1
|
Horisberger A, Griffith A, Keegan J, Arazi A, Pulford J, Murzin E, Howard K, Hancock B, Fava A, Sasaki T, Ghosh T, Inamo J, Beuschel R, Cao Y, Preisinger K, Gutierrez-Arcelus M, Eisenhaure TM, Guthridge J, Hoover PJ, Dall'Era M, Wofsy D, Kamen DL, Kalunian KC, Furie R, Belmont M, Izmirly P, Clancy R, Hildeman D, Woodle ES, Apruzzese W, McMahon MA, Grossman J, Barnas JL, Payan-Schober F, Ishimori M, Weisman M, Kretzler M, Berthier CC, Hodgin JB, Demeke DS, Putterman C, Brenner MB, Anolik JH, Raychaudhuri S, Hacohen N, James JA, Davidson A, Petri MA, Buyon JP, Diamond B, Zhang F, Lederer JA, Rao DA. Blood immunophenotyping identifies distinct kidney histopathology and outcomes in patients with lupus nephritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.14.575609. [PMID: 38293222 PMCID: PMC10827101 DOI: 10.1101/2024.01.14.575609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Lupus nephritis (LN) is a frequent manifestation of systemic lupus erythematosus, and fewer than half of patients achieve complete renal response with standard immunosuppressants. Identifying non-invasive, blood-based pathologic immune alterations associated with renal injury could aid therapeutic decisions. Here, we used mass cytometry immunophenotyping of peripheral blood mononuclear cells in 145 patients with biopsy-proven LN and 40 healthy controls to evaluate the heterogeneity of immune activation in patients with LN and to identify correlates of renal parameters and treatment response. Unbiased analysis identified 3 immunologically distinct groups of patients with LN that were associated with different patterns of histopathology, renal cell infiltrates, urine proteomic profiles, and treatment response at one year. Patients with enriched circulating granzyme B+ T cells at baseline showed more severe disease and increased numbers of activated CD8 T cells in the kidney, yet they had the highest likelihood of treatment response. A second group characterized primarily by a high type I interferon signature had a lower likelihood of response to therapy, while a third group appeared immunologically inactive by immunophenotyping at enrollment but with chronic renal injuries. Main immune profiles could be distilled down to 5 simple cytometric parameters that recapitulate several of the associations, highlighting the potential for blood immune profiling to translate to clinically useful non-invasive metrics to assess immune-mediated disease in LN.
Collapse
|
2
|
Shankland SJ, Jefferson JA, Wessely O. Repurposing drugs for diseases associated with podocyte dysfunction. Kidney Int 2023; 104:455-462. [PMID: 37290603 PMCID: PMC11088848 DOI: 10.1016/j.kint.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/02/2023] [Accepted: 05/11/2023] [Indexed: 06/10/2023]
Abstract
The majority of podocyte disorders are progressive in nature leading to chronic kidney disease and often kidney failure. The scope of current therapies is typically nonspecific immunosuppressant medications, which are accompanied by unwanted and serious side effects. However, many exciting clinical trials are underway to reduce the burden of podocyte diseases in our patients. Major advances and discoveries have recently been made experimentally in our understanding of the molecular and cellular mechanisms underlying podocyte injury in disease. This begs the question of how best to take advantage of these impressive strides. One approach to consider is the repurposing of therapeutics that have already been approved by the Food and Drug Administration, European Medicines Agency, and other regulatory agencies for indications beyond the kidney. The advantages of therapy repurposing include known safety profiles, drug development that has already been completed, and overall reduced costs for studying alternative indications for selected therapies. The purpose of this mini review is to examine the experimental literature of podocyte damage and determine if there are mechanistic targets in which prior approved therapies can be considered for repurposing to podocyte disorders.
Collapse
Affiliation(s)
- Stuart J Shankland
- Division of Nephrology, University of Washington, Seattle, Washington, USA; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, USA.
| | - J Ashley Jefferson
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Oliver Wessely
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA.
| |
Collapse
|
3
|
Bashkin A, Shehadeh M, Shbita L, Namoura K, Haiek R, Kuyantseva E, Boulos Y, Yakir O, Kruzel-Davila E. Baseline moderate-range albuminuria is associated with protection against severe COVID-19 pneumonia. World J Diabetes 2022; 13:1154-1167. [PMID: 36578868 PMCID: PMC9791569 DOI: 10.4239/wjd.v13.i12.1154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/18/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Diabetes mellitus is considered a leading contributor to severe coronavirus disease 2019 (COVID-19).
AIM To characterize differences between hospitalized diabetic patients with vs without COVID-19, and parameters associated with COVID-19 severity for prediction.
METHODS This case-control study included 209 patients with type 2 diabetic mellitus hospitalized at the Galilee Medical Center (Nahariya, Israel) and recruited between September 2020 and May 2021, 65 patients with COVID-19 infection in dedicated wards and 144 COVID-19-negative patients in internal medicine wards hospitalized due to other reasons. Clinical parameters - including age, type of antiglycemic medications, presence of retinopathy, smoking history, body mass index (BMI), glycosylated hemoglobin, maximum neutrophil:lymphocyte ratio (NLRmax), C-reactive protein (CRP), estimated glomerular filtration rate (eGFR), and albumin (blood and urine) - were compared between the two primary patient groups, and then between COVID-19-negative patients hospitalized due to infectious vs non-infectious disease. Finally, we explored which parameters were associated with severe COVID-19 pneumonia.
RESULTS COVID-19-negative patients were older (63.9 ± 9.9 vs 59.8 ± 9.2, P = 0.005), and had longer duration of diabetes (P = 0.031), lower eGFR (P = 0.033), higher albumin (P = 0.026), lower CRP (P < 0.001), greater smoking prevalence (P < 0.001), and more baseline albuminuria (54.9% vs 30.8%, P = 0.005) at admission; 70% of COVID-19 patients with albuminuria had moderate-range albuminuria (albumin:creatinine 30-300 mg/g). Most of the patients with albuminuria had chronic kidney disease stage II (CKD II). Oral antiglycemic therapies were not significantly different between the two groups. Multivariable logistic regression showed that higher BMI was significantly associated with severe COVID-19 (OR 1.24, 95%CI: 1.01-1.53, P = 0.04), as was higher NLRmax (OR 1.2, 95%CI: 1.06-1.37, P = 0.005). Surprisingly, pre-hospitalization albuminuria, mostly moderate-range, was associated with reduced risk (OR 0.09, 95%CI: 0.01-0.62, P = 0.015). Moderate-range albuminuria was not associated with bacterial infections.
CONCLUSION Moderate-range albuminuria in COVID-19-positive diabetic patients with CKD II is associated with less severe COVID-19. Further studies should explore this potential biomarker for risk of COVID-19-related deterioration and early interventions.
Collapse
Affiliation(s)
- Amir Bashkin
- Department of Diabetes, Endocrinology, and Metabolism, Galilee Medical Center, Nahariya 2210001, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefat 1311502, Israel
| | - Mona Shehadeh
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefat 1311502, Israel
- Clinical Laboratories Division, Clinical Biochemistry and Endocrinology Laboratory, Galilee Medical Center, Nahariya 2210001, Israel
| | - Lina Shbita
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefat 1311502, Israel
| | - Kamil Namoura
- Internal Medicine A, Galilee Medical Center, Nahariya 2210001, Israel
| | - Ronza Haiek
- Department of Diabetes, Endocrinology, and Metabolism, Galilee Medical Center, Nahariya 2210001, Israel
| | - Elena Kuyantseva
- Department of Diabetes, Endocrinology, and Metabolism, Galilee Medical Center, Nahariya 2210001, Israel
| | - Yousef Boulos
- Department of Diabetes, Endocrinology, and Metabolism, Galilee Medical Center, Nahariya 2210001, Israel
| | - Orly Yakir
- Statistical Analysis Division, Galilee Medical Center, Nahariya 2210001, Israel
| | - Etty Kruzel-Davila
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefat 1311502, Israel
- Department of Nephrology, Galilee Medical Center, Nahariya 2210001, Israel
| |
Collapse
|
4
|
Maranduca MA, Tanase DM, Cozma CT, Dima N, Clim A, Pinzariu AC, Serban DN, Serban IL. The Impact of Angiotensin-Converting Enzyme-2/Angiotensin 1-7 Axis in Establishing Severe COVID-19 Consequences. Pharmaceutics 2022; 14:pharmaceutics14091906. [PMID: 36145655 PMCID: PMC9505151 DOI: 10.3390/pharmaceutics14091906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/24/2022] [Accepted: 09/03/2022] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic has put a tremendous stress on the medical community over the last two years. Managing the infection proved a lot more difficult after several research communities started to recognize the long-term effects of this disease. The cellular receptor for the virus was identified as angiotensin-converting enzyme-2 (ACE2), a molecule responsible for a wide array of processes, broadly variable amongst different organs. Angiotensin (Ang) 1-7 is the product of Ang II, a decaying reaction catalysed by ACE2. The effects observed after altering the level of ACE2 are essentially related to the variation of Ang 1-7. The renin-angiotensin-aldosterone system (RAAS) is comprised of two main branches, with ACE2 representing a crucial component of the protective part of the complex. The ACE2/Ang (1-7) axis is well represented in the testis, heart, brain, kidney, and intestine. Infection with the novel SARS-CoV-2 virus determines downregulation of ACE2 and interrupts the equilibrium between ACE and ACE2 in these organs. In this review, we highlight the link between the local effects of RAAS and the consequences of COVID-19 infection as they arise from observational studies.
Collapse
Affiliation(s)
- Minela Aida Maranduca
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700115 Iasi, Romania
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Daniela Maria Tanase
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700115 Iasi, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristian Tudor Cozma
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence:
| | - Nicoleta Dima
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700115 Iasi, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Andreea Clim
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alin Constantin Pinzariu
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dragomir Nicolae Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
5
|
Eskandarian Boroujeni M, Sekrecka A, Antonczyk A, Hassani S, Sekrecki M, Nowicka H, Lopacinska N, Olya A, Kluzek K, Wesoly J, Bluyssen HAR. Dysregulated Interferon Response and Immune Hyperactivation in Severe COVID-19: Targeting STATs as a Novel Therapeutic Strategy. Front Immunol 2022; 13:888897. [PMID: 35663932 PMCID: PMC9156796 DOI: 10.3389/fimmu.2022.888897] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/13/2022] [Indexed: 01/08/2023] Open
Abstract
A disease outbreak in December 2019, caused by a novel coronavirus SARS-CoV-2, was named COVID-19. SARS-CoV-2 infects cells from the upper and lower respiratory tract system and is transmitted by inhalation or contact with infected droplets. Common clinical symptoms include fatigue, fever, and cough, but also shortness of breath and lung abnormalities. Still, some 5% of SARS-CoV-2 infections progress to severe pneumonia and acute respiratory distress syndrome (ARDS), with pulmonary edema, acute kidney injury, and/or multiple organ failure as important consequences, which can lead to death. The innate immune system recognizes viral RNAs and triggers the expression of interferons (IFN). IFNs activate anti-viral effectors and components of the adaptive immune system by activating members of the STAT and IRF families that induce the expression of IFN-stimulated genes (ISG)s. Among other coronaviruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV) and SARS-CoV, common strategies have been identified to antagonize IFN signaling. This typically coincides with hyperactive inflammatory host responses known as the “cytokine storm” that mediate severe lung damage. Likewise, SARS-CoV-2 infection combines a dysregulated IFN response with excessive production of inflammatory cytokines in the lungs. This excessive inflammatory response in the lungs is associated with the local recruitment of immune cells that create a pathogenic inflammatory loop. Together, it causes severe lung pathology, including ARDS, as well as damage to other vulnerable organs, like the heart, spleen, lymph nodes, and kidney, as well as the brain. This can rapidly progress to multiple organ exhaustion and correlates with a poor prognosis in COVID-19 patients. In this review, we focus on the crucial role of different types of IFN that underlies the progression of SARS-CoV-2 infection and leads to immune cell hyper-activation in the lungs, exuberant systemic inflammation, and multiple organ damage. Consequently, to protect from systemic inflammation, it will be critical to interfere with signaling cascades activated by IFNs and other inflammatory cytokines. Targeting members of the STAT family could therefore be proposed as a novel therapeutic strategy in patients with severe COVID-19.
Collapse
Affiliation(s)
- Mahdi Eskandarian Boroujeni
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Agata Sekrecka
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Aleksandra Antonczyk
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Sanaz Hassani
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Michal Sekrecki
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Hanna Nowicka
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Natalia Lopacinska
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Arta Olya
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Katarzyna Kluzek
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Hans A R Bluyssen
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
6
|
Alduraibi F, Fatima H, Hamilton JA, Chatham WW, Hsu HC, Mountz JD. Lupus nephritis correlates with B cell interferon-β, anti-Smith, and anti-DNA: a retrospective study. Arthritis Res Ther 2022; 24:87. [PMID: 35436902 PMCID: PMC9014622 DOI: 10.1186/s13075-022-02766-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
Background In systemic lupus erythematosus (SLE), detection of interferon-β (IFNβ) in B cells was found to be most prominent in patients with high anti-Smith (Sm) and renal disease, but a mechanistic connection was not clear. The objective of the present study is to determine the association of IFNβ in peripheral blood naïve B cells with the histopathological features of lupus nephritis (LN). Methods The percentage of IFNβ+ cells in IgD+CD27− naïve CD19+ B cells (B cell IFNβ) among peripheral blood mononuclear cells (PBMCs) from 80 SLE patients were analyzed using flow cytometry. Serological and clinical data were collected. The correlations of B cell IFNβ with LN classification and with histopathological findings (light, electron, and immunofluorescence [IF] microscopic analyses for deposition of IgM, IgG, IgA, C1q, and C3) were determined in 23 available biopsy specimens. Results B cell IFNβ is positively associated with anti-Sm (p = 0.001), anti-DNA (p = 0.013), and LN (p < 0.001) but was negatively associated with oral/nasal ulcer (p = 0.003) and photosensitivity (p = 0.045). B cell IFNβ positively correlated with immune complex (IC) deposit in the glomerular basement membrane (GBM) (p = 0.002) but not in the mesangial (p = 0.107) or tubular region (p = 0.313). Patients with high B cell IFNβ had statistically increased development of the proliferative LN (Classes III, IV and/or V), compared to patients with low B cell IFNβ (p < 0.0001). Histopathological features positively associated with increased B cell IFNβ included active glomerular lesions as determined by fibrocellular crescents (p = 0.023), chronic glomerular lesions indicated by segmental sclerosis (p = 0.033), and a membranous pattern of renal damage indicated by spike/holes (p = 0.015). Conclusion B cell IFNβ correlates with history of severe LN, glomerular basement membrane (GBM) IC deposition, and anatomical features of both active and chronic glomerular lesions.
Collapse
Affiliation(s)
- Fatima Alduraibi
- Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA.,Medicine Service, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.,Division of Clinical Immunology and Rheumatology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Huma Fatima
- Division of Anatomic Pathology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennie A Hamilton
- Department of Medicine, University of Tennessee Health Science Center, 920 Madison Ave, Memphis, TN, 38163, USA
| | - W Winn Chatham
- Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hui-Chen Hsu
- Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - John D Mountz
- Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA. .,Medicine Service, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.
| |
Collapse
|
7
|
Legrand M, Bell S, Forni L, Joannidis M, Koyner JL, Liu K, Cantaluppi V. Pathophysiology of COVID-19-associated acute kidney injury. Nat Rev Nephrol 2021; 17:751-764. [PMID: 34226718 PMCID: PMC8256398 DOI: 10.1038/s41581-021-00452-0] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
Although respiratory failure and hypoxaemia are the main manifestations of COVID-19, kidney involvement is also common. Available evidence supports a number of potential pathophysiological pathways through which acute kidney injury (AKI) can develop in the context of SARS-CoV-2 infection. Histopathological findings have highlighted both similarities and differences between AKI in patients with COVID-19 and in those with AKI in non-COVID-related sepsis. Acute tubular injury is common, although it is often mild, despite markedly reduced kidney function. Systemic haemodynamic instability very likely contributes to tubular injury. Despite descriptions of COVID-19 as a cytokine storm syndrome, levels of circulating cytokines are often lower in patients with COVID-19 than in patients with acute respiratory distress syndrome with causes other than COVID-19. Tissue inflammation and local immune cell infiltration have been repeatedly observed and might have a critical role in kidney injury, as might endothelial injury and microvascular thrombi. Findings of high viral load in patients who have died with AKI suggest a contribution of viral invasion in the kidneys, although the issue of renal tropism remains controversial. An impaired type I interferon response has also been reported in patients with severe COVID-19. In light of these observations, the potential pathophysiological mechanisms of COVID-19-associated AKI may provide insights into therapeutic strategies.
Collapse
Affiliation(s)
- Matthieu Legrand
- Department of Anesthesia and Perioperative Care, Division of Critical Care Medicine, University of California, San Francisco, CA, USA.
- Investigation Network Initiative-Cardiovascular and Renal Clinical Trialists network, Nancy, France.
| | - Samira Bell
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, UK
| | - Lui Forni
- Intensive Care Unit, Royal Surrey Hospital NHS Foundation Trust, Surrey, UK
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, University of Surrey, Surrey, UK
| | - Michael Joannidis
- Division of Intensive Care and Emergency Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Jay L Koyner
- Divisions of Nephrology, Departments of Medicine, University of Chicago, Chicago, IL, USA
| | - Kathleen Liu
- Divisions of Nephrology and Critical Care Medicine, Departments of Medicine and Anesthesia, University of San Francisco, San Francisco, CA, USA
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
8
|
Ding X, Ren Y, He X. IFN-I Mediates Lupus Nephritis From the Beginning to Renal Fibrosis. Front Immunol 2021; 12:676082. [PMID: 33959133 PMCID: PMC8093624 DOI: 10.3389/fimmu.2021.676082] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Lupus nephritis (LN) is a common complication of systemic lupus erythematosus (SLE) and a major risk factor for morbidity and mortality. The abundant cell-free nucleic (DNA/RNA) in SLE patients, especially dsDNA, is a key substance in the pathogenesis of SLE and LN. The deposition of DNA/RNA-immune complexes (DNA/RNA-ICs) in the glomerulus causes a series of inflammatory reactions that lead to resident renal cell disturbance and eventually renal fibrosis. Cell-free DNA/RNA is the most effective inducer of type I interferons (IFN-I). Resident renal cells (rather than infiltrating immune cells) are the main source of IFN-I in the kidney. IFN-I in turn damages resident renal cells. Not only are resident renal cells victims, but also participants in this immunity war. However, the mechanism for generation of IFN-I in resident renal cells and the pathological mechanism of IFN-I promoting renal fibrosis have not been fully elucidated. This paper reviews the latest epidemiology of LN and its development process, discusses the mechanism for generation of IFN-I in resident renal cells and the role of IFN-I in the pathogenesis of LN, and may open a new perspective for the treatment of LN.
Collapse
Affiliation(s)
- Xuewei Ding
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Ren
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Pediatric Internal Medicine Department, Haikou Maternal and Child Health Hospital, Haikou, China
| | - Xiaojie He
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Yavuz S, Bianchi M, Kozyrev S, Bolin K, Leonard D, Pucholt P, Sandling JK, Bengtsson A, Jönsen A, Rantapää-Dahlqvist S, Sjöwall C, Svenungsson E, Gunnarsson I, Lindblad-Toh K, Rönnblom L. Toll-like receptors revisited; a possible role for TLR1 in lupus nephritis. Ann Rheum Dis 2021; 80:404-406. [PMID: 32994161 PMCID: PMC7892377 DOI: 10.1136/annrheumdis-2020-218373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/31/2020] [Accepted: 08/09/2020] [Indexed: 01/30/2023]
Affiliation(s)
- Sule Yavuz
- Department of Medical Sciences and Rheumatology, Uppsala University, Uppsala, Sweden
| | - Matteo Bianchi
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Science for Life Laboratory, Uppsala, Sweden
| | - Sergey Kozyrev
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Science for Life Laboratory, Uppsala, Sweden
| | - Karin Bolin
- Department of Medical Sciences and Rheumatology, Uppsala University, Uppsala, Sweden
| | - Dag Leonard
- Department of Medical Sciences and Rheumatology, Uppsala University, Uppsala, Sweden
| | - Pascal Pucholt
- Department of Medical Sciences and Rheumatology, Uppsala University, Uppsala, Sweden
| | - Johanna K Sandling
- Department of Medical Sciences and Rheumatology, Uppsala University, Uppsala, Sweden
- Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anders Bengtsson
- Section of Rheumatology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Andreas Jönsen
- Section of Rheumatology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | | | - Elisabet Svenungsson
- Department of Medicine Solna, Rheumatology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Iva Gunnarsson
- Department of Medicine Solna, Rheumatology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lars Rönnblom
- Department of Medical Sciences and Rheumatology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Masum MA, Ichii O, Elewa YHA, Kon Y. Podocyte Injury Through Interaction Between Tlr8 and Its Endogenous Ligand miR-21 in Obstructed and Its Collateral Kidney. Front Immunol 2021; 11:606488. [PMID: 33552064 PMCID: PMC7862702 DOI: 10.3389/fimmu.2020.606488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
While chronic kidney disease is prevalent in adults, obstructive nephropathy (ON) has been reported in both young and old patients. In ON, tubulointerstitial lesions (TILs) have been widely investigated, but glomerular lesions (GLs) have been largely neglected. Here, we show a novel mechanism underlying GL development in ON in young and old mice. TILs develop earlier than GLs owing to infiltration of inflammatory cells in the tubulointerstitium, but GLs develop following the activation of Toll-like receptor 8 (Tlr8) even though the absence of inflammatory cells infiltrating the glomerulus. TLR8 and interleukin 1 beta (IL1β) proteins colocalize with reducing podocyte function markers (PFMs), indicating the activation of TLR8 signaling in injured podocytes. Furthermore, glomerular and serum levels of miR-21, an endogenous ligand for Tlr8, were higher in the ON mouse model than in the sham control. The glomerular expression of Tlr8 positively correlates with miR-21 and the downstream cytokines Il1b and Il6 and negatively correlated with PFMs (Nphs1 and Synpo). We also show the colocalization of TLR8 and IL1β proteins with reducing PFMs in both obstructed and collateral kidney of young and old mice. Furthermore, in vitro study results revealed higher expression of Tlr8 and its downstream cytokines in glomeruli from obstructed kidneys following treatment with miR-21 mimic than in the control. In conclusion, the overexpression of Tlr8 may serve as a plausible mechanism underlying GL development in ON through podocyte injury.
Collapse
Affiliation(s)
- Md. Abdul Masum
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Anatomy, Histology and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yaser Hosny Ali Elewa
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Histology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
11
|
Cara-Fuentes G, Venkatareddy M, Verma R, Segarra A, Cleuren AC, Martínez-Ramos A, Johnson RJ, Garg P. Glomerular endothelial cells and podocytes can express CD80 in patients with minimal change disease during relapse. Pediatr Nephrol 2020; 35:1887-1896. [PMID: 32399663 PMCID: PMC8528162 DOI: 10.1007/s00467-020-04541-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/05/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Urinary CD80 has emerged as potential biomarker in idiopathic nephrotic syndrome (INS). However, its cellular source remains controversial. The aim of the study was to assess whether CD80 is truly expressed by glomerular cells in INS patients during relapse and in the LPS mouse model of podocyte injury. METHODS The presence of CD80 in glomeruli was evaluated by combining immunostaining, immunogold labeling, and in situ hybridization techniques. RESULTS CD80 was present along the surface of glomerular endothelial cells (GEC) and rarely in podocytes in six of nine minimal change disease (MCD) patients in relapse, two of eleven patients with focal segmental glomerulosclerosis in relapse, and absent in controls. In mice, CD80 was upregulated at mRNA and protein level in GEC and podocytes, in a similar pattern to that seen in MCD patients. CONCLUSIONS Glomerular endothelial cells and podocytes can express CD80 in patients with MCD during relapse. A better understanding of the role of CD80 in glomerular cells may provide further insights into the mechanisms of proteinuria in INS.
Collapse
Affiliation(s)
- Gabriel Cara-Fuentes
- Division of Pediatric Nephrology, Department of Pediatrics, University of Michigan, MSRB-2, Room 1574, 1500 E Medical Center Dr, Ann Arbor, MI, 48109, USA.
| | - Madhusudan Venkatareddy
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | - Rakesh Verma
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | - Alfons Segarra
- Division of Nephrology, Hospital Vall d’Hebron, Barcelona, Spain
| | | | | | - Richard J Johnson
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, USA
| | - Puneet Garg
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| |
Collapse
|
12
|
Rinschen MM, Gödel M, Grahammer F, Zschiedrich S, Helmstädter M, Kretz O, Zarei M, Braun DA, Dittrich S, Pahmeyer C, Schroder P, Teetzen C, Gee H, Daouk G, Pohl M, Kuhn E, Schermer B, Küttner V, Boerries M, Busch H, Schiffer M, Bergmann C, Krüger M, Hildebrandt F, Dengjel J, Benzing T, Huber TB. A Multi-layered Quantitative In Vivo Expression Atlas of the Podocyte Unravels Kidney Disease Candidate Genes. Cell Rep 2019; 23:2495-2508. [PMID: 29791858 PMCID: PMC5986710 DOI: 10.1016/j.celrep.2018.04.059] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/07/2018] [Accepted: 04/15/2018] [Indexed: 12/31/2022] Open
Abstract
Damage to and loss of glomerular podocytes has been identified as the culprit lesion in progressive kidney diseases. Here, we combine mass spectrometry-based proteomics with mRNA sequencing, bioinformatics, and hypothesis-driven studies to provide a comprehensive and quantitative map of mammalian podocytes that identifies unanticipated signaling pathways. Comparison of the in vivo datasets with proteomics data from podocyte cell cultures showed a limited value of available cell culture models. Moreover, in vivo stable isotope labeling by amino acids uncovered surprisingly rapid synthesis of mitochondrial proteins under steady-state conditions that was perturbed under autophagy-deficient, disease-susceptible conditions. Integration of acquired omics dimensions suggested FARP1 as a candidate essential for podocyte function, which could be substantiated by genetic analysis in humans and knockdown experiments in zebrafish. This work exemplifies how the integration of multi-omics datasets can identify a framework of cell-type-specific features relevant for organ health and disease.
Deep proteome and transcriptome analyses of native podocytes unravel druggable targets Static and dynamic proteomics uncover features of podocyte identity and proteostasis Candidate genes for nephrotic syndrome were predicted based on multi-omic integration FARP1 is a previously unreported candidate gene for human proteinuric kidney disease
Collapse
Affiliation(s)
- Markus M Rinschen
- Department II of Internal Medicine, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, 50931 Cologne, Germany.
| | - Markus Gödel
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Stefan Zschiedrich
- Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Martin Helmstädter
- Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Mostafa Zarei
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg, Germany; Center for Systems Biology (ZBSA), Albert Ludwigs University, 79104 Freiburg, Germany
| | - Daniela A Braun
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sebastian Dittrich
- Department II of Internal Medicine, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Caroline Pahmeyer
- Department II of Internal Medicine, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Patricia Schroder
- Department of Medicine/Nephrology, Hannover Medical School, 30625 Hannover, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04609, USA
| | - Carolin Teetzen
- Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - HeonYung Gee
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04609, USA; Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ghaleb Daouk
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Martin Pohl
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center and Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Elisa Kuhn
- Center for Human Genetics, Bioscientia, 55218 Ingelheim, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, 50931 Cologne, Germany
| | - Victoria Küttner
- Department for Neuroanatomy, University of Freiburg, 79104 Freiburg, Germany; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg, Germany; Department of Dermatology, Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Melanie Boerries
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert Ludwigs University Freiburg, 79106 Freiburg, Germany; German Cancer Consortium (DKTK), 79106 Freiburg, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hauke Busch
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert Ludwigs University Freiburg, 79106 Freiburg, Germany; Lübeck Institute for Experimental Dermatology (LIED), University of Lübeck, 23562 Lübeck, Germany
| | - Mario Schiffer
- Department of Medicine/Nephrology, Hannover Medical School, 30625 Hannover, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04609, USA
| | - Carsten Bergmann
- Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; Center for Human Genetics, Bioscientia, 55218 Ingelheim, Germany
| | - Marcus Krüger
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joern Dengjel
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg, Germany; Center for Systems Biology (ZBSA), Albert Ludwigs University, 79104 Freiburg, Germany; Department of Dermatology, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; BIOSS Centre for Biological Signaling Studies, Albert Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, 50931 Cologne, Germany.
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg, Germany; Center for Systems Biology (ZBSA), Albert Ludwigs University, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Albert Ludwigs University Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
13
|
Masum MA, Ichii O, Hosny Ali Elewa Y, Nakamura T, Otani Y, Hosotani M, Kon Y. Overexpression of toll-like receptor 9 correlates with podocyte injury in a murine model of autoimmune membranoproliferative glomerulonephritis. Autoimmunity 2018; 51:386-398. [PMID: 30592438 DOI: 10.1080/08916934.2018.1549234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Toll-like receptors (Tlrs) are sensors of danger signals which promote the activation of immune cells and intrinsic renal cells. Podocytes, the intrinsic cells of glomerulus, are continuously exposed to various plasma solutes and danger signals due to their unique location in the glomerulus. Herein, we show that Tlr9 is overexpressed in podocytes and the mechanisms which cause its injury and development of membranoproliferative glomerulonephritis (MPGN) in model BXSB/MpJ-Yaa (Yaa) mice. Yaa mice developed typical lesions of MPGN and showed strong expression of Tlr9 mRNA throughout the glomerulus particularly toward the periphery of the glomerulus. However, BXSB/MpJ (BXSB) mice showed no lesion for MPGN but a very weak expression of Tlr9 mRNA. Relative mRNA expression of Tlr9 and its downstream cytokines, including interleukin 1 beta (Il1b), Il6, interferon gamma (Ifng) and tumour necrosis factor alpha (Tnfa) was markedly increased in glomeruli isolated from Yaa mice. Tlr9 protein expression was almost absent in BXSB mice but intense expression was found in Yaa mice. Podocyte protein expression was normal in BXSB mice but decreased in Yaa mice and colocalized with Tlr9 protein. Furthermore, electron microscopy examination revealed podocyte injury and electron-dense materials in thickened glomerular basement membrane of Yaa mice. Glomerular Tlr9 mRNA expression was significantly correlated with anti-dsDNA antibody, proteinuria, renal function indices (sBUN and sCr), glomerular histopathology indices, downstream factors of Tlr family (Ilb and Tnfa), podocyte injury parameters (p < .05 and p < .01). In conclusion, overexpression of TLR9 correlates with podocyte injury and development of MPGN.
Collapse
Affiliation(s)
- Md Abdul Masum
- a Laboratory of Anatomy, Faculty of Veterinary Medicine, Department of Basic Veterinary Sciences , Hokkaido University , Sapporo , Japan.,b Faculty of Animal Science and Veterinary Medicine, Department of Anatomy, Histology and Physiology , Sher-e-Bangla Agricultural University , Dhaka , Bangladesh
| | - Osamu Ichii
- a Laboratory of Anatomy, Faculty of Veterinary Medicine, Department of Basic Veterinary Sciences , Hokkaido University , Sapporo , Japan
| | - Yaser Hosny Ali Elewa
- a Laboratory of Anatomy, Faculty of Veterinary Medicine, Department of Basic Veterinary Sciences , Hokkaido University , Sapporo , Japan.,c Department of Histology, Faculty of Veterinary Medicine , Zagazig University , Zagazig , Egypt
| | - Teppei Nakamura
- a Laboratory of Anatomy, Faculty of Veterinary Medicine, Department of Basic Veterinary Sciences , Hokkaido University , Sapporo , Japan.,d Section of Biological Safety Research, Chitose Laboratory , Japan Food Research Laboratories , Chitose , Japan
| | - Yuki Otani
- a Laboratory of Anatomy, Faculty of Veterinary Medicine, Department of Basic Veterinary Sciences , Hokkaido University , Sapporo , Japan
| | - Marina Hosotani
- a Laboratory of Anatomy, Faculty of Veterinary Medicine, Department of Basic Veterinary Sciences , Hokkaido University , Sapporo , Japan
| | - Yasuhiro Kon
- a Laboratory of Anatomy, Faculty of Veterinary Medicine, Department of Basic Veterinary Sciences , Hokkaido University , Sapporo , Japan
| |
Collapse
|
14
|
Kim Y, Shim SC. Wolves Trapped in the NETs–The Pathogenesis of Lupus Nephritis. JOURNAL OF RHEUMATIC DISEASES 2018. [DOI: 10.4078/jrd.2018.25.2.81] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Young Kim
- Division of Internal Medicine, Daejeon Veterans Hospital, Daejeon, Korea
| | - Seung Cheol Shim
- Division of Rheumatology, Department of Internal Medicine, Daejeon Rheumatoid and Degenerative Arthritis Center, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
15
|
Interaction of CD80 with Neph1: a potential mechanism of podocyte injury. Clin Exp Nephrol 2017; 22:508-516. [PMID: 29022109 DOI: 10.1007/s10157-017-1489-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/14/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND The induction of CD80 on podocytes has been shown in animal models of podocyte injury and in certain cases of nephrotic syndrome. In a lipopolysaccharide (LPS)-induced mouse model of albuminuria, we have recently shown a signalling axis of LPS-myeloid cell activation-TNFα production-podocyte CD80 induction-albuminuria. Therefore, in this report, we investigated the cellular and molecular consequences of TNFα addition and CD80 expression on cultured podocytes. METHODS A murine podocyte cell line was used for TNFα treatment and for over-expressing CD80. Expression and localization of various podocyte proteins was analysed by reverse transcriptase-polymerase chain reaction, western blotting and immunofluorescence. HEK293 cells were used to biochemically characterize interactions. RESULTS Podocytes treated with LPS in vitro did not cause CD80 upregulation but TNFα treatment was associated with an increase in CD80 levels, actin derangement and poor wound healing. Podocytes stably expressing CD80 showed actin derangement and co-localization with Neph1. CD80 and Neph1 interaction was confirmed by pull down assays of CD80 and Neph1 transfected in HEK293 cells. CONCLUSION Addition of TNFα to podocytes causes CD80 upregulation, actin reorganization and podocyte injury. Overexpressed CD80 and Neph1 interact via their extracellular domain. This interaction implies a mechanism of slit diaphragm disruption and possible use of small molecules that disrupt CD80-Neph1 interaction as a potential for treatment of nephrotic syndrome associated with CD80 upregulation.
Collapse
|
16
|
Rifkin IR, Bonegio RG. Editorial: Podocytes as Active Participants in Lupus Nephritis. Arthritis Rheumatol 2017; 69:1517-1520. [PMID: 28544537 DOI: 10.1002/art.40157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/16/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Ian R Rifkin
- Boston University School of Medicine and VA Boston Healthcare System, Boston, Massachusetts
| | - Ramon G Bonegio
- Boston University School of Medicine and VA Boston Healthcare System, Boston, Massachusetts
| |
Collapse
|
17
|
Dudhgaonkar S, Ranade S, Nagar J, Subramani S, Prasad DS, Karunanithi P, Srivastava R, Venkatesh K, Selvam S, Krishnamurthy P, Mariappan TT, Saxena A, Fan L, Stetsko DK, Holloway DA, Li X, Zhu J, Yang WP, Ruepp S, Nair S, Santella J, Duncia J, Hynes J, McIntyre KW, Carman JA. Selective IRAK4 Inhibition Attenuates Disease in Murine Lupus Models and Demonstrates Steroid Sparing Activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:1308-1319. [PMID: 28003376 PMCID: PMC5253435 DOI: 10.4049/jimmunol.1600583] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 11/22/2016] [Indexed: 12/15/2022]
Abstract
The serine/threonine kinase IL-1R-associated kinase (IRAK)4 is a critical regulator of innate immunity. We have identified BMS-986126, a potent, highly selective inhibitor of IRAK4 kinase activity that demonstrates equipotent activity against multiple MyD88-dependent responses both in vitro and in vivo. BMS-986126 failed to inhibit assays downstream of MyD88-independent receptors, including the TNF receptor and TLR3. Very little activity was seen downstream of TLR4, which can also activate an MyD88-independent pathway. In mice, the compound inhibited cytokine production induced by injection of several different TLR agonists, including those for TLR2, TLR7, and TLR9. The compound also significantly suppressed skin inflammation induced by topical administration of the TLR7 agonist imiquimod. BMS-986126 demonstrated robust activity in the MRL/lpr and NZB/NZW models of lupus, inhibiting multiple pathogenic responses. In the MRL/lpr model, robust activity was observed with the combination of suboptimal doses of BMS-986126 and prednisolone, suggesting the potential for steroid sparing activity. BMS-986126 also demonstrated synergy with prednisolone in assays of TLR7- and TLR9-induced IFN target gene expression using human PBMCs. Lastly, BMS-986126 inhibited TLR7- and TLR9-dependent responses using cells derived from lupus patients, suggesting that inhibition of IRAK4 has the potential for therapeutic benefit in treating lupus.
Collapse
Affiliation(s)
| | - Sourabh Ranade
- Biocon Bristol-Myers Squibb Research Center, Bangalore 560099, India
| | - Jignesh Nagar
- Biocon Bristol-Myers Squibb Research Center, Bangalore 560099, India
| | - Siva Subramani
- Biocon Bristol-Myers Squibb Research Center, Bangalore 560099, India
| | - Durga Shiv Prasad
- Biocon Bristol-Myers Squibb Research Center, Bangalore 560099, India
| | | | - Ratika Srivastava
- Biocon Bristol-Myers Squibb Research Center, Bangalore 560099, India
| | - Kamala Venkatesh
- Biocon Bristol-Myers Squibb Research Center, Bangalore 560099, India
| | - Sabariya Selvam
- Biocon Bristol-Myers Squibb Research Center, Bangalore 560099, India
| | | | | | - Ajay Saxena
- Biocon Bristol-Myers Squibb Research Center, Bangalore 560099, India
| | - Li Fan
- Immunology Discovery, Bristol-Myers Squibb, Princeton, NJ 08543
| | - Dawn K Stetsko
- Immunology Discovery, Bristol-Myers Squibb, Princeton, NJ 08543
| | | | - Xin Li
- Lead Evaluation, Bristol-Myers Squibb, Princeton, NJ 08543
| | - Jun Zhu
- Translational Technologies, Bristol-Myers Squibb, Hopewell, NJ 08525
| | - Wen-Pin Yang
- Translational Technologies, Bristol-Myers Squibb, Hopewell, NJ 08525
| | - Stefan Ruepp
- Discovery Toxicology, Bristol-Myers Squibb, Princeton, NJ 08543; and
| | - Satheesh Nair
- Biocon Bristol-Myers Squibb Research Center, Bangalore 560099, India
| | - Joseph Santella
- Discovery Chemistry, Bristol-Myers Squibb, Princeton, NJ 08543
| | - John Duncia
- Discovery Chemistry, Bristol-Myers Squibb, Princeton, NJ 08543
| | - John Hynes
- Discovery Chemistry, Bristol-Myers Squibb, Princeton, NJ 08543
| | - Kim W McIntyre
- Immunology Discovery, Bristol-Myers Squibb, Princeton, NJ 08543
| | - Julie A Carman
- Immunology Discovery, Bristol-Myers Squibb, Princeton, NJ 08543;
| |
Collapse
|
18
|
Jain N, Khullar B, Oswal N, Banoth B, Joshi P, Ravindran B, Panda S, Basak S, George A, Rath S, Bal V, Sopory S. TLR-mediated albuminuria needs TNFα-mediated cooperativity between TLRs present in hematopoietic tissues and CD80 present on non-hematopoietic tissues in mice. Dis Model Mech 2016; 9:707-17. [PMID: 27125280 PMCID: PMC4920147 DOI: 10.1242/dmm.023440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 04/22/2016] [Indexed: 12/16/2022] Open
Abstract
Transient albuminuria induced by pathogen-associated molecular patterns (PAMPs) in mice through engagement of Toll-like receptors (TLRs) is widely studied as a partial model for some forms of human nephrotic syndrome (NS). In addition to TLRs, CD80 has been shown to be essential for PAMP-mediated albuminuria. However, the mechanistic relationships between TLRs, CD80 and albuminuria remain unclear. Here, we show that albuminuria and CD80-uria induced in mice by many TLR ligands are dependent on the expression of TLRs and their downstream signalling intermediate MyD88 exclusively in hematopoietic cells and, conversely, on CD80 expression exclusively in non-hematopoietic cells. TNFα is crucial for TLR-mediated albuminuria and CD80-uria, and induces CD80 expression in cultured renal podocytes. IL-10 from hematopoietic cells ameliorates TNFα production, albuminuria and CD80-uria but does not prevent TNFα-mediated induction of podocyte CD80 expression. Chitohexaose, a small molecule originally of parasite origin, mediates TLR4-dependent anti-inflammatory responses, and blocks TLR-mediated albuminuria and CD80-uria through IL-10. Thus, TNFα is a prominent mediator of renal CD80 induction and resultant albuminuria in this model, and small molecules modulating TLR-mediated inflammatory activation might have contributory or adjunct therapeutic potential in some contexts of NS development. Summary: Systemic TNFα mediates myeloid cell and podocyte cross-talk to cause LPS-induced mouse microalbuminuria, a partial model of human nephrotic syndrome, pointing to potential adjunct therapeutic approaches.
Collapse
Affiliation(s)
- Nidhi Jain
- National Institute of Immunology, New Delhi 110067, India
| | - Bhavya Khullar
- Pediatric Biology Center, Translational Health Sciences and Technology Institute, Faridabad 121001, National Capital Region, India
| | - Neelam Oswal
- National Institute of Immunology, New Delhi 110067, India
| | - Balaji Banoth
- National Institute of Immunology, New Delhi 110067, India
| | - Prashant Joshi
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Subrat Panda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Soumen Basak
- National Institute of Immunology, New Delhi 110067, India
| | - Anna George
- National Institute of Immunology, New Delhi 110067, India
| | - Satyajit Rath
- National Institute of Immunology, New Delhi 110067, India Pediatric Biology Center, Translational Health Sciences and Technology Institute, Faridabad 121001, National Capital Region, India
| | - Vineeta Bal
- National Institute of Immunology, New Delhi 110067, India Pediatric Biology Center, Translational Health Sciences and Technology Institute, Faridabad 121001, National Capital Region, India
| | - Shailaja Sopory
- Pediatric Biology Center, Translational Health Sciences and Technology Institute, Faridabad 121001, National Capital Region, India
| |
Collapse
|
19
|
Developing therapeutic 'arrows' with the precision of William Tell: the time has come for targeted therapies in kidney disease. Curr Opin Nephrol Hypertens 2016; 24:388-92. [PMID: 26050127 DOI: 10.1097/mnh.0000000000000137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW A core mission for modern medicine is the development of precision therapeutics. Cancer therapies have been at the leading edge of this effort, while nephrology has lagged on the path to precision medicine. Breaking the stalemate, recent work revealed CD80 (B7-1) as a candidate for targeted therapy in the treatment of resistant nephrotic syndrome. This review aims to summarize the current state of our understanding of podocyte CD80 biology, its therapeutic implications and the challenges that lie ahead in essential future validation studies. RECENT FINDINGS The CD80 targeting agent abatacept (CTLA4-Ig), approved to treat rheumatoid arthritis, was shown to induce remission of nephrotic range proteinuria in four patients with recurrence of disease posttransplant and one patient with primary, treatment resistant nephrotic syndrome. The concept of 'CD80-positive' proteinuric kidney disease due to podocyte CD80 staining in patient kidney biopsies was introduced as a molecular biomarker to define disease and guide treatment. The mechanism of action of CTLA4-Ig in podocytes was shown to centre on β1 integrin activation in a T-cell independent fashion. Subsequent work revealed a putative role for podocyte CD80 in diabetic kidney disease. SUMMARY These studies have direct implications for patient care, and intense interest has focused on validating these findings in upcoming clinical trials.
Collapse
|
20
|
Abstract
Despite marked improvements in the survival of patients with severe lupus nephritis over the past 50 years, the rate of complete clinical remission after immune suppression therapy is <50% and renal impairment still occurs in 40% of affected patients. An appreciation of the factors that lead to the development of chronic kidney disease following acute or subacute renal injury in patients with systemic lupus erythematosus is beginning to emerge. Processes that contribute to end-stage renal injury include continuing inflammation, activation of intrinsic renal cells, cell stress and hypoxia, metabolic abnormalities, aberrant tissue repair and tissue fibrosis. A deeper understanding of these processes is leading to the development of novel or adjunctive therapies that could protect the kidney from the secondary non-immune consequences of acute injury. Approaches based on a molecular-proteomic-lipidomic classification of disease should yield new information about the functional basis of disease heterogeneity so that the most effective and least toxic treatment regimens can be formulated for individual patients.
Collapse
|
21
|
Overexpression of Toll-like receptor 8 correlates with the progression of podocyte injury in murine autoimmune glomerulonephritis. Sci Rep 2014; 4:7290. [PMID: 25468389 PMCID: PMC4252901 DOI: 10.1038/srep07290] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/12/2014] [Indexed: 12/23/2022] Open
Abstract
Members of the Toll-like receptor (TLR) family serve as pathogen sensors and participate in local autoimmune responses. This study found a correlation between glomerular injury and TLR expression by analysing BXSB/MpJ-Yaa (BXSB-Yaa) lupus model mice. In isolated glomeruli, the mRNA expression of several TLRs was higher in BXSB-Yaa mice than in healthy control BXSB mice. In particular, the expression of Tlr8 and its downstream cytokines was markedly increased. In mouse kidneys, TLR8 protein and mRNA localized to podocytes, and TLR8 protein expression in the glomerulus was higher in BXSB-Yaa mice than in BXSB mice. In BXSB-Yaa mice, the glomerular levels of Tlr8 mRNA negatively correlated with the glomerular levels of podocyte functional markers (Nphs1, Nphs2, and Synpo) and positively correlated with urinary albumin levels. Furthermore, the glomerular and serum levels of miR-21, a putative microRNA ligand of TLR8, were higher in BXSB-Yaa mice than in BXSB mice. The urinary levels of Tlr8 mRNA were also higher in BXSB-Yaa mice than in BXSB mice. In conclusion, the overexpression of TLR8 correlates with the progression of podocyte injury in glomerulonephritis. Thus, altered levels of urinary Tlr8 mRNA might reflect podocyte injury.
Collapse
|
22
|
Anders HJ, Schaefer L. Beyond tissue injury-damage-associated molecular patterns, toll-like receptors, and inflammasomes also drive regeneration and fibrosis. J Am Soc Nephrol 2014; 25:1387-400. [PMID: 24762401 PMCID: PMC4073442 DOI: 10.1681/asn.2014010117] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tissue injury initiates an inflammatory response through the actions of immunostimulatory molecules referred to as damage-associated molecular patterns (DAMPs). DAMPs encompass a group of heterogenous molecules, including intracellular molecules released during cell necrosis and molecules involved in extracellular matrix remodeling such as hyaluronan, biglycan, and fibronectin. Kidney-specific DAMPs include crystals and uromodulin released by renal tubular damage. DAMPs trigger innate immunity by activating Toll-like receptors, purinergic receptors, or the NLRP3 inflammasome. However, recent evidence revealed that DAMPs also trigger re-epithelialization upon kidney injury and contribute to epithelial-mesenchymal transition and, potentially, to myofibroblast differentiation and proliferation. Thus, these discoveries suggest that DAMPs drive not only immune injury but also kidney regeneration and renal scarring. Here, we review the data from these studies and discuss the increasingly complex connection between DAMPs and kidney diseases.
Collapse
Affiliation(s)
- Hans-Joachim Anders
- Nephrological Center, Medizinische Klinik und Poliklinik IV, University of Munich, Munich, Germany; and
| | - Liliana Schaefer
- Pharmazentrum Frankfurt, Institute of General Pharmacology and Toxicology, Goethe-University of Frankfurt/Main, Frankfurt/Main, Germany
| |
Collapse
|