, intermittent or cyclic hypoxia on bone health and hormonal responses in humans. Different modes of hypoxic conditioning may have different impacts on bone metabolism both in vivo and in vitro. Additional research is necessary to establish the optimal cyclical dose of oxygen concentration and exposure time.
Collapse
Affiliation(s)
| | | | - Rafael Timón
- Faculty of Sport Science, University of Extremadura, 10003 Cáceres, Spain.
| | - Guillermo Olcina
- Faculty of Sport Science, University of Extremadura, 10003 Cáceres, Spain.
| | - Pablo Tomas-Carus
- Departamento de Desporto e Saúde, Escola de Ciência e Tecnologia, Universidade de Évora, 7000-812 Évora, Portugal.
- Comprehensive Health Research Centre (CHRC), University of Évora, 7000-812 Évora, Portugal.
| | - Javier Brazo-Sayavera
- Instituto Superior de Educación Física, Universidad de la República, 40000 Rivera, Uruguay.
- Polo de Desarrollo Universitario EFISAL, Universidad de la República, 40000 Rivera, Uruguay.
| |
Collapse
|
46
|
Ramos-Campo DJ, Girard O, Pérez A, Rubio-Arias JÁ. Additive stress of normobaric hypoxic conditioning to improve body mass loss and cardiometabolic markers in individuals with overweight or obesity: A systematic review and meta-analysis. Physiol Behav 2019; 207:28-40. [PMID: 31047948 DOI: 10.1016/j.physbeh.2019.04.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 02/07/2023]
Abstract
We performed a systematic review and meta-analysis to determine if hypoxic conditioning, compared to similar training near sea level, maximizes body mass loss and further improves cardiometabolic markers in overweight and obese individuals. A systematic search of PubMed, Web of Science and the Cochrane Library databases (up to January 2019) was performed. This analysis included randomized controlled trials with humans with overweight or obesity assessing the effects of HC on body mass loss or cardiometabolic markers. A subgroup analysis was performed to examine if HC effects differed between individuals with overweight or obesity. 13 articles (336 participants) qualified for inclusion. HC significantly decreased body mass (p = .01), fat mass (p = .04), waist/hip ratio (p < .001), waist (p < .001), LDL (p = .01), diastolic (p < .01) and systolic blood pressure (p < .01) with these effects not being larger than equivalent normoxic interventions. There were trends towards higher triglycerides decrement (p = .06) and higher muscle mass gain in hypoxic (p = .08) compared with normoxic condition. Also, the two BMI categories displayed no difference in the magnitude of the responses. Compared to normoxic equivalent, HC provides greater reductions in triglycerides and greater muscle growth, while body mass changes are similar. In addition, HC responses were essentially similar between individuals with overweight or obesity.
Collapse
Affiliation(s)
- Domingo J Ramos-Campo
- Department of Physical Activity and Sports Sciences, Faculty of Sports, UCAM, Catholic University San Antonio, Murcia, Spain.
| | - Olivier Girard
- Murdoch Applied Sport Science Laboratory, Murdoch University, Perth, Australia
| | - Andrés Pérez
- UCAM Research Centre for High Performance Sport, Catholic University San Antonio, Murcia, Spain
| | - Jacobo Á Rubio-Arias
- Department of Physical Activity and Sports Sciences, Faculty of Sports, UCAM, Catholic University San Antonio, Murcia, Spain
| |
Collapse
|
47
|
Park HY, Jung WS, Kim J, Lim K. Twelve weeks of exercise modality in hypoxia enhances health-related function in obese older Korean men: A randomized controlled trial. Geriatr Gerontol Int 2019; 19:311-316. [PMID: 30788892 DOI: 10.1111/ggi.13625] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/06/2018] [Accepted: 01/01/2019] [Indexed: 12/19/2022]
Abstract
AIM The aim of the present study was to examine the effect of exercise intervention in hypoxia as a novel treatment method for obesity in older men. METHODS A total of 24 obese 65-70-year-old Korean men (66.5 ± 0.8 years) were randomly assigned to undergo hypoxic training (n = 12) or normoxic training (n = 12), and all participants carried out an exercise intervention composed of aerobic exercise on a treadmill (30 min) and bicycle (30 min), and resistance exercise (30-40 min) in normoxia, and 3000-m normobaric hypoxia separately for a total of 12 weeks, three times a week. Health-related dependent variables (body composition, physical fitness, pulmonary function and heart rate variability) were evaluated at pre- and post-exercise intervention. RESULTS Hypoxic training showed more improved body composition (bodyweight -5.68 vs -3.16 kg, %body fat -5.50 vs -1.97%, fat-free mass 2.09 vs 1.06 kg), physical fitness (chair sit-to-stand 5.67 vs 4.58, pegboard 3.58 vs 2.17, tandem test -1.74 vs -1.31 s, one leg standing 6.27 vs 3.71 s), pulmonary function (forced vital capacity 0.15 vs 0.02 L, forced expiratory volume in 1 s 0.23 vs 0.01 L, percent of forced expiratory volume in 1 s 0.87 vs 0.08, maximal voluntary ventilation 5.26 vs 2.22 L) and heart rate variability (high frequency 0.94 vs 0.19 ms2 , low frequency/high frequency -0.28 vs -0.08, salivary cortisol -0.13 vs -0.04 μg/dL) than normoxic training. CONCLUSIONS Compared with normoxic training, hypoxic training is a novel and successful health promotion method in obese older populations. Geriatr Gerontol Int 2019; 19: 311-316.
Collapse
Affiliation(s)
- Hun-Young Park
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Korea
| | - Won-Sang Jung
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Korea
| | - Jisu Kim
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Korea
| | - Kiwon Lim
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Korea.,Department of Physical Education, Konkuk University, Seoul, Korea
| |
Collapse
|
48
|
Camacho-Cardenosa M, Camacho-Cardenosa A, Brazo-Sayavera J, Guerrero-Flores S, Olcina G, Timón R. Repeated-sprint training under cyclic hypoxia improves body composition in healthy women. J Sports Med Phys Fitness 2019; 59:1700-1708. [PMID: 30722657 DOI: 10.23736/s0022-4707.18.09368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND To investigate if the cyclic hypoxia exposure combined with repeat-sprints training would be more effective in reducing body fat of health women than the same protocols performed in normoxia. METHODS Twelve female volunteers were randomly divided into two groups: 1) repeated-sprint in hypoxia (RSH; N.=6; FiO2: 17.2%); and 2) repeated-sprint in normoxia (RSN; N.=6; FiO2: 20.9%). During 6 weeks, both groups undertook 30 seconds of all-out (130%Wmax) followed by 3 minutes of active recovery at 55-65%Wmax on a cycle ergometer. Anthropometric, body composition and biochemical parameters were assessed at baseline and after intervention. RESULTS RSH experimented a greater significant decrease of body mass index (P=0.017) and percentage of fat mass (P=0.05) respect to normoxia group. Total cholesterol of RSN experimented a significant (P=0.001) reduction (-12.66±14.35) compared with RSH (24.00±14.61). CONCLUSIONS Repeated-sprint training under normobaric cyclic hypoxia during 6-weeks could be a more effective prevention program because it causes a higher decrease in body mass index and fat mass compared with the same training in normoxic conditions in healthy women.
Collapse
Affiliation(s)
| | | | | | | | - Guillermo Olcina
- Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain
| | - Rafael Timón
- Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain
| |
Collapse
|
49
|
Wang R, Guo S, Tian H, Huang Y, Yang Q, Zhao K, Kuo CH, Hong S, Chen P, Liu T. Hypoxic Training in Obese Mice Improves Metabolic Disorder. Front Endocrinol (Lausanne) 2019; 10:527. [PMID: 31440207 PMCID: PMC6694298 DOI: 10.3389/fendo.2019.00527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/17/2019] [Indexed: 12/29/2022] Open
Abstract
Hypoxic training has been reported to lower obesity morbidity without clear underlying mechanisms. This study investigates the effect of hypoxic training on metabolic changes, particularly, on liver metabolism of high fat diet (HFD)-induced obese mice. We compared the hypoxic training group with normoxic sedentary, normoxic training, and hypoxic sedentary groups. Body weight, fat mass, glucose tolerance and liver physiology were determined after 4 weeks intervention. In both normoxic training and hypoxic training groups, body weight was lower than the normoxic sedentary group, with less fat mass. Insulin sensitivity was improved after hypoxic training. Moreover, liver metabolomics revealed insights into the protective effect of hypoxic training on HFD-induced fatty liver. Taken together, these findings provide a molecular metabolic mechanism for hypoxic training.
Collapse
Affiliation(s)
- Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Ru Wang
| | - Shanshan Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Haili Tian
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yiru Huang
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Qin Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Kewei Zhao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Peijie Chen
| | - Tiemin Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Tiemin Liu
| |
Collapse
|
50
|
Taralov ZZ, Terziyski KV, Dimov PK, Marinov BI, Kostianev SS. Assessment of the impact of 10-day intermittent hypoxia on the autonomic control measured by heart rate variability. Physiol Int 2018; 105:386-396. [DOI: 10.1556/2060.105.2018.4.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Purpose
The purpose of this study is to establish the alterations in the activity of the autonomic nervous system (ANS) via heart rate variability (HRV) in subjects exposed to 1 h of exogenous hypoxia for 10 consecutive days.
Methods
Twelve healthy non-smoker males at mean age of 29.8 ± 7.4 (mean ± SD) breathed hypoxic air delivered through hypoxicator (FiО2 = 12.3% ± 1.5%) for 1 h in 10 consecutive days. Pulse oximetry and electrocardiography were monitored during the visit and HRV was calculated for the entire 1-h hypoxic period.
Results
Comparing the last hypoxic visit to the first, subjects had higher standard deviation of normal-to-normal interbeat intervals (SDNNs) (65.7 ± 32.5 vs. 81.1 ± 32.0 ms, p = 0.013) and root mean square of successive R–R interval difference (RMSSD) (58.1 ± 30.9 vs. 76.5 ± 34.6 ms, p = 0.029) as well as higher lnTotal power (8.1 ± 1.1 vs. 8.5 ± 0.9 ms2, p = 0.015) and high frequency (lnHF) (6.8 ± 1.3 vs. 7.5 ± 1.2 ms2, p = 0.05) and lower LF/HF (2.4 ± 1.4 vs. 1.5 ± 1.0, p = 0.026). Changes in saturation (87.0 ± 7.1 vs. 90.8 ± 5.0%, p = 0.039) and heart rate (67.1 ± 8.9 vs. 62.5 ± 6.0 beats/min, p = 0.040) were also observed.
Conclusions
Intermittent hypoxic training consisting of 1-h hypoxic exposure for 10 consecutive days could diminish the effects of acute exogenous hypoxia on the ANS characterized by an increased autonomic control (SDNN and total power) with augmentation of the parasympathetic nervous system activity (increased RMSSD and HF and decreased LF/HF). Therefore, it could be applied as a pre-acclimatization technique aiming at an increase in the autonomic control and oxygen saturation in subjects with upcoming sojourn to high altitude.
Collapse
Affiliation(s)
- ZZ Taralov
- 1 Department of Pathophysiology, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - KV Terziyski
- 1 Department of Pathophysiology, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - PK Dimov
- 1 Department of Pathophysiology, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - BI Marinov
- 1 Department of Pathophysiology, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - SS Kostianev
- 1 Department of Pathophysiology, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|