1
|
Liu K, Clarke GS, Grieger JA. The Use of Omics in Untangling the Effect of Lifestyle Factors in Pregnancy and Gestational Diabetes: A Systematic Review. Diabetes Metab Res Rev 2025; 41:e70026. [PMID: 39800861 PMCID: PMC11725626 DOI: 10.1002/dmrr.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
AIM To synthesise the evidence from clinical trials and observational studies using omics techniques to investigate the impact of diet and lifestyle factors on metabolite profile in pregnancy, and in the prevention and management of gestational diabetes mellitus (GDM). MATERIALS AND METHODS A systematic literature search was performed using PubMed, Ovid, CINAHL, and Web of Science databases in October 2023 and updated in September 2024. Inclusion criteria were randomised controlled trials (RCT) or non-RCTs in pregnant women with or without GDM, that measured diet and lifestyle factors, and which applied post-transcriptional omics approaches. Risk of bias was assessed using the ROBINS-I for non-RCTs and ROB-2 tool for RCTs. The results of all studies are narratively synthesised. RESULTS Of 6293 studies identified, eight observational studies and three RCTs comprising 2639 pregnant women were included. Three studies reported on changes in diet-related metabolic phenotypes during pregnancy; however, the impact of certain foods on the metabolome and risk for GDM was less clear. Compared with women without GDM, women with GDM had a worse deterioration in metabolites, including saturated fatty acids, branched chain amino acids and purine degradation metabolites. There is limited evidence that conventional dietary treatment for GDM may modify the metabolome in women with GDM. CONCLUSIONS Metabolome profiles in pregnancy may be altered by certain dietary choices; however, it is inconclusive whether improved diet related metabolite profiles have a beneficial impact in the prevention or management of GDM. High quality studies with larger sample sizes are needed to better understand the role that maternal nutrition plays in modulating the maternal metabolome, not only for a healthy pregnancy but also for the prevention and management of GDM.
Collapse
Affiliation(s)
- Kai Liu
- Faculty of Health and Medical SciencesAdelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Robinson Research InstituteThe University of AdelaideAdelaideAustralia
- Lifelong Health ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Georgia S. Clarke
- Faculty of Health and Medical SciencesAdelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Robinson Research InstituteThe University of AdelaideAdelaideAustralia
- Lifelong Health ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Jessica A. Grieger
- Faculty of Health and Medical SciencesAdelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Robinson Research InstituteThe University of AdelaideAdelaideAustralia
- Lifelong Health ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| |
Collapse
|
2
|
Zhong S, Yang B, Liu Y, Dai W, Li G, Yang J, Yang A, Wang Y, Wang M, Xu C, Deng Y. Dynamic changes of gut microbiota between the first and second trimester for women with gestational diabetes mellitus and their correlations with BMI: a nested cohort study in China. Front Microbiol 2024; 15:1467414. [PMID: 39723141 PMCID: PMC11669307 DOI: 10.3389/fmicb.2024.1467414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
INTRODUCTION Gut microbiota (GM) has been implicated in gestational diabetes mellitus (GDM), yet longitudinal changes across trimesters remain insufficiently explored. METHODS This nested cohort study aimed to investigate GM alterations before 24 weeks of gestation and their association with GDM. Ninety-three Chinese participants provided fecal samples during the first and second trimesters. Based on oral glucose tolerance tests, 11 participants were classified as GDM, and 82 as non-diabetic (ND). Using 16S rRNA sequencing, we analyzed both cross-sectional and longitudinal differences in GM structure between those two groups. RESULTS In the first trimester, GDM group exhibited lower levels of Bacteroides_H and Acetatifactor compared to ND group (p < 0.05). In the second trimester, GDM individuals showed increased abundance of Fusobacteriota and Firmicutes_D, and genera including Fusobacterium_A and Fournierella, while Anaerotruncus and others decreased (P<0.05). Inflammation-associated genera like Gemmiger_A_73129 and Enterocloster increased, while Megamonas decreased in overweight or obese GDM women, which was not identified in normal-weight women. The ratios of relative abundance of genera Streptococcus, Enterocloster, and Collinsella exceeded 1.5 in the GDM group, particularly in overweight or obese individuals. Inflammatory pathways related to African trypanosomiasis and Staphylococcus aureus infection were predicted to be up-regulated in overweight or obese GDM individuals but not in normal-weight GDM women. DISCUSSION This study suggests that GM of women with GDM undergoes significant alterations between the first and second trimesters, potentially linked to inflammation, with more pronounced changes observed in overweight or obese individuals.
Collapse
Affiliation(s)
- Shilin Zhong
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Bingcai Yang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Yuzhen Liu
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Wenkui Dai
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Guanglei Li
- CheerLand Biological Technology Co., Ltd., Shenzhen, China
| | - Juan Yang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Ao Yang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Ying Wang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Min Wang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Chang Xu
- Intelligent Hospital Research Academy, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yuqing Deng
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| |
Collapse
|
3
|
Sebina I, Bidgood C, Stalley F, Hartel G, Stark T, Callaway L, Amoako A, Lehner C, Dekker Nitert M, Phipps S. Pre-pregnancy obesity is associated with an altered maternal metabolome and reduced Flt3L expression in preterm birth. Sci Rep 2024; 14:30027. [PMID: 39627409 PMCID: PMC11615298 DOI: 10.1038/s41598-024-81194-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Mechanisms linking pre-pregnancy obesity to increased preterm birth risk are unclear. Here, we examined the impact of pre-pregnancy obesity on metabolites, Fms-related tyrosine kinase 3 ligand (Flt3L), and proinflammatory cytokine profiles in preterm birth. We used cytokine bead array, ELISA and Gas Chromatography-Mass Spectrometry (GC-MS) to determine cytokine and metabolite profiles in maternal and cord blood samples from 124 pregnant women in Australia, who gave birth at term (n = 86) or preterm (n = 38). Besides the expected variations in birth weight and gestational age, all demographic characteristics, including pre-pregnancy body mass index, were similar between the term and preterm birth groups. Mothers in the preterm birth group had reduced Flt3L (P = 0.002) and elevated IL-6 (P = 0.002) compared with term birthing mothers. Among mothers who gave birth preterm, those with pre-pregnancy obesity had lower Flt3L levels (P = 0.02) compared with lean mothers. Flt3L and IL-6 were similar in cord blood across both groups, but TNFα levels (P = 0.02) were reduced in preterm newborns. Metabolomic analysis revealed significant shifts in essential metabolites in women with pre-pregnancy obesity, some of which were linked to preterm births. Our findings suggest that maternal pre-pregnancy obesity alters the metabolome and reduces Flt3L expression, potentially increasing risk of preterm birth.
Collapse
Affiliation(s)
- Ismail Sebina
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, 4000, QLD, Australia.
| | - Charles Bidgood
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, 4000, QLD, Australia
| | - Felicity Stalley
- Women's and Newborn Services, Royal Brisbane and Women's Hospital, Herston, QLD, 4006, Australia
| | - Gunter Hartel
- Statistics Unit, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- School of Public Health, The University of Queensland, Brisbane, QLD, Australia
| | - Terra Stark
- Metabolomics Australia (Queensland Node), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Leonie Callaway
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- Women's and Newborn Services, Royal Brisbane and Women's Hospital, Herston, QLD, 4006, Australia
| | - Akwasi Amoako
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- Women's and Newborn Services, Royal Brisbane and Women's Hospital, Herston, QLD, 4006, Australia
| | - Christoph Lehner
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- Women's and Newborn Services, Royal Brisbane and Women's Hospital, Herston, QLD, 4006, Australia
| | - Marloes Dekker Nitert
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Simon Phipps
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, 4000, QLD, Australia
| |
Collapse
|
4
|
Zhang Z, Zhou Z, Li H. The role of lipid dysregulation in gestational diabetes mellitus: Early prediction and postpartum prognosis. J Diabetes Investig 2024; 15:15-25. [PMID: 38095269 PMCID: PMC10759727 DOI: 10.1111/jdi.14119] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a pathological condition during pregnancy characterized by impaired glucose tolerance, and the failure of pancreatic beta-cells to respond appropriately to an increased insulin demand. However, while the majority of women with GDM will return to normoglycemia after delivery, they have up to a seven times higher risk of developing type 2 diabetes during midlife, compared with those with no history of GDM. Gestational diabetes mellitus also increases the risk of multiple metabolic disorders, including non-alcoholic fatty liver disease, obesity, and cardiovascular diseases. Lipid metabolism undergoes significant changes throughout the gestational period, and lipid dysregulation is strongly associated with GDM and the progression to future type 2 diabetes. In addition to common lipid variables, discovery-based omics techniques, such as metabolomics and lipidomics, have identified lipid biomarkers that correlate with GDM. These lipid species also show considerable potential in predicting the onset of GDM and subsequent type 2 diabetes post-delivery. This review aims to update the current knowledge of the role that lipids play in the onset of GDM, with a focus on potential lipid biomarkers or metabolic pathways. These biomarkers may be useful in establishing predictive models to accurately predict the future onset of GDM and type 2 diabetes, and early intervention may help to reduce the complications associated with GDM.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Endocrinology, Sir Run Run Shaw HospitalZhejiang University, School of MedicineHangzhouChina
| | - Zheng Zhou
- Zhejiang University, School of MedicineHangzhouChina
| | - Hong Li
- Department of Endocrinology, Sir Run Run Shaw HospitalZhejiang University, School of MedicineHangzhouChina
| |
Collapse
|
5
|
Gleason B, Kuang A, Bain JR, Muehlbauer MJ, Ilkayeva OR, Scholtens DM, Lowe WL. Association of Maternal Metabolites and Metabolite Networks with Newborn Outcomes in a Multi-Ancestry Cohort. Metabolites 2023; 13:505. [PMID: 37110162 PMCID: PMC10145069 DOI: 10.3390/metabo13040505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The in utero environment is important for newborn size at birth, which is associated with childhood adiposity. We examined associations between maternal metabolite levels and newborn birthweight, sum of skinfolds (SSF), and cord C-peptide in a multinational and multi-ancestry cohort of 2337 mother-newborn dyads. Targeted and untargeted metabolomic assays were performed on fasting and 1 h maternal serum samples collected during an oral glucose tolerance test performed at 24-32 week gestation in women participating in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. Anthropometric measurements were obtained on newborns at birth. Following adjustment for maternal BMI and glucose, per-metabolite analyses demonstrated significant associations between maternal metabolite levels and birthweight, SSF, and cord C-peptide. In the fasting state, triglycerides were positively associated and several long-chain acylcarnitines were inversely associated with birthweight and SSF. At 1 h, additional metabolites including branched-chain amino acids, proline, and alanine were positively associated with newborn outcomes. Network analyses demonstrated distinct clusters of inter-connected metabolites significantly associated with newborn phenotypes. In conclusion, numerous maternal metabolites during pregnancy are significantly associated with newborn birthweight, SSF, and cord C-peptide independent of maternal BMI and glucose, suggesting that metabolites in addition to glucose contribute to newborn size at birth and adiposity.
Collapse
Affiliation(s)
- Brooke Gleason
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60091, USA
| | - Alan Kuang
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60091, USA
| | - James R. Bain
- Duke Molecular Physiology Institute, Durham, NC 27701, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael J. Muehlbauer
- Duke Molecular Physiology Institute, Durham, NC 27701, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Olga R. Ilkayeva
- Duke Molecular Physiology Institute, Durham, NC 27701, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Denise M. Scholtens
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60091, USA
| | - William L. Lowe
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60091, USA
| |
Collapse
|
6
|
Huhtala M, Rönnemaa T, Tertti K. Insulin Resistance Is Associated with an Unfavorable Serum Lipoprotein Lipid Profile in Women with Newly Diagnosed Gestational Diabetes. Biomolecules 2023; 13:biom13030470. [PMID: 36979405 PMCID: PMC10046655 DOI: 10.3390/biom13030470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Background: Gestational diabetes (GDM) is associated with various degrees of insulin resistance—a feature related to increased risk of adverse perinatal outcomes. We aimed to determine the previously poorly investigated associations between maternal insulin resistance and serum fasting metabolome at the time of GDM diagnosis. Methods: Serum lipoprotein and amino acid profile was analyzed in 300 subjects with newly diagnosed GDM using a validated nuclear magnetic resonance spectroscopy protocol. Associations between insulin resistance (homeostasis model assessment of insulin resistance, HOMA2-IR) and serum metabolites were examined with linear regression. Results: We found insulin resistance to be associated with a distinct lipid pattern: increased concentration of VLDL triglycerides and phospholipids and total triglycerides. VLDL size was positively related and LDL and HDL sizes were inversely related to insulin resistance. Of fatty acids, increased total fatty acids, relative increase in saturated and monounsaturated fatty acids, and relative decrease in polyunsaturated and omega fatty acids were related to maternal insulin resistance. Conclusions: In newly diagnosed GDM, the association between maternal insulin resistance and serum lipoprotein profile was largely as described in type 2 diabetes. Lifestyle interventions aiming to decrease insulin resistance from early pregnancy could benefit pregnancy outcomes via more advantageous lipid metabolism.
Collapse
Affiliation(s)
- Mikael Huhtala
- Department of Obstetrics and Gynecology, University of Turku, FI-20014 Turku, Finland
- Department of Obstetrics and Gynecology, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20521 Turku, Finland
- Correspondence: ; Tel.: +358-294505000
| | - Tapani Rönnemaa
- Department of Medicine, University of Turku, FI-20014 Turku, Finland
- Division of Medicine, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20521 Turku, Finland
| | - Kristiina Tertti
- Department of Obstetrics and Gynecology, University of Turku, FI-20014 Turku, Finland
- Department of Obstetrics and Gynecology, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20521 Turku, Finland
| |
Collapse
|
7
|
Lu W, Hu C. Molecular biomarkers for gestational diabetes mellitus and postpartum diabetes. Chin Med J (Engl) 2022; 135:1940-1951. [PMID: 36148588 PMCID: PMC9746787 DOI: 10.1097/cm9.0000000000002160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT Gestational diabetes mellitus (GDM) is a growing public health problem worldwide that threatens both maternal and fetal health. Identifying individuals at high risk for GDM and diabetes after GDM is particularly useful for early intervention and prevention of disease progression. In the last decades, a number of studies have used metabolomics, genomics, and proteomic approaches to investigate associations between biomolecules and GDM progression. These studies clearly demonstrate that various biomarkers reflect pathological changes in GDM. The established markers have potential use as screening and diagnostic tools in GDM and in postpartum diabetes research. In the present review, we summarize recent studies of metabolites, single-nucleotide polymorphisms, microRNAs, and proteins associated with GDM and its transition to postpartum diabetes, with a focus on their predictive value in screening and diagnosis.
Collapse
Affiliation(s)
- Wenqian Lu
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510630, China
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to the Southern Medical University, Shanghai 201400, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510630, China
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to the Southern Medical University, Shanghai 201400, China
| |
Collapse
|
8
|
Mokkala K, Gustafsson J, Vahlberg T, Vreugdenhil ACE, Ding L, Shiri-Sverdlov R, Plat J, Laitinen K. Serum CathepsinD in pregnancy: Relation with metabolic and inflammatory markers and effects of fish oils and probiotics. Nutr Metab Cardiovasc Dis 2022; 32:1292-1300. [PMID: 35304048 DOI: 10.1016/j.numecd.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Elevated circulating levels of CathepsinD (CatD) have been linked to metabolic deviations including liver inflammation. We investigated 1) whether supplementation with probiotics and/or fish oil affects CatD and 2) whether the CatD concentration would associate with gestational diabetes (GDM), low-grade inflammation, lipid metabolism, body fat % and dietary composition. METHODS AND RESULTS Overweight/obese pregnant women (n = 438) were randomized into fish oil + placebo, probiotics + placebo, fish oil + probiotics or placebo + placebo groups. Fish oil contained 1.9 g docosahexaenoic acid and 0.22 g eicosapentaenoic acid and probiotics were Lacticaseibacillusrhamnosus HN001 (formerly Lactobacillusrhamnosus HN001) and Bifidobacteriumanimalis ssp. lactis 420, 1010 colony-forming units each). Serum CatD levels were analysed by ELISA, GlycA and lipid metabolites by NMR, high sensitive C-reactive protein (hsCRP) by immunoassay, and intakes of energy yielding nutrients and n-3 and n-6 fatty acids from food diaries at both early and late pregnancy. GDM was diagnosed by OGTT. CatD concentrations did not differ between the intervention groups or by GDM status. Multivariable linear models revealed that body fat % and GlycA affected CatD differently in healthy women and those with GDM. CONCLUSION The serum CatD concentration of pregnant women was not modified by this dietary intervention. Serum CatD was influenced by two parameters, body fat and low grade inflammation, which were dependent on the woman's GDM status. CLINICAL TRIAL REG. NO: NCT01922791, clinicaltrials.gov (secondary analysis).
Collapse
Affiliation(s)
- Kati Mokkala
- Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Johanna Gustafsson
- Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Tero Vahlberg
- Institute of Clinical Medicine, Biostatistics, University of Turku, Turku, Finland
| | - Anita C E Vreugdenhil
- Department of Pediatrics, School of Nutrition and Translation Research in Metabolism (NUTRIM), Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - Lingling Ding
- Department of Molecular Genetics, School of Nutrition and Translation Research in Metabolism (NUTRIM), Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, School of Nutrition and Translation Research in Metabolism (NUTRIM), Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, School of Nutrition and Translation Research in Metabolism (NUTRIM), Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - Kirsi Laitinen
- Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, Turku, Finland; Department of Obstetrics and Gynecology, Turku University Hospital, Turku, Finland.
| |
Collapse
|
9
|
Maternal and Fetal Metabolites in Gestational Diabetes Mellitus: A Narrative Review. Metabolites 2022; 12:metabo12050383. [PMID: 35629887 PMCID: PMC9143359 DOI: 10.3390/metabo12050383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a major public health issue of our century due to its increasing prevalence, affecting 5% to 20% of all pregnancies. The pathogenesis of GDM has not been completely elucidated to date. Increasing evidence suggests the association of environmental factors with genetic and epigenetic factors in the development of GDM. So far, several metabolomics studies have investigated metabolic disruptions associated with GDM. The aim of this review is to highlight the usefulness of maternal metabolites as diagnosis markers of GDM as well as the importance of both maternal and fetal metabolites as prognosis biomarkers for GDM and GDM’s transition to type 2 diabetes mellitus T2DM.
Collapse
|
10
|
Impact of combined consumption of fish oil and probiotics on the serum metabolome in pregnant women with overweight or obesity. EBioMedicine 2021; 73:103655. [PMID: 34740110 PMCID: PMC8577343 DOI: 10.1016/j.ebiom.2021.103655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND If a pregnant woman is overweight, this can evoke metabolic alterations that may have health consequences for both mother and child. METHODS Pregnant women with overweight/obesity (n = 358) received fish oil+placebo, probiotics+placebo, fish oil+probiotics or placebo+placebo from early pregnancy onwards. The serum metabolome was analysed from fasting samples with a targeted NMR-approach in early and late pregnancy. GDM was diagnosed by OGTT. FINDINGS The intervention changed the metabolic profile of the women, but the effect was influenced by their GDM status. In women without GDM, the changes in nine lipids (FDR<0.05) in the fish oil+placebo-group differed when compared to the placebo+placebo-group. The combination of fish oil and probiotics induced changes in more metabolites, 46 of the lipid metabolites differed in women without GDM when compared to placebo+placebo-group; these included reduced increases in the concentrations and lipid constituents of VLDL-particles and less pronounced alterations in the ratios of various lipids in several lipoproteins. In women with GDM, no differences were detected in the changes of any metabolites due to any of the interventions when compared to the placebo+placebo-group (FDR<0.05). INTERPRETATION Fish oil and particularly the combination of fish oil and probiotics modified serum lipids in pregnant women with overweight or obesity, while no such effects were seen with probiotics alone. The effects were most evident in the lipid contents of VLDL and LDL only in women without GDM. FUNDING State Research Funding for university-level health research in the Turku University Hospital Expert Responsibility Area, Academy of Finland, the Diabetes Research Foundation, the Juho Vainio Foundation, Janssen Research & Development, LLC.
Collapse
|
11
|
Wang QY, You LH, Xiang LL, Zhu YT, Zeng Y. Current progress in metabolomics of gestational diabetes mellitus. World J Diabetes 2021; 12:1164-1186. [PMID: 34512885 PMCID: PMC8394228 DOI: 10.4239/wjd.v12.i8.1164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/20/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common metabolic disorders of pregnancy and can cause short- and long-term adverse effects in both pregnant women and their offspring. However, the etiology and pathogenesis of GDM are still unclear. As a metabolic disease, GDM is well suited to metabolomics study, which can monitor the changes in small molecular metabolites induced by maternal stimuli or perturbations in real time. The application of metabolomics in GDM can be used to discover diagnostic biomarkers, evaluate the prognosis of the disease, guide the application of diet or drugs, evaluate the curative effect, and explore the mechanism. This review provides comprehensive documentation of metabolomics research methods and techniques as well as the current progress in GDM research. We anticipate that the review will contribute to identifying gaps in the current knowledge or metabolomics technology, provide evidence-based information, and inform future research directions in GDM.
Collapse
Affiliation(s)
- Qian-Yi Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 21000, Jiangsu Province, China
| | - Liang-Hui You
- Nanjing Maternity and Child Health Care Institute, Women’s Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 21000, Jiangsu Province, China
| | - Lan-Lan Xiang
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 21000, Jiangsu Province, China
| | - Yi-Tian Zhu
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 21000, Jiangsu Province, China
| | - Yu Zeng
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 21000, Jiangsu Province, China
| |
Collapse
|
12
|
Davis DW, Crew J, Planinic P, Alexander JM, Basu A. Associations of Dietary Bioactive Compounds with Maternal Adiposity and Inflammation in Gestational Diabetes: An Update on Observational and Clinical Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7528. [PMID: 33081175 PMCID: PMC7589556 DOI: 10.3390/ijerph17207528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
Gestational diabetes mellitus (GDM) is a common complication of pregnancy that adversely affects maternal and offspring health. Maternal obesity, oxidative stress, and inflammation have been implicated in GDM. In non-pregnant adults, intakes of dietary bioactive compounds inversely associate with insulin resistance and inflammation. However, associations of dietary bioactive compounds with biomarkers of adiposity, antioxidant vitamin and mineral status, oxidative stress, and inflammation in GDM have not been fully elucidated. We addressed this gap by conducting a semi-quantitative review of observational studies and randomized controlled trials published between 2010 and 2020 and retrieved from Google Scholar, Medline, and PubMed. Our analysis revealed that women with GDM are more likely to consume a pro-inflammatory diet before pregnancy and tend to consume fewer antioxidant vitamins and minerals during pregnancy than healthy pregnant women. Women with GDM also have lower blood levels of vitamins A, C, and D and certain adipokines. Several dietary bioactive compounds were noted to improve antioxidant status and biomarkers of inflammation. The Dietary Approaches to Stop Hypertension (DASH) diet and soybean oligosaccharides increased antioxidant enzyme levels. Supplementing n-3 fatty acids, probiotics, synbiotics, and trace elements increased antioxidant enzymes and reduced hs-CRP and MDA. Improvements in inflammation by vitamin D may be contingent upon co-supplementation with other dietary bioactive compounds.
Collapse
Affiliation(s)
- Dustin W. Davis
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, NV 89154, USA; (D.W.D.); (J.C.)
| | - Jeannette Crew
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, NV 89154, USA; (D.W.D.); (J.C.)
| | - Petar Planinic
- Department of Obstetrics & Gynecology, School of Medicine, University of Nevada at Las Vegas, Las Vegas, NV 89154, USA; (P.P.); (J.M.A.)
| | - James M. Alexander
- Department of Obstetrics & Gynecology, School of Medicine, University of Nevada at Las Vegas, Las Vegas, NV 89154, USA; (P.P.); (J.M.A.)
| | - Arpita Basu
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, NV 89154, USA; (D.W.D.); (J.C.)
| |
Collapse
|