1
|
Demirel S. Vasorelaxant effects of biochemical constituents of various medicinal plants and their benefits in diabetes. World J Diabetes 2024; 15:1122-1141. [PMID: 38983824 PMCID: PMC11229960 DOI: 10.4239/wjd.v15.i6.1122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/07/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Endothelial function plays a pivotal role in cardiovascular health, and dysfunction in this context diminishes vasorelaxation concomitant with endothelial activity. The nitric oxide-cyclic guanosine monophosphate pathway, prostacyclin-cyclic adenosine monophosphate pathway, inhibition of phosphodiesterase, and the opening of potassium channels, coupled with the reduction of calcium levels in the cell, constitute critical mechanisms governing vasorelaxation. Cardiovascular disease stands as a significant contributor to morbidity and mortality among individuals with diabetes, with adults afflicted by diabetes exhibiting a heightened cardiovascular risk compared to their non-diabetic counterparts. A plethora of medicinal plants, characterized by potent pharmacological effects and minimal side effects, holds promise in addressing these concerns. In this review, we delineate various medicinal plants and their respective biochemical constituents, showcasing concurrent vasorelaxant and anti-diabetic activities.
Collapse
Affiliation(s)
- Sadettin Demirel
- Medicine School, Physiology Department, Bursa Uludag University, Bursa 16059, Türkiye
| |
Collapse
|
2
|
Islam MR, Dhar PS, Akash S, Syed SH, Gupta JK, Gandla K, Akter M, Rauf A, Hemeg HA, Anwar Y, Aljohny BO, Wilairatana P. Bioactive molecules from terrestrial and seafood resources in hypertension treatment: focus on molecular mechanisms and targeted therapies. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:45. [PMID: 37902881 PMCID: PMC10616036 DOI: 10.1007/s13659-023-00411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023]
Abstract
Hypertension (HTN), a complex cardiovascular disease (CVD), significantly impacts global health, prompting a growing interest in complementary and alternative therapeutic approaches. This review article seeks to provide an up-to-date and thorough summary of modern therapeutic techniques for treating HTN, with an emphasis on the molecular mechanisms of action found in substances found in plants, herbs, and seafood. Bioactive molecules have been a significant source of novel therapeutics and are crucial in developing and testing new HTN remedies. Recent advances in science have made it possible to understand the complex molecular mechanisms underlying blood pressure (BP)-regulating effects of these natural substances better. Polyphenols, flavonoids, alkaloids, and peptides are examples of bioactive compounds that have demonstrated promise in influencing several pathways involved in regulating vascular tone, reducing oxidative stress (OS), reducing inflammation, and improving endothelial function. The article explains the vasodilatory, diuretic, and renin-angiotensin-aldosterone system (RAAS) modifying properties of vital plants such as garlic and olive leaf. Phytochemicals from plants are the primary in traditional drug development as models for novel antihypertensive drugs, providing diverse strategies to combat HTN due to their biological actions. The review also discusses the functions of calcium channel blockers originating from natural sources, angiotensin-converting enzyme (ACE) inhibitors, and nitric oxide (NO) donors. Including seafood components in this study demonstrates the increased interest in using bioactive chemicals originating from marine sources to treat HTN. Omega-3 fatty acids, peptides, and minerals obtained from seafood sources have anti-inflammatory, vasodilatory, and antioxidant properties that improve vascular health and control BP. Overall, we discussed the multiple functions of bioactive molecules and seafood components in the treatment of HTN.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Sabeena Hussain Syed
- School of Pharmacy, Vishwakarma University, Survey No 2, 3,4, Kondhwa Main Rd, Laxmi Nagar, Betal Nagar, Kondhwa, Pune, Maharashtra, 411048, India
| | | | - Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, Chaitanya (Deemed to Be University), Himayath Nagar, Hyderabad, Telangana, 500075, India
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, 23561, Pakistan.
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21441, Kingdom of Saudi Arabia
| | - Bassam Oudh Aljohny
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21441, Kingdom of Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
3
|
Bioactive Natural Products against Systemic Arterial Hypertension: A Past 20-Year Systematic and Prospective Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8499625. [PMID: 35769156 PMCID: PMC9236778 DOI: 10.1155/2022/8499625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022]
Abstract
Background. Systemic arterial hypertension is one of the most common cardiovascular risks, corresponding to 45% of deaths involving CVDs. The use of natural products, such as medicinal plants, belongs to a millennial part of human therapeutics history and has been employed as an alternative anti-hypertensive treatment. Objective. The present review aims to prospect some natural products already experimentally assayed against arterial hypertension through scientific virtual libraries and patent documents over the past 20 years. Search strategy. This is a systematic review of the adoption of the PRISMA protocol and a survey of the scientific literature that synthesizes the results from published articles between 2001 and 2020 concerning the use of medicinal plants in the management of hypertension, including which parts of the plant or organism are used, as well as the mechanisms of action underlying the anti-hypertensive effect. Furthermore, a technological prospection was also carried out in patent offices from different countries in order to check technologies based on natural products claimed for the treatment or prevention of hypertension. Inclusion criteria. Scientific articles where a natural product had been experimentally assayed for anti-hypertensive activity (part of plants, plant extracts, and products derived from other organisms) were included. Data extraction and analysis. The selected abstracts of the articles and patent documents were submitted to a rigorous reading process. Those articles and patents that were not related to anti-hypertensive effects and claimed potential applications were excluded from the search. Results. Eighty specimens of biological species that showed anti-hypertensive activity were recovered, with 01 representative from the kingdom Fungi and 02 from the kingdom Protista, with emphasis on the families Asteraceae and Lamiaceae, with 6 representatives each. Leaves and aerial parts were the most used parts of the plants for the extraction of anti-hypertensive products, with maceration being the most used extraction method. Regarding phytochemical analyses, the most described classes of biomolecules in the reviewed works were alkaloids, terpenes, coumarins, flavonoids, and peptides, with the reduction of oxidative stress and the release of NO among the mechanisms of action most involved in this process. Regarding the number of patent filings, China was the country that stood out as the main one, with 813 registrations. Conclusion. The anti-hypertensive activity of natural products is still little explored in Western countries. Besides, China and India have shown more results in this area than other countries, confirming the strong influence of traditional medicine in these countries.
Collapse
|
4
|
Ethnopharmacological Survey on Treatment of Hypertension by Traditional Healers in Bukavu City, DR Congo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6684855. [PMID: 34335835 PMCID: PMC8289594 DOI: 10.1155/2021/6684855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 06/07/2021] [Accepted: 07/03/2021] [Indexed: 11/18/2022]
Abstract
Background Ethnopharmacological studies are relevant for sustaining and improving knowledge of traditional medicine within the framework of complementary/alternative therapeutic practices based solely on experience and observation across generations. Hypertension is a common cardiovascular disorder affecting more than 50% of older people in Africa (PLoS One. 2019; 14 (4): e0214934; published online on April 5, 2019, doi: 10.1371/journal.pone.0214934). Methods We conducted a cross-sectional survey from October 2014 to August 2015 with 18 renowned traditional healers from the city of Bukavu to capture botanical plant species and remedies used by herbalists to manage hypertension in the Democratic Republic of Congo. Results Respondents cited 41 plant species belonging to 25 botanical families. The ten most common plants are Allium sativum, Galinsoga ciliata, Moringa oleifera, Bidens pilosa, Persea americana, Piper capense, Catharanthus roseus, Rauvolfia vomitoria, Sida rhombifolia, and Vernonia amygdalina. The parts used are primary leaves (48.8%) formulated as oral decoctions (65.9%). Conclusion The literature review validated the use of 73.2% of the plants listed. Plants of high local use-value not supported by other studies deserve in-depth chemical and pharmacological studies.
Collapse
|
5
|
Tang F, Yan HL, Wang LX, Xu JF, Peng C, Ao H, Tan YZ. Review of Natural Resources With Vasodilation: Traditional Medicinal Plants, Natural Products, and Their Mechanism and Clinical Efficacy. Front Pharmacol 2021; 12:627458. [PMID: 33867985 PMCID: PMC8048554 DOI: 10.3389/fphar.2021.627458] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
For decades, chronic diseases including cardiovascular and cerebrovascular diseases (CCVDs) have plagued the world. Meanwhile, we have noticed a close association between CCVDs and vascular lesions, such as hypertension. More focus has been placed on TMPs and natural products with vasodilation and hypotension. TMPs with vasodilatory and hypotensive activities are mainly from Compositae, Lamiaceae, and Orchidaceae (such as V. amygdalina Del., T. procuinbens L., M. glomerata Spreng., K. galanga L., etc.) whereas natural products eliciting vasorelaxant potentials were primarily from flavonoids, phenolic acids and alkaloids (such as apigenin, puerarin, curcumin, sinomenine, etc.). Furthermore, the data analysis showed that the vasodilatory function of TMPs was mainly concerned with the activation of eNOS, while the natural products were primarily correlated with the blockage of calcium channel. Thus, TMPs will be used as alternative drugs and nutritional supplements, while natural products will be considered as potential therapies for CCVDs in the future. This study provides comprehensive and valuable references for the prevention and treatment of hypertension and CCVDs and sheds light on the further studies in this regard. However, since most studies are in vitro and preclinical, there is a need for more in-depth researches and clinical trials to understand the potential of these substances.
Collapse
Affiliation(s)
- Fei Tang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong-Ling Yan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Xia Wang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-Feng Xu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Zhu Tan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Verma T, Sinha M, Bansal N, Yadav SR, Shah K, Chauhan NS. Plants Used as Antihypertensive. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:155-184. [PMID: 33174095 PMCID: PMC7981375 DOI: 10.1007/s13659-020-00281-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/31/2020] [Indexed: 05/03/2023]
Abstract
Hypertension is a critical health problem and worse other cardiovascular diseases. It is mainly of two types: Primary or essential hypertension and Secondary hypertension. Hypertension is the primary possibility feature for coronary heart disease, stroke and renal vascular disease. Herbal medicines have been used for millions of years for the management and treatment of hypertension with minimum side effects. Over aim to write this review is to collect information on the anti-hypertensive effects of natural herbs in animal studies and human involvement as well as to recapitulate the underlying mechanisms, from the bottom of cell culture and ex-vivo tissue data. According to WHO, natural herbs/shrubs are widely used in increasing order to treat almost all the ailments of the human body. Plants are the regular industrial units for the invention of chemical constituents, they used as immunity booster to enhance the natural capacity of the body to fight against different health problems as well as herbal medicines and food products also. Eighty percent population of the world (around 5.6 billion people) consume medicines from natural plants for major health concerns. This review provides a bird's eye analysis primarily on the traditional utilization, phytochemical constituents and pharmacological values of medicinal herbs used to normalize hypertension i.e. Hibiscus sabdariffa, Allium sativum, Andrographis paniculata, Apium graveolens, Bidenspilosa, Camellia sinensis, Coptis chinensis, Coriandrum sativum, Crataegus spp., Crocus sativus, Cymbopogon citrates, Nigella sativa, Panax ginseng,Salviaemiltiorrhizae, Zingiber officinale, Tribulus terrestris, Rauwolfiaserpentina, Terminalia arjuna etc.
Collapse
Affiliation(s)
- Tarawanti Verma
- I.K. Gujral Punjab Technical University (IKGPTU), Jalandhar, Punjab India
| | - Manish Sinha
- Laureate Institute of Pharmacy, Kathog, Jwalamukhi, Kangra, Himachal Pradesh India
| | - Nitin Bansal
- Department of Pharmacology, ASBASJSM College of Pharmacy, BELA, Ropar, Punjab India
| | - Shyam Raj Yadav
- Department of Chemistry, S.P. Jain College (Veer Kunwar Singh University, Ara), Sasaram, Bihar India
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, NH#2, Mathura, Uttar Pradesh 281406 India
| | - Nagendra Singh Chauhan
- Drugs Testing Laboratory Avam Anusandhan Kendra, 1st Floor Govt. Ayurvedic Hospital Building, Govt. Ayurvedic College Campus G.E. Road, Raipur, Chhattisgarh 492010 India
| |
Collapse
|
7
|
Kuo T, Yang G, Chen T, Wu Y, Tran Nguyen Minh H, Chen L, Chen W, Huang M, Liang Y, Yang W. Bidens pilosa
: Nutritional value and benefits for metabolic syndrome. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.63] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Tien‐Fen Kuo
- Biotechnology Research Center Academia Sinica Taipei Taiwan
| | - Greta Yang
- Biotechnology Research Center Academia Sinica Taipei Taiwan
| | - Tzung‐Yan Chen
- Biotechnology Research Center Academia Sinica Taipei Taiwan
- Translational Research Center Academia Sinica Taipei Taiwan
| | - Yueh‐Chen Wu
- Biotechnology Research Center Academia Sinica Taipei Taiwan
| | - Hieu Tran Nguyen Minh
- Biotechnology Research Center Academia Sinica Taipei Taiwan
- Institute of Biotechnology National Taiwan University Taipei Taiwan
| | - Lin‐Shyan Chen
- Biotechnology Research Center Academia Sinica Taipei Taiwan
| | - Wen‐Chu Chen
- Biotechnology Research Center Academia Sinica Taipei Taiwan
- Department of Life Sciences National Chung‐Hsing University Taichung Taiwan
| | | | - Yu‐Chuan Liang
- Biotechnology Research Center Academia Sinica Taipei Taiwan
| | - Wen‐Chin Yang
- Biotechnology Research Center Academia Sinica Taipei Taiwan
- Translational Research Center Academia Sinica Taipei Taiwan
- Institute of Biotechnology National Taiwan University Taipei Taiwan
- Department of Life Sciences National Chung‐Hsing University Taichung Taiwan
- Institute of Pharmacology National Yang‐Ming University Taipei Taiwan
| |
Collapse
|
8
|
Michel J, Abd Rani NZ, Husain K. A Review on the Potential Use of Medicinal Plants From Asteraceae and Lamiaceae Plant Family in Cardiovascular Diseases. Front Pharmacol 2020; 11:852. [PMID: 32581807 PMCID: PMC7291392 DOI: 10.3389/fphar.2020.00852] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 05/22/2020] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases are one of the most prevalent diseases worldwide, and its rate of mortality is rising annually. In accordance with the current condition, studies on medicinal plants upon their activity on cardiovascular diseases are often being encouraged to be used in cardiovascular disease management, due to the availability of medicinal values in certain dedicated plants. This review was conducted based on two plant families, which are Asteraceae and Lamiaceae, to study on their action in cardiovascular disease relieving activities, to review the relationship between the phytochemistry of Asteraceae and Lamiaceae families and their effect on cardiovascular diseases, and to study their toxicology. The medicinal plants from these plant family groups are collected based on their effects on the mechanisms that affect the cardiovascular-related disease which are an antioxidant activity, anti-hyperlipidemic or hypocholesterolemia, vasorelaxant effect, antithrombotic action, and diuresis effect. In reference to various studies, the journals that conducted in vivo or in vitro experiments, which were used to prove the specific mechanisms, are included in this review. This is to ensure that the scientific value and the phytochemicals of the involved plants can be seen based on their activity. As a result, various plant species from both Asteraceae and Lamiaceae plant family have been identified and collected based on their study that has proven their effectiveness and uses in cardiovascular diseases. Most of the plants have an antioxidant effect, followed by anti-hyperlipidemia, vasorelaxant, antithrombotic, and diuretic effect from the most available to least available studies, respectively. These are the mechanisms that contribute to various cardiovascular diseases, such as heart attack, stroke, coronary heart disease, and hypertension. Further studies can be conducted on these plant species by identifying their ability and capability to be developed into a new drug or to be used as a medicinal plant in treating various cardiovascular diseases.
Collapse
Affiliation(s)
- Jennifer Michel
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Zahirah Abd Rani
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khairana Husain
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Shirsath NR, Goswami AK. Natural Phytochemicals and Their Therapeutic Role in Management of Several Diseases: A Review. CURRENT TRADITIONAL MEDICINE 2020. [DOI: 10.2174/2215083805666190807111817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction:These days, a lot of people face some health-related problems in day to day life. The conventional synthetic medicine is not effective enough to cure them alone. The conventional therapy for the management of these health-related issues involves the use of hazardous synthetic chemicals and surgical diagnosis, which have lots of serious side effects. It is necessary to conduct research on herbal medicines, this is an alternative approach to avoid the side effects of synthetic medicines to achieve high effectiveness, low cost and improve patient compliance.Methods:The present survey is an analysis of some of the available data on the use of plants with their biological source, active phytochemicals constituents and a probable activity/ mechanism of action of several classes of drugs. This work also focused on highlighting the advantages of natural medicines for maximum utilization.Results:This article aims to increase awareness about natural medicine and help people find a suitable herbal medicine for the treatment of specific diseases.Conclusion:This article also exhibits the scope for further process in the development of new natural substance for the management of several diseases.
Collapse
Affiliation(s)
- Nitin R. Shirsath
- University Institute of Chemical Technology (UICT), Kavayitri Bahinabai Chaudhari North Maharashtra University (KBCNMU), Jalgaon, Maharashtra-425001, India
| | - Ajaygiri K. Goswami
- University Institute of Chemical Technology (UICT), Kavayitri Bahinabai Chaudhari North Maharashtra University (KBCNMU), Jalgaon, Maharashtra-425001, India
| |
Collapse
|
10
|
Xuan TD, Khanh TD. Chemistry and pharmacology of Bidens pilosa: an overview. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2016; 46:91-132. [PMID: 32226639 PMCID: PMC7099298 DOI: 10.1007/s40005-016-0231-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/16/2016] [Indexed: 12/19/2022]
Abstract
Bidens pilosa L. is an edible herb and has been traditionally used for a wide range of ailments in many countries. The aim of this review is to present comprehensive information of the chemical constituents, nutraceutical and ethnomedical uses as well as the biological and pharmacological effects and toxicity of this plant based on 218 literary sources reported over 40 years. Major chemical constituents (including 301 compounds) belonging to polyacetylenes, polyacetylene glycosides, flavonoids, flavone glycosides, aurones, chalcones, okanin glycosides, phenolic acids, terpenes, pheophytins, fatty acids and phytosterols have been identified or isolated from the different parts of this plant. Many of them have been considered as the bioactive compounds which are potentially responsible for the pharmacological actions. Various types of preparations, extracts and individual compounds derived from this plant have been found to possess biological and pharmacological activities such as anti-malarial, anti-allergy, anti-hypertensive and smooth muscle relaxant, anti-cancerogenic, anti-diabetic, anti-inflammatory, anti-microbial, antioxidant. The results of data analysis on the chemicals, pharmacological and toxicological characteristics of B. pilosa validate the view of its folk worldwide-medicinal uses. This herb has a great beneficial therapeutic property and is possibly used for complement or alternative to pharmaceutical drugs in some specific cases. However, this herb is known as hyperaccumulator and as-excluder; therefore, harvesting the herb for medicinal uses should be judiciously cautioned.
Collapse
Affiliation(s)
- Tran Dang Xuan
- 2Graduate School for International Development and Cooperation, Hiroshima University, Kayamiyama 1-5-1, Higashihiroshima, 739-8529 Japan
| | | |
Collapse
|
11
|
Identification of active substances for dually modulating the renin–angiotensin system in Bidens pilosa by liquid chromatography–mass spectrometry–based chemometrics. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
12
|
Al Disi SS, Anwar MA, Eid AH. Anti-hypertensive Herbs and their Mechanisms of Action: Part I. Front Pharmacol 2016; 6:323. [PMID: 26834637 PMCID: PMC4717468 DOI: 10.3389/fphar.2015.00323] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/30/2015] [Indexed: 12/27/2022] Open
Abstract
The use of herbal therapies for treatment and management of cardiovascular diseases (CVDs) is increasing. Plants contain a bounty of phytochemicals that have proven to be protective by reducing the risk of various ailments and diseases. Indeed, accumulating literature provides the scientific evidence and hence reason d'etre for the application of herbal therapy in relation to CVDs. Slowly, but absolutely, herbal remedies are being entrenched into evidence-based medical practice. This is partly due to the supporting clinical trials and epidemiological studies. The rationale for this expanding interest and use of plant based treatments being that a significant proportion of hypertensive patients do not respond to Modern therapeutic medication. Other elements to this equation are the cost of medication, side-effects, accessibility, and availability of drugs. Therefore, we believe it is pertinent to review the literature on the beneficial effects of herbs and their isolated compounds as medication for treatment of hypertension, a prevalent risk factor for CVDs. Our search utilized the PubMed and ScienceDirect databases, and the criterion for inclusion was based on the following keywords and phrases: hypertension, high blood pressure, herbal medicine, complementary and alternative medicine (CAM), nitric oxide, vascular smooth muscle cell (VSMC) proliferation, hydrogen sulfide, nuclear factor kappa-B, oxidative stress, and epigenetics/epigenomics. Each of the aforementioned keywords was co-joined with herb in question, and where possible with its constituent molecule(s). In this first of a two-part review, we provide a brief introduction of hypertension, followed by a discussion of the molecular and cellular mechanisms. We then present and discuss the plants that are most commonly used in the treatment and management of hypertension.
Collapse
Affiliation(s)
- Sara S. Al Disi
- Department of Biological and Environmental Sciences, Qatar UniversityDoha, Qatar
| | - M. Akhtar Anwar
- Department of Biological and Environmental Sciences, Qatar UniversityDoha, Qatar
| | - Ali H. Eid
- Department of Biological and Environmental Sciences, Qatar UniversityDoha, Qatar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| |
Collapse
|
13
|
Nguelefack TB, Fodem C, Nguelefack-Mbuyo EP, Nyadjeu P, Wansi SL, Watcho P, Kamanyi A. Endothelium nitric oxide-independent vasorelaxant effects of the aqueous extract from Stephania abyssinica on the isolated rat thoracic aorta. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2015; 12:15-21. [PMID: 25390028 DOI: 10.1515/jcim-2014-0022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 09/17/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Stephania abyssinica (Dillon & A. Rich) Walp (Menispermaceae) is a medicinal plant used in the west region of Cameroon to treat arterial hypertension. The present study evaluated the vasorelaxant effects of the aqueous (AESA) and methanol (MESA) extracts from the fresh leaves of S. abyssinica on aorta rings isolated from Wistar rats. METHODS Aorta rings with intact endothelium were contracted with KCl (60 mM) or phenylephrine (10-5 M) and exposed to cumulative concentrations of each extract, ranging from 10 to 1,000 µg/mL. The vasorelaxant effects of AESA were further evaluated in presence of Nω-nitro-L-arginine methyl ester (L-NAME, 10-4 M), tetraethylammonium (TEA, 5 µM), glibenclamide (5 µM), propranolol (5 µM), and the association glibenclamide-propranolol (AGP). In another set of experiments, the effect of AESA was evaluated on calcium-induced contraction in a hyperpotassic milieu. RESULTS AESA and MESA exhibited a concentration-dependent vasorelaxation on KCl-contracted aortic rings with respective EC50 of 160.10 and 346.50 µg/mL. AESA similarly relaxed aortic rings contracted with phenylephrine (EC50, 176.80 µg/mL). The vasorelaxant activity of AESA was not significantly affected by L-NAME but was markedly reduced by TEA, glibenclamide, propranolol, and AGP. AESA strongly inhibited the Ca2+-induced contraction by 95%. CONCLUSIONS These results support the use of S. abyssinica against arterial hypertension and suggest that the vasorelaxant effect of AESA is not mediated via the endothelium/nitric oxide pathway. AESA relaxant properties might be due to an inhibition of Ca2+ influx and/or the activation of ATP-sensitive K+ channels probably via the stimulation of β-adrenergic receptors.
Collapse
|
14
|
Silva JJD, Cerdeira CD, Chavasco JM, Cintra ABP, Silva CBPD, Mendonça AND, Ishikawa T, Boriollo MFG, Chavasco JK. In vitro screening antibacterial activity of Bidens pilosa Linné and Annona crassiflora Mart. against oxacillin resistant Staphylococcus aureus (ORSA) from the aerial environment at the dental clinic. Rev Inst Med Trop Sao Paulo 2014; 56:333-40. [PMID: 25076435 PMCID: PMC4131820 DOI: 10.1590/s0036-46652014000400011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 01/27/2014] [Indexed: 11/22/2022] Open
Abstract
Currently multiresistant Staphylococcus aureus is one common cause of infections with high rates of morbidity and mortality worldwide, which directs scientific endeavors in search for novel antimicrobials. In this study, nine extracts from Bidens pilosa (root, stem, flower and leaves) and Annona crassiflora (rind fruit, stem, leaves, seed and pulp) were obtained with ethanol: water (7:3, v/v) and their in vitro antibacterial activity evaluated through both the agar diffusion and broth microdilution methods against 60 Oxacillin Resistant S. aureus (ORSA) strains and against S. aureus ATCC6538. The extracts from B. pilosa and A. crassiflora inhibited the growth of the ORSA isolates in both methods. Leaves of B. pilosa presented mean of the inhibition zone diameters significantly higher than chlorexidine 0.12% against ORSA, and the extracts were more active against S. aureus ATCC (p < 0.05). Parallel, toxicity testing by using MTT method and phytochemical screening were assessed, and three extracts (B. pilosa, root and leaf, and A. crassiflora, seed) did not evidence toxicity. On the other hand, the cytotoxic concentrations (CC50 and CC90) for other extracts ranged from 2.06 to 10.77 mg/mL. The presence of variable alkaloids, flavonoids, tannins and saponins was observed, even though there was a total absence of anthraquinones. Thus, the extracts from the leaves of B. pilosa revealed good anti-ORSA activity and did not exhibit toxicity.
Collapse
Affiliation(s)
- Jeferson Junior da Silva
- Microbiology and Immunology Department, Biomedical Science Institute, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Cláudio Daniel Cerdeira
- Microbiology and Immunology Department, Biomedical Science Institute, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Juliana Moscardini Chavasco
- Microbiology and Immunology Department, Biomedical Science Institute, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Ana Beatriz Pugina Cintra
- Microbiology and Immunology Department, Biomedical Science Institute, Federal University of Alfenas, Alfenas, MG, Brazil
| | | | - Andreia Natan de Mendonça
- Microbiology and Immunology Department, Biomedical Science Institute, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Tati Ishikawa
- Microbiology and Immunology Department, Biomedical Science Institute, Federal University of Alfenas, Alfenas, MG, Brazil
| | | | - Jorge Kleber Chavasco
- Microbiology and Immunology Department, Biomedical Science Institute, Federal University of Alfenas, Alfenas, MG, Brazil
| |
Collapse
|
15
|
Botanical, Pharmacological, Phytochemical, and Toxicological Aspects of the Antidiabetic Plant Bidens pilosa L. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:698617. [PMID: 24616740 PMCID: PMC3926223 DOI: 10.1155/2014/698617] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/27/2013] [Indexed: 12/03/2022]
Abstract
Bidens pilosa L. is an easy-to-grow, widespread, and palatable perennial on earth. Hence, it has traditionally been used as foods and medicines without noticeable adverse effects. Despite significant advancement in chemical and biological studies of B. pilosa over the past few years, comprehensive and critical reviews on its anti-diabetic properties are missing. The present review is to summarize up-to-date information on the pharmacology, phytochemistry, and toxicology of B. pilosa, in regard to type 1 diabetes and type 2 diabetes from the literature. In addition to botanical studies and records of the traditional use of B. pilosa in diabetes, scientific studies investigating antidiabetic action of this species and its active phytochemicals are presented and discussed. The structure and biosynthesis of B. pilosa and its polyynes in relation to their anti-diabetic action and mechanism are emphasized. Although some progress has been made, rigorous efforts are further required to unlock the molecular basis and structure-activity relationship of the polyynes isolated from B. pilosa before their clinical applications. The present review provides preliminary information and gives guidance for further anti-diabetic research and development of this plant.
Collapse
|
16
|
Bidens pilosa L. (Asteraceae): Botanical Properties, Traditional Uses, Phytochemistry, and Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:340215. [PMID: 23935661 PMCID: PMC3712223 DOI: 10.1155/2013/340215] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/29/2013] [Indexed: 11/17/2022]
Abstract
There are 230 to 240 known Bidens species. Among them, Bidens pilosa is a representative perennial herb, globally distributed across temperate and tropical regions. B. pilosa has been traditionally used in foods and medicines without obvious adverse effects. Despite significant progress in phytochemical and biological analyses of B. pilosa over the past few years, comprehensive and critical reviews of this plant are anachronistic or relatively limited in scope. The present review aims to summarize up-to-date information on the phytochemistry, pharmacology, and toxicology of B. pilosa from the literature. In addition to botanical studies and records of the traditional use of B. pilosa in over 40 diseases, scientific studies investigating the potential medicinal uses of this species and its constituent phytochemicals for a variety of disorders are presented and discussed. The structure, bioactivity, and likely mechanisms of action of B. pilosa and its phytochemicals are emphasized. Although some progress has been made, further rigorous efforts are required to investigate the individual compounds isolated from B. pilosa to understand and validate its traditional uses and develop clinical applications. The present review provides preliminary information and gives guidance for further basic and clinical research into this plant.
Collapse
|
17
|
Zhong MM, Chen FH, Yuan LP, Wang XH, Wu FR, Yuan FL, Cheng WM. Protective effect of total flavonoids from Bidens bipinnata L. against carbon tetrachloride-induced liver injury in mice. J Pharm Pharmacol 2010; 59:1017-25. [PMID: 17637198 DOI: 10.1211/jpp.59.7.0015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Bidens bipinnata L. is well known in China as a traditional Chinese medicine. This study was designed to evaluate the hepatoprotective activity of the total flavonoids of B. bipinnata L. (TFB) against carbon tetrachloride (CCI4)-induced acute liver injury in mice and to determine its mechanism of action. Oral administration of TFB at doses of 50, 100 and 200 mg kg−1 for 7 days significantly reduced the elevated relative values of liver weight, serum transaminases (alanine aminotransferase and aspartate aminotransferase) and the hepatic morphologic changes induced by CCl4 in mice. In addition, TFB markedly inhibited CCl4-induced lipid peroxidation and enhanced the activity of the antioxidant enzymes superoxide dismutase and glutathione peroxidase. Moreover, pretreatment with TFB suppressed nitric oxide production and nuclear factor-kB activation in CCl4-treated mice. The results suggest that TFB has significant hepatoprotective activity and its mechanism is related, at least in part, to its antioxidant properties. Further research is required to investigate the detailed mechanism of the protective effect of TFB on acute liver injury.
Collapse
Affiliation(s)
- Ming-mei Zhong
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Nguelefack TB, Mekhfi H, Dongmo AB, Dimo T, Watcho P, Zoheir J, Legssyer A, Kamanyi A, Ziyyat A. Hypertensive effects of oral administration of the aqueous extract of Solanum torvum fruits in L-NAME treated rats: evidence from in vivo and in vitro studies. JOURNAL OF ETHNOPHARMACOLOGY 2009; 124:592-599. [PMID: 19439171 DOI: 10.1016/j.jep.2009.04.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 04/27/2009] [Accepted: 04/30/2009] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Solanum torvum fruits are commonly used in Cameroonian traditional medicine for treatment of arterial hypertension. It has been previously shown that intravenous administration of aqueous extract from dried fruits (AEST) reduced blood pressure. AIM The present work evaluates acute toxicity and effects of oral administration of AEST in chronic arterial hypertension induced by L-NAME. Effects of AEST were also evaluated on isolated aorta. MATERIALS AND METHODS AEST (200 mg/kg/day, p.o.) was given solely or concomitantly with L-NAME (40 mg/kg/day, p.o.) for 30 consecutive days. Animal body weight, systolic blood pressure and heart rate were measured before stating the treatment and at the end of each week. Urinary volume and urinary sodium and potassium contents were quantified before and at days 1, 15 and 30 of the treatment. Aorta from treated animals was tested for their sensitivity to noradrenaline and carbachol. Aorta from normal untreated rats was used to evaluate the in vitro vascular effect of AEST. RESULTS The results showed that AEST did induce neither mortality nor visible signs of toxicity. When given solely or in co-administration with L-NAME, AEST significantly reduced animal's body weight. It amplified the hypertensive and cardiac hypertrophy effect of L-NAME and did not affect these parameters in normotensive animals. AEST increased the sensitivity to noradrenaline in normotensive and significantly reduced it in hypertensive animals. AEST significantly increased urinary volume and sodium excretion in L-NAME treated animals while reducing the sodium excretion in normotensive. In vitro, AEST induced a potent partial endothelium-dependent contraction of aortic ring; contractions that were partially antagonized by prazosin and verapamil and were not relaxed by carbachol. CONCLUSION These results suggest that oral chronic administration of AEST induced potentiation of arterial hypertension and cardiac hypertrophy in L-NAME treated rats. These effects may result from a reduction in sensitivity to vasorelaxant agents and increase in hypersensitivity to contractile factors. AEST possess potent in vitro vasocontractile activity that may result from activation of both alpha(1)-adrenergic pathway and calcium influx.
Collapse
Affiliation(s)
- T B Nguelefack
- Laboratoire de Physiologie Animale et de Phytopharmacologie, Université de Dschang, BP 67 Dschang, Cameroun.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Watts SW, Priestley JRC, Thompson JM. Serotonylation of vascular proteins important to contraction. PLoS One 2009; 4:e5682. [PMID: 19479059 PMCID: PMC2682564 DOI: 10.1371/journal.pone.0005682] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 05/05/2009] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Serotonin (5-hydroxytryptamine, 5-HT) was named for its source (sero-) and ability to modify smooth muscle tone (tonin). The biological effects of 5-HT are believed to be carried out by stimulation of serotonin receptors at the plasma membrane. Serotonin has recently been shown to be synthesized in vascular smooth muscle and taken up from external sources, placing 5-HT inside the cell. The enzyme transglutaminase uses primary amines such as 5-HT to covalently modify proteins on glutamine residues. We tested the hypothesis that 5-HT is a substrate for transglutaminase in arterial vascular smooth muscle, with protein serotonylation having physiological function. METHODOLOGY/PRINCIPAL FINDINGS The model was the rat aorta and cultured aortic smooth muscle cells. Western analysis demonstrated that transglutaminase II was present in vascular tissue, and transglutaminase activity was observed as a cystamine-inhibitable incorporation of the free amine pentylamine-biotin into arterial proteins. Serotonin-biotin was incorporated into alpha-actin, beta-actin, gamma-actin, myosin heavy chain and filamin A as shown through tandem mass spectrometry. Using antibodies directed against biotin or 5-HT, immunoprecipitation and immunocytochemistry confirmed serotonylation of smooth muscle alpha-actin. Importantly, the alpha-actin-dependent process of arterial isometric contraction to 5-HT was reduced by cystamine. CONCLUSIONS 5-HT covalently modifies proteins integral to contractility and the cytoskeleton. These findings suggest new mechanisms of action for 5-HT in vascular smooth muscle and consideration for intracellular effects of primary amines.
Collapse
Affiliation(s)
- Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States of America.
| | | | | |
Collapse
|
20
|
Chiang YM, Chang CLT, Chang SL, Yang WC, Shyur LF. Cytopiloyne, a novel polyacetylenic glucoside from Bidens pilosa, functions as a T helper cell modulator. JOURNAL OF ETHNOPHARMACOLOGY 2007; 110:532-8. [PMID: 17101254 DOI: 10.1016/j.jep.2006.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 08/24/2006] [Accepted: 10/15/2006] [Indexed: 05/12/2023]
Abstract
An extract of Bidens pilosa, an anti-diabetic Asteraceae plant, has recently been reported to modulate T cell differentiation and prevent the development of non-obese diabetes (NOD) in NOD mice. In this paper, a novel bioactive polyacetylenic glucoside, cytopiloyne (1), was identified from the Bidens pilosa extract using ex vivo T cell differentiation assays based on a bioactivity-guided fractionation and isolation procedure. Its structure was elucidated as 2beta-D-glucopyranosyloxy-1-hydroxytrideca-5,7,9,11-tetrayne by various spectroscopic methods. Functional studies showed that cytopiloyne was able to inhibit the differentiation of naïve T helper (Th0) cells into type I T helper (Th1) cells but to promote the differentiation of Th0 cells into type II T helper (Th2) cell. Accordingly, cytopiloyne also suppressed IFN-gamma expression and promoted IL-4 expression in mouse splenocytes ex vivo. These results suggest that cytopiloyne functions as a T cell modulator that may directly contribute to the ethnopharmacological effect of Bidens pilosa extract on preventing diabetes. Moreover, cytopiloyne can serve as an index compound for quality control of lot-to-lot extract preparations of Bidens pilosa.
Collapse
Affiliation(s)
- Yi-Ming Chiang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan, ROC
| | | | | | | | | |
Collapse
|