1
|
Sakai H, Murakami C, Takechi M, Urano T, Sakane F. Diacylglycerol kinase δ is required for skeletal muscle development and regeneration. FASEB Bioadv 2025; 7:e1481. [PMID: 39781426 PMCID: PMC11705536 DOI: 10.1096/fba.2024-00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/23/2024] [Accepted: 11/22/2024] [Indexed: 01/12/2025] Open
Abstract
Diacylglycerol kinase δ (DGKδ) phosphorylates diacylglycerol to produce phosphatidic acid. Previously, we demonstrated that down-regulation of DGKδ suppresses the myogenic differentiation of C2C12 myoblasts. However, the myogenic roles of DGKδ in vivo remain unclear. In the present study, we generated DGKδ-conditional knockout mice under the control of the myogenic factor 5 (Myf5) gene promoter, which regulates myogenesis and brown adipogenesis. The knockout mice showed a significant body weight reduction and apparent mass decrease in skeletal muscle, including the tibialis anterior (TA) muscle. Moreover, the thickness of a portion of the myofibers was reduced in DGKδ-deficient TA muscles. However, DGKδ deficiency did not substantially affect brown adipogenesis, suggesting that Myf5-driven DGKδ deficiency mainly affects muscle development. Notably, skeletal muscle injury induced by a cardiotoxin highly up-regulated DGKδ protein expression, and the DGKδ deficiency significantly reduced the thickness of myofibers, the expression levels of myogenic differentiation markers such as embryonic myosin heavy chain and myogenin, and the number of newly formed myofibers containing multiple central nuclei during muscle regeneration. DGKδ was strongly expressed in myogenin-positive satellite cells around the injured myofibers and centronucleated myofibers. These results indicate that DGKδ has important roles in muscle regeneration in activated satellite cells. Moreover, the conditional knockout mice fed with a high-fat diet showed increased fat mass and glucose intolerance. Taken together, these results demonstrate that DGKδ plays crucial roles in skeletal muscle development, regeneration, and function.
Collapse
Affiliation(s)
- Hiromichi Sakai
- Department of Biosignaling and Radioisotope ExperimentInterdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane UniversityIzumoJapan
| | - Chiaki Murakami
- Department of Chemistry, Graduate School of ScienceChiba UniversityChibaJapan
- Institute for Advanced Academic ResearchChiba UniversityChibaJapan
| | - Mayumi Takechi
- Department of Experimental Animals, Interdisciplinary Center for Science Research, Organization for Research and Academic InformationShimane UniversityIzumoJapan
| | - Takeshi Urano
- Department of BiochemistryShimane University School of MedicineIzumoJapan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of ScienceChiba UniversityChibaJapan
| |
Collapse
|
2
|
Finardi EAR, Bonfante ILP, Monfort-Pires M, Duft RG, Mateus KCDS, Brunetto SQ, Chacon-Mikahil MPT, Ramos CD, Velloso LA, Cavaglieri CR. Effects of combined training on nonshivering thermogenic activity of muscles in individuals with overweight and type 2 diabetes. Clin Physiol Funct Imaging 2024; 44:436-446. [PMID: 38880943 DOI: 10.1111/cpf.12896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Increased thermogenic activity has shown to be a promising target for treating and preventing obesity and type 2 diabetes (T2DM). Little is known about the muscular influence on nonshivering thermogenesis (NST), and it remains unclear whether physical training and potential metabolic improvements could be associated with changes in this type of thermogenic activity. OBJECTIVE The present study aimed to assess muscular NST activity in overweight and T2DM before and after a combined training period (strength training followed by aerobic exercise). METHODS Nonshivering cold-induced 18-fluoroxyglucose positron emission computed tomography (18F-FDG PET/CT) was performed before and after 16 weeks of combined training in 12 individuals with overweight and T2DM. The standard uptake value (SUV) of 18F-FDG was evaluated in skeletal muscles, the heart and the aorta. RESULTS Muscles in the neck region exhibit higher SUV pre- and posttraining. Furthermore, a decrease in glucose uptake by the muscles of the lower and upper extremities and in the aorta was observed after training when adjusted for brown adipose tissue (BAT). These pre-post effects are accompanied by increased cardiac SUV and occur concurrently with heightened energy expenditure and metabolic improvements. CONCLUSIONS Muscles in the neck region have greater metabolic activity upon exposure to cold. In addition, combined training appears to induce greater NST, favoring the trunk and neck region compared to limbs based on joint work and adaptations between skeletal muscles and BAT.
Collapse
Affiliation(s)
| | - Ivan Luiz Padilha Bonfante
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Milena Monfort-Pires
- Laboratory of Cell Signalling, Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo, Brazil
- Turku PET Centre, University of Turku, Turku, Finland
| | - Renata Garbellini Duft
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, Sao Paulo, Brazil
- The Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - Keryma Chaves da Silva Mateus
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, Sao Paulo, Brazil
| | | | | | - Celso Darío Ramos
- Department of Radiology, University of Campinas, Campinas, São Paulo, Brazil
| | - Licio Augusto Velloso
- Laboratory of Cell Signalling, Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo, Brazil
| | - Cláudia R Cavaglieri
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, Sao Paulo, Brazil
| |
Collapse
|
3
|
Jollet M, Tramontana F, Jiang LQ, Borg ML, Savikj M, Kuefner MS, Massart J, de Castro Barbosa T, Mannerås-Holm L, Checa A, Pillon NJ, Chibalin AV, Björnholm M, Zierath JR. Diacylglycerol kinase delta overexpression improves glucose clearance and protects against the development of obesity. Metabolism 2024; 158:155939. [PMID: 38843995 DOI: 10.1016/j.metabol.2024.155939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND AND AIM Diacylglycerol kinase (DGK) isoforms catalyze an enzymatic reaction that removes diacylglycerol (DAG) and thereby terminates protein kinase C signaling by converting DAG to phosphatidic acid. DGKδ (type II isozyme) downregulation causes insulin resistance, metabolic inflexibility, and obesity. Here we determined whether DGKδ overexpression prevents these metabolic impairments. METHODS We generated a transgenic mouse model overexpressing human DGKδ2 under the myosin light chain promoter (DGKδ TG). We performed deep metabolic phenotyping of DGKδ TG mice and wild-type littermates fed chow or high-fat diet (HFD). Mice were also provided free access to running wheels to examine the effects of DGKδ overexpression on exercise-induced metabolic outcomes. RESULTS DGKδ TG mice were leaner than wild-type littermates, with improved glucose tolerance and increased skeletal muscle glycogen content. DGKδ TG mice were protected against HFD-induced glucose intolerance and obesity. DGKδ TG mice had reduced epididymal fat and enhanced lipolysis. Strikingly, DGKδ overexpression recapitulated the beneficial effects of exercise on metabolic outcomes. DGKδ overexpression and exercise had a synergistic effect on body weight reduction. Microarray analysis of skeletal muscle revealed common gene ontology signatures of exercise and DGKδ overexpression that were related to lipid storage, extracellular matrix, and glycerophospholipids biosynthesis pathways. CONCLUSION Overexpression of DGKδ induces adaptive changes in both skeletal muscle and adipose tissue, resulting in protection against HFD-induced obesity. DGKδ overexpression recapitulates exercise-induced adaptations on energy homeostasis and skeletal muscle gene expression profiles.
Collapse
Affiliation(s)
- Maxence Jollet
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Flavia Tramontana
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Lake Q Jiang
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Melissa L Borg
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Mladen Savikj
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Michael S Kuefner
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Julie Massart
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Thais de Castro Barbosa
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Louise Mannerås-Holm
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Antonio Checa
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Marie Björnholm
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden; Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Sakai H, Matsumoto K, Urano T, Sakane F. Myristic acid selectively augments β-tubulin levels in C2C12 myotubes via diacylglycerol kinase δ. FEBS Open Bio 2022; 12:1788-1796. [PMID: 35856166 PMCID: PMC9527581 DOI: 10.1002/2211-5463.13466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/29/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022] Open
Abstract
Effective amelioration of type II diabetes requires therapies that increase both glucose uptake activity per cell and skeletal muscle mass. Myristic acid (14:0) increases diacylglycerol kinase (DGK) δ protein levels and enhances glucose uptake in myotubes in a DGKδ-dependent manner. However, it is still unclear whether myristic acid treatment affects skeletal muscle mass. In this study, we found that myristic acid treatment increased the protein level of β-tubulin, which constitutes microtubules and is closely related to muscle mass, in C2C12 myotubes but not in the proliferation stage in C2C12 myoblasts. However, lauric (12:0), palmitic (16:0) and oleic (18:1) acids failed to affect DGKδ and β-tubulin protein levels in C2C12 myotubes. Moreover, knockdown of DGKδ by siRNA significantly inhibited the increased protein level of β-tubulin in the presence of myristic acid, suggesting that the increase in β-tubulin protein by myristic acid depends on DGKδ. These results indicate that myristic acid selectively affects β-tubulin protein levels in C2C12 myotubes via DGKδ, suggesting that this fatty acid improves skeletal muscle mass in addition to increasing glucose uptake activity per cell.
Collapse
Affiliation(s)
- Hiromichi Sakai
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic InformationShimane UniversityIzumoJapan
| | - Ken‐ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic InformationShimane UniversityIzumoJapan
| | - Takeshi Urano
- Department of BiochemistryShimane University School of MedicineIzumoJapan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of ScienceChiba UniversityJapan
| |
Collapse
|
5
|
Beyond the Calorie Paradigm: Taking into Account in Practice the Balance of Fat and Carbohydrate Oxidation during Exercise? Nutrients 2022; 14:nu14081605. [PMID: 35458167 PMCID: PMC9027421 DOI: 10.3390/nu14081605] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Recent literature shows that exercise is not simply a way to generate a calorie deficit as an add-on to restrictive diets but exerts powerful additional biological effects via its impact on mitochondrial function, the release of chemical messengers induced by muscular activity, and its ability to reverse epigenetic alterations. This review aims to summarize the current literature dealing with the hypothesis that some of these effects of exercise unexplained by an energy deficit are related to the balance of substrates used as fuel by the exercising muscle. This balance of substrates can be measured with reliable techniques, which provide information about metabolic disturbances associated with sedentarity and obesity, as well as adaptations of fuel metabolism in trained individuals. The exercise intensity that elicits maximal oxidation of lipids, termed LIPOXmax, FATOXmax, or FATmax, provides a marker of the mitochondrial ability to oxidize fatty acids and predicts how much fat will be oxidized over 45–60 min of low- to moderate-intensity training performed at the corresponding intensity. LIPOXmax is a reproducible parameter that can be modified by many physiological and lifestyle influences (exercise, diet, gender, age, hormones such as catecholamines, and the growth hormone-Insulin-like growth factor I axis). Individuals told to select an exercise intensity to maintain for 45 min or more spontaneously select a level close to this intensity. There is increasing evidence that training targeted at this level is efficient for reducing fat mass, sparing muscle mass, increasing the ability to oxidize lipids during exercise, lowering blood pressure and low-grade inflammation, improving insulin secretion and insulin sensitivity, reducing blood glucose and HbA1c in type 2 diabetes, and decreasing the circulating cholesterol level. Training protocols based on this concept are easy to implement and accept in very sedentary patients and have shown an unexpected efficacy over the long term. They also represent a useful add-on to bariatric surgery in order to maintain and improve its weight-lowering effect. Additional studies are required to confirm and more precisely analyze the determinants of LIPOXmax and the long-term effects of training at this level on body composition, metabolism, and health.
Collapse
|
6
|
Reactive Oxygen Species (ROS) and Antioxidants as Immunomodulators in Exercise: Implications for Heme Oxygenase and Bilirubin. Antioxidants (Basel) 2022; 11:antiox11020179. [PMID: 35204062 PMCID: PMC8868548 DOI: 10.3390/antiox11020179] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Exercise is commonly prescribed as a lifestyle treatment for chronic metabolic diseases as it functions as an insulin sensitizer, cardio-protectant, and essential lifestyle tool for effective weight maintenance. Exercise boosts the production of reactive oxygen species (ROS) and subsequent transient oxidative damage, which also upregulates counterbalancing endogenous antioxidants to protect from ROS-induced damage and inflammation. Exercise elevates heme oxygenase-1 (HO-1) and biliverdin reductase A (BVRA) expression as built-in protective mechanisms, which produce the most potent antioxidant, bilirubin. Together, these mitigate inflammation and adiposity. Moderately raising plasma bilirubin protects in two ways: (1) via its antioxidant capacity to reduce ROS and inflammation, and (2) its newly defined function as a hormone that activates the nuclear receptor transcription factor PPARα. It is now understood that increasing plasma bilirubin can also drive metabolic adaptions, which improve deleterious outcomes of weight gain and obesity, such as inflammation, type II diabetes, and cardiovascular diseases. The main objective of this review is to describe the function of bilirubin as an antioxidant and metabolic hormone and how the HO-1-BVRA-bilirubin-PPARα axis influences inflammation, metabolic function and interacts with exercise to improve outcomes of weight management.
Collapse
|
7
|
Ahn J, Son HJ, Seo HD, Ha TY, Ahn J, Lee H, Shin SH, Jung CH, Jang YJ. γ-Oryzanol Improves Exercise Endurance and Muscle Strength by Upregulating PPARδ and ERRγ Activity in Aged Mice. Mol Nutr Food Res 2021; 65:e2000652. [PMID: 33932312 DOI: 10.1002/mnfr.202000652] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 04/05/2021] [Indexed: 12/24/2022]
Abstract
SCOPE γ-Oryzanol, a well-known antioxidant, has been used by body builders and athletes to boost strength and increase muscle gain, without major side effects. However, the effect of γ-Oryzanol on sarcopenia and the underlying molecular mechanism is poorly understood. RESULTS Aged mice fed with the γ-Oryzanol diet do not show significant changes in muscle weight, but show increased running endurance as well as improved grip strength. The expression and activity of PPARδ and ERRγ are increased in skeletal muscle of γ-Oryzanol supplemented mice. γ-Oryzanol upregulates oxidative muscle fibers by MEF2 transcription factor, and PGC-1α and ERRα expressions. Fatty acid oxidation related genes and mitochondria biogenesis are upregulated by γ-Oryzanol. In addition, γ-Oryzanol inhibits TGF-β-Smad-NADPH oxidase 4 pathway and inflammatory cytokines such as TNF-α, IL-1β, IL-6, and p65 NF-κB subunit, which cause skeletal muscle weakness. Collectively, γ-Oryzanol attenuates muscle weakness pathway and increases oxidative capacity by increasing PPARδ and ERRγ activity, which contributes to enhance strength and improve oxidative capacity in muscles, consequently enhancing exercise capacity in aged mice. Particularly, γ-Oryzanol directly binds to PPARδ. CONCLUSIONS These are the first findings showing that γ-Oryzanol enhances skeletal muscle function in aged mice by regulating PPARδ and ERRγ activity without muscle gain.
Collapse
Affiliation(s)
- Jisong Ahn
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju, 55365, Republic of Korea
- Department of Food Science and Technology, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyo Jeong Son
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - Hyo Deok Seo
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - Tae Youl Ha
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju, 55365, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jiyun Ahn
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju, 55365, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Hyunjung Lee
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - Seung Ho Shin
- Department of Food and Nutrition, Gyeongsang National University, Jinju, 52828, Republic of Korea
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Chang Hwa Jung
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju, 55365, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Young Jin Jang
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju, 55365, Republic of Korea
- Major of Food Science & Technology, Seoul Women's University, Seoul, 01797, Republic of Korea
| |
Collapse
|
8
|
Modaresi MS, Fathei M, Attarzadeh Hosseini SR, Ziaaldini MM, Sadeghian Shahi MR. The effects of two iso-volume endurance training protocols on mitochondrial dysfunction in type 2 diabetic male mice. J Diabetes Metab Disord 2021; 19:1097-1103. [PMID: 33520827 DOI: 10.1007/s40200-020-00611-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 07/18/2020] [Accepted: 08/07/2020] [Indexed: 11/28/2022]
Abstract
Purpose Type 2diabetes(T2D) is one of the more common diseases in the world and has been widely spread. One of the suggested mechanisms in development of T2D, is mitochondrial dysfunction. The purpose of this study is to compare the effects of two endurance training protocols with low and moderate intensity on biogenesis and mitochondrial function, in Diabetic mice induced by high fat diet and Streptozotocin(STZ). Methods 40 five week old mice divided to four groups including: health control (HC, n = 7), diabetic control (DC, n = 7), low endurance training (DLT, n = 7) and moderate endurance training (DMT, n = 7). DMT group ran at 5 m/min for an hour, 3 days a week on a treadmill, and DLT group ran at 3 m/min for an hour, 5 days a week on a treadmill for 8 weeks. Results The cytosolic content of PGC1α, Tfam and mitochondrial content of citrate synthase(Cs) and cytochrome c oxidase(Cox) in DC was significantly reduced compared to HC(P˂0.05). All of the parameters except for Cs in both DLT and DMT were increased compared to DC (P˂0.05), but there was no difference between them and the HC (P˃0.05). There was no difference in Cs enzyme between the DC and the DLT(P˃0.05), but it was significantly increased in the DMT(P˂0.05). There was a significantly difference between Cs enzyme in HC and DLT(P˂0.05), but there wasn't any significant difference between HC and DMT(P˃0.05). Conclusions The results showed that in same volume condition, both endurance training protocols improved the proteins involved in biogenesis and mitochondrial function in T2D mice and there was no significant difference between them.
Collapse
Affiliation(s)
| | - Mehrdad Fathei
- Faculty of Sport Science, Ferdowsi University of Mashhad, Azadi sq, Mashhad, Iran
| | | | | | | |
Collapse
|
9
|
The Regulation of Fat Metabolism During Aerobic Exercise. Biomolecules 2020; 10:biom10121699. [PMID: 33371437 PMCID: PMC7767423 DOI: 10.3390/biom10121699] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
Since the lipid profile is altered by physical activity, the study of lipid metabolism is a remarkable element in understanding if and how physical activity affects the health of both professional athletes and sedentary subjects. Although not fully defined, it has become clear that resistance exercise uses fat as an energy source. The fatty acid oxidation rate is the result of the following processes: (a) triglycerides lipolysis, most abundant in fat adipocytes and intramuscular triacylglycerol (IMTG) stores, (b) fatty acid transport from blood plasma to muscle sarcoplasm, (c) availability and hydrolysis rate of intramuscular triglycerides, and (d) transport of fatty acids through the mitochondrial membrane. In this review, we report some studies concerning the relationship between exercise and the aforementioned processes also in light of hormonal controls and molecular regulations within fat and skeletal muscle cells.
Collapse
|
10
|
Low-Intensity Exercise Training Additionally Increases Mitochondrial Dynamics Caused by High-Fat Diet (HFD) but Has No Additional Effect on Mitochondrial Biogenesis in Fast-Twitch Muscle by HFD. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17155461. [PMID: 32751208 PMCID: PMC7432492 DOI: 10.3390/ijerph17155461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 01/07/2023]
Abstract
This study examines how the high-fat diet (HFD) affects mitochondrial dynamics and biogenesis, and also whether combining it with low-intensity endurance exercise adds to these effects. Six 8-week-old male Sprague–Dawley (SD) rats were put on control (CON; standard chow diet), HF (HFD intake), and HFEx (HFD + low-intensity treadmill exercise) for 6 weeks. As a result, no change in body weight was observed among the groups. However, epididymal fat mass increased significantly in the two groups that had been given HFD. Blood free fatty acid (FFA) also increased significantly in the HF group. While HFD increased insulin resistance (IR), this was improved significantly in the HFEx group. HFD also significantly increased mitochondrial biogenesis-related factors (PPARδ, PGC-1α, and mtTFA) and mitochondrial electron transport chain proteins; however, no additional effect from exercise was observed. Mitochondrial dynamic-related factors were also affected: Mfn2 increased significantly in the HFEx group, while Drp1 and Fis-1 increased significantly in both the HF and HFEx groups. The number of mitochondria in the subsarcolemmal region, and their size in the subsarcolemmal and intermyofibrillar regions, also increased significantly in the HFEx group. Taken overall, these results show that HFD in combination with low-intensity endurance exercise has no additive effect on mitochondrial biogenesis, although it does have such an effect on mitochondrial dynamics by improving IR.
Collapse
|
11
|
Müllers P, Taubert M, Müller NG. Physical Exercise as Personalized Medicine for Dementia Prevention? Front Physiol 2019; 10:672. [PMID: 31244669 PMCID: PMC6563896 DOI: 10.3389/fphys.2019.00672] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/13/2019] [Indexed: 11/16/2022] Open
Abstract
Accumulating evidence mainly from observational studies supports the notion that lifestyle factors such as regular physical activity can modulate potential risk factors of dementia. Regarding a potential mechanism for this interaction, results from intervention studies show that exercising can induce neuroplastic changes in the human brain. However, a detailed look at the study results reveals a wide interindividual variability in the observed effects. This heterogeneity may originate from the fact that there are “responders” and “non-responders” with respect to the impact of physical exercise on physiological outcome parameters (i.e., VO2 peak) and the brain. From this, it follows that recommendations for physical exercise programs should not follow a “one size fits all” approach. Instead, we propose that the exercises should be tailored to an individual in order to maximize the potential neuroplastic and preventive effects of regular exercise. These adaptations should take the individual performance levels into account and impact both the quality (i.e., type) and the quantity of exercises (i.e., intensity, duration, and volume).
Collapse
Affiliation(s)
- Patrick Müllers
- Neuroprotection Laboratory, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Marco Taubert
- Institute of Sport Science, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Notger G Müller
- Neuroprotection Laboratory, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Medical Faculty, Clinic for Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
12
|
Pinti MV, Fink GK, Hathaway QA, Durr AJ, Kunovac A, Hollander JM. Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis. Am J Physiol Endocrinol Metab 2019; 316:E268-E285. [PMID: 30601700 PMCID: PMC6397358 DOI: 10.1152/ajpendo.00314.2018] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/27/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a systemic disease characterized by hyperglycemia, hyperlipidemia, and organismic insulin resistance. This pathological shift in both circulating fuel levels and energy substrate utilization by central and peripheral tissues contributes to mitochondrial dysfunction across organ systems. The mitochondrion lies at the intersection of critical cellular pathways such as energy substrate metabolism, reactive oxygen species (ROS) generation, and apoptosis. It is the disequilibrium of these processes in T2DM that results in downstream deficits in vital functions, including hepatocyte metabolism, cardiac output, skeletal muscle contraction, β-cell insulin production, and neuronal health. Although mitochondria are known to be susceptible to a variety of genetic and environmental insults, the accumulation of mitochondrial DNA (mtDNA) mutations and mtDNA copy number depletion is helping to explain the prevalence of mitochondrial-related diseases such as T2DM. Recent work has uncovered novel mitochondrial biology implicated in disease progressions such as mtDNA heteroplasmy, noncoding RNA (ncRNA), epigenetic modification of the mitochondrial genome, and epitranscriptomic regulation of the mtDNA-encoded mitochondrial transcriptome. The goal of this review is to highlight mitochondrial dysfunction observed throughout major organ systems in the context of T2DM and to present new ideas for future research directions based on novel experimental and technological innovations in mitochondrial biology. Finally, the field of mitochondria-targeted therapeutics is discussed, with an emphasis on novel therapeutic strategies to restore mitochondrial homeostasis in the setting of T2DM.
Collapse
Affiliation(s)
- Mark V Pinti
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
- West Virginia University School of Pharmacy , Morgantown, West Virginia
| | - Garrett K Fink
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
- Toxicology Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Andrya J Durr
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| |
Collapse
|
13
|
Sakai H, Murakami C, Matsumoto KI, Urano T, Sakane F. Diacylglycerol kinase δ controls down-regulation of cyclin D1 for C2C12 myogenic differentiation. Biochimie 2018; 151:45-53. [PMID: 29859210 DOI: 10.1016/j.biochi.2018.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/28/2018] [Indexed: 12/25/2022]
Abstract
Diacylglycerol kinase (DGK) is a lipid-metabolizing enzyme that phosphorylates diacylglycerol (DG) to produce phosphatidic acid (PA). DGKδ is highly expressed in the skeletal muscle, and a decrease in DGKδ expression increases the severity of type 2 diabetes. However, the role of DGKδ in myogenic differentiation is still unknown. The present study demonstrated that DGKδ expression was down-regulated in the early stage of C2C12 myogenic differentiation almost concurrently with a decrease in cyclin D1 expression. The knockdown of DGKδ by DGKδ-specific siRNAs significantly increased the levels of cyclin D1 expression at 48 h after C2C12 myogenic differentiation. In contrast, at the same time, the knockdown of DGKδ decreased the levels of myogenin expression and the number of myosin heavy chain (MHC)-positive cells. These results indicate that DGKδ regulates the early differentiation of C2C12 myoblasts via controlling the down-regulation of cyclin D1 expression. Moreover, the suppression of DGKδ expression increased the phosphorylation levels of conventional and novel protein kinase Cs (cnPKCs). Furthermore, DGKδ suppression increased the levels of cyclin D1 and phospho-cnPKCs even at the first 24 h of myogenic differentiation. These results suggest that DGKδ controls the down-regulation of cyclin D1 expression by attenuating the PKC signaling pathway for C2C12 myogenic differentiation.
Collapse
Affiliation(s)
- Hiromichi Sakai
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, Japan.
| | - Chiaki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, Japan
| | - Takeshi Urano
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, Japan; Department of Biochemistry, Shimane University School of Medicine, Izumo, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan.
| |
Collapse
|
14
|
Shao K, Shen LS, Li HH, Huang S, Zhang Y. Systematic-analysis of mRNA expression profiles in skeletal muscle of patients with type II diabetes: The glucocorticoid was central in pathogenesis. J Cell Physiol 2017; 233:4068-4076. [PMID: 28885689 DOI: 10.1002/jcp.26174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 08/30/2017] [Indexed: 01/22/2023]
Abstract
Since the past 30 years, the prevalence of diabetes has more than doubled, making it an urgent challenge globally. We carried out systematic analysis with the public data of mRNA expression profiles in skeletal muscle to study the pathogenesis, since insulin resistance in the skeletal muscle is an early feature. We utilized three GEO datasets, containing total 60 cases and 63 normal samples. After the background removal, R package QC was utilized to finish the preprocessing of datasets. We obtained a dataset containing 2481 genes and 123 samples after the preprocessing. Quantitative quality control measures were calculated to represent the quality of these datasets. MetaDE package provides functions for conducting different systematic analysis methods for differential expression analysis. The GO term enrichment was carried out using PANTHER. Protein-protein interactions, drug-gene interactions, and genetic association of the identified differentially expressed genes were analyzed using STRING v10.0 online tool, DGIdb, and the Genetic Association Database, respectively. The datasets had good performances on IQC and EQC, which suggested that the datasets had good internal and external quality. Totally 96 differentially expressed genes were detected using 0.01 as cutoff of AW. The enriched GO terms were mainly associated with the response to glucocorticoid. There were seven genes involving in the gluconeogenesis were differentially expressed, which might be the potential treatment target for this disease. The closely connected networks and potential targets of existed drugs suggested that some of the drugs might be applied to the treatment of diabetes as well.
Collapse
Affiliation(s)
- Kan Shao
- Department of Endocrinology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Sha Shen
- Department of Endocrinology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-Hua Li
- Department of Endocrinology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Huang
- Department of Endocrinology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Zhang
- Department of Endocrinology and Metabolism, Huai'an Hospital Affiliated to Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an, China
| |
Collapse
|
15
|
Diabetes-Induced Dysfunction of Mitochondria and Stem Cells in Skeletal Muscle and the Nervous System. Int J Mol Sci 2017; 18:ijms18102147. [PMID: 29036909 PMCID: PMC5666829 DOI: 10.3390/ijms18102147] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus is one of the most common metabolic diseases spread all over the world, which results in hyperglycemia caused by the breakdown of insulin secretion or insulin action or both. Diabetes has been reported to disrupt the functions and dynamics of mitochondria, which play a fundamental role in regulating metabolic pathways and are crucial to maintain appropriate energy balance. Similar to mitochondria, the functions and the abilities of stem cells are attenuated under diabetic condition in several tissues. In recent years, several studies have suggested that the regulation of mitochondria functions and dynamics is critical for the precise differentiation of stem cells. Importantly, physical exercise is very useful for preventing the diabetic alteration by improving the functions of both mitochondria and stem cells. In the present review, we provide an overview of the diabetic alterations of mitochondria and stem cells and the preventive effects of physical exercise on diabetes, focused on skeletal muscle and the nervous system. We propose physical exercise as a countermeasure for the dysfunction of mitochondria and stem cells in several target tissues under diabetes complication and to improve the physiological function of patients with diabetes, resulting in their quality of life being maintained.
Collapse
|
16
|
Pan HC, Lee CC, Chou KM, Lu SC, Sun CY. Serum levels of uncoupling proteins in patients with differential insulin resistance: A community-based cohort study. Medicine (Baltimore) 2017; 96:e8053. [PMID: 28984759 PMCID: PMC5737995 DOI: 10.1097/md.0000000000008053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The uncoupling protein (UCP) belongs to a family of energy-dissipating proteins in mitochondria. Increasing evidences have indicated that UCPs have immense impact on glucose homeostasis and are key proteins in metabolic syndrome. For applying the findings to clinical practice, we designed a study to explore the association between serum UCPs 1-3 and insulin resistance. This investigation prospectively recorded demographical parameter and collected blood samples of 1071 participants from 4 districts in Northeastern Taiwan during the period from August 2013 to July 2014. Propensity score matching by age and sex in patients with top and bottom third homeostasis model assessment of insulin resistance (HOMA-IR) levels was performed, and 326 subjects were enrolled for further studies. The mean age of the patients was 59.4 years and the majority of them (65.5%) were females. The prevalence of metabolic syndrome was 35.5%. Our results demonstrated that serum UCPs 1-3 were significantly associated with differences in HOMA-IR levels. Multiple logistic regression analysis indicated that low UCP 1 and features of metabolic syndrome, namely hypertension, diabetes, body mass index, and high-density lipoprotein, were independent determinants for high HOMA-IR levels. We thus determined that low serum UCP 1 is a predictor for high resistance to insulin.
Collapse
Affiliation(s)
- Heng-Chih Pan
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chin-Chan Lee
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung
- School of Medicine, Chang Gung University, Taoyuan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Kuei-Mei Chou
- Divisions of Endocrinology and Metabolism, Department of Internal Medicine
| | - Shang-Chieh Lu
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chiao-Yin Sun
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung
- School of Medicine, Chang Gung University, Taoyuan
| |
Collapse
|
17
|
Takato T, Iwata K, Murakami C, Wada Y, Sakane F. Chronic administration of myristic acid improves hyperglycaemia in the Nagoya-Shibata-Yasuda mouse model of congenital type 2 diabetes. Diabetologia 2017; 60:2076-2083. [PMID: 28707095 DOI: 10.1007/s00125-017-4366-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/06/2017] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS Previously, we demonstrated that myristic acid (14:0) increases levels of diacylglycerol kinase (DGK) δ, a key enzyme involved in type 2 diabetes exacerbation, and enhances glucose uptake in C2C12 myotube cells. Moreover, results from a population-based cohort study suggest that consumption of high-fat dairy products, which contain high amounts of myristic acid, is associated with a lower risk of developing type 2 diabetes. Taken together, we hypothesised that intake of myristic acid reduces type 2 diabetes risk in vivo. The aim of this study was to examine the glucose-lowering effect of myristic acid in Nagoya-Shibata-Yasuda (NSY) mice, a spontaneous model for studying obesity-related type 2 diabetes. METHODS Male NSY mice were orally administered vehicle (n = 9), 300 mg/kg of myristic acid (n = 14) or 300 mg/kg of palmitic acid (16:0) (n = 9) every other day from 4 weeks of age. Glucose and insulin tolerance tests were performed at weeks 18, 24 and 30, and weeks 20 and 26, respectively. DGKδ levels were measured in skeletal muscle from 32-36-week-old NSY mice via western blot. RESULTS Chronic oral administration of myristic acid ameliorated glucose tolerance (24-28% decrease in blood glucose levels during glucose tolerance tests) and reduced insulin-responsive blood glucose levels (~20% decrease) in male NSY mice compared with vehicle and palmitic acid groups at 24-30 weeks of age (the age at which the severity of type 2 diabetes is exacerbated in NSY mice). Myristic acid also attenuated the increase in body weight seen in NSY mice. Furthermore, the fatty acid increased DGKδ levels (~1.6-fold) in skeletal muscle of NSY mice. CONCLUSIONS/INTERPRETATION These results suggest that the chronic oral administration of myristic acid improves hyperglycaemia by decreasing insulin-responsive glucose levels and reducing body weight, and that the fatty acid accounts for the diabetes protective properties of high-fat dairy products. Myristic acid is a potential candidate for the prevention and treatment of type 2 diabetes mellitus and its related diseases.
Collapse
Affiliation(s)
- Tamae Takato
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Kai Iwata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Chiaki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Yuko Wada
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| |
Collapse
|
18
|
Pattanakuhar S, Pongchaidecha A, Chattipakorn N, Chattipakorn SC. The effect of exercise on skeletal muscle fibre type distribution in obesity: From cellular levels to clinical application. Obes Res Clin Pract 2016; 11:112-132. [PMID: 27756527 DOI: 10.1016/j.orcp.2016.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/18/2016] [Accepted: 09/28/2016] [Indexed: 12/25/2022]
Abstract
Skeletal muscles play important roles in metabolism, energy expenditure, physical strength, and locomotive activity. Skeletal muscle fibre types in the body are heterogeneous. They can be classified as oxidative types and glycolytic types with oxidative-type are fatigue-resistant and use oxidative metabolism, while fibres with glycolytic-type are fatigue-sensitive and prefer glycolytic metabolism. Several studies demonstrated that an obese condition with abnormal metabolic parameters has been negatively correlated with the distribution of oxidative-type skeletal muscle fibres, but positively associated with that of glycolytic-type muscle fibres. However, some studies demonstrated otherwise. In addition, several studies demonstrated that an exercise training programme caused the redistribution of oxidative-type skeletal muscle fibres in obesity. In contrast, some studies showed inconsistent findings. Therefore, the present review comprehensively summarizes and discusses those consistent and inconsistent findings from clinical studies, regarding the association among the distribution of skeletal muscle fibre types, obese condition, and exercise training programmes. Furthermore, the possible underlying mechanisms and clinical application of the alterations in muscle fibre type following obesity are presented and discussed.
Collapse
Affiliation(s)
- Sintip Pattanakuhar
- Department of Rehabilitation Medicine, Faculty of Medicine, Chiang Mai University, Thailand; Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Thailand
| | - Anchalee Pongchaidecha
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
19
|
Jaspers RT, Zillikens MC, Friesema ECH, Paoli G, Bloch W, Uitterlinden AG, Goglia F, Lanni A, Lange P. Exercise, fasting, and mimetics: toward beneficial combinations? FASEB J 2016; 31:14-28. [DOI: 10.1096/fj.201600652r] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/22/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Richard T. Jaspers
- Laboratory for MyologyMove Research Institute Amsterdam, Faculty of Behavioral and Movement Sciences, Vrije Universiteit (VU) Amsterdam Amsterdam The Netherlands
| | | | - Edith C. H. Friesema
- Division of PharmacologyVascular and Metabolic Diseases, Department of Internal Medicine, Erasmus Medical Center Rotterdam The Netherlands
| | - Giuseppe Paoli
- Department of EnvironmentalBiological, and Pharmaceutical Sciences and Technologies, Second University of Naples Caserta Italy
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport MedicineGerman Sport University Cologne Cologne Germany
| | | | - Fernando Goglia
- Department of Sciences and TechnologiesUniversity of Sannio Benevento Italy
| | - Antonia Lanni
- Department of EnvironmentalBiological, and Pharmaceutical Sciences and Technologies, Second University of Naples Caserta Italy
| | - Pieter Lange
- Department of EnvironmentalBiological, and Pharmaceutical Sciences and Technologies, Second University of Naples Caserta Italy
| |
Collapse
|
20
|
Tarpey MD, Spangenburg EE. Exercise. Eat. Repeat. Focus on "Prior exercise training blunts short-term high-fat diet-induced weight gain". Am J Physiol Regul Integr Comp Physiol 2016; 311:R209-10. [PMID: 27335280 DOI: 10.1152/ajpregu.00257.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 11/22/2022]
Affiliation(s)
- Michael D Tarpey
- East Carolina Diabetes and Obesity Institute, Department of Physiology, School of Medicine, East Carolina University, Greenville, North Carolina
| | - Espen E Spangenburg
- East Carolina Diabetes and Obesity Institute, Department of Physiology, School of Medicine, East Carolina University, Greenville, North Carolina
| |
Collapse
|
21
|
Alkahtani S, Elkilany A, Alhariri M. Association between sedentary and physical activity patterns and risk factors of metabolic syndrome in Saudi men: A cross-sectional study. BMC Public Health 2015; 15:1234. [PMID: 26655021 PMCID: PMC4676877 DOI: 10.1186/s12889-015-2578-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/07/2015] [Indexed: 01/09/2023] Open
Abstract
Background This study examined the association between objectively measured physical activity patterns and risk factors of metabolic syndrome (MetS) in Saudi men. Methods The study was cross-sectional, and 84 healthy men from the Saudi population (age 37.6 ± 8.8 years, body mass index [BMI] 28.4 ± 5.4 kg/m2) were recruited. Measurements of physical activity were made using triaxial accelerometers over 7 consecutive days of leisure time physical activity. Waist circumference and blood pressure were measured, and fasting blood samples taken to measure glucose, high density lipoprotein cholesterol (HDL), and triglycerides (TG). Results A total 21.4 % of participants had three or more risk factors for MetS, with low HDL levels the most frequent factor. Light physical activity (LPA) and BMI explained 13 % of the variation in TG. Moderate to vigorous physical activity (MVPA) with a minimum 10-min per session (10-min MVPA), LPA, and BMI explained 16 % of the variation in HDL. Sedentary behavior was not significantly associated with risk factors of MetS, although odds ratios indicated that decreased sedentarism does have a protective effect against MetS. Conclusions LPA and 10-min MVPA were associated with elevated HDL levels among Saudi men. Future studies should confirm whether time spent physically active independent of intensity is an important factor in improving HDL levels.
Collapse
Affiliation(s)
- Shaea Alkahtani
- Department of Exercise Physiology, College of Sport Sciences and Physical Activity, King Saud University, PO Box 1949, Riyadh, 11441, Saudi Arabia.
| | - Ahmed Elkilany
- Department of Physical & Health Education, College of Preparatory Year & Supporting Studies, University of Dammam, Dammam, Saudi Arabia.
| | - Mohammed Alhariri
- Department of Physiology, College of Medicine, University of Dammam, Dammam, Saudi Arabia.
| |
Collapse
|
22
|
Rousseau AS, Sibille B, Murdaca J, Mothe-Satney I, Grimaldi PA, Neels JG. α-Lipoic acid up-regulates expression of peroxisome proliferator-activated receptor β in skeletal muscle: involvement of the JNK signaling pathway. FASEB J 2015; 30:1287-99. [PMID: 26655383 DOI: 10.1096/fj.15-280453] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/16/2015] [Indexed: 11/11/2022]
Abstract
We hypothesized that α-lipoic acid (α-LA) might interact with the transcriptional control of peroxisome proliferator-activated receptor (PPAR)β in skeletal muscle. Molecular mechanisms were investigated using differentiated C2C12 myotubes treated with α-LA and/or PPARβ agonist GW0742. In vivo studies with 3-mo-old C57Bl6 mice were realized: voluntary wheel running (VWR) training (7 wk), and a 6 wk diet containing (or not) α-LA (0.25% wt/wt). This last condition was combined with (or not) 1 bout of treadmill exercise (18 m/min for 1 h). Using a reporter assay, we demonstrate that α-LA is not an agonist of PPARβ but regulates PPARβ target gene expression through an active PPARβ pathway. GW0742-induced pyruvate dehydrogenase kinase 4 mRNA is potentiated by α-LA. In C2C12, α-LA lowers the activation of the JNK signaling pathway and increases PPARβ mRNA and protein levels (2-fold) to the same extent as with the JNK inhibitor SP600125. Similarly to VWR training effect, PPARβ expression increases (2-fold) in vastus lateralis of animals fed an α-LA-enriched diet. However, α-LA treatment does not further stimulate the adaptive up-regulation of PPARβ observed in response to 1 bout of exercise. We have identified a novel mechanism of regulation of PPARβ expression/action in skeletal muscle with potential physiologic application through the action of α-LA, involving the JNK pathway.
Collapse
Affiliation(s)
- Anne-Sophie Rousseau
- Institut National de la Santé et de la Recherche Médicale, Unité 1065, Mediterranean Center of Molecular Medicine (C3M), Nice, France; and University of Nice-Sophia Antipolis, Nice, France
| | - Brigitte Sibille
- Institut National de la Santé et de la Recherche Médicale, Unité 1065, Mediterranean Center of Molecular Medicine (C3M), Nice, France; and University of Nice-Sophia Antipolis, Nice, France
| | - Joseph Murdaca
- Institut National de la Santé et de la Recherche Médicale, Unité 1065, Mediterranean Center of Molecular Medicine (C3M), Nice, France; and University of Nice-Sophia Antipolis, Nice, France
| | - Isabelle Mothe-Satney
- Institut National de la Santé et de la Recherche Médicale, Unité 1065, Mediterranean Center of Molecular Medicine (C3M), Nice, France; and University of Nice-Sophia Antipolis, Nice, France
| | - Paul A Grimaldi
- Institut National de la Santé et de la Recherche Médicale, Unité 1065, Mediterranean Center of Molecular Medicine (C3M), Nice, France; and University of Nice-Sophia Antipolis, Nice, France
| | - Jaap G Neels
- Institut National de la Santé et de la Recherche Médicale, Unité 1065, Mediterranean Center of Molecular Medicine (C3M), Nice, France; and University of Nice-Sophia Antipolis, Nice, France
| |
Collapse
|
23
|
Youssef J, Badr M. Peroxisome Proliferator-Activated Receptors Features, Functions, and Future. NUCLEAR RECEPTOR RESEARCH 2015. [DOI: 10.11131/2015/101188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
24
|
Lahiri S, Wahli W. Peroxisome proliferator-activated receptor β/δ: a master regulator of metabolic pathways in skeletal muscle. Horm Mol Biol Clin Investig 2015; 4:565-73. [PMID: 25961233 DOI: 10.1515/hmbci.2010.076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 12/26/2022]
Abstract
Skeletal muscle is considered to be a major site of energy expenditure and thus is important in regulating events affecting metabolic disorders. Over the years, both in vitro and in vivo approaches have established the role of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in fatty acid metabolism and energy expenditure in skeletal muscles. Pharmacological activation of PPARβ/δ by specific ligands regulates the expression of genes involved in lipid use, triglyceride hydrolysis, fatty acid oxidation, energy expenditure, and lipid efflux in muscles, in turn resulting in decreased body fat mass and enhanced insulin sensitivity. Both the lipid-lowering and the anti-diabetic effects exerted by the induction of PPARβ/δ result in the amelioration of symptoms of metabolic disorders. This review summarizes the action of PPARβ/δ activation in energy metabolism in skeletal muscles and also highlights the unexplored pathways in which it might have potential effects in the context of muscular disorders. Numerous preclinical studies have identified PPARβ/δ as a probable potential target for therapeutic interventions. Although PPARβ/δ agonists have not yet reached the market, several are presently being investigated in clinical trials.
Collapse
|
25
|
A metabolomic study of the PPARδ agonist GW501516 for enhancing running endurance in Kunming mice. Sci Rep 2015; 5:9884. [PMID: 25943561 PMCID: PMC4421799 DOI: 10.1038/srep09884] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/24/2015] [Indexed: 11/12/2022] Open
Abstract
Exercise can increase peroxisome proliferator-activated receptor-δ (PPARδ) expression in skeletal muscle. PPARδ regulates muscle metabolism and reprograms muscle fibre types to enhance running endurance. This study utilized metabolomic profiling to examine the effects of GW501516, a PPARδ agonist, on running endurance in mice. While training alone increased the exhaustive running performance, GW501516 treatment enhanced running endurance and the proportion of succinate dehydrogenase (SDH)-positive muscle fibres in both trained and untrained mice. Furthermore, increased levels of intermediate metabolites and key enzymes in fatty acid oxidation pathways were observed following training and/or treatment. Training alone increased serum inositol, glucogenic amino acids, and branch chain amino acids. However, GW501516 increased serum galactose and β-hydroxybutyrate, independent of training. Additionally, GW501516 alone raised serum unsaturated fatty acid levels, especially polyunsaturated fatty acids, but levels increased even more when combined with training. These findings suggest that mechanisms behind enhanced running capacity are not identical for GW501516 and training. Training increases energy availability by promoting catabolism of proteins, and gluconeogenesis, whereas GW501516 enhances specific consumption of fatty acids and reducing glucose utilization.
Collapse
|
26
|
Zizola C, Kennel PJ, Akashi H, Ji R, Castillero E, George I, Homma S, Schulze PC. Activation of PPARδ signaling improves skeletal muscle oxidative metabolism and endurance function in an animal model of ischemic left ventricular dysfunction. Am J Physiol Heart Circ Physiol 2015; 308:H1078-85. [PMID: 25713305 DOI: 10.1152/ajpheart.00679.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/18/2015] [Indexed: 01/06/2023]
Abstract
Exercise intolerance in heart failure has been linked to impaired skeletal muscle oxidative capacity. Oxidative metabolism and exercise capacity are regulated by PPARδ signaling. We hypothesized that PPARδ stimulation reverts skeletal muscle oxidative dysfunction. Myocardial infarction (MI) was induced in C57BL/6 mice and the development of ventricular dysfunction was monitored over 8 wk. Mice were randomized to the PPARδ agonist GW501516 (5 mg/kg body wt per day for 4 wk) or placebo 8 wk post-MI. Muscle function was assessed through running tests and grip strength measurements. In muscle, we analyzed muscle fiber cross-sectional area and fiber types, metabolic gene expression, fatty acid (FA) oxidation and ATP content. Signaling pathways were studied in C2C12 myotubes. FA oxidation and ATP levels decreased in muscle from MI mice compared with sham- operated mice. GW501516 administration increased oleic acid oxidation levels in skeletal muscle of the treated MI group compared with placebo treatment. This was accompanied by transcriptional changes including increased CPT1 expression. Further, the PPARδ-agonist improved running endurance compared with placebo. Cell culture experiments revealed protective effects of GW501516 against the cytokine-induced decrease of FA oxidation and changes in metabolic gene expression. Skeletal muscle dysfunction in HF is associated with impaired PPARδ signaling and treatment with the PPARδ agonist GW501516 corrects oxidative capacity and FA metabolism and improves exercise capacity in mice with LV dysfunction. Pharmacological activation of PPARδ signaling could be an attractive therapeutic intervention to counteract the progressive skeletal muscle dysfunction in HF.
Collapse
Affiliation(s)
- Cynthia Zizola
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, New York; and
| | - Peter J Kennel
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, New York; and
| | - Hirokazu Akashi
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, New York; and
| | - Ruiping Ji
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, New York; and
| | - Estibaliz Castillero
- Division of Cardiothoracic Surgery, Columbia University Medical Center, New York, New York
| | - Isaac George
- Division of Cardiothoracic Surgery, Columbia University Medical Center, New York, New York
| | - Shunichi Homma
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, New York; and
| | - P Christian Schulze
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, New York; and
| |
Collapse
|
27
|
Quintela AM, Jiménez R, Piqueras L, Gómez-Guzmán M, Haro J, Zarzuelo MJ, Cogolludo A, Sanz MJ, Toral M, Romero M, Pérez-Vizcaíno F, Duarte J. PPARβ activation restores the high glucose-induced impairment of insulin signalling in endothelial cells. Br J Pharmacol 2015; 171:3089-102. [PMID: 24527778 DOI: 10.1111/bph.12646] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/05/2014] [Accepted: 02/11/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND PURPOSE PPARβ enhances insulin sensitivity in adipocytes and skeletal muscle cells, but its effects on insulin signalling in endothelial cells are not known. We analysed the effects of the PPARβ/δ (PPARβ) agonists, GW0742 and L165041, on impaired insulin signalling induced by high glucose in HUVECs and aortic and mesenteric arteries from diabetic rats. EXPERIMENTAL APPROACH Insulin-stimulated NO production, Akt-Ser(473) and eNOS-Ser(1177) phosphorylation, and reactive oxygen species (ROS) production were studied in HUVECs incubated in low- or high-glucose medium. Insulin-stimulated relaxations and protein phosphorylation in vessels from streptozotocin (STZ)-induced diabetic rats were also analysed. KEY RESULTS HUVECs incubated in high-glucose medium showed a significant reduction in insulin-stimulated production of NO. High glucose also reduced insulin-induced Akt-Ser(473) and eNOS-Ser(1177) phosphorylation, increased IRS-1-Ser(636) and ERK1/2-Thr(183) -Tyr(185) phosphorylation and increased ROS production. The co-incubation with the PPARβ agonists GW0742 or L165041 prevented all these effects induced by high glucose. In turn, the effects induced by the agonists were suppressed when HUVEC were also incubated with the PPARβ antagonist GSK0660, the pyruvate dehydrogenase kinase (PDK)4 inhibitor dichloroacetate or after knockdown of both PPARβ and PDK4 with siRNA. The ERK1/2 inhibitor PD98059, ROS scavenger catalase, inhibitor of complex II thenoyltrifluoroacetone or uncoupler of oxidative phosphorylation, carbonyl cyanide m-chlorophenylhydrazone, also prevented glucose-induced insulin resistance. In STZ diabetic rats, oral GW0742 also improved insulin signalling and the impaired NO-mediated vascular relaxation. CONCLUSION AND IMPLICATIONS PPARβ activation in vitro and in vivo restores the endothelial function, preserving the insulin-Akt-eNOS pathway impaired by high glucose, at least in part, through PDK4 activation.
Collapse
Affiliation(s)
- A M Quintela
- Department of Pharmacology, University of Granada, 18071, Granada, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bishop-Bailey D. Mechanisms governing the health and performance benefits of exercise. Br J Pharmacol 2014; 170:1153-66. [PMID: 24033098 DOI: 10.1111/bph.12399] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/18/2013] [Accepted: 07/23/2013] [Indexed: 12/18/2022] Open
Abstract
Humans are considered among the greatest if not the greatest endurance land animals. Over the last 50 years, as the population has become more sedentary, rates of cardiovascular disease and its associated risk factors such as obesity, type 2 diabetes and hypertension have all increased. Aerobic fitness is considered protective for all-cause mortality, cardiovascular disease, a variety of cancers, joint disease and depression. Here, I will review the emerging mechanisms that underlie the response to exercise, focusing on the major target organ the skeletal muscle system. Understanding the mechanisms of action of exercise will allow us to develop new therapies that mimic the protective actions of exercise.
Collapse
Affiliation(s)
- D Bishop-Bailey
- Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| |
Collapse
|
29
|
Neels JG, Grimaldi PA. Physiological functions of peroxisome proliferator-activated receptor β. Physiol Rev 2014; 94:795-858. [PMID: 24987006 DOI: 10.1152/physrev.00027.2013] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The peroxisome proliferator-activated receptors, PPARα, PPARβ, and PPARγ, are a family of transcription factors activated by a diversity of molecules including fatty acids and fatty acid metabolites. PPARs regulate the transcription of a large variety of genes implicated in metabolism, inflammation, proliferation, and differentiation in different cell types. These transcriptional regulations involve both direct transactivation and interaction with other transcriptional regulatory pathways. The functions of PPARα and PPARγ have been extensively documented mainly because these isoforms are activated by molecules clinically used as hypolipidemic and antidiabetic compounds. The physiological functions of PPARβ remained for a while less investigated, but the finding that specific synthetic agonists exert beneficial actions in obese subjects uplifted the studies aimed to elucidate the roles of this PPAR isoform. Intensive work based on pharmacological and genetic approaches and on the use of both in vitro and in vivo models has considerably improved our knowledge on the physiological roles of PPARβ in various cell types. This review will summarize the accumulated evidence for the implication of PPARβ in the regulation of development, metabolism, and inflammation in several tissues, including skeletal muscle, heart, skin, and intestine. Some of these findings indicate that pharmacological activation of PPARβ could be envisioned as a therapeutic option for the correction of metabolic disorders and a variety of inflammatory conditions. However, other experimental data suggesting that activation of PPARβ could result in serious adverse effects, such as carcinogenesis and psoriasis, raise concerns about the clinical use of potent PPARβ agonists.
Collapse
Affiliation(s)
- Jaap G Neels
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| | - Paul A Grimaldi
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| |
Collapse
|
30
|
Larsen S, Skaaby S, Helge JW, Dela F. Effects of exercise training on mitochondrial function in patients with type 2 diabetes. World J Diabetes 2014; 5:482-492. [PMID: 25126394 PMCID: PMC4127583 DOI: 10.4239/wjd.v5.i4.482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/24/2014] [Accepted: 06/11/2014] [Indexed: 02/05/2023] Open
Abstract
Type 2 diabetes is characterized by a decreased ability of insulin to facilitate glucose uptake into insulin sensitive tissue, i.e., skeletal muscle. The mechanism behind this is at the moment unresolved. It has been suggested that increased amount of lipids inside the skeletal muscle (intramuscular triglyceride, diacylglycerol and ceramides) will impair insulin action in skeletal muscle, but data are not consistent in the human literature. It has also been hypothesized that the impaired insulin sensitivity is due to a dysfunction in the mitochondria resulting in an impaired ability to oxidize lipids, but the majority of the literature is not supporting this hypothesis. Recently it has been suggested that the production of reactive oxygen species play an essential role in skeletal muscle insulin sensitivity. It is well accepted that physical activity (endurance, strength and high intensity training) improves insulin sensitivity in healthy humans and in patients with type 2 diabetes. Whether patients with type 2 diabetes have the same beneficial effects (same improvement) as control subjects, when it comes to regular physical activity in regard to mitochondrial function, is not established in the literature. This review will focus only on the effect of physical activity on skeletal muscle (mitochondrial function) in patients with type 2 diabetes.
Collapse
|
31
|
Sakiyama S, Usuki T, Sakai H, Sakane F. Regulation of diacylglycerol kinase δ2 expression in C2C12 skeletal muscle cells by free fatty acids. Lipids 2014; 49:633-40. [PMID: 24852321 DOI: 10.1007/s11745-014-3912-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 05/02/2014] [Indexed: 12/14/2022]
Abstract
Decreased expression of diacylglycerol kinase (DGK) δ in skeletal muscles is closely related to the pathogenesis of type 2 diabetes. However, the regulation of DGKδ expression is not well understood. In this study, we found that myristic acid (14:0) significantly increased DGKδ2 protein expression in a dose-dependent manner (EC(50) = 0.16 mM) in mouse C2C12 myotubes. In contrast, oleic [18:1(n-9)], eicosenoic [20:1(n-9)] and erucic [22:1(n-9)] acids markedly decreased DGKδ2 expression. Myristic acid slowly enhanced DGKδ2 expression at the transcription level. Therefore, DGKδ2 expression is positively regulated by the relatively short-chain saturated fatty acid myristic acid but attenuated by n-9 monounsaturated fatty acids.
Collapse
Affiliation(s)
- Shizuka Sakiyama
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | | | | | | |
Collapse
|
32
|
Feng YZ, Nikolić N, Bakke SS, Boekschoten MV, Kersten S, Kase ET, Rustan AC, Thoresen GH. PPARδ activation in human myotubes increases mitochondrial fatty acid oxidative capacity and reduces glucose utilization by a switch in substrate preference. Arch Physiol Biochem 2014; 120:12-21. [PMID: 23991827 DOI: 10.3109/13813455.2013.829105] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The role of peroxisome proliferator-activated receptor δ (PPARδ) activation on global gene expression and mitochondrial fuel utilization were investigated in human myotubes. Only 21 genes were up-regulated and 3 genes were down-regulated after activation by the PPARδ agonist GW501516. Pathway analysis showed up-regulated mitochondrial fatty acid oxidation, TCA cycle and cholesterol biosynthesis. GW501516 increased oleic acid oxidation and mitochondrial oxidative capacity by 2-fold. Glucose uptake and oxidation were reduced, but total substrate oxidation was not affected, indicating a fuel switch from glucose to fatty acid. Cholesterol biosynthesis was increased, but lipid biosynthesis and mitochondrial content were not affected. This study confirmed that the principal effect of PPARδ activation was to increase mitochondrial fatty acid oxidative capacity. Our results further suggest that PPARδ activation reduced glucose utilization through a switch in mitochondrial substrate preference by up-regulating pyruvate dehydrogenase kinase isozyme 4 and genes involved in lipid metabolism and fatty acid oxidation.
Collapse
Affiliation(s)
- Yuan Z Feng
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo , Oslo , Norway
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Cade WT, Reeds DN, Overton ET, Herrero P, Waggoner AD, Laciny E, Bopp C, Lassa-Claxton S, Gropler RJ, Peterson LR, Yarasheski KE. Pilot study of pioglitazone and exercise training effects on basal myocardial substrate metabolism and left ventricular function in HIV-positive individuals with metabolic complications. HIV CLINICAL TRIALS 2014; 14:303-12. [PMID: 24334183 DOI: 10.1310/hct1406-303] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Individuals with HIV infection and peripheral metabolic complications have impaired basal myocardial insulin sensitivity that is related to left ventricular (LV) diastolic dysfunction. It is unknown whether interventions shown to be effective in improving peripheral insulin sensitivity can improve basal myocardial insulin sensitivity and diastolic function in people with HIV and peripheral metabolic complications. OBJECTIVE In a pilot study, we evaluated whether the peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonist pioglitazone or combined endurance and resistance exercise training improves basal myocardial insulin sensitivity and diastolic function in HIV+ adults with peripheral metabolic complications. DESIGN Twenty-four HIV+ adults with metabolic complications including peripheral insulin resistance were randomly assigned to 4 months of pioglitazone (PIO; 30 mg/d) or supervised, progressive endurance and resistance exercise training (EXS; 90-120 min/d, 3 d/wk). Basal myocardial substrate metabolism was quantified by radioisotope tracer methodology and positron emission tomography (PET) imaging, and LV function was measured by echocardiography. RESULTS Twenty participants completed the study. Neither PIO nor EXS resulted in a detectable improvement in basal myocardial insulin sensitivity or diastolic function. Post hoc analyses revealed sample sizes of more than 100 participants are needed to detect significant effects of these interventions on basal myocardial insulin sensitivity and function. CONCLUSIONS PIO or EXS alone did not significantly increase basal myocardial insulin sensitivity or LV diastolic function in HIV+ individuals with peripheral metabolic complications.
Collapse
Affiliation(s)
- W Todd Cade
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri
| | - Dominic N Reeds
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, Missouri
| | - E Turner Overton
- Division of Infectious Disease, Washington University School of Medicine, St. Louis, Missouri
| | - Pilar Herrero
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Alan D Waggoner
- Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri
| | - Erin Laciny
- Division of Endocrinology, Metabolism, & Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| | - Coco Bopp
- Division of Endocrinology, Metabolism, & Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| | - Sherry Lassa-Claxton
- Division of Endocrinology, Metabolism, & Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| | - Robert J Gropler
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Linda R Peterson
- Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri
| | - Kevin E Yarasheski
- Division of Endocrinology, Metabolism, & Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
34
|
A novel SP1/SP3 dependent intronic enhancer governing transcription of the UCP3 gene in brown adipocytes. PLoS One 2013; 8:e83426. [PMID: 24391766 PMCID: PMC3877035 DOI: 10.1371/journal.pone.0083426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 11/05/2013] [Indexed: 11/19/2022] Open
Abstract
Uncoupling protein (UCP) 3 is a mitochondrial inner membrane protein implicated in lipid handling and metabolism of reactive oxygen species. Its transcription is mainly regulated by peroxisome proliferator-activated receptors (PPAR), a family of nuclear hormone receptors. Employing bandshift assays, RNA interference and reporter gene assays we examine an intronic region in the UCP3 gene harboring a cis-element essential for expression in brown adipocytes. We demonstrate binding of SP1 and SP3 to this element which is adjacent to a direct repeat 1 element mediating activation of UCP3 expression by PPARγ agonists. Transactivation mediated by these elements is interdependent and indispensable for UCP3 expression. Systematic deletion uncovered a third binding element, a putative NF1 site, in close proximity to the SP1/3 and PPARγ binding elements. Data mining demonstrated binding of MyoD and Myogenin to this third element in C2C12 cells, and, furthermore, revealed recruitment of p300. Taken together, this intronic region is the main enhancer driving UCP3 expression with SP1/3 and PPARγ as the core factors required for expression.
Collapse
|
35
|
Hoppeler H, Baum O, Lurman G, Mueller M. Molecular mechanisms of muscle plasticity with exercise. Compr Physiol 2013; 1:1383-412. [PMID: 23733647 DOI: 10.1002/cphy.c100042] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The skeletal muscle phenotype is subject to considerable malleability depending on use. Low-intensity endurance type exercise leads to qualitative changes of muscle tissue characterized mainly by an increase in structures supporting oxygen delivery and consumption. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In low-intensity exercise, stress-induced signaling leads to transcriptional upregulation of a multitude of genes with Ca(2+) signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several parallel signaling pathways converge on the transcriptional co-activator PGC-1α, perceived as being the coordinator of much of the transcriptional and posttranscriptional processes. High-load training is dominated by a translational upregulation controlled by mTOR mainly influenced by an insulin/growth factor-dependent signaling cascade as well as mechanical and nutritional cues. Exercise-induced muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. Crucial nodes of strength and endurance exercise signaling networks are shared making these training modes interdependent. Robustness of exercise-related signaling is the consequence of signaling being multiple parallel with feed-back and feed-forward control over single and multiple signaling levels. We currently have a good descriptive understanding of the molecular mechanisms controlling muscle phenotypic plasticity. We lack understanding of the precise interactions among partners of signaling networks and accordingly models to predict signaling outcome of entire networks. A major current challenge is to verify and apply available knowledge gained in model systems to predict human phenotypic plasticity.
Collapse
Affiliation(s)
- Hans Hoppeler
- Institute of Anatomy, University of Bern, Bern, Switzerland.
| | | | | | | |
Collapse
|
36
|
Philp A, MacKenzie MG, Belew MY, Towler MC, Corstorphine A, Papalamprou A, Hardie DG, Baar K. Glycogen content regulates peroxisome proliferator activated receptor-∂ (PPAR-∂) activity in rat skeletal muscle. PLoS One 2013; 8:e77200. [PMID: 24146969 PMCID: PMC3798319 DOI: 10.1371/journal.pone.0077200] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 08/29/2013] [Indexed: 11/18/2022] Open
Abstract
Performing exercise in a glycogen depleted state increases skeletal muscle lipid utilization and the transcription of genes regulating mitochondrial β-oxidation. Potential candidates for glycogen-mediated metabolic adaptation are the peroxisome proliferator activated receptor (PPAR) coactivator-1α (PGC-1α) and the transcription factor/nuclear receptor PPAR-∂. It was therefore the aim of the present study to examine whether acute exercise with or without glycogen manipulation affects PGC-1α and PPAR-∂ function in rodent skeletal muscle. Twenty female Wistar rats were randomly assigned to 5 experimental groups (n = 4): control [CON]; normal glycogen control [NG-C]; normal glycogen exercise [NG-E]; low glycogen control [LG-C]; and low glycogen exercise [LG-E]). Gastrocnemius (GTN) muscles were collected immediately following exercise and analyzed for glycogen content, PPAR-∂ activity via chromatin immunoprecipitation (ChIP) assays, AMPK α1/α2 kinase activity, and the localization of AMPK and PGC-1α. Exercise reduced muscle glycogen by 47 and 75% relative to CON in the NG-E and LG-E groups, respectively. Exercise that started with low glycogen (LG-E) finished with higher AMPK-α2 activity (147%, p<0.05), nuclear AMPK-α2 and PGC-1α, but no difference in AMPK-α1 activity compared to CON. In addition, PPAR-∂ binding to the CPT1 promoter was significantly increased only in the LG-E group. Finally, cell reporter studies in contracting C2C12 myotubes indicated that PPAR-∂ activity following contraction is sensitive to glucose availability, providing mechanistic insight into the association between PPAR-∂ and glycogen content/substrate availability. The present study is the first to examine PPAR-∂ activity in skeletal muscle in response to an acute bout of endurance exercise. Our data would suggest that a factor associated with muscle contraction and/or glycogen depletion activates PPAR-∂ and initiates AMPK translocation in skeletal muscle in response to exercise.
Collapse
Affiliation(s)
- Andrew Philp
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Neurobiology, Physiology and Behavior, University of California Davis, Davis, California, United States of America
- Division of Cell Signalling & Immunology, University of Dundee, Dundee, United Kingdom
| | - Matthew G. MacKenzie
- Division of Cell Signalling & Immunology, University of Dundee, Dundee, United Kingdom
- Jacqui Wood Cancer Centre, University of Dundee, Dundee, United Kingdom
| | - Micah Y. Belew
- Neurobiology, Physiology and Behavior, University of California Davis, Davis, California, United States of America
| | - Mhairi C. Towler
- Division of Cell Signalling & Immunology, University of Dundee, Dundee, United Kingdom
- Vivomotion, Greenhouse+, Dundee, United Kingdom
| | - Alan Corstorphine
- Division of Cell Signalling & Immunology, University of Dundee, Dundee, United Kingdom
| | - Angela Papalamprou
- Neurobiology, Physiology and Behavior, University of California Davis, Davis, California, United States of America
| | - D. Grahame Hardie
- Division of Cell Signalling & Immunology, University of Dundee, Dundee, United Kingdom
| | - Keith Baar
- Neurobiology, Physiology and Behavior, University of California Davis, Davis, California, United States of America
- Division of Cell Signalling & Immunology, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Toledo FGS, Goodpaster BH. The role of weight loss and exercise in correcting skeletal muscle mitochondrial abnormalities in obesity, diabetes and aging. Mol Cell Endocrinol 2013; 379:30-4. [PMID: 23792186 DOI: 10.1016/j.mce.2013.06.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 12/15/2022]
Abstract
Mitochondria within skeletal muscle have been implicated in insulin resistance of obesity and type 2 diabetes mellitus as well as impaired muscle function with normal aging. Evaluating the potential of interventions to improve mitochondria is clearly relevant to the prevention or treatment of metabolic diseases and age-related dysfunction. This review provides an overview and critical evaluation of the effects of weight loss and exercise interventions on skeletal muscle mitochondria, along with implications for insulin resistance, obesity, type 2 diabetes and aging. The available literature strongly suggests that the lower mitochondrial capacity associated with obesity, type 2 diabetes and aging is not an irreversible lesion. However, weight loss does not appear to affect this response, even when the weight loss is extreme. In contrast, increasing physical activity improves mitochondrial content and perhaps the function of individual mitochondrion. Despite the consistent effect of exercise to improve mitochondrial capacity, studies mechanistically linking mitochondria to insulin resistance, reductions in intramyocellular lipid or improvement in muscle function remain inconclusive. In summary, studies of diet and exercise training have advanced our understanding of the link between mitochondrial oxidative capacity and insulin resistance in obesity, type 2 diabetes and aging. Nevertheless, additional inquiry is necessary to establish the significance and clinical relevance of those perturbations, which could lead to targeted therapies for a myriad of conditions and diseases involving mitochondria.
Collapse
Affiliation(s)
- Frederico G S Toledo
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | |
Collapse
|
38
|
Greene NP, Fluckey JD, Lambert BS, Greene ES, Riechman SE, Crouse SF. Regulators of blood lipids and lipoproteins? PPARδ and AMPK, induced by exercise, are correlated with lipids and lipoproteins in overweight/obese men and women. Am J Physiol Endocrinol Metab 2012; 303:E1212-21. [PMID: 22990076 DOI: 10.1152/ajpendo.00309.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PPARδ is a transcription factor regulating the expression of genes involved in oxidative metabolism, which may regulate blood cholesterols through transcription of oxidative and lipoprotein metabolism genes. To determine the association of skeletal muscle PPARδ content with blood lipids and lipoproteins before and following exercise, overweight and obese men (n = 9) and women (n = 7) were recruited; age, BMI, body fat percentage, and Vo(2max) were (means ± SE) 45 ± 2.5 yr, 31.9 ± 1.4 kg/m(-2), 41.1 ± 1.5%, and 26.0 ± 1.3 mLO(2)·kg(-1)·min(-1), respectively. Subjects performed 12 wk of endurance exercise training (3 sessions/wk, progressing to 500 kcal/session). To assess the acute exercise response, subjects performed a single exercise session on a treadmill (70% Vo(2max), 400 kcal energy expenditure) before and after training. Muscle and blood samples were obtained prior to any exercise and 24 h after each acute exercise session. Muscle was analyzed for protein content of PPARδ, PPARα, PGC-1α, AMPKα, and the oxidative and lipoprotein markers FAT/CD36, CPT I, COX-IV, LPL, F(1) ATPase, ABCAI, and LDL receptor. Blood was assessed for lipids and lipoproteins. Repeated-measures ANOVA revealed no influence of sex on measured outcomes. PPARδ, PGC-1α, FAT/CD36, and LPL content were enhanced following acute exercise, whereas PPARα, AMPKα, CPT I, and COX-IV content were enhanced only after exercise training. PPARδ content negatively correlated with total and LDL cholesterol concentrations primarily in the untrained condition (r ≤ -0.4946, P < 0.05), whereas AMPKα was positively correlated with HDL cholesterol concentrations regardless of exercise (r ≥ 0.5543, P < 0.05). Our findings demonstrate exercise-induced expression of skeletal muscle PPARs and their target proteins, and this expression is associated with improved blood lipids and lipoproteins in obese adults.
Collapse
Affiliation(s)
- Nicholas P Greene
- Applied Exercise Science Laboratory, Department of Health and Kinesiology, Texas A & M University, College Station, Texas, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Sakai H, Sakane F. Recent progress on type II diacylglycerol kinases: the physiological functions of diacylglycerol kinase , and and their involvement in disease. J Biochem 2012; 152:397-406. [DOI: 10.1093/jb/mvs104] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
40
|
Philp A, Hargreaves M, Baar K. More than a store: regulatory roles for glycogen in skeletal muscle adaptation to exercise. Am J Physiol Endocrinol Metab 2012; 302:E1343-51. [PMID: 22395109 DOI: 10.1152/ajpendo.00004.2012] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The glycogen content of muscle determines not only our capacity for exercise but also the signaling events that occur in response to exercise. The result of the shift in signaling is that frequent training in a low-glycogen state results in improved fat oxidation during steady-state submaximal exercise. This review will discuss how the amount or localization of glycogen particles can directly or indirectly result in this differential response to training. The key direct effect discussed is carbohydrate binding, whereas the indirect effects include the metabolic shift toward fat oxidation, the increase in catecholamines, and osmotic stress. Although our understanding of the role of glycogen in response to training has expanded exponentially over the past 5 years, there are still many questions remaining as to how stored carbohydrate affects the muscular adaptation to exercise.
Collapse
Affiliation(s)
- Andrew Philp
- Dept. of Neurobiology, Physiology and Behavior, University of California-Davis, 1 Shields Ave., Davis, CA 95616, USA
| | | | | |
Collapse
|
41
|
Lu L, Wu Y, Qi Q, Liu C, Gan W, Zhu J, Li H, Lin X. Associations of type 2 diabetes with common variants in PPARD and the modifying effect of vitamin D among middle-aged and elderly Chinese. PLoS One 2012; 7:e34895. [PMID: 22509365 PMCID: PMC3324546 DOI: 10.1371/journal.pone.0034895] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 03/10/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Previous studies have identified that variants in peroxisome proliferator-activated receptor PPAR-δ (PPARD), a target gene of vitamin D, were significantly associated with fasting glucose and insulin sensitivity in European populations. This current study sought to determine (1) whether the genetic associations of PPARD variants with type 2 diabetes and its related traits could be replicated in Chinese Han population, and (2) whether the associations would be modified by the effect of vitamin D status. METHODS AND FINDINGS We genotyped 9 tag single nucleotide polymorphisms (SNPs) that cover the gene of PPARD (rs2267664, rs6902123, rs3798343, rs2267665, rs2267668, rs2016520, rs2299869, rs1053049, and rs9658056) and tested their associations with type 2 diabetes risk and its related traits, including fasting glucose, insulin and HbA1c in 3,210 Chinese Hans. Among the 9 PPARD tag SNPs, rs6902123 was significantly associated with risk of type 2 diabetes (odds ratio 1.75 [95%CI 1.22-2.53]; P = 0.0025) and combined type 2 diabetes and impaired fasting glucose (IFG) (odds ratio 1.47 [95%CI 1.12-1.92]; P = 0.0054). The minor C allele of rs6902123 was associated with increased levels of fasting glucose (P = 0.0316) and HbA1c (P = 0.0180). In addition, we observed that vitamin D modified the effect of rs6902123 on HbA1c (P for interaction = 0.0347). CONCLUSIONS/SIGNIFICANCE Our findings demonstrate that common variants in PPARD contribute to the risk of type 2 diabetes in Chinese Hans, and provided suggestive evidence of interaction between 25(OH)D levels and PPARD-rs6902123 on HbA1c.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huaixing Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China
- * E-mail: (HL); (XL)
| | - Xu Lin
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China
- * E-mail: (HL); (XL)
| |
Collapse
|
42
|
Conditional Expression of Human PPARδ and a Dominant Negative Variant of hPPARδ In Vivo. PPAR Res 2012; 2012:216817. [PMID: 22550474 PMCID: PMC3324915 DOI: 10.1155/2012/216817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/07/2011] [Accepted: 12/20/2011] [Indexed: 12/23/2022] Open
Abstract
The nuclear receptor, NR1C2 or peroxisome proliferator-activated receptor (PPAR)-δ, is ubiquitously expressed and important for placental development, fatty acid metabolism, wound healing, inflammation, and tumour development. PPARδ has been hypothesized to function as both a ligand activated transcription factor and a repressor of transcription in the absence of agonist. In this paper, treatment of mice conditionally expressing human PPARδ with GW501516 resulted in a marked loss in body weight that was not evident in nontransgenic animals or animals expressing a dominant negative derivative of PPARδ. Expression of either functional or dominant negative hPPARδ blocked bezafibrate-induced PPARα-dependent hepatomegaly and blocked the effect of bezafibrate on the transcription of PPARα target genes. These data demonstrate, for the first time, that PPARδ could inhibit the activation of PPARα in vivo and provide novel models for the investigation of the role of PPARδ in pathophysiology.
Collapse
|
43
|
Barrès R, Yan J, Egan B, Treebak JT, Rasmussen M, Fritz T, Caidahl K, Krook A, O'Gorman DJ, Zierath JR. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 2012; 15:405-11. [PMID: 22405075 DOI: 10.1016/j.cmet.2012.01.001] [Citation(s) in RCA: 625] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 10/11/2011] [Accepted: 01/05/2012] [Indexed: 12/31/2022]
Abstract
DNA methylation is a covalent biochemical modification controlling chromatin structure and gene expression. Exercise elicits gene expression changes that trigger structural and metabolic adaptations in skeletal muscle. We determined whether DNA methylation plays a role in exercise-induced gene expression. Whole genome methylation was decreased in skeletal muscle biopsies obtained from healthy sedentary men and women after acute exercise. Exercise induced a dose-dependent expression of PGC-1α, PDK4, and PPAR-δ, together with a marked hypomethylation on each respective promoter. Similarly, promoter methylation of PGC-1α, PDK4, and PPAR-δ was markedly decreased in mouse soleus muscles 45 min after ex vivo contraction. In L6 myotubes, caffeine exposure induced gene hypomethylation in parallel with an increase in the respective mRNA content. Collectively, our results provide evidence that acute gene activation is associated with a dynamic change in DNA methylation in skeletal muscle and suggest that DNA hypomethylation is an early event in contraction-induced gene activation.
Collapse
Affiliation(s)
- Romain Barrès
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ordelheide AM, Heni M, Thamer C, Machicao F, Fritsche A, Stefan N, Häring HU, Staiger H. In vitro responsiveness of human muscle cell peroxisome proliferator-activated receptor δ reflects donors' insulin sensitivity in vivo. Eur J Clin Invest 2011; 41:1323-9. [PMID: 21615395 DOI: 10.1111/j.1365-2362.2011.02547.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Peroxisome proliferator-activated receptor δ (PPARδ) activation enhances muscular fatty acid oxidation and oxidative phosphorylation, and muscle's oxidative capacity positively associates with whole-body insulin sensitivity. Therefore, we asked here whether human muscle cell PPARD expression is a determinant of donors' insulin sensitivity. MATERIALS AND METHODS Skeletal muscle cells derived from 38 nondiabetic donors were differentiated in vitro to myotubes, and gene (mRNA) expression was quantified by real-time RT-PCR. Donors' insulin sensitivity was calculated from plasma insulin and glucose levels during oral glucose tolerance test (OGTT) and hyperinsulinemic-euglycemic clamp. RESULTS Basal myotube PPARD expression was closely related to the expression of its target genes PDK4 and ANGPTL4 (P = 0·0312 and P = 0·0003, respectively). Basal PPARD, PDK4 and ANGPTL4 expression levels were not associated with donors' insulin sensitivity (P > 0·2, all). Treatment of myotubes with a selective high-affinity PPARδ agonist (GW501516) did not change mean PPARD, but enhanced mean PDK4 and ANGPTL4 expression 13- and 16-fold, respectively (P < 0·0001, both). The individual PDK4 and ANGPTL4 expression levels reached upon GW501516 treatment were associated with donors' insulin sensitivity neither (P > 0·2, both). However, GW501516-mediated fold increments in PDK4 and ANGPTL4 expression, reflecting PPARδ responsiveness, were positively associated with donors' insulin sensitivity derived from OGTT (P = 0·0182 and P = 0·0231, respectively) and hyperinsulinemic-euglycemic clamp (P = 0·0046 and P = 0·0258, respectively). CONCLUSIONS Using a highly selective pharmacological tool, we show here that the individual responsiveness of human muscle cell PPARδ, rather than the absolute PPARD expression level, represents a major determinant of insulin sensitivity.
Collapse
Affiliation(s)
- Anna-Maria Ordelheide
- Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, Department of Internal Medicine, Member of the German Center for Diabetes Research (DZD e.V.), Eberhard Karls University Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
An active lifestyle increases general health and is protects from a number of different conditions, including exercise and obesity. There is emerging evidence that exercise by itself exerts clinically beneficial effects in both lean and obese subjects, even in the absence of effects on weight.1 Recent results have brought an increasing understanding of the molecular mechanisms underlying the beneficial effects of exercise at the level of metabolism and changes in gene expression. There is a significant dose-response to the effect of exercise, and the current guidelines regarding exercise amount may need to be revised upwards. Furthermore, this treatment option should not be overlooked.
Collapse
Affiliation(s)
- Donal J O'Gorman
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | | |
Collapse
|
46
|
Gaudel C, Grimaldi PA. Metabolic Functions of Peroxisome Proliferator-Activated Receptor beta/delta in Skeletal Muscle. PPAR Res 2011; 2007:86394. [PMID: 17389772 PMCID: PMC1783743 DOI: 10.1155/2007/86394] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 11/16/2006] [Accepted: 11/21/2006] [Indexed: 12/31/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are transcription factors that act as lipid sensors and adapt the metabolic rates of various tissues to the concentration of dietary lipids. PPARs are pharmacological targets for the treatment of metabolic disorders. PPARα and PPARγ are activated by hypolipidemic and insulin-sensitizer compounds, such as fibrates and thiazolidinediones. The roles of PPARβ/δ in metabolic regulations remained unclear until recently. Treatment of obese monkeys and rodents by specific PPARβ/δ agonists promoted normalization of metabolic parameters and reduction of adiposity. Recent evidences strongly suggested that some of these beneficial actions are related to activation of fatty acid catabolism in skeletal muscle and also that PPARβ/δ is involved in the adaptive responses of skeletal muscle to environmental changes, such as long-term fasting or physical exercise, by controlling the number of oxidative myofibers. These observations indicated that PPARβ/δ agonists might have therapeutic usefulness in metabolic syndrome by increasing fatty acid consumption in skeletal muscle and reducing obesity.
Collapse
Affiliation(s)
- Céline Gaudel
- INSERM U636, Centre de Biochimie, UFR Sciences, Université de Nice Sophia Antipolis, Parc Valrose, 06108 Nice, France
| | - Paul A. Grimaldi
- INSERM U636, Centre de Biochimie, UFR Sciences, Université de Nice Sophia Antipolis, Parc Valrose, 06108 Nice, France
- *Paul A. Grimaldi:
| |
Collapse
|
47
|
PPAR Action in Human Placental Development and Pregnancy and Its Complications. PPAR Res 2011; 2008:527048. [PMID: 18288290 PMCID: PMC2234270 DOI: 10.1155/2008/527048] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2007] [Accepted: 11/13/2007] [Indexed: 01/09/2023] Open
Abstract
During pregnancy crucial anatomic, physiologic, and metabolic changes challenge the mother and the fetus.
The placenta is a remarkable organ that allows the mother and the fetus to adapt to the new metabolic, immunologic,
and angiogenic environment imposed by gestation. One of the physiologic systems that appears to have evolved to
sustain this metabolic regulation is mediated by peroxisome proliferator-activated receptors (PPARs).
In clinical pregnancy-specific disorders, including preeclampsia, gestational diabetes, and intrauterine growth restriction, aberrant regulation of components of the PPAR system parallels dysregulation of metabolism, inflammation and angiogenesis. This review summarizes current knowledge on the role of PPARs in regulating human trophoblast invasion, early placental development, and also in the physiology of clinical pregnancy and its complications. As increasingly indicated in the literature, pregnancy disorders, such as preeclampsia and gestational diabetes, represent potential targets for treatment with PPAR ligands. With the advent of more specific PPAR agonists that exhibit efficacy in ameliorating metabolic, inflammatory, and angiogenic disturbances, further studies of their application in pregnancy-related diseases are warranted.
Collapse
|
48
|
Vitošević B, Ranković G, Popović-Ilić T. ROLE OF PPAR-* IN DETERMINATION OF MUSCLE FIBER TYPE IN RESPONSE TO EXERCISE. ACTA MEDICA MEDIANAE 2011. [DOI: 10.5633/amm.2011.0211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
49
|
Brun JF, Romain AJ, Mercier J. Maximal lipid oxidation during exercise (Lipoxmax): From physiological measurements to clinical applications. Facts and uncertainties. Sci Sports 2011. [DOI: 10.1016/j.scispo.2011.02.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Hansen D, Dendale P, van Loon LJC, Meeusen R. The impact of training modalities on the clinical benefits of exercise intervention in patients with cardiovascular disease risk or type 2 diabetes mellitus. Sports Med 2011; 40:921-40. [PMID: 20942509 DOI: 10.2165/11535930-000000000-00000] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exercise training intervention represents an effective means to reduce adipose tissue mass, improve glycaemic control and increase whole-body oxygen uptake capacity (VO(2peak)) in obesity, metabolic syndrome, type 2 diabetes mellitus (T2DM) and heart disease patients. In this manuscript, we review the impact of different exercise training modalities on clinical benefits of prolonged exercise intervention in these patient (sub)populations. By changing training modalities, significantly greater clinical benefits can be obtained. Greater training frequency and longer programme duration is associated with greater reduction in adipose tissue mass in obesity patients. A greater training frequency (up to 2 days/week) and a longer programme duration (up to 38 weeks) seems to be associated with greater improvements in VO(2peak) in heart disease patients. Longer programme duration and addition of resistance-type exercise further improve glycaemic control in T2DM patients. The first line of evidence seems to indicate that high-intensity interval exercise training has a greater impact on VO(2peak) in heart disease patients and insulin sensitivity in subjects with metabolic syndrome, but not on adipose tissue mass in obese subjects. However, it remains unclear whether addition of resistance-type exercise and continuous higher-intensity endurance-type exercise training are accompanied by greater improvements in VO(2peak) in heart disease patients. Furthermore, the impact of training session duration/volume on adipose tissue mass loss and glycaemic control in obesity and T2DM patients, respectively, is currently unknown. The impact of training frequency on glycaemic control remains to be investigated in T2DM patients.
Collapse
|