1
|
Zhou X, Dai N, Yu D, Niu T, Wang S. Development and validation of Galectin-3 and CVAI-based model for predicting cognitive impairment in type 2 diabetes. J Endocrinol Invest 2025; 48:1017-1031. [PMID: 39565520 DOI: 10.1007/s40618-024-02506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
OBJECTIVE The objective of this study is to develop a predictive model combining multiple indicators to quantify the risk of mild cognitive impairment (MCI) in T2DM patients. METHODS This study included Chinese T2DM patients who were hospitalized at Zhongda Hospital between November 2021 and May 2023. Clinical data, including demographics, medical history, biochemical tests, and cognitive status, were collected. Cognitive assessment was performed using neuropsychological tests, and MCI was diagnosed based on the Montreal Cognitive Assessment (MoCA) scores. The dataset was randomly divided into a training set and a validation set in a 7:3 ratio. Logistic regression analysis was conducted to identify factors influencing MCI in the training set. A nomogram-based scoring model was then developed by integrating these findings with high-risk clinical variables, and its performance was validated in the validation set. RESULTS In this study, T2DM patients were divided into a training set and a validation set in a 7:3 ratio. There were no significant differences in MCI incidence, demographics, or clinical characteristics between the two groups, confirming the appropriateness of model construction. In the training set, Galectin-3 and CVAI were significantly negatively correlated with cognitive function (MoCA and MMSE scores), and this negative correlation remained after adjusting for confounding variables. Logistic regression analysis revealed that age, CVAI, and Galectin-3 significantly increased the risk of MCI, while years of education had a protective effect. The constructed nomogram model, which integrated age, sex, education level, hypertension, CVAI, and Galectin-3 levels, exhibited high predictive performance (C-index of 0.816), with AUCs of 0.816 in the training set and 0.858 in the validation set, outperforming single indicators. PR curve analysis further validated the superiority of the nomogram model. CONCLUSION The straightforward, highly accurate, and interactive nomogram model developed in this study facilitate the early risk prediction of MCI in individuals with T2DM by incorporating Galectin-3, CVAI, and other common clinical risk factors.
Collapse
Affiliation(s)
- Xueling Zhou
- School of Medicine, Southeast University, Nanjing, China
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Ning Dai
- Department of ENT, Maanshan People's Hospital, Maanshan, China
| | - Dandan Yu
- School of Medicine, Southeast University, Nanjing, China
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Tong Niu
- School of Medicine, Southeast University, Nanjing, China
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Shaohua Wang
- School of Medicine, Southeast University, Nanjing, China.
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.
| |
Collapse
|
2
|
Liao X, Zhang Y, Xu J, Yin J, Li S, Dong K, Shi X, Xu W, Ma D, Chen X, Yu X, Yang Y. A Narrative Review on Cognitive Impairment in Type 2 Diabetes: Global Trends and Diagnostic Approaches. Biomedicines 2025; 13:473. [PMID: 40002886 PMCID: PMC11852642 DOI: 10.3390/biomedicines13020473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Diabetes is a chronic disease that affects many people, with both its incidence and prevalence rising globally. Diabetes can lead to various complications, among which cognitive impairment in diabetic patients significantly impacts their daily life and blood glucose management, complicating treatment and worsening prognosis. Therefore, the early diagnosis and treatment of cognitive impairment are essential to ensure the health of diabetic patients. However, there is currently no widely accepted and effective method for the early diagnosis of diabetes-related cognitive impairment. This review aims to summarize potential screening and diagnostic methods, as well as biomarkers, for cognitive impairment in diabetes, including retinal structure and function examination, brain imaging, and peripheral blood biomarkers, providing valuable information and support for clinical decision making and future research.
Collapse
Affiliation(s)
- Xiaobin Liao
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.L.); (Y.Z.); (J.X.); (J.Y.); (S.L.); (K.D.); (X.S.); (W.X.); (D.M.); (X.C.); (X.Y.)
- Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yibin Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.L.); (Y.Z.); (J.X.); (J.Y.); (S.L.); (K.D.); (X.S.); (W.X.); (D.M.); (X.C.); (X.Y.)
- Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jialu Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.L.); (Y.Z.); (J.X.); (J.Y.); (S.L.); (K.D.); (X.S.); (W.X.); (D.M.); (X.C.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Jiaxin Yin
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.L.); (Y.Z.); (J.X.); (J.Y.); (S.L.); (K.D.); (X.S.); (W.X.); (D.M.); (X.C.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Shan Li
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.L.); (Y.Z.); (J.X.); (J.Y.); (S.L.); (K.D.); (X.S.); (W.X.); (D.M.); (X.C.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Kun Dong
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.L.); (Y.Z.); (J.X.); (J.Y.); (S.L.); (K.D.); (X.S.); (W.X.); (D.M.); (X.C.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Xiaoli Shi
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.L.); (Y.Z.); (J.X.); (J.Y.); (S.L.); (K.D.); (X.S.); (W.X.); (D.M.); (X.C.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Weijie Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.L.); (Y.Z.); (J.X.); (J.Y.); (S.L.); (K.D.); (X.S.); (W.X.); (D.M.); (X.C.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Delin Ma
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.L.); (Y.Z.); (J.X.); (J.Y.); (S.L.); (K.D.); (X.S.); (W.X.); (D.M.); (X.C.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Xi Chen
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.L.); (Y.Z.); (J.X.); (J.Y.); (S.L.); (K.D.); (X.S.); (W.X.); (D.M.); (X.C.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Xuefeng Yu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.L.); (Y.Z.); (J.X.); (J.Y.); (S.L.); (K.D.); (X.S.); (W.X.); (D.M.); (X.C.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.L.); (Y.Z.); (J.X.); (J.Y.); (S.L.); (K.D.); (X.S.); (W.X.); (D.M.); (X.C.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| |
Collapse
|
3
|
Hu B, Yu Y, Yu XW, Ni MH, Cui YY, Cao XY, Yang AL, Jin YX, Liang SR, Li SN, Dai P, Wu K, Yan LF, Gao B, Cui GB. Sequence of episodic memory-related behavioral and brain-imaging abnormalities in type 2 diabetes. Nutr Diabetes 2025; 15:1. [PMID: 39893169 PMCID: PMC11787324 DOI: 10.1038/s41387-025-00359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Episodic memory decline is a common complication of type 2 diabetes (T2D). To comprehensively explore the neural mechanisms underlying it, we aimed to explore the sequence that episodic memory-related behavioral and brain-imaging biomarkers appear abnormal in the progression of T2D. METHODS We enrolled 62 healthy controls and 110 patients with T2D. The California Verbal Learning Test, Montreal cognitive assessment, and Stroop color word test was used to assess the episodic memory, general cognitive function, and executive function. Principal component analysis was applied to extract behavioral biomarkers. Imaging biomarkers included structural and functional MRI features of the entorhinal cortex-hippocampus and hippocampus-anterior cingulate cortex pathways. We used a novel discriminative event-based model to determine the sequence that memory-related biomarkers appear abnormal and estimate the stage of memory decline. RESULTS T2D patients exhibited poorer memory, general cognitive function, and executive function compared to healthy controls after controlling age, sex, and education level. In the progression of T2D, functional interaction between brain regions showed abnormalities first, followed by memory tests, the cerebral spontaneous neural activity, and finally the gray matter volume. Besides, abnormalities appeared earlier in the entorhinal cortex than in the anterior cingulate cortex. Later stage of memory decline was distributed in older patients with T2D and was associated with higher systolic blood pressure, postprandial blood glucose, and low-density lipoprotein. CONCLUSIONS In T2D, behavioral and brain imaging biomarkers of episodic memory appear abnormal in a specific sequence, and the stage of memory decline was closely associated with old age and vascular risk factors. CLINICAL TRIAL REGISTRATION NCT02420470, ClinicalTrials.gov ( https://www. CLINICALTRIALS gov/ ).
Collapse
Affiliation(s)
- Bo Hu
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, Shaanxi Province, China
| | - Ying Yu
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, Shaanxi Province, China
| | - Xin-Wen Yu
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, Shaanxi Province, China
| | - Min-Hua Ni
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, Shaanxi Province, China
| | - Yan-Yan Cui
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, Shaanxi Province, China
| | - Xin-Yu Cao
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, Shaanxi Province, China
| | - Ai-Li Yang
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, Shaanxi Province, China
| | - Yu-Xin Jin
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, Shaanxi Province, China
| | - Sheng-Ru Liang
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, Shaanxi Province, China
| | - Si-Ning Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, Shaanxi Province, China
| | - Pan Dai
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, Shaanxi Province, China
| | - Ke Wu
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, Shaanxi Province, China
| | - Lin-Feng Yan
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, Shaanxi Province, China
| | - Bin Gao
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, Shaanxi Province, China.
| | - Guang-Bin Cui
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, Shaanxi Province, China.
| |
Collapse
|
4
|
Pan P, Zhang D, Li J, Tang M, Yan X, Zhang X, Wang M, Lei X, Zhang X, Gao J. The enlarged perivascular spaces in the hippocampus is associated with memory function in patients with type 2 diabetes mellitus. Sci Rep 2025; 15:3644. [PMID: 39880912 PMCID: PMC11779836 DOI: 10.1038/s41598-025-87841-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
Early detection of cognitive dysfunction in patients with type 2 diabetes mellitus (T2DM) is important for preventive measures due to the lack of effective treatments. The purpose of this study is to investigate the relationship between enlarged perivascular space in the hippocampus (H-EPVS) and cognitive performance in patients with T2DM, and to determine whether it can serve as an imaging marker for cognitive dysfunction. 66 T2DM patients with cognitive impairment (T2DM-CI) and 71 T2DM patients with normal cognitive function (T2DM-NC) underwent cranial MRI scans and comprehensive neuropsychological assessments. H-EPVS counts were visually calculated on T2WI imaging according to a previous scale. The differences in the counts of H-EPVS, demographic data, laboratory test results, and cognitive assessment scores between the two groups were compared. The partial correlation analysis was used to explore the relationship between H-EPVS and glymphatic system function (indicated by the DTI-ALPS index), as well as markers of CSVD. Multiple linear regression models were conducted to explore the association between H-EPVS and cognitive functions. Compared with the T2DM-NC group, T2DM-CI exhibited significantly higher counts of H-EPVS in both the total (sum of the left and right side) and left side (P < 0.001). The T2DM-CI group had lower DTI-ALPS index and RAVLT total score. The total H-EPVS counts were significantly correlated with the DTI-ALPS index (r = - 0.240, P = 0.005), BG-EPVS (r = 0.325, P < 0.001), and CSO-EPVS (r = 0.183, P = 0.033). Multiple linear regression showed the total H-EPVS counts exhibited a negative correlation with MMSE (β = - 0.324, 95% CI: - 0.091, - 0.320), immediate memory (β = - 0.380, 95% CI: - 0.673, - 1.766) and delayed recall (β = - 0.252, 95% CI: - 0.052, - 0.463). H-EPVS may serve as a potential neuroimaging biomarker for cognitive impairment in patients with T2DM, warranting further investigation and validation in future studies.
Collapse
Affiliation(s)
- Peichun Pan
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
- Department of Graduate, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Dongsheng Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jing Li
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Min Tang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xuejiao Yan
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xin Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Man Wang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoyan Lei
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoling Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jie Gao
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China.
| |
Collapse
|
5
|
Soria-Contreras DC, Wang S, Liu J, Lawn RB, Mitsunami M, Purdue-Smithe AC, Zhang C, Oken E, Chavarro JE. Lifetime history of gestational diabetes and cognitive function in parous women in midlife. Diabetologia 2025; 68:105-115. [PMID: 39240352 DOI: 10.1007/s00125-024-06270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/26/2024] [Indexed: 09/07/2024]
Abstract
AIMS/HYPOTHESIS We aimed to determine whether a history of gestational diabetes mellitus (GDM) is associated with cognitive function in midlife. METHODS We conducted a secondary data analysis of the prospective Nurses' Health Study II. From 1989 to 2001, and then in 2009, participants reported their history of GDM. A subset participated in a cognition sub-study in 2014-2019 (wave 1) or 2018-2022 (wave 2). We included 15,906 parous participants (≥1 birth at ≥18 years) who completed a cognitive assessment and were free of CVD, cancer and diabetes before their first birth. The primary exposure was a history of GDM. Additionally, we studied exposure to GDM and subsequent type 2 diabetes mellitus (neither GDM nor type 2 diabetes, GDM only, type 2 diabetes only or GDM followed by type 2 diabetes) and conducted mediation analysis by type 2 diabetes. The outcomes were composite z scores measuring psychomotor speed/attention, learning/working memory and global cognition obtained with the Cogstate brief battery. Mean differences (β and 95% CI) in cognitive function by GDM were estimated using linear regression. RESULTS The 15,906 participants were a mean of 62.0 years (SD 4.9) at cognitive assessment, and 4.7% (n=749) had a history of GDM. In models adjusted for age at cognitive assessment, race and ethnicity, education, wave of enrolment in the cognition sub-study, socioeconomic status and pre-pregnancy characteristics, women with a history of GDM had lower performance in psychomotor speed/attention (β -0.08; 95% CI -0.14, -0.01) and global cognition (β -0.06; 95% CI -0.11, -0.01) than those without a history of GDM. The lower cognitive performance in women with GDM was only partially explained by the development of type 2 diabetes. CONCLUSIONS/INTERPRETATION Women with a history of GDM had poorer cognition than those without GDM. If replicated, our findings support future research on early risk modification strategies for women with a history of GDM as a potential avenue to decrease their risk of cognitive impairment.
Collapse
Affiliation(s)
| | - Siwen Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jiaxuan Liu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rebecca B Lawn
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Makiko Mitsunami
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alexandra C Purdue-Smithe
- Division of Women's Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Cuilin Zhang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Global Centre for Asian Women's Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Bia-Echo Asia Centre for Reproductive Longevity & Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Emily Oken
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Jorge E Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Lu W, Chen Y, Cao Z, Sun Z, Qiu W, Ge L, Tan X, Liang Y, Qiu S. Cortical Gyrification and Cognitive Decline in the Human Brain With Type 2 Diabetes Mellitus. Brain Behav 2025; 15:e70214. [PMID: 39832138 PMCID: PMC11745154 DOI: 10.1002/brb3.70214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/10/2024] [Accepted: 12/02/2024] [Indexed: 01/22/2025] Open
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) is linked to abnormal brain structure and cognitive dysfunction. However, there is a lack of studies conducted to assess the impact of diabetes on cortical gyrification and cognition. The aim of this cross-sectional study was to assess the potential negative effects of glucose metabolism levels on cognition and cortical gyrification in T2DM. METHODS The current study comprised 83 patients with T2DM and 60 individuals with normal glucose metabolism (NGM). The calculation of the local gyrification index (LGI) was performed utilizing the FreeSurfer software. Subsequently, between-group differences were examined through the utilization of analysis of covariance. Multivariable linear regression and mediation models were employed to investigate the relationships among LGI, glucose metabolism and cognition. RESULTS Our study found that the mean LGI of the entire brain in individuals with T2DM was lower than that of NGM, and these significant hypogyria were mainly located in the bilateral temporal lobes, including the left superior temporal cortex, left transverse temporal cortex, and bilateral temporal pole, with the greatest effect size in the left temporal pole (p = 5.7×10-7, Cohen's f2 = 0.169). In addition, the relationship between fasting blood glucose and working memory was mediated by the LGI in the right temporal pole. CONCLUSION Our experiment suggests that the decreased LGI in the right temporal pole explains poorer working memory performance in patients with T2DM.
Collapse
Affiliation(s)
- Weiye Lu
- First Clinical Medical College, Guangzhou University of Chinese MedicineGuangzhouChina
| | - Yuna Chen
- First Clinical Medical College, Guangzhou University of Chinese MedicineGuangzhouChina
- Department of RadiologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Zidong Cao
- First Clinical Medical College, Guangzhou University of Chinese MedicineGuangzhouChina
| | - Zhizhong Sun
- First Clinical Medical College, Guangzhou University of Chinese MedicineGuangzhouChina
| | - Wenbin Qiu
- First Clinical Medical College, Guangzhou University of Chinese MedicineGuangzhouChina
| | - Limin Ge
- First Clinical Medical College, Guangzhou University of Chinese MedicineGuangzhouChina
| | - Xin Tan
- Department of RadiologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Yi Liang
- Department of RadiologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Shijun Qiu
- Department of RadiologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- State Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhouChina
| |
Collapse
|
7
|
Peng W, Wang J, Du J, Xu B, Li W, Huang S. Integration of metabolomics and transcriptomics to reveal metabolic characteristics and key targets associated with lncRNA Vof-16 in H19-7 cells. Biochem Biophys Res Commun 2024; 736:150855. [PMID: 39461005 DOI: 10.1016/j.bbrc.2024.150855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Cognitive disorders represent one of the most common chronic complications of diabetes. Our previous study has demonstrated that long non-coding RNA (lncRNA) Vof-16 is upregulated in the hippocampal tissue of streptozotocin (STZ)-induced diabetic rats. Despite this finding, the specific roles and underlying mechanisms of lncRNA Vof-16 in diabetes-related cognitive dysfunction remain largely unexplored. To elucidate the mechanism involved, lncRNA Vof-16 was overexpressed in rat hippocampal cell line H19-7 through lentivirus transfection. We integrated metabolomics and transcriptomics approaches to identify potential targets and metabolic pathways influenced by lncRNA Vof-16. Key proteins and pathways were subsequently validated using western blotting and immunofluorescence staining. Transcriptomics indicated that lncRNA Vof-16 overexpression may modulate autophagic activity in H19-7 cells. Metabolomic profiling revealed that the primary differential metabolic pathways included trehalose degradation, tryptophan metabolism, vitamin B6 metabolism, glycolysis, pterine biosynthesis, and the pentose phosphate pathway. Ingenuity Pathway Analysis (IPA) of gene-metabolite networks demonstrated that the high lncRNA Vof-16 expression group exhibited a significantly higher association with autophagy compared to the low lncRNA Vof-16 expression group. Western blot results confirmed that lncRNA Vof-16 overexpression led to decreased protein expression levels of ATG3 and ATG12. Specifically, lncRNA Vof-16 reduces autophagy in hippocampal neurons by targeting the elevated levels of phospho-p70S6K, a downstream effector of mTORC1, potentially contributing to the pathogenesis of diabetic cognitive impairment. The construction of gene-metabolite networks may offer promising new strategies for addressing the growing issue of diabetic cognitive impairment.
Collapse
Affiliation(s)
- Wenfang Peng
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Xianxia Street, 200050, Shanghai, China
| | - Jiajia Wang
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Xianxia Street, 200050, Shanghai, China
| | - Juan Du
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Xianxia Street, 200050, Shanghai, China
| | - Bojin Xu
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Xianxia Street, 200050, Shanghai, China
| | - Wenyi Li
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Xianxia Street, 200050, Shanghai, China.
| | - Shan Huang
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Xianxia Street, 200050, Shanghai, China.
| |
Collapse
|
8
|
Sola T, Sola FM, Jehkonen M. The Effects of Type 2 Diabetes on Cognitive Performance: A Review of Reviews. Int J Behav Med 2024; 31:944-958. [PMID: 38467963 PMCID: PMC11588889 DOI: 10.1007/s12529-024-10274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Multiple systematic reviews have found that type 2 diabetes is associated with cognitive decrements. However, these reviews are heterogeneous in terms of methodology, quality and results, making it difficult for researchers and clinicians to build an informed overall picture. We therefore conducted a review of systematic reviews on the association between type 2 diabetes and cognitive decrements in relation to healthy controls. METHODS Following a pre-registered research protocol, we searched four major databases. Nine systematic reviews met our inclusion criteria: seven were meta-analyses and two were narrative syntheses. We assessed the risk of bias in each review and reported all effect sizes and confidence intervals obtained. RESULTS Type 2 diabetes was associated with cognitive decrements in all reviews, with small or negligible effect sizes obtained in the largest meta-analyses. The most studied cognitive domains were attention, executive functions, memory, processing speed and working memory. All reviews had methodological issues and were rated as having a high or an unclear risk of bias. CONCLUSIONS Type 2 diabetes appears to be associated with lower cognitive performance in several cognitive domains and in different age groups. However, high-quality meta-analyses on the subject are still needed. Future reviews must follow the PRISMA guidelines and take into account the risk of bias of the original studies through sensitivity analyses and the heterogeneity of the studies by conducting subgroup analyses for example according to age group and disease duration. The meta-analyses that aim to study the entire type 2 diabetes population without excluding severe comorbidities, should assess concept formation and reasoning, construction and motor performance, perception, and verbal functions and language skills in addition to the cognitive domains that have been most frequently analysed in the reviews conducted so far.
Collapse
Affiliation(s)
- Teppo Sola
- Psychology, Tampere University, Tampere, Finland.
- Tampere University Hospital, Tampere, Finland.
| | | | - Mervi Jehkonen
- Psychology, Tampere University, Tampere, Finland
- Tampere University Hospital, Tampere, Finland
| |
Collapse
|
9
|
Piche E, Armand S, Allali G, Assal F. The contribution of cognitive reserve in explaining the dual-task walking performance in iNPH patients: comparison with other cognitive, functional, and socio-demographic variables. Aging Clin Exp Res 2024; 36:190. [PMID: 39259457 PMCID: PMC11390896 DOI: 10.1007/s40520-024-02829-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Idiopathic normal pressure hydrocephalus (iNPH) is a prevalent neurological disorder, but its diagnosis remains challenging. Dual-task (DT) walking performance is a reliable indicator of iNPH but less is known about the role of cognitive reserve (CR) in predicting DT walking performance. AIMS The objective of this study was to evaluate the contribution of CR on DT walking in healthy controls (HC) and in iNPH patients (iNPH-P). METHODS 68 iNPH-P (77.2 +/- 6.7 years old) and 28 HC (74.5 +/- 5.7 years old) were evaluated on their single-task walking (Vsimple) and on 4 DT walking (walking and counting or counting backwards, naming animals, naming words beginning with the letter P) (Vcount, VcountB, Vanimals and Vletter respectively). The contribution of CR on the different DT walking speeds was compared between HC and iNPH-P. In iNPH-P, the contribution of CR on the walking speeds was compared with regard to other cognitive, functional, and socio-demographic variables. RESULTS Simple linear regression demonstrated a moderate influence of CR on single and DT walking speed in iNPH-P (β > 0.3, p < .001) but not in HC where the relation was not significant. In iNPH-P, results showed that CR played a major role in explaining each of the single and DT walking speeds with NPH-scale. CONCLUSION As CR could be improved through the life cycle, these results support the idea of developing and supporting physical activity programs that will enrich social, physical, and cognitive resources to protect against age-related functional decline, especially in iNPH-P patients where the age-related deficits are greater.
Collapse
Affiliation(s)
- Elodie Piche
- Université Côte d'Azur, LAMHESS, Nice, France.
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Clinique Gériatrique du Cerveau et du Mouvement, Nice, France.
| | - Stephane Armand
- Laboratory of Kinesiology, University Geneva Hospitals and University of Geneva, Geneva, Switzerland.
| | - Gilles Allali
- Leenaards Memory Center, Lausanne University Hospitals and University of Lausanne, Lausanne, Switzerland
| | - Frederic Assal
- Division of Neurology, Department of Clinical Neurosciences, University Geneva Hospitals, Geneva, Switzerland
| |
Collapse
|
10
|
Shima A, Noguchi-Shinohara M, Shibata S, Usui Y, Tatewaki Y, Thyreau B, Hata J, Ohara T, Honda T, Taki Y, Nakaji S, Maeda T, Mimura M, Nakashima K, Iga JI, Takebayashi M, Nishijo H, Ninomiya T, Ono K. Glucose metabolism and smaller hippocampal volume in elderly people with normal cognitive function. NPJ AGING 2024; 10:39. [PMID: 39251602 PMCID: PMC11384785 DOI: 10.1038/s41514-024-00164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/06/2024] [Indexed: 09/11/2024]
Abstract
We investigated associations of glycemic measures, and insulin resistance and secretion measures with hippocampal and subfield volumes. In this cross-sectional study, 7400 community-dwelling participants underwent brain MRI and health checkups between 2016 and 2018. Hemoglobin A1c (HbA1c), glycated albumin (GA), homeostasis model assessment for insulin resistance (HOMA-IR), and HOMA of percent β-cell function (HOMA-β) were evaluated. The associations of each measure with a smaller volume of the hippocampus and twelve hippocampal subfields were investigated. As a result, higher HbA1c or GA and lower HOMA-β levels were significantly associated with smaller volumes in multiple hippocampal subfields. Furthermore, even when we analyzed non-diabetic individuals, substantial associations remained between higher GA or lower HOMA-β levels and smaller volumes of the whole hippocampus or the fimbria. Our findings indicate that postprandial glucose fluctuations, postprandial hyperglycemia, and low insulin secretion have a specific effect on the development of smaller hippocampal volume, suggesting that primary prevention of diabetes and/or sufficient glucose control are important for the prevention of dementia.
Collapse
Affiliation(s)
- Ayano Shima
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Moeko Noguchi-Shinohara
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.
| | - Shutaro Shibata
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yuta Usui
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yasuko Tatewaki
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Jun Hata
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoyuki Ohara
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanori Honda
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Taki
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Shigeyuki Nakaji
- Department of Social Medicine, Graduate School of Medicine, Hirosaki University, Aomori, Japan
| | - Tetsuya Maeda
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Nakashima
- National Hospital Organization, Matsue Medical Center, Shimane, Japan
| | - Jun-Ichi Iga
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Ehime University, Ehime, Japan
| | - Minoru Takebayashi
- Faculty of Life Sciences, Department of Neuropsychiatry, Kumamoto University, Kumamoto, Japan
| | - Hisao Nishijo
- Faculty of Human Sciences, University of East Asia, Yamaguchi, Japan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenjiro Ono
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.
| |
Collapse
|
11
|
Yang Y, Wang Y, Wang Y, Ke T, Zhao L. PCSK9 inhibitor effectively alleviated cognitive dysfunction in a type 2 diabetes mellitus rat model. PeerJ 2024; 12:e17676. [PMID: 39157774 PMCID: PMC11330219 DOI: 10.7717/peerj.17676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/12/2024] [Indexed: 08/20/2024] Open
Abstract
Background The incidence of diabetes-associated cognitive dysfunction (DACD) is increasing; however, few clinical intervention measures are available for the prevention and treatment of this disease. Research has shown that proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, particularly SBC-115076, have a protective effect against various neurodegenerative diseases. However, their role in DACD remains unknown. In this study, we aimed to explore the impact of PCSK9 inhibitors on DACD. Methods Male Sprague-Dawley (SD) rats were used to establish an animal model of type 2 diabetes mellitus (T2DM). The rats were randomly divided into three groups: the Control group (Control, healthy rats, n = 8), the Model group (Model, rats with T2DM, n = 8), and the PCSK9 inhibitor-treated group (Treat, T2DM rats treated with PCSK9 inhibitors, n = 8). To assess the spatial learning and memory of the rats in each group, the Morris water maze (MWM) test was conducted. Hematoxylin-eosin staining and Nissl staining procedures were performed to assess the structural characteristics and functional status of the neurons of rats from each group. Transmission electron microscopy was used to examine the morphology and structure of the hippocampal neurons. Determine serum PCSK9 and lipid metabolism indicators in each group of rats. Use qRT-PCR to detect the expression levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) in the hippocampal tissues of each group of rats. Western blot was used to detect the expression of PCSK9 and low-density lipoprotein receptor (LDLR) in the hippocampal tissues of rats. In addition, a 4D label-free quantitative proteomics approach was used to analyse protein expression in rat hippocampal tissues. The expression of selected proteins in hippocampal tissues was verified by parallel reaction monitoring (PRM) and immunohistochemistry (IHC). Results The results showed that the PCSK9 inhibitor alleviated cognitive dysfunction in T2DM rats. PCSK9 inhibitors can reduce PCSK9, total cholesterol (TC), and low-density lipoprotein (LDL) levels in the serum of T2DM rats. Meanwhile, it was found that PCSK9 inhibitors can reduce the expression of PCSK9, IL-1β, IL-6, and TNF-α in the hippocampal tissues of T2DM rats, while increasing the expression of LDLR. Thirteen potential target proteins for the action of PCSK9 inhibitors on DACD rats were identified. PRM and IHC revealed that PCSK9 inhibitors effectively counteracted the downregulation of transthyretin in DACD rats. Conclusion This study uncovered the target proteins and specific mechanisms of PCSK9 inhibitors in DACD, providing an experimental basis for the clinical application of PCSK9 inhibitors for the potential treatment of DACD.
Collapse
Affiliation(s)
- Yang Yang
- Department of Endocrinology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Yeying Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Yuwen Wang
- Department of Endocrinology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Tingyu Ke
- Department of Endocrinology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Ling Zhao
- Department of Endocrinology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
12
|
Cochar-Soares N, de Oliveira DC, Luiz MM, Aliberti MJR, Suemoto CK, Steptoe A, de Oliveira C, Alexandre T. Sex Differences in the Trajectories of Cognitive Decline and Affected Cognitive Domains Among Older Adults With Controlled and Uncontrolled Glycemia. J Gerontol A Biol Sci Med Sci 2024; 79:glae136. [PMID: 38775400 PMCID: PMC11181940 DOI: 10.1093/gerona/glae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND We aimed to analyze the trajectories of cognitive decline as a function of the presence of type 2 diabetes and glycemic control in analyzes stratified by sex in an 8-year follow-up period. METHODS A total of 1 752 men and 2 232 women aged ≥50 years who participated in the English Longitudinal Study of Ageing (ELSA), conducted from 2004 to 2012, were analyzed. The outcomes of interest were performance on the cognitive domains of memory, executive function, and temporal orientation as well as the global cognition score. Cognitive performance was standardized in z-scores in strata based on schooling and age. The participants were classified as without diabetes, with controlled glycemia, and with uncontrolled glycemia, according to medical diagnosis, glucose-lowering medications use and HbA1c levels. Generalized linear mixed models controlled by sociodemographic, behavioral, and health-related characteristics were used for the trajectory analyses. RESULTS No differences in z-scores were found for global cognition or cognitive domains based on diabetes classification in men and women at baseline. More than 8 years of follow up, women with uncontrolled glycemia had a greater decline in z-scores for global cognition (-0.037 SD/year [95% CI: -0.073; -0.001]) and executive function (-0.049 SD/year [95% CI: -0.092; -0.007]) compared with those without diabetes. No significant difference in trajectories of global cognition or any cognitive domain was found in men as a function of diabetes classification. CONCLUSIONS Women with uncontrolled glycemia are at greater risk of a decline in global cognition and executive function than those without diabetes.
Collapse
Affiliation(s)
| | - Dayane C de Oliveira
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, Brazil
| | - Mariane M Luiz
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, Brazil
| | - Márlon J R Aliberti
- Laboratory of Medical Research in Aging (LIM-66), Servico de Geriatria, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Claudia K Suemoto
- Division of Geriatrics, Department of Internal Medicine, University of São Paulo Medical School, São Paulo, Brazil
| | - Andrew Steptoe
- Department of Behavioral Science and Health, University College London, London, UK
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Cesar de Oliveira
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Tiago S Alexandre
- Department of Gerontology, Federal University of São Carlos, São Carlos, Brazil
- Department of Epidemiology and Public Health, University College London, London, UK
| |
Collapse
|
13
|
Amin SN, El-Akabawy G, Abuqasem MA, AL-Rawashdeh AA, Ayyad MM, Ibrahim AK, AlShawagfeih AM, Ebdah SK, AlHajri RJ, Ismail AA. Assessment of Cognitive Flexibility in Jordanian Diabetic Patients by Wisconsin Card Sorting and Trail Making Tests: Implications with Demographic, Anthropometric and Therapeutic Variables. Diabetes Metab Syndr Obes 2024; 17:2655-2670. [PMID: 38974950 PMCID: PMC11225956 DOI: 10.2147/dmso.s457799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/15/2024] [Indexed: 07/09/2024] Open
Abstract
Purpose Cognitive flexibility is a mental ability that aids in smoothly alternating between them tasks in the brain. Diabetes Mellitus (DM) is a, common disorder that has been associated with impairments in cognitive functions. This research is a retrospective case-control study aimed at establishing a clear relationship between cognitive flexibility and diabetes among Jordanians, considering demographic, anthropometric, and therapeutic variables. Patients and Methods The Wisconsin Card Sorting Test (WCST)-64 item and the Trail Making Test (TMT) assessed cognitive flexibility in 268 people with diabetes and healthy control. Demographic, therapeutic data were collected. We also measured waist-to-hip ratio (WHR) and body mass index (BMI). As the variables were non-normally distributed, non-parametric statistical tests were used to examine differences (Kruskal-Wallis) and correlation (Spearman) between variables. Results The patient group did worse on the WCST In contrast to the control group, patients exhibited more significant delays for both Part A and Part B of the TMT (p<0.05). Males had higher WCST conceptual level responses than females. In addition, participants with professional jobs showed less delay in TMT Part A (p<0.05). Age was positively correlated with WCST's total errors and TMT's Parts A and B (p<0.05). BMI was negatively correlated with the WCST's conceptual level of responses and positively correlated with TMT's Part B (p<0.05). In addition, urea and albumin levels were positively correlated with TMT's Part A (p<0.05). Furthermore, creatinine was positively correlated with WCST's total errors and TMT's Part A (p<0.05). Conclusion Some measures of cognitive flexibility are associated with DM status in the studied sample of Jordanians and other variables (educational levels, occupation, lifestyle, average duration of illness, and age).
Collapse
Affiliation(s)
- Shaimaa Nasr Amin
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Gehan El-Akabawy
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Mohammad Adel Abuqasem
- House Officer, Medical Graduates Training Program, Jordan Medical Council, Amman, Jordan
| | | | - Maram Mohamed Ayyad
- House Officer, Medical Graduates Training Program, Jordan Medical Council, Amman, Jordan
| | - Ahmad Khalid Ibrahim
- House Officer, Medical Graduates Training Program, Jordan Medical Council, Amman, Jordan
| | | | - Sara Khaled Ebdah
- House Officer, Medical Graduates Training Program, Jordan Medical Council, Amman, Jordan
| | - Rana Jassem AlHajri
- House Officer, Medical Graduates Training Program, Jordan Medical Council, Amman, Jordan
| | - Ahmed A Ismail
- Department of Public Health and Community Medicine, Faculty of Medicine, Menoufia University, Menoufia, Egypt
- Department of Health and Environment, College of Public Health, University of Iowa, Iowa, KS, USA
| |
Collapse
|
14
|
Xie J, You Y, Zheng P, Chen Y, Guo S, Xu Y, Huang J, Liu Z, Tao J. Gender differences in the association between physical activity and cognitive subdomains among elders with type 2 diabetes and mild cognitive impairment: a cross-sectional study. BMJ Open 2024; 14:e080789. [PMID: 38806426 PMCID: PMC11138272 DOI: 10.1136/bmjopen-2023-080789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/21/2024] [Indexed: 05/30/2024] Open
Abstract
OBJECTIVES The objective of this study was to evaluate the gender differences in the correlation between physical activity (PA) and cognitive subdomains in elderly individuals with type 2 diabetes (T2D) and mild cognitive impairment (MCI). DESIGN Cross-sectional study. SETTING The research was carried out in communities located in Fuzhou, Fujian Province and Beijing Municipality. PARTICIPANTS Community-dwelling elders with T2D and MCI aged 60 years or older were eligible for this study. PRIMARY OUTCOME MEASURES AND ANALYSES The weekly PA score was assessed using the International Physical Activity Questionnaire (IPAQ). The cognitive subdomains were evaluated through a battery of cognitive assessments, including the Rey Auditory Verbal Learning Test (RAVLT), Trail Making Test Part B, Digit Symbol Substitution Test (DSST) and the Stroop Color-Word Test (SCWT). Multiple linear regression models were employed to examine the association between PA and cognitive subdomains in both male and female individuals. RESULTS In older men, higher total IPAQ score was positively correlated with higher RAVLT (P=0.011) and SCWT (P=0.049). There was a significant interaction between the total PA score and gender in relation to RAVLT (P=0.008) and SCWT (P=0.027). Moreover, there was a positive correlation between moderate-vigorous PA level and RAVLT in older men (P=0.007). Additionally, a positive correlation was found between moderate-vigorous PA level and DSST in older women (P=0.038). CONCLUSION In older individuals with T2D and MCI, the association between PA and cognitive subdomains differs between men and women. This discrepancy may impact the customisation of exercise recommendations.
Collapse
Affiliation(s)
- Jinjin Xie
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yue You
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Peiyun Zheng
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yannan Chen
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Shuai Guo
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Ying Xu
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jia Huang
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhizhen Liu
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Tao
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
15
|
Vázquez-de Sebastián J, Ortiz-Zuñiga AM, Ciudin A, Ars J, Inzitari M, Simó R, Hernández C, Ariño-Blasco S, Barahona MJ, Franco M, Gironès X, Crespo-Maraver MC, Rovira JC, Castellano-Tejedor C. Cognitive Profile and Cardiovascular Risk Factors in Older Adults with Mild Cognitive Impairment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:500. [PMID: 38673411 PMCID: PMC11050679 DOI: 10.3390/ijerph21040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
The prevalence of cardiovascular risk factors (CVRFs) in the older adults population and their specific impact on their cognitive profiles still requires further research. For this purpose, a cross-sectional study was carried out to describe the presence of CVRFs and their association with cognitive performance in a sample of older adults (65-85 years old) with Mild Cognitive Impairment (MCI). Participants (n = 185) were divided into three groups concerning their cardiovascular risk level determined by the presence of different CVRFs, including Type 2 Diabetes (T2D), dyslipidemia, hypertension, and obesity. The primary outcome measures were the participant's scores in the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Sociodemographic, clinical, and psychosocial data were collected. Non-parametrical statistical analyses and effect sizes were calculated. Findings revealed that a greater presence of CVRFs was not associated with a worse overall cognitive performance. High-risk patients were more likely to have significantly worse performance in the attentional domain compared to medium-risk (p = 0.029, r = 0.42) and compared to low-risk (p = 0.041, r = 0.35), specifically in the digits repetition subtest (p = 0.042). T2D alone was the CVRF associated with cognitive differences (p = 0.037, r = 0.32), possibly mediated by the duration of the condition. Consequently, a higher presence of CVRFs did not lead to a worse overall cognitive performance. However, high-risk individuals were more likely to experience cognitive impairment, particularly in the attentional domain. T2D played a significant role in these cognitive profile differences, possibly influenced by its duration.
Collapse
Affiliation(s)
- Julia Vázquez-de Sebastián
- Facultat de Psicologia, Universitat Autònoma de Barcelona (UAB), 08192 Barcelona, Spain
- RE-FiT Barcelona Research Group, Vall d’Hebron Institute of Research & Parc Sanitari Pere Virgili (VHIR-PSPV), 08023 Barcelona, Spain (C.C.-T.)
- Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - Angel M. Ortiz-Zuñiga
- Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III Spain & Endocrinology Department, University Hospital Vall d’Hebron, 08035 Barcelona, Spain
| | - Andreea Ciudin
- Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III Spain & Endocrinology Department, University Hospital Vall d’Hebron, 08035 Barcelona, Spain
| | - Joan Ars
- RE-FiT Barcelona Research Group, Vall d’Hebron Institute of Research & Parc Sanitari Pere Virgili (VHIR-PSPV), 08023 Barcelona, Spain (C.C.-T.)
- Medicine Department, Universitat Autònoma de Barcelona (UAB), 08192 Bellaterra, Spain
| | - Marco Inzitari
- RE-FiT Barcelona Research Group, Vall d’Hebron Institute of Research & Parc Sanitari Pere Virgili (VHIR-PSPV), 08023 Barcelona, Spain (C.C.-T.)
- Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), 08018 Barcelona, Spain
| | - Rafael Simó
- Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III Spain & Endocrinology Department, University Hospital Vall d’Hebron, 08035 Barcelona, Spain
| | - Cristina Hernández
- Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III Spain & Endocrinology Department, University Hospital Vall d’Hebron, 08035 Barcelona, Spain
| | - Sergio Ariño-Blasco
- Geriatric Service, Fundació Privada Hospital Asil de Granollers (FPHAG), 08402 Barcelona, Spain
| | - María José Barahona
- Endocrinology Service, Hospital Universitari Mutua Terrassa (HUMT), 08221 Terrassa, Spain
| | - Maite Franco
- Consorci Sanitari de Terrassa (CST), 08227 Terrassa, Spain
| | - Xavier Gironès
- Faculty of Health Sciences (UM-FUB), University of Vic-Central University of Catalonia, 08500 Vic, Spain
| | | | - Joan Carles Rovira
- Consorci Hospitalari de Vic (University Hospital of Vic), 08500 Vic, Spain
| | - Carmina Castellano-Tejedor
- RE-FiT Barcelona Research Group, Vall d’Hebron Institute of Research & Parc Sanitari Pere Virgili (VHIR-PSPV), 08023 Barcelona, Spain (C.C.-T.)
- GIES Research Group, Basic Psychology Department, Universitat Autònoma de Barcelona (UAB), 08192 Bellaterra, Spain
| | | |
Collapse
|
16
|
da Silva AD, Oliveira JS, de Castro IC, Paiva WC, Gomes JMG, Pimenta LCJP. Association of vitamin D and cognition in people with type 2 diabetes: a systematic review. Nutr Rev 2024; 82:622-638. [PMID: 37403328 DOI: 10.1093/nutrit/nuad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023] Open
Abstract
CONTEXT There is a high prevalence of vitamin D deficiency and impaired cognitive function in people with type 2 diabetes mellitus (T2DM). OBJECTIVE To critically and systematically review the literature on the association between vitamin D status and cognitive performance in people with type 2 diabetes. DATA SOURCES This review was conducted according to PRISMA recommendations. MEDLINE, SCOPUS, the Cochrane Library, and Web of Science databases were searched using the terms "Diabetes Mellitus, Type 2", "Cognitive Function", and "Vitamin D". DATA EXTRACTION Eight observational and 1 randomized study were included, containing data of 14 648 adult and elderly individuals (19-74 y). All extracted data were compiled, compared, and critically analyzed. DATA ANALYSIS There is no strong evidence that lower serum concentrations of vitamin D and vitamin D-binding protein are associated with worsening cognitive function in individuals with T2DM. Vitamin D supplementation (12 wk) improved the scores of some executive functioning tests, although there was no difference between low doses (5000 IU/wk) and high doses (50 000 IU/wk). CONCLUSIONS There is no high-quality evidence demonstrating an association between vitamin D status and cognitive function, or clinical benefits on cognition from vitamin D supplementation in individuals with T2DM. Future studies are needed. Systematic Review Registration: PROSPERO registration no. CRD42021261520.
Collapse
Affiliation(s)
- Alice D da Silva
- Department of Nutrition, Universidade Federal de Lavras, Minas Gerais, Brazil
| | - Julia S Oliveira
- Department of Nutrition and Health, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Isabela C de Castro
- Department of Nutrition, Universidade Federal de Lavras, Minas Gerais, Brazil
| | - Wanderléia C Paiva
- Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais, Minas Gerais, Brazil
| | - Júnia M G Gomes
- Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais, Minas Gerais, Brazil
| | - Laura C J P Pimenta
- Department of Nutrition, Universidade Federal de Lavras, Minas Gerais, Brazil
| |
Collapse
|
17
|
Canário NS, Crisóstomo J, Moreno C, Duarte JV, Duarte IC, Ribeiro MJ, Caramelo B, Gomes LV, Matafome P, Oliveira FP, Castelo-Branco M. Functional reorganization of memory processing in the hippocampus is associated with neuroprotector GLP-1 levels in type 2 diabetes. Heliyon 2024; 10:e27412. [PMID: 38509913 PMCID: PMC10950584 DOI: 10.1016/j.heliyon.2024.e27412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Type 2 diabetes (T2D) often impairs memory functions, suggesting specific vulnerability of the hippocampus. In vivo neuroimaging studies relating encoding and retrieval of memory information with endogenous neuroprotection are lacking. The neuroprotector glucagon-like peptide (GLP-1) has a high receptor density in anterior/ventral hippocampus, as shown by animal models. Using an innovative event-related fMRI design in 34 participants we investigated patterns of hippocampal activity in T2D (n = 17) without mild cognitive impairment (MCI) versus healthy controls (n = 17) during an episodic memory task. We directly measured neurovascular coupling by estimating the hemodynamic response function using event-related analysis related to encoding and retrieval of episodic information in the hippocampus. We applied a mixed-effects general linear model analysis and a two-factor ANOVA to test for group differences. Significant between-group differences were found for memory encoding, showing evidence for functional reorganization: T2D patients showed an augmented activation in the posterior hippocampus while anterior activation was reduced. The latter was negatively correlated with both GLP-1 pre- and post-breakfast levels, in the absence of grey matter changes. These results suggest that patients with T2D without MCI have pre-symptomatic functional reorganization in brain regions underlying episodic memory, as a function of the concentration of the neuroprotective neuropeptide GLP-1.
Collapse
Affiliation(s)
- Nádia S. Canário
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health, Portugal
- Faculty of Medicine, University of Coimbra, Portugal
| | - Joana Crisóstomo
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health, Portugal
| | - Carolina Moreno
- Department of Endocrinology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - João V. Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health, Portugal
- Faculty of Medicine, University of Coimbra, Portugal
| | - Isabel C. Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health, Portugal
| | - Mário J. Ribeiro
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health, Portugal
- The Faculty of Science and Technology, University of Coimbra, Portugal
| | - Beatriz Caramelo
- Faculty of Medicine, University of Coimbra, Portugal
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center of Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - Leonor V. Gomes
- Department of Endocrinology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Paulo Matafome
- Faculty of Medicine, University of Coimbra, Portugal
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center of Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | | | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health, Portugal
- Faculty of Medicine, University of Coimbra, Portugal
| |
Collapse
|
18
|
Feng L, Gao L. The role of neurovascular coupling dysfunction in cognitive decline of diabetes patients. Front Neurosci 2024; 18:1375908. [PMID: 38576869 PMCID: PMC10991808 DOI: 10.3389/fnins.2024.1375908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Neurovascular coupling (NVC) is an important mechanism to ensure adequate blood supply to active neurons in the brain. NVC damage can lead to chronic impairment of neuronal function. Diabetes is characterized by high blood sugar and is considered an important risk factor for cognitive impairment. In this review, we provide fMRI evidence of NVC damage in diabetic patients with cognitive decline. Combined with the exploration of the major mechanisms and signaling pathways of NVC, we discuss the effects of chronic hyperglycemia on the cellular structure of NVC signaling, including key receptors, ion channels, and intercellular connections. Studying these diabetes-related changes in cell structure will help us understand the underlying causes behind diabetes-induced NVC damage and early cognitive decline, ultimately helping to identify the most effective drug targets for treatment.
Collapse
Affiliation(s)
| | - Ling Gao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Yu C, Wang Y, Zhang B, Xu X, Zhang W, Ding Q, Miao Y, Hou Y, Ma X, Wu T, Yang S, Fu L, Zhang Z, Zhou J, Bi Y. Associations between complexity of glucose time series and cognitive function in adults with type 2 diabetes. Diabetes Obes Metab 2024; 26:840-850. [PMID: 37994378 DOI: 10.1111/dom.15376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
AIMS To characterize the comparative contributions of different glycaemic indicators to cognitive dysfunction, and further investigate the associations between the most significant indicator and cognitive function, along with related cerebral alterations. MATERIALS AND METHODS We performed a cross-sectional study in 449 subjects with type 2 diabetes who completed continuous glucose monitoring and cognitive assessments. Of these, 139 underwent functional magnetic resonance imaging to evaluate cerebral structure and olfactory neural circuit alterations. Relative weight and Sobol's sensitivity analyses were employed to characterize the comparative contributions of different glycaemic indicators to cognitive dysfunction. RESULTS Complexity of glucose time series index (CGI) was found to have a more pronounced association with mild cognitive impairment (MCI) compared to glycated haemoglobin, time in range, and standard deviation. The proportion and multivariable-adjusted odds ratios (ORs) for MCI increased with descending CGI tertile (Tertile 1: reference group [≥4.0]; Tertile 2 [3.6-4.0] OR 1.23, 95% confidence interval [CI] 0.68-2.24; Tertile 3 [<3.6] OR 2.27, 95% CI 1.29-4.00). Decreased CGI was associated with cognitive decline in executive function and attention. Furthermore, individuals with decreased CGI displayed reduced olfactory activation in the left orbitofrontal cortex (OFC) and disrupted functional connectivity between the left OFC and right posterior cingulate gyrus. Mediation analysis demonstrated that the left OFC activation partially mediated the associations between CGI and executive function. CONCLUSION Decreased glucose complexity closely relates to cognitive dysfunction and olfactory brain activation abnormalities in diabetes.
Collapse
Affiliation(s)
- Congcong Yu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Yaxin Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiang Xu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Wen Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qun Ding
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Yingwen Miao
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Yinjiao Hou
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Xuelin Ma
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Tianyu Wu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Sijue Yang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Linqing Fu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhou Zhang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Jian Zhou
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Yan Bi
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| |
Collapse
|
20
|
Davidson TL, Stevenson RJ. Vulnerability of the Hippocampus to Insults: Links to Blood-Brain Barrier Dysfunction. Int J Mol Sci 2024; 25:1991. [PMID: 38396670 PMCID: PMC10888241 DOI: 10.3390/ijms25041991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The hippocampus is a critical brain substrate for learning and memory; events that harm the hippocampus can seriously impair mental and behavioral functioning. Hippocampal pathophysiologies have been identified as potential causes and effects of a remarkably diverse array of medical diseases, psychological disorders, and environmental sources of damage. It may be that the hippocampus is more vulnerable than other brain areas to insults that are related to these conditions. One purpose of this review is to assess the vulnerability of the hippocampus to the most prevalent types of insults in multiple biomedical domains (i.e., neuroactive pathogens, neurotoxins, neurological conditions, trauma, aging, neurodegenerative disease, acquired brain injury, mental health conditions, endocrine disorders, developmental disabilities, nutrition) and to evaluate whether these insults affect the hippocampus first and more prominently compared to other brain loci. A second purpose is to consider the role of hippocampal blood-brain barrier (BBB) breakdown in either causing or worsening the harmful effects of each insult. Recent research suggests that the hippocampal BBB is more fragile compared to other brain areas and may also be more prone to the disruption of the transport mechanisms that act to maintain the internal milieu. Moreover, a compromised BBB could be a factor that is common to many different types of insults. Our analysis indicates that the hippocampus is more vulnerable to insults compared to other parts of the brain, and that developing interventions that protect the hippocampal BBB may help to prevent or ameliorate the harmful effects of many insults on memory and cognition.
Collapse
Affiliation(s)
- Terry L. Davidson
- Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Avenue, NW, Washington, DC 20016, USA
| | | |
Collapse
|
21
|
Kuate Defo A, Bakula V, Pisaturo A, Labos C, Wing SS, Daskalopoulou SS. Diabetes, antidiabetic medications and risk of dementia: A systematic umbrella review and meta-analysis. Diabetes Obes Metab 2024; 26:441-462. [PMID: 37869901 DOI: 10.1111/dom.15331] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023]
Abstract
AIMS The objective of this umbrella review and meta-analysis was to evaluate the effect of diabetes on risk of dementia, as well as the mitigating effect of antidiabetic treatments. MATERIALS AND METHODS We conducted a systematic umbrella review on diabetes and its treatment, and a meta-analysis focusing on treatment. We searched MEDLINE/PubMed, Embase, PsycINFO, CINAHL and the Cochrane Library for systematic reviews and meta-analyses assessing the risk of cognitive decline/dementia in individuals with diabetes until 2 July 2023. We conducted random-effects meta-analyses to obtain risk ratios and 95% confidence intervals estimating the association of metformin, thiazolidinediones, pioglitazone, dipeptidyl peptidase-4 inhibitors, α-glucosidase inhibitors, meglitinides, insulin, sulphonylureas, glucagon-like peptide-1 receptor agonists (GLP1RAs) and sodium-glucose cotransporter-2 inhibitors (SGLT2is) with risk of dementia from cohort/case-control studies. The subgroups analysed included country and world region. Risk of bias was assessed with the AMSTAR tool and Newcastle-Ottawa Scale. RESULTS We included 100 reviews and 27 cohort/case-control studies (N = 3 046 661). Metformin, thiazolidinediones, pioglitazone, GLP1RAs and SGLT2is were associated with significant reduction in risk of dementia. When studies examining metformin were divided by country, the only significant effect was for the United States. Moreover, the effect of metformin was significant in Western but not Eastern populations. No significant effect was observed for dipeptidyl peptidase-4 inhibitors, α-glucosidase inhibitors, or insulin, while meglitinides and sulphonylureas were associated with increased risk. CONCLUSIONS Metformin, thiazolidinediones, pioglitazone, GLP1RAs and SGLT2is were associated with reduced risk of dementia. More longitudinal studies aimed at determining their relative benefit in different populations should be conducted.
Collapse
Affiliation(s)
- Alvin Kuate Defo
- Vascular Health Unit, Research Institute of the McGill University Health Centre, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Veselko Bakula
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | - Christopher Labos
- Vascular Health Unit, Research Institute of the McGill University Health Centre, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Simon S Wing
- Division of Endocrinology & Metabolism, Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Stella S Daskalopoulou
- Vascular Health Unit, Research Institute of the McGill University Health Centre, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Division of Internal Medicine, Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Busby N, Newman-Norlund R, Wilmskoetter J, Johnson L, Rorden C, Gibson M, Roth R, Wilson S, Fridriksson J, Bonilha L. Longitudinal Progression of White Matter Hyperintensity Severity in Chronic Stroke Aphasia. Arch Rehabil Res Clin Transl 2023; 5:100302. [PMID: 38163020 PMCID: PMC10757197 DOI: 10.1016/j.arrct.2023.100302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Objective To determine whether longitudinal progression of small vessel disease in chronic stroke survivors is associated with longitudinal worsening of chronic aphasia severity. Design A longitudinal retrospective study. Severity of white matter hyperintensities (WMHs) as a marker for small vessel disease was assessed on fluid-attenuated inversion recovery (FLAIR) scans using the Fazekas scale, with ratings for deep WMHs (DWMHs) and periventricular WMHs (PVHs). Setting University research laboratories. Participants This study includes data from 49 chronic stroke survivors with aphasia (N=49; 15 women, 34 men, age range=32-81 years, >6 months post-stroke, stroke type: [46 ischemic, 3 hemorrhagic], community dwelling). All participants completed the Western Aphasia Battery-Revised (WAB) and had FLAIR scans at 2 timepoints (average years between timepoints: 1.87 years, SD=3.21 years). Interventions Not applicable. Main Outcome Measures Change in white matter hyperintensity severity (calculated using the Fazekas scale) and change in aphasia severity (difference in Western Aphasia Battery scores) were calculated between timepoints. Separate stepwise regression models were used to identify predictors of WMH severity change, with lesion volume, age, time between timepoints, body mass index (BMI), and presence of diabetes as independent variables. Additional stepwise regression models investigated predictors of change in aphasia severity, with PVH change, DWMH change, lesion volume, time between timepoints, and age as independent predictors. Results 22.5% of participants (11/49) had increased WMH severity. Increased BMI was associated with increases in PVH severity (P=.007), whereas the presence of diabetes was associated with increased DWMH severity (P=.002). Twenty-five percent of participants had increased aphasia severity which was significantly associated with increased severity of PVH (P<.001, 16.8% variance explained). Conclusion Increased small vessel disease burden is associated with contributing to chronic changes in aphasia severity. These findings support the idea that good cardiovascular risk factor control may play an important role in the prevention of long-term worsening of aphasic symptoms.
Collapse
Affiliation(s)
- Natalie Busby
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC
| | | | - Janina Wilmskoetter
- Department of Neurology, Medical University of South Carolina, Charleston, SC
| | - Lisa Johnson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC
| | - Makayla Gibson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC
| | - Rebecca Roth
- Department of Neurology, Emory University, Atlanta, GA
| | - Sarah Wilson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC
| | | |
Collapse
|
23
|
Ottomana AM, Presta M, O'Leary A, Sullivan M, Pisa E, Laviola G, Glennon JC, Zoratto F, Slattery DA, Macrì S. A systematic review of preclinical studies exploring the role of insulin signalling in executive function and memory. Neurosci Biobehav Rev 2023; 155:105435. [PMID: 37913873 DOI: 10.1016/j.neubiorev.2023.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Beside its involvement in somatic dysfunctions, altered insulin signalling constitutes a risk factor for the development of mental disorders like Alzheimer's disease and obsessive-compulsive disorder. While insulin-related somatic and mental disorders are often comorbid, the fundamental mechanisms underlying this association are still elusive. Studies conducted in rodent models appear well suited to help decipher these mechanisms. Specifically, these models are apt to prospective studies in which causative mechanisms can be manipulated via multiple tools (e.g., genetically engineered models and environmental interventions), and experimentally dissociated to control for potential confounding factors. Here, we provide a narrative synthesis of preclinical studies investigating the association between hyperglycaemia - as a proxy of insulin-related metabolic dysfunctions - and impairments in working and spatial memory, and attention. Ultimately, this review will advance our knowledge on the role of glucose metabolism in the comorbidity between somatic and mental illnesses.
Collapse
Affiliation(s)
- Angela Maria Ottomana
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Neuroscience Unit, Department of Medicine, University of Parma, 43100 Parma, Italy
| | - Martina Presta
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany; Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Mairéad Sullivan
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Edoardo Pisa
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giovanni Laviola
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Jeffrey C Glennon
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Francesca Zoratto
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
24
|
Sakib MN, Ramezan R, Hall PA. Diabetes status and cognitive function in middle-aged and older adults in the Canadian longitudinal study on aging. Front Endocrinol (Lausanne) 2023; 14:1293988. [PMID: 38107512 PMCID: PMC10722407 DOI: 10.3389/fendo.2023.1293988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023] Open
Abstract
Objectives Diabetes is recognized as a significant risk factor for cognitive impairment. However, this association has not been thoroughly examined using large-scale population-based datasets in the Canadian context. The objective of this study was to investigate the potential association between cognitive function and diabetes in a large population-based sample of middle-aged and older Canadians. Methods We utilized baseline data from the Canadian Longitudinal Study on Aging (N=30,097) to test our hypotheses, using five indicators of cognitive function (animal fluency, Stroop interference, reaction time, immediate and delayed memory recall). We conducted multivariate multivariable linear regression and subsequently performed tests for moderation analysis with lifestyle factors and health status. Results The analysis revealed that type 2 diabetes (T2DM) was associated with lower performance on most cognitive tasks, including those assessing executive function (b=0.60, 95% CI 0.31 to 0.90), reaction time (b=16.94, 95% CI 9.18 to 24.70), immediate memory recall (b=-0.10, 95% CI -0.18 to -0.02), and delayed memory recall (b=-0.12, 95% CI -0.21 to -0.02). However, no significant association was observed between other types of diabetes and cognitive performance. Moderation effects were largely null for T2DM, with the exception of alcohol intake for reaction time, and physical activity for animal fluency. Conclusions The study showed that individuals with T2DM exhibit poor performance on tasks that assess executive function, reaction time, and memory. Therefore, optimizing cognitive health among individuals with T2DM should be a priority in primary care. Additionally, further studies should examine this association using longitudinal data.
Collapse
Affiliation(s)
- Mohammad Nazmus Sakib
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- School of Public Health Sciences, Faculty of Health, University of Waterloo, Waterloo, ON, Canada
| | - Reza Ramezan
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| | - Peter A. Hall
- School of Public Health Sciences, Faculty of Health, University of Waterloo, Waterloo, ON, Canada
- Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, Canada
- Department of Psychology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
25
|
Monereo-Sánchez J, Jansen JFA, Köhler S, van Boxtel MPJ, Backes WH, Stehouwer CDA, Kroon AA, Kooman JP, Schalkwijk CG, Linden DEJ, Schram MT. The association of prediabetes and type 2 diabetes with hippocampal subfields volume: The Maastricht study. Neuroimage Clin 2023; 39:103455. [PMID: 37356423 PMCID: PMC10310479 DOI: 10.1016/j.nicl.2023.103455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
AIMS/HYPOTHESIS We investigated whether prediabetes, type 2 diabetes, and continuous measures of hyperglycemia are associated with tissue volume differences in specific subfields of the hippocampus. METHODS We used cross-sectional data from 4,724 participants (58.7 ± 8.5 years, 51.5% women) of The Maastricht Study, a population-based prospective cohort. Glucose metabolism status was assessed with an oral glucose tolerance test, and defined as type 2 diabetes (n = 869), prediabetes (n = 671), or normal glucose metabolism (n = 3184). We extracted 12 hippocampal subfield volumes per hemisphere with FreeSurfer v6.0 using T1w and FLAIR 3T MRI images. We used multiple linear regression and linear trend analysis, and adjusted for total intracranial volume, demographic, lifestyle, and cardiovascular risk factors. RESULTS Type 2 diabetes was significantly associated with smaller volumes in the hippocampal subfield fimbria (standardized beta coefficient ± standard error (β ± SE) = -0.195 ± 0.04, p-value < 0.001), the hippocampus proper, i.e. Cornu Ammonis (CA) 1, CA2/3, CA4, dentate gyrus, subiculum and presubiculum (β ± SE < -0.105 ± 0.04, p-value < 0.006); as well as the hippocampal tail (β ± SE = -0.162 ± 0.04, p-value < 0.001). Prediabetes showed no significant associations. However, linear trend analysis indicated a dose-response relation from normal glucose metabolism, to prediabetes, to type 2 diabetes. Multiple continuous measures of hyperglycemia were associated with smaller volumes of the subfields fimbria (β ± SE < -0.010 ± 0.011, p-value < 0.001), dentate gyrus (β ± SE < -0.013 ± 0.010, p-value < 0.002), CA3 (β ± SE < -0.014 ± 0.011, p-value < 0.001), and tail (β ± SE < -0.006 ± 0.012, p-value < 0.003). CONCLUSIONS/INTERPRETATION Type 2 diabetes and measures of hyperglycemia are associated with hippocampal subfield atrophy, independently of lifestyle and cardiovascular risk factors. We found evidence for a dose-response relationship from normal glucose metabolism, to prediabetes, to type 2 diabetes. Prediabetes stages could give a window of opportunity for the early prevention of brain disease.
Collapse
Affiliation(s)
- Jennifer Monereo-Sánchez
- School for Mental Health & Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands; Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, The Netherlands
| | - Jacobus F A Jansen
- School for Mental Health & Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands; Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, The Netherlands.
| | - Sebastian Köhler
- School for Mental Health & Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands; Department of Psychiatry and Neuropsychology, Maastricht University Medical Center, The Netherlands; Alzheimer Centrum Limburg, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands.
| | - Martin P J van Boxtel
- School for Mental Health & Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands; Department of Psychiatry and Neuropsychology, Maastricht University Medical Center, The Netherlands; Alzheimer Centrum Limburg, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands.
| | - Walter H Backes
- School for Mental Health & Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands; Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, The Netherlands; School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands.
| | - Coen D A Stehouwer
- School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands; Department of Internal Medicine, Maastricht University Medical Center, The Netherlands.
| | - Abraham A Kroon
- School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands; Department of Internal Medicine, Maastricht University Medical Center, The Netherlands.
| | - Jeroen P Kooman
- Department of Internal Medicine, Maastricht University Medical Center, The Netherlands; School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.
| | - Casper G Schalkwijk
- School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands; Department of Internal Medicine, Maastricht University Medical Center, The Netherlands.
| | - David E J Linden
- School for Mental Health & Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands.
| | - Miranda T Schram
- School for Mental Health & Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands; School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands; Department of Internal Medicine, Maastricht University Medical Center, The Netherlands; Maastricht Heart+Vascular Center, Maastricht University Medical Center, The Netherlands.
| |
Collapse
|
26
|
Roth R, Busby N, Wilmskoetter J, Schwen Blackett D, Gleichgerrcht E, Johnson L, Rorden C, Newman-Norlund R, Hillis AE, den Ouden DB, Fridriksson J, Bonilha L. Diabetes, brain health, and treatment gains in post-stroke aphasia. Cereb Cortex 2023; 33:8557-8564. [PMID: 37139636 PMCID: PMC10321080 DOI: 10.1093/cercor/bhad140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 05/05/2023] Open
Abstract
In post-stroke aphasia, language improvements following speech therapy are variable and can only be partially explained by the lesion. Brain tissue integrity beyond the lesion (brain health) may influence language recovery and can be impacted by cardiovascular risk factors, notably diabetes. We examined the impact of diabetes on structural network integrity and language recovery. Seventy-eight participants with chronic post-stroke aphasia underwent six weeks of semantic and phonological language therapy. To quantify structural network integrity, we evaluated the ratio of long-to-short-range white matter fibers within each participant's whole brain connectome, as long-range fibers are more susceptible to vascular injury and have been linked to high level cognitive processing. We found that diabetes moderated the relationship between structural network integrity and naming improvement at 1 month post treatment. For participants without diabetes (n = 59), there was a positive relationship between structural network integrity and naming improvement (t = 2.19, p = 0.032). Among individuals with diabetes (n = 19), there were fewer treatment gains and virtually no association between structural network integrity and naming improvement. Our results indicate that structural network integrity is associated with treatment gains in aphasia for those without diabetes. These results highlight the importance of post-stroke structural white matter architectural integrity in aphasia recovery.
Collapse
Affiliation(s)
- Rebecca Roth
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
| | - Natalie Busby
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Janina Wilmskoetter
- Department of Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Deena Schwen Blackett
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ezequiel Gleichgerrcht
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lisa Johnson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | | | - Argye E Hillis
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Dirk B den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Leonardo Bonilha
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
27
|
Yan FJ, Chen XH, Quan XQ, Wang LL, Wei XY, Zhu JL. Development and validation of an interpretable machine learning model-Predicting mild cognitive impairment in a high-risk stroke population. Front Aging Neurosci 2023; 15:1180351. [PMID: 37396650 PMCID: PMC10308219 DOI: 10.3389/fnagi.2023.1180351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Background Mild cognitive impairment (MCI) is considered a preclinical stage of Alzheimer's disease (AD). People with MCI have a higher risk of developing dementia than healthy people. As one of the risk factors for MCI, stroke has been actively treated and intervened. Therefore, selecting the high-risk population of stroke as the research object and discovering the risk factors of MCI as early as possible can prevent the occurrence of MCI more effectively. Methods The Boruta algorithm was used to screen variables, and eight machine learning models were established and evaluated. The best performing models were used to assess variable importance and build an online risk calculator. Shapley additive explanation is used to explain the model. Results A total of 199 patients were included in the study, 99 of whom were male. Transient ischemic attack (TIA), homocysteine, education, hematocrit (HCT), diabetes, hemoglobin, red blood cells (RBC), hypertension, prothrombin time (PT) were selected by Boruta algorithm. Logistic regression (AUC = 0.8595) was the best model for predicting MCI in high-risk groups of stroke, followed by elastic network (ENET) (AUC = 0.8312), multilayer perceptron (MLP) (AUC = 0.7908), extreme gradient boosting (XGBoost) (AUC = 0.7691), and support vector machine (SVM) (AUC = 0.7527), random forest (RF) (AUC = 0.7451), K-nearest neighbors (KNN) (AUC = 0.7380), decision tree (DT) (AUC = 0.6972). The importance of variables suggests that TIA, diabetes, education, and hypertension are the top four variables of importance. Conclusion Transient ischemic attack (TIA), diabetes, education, and hypertension are the most important risk factors for MCI in high-risk groups of stroke, and early intervention should be performed to reduce the occurrence of MCI.
Collapse
Affiliation(s)
- Feng-Juan Yan
- Department of Geriatrics, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Xie-Hui Chen
- Department of Geriatrics, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Xiao-Qing Quan
- Department of Geriatrics, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Li-Li Wang
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xin-Yi Wei
- Department of Cardiology, The Third Hospital of Jinan, Jinan, Shandong, China
| | - Jia-Liang Zhu
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
28
|
Song J. Amygdala activity and amygdala-hippocampus connectivity: Metabolic diseases, dementia, and neuropsychiatric issues. Biomed Pharmacother 2023; 162:114647. [PMID: 37011482 DOI: 10.1016/j.biopha.2023.114647] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
With rapid aging of the population worldwide, the number of people with dementia is dramatically increasing. Some studies have emphasized that metabolic syndrome, which includes obesity and diabetes, leads to increased risks of dementia and cognitive decline. Factors such as insulin resistance, hyperglycemia, high blood pressure, dyslipidemia, and central obesity in metabolic syndrome are associated with synaptic failure, neuroinflammation, and imbalanced neurotransmitter levels, leading to the progression of dementia. Due to the positive correlation between diabetes and dementia, some studies have called it "type 3 diabetes". Recently, the number of patients with cognitive decline due to metabolic imbalances has considerably increased. In addition, recent studies have reported that neuropsychiatric issues such as anxiety, depressive behavior, and impaired attention are common factors in patients with metabolic disease and those with dementia. In the central nervous system (CNS), the amygdala is a central region that regulates emotional memory, mood disorders, anxiety, attention, and cognitive function. The connectivity of the amygdala with other brain regions, such as the hippocampus, and the activity of the amygdala contribute to diverse neuropathological and neuropsychiatric issues. Thus, this review summarizes the significant consequences of the critical roles of amygdala connectivity in both metabolic syndromes and dementia. Further studies on amygdala function in metabolic imbalance-related dementia are needed to treat neuropsychiatric problems in patients with this type of dementia.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
29
|
Sola T, Pimiä E, Lahti E, Lahtela J, Jehkonen M. Type 2 diabetes and cognitive performance in middle age: a cross-sectional study. J Clin Exp Neuropsychol 2023; 45:423-432. [PMID: 37642462 DOI: 10.1080/13803395.2023.2246668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Type 2 diabetes has been associated with cognitive decrements already in middle-age. However, the sample sizes of the studies have been small and the neuropsychological tests used have been heterogeneous. In addition, only a few studies have matched the groups in terms of age, education and gender. In this cross-sectional matched pairs study, we investigated the cognitive performance of Finnish middle-aged type 2 diabetes patients compared to healthy individuals. METHOD A neuropsychological test battery consisting of 16 tests and 21 outcome measures was applied to 28 patients and 28 age-, education- and gender-matched healthy individuals. Various exclusion criteria were applied to minimize the risk of cognitive dysfunction due to factors other than diabetes. RESULTS We did not find between-group differences in any of the neuropsychological tests measuring attention, concept formation and reasoning, construction and motor performance, executive functions, memory, processing speed or working memory. In addition, there were no group differences in the frequency or severity of subjective cognitive symptoms, or in anxiety, depression, burnout, fatigue or alcohol use disorder symptoms. The effect sizes in this study were mostly negligible or small, with the mean effect size being -0.12. CONCLUSIONS In a carefully matched sample of middle-aged type 2 diabetes patients and healthy individuals, we found no significant effects and no meaningful evidence of cognitive differences between the groups.
Collapse
Affiliation(s)
- Teppo Sola
- Faculty of Social Sciences, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Elina Pimiä
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
- Diabetes Outpatient Clinic, Wellbeing Services County of Pirkanmaa, City of Tampere Diabetes Outpatient Clinic, Tampere, Finland
| | - Elina Lahti
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Jorma Lahtela
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mervi Jehkonen
- Faculty of Social Sciences, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
30
|
Gao X, Wei Y, Sun H, Hao S, Ma M, Sun H, Zang D, Qi C, Ge J. Role of Bmal1 in Type 2 Diabetes Mellitus-Related Glycolipid Metabolic Disorder and Neuropsychiatric Injury: Involved in the Regulation of Synaptic Plasticity and Circadian Rhythms. Mol Neurobiol 2023:10.1007/s12035-023-03360-5. [PMID: 37126129 DOI: 10.1007/s12035-023-03360-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
Increasing data suggest a crucial role of circadian rhythm in regulating metabolic and neurological diseases, and Bmal1 is regarded as a key regulator of circadian transcription. The aim of this study is to investigate the role of Bmal1 in the disruption of circadian rhythm and neuropsychiatric injuries in type 2 diabetes mellitus (T2DM). A T2DM model was induced by the combination of high-fat-diet (HFD) and streptozotocin (STZ) in vivo or HT-22 cells challenged with palmitic-acid (PA) in vitro. The glucolipid metabolism indicators, behavioral performance, and expression of synaptic plasticity proteins and circadian rhythm-related proteins were detected. These changes were also observed after interference of Bmal1 expression via overexpressed plasmid or small interfering RNAs in vitro. The results showed that HFD/STZ could induce T2DM-like glycolipid metabolic turmoil and abnormal neuropsychiatric behaviors in mice, as indicated by the increased concentrations of fasting blood-glucose (FBG), HbA1c and lipids, the impaired glucose tolerance, and the decreased preference index of novel object or novel arm in the novel object recognition test (NOR) and Y-maze test (Y-maze). Consistently, the protein expression of synaptic plasticity proteins and circadian rhythm-related proteins and the positive fluorescence intensity of MT1B and Bmal1 were decreased in the hippocampus of HFD/STZ-induced mice or PA-challenged HT-22 cells. Furthermore, overexpression of Bmal1 could improve the PA-induced lipid metabolic dysfunction and increase the decreased expressions of synaptic plasticity proteins and circadian rhythm-related proteins, and vice versa. These results suggested a crucial role of Bmal1 in T2DM-related glycolipid metabolic disorder and neuropsychiatric injury, which mechanism might be involved in the regulation of synaptic plasticity and circadian rhythms.
Collapse
Affiliation(s)
- Xinran Gao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Yadong Wei
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Huaizhi Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Shengwei Hao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Mengdie Ma
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Huimin Sun
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Dandan Zang
- The Center for Scientific Research of Anhui Medical University, Hefei, China
| | - Congcong Qi
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Jinfang Ge
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, China.
| |
Collapse
|
31
|
Besnier F, Gagnon C, Monnet M, Dupuy O, Nigam A, Juneau M, Bherer L, Gayda M. Acute Effects of a Maximal Cardiopulmonary Exercise Test on Cardiac Hemodynamic and Cerebrovascular Response and Their Relationship with Cognitive Performance in Individuals with Type 2 Diabetes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085552. [PMID: 37107835 PMCID: PMC10138481 DOI: 10.3390/ijerph20085552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/20/2023] [Accepted: 04/07/2023] [Indexed: 05/11/2023]
Abstract
Cardiovascular and cerebrovascular diseases are prevalent in individuals with type 2 diabetes (T2D). Among people with T2D aged over 70 years, up to 45% might have cognitive dysfunction. Cardiorespiratory fitness (V˙O2max) correlates with cognitive performances in healthy younger and older adults, and individuals with cardiovascular diseases (CVD). The relationship between cognitive performances, V˙O2max, cardiac output and cerebral oxygenation/perfusion responses during exercise has not been studied in patients with T2D. Studying cardiac hemodynamics and cerebrovascular responses during a maximal cardiopulmonary exercise test (CPET) and during the recovery phase, as well as studying their relationship with cognitive performances could be useful to detect patients at greater risk of future cognitive impairment. Purposes: (1) to compare cerebral oxygenation/perfusion during a CPET and during its post-exercise period (recovery); (2) to compare cognitive performances in patients with T2D to those in healthy controls; and (3) to examine if V˙O2max, maximal cardiac output and cerebral oxygenation/perfusion are associated with cognitive function in individuals with T2D and healthy controls. Nineteen patients with T2D (61.9 ± 7 years old) and 22 healthy controls (HC) (61.8 ± 10 years old) were evaluated on the following: a CPET test with impedance cardiography and cerebral oxygenation/perfusion using a near-infrared spectroscopy. Prior to the CPET, the cognitive performance assessment was performed, targeting: short-term and working memory, processing speed, executive functions, and long-term verbal memory. Patients with T2D had lower V˙O2max values compared to HC (34.5 ± 5.6 vs. 46.4 ± 7.6 mL/kg fat free mass/min; p < 0.001). Compared to HC, patients with T2D showed lower maximal cardiac index (6.27 ± 2.09 vs. 8.70 ± 1.09 L/min/m2, p < 0.05) and higher values of systemic vascular resistance index (826.21 ± 308.21 vs. 583.35 ± 90.36 Dyn·s/cm5·m2) and systolic blood pressure at maximal exercise (204.94 ± 26.21 vs. 183.61 ± 19.09 mmHg, p = 0.005). Cerebral HHb during the 1st and 2nd min of recovery was significantly higher in HC compared to T2D (p < 0.05). Executive functions performance (Z score) was significantly lower in patients with T2D compared to HC (-0.18 ± 0.7 vs. -0.40 ± 0.60, p = 0.016). Processing speed, working and verbal memory performances were similar in both groups. Brain tHb during exercise and recovery (-0.50, -0.68, p < 0.05), and O2Hb during recovery (-0.68, p < 0.05) only negatively correlated with executive functions performance in patients with T2D (lower tHb values associated with longer response times, indicating a lower performance). In addition to reduced V˙O2max, cardiac index and elevated vascular resistance, patients with T2D showed reduced cerebral hemoglobin (O2Hb and HHb) during early recovery (0-2 min) after the CPET, and lower performances in executive functions compared to healthy controls. Cerebrovascular responses to the CPET and during the recovery phase could be a biological marker of cognitive impairment in T2D.
Collapse
Affiliation(s)
- Florent Besnier
- Research Centre and Centre ÉPIC, Montreal Heart Institute, Montreal, QC H1T 1N6, Canada
- Department of Medicine, Faculty of Medicine, Université de Montreal, Montreal, QC H3T 1J4, Canada
| | - Christine Gagnon
- Research Centre and Centre ÉPIC, Montreal Heart Institute, Montreal, QC H1T 1N6, Canada
| | - Meghann Monnet
- Laboratory MOVE (UR 20296), Faculty of Sport Sciences, Université de Poitiers, 86073 Poitiers, France
| | - Olivier Dupuy
- Laboratory MOVE (UR 20296), Faculty of Sport Sciences, Université de Poitiers, 86073 Poitiers, France
- School of Kinesiology and Physical Activity Sciences (EKSAP), Faculty of Medicine, Université de Montreal, Montreal, QC H3T 1J4, Canada
| | - Anil Nigam
- Research Centre and Centre ÉPIC, Montreal Heart Institute, Montreal, QC H1T 1N6, Canada
- Department of Medicine, Faculty of Medicine, Université de Montreal, Montreal, QC H3T 1J4, Canada
| | - Martin Juneau
- Research Centre and Centre ÉPIC, Montreal Heart Institute, Montreal, QC H1T 1N6, Canada
- Department of Medicine, Faculty of Medicine, Université de Montreal, Montreal, QC H3T 1J4, Canada
| | - Louis Bherer
- Research Centre and Centre ÉPIC, Montreal Heart Institute, Montreal, QC H1T 1N6, Canada
- Department of Medicine, Faculty of Medicine, Université de Montreal, Montreal, QC H3T 1J4, Canada
- Research Centre, Institut Universitaire de Gériatrie de Montréal, Montreal, QC H3W 1W5, Canada
| | - Mathieu Gayda
- Research Centre and Centre ÉPIC, Montreal Heart Institute, Montreal, QC H1T 1N6, Canada
- Department of Medicine, Faculty of Medicine, Université de Montreal, Montreal, QC H3T 1J4, Canada
- Correspondence:
| |
Collapse
|
32
|
Kirwan JP, Heintz EC, Rebello CJ, Axelrod CL. Exercise in the Prevention and Treatment of Type 2 Diabetes. Compr Physiol 2023; 13:4559-4585. [PMID: 36815623 DOI: 10.1002/cphy.c220009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Type 2 diabetes is a systemic, multifactorial disease that is a leading cause of morbidity and mortality globally. Despite a rise in the number of available medications and treatments available for management, exercise remains a first-line prevention and intervention strategy due to established safety, efficacy, and tolerability in the general population. Herein we review the predisposing risk factors for, prevention, pathophysiology, and treatment of type 2 diabetes. We emphasize key cellular and molecular adaptive processes that provide insight into our evolving understanding of how, when, and what types of exercise may improve glycemic control. © 2023 American Physiological Society. Compr Physiol 13:1-27, 2023.
Collapse
Affiliation(s)
- John P Kirwan
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Elizabeth C Heintz
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Candida J Rebello
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Christopher L Axelrod
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
33
|
Chen JF, Zhang YP, Han JX, Wang YD, Fu GF. Systematic evaluation of the prevalence of cognitive impairment in elderly patients with diabetes in China. Clin Neurol Neurosurg 2023; 225:107557. [PMID: 36603334 DOI: 10.1016/j.clineuro.2022.107557] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To systematically evaluate the prevalence of cognitive impairment in elderly patients with diabetes in China. METHODS Computerized searches of the Chinese Biomedical, WanFang, Vip, Chinese National Knowledge Infrastructure, PubMed, Embase, and the Cochrane Library databases were used to collect research literature on cognitive impairment in older Chinese patients with diabetes from the time of database creation to May 5, 2021. A meta-analysis was performed using the Stata v14.0 software after two investigators independently screened the literature, extracted the information, and evaluated the bias risk of the included studies. RESULTS A total of 17 studies containing the records of 4380 elderly patients with diabetes were included. The meta-analysis results showed that the incidence of cognitive impairment in elderly patients with diabetes was 48% (95% confidence interval [0.40-0.55]). The results of the subgroup analysis showed that the incidence of cognitive impairment was higher in the elderly population with diabetes who were female, older, with a lower education level, no spouse, living alone, and with a monthly income of less than 2000 yuan. CONCLUSION Current evidence showed that the incidence of cognitive impairment in elderly patients with diabetes in China was 48%, with a higher incidence in the elderly population who were female, older, with a lower education level, a low income, no spouse, and living alone.
Collapse
Affiliation(s)
- Jing-Feng Chen
- School of Nursing, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Yan-Ping Zhang
- Department of Geriatric Endocrinology and Metabolism, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530000, China
| | - Jia-Xia Han
- Department of Endocrinology and Metabolism, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530000, China
| | - Yu-Dong Wang
- School of Nursing, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Gui-Fen Fu
- Department of Nursing, Guangxi Academy ofMedical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530000, China.
| |
Collapse
|
34
|
Li M, Li Y, Zhao K, Tan X, Chen Y, Qin C, Qiu S, Liang Y. Changes in the structure, perfusion, and function of the hippocampus in type 2 diabetes mellitus. Front Neurosci 2023; 16:1070911. [PMID: 36699515 PMCID: PMC9868830 DOI: 10.3389/fnins.2022.1070911] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
Objective This study aims to explore the changes in the structure, perfusion, and function of the bilateral hippocampus in type 2 diabetes mellitus (T2DM) applying multimodal MRI methods, hoping to provide reliable neuroimaging evidence for the diagnosis of hippocampus-related brain injury in T2DM. Methods We recruited 30 T2DM patients and 45 healthy controls (HCs), on which we performed 3D T1-weighted images, resting-state functional MRI (rs-fMRI), arterial spin labeling (ASL) sequences, and a series of cognitive tests. Then, we compared the differences of two groups in the cerebral blood flow (CBF) value, amplitude of low-frequency fluctuation (ALFF) value, fractional ALFF (fALFF) value, coherence-based regional homogeneity (Cohe-ReHo) value, and degree centrality (DC) values of the bilateral hippocampus. Results In the T2DM group, the bilateral hippocampal volumes and the CBF value of the right hippocampus were lower than those in the HCs, while the ALFF value, fALFF value, and Cohe-ReHo value of the bilateral hippocampus were higher than those in the HCs. Correlation analysis showed that fasting blood glucose (FBG) was negatively correlated with the residuals of left hippocampal volume (r = -0.407, P = 0.025) and right hippocampal volume (r = -0.420, P = 0.021). The residual of the auditory-verbal learning test (AVLT) (immediate) score was positively correlated with the residual of right hippocampal volume (r = 0.369, P = 0.045). Conclusion This study indicated that the volume and perfusion of the hippocampus are decreased in T2DM patients that related to chronic hyperglycemia. Local spontaneous neural activity and coordination are increased in the hippocampus of T2DM patients, possibly as an adaptive compensation for cognitive decline.
Collapse
Affiliation(s)
- Mingrui Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,Department of Magnetic Resonance Imaging, Zhanjiang First Hospital of Traditional Chinese Medicine, Zhanjiang, China
| | - Yifan Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kui Zhao
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Tan
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuna Chen
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunhong Qin
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,Chunhong Qin,
| | - Shijun Qiu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,Shijun Qiu,
| | - Yi Liang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Yi Liang,
| |
Collapse
|
35
|
Huang Y, Zhang D, Zhang X, Cheng M, Yang Z, Gao J, Tang M, Ai K, Lei X, Zhang X. Altered functional hubs and connectivity in type 2 diabetes mellitus with and without mild cognitive impairment. Front Neurol 2022; 13:1062816. [PMID: 36578308 PMCID: PMC9792165 DOI: 10.3389/fneur.2022.1062816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Cognitive impairment in type 2 diabetes mellitus (T2DM) is associated with functional and structural abnormalities of brain networks, especially the damage to hub nodes in networks. This study explored the abnormal hub nodes of brain functional networks in patients with T2DM under different cognitive states. Sixty-five patients with T2DM and 34 healthy controls (HCs) underwent neuropsychological assessment. Then, degree centrality (DC) analysis and seed-based functional connectivity (FC) analysis were performed to identify the abnormal hub nodes and the FC patterns of these hubs in T2DM patients with mild cognitive impairment (MCI) (DMCI group, N = 31) and without MCI (DMCN group, N = 34). Correlation analyzes examined the relationship between abnormal DC and FC and clinical/cognitive variables. Compared with HCs, both T2DM groups showed decreased DC values in the visual cortex, and the T2DM patients with MCI (DMCI) showed more extensive alterations in the right parahippocampal gyrus (PHG), bilateral posterior cingulate cortex (PCC), and left superior frontal gyrus (SFG) regions than T2DM patients with normal cognitive function. Seed-based FC analysis of PHG and PCC nodes showed that functional disconnection mainly occurred in visual and memory connectivity in patients with DMCI. Multiple abnormal DC values correlated with neuropsychological tests in patients with T2DM. In conclusion, this study found that the DMCI group displayed more extensive alterations in hub nodes and FC in vision and memory-related brain regions, suggesting that visual-related regions dysfunctions and disconnection may be involved in the neuropathology of visuospatial function impairment in patients with DMCI.
Collapse
Affiliation(s)
- Yang Huang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Dongsheng Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xin Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Miao Cheng
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Zhen Yang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jie Gao
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Min Tang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Kai Ai
- Department of Clinical and Technical Support, Philips Healthcare, Xi'an, China
| | - Xiaoyan Lei
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China,Xiaoyan Lei
| | - Xiaoling Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China,*Correspondence: Xiaoling Zhang
| |
Collapse
|
36
|
Jiwani R, Dennis B, Neri AL, Bess C, Espinoza S, Wang J, Serra MC. Type 2 Diabetes Independent of Glycemic Control is Associated With Cognitive Impairments: Findings From NHANES. Clin Nurs Res 2022; 31:1225-1233. [PMID: 35614549 PMCID: PMC10845167 DOI: 10.1177/10547738221100344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Examine the association between glycemic control and cognition. Included subjects ≥60 years who participated in the 2013 to 2014 National Health and Nutrition Examination Survey and completed one of the followings: Consortium to Establish a Registry for Alzheimer's Disease Word List (CERAD-WL), Animal Fluency (AF), Digit Symbol Substitution Test (DSST), and CERAD-Delayed Recall (CERAD-DR). Stratified participants into: No type 2 diabetes (T2D; N = 557), Controlled T2D (N = 41), Uncontrolled T2D (N = 120), and Untreated T2D (N = 86). Multiple regression was used to examine the association between variables. After adjusting for demographics and cardiovascular risk factors, Uncontrolled T2D was associated with lower DSST (β = -3.164, p = .04), and Untreated T2D was associated with a trend for having lower CERAD-DR (β = -.496, p = .06) scores. T2D, independent of glycemic control, is associated with cognitive impairment and this relationship is influenced by modifiable and non-modifiable risk factors.
Collapse
Affiliation(s)
- Rozmin Jiwani
- University of Texas Health Science Center at San Antonio, USA
- Geriatric Research Education & Clinical Center at South Texas Veterans Health Care System, San Antonio, USA
| | - Brittany Dennis
- University of Texas Health Science Center at San Antonio, USA
| | - Alfonso L Neri
- University of Texas Health Science Center at San Antonio, USA
| | | | - Sara Espinoza
- University of Texas Health Science Center at San Antonio, USA
- Geriatric Research Education & Clinical Center at South Texas Veterans Health Care System, San Antonio, USA
| | - Jing Wang
- Florida State University, Tallahassee, USA
| | - Monica C Serra
- University of Texas Health Science Center at San Antonio, USA
- Geriatric Research Education & Clinical Center at South Texas Veterans Health Care System, San Antonio, USA
| |
Collapse
|
37
|
Li ZY, Ma T, Yu Y, Hu B, Han Y, Xie H, Ni MH, Chen ZH, Zhang YM, Huang YX, Li WH, Wang W, Yan LF, Cui GB. Changes of brain function in patients with type 2 diabetes mellitus measured by different analysis methods: A new coordinate-based meta-analysis of neuroimaging. Front Neurol 2022; 13:923310. [PMID: 36090859 PMCID: PMC9449648 DOI: 10.3389/fneur.2022.923310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022] Open
Abstract
Objective Neuroimaging meta-analysis identified abnormal neural activity alterations in patients with type 2 diabetes mellitus (T2DM), but there was no consistency or heterogeneity analysis between different brain imaging processing strategies. The aim of this meta-analysis was to determine consistent changes of regional brain functions in T2DM via the indicators obtained by using different post-processing methods. Methods Since the indicators obtained using varied post-processing methods reflect different neurophysiological and pathological characteristics, we further conducted a coordinate-based meta-analysis (CBMA) of the two categories of neuroimaging literature, which were grouped according to similar data processing methods: one group included regional homogeneity (ReHo), independent component analysis (ICA), and degree centrality (DC) studies, while the other group summarized the literature on amplitude of low-frequency fluctuation (ALFF) and cerebral blood flow (CBF). Results The final meta-analysis included 23 eligible trials with 27 data sets. Compared with the healthy control group, when neuroimaging studies were combined with ReHo, ICA, and DC measurements, the brain activity of the right Rolandic operculum, right supramarginal gyrus, and right superior temporal gyrus in T2DM patients decreased significantly. When neuroimaging studies were combined with ALFF and CBF measurements, there was no clear evidence of differences in the brain function between T2DM and HCs. Conclusion T2DM patients have a series of spontaneous abnormal brain activities, mainly involving brain regions related to learning, memory, and emotion, which provide early biomarkers for clarifying the mechanism of cognitive impairment and neuropsychiatric disorders in diabetes. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=247071, PROSPERO [CRD42021247071].
Collapse
Affiliation(s)
- Ze-Yang Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Teng Ma
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ying Yu
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Bo Hu
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu Han
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hao Xie
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Min-Hua Ni
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Faculty of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhu-Hong Chen
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang-Ming Zhang
- Battalion of the Second Regiment of Cadets of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yu-Xiang Huang
- Battalion of the Second Regiment of Cadets of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wen-Hua Li
- Battalion of the Second Regiment of Cadets of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wen Wang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- *Correspondence: Guang-Bin Cui ;
| | - Lin-Feng Yan
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Lin-Feng Yan
| | - Guang-Bin Cui
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Wen Wang
| |
Collapse
|
38
|
Wang M, Zhang D, Gao J, Qi F, Su Y, Lei Y, Shao Z, Ai K, Tang M, Zhang X. Abnormal functional connectivity in the right dorsal anterior insula associated with cognitive dysfunction in patients with type 2 diabetes mellitus. Brain Behav 2022; 12:e2553. [PMID: 35543304 PMCID: PMC9226846 DOI: 10.1002/brb3.2553] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 02/01/2022] [Accepted: 02/12/2022] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) is a chronic disease with a high incidence worldwide. T2DM can cause cognitive impairment, but its neuropathological basis is unclear. A variety of neuropsychiatric studies have found that abnormal functional connectivity (FC) in the central executive network (CEN), default-mode network (DMN), and salience network (SN) may be the neuropathological basis of cognitive dysfunction. The right dorsal anterior insula (dAI) is the core SN area. It plays an important role in regulating the CEN and the DMN. However, few studies have explored the relationship between cognitive impairment and FC among the right dAI, CEN, and DMN in patients with T2DM. METHODS Resting-state functional magnetic resonance imaging was used to investigate FC between the right dAI and the CEN and DMN in 44 patients with T2DM and 41 sex-, age-, and education-matched healthy controls, as well as its relationship with clinical/cognitive variables. RESULTS In patients with T2DM, FC between the right dAI and multiple brain regions of the CEN and DMN was generally decreased, and FC strength between the right dAI and the inferior frontal gyrus negatively correlated with trail making test A score (r = -0.421, p = 0.004). CONCLUSIONS Patients with T2DM exhibit abnormal FC between the right dAI and the CEN and DMN. This may be one of the neuromechanisms of cognitive impairment in patients with T2DM. In addition, reduced FC between the right dAI and the right inferior frontal gyrus may be related to abnormal attention regulation in patients with T2DM.
Collapse
Affiliation(s)
- Man Wang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Dongsheng Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Jie Gao
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Fei Qi
- Xi'an Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yu Su
- Xi'an Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yumeng Lei
- Xi'an Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Zhirong Shao
- Xi'an Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Kai Ai
- Philips Healthcare, Xi'an, Shaanxi, People's Republic of China
| | - Min Tang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Xiaoling Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| |
Collapse
|
39
|
Xie K, Perna L, Schöttker B, Kliegel M, Brenner H, Mons U. Type 2 diabetes mellitus and cognitive decline in older adults in Germany - results from a population-based cohort. BMC Geriatr 2022; 22:455. [PMID: 35619073 PMCID: PMC9137064 DOI: 10.1186/s12877-022-03151-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/09/2022] [Indexed: 11/11/2022] Open
Abstract
Background A large body of evidence supports a link between type 2 diabetes mellitus (T2DM) and cognitive function, including dementia. However, longitudinal studies on the association between T2DM and decline of cognitive function are scarce and reported mixed results, and we hence set out to investigate the cross-sectional and longitudinal association between T2DM and global as well as domain-specific cognitive performance. Methods We used multivariable regression models to assess associations of T2DM with cognitive performance and cognitive decline in a subsample of a population-based prospective cohort study (ESTHER). This subsample (n = 732) was aged 70 years and older and had participated in telephone-based cognitive function assessment (COGTEL) measuring global and domain-specific cognitive performance during the 5- and 8-year follow-up. Results Total COGTEL scores of patients with prevalent T2DM were 27.4 ± 8.3 and 29.4 ± 8.7 at the 5- and 8-year measurements, respectively, and were roughly two points lower than those of T2DM-free participants after adjustment for age and sex. In cross-sectional models, after adjustment for several potential confounders, performance in verbal short-term and long-term memory tasks was statistically significantly lower in participants with T2DM, but the association was attenuated after further adjustment for vascular risk factors. The difference in total COGTEL scores reflecting global cognitive function by T2DM status after full adjustment for confounders and vascular risk factors was equivalent to a decrement in global cognitive function associated with a four-year age difference. In longitudinal models, a statistically significantly stronger cognitive decline in patients with T2DM was observed for working memory. Conclusions In this sample of older individuals, T2DM was associated with worse performance and stronger decline in a cognitive function test. Memory-related domains were found to be particularly sensitive to T2DM. Further large-scale prospective studies are needed to clarify potential T2DM-related predictors of cognitive decline and possible consequences on the abilities to perform patient self-management tasks in diabetes care. Supplementary Information The online version contains supplementary material available at 10.1186/s12877-022-03151-y.
Collapse
Affiliation(s)
- Kun Xie
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Laura Perna
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| | - Matthias Kliegel
- Department of Psychology, University of Geneva, Geneva, Switzerland
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| | - Ute Mons
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| |
Collapse
|
40
|
Hetta. G, Jane. M, Michelle. H, Anna. D, Reuben. R, Greg. K, Andre. JJ, Leslie L, Thomas. M, GF. TK. Impact of HIV on Cognitive Performance in Professional Drivers. J Acquir Immune Defic Syndr 2022; 89:527-536. [PMID: 34974470 PMCID: PMC9058184 DOI: 10.1097/qai.0000000000002899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/06/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND The intellectually demanding modern workplace is often dependent on good cognitive health, yet there is little understanding of how neurocognitive dysfunction related to HIV presents in employed individuals working in high-risk vocations such as driving. HIV-associated neurocognitive impairment is also associated with poorer long-term cognitive, health, and employment outcomes. SETTING This study, set in Cape Town, South Africa, assessed the effects of HIV on neuropsychological test performance in employed male professional drivers. METHOD We administered a neuropsychological test battery spanning 7 cognitive domains and obtained behavioral data, anthropometry, and medical biomarkers from 3 groups of professional drivers (68 men with HIV, 55 men with cardiovascular risk factors, and 81 controls). We compared the drivers' cognitive profiles and used multiple regression modeling to investigate whether between-group differences persisted after considering potentially confounding sociodemographic and clinical variables (ie, income, home language, depression, and the Framingham risk score). RESULTS Relative to other study participants, professional drivers with HIV performed significantly more poorly on tests assessing processing speed (P < 0.003) and attention and working memory (P = 0.018). Group membership remained a predictor of cognitive performance after controlling for potential confounders. The cognitive deficits observed in men with HIV were, however, largely characterized as being mild or asymptomatic. Consistent with this characterization, their relatively poor performance on neuropsychological testing did not generalize to self-reported impairment on activities of daily living. CONCLUSION Drivers with HIV may be at risk of poorer long-term health and employment outcomes. Programs that monitor and support their long-term cognitive health are needed.
Collapse
Affiliation(s)
- Gouse Hetta.
- HIV Mental Health Research Unit and Neurosciences Institute, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Masson Jane.
- HIV Mental Health Research Unit and Neurosciences Institute, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Henry Michelle.
- Centre for Higher Education Development, University of Cape Town, Cape Town, South Africa
| | - Dreyer Anna.
- HIV Mental Health Research Unit and Neurosciences Institute, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Robbins Reuben.
- HIV Center for Clinical and Behavioral Science, New York State Psychiatric Institute and Columbia University, New York, USA
| | - Kew Greg.
- School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Joska John Andre.
- HIV Mental Health Research Unit and Neurosciences Institute, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - London Leslie
- School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Marcotte Thomas.
- HIV Neurobehavioral Research Program, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Thomas Kevin GF.
- ACSENT Laboratory, Department of Psychology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
41
|
Imre N, Balogh R, Gosztolya G, Tóth L, Hoffmann I, Várkonyi T, Lengyel C, Pákáski M, Kálmán J. Temporal Speech Parameters Indicate Early Cognitive Decline in Elderly Patients With Type 2 Diabetes Mellitus. Alzheimer Dis Assoc Disord 2022; 36:148-155. [PMID: 35293378 PMCID: PMC9132238 DOI: 10.1097/wad.0000000000000492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/28/2021] [Indexed: 12/02/2022]
Abstract
INTRODUCTION The earliest signs of cognitive decline include deficits in temporal (time-based) speech characteristics. Type 2 diabetes mellitus (T2DM) patients are more prone to mild cognitive impairment (MCI). The aim of this study was to compare the temporal speech characteristics of elderly (above 50 y) T2DM patients with age-matched nondiabetic subjects. MATERIALS AND METHODS A total of 160 individuals were screened, 100 of whom were eligible (T2DM: n=51; nondiabetic: n=49). Participants were classified either as having healthy cognition (HC) or showing signs of MCI. Speech recordings were collected through a phone call. Based on automatic speech recognition, 15 temporal parameters were calculated. RESULTS The HC with T2DM group showed significantly shorter utterance length, higher duration rate of silent pause and total pause, and higher average duration of silent pause and total pause compared with the HC without T2DM group. Regarding the MCI participants, parameters were similar between the T2DM and the nondiabetic subgroups. CONCLUSIONS Temporal speech characteristics of T2DM patients showed early signs of altered cognitive functioning, whereas neuropsychological tests did not detect deterioration. This method is useful for identifying the T2DM patients most at risk for manifest MCI, and could serve as a remote cognitive screening tool.
Collapse
Affiliation(s)
| | | | - Gábor Gosztolya
- MTA-SZTE Research Group on Artificial Intelligence, University of Szeged, Szeged
| | - László Tóth
- MTA-SZTE Research Group on Artificial Intelligence, University of Szeged, Szeged
| | - Ildikó Hoffmann
- Hungarian Linguistics
- Hungarian Research Centre for Linguistics, Eötvös Loránd Research Network, Budapest, Hungary
| | | | | | | | | |
Collapse
|
42
|
Wang G, Zhao Z, Ren B, Yu W, Zhang X, Liu J, Wang L, Si D, Yang M. Exenatide exerts a neuroprotective effect against diabetic cognitive impairment in rats by inhibiting apoptosis: Role of the JNK/c‑JUN signaling pathway. Mol Med Rep 2022; 25:111. [PMID: 35119079 PMCID: PMC8845025 DOI: 10.3892/mmr.2022.12627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022] Open
Abstract
Exenatide could reduce blood glucose and alleviate cognitive dysfunction induced by diabetes mellitus (DM). In the present study, a diabetic model was established in Sprague‑Dawley rats to further explore the mechanism of exenatide on diabetes‑induced cognitive impairment. Notably, the model rats performed poorly in the Morris water maze test and had more apoptotic neurons compared with the control rats. By contrast, exenatide attenuated cognitive impairment and inhibited neuronal apoptosis in the DM rat model. To explore the neuroprotective mechanisms of exenatide, western blotting was performed to detect the expression levels of markers of endoplasmic reticulum stress, including cytochrome c (Cyt‑c), Caspase‑3, JNK and c‑JUN, in hippocampal tissue. Reverse transcription‑quantitative PCR was also performed to measure the mRNA expression levels of Cyt‑c and Caspase‑3. After 16 weeks of treatment, exenatide treatment downregulated Cyt‑c, Caspase‑3, phosphorylated (p)‑JNK and p‑c‑JUN expression in the hippocampal tissue of diabetic rats. Moreover, Cyt‑c, Caspase‑3, JNK and JUN expression levels were detected following treatment with a specific inhibitor of JNK (SP600125). The results revealed that SP600125 had similar inhibitory effects on the JNK pathway and ERS‑related protein expression (Cyt‑t, Caspase‑3, p‑JNK and p‑c‑JUN). These results suggested that exenatide improved cognitive dysfunction in DM rats and that the underlying mechanism may be associated with inhibiting apoptosis by suppressing the activation of JNK/c‑JUN.
Collapse
Affiliation(s)
- Gengyin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Zongquan Zhao
- General Practice, Pingjiang Xincheng Community Health Service Center, Suzhou, Jiangsu 215101, P.R. China
| | - Bo Ren
- Medical Experimental Center, Jitang College of North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Wu Yu
- School Hospital, Hengshui University, Hengshui, Hebei 053010, P.R. China
| | - Xudong Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Jiang Liu
- Department of Human Anatomy, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Liping Wang
- Department of Human Anatomy, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Daowen Si
- Department of Human Anatomy, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Meiliu Yang
- Department of Life Sciences, Hengshui University, Hengshui, Hebei 053010, P.R. China
| |
Collapse
|
43
|
Faaitiiti KL, Jupiter DC. Diabetes-Specific Dementia: A Structured Literature Review of Cognitive Assessment Methods. J Foot Ankle Surg 2022; 61:401-409. [PMID: 34893425 PMCID: PMC8936078 DOI: 10.1053/j.jfas.2021.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/08/2021] [Indexed: 02/03/2023]
Abstract
Diabetes mellitus is a known risk factor for the development of multiple subtypes of dementia and mild cognitive impairment. Recent research identifies a cause-specific diabetes-related dementia with a unique set of characteristics. Currently, there is no standard cognitive assessment battery recommended to specifically assess dementia that is a direct consequence of chronic diabetes, and some evaluations have been used for decades with minimal revisions, regardless of appropriateness. We performed a systematic review of the dementia/cognition evaluation methods most commonly used in the literature for assessing diabetic patients and identified which cognitive domains are typically assessed in this setting, and whether cognitive changes were more reflective of a vascular pathology, Alzheimer's pathology, or something else entirely. Search results yielded 1089 articles. After screening for appropriateness, a total of 11 full-text articles were assessed. In general, subjects in the reviewed studies were assessed using a variety of testing methods, examining different combinations of cognitive domains. A standard, clear definition of which cognitive domains are the most important to assess in diabetic patients is needed in order to determine what combination of assessment tools are most pertinent. Given the growing subset of the US population, careful reconsideration of cognitive assessment methods is needed to create self-care plans that take into account a specific collection of cognitive challenges for those with diabetes.
Collapse
Affiliation(s)
- Kelli L Faaitiiti
- Medical Student, School of Medicine, The University of Texas Medical Branch, Galveston, TX
| | - Daniel C Jupiter
- Associate Professor, Department of Preventive Medicine and Population Health, The University of Texas Medical Branch, Galveston, TX; Associate Professor, Department of Orthopaedic Surgery and Rehabilitation, The University of Texas Medical Branch, Galveston, TX.
| |
Collapse
|
44
|
Chen M, Wang J, Zhou S, Zhang C, Deng D, Liu F, Luo W, Zhu J, Yu Y. Brain Structure as a Correlate of Odor Identification and Cognition in Type 2 Diabetes. Front Hum Neurosci 2022; 16:773309. [PMID: 35237139 PMCID: PMC8882582 DOI: 10.3389/fnhum.2022.773309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background: It has been reported that type 2 diabetes (T2DM) is associated with olfactory identification (OI) impairments and cognitive decline. However, the relationship between OI impairments and cognitive decline is largely unknown in T2DM patients.Methods: Sixty-eight T2DM patients and 68 healthy controls underwent 3D-T1 MRI scans, olfactory and cognitive assessments. The cortical thickness of olfaction-related brain regions, olfactory and cognitive scores were compared between groups. Correlation analyses were carried out among cognition, olfaction, and cortical thickness of olfaction-related brain regions.Results: First, the cognitive and olfactory test scores of T2DM patients were lower than healthy subjects. Second, higher olfactory scores were associated with increased cortical thickness in the left parahippocampal gyrus and bilateral insula in T2DM. Third, higher olfactory scores were associated with higher cognitive performance in T2DM. Fourth, some cognitive performances were related to cortical thickness in the left parahippocampal gyrus and left insula in T2DM.Conclusion: These findings indicated that olfactory dysfunction may be useful for future applications that attempt to predict cognitive decline or develop tailored therapies in T2DM patients.
Collapse
Affiliation(s)
- Mimi Chen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jie Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shanlei Zhou
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Datong Deng
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fujun Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Luo
- Department of Radiology, Chaohu Hospital of Anhui Medical University, Chaohu, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Yongqiang Yu Jiajia Zhu
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Yongqiang Yu Jiajia Zhu
| |
Collapse
|
45
|
Li X, He Q, Zhao N, Chen X, Li T, Cheng B. High intensity interval training ameliorates cognitive impairment in T2DM mice possibly by improving PI3K/Akt/mTOR Signaling-regulated autophagy in the hippocampus. Brain Res 2021; 1773:147703. [PMID: 34743961 DOI: 10.1016/j.brainres.2021.147703] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022]
Abstract
Exercise can improve cognitive impairment in type 2 diabetes mellitus (T2DM). However, the underlying mechanisms are not clear, and the optimal exercise modes for cognitive benefits are controversial. The aim of this study was to investigate the effects of high-intensity interval training (HIIT) and moderate-intensity interval training (MICT) on cognitive function and the PI3K/Akt/mTOR pathway as well as autophagy in T2DM mice. The results showed that 8 weeks of HIIT and MICT intervention could improve the spatial learning and memory ability of T2DM mice, as determined by the Morris water maze (MWM) test. Both HIIT and MICT similarly improved autophagy, as evidenced by increased Beclin1 and LC3 II/I ratios and decreased p62. Meanwhile, HIIT and MICT inhibited excessive activation of the PI3K/Akt/mTOR pathway in the hippocampus. HIIT induced a larger reduction in mTOR activity than MICT. This study suggests that both HIIT and MICT can alleviate cognitive decline induced by T2DM, improve autophagy in the hippocampus, and downregulate the excessive activation of the PI3K/Akt/mTOR signaling pathway, with similar effects.
Collapse
Affiliation(s)
- Xuejiao Li
- School of Physical Education of Shandong University, Jinan, China
| | - Qiang He
- School of Physical Education of Shandong University, Jinan, China
| | - Na Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Xianghe Chen
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Tuojian Li
- School of Physical Education of Shandong University, Jinan, China
| | - Bin Cheng
- School of Physical Education of Shandong University, Jinan, China.
| |
Collapse
|
46
|
Pignalosa FC, Desiderio A, Mirra P, Nigro C, Perruolo G, Ulianich L, Formisano P, Beguinot F, Miele C, Napoli R, Fiory F. Diabetes and Cognitive Impairment: A Role for Glucotoxicity and Dopaminergic Dysfunction. Int J Mol Sci 2021; 22:ijms222212366. [PMID: 34830246 PMCID: PMC8619146 DOI: 10.3390/ijms222212366] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by hyperglycemia, responsible for the onset of several long-term complications. Recent evidence suggests that cognitive dysfunction represents an emerging complication of DM, but the underlying molecular mechanisms are still obscure. Dopamine (DA), a neurotransmitter essentially known for its relevance in the regulation of behavior and movement, modulates cognitive function, too. Interestingly, alterations of the dopaminergic system have been observed in DM. This review aims to offer a comprehensive overview of the most relevant experimental results assessing DA’s role in cognitive function, highlighting the presence of dopaminergic dysfunction in DM and supporting a role for glucotoxicity in DM-associated dopaminergic dysfunction and cognitive impairment. Several studies confirm a role for DA in cognition both in animal models and in humans. Similarly, significant alterations of the dopaminergic system have been observed in animal models of experimental diabetes and in diabetic patients, too. Evidence is accumulating that advanced glycation end products (AGEs) and their precursor methylglyoxal (MGO) are associated with cognitive impairment and alterations of the dopaminergic system. Further research is needed to clarify the molecular mechanisms linking DM-associated dopaminergic dysfunction and cognitive impairment and to assess the deleterious impact of glucotoxicity.
Collapse
Affiliation(s)
- Francesca Chiara Pignalosa
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Antonella Desiderio
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Paola Mirra
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Cecilia Nigro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Giuseppe Perruolo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Luca Ulianich
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Claudia Miele
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-081-746-3248
| | - Raffaele Napoli
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
| | - Francesca Fiory
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| |
Collapse
|
47
|
Gómez-Martínez C, Babio N, Júlvez J, Becerra-Tomás N, Martínez-González MÁ, Corella D, Castañer O, Romaguera D, Vioque J, Alonso-Gómez ÁM, Wärnberg J, Martínez JA, Serra-Majem L, Estruch R, Tinahones FJ, Lapetra J, Pintó X, Tur JA, López-Miranda J, Bueno-Cavanillas A, Gaforio JJ, Matía-Martín P, Daimiel L, Martín-Sánchez V, Vidal J, Vázquez C, Ros E, Dalsgaard S, Sayón-Orea C, Sorlí JV, de la Torre R, Abete I, Tojal-Sierra L, Barón-López FJ, Fernández-Brufal N, Konieczna J, García-Ríos A, Sacanella E, Bernal-López MR, Santos-Lozano JM, Razquin C, Alvarez-Sala A, Goday A, Zulet MA, Vaquero-Luna J, Diez-Espino J, Cuenca-Royo A, Fernández-Aranda F, Bulló M, Salas-Salvadó J. Glycemic Dysregulations Are Associated With Worsening Cognitive Function in Older Participants at High Risk of Cardiovascular Disease: Two-Year Follow-up in the PREDIMED-Plus Study. Front Endocrinol (Lausanne) 2021; 12:754347. [PMID: 34777250 PMCID: PMC8586462 DOI: 10.3389/fendo.2021.754347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction Type 2 diabetes has been linked to greater cognitive decline, but other glycemic parameters such as prediabetes, diabetes control and treatment, and HOMA-IR and HbA1c diabetes-related biomarkers have shown inconsistent results. Furthermore, there is limited research assessing these relationships in short-term studies. Thus, we aimed to examine 2-year associations between baseline diabetes/glycemic status and changes in cognitive function in older participants at high risk of cardiovascular disease. Methods We conducted a 2-year prospective cohort study (n=6,874) within the framework of the PREDIMED-Plus study. The participants (with overweight/obesity and metabolic syndrome; mean age 64.9 years; 48.5% women) completed a battery of 8 cognitive tests, and a global cognitive function Z-score (GCF) was estimated. At baseline, participants were categorized by diabetes status (no-diabetes, prediabetes, and <5 or ≥5-year diabetes duration), and also by diabetes control. Furthermore, insulin resistance (HOMA-IR) and glycated hemoglobin (HbA1c) levels were measured, and antidiabetic medications were recorded. Linear and logistic regression models, adjusted by potential confounders, were fitted to assess associations between glycemic status and changes in cognitive function. Results Prediabetes status was unrelated to cognitive decline. However, compared to participants without diabetes, those with ≥5-year diabetes duration had greater reductions in GCF (β=-0.11 (95%CI -0.16;-0.06)], as well as in processing speed and executive function measurements. Inverse associations were observed between baseline HOMA-IR and changes in GCF [β=-0.0094 (95%CI -0.0164;-0.0023)], but also between HbA1c levels and changes in GCF [β=-0.0085 (95%CI -0.0115, -0.0055)], the Mini-Mental State Examination, and other executive function tests. Poor diabetes control was inversely associated with phonologic fluency. The use of insulin treatment was inversely related to cognitive function as measured by the GCF [β=-0.31 (95%CI -0.44, -0.18)], and other cognitive tests. Conclusions Insulin resistance, diabetes status, longer diabetes duration, poor glycemic control, and insulin treatment were associated with worsening cognitive function changes in the short term in a population at high cardiovascular risk. Clinical Trial Registration http://www.isrctn.com/ISRCTN89898870, identifier ISRCTN: 89898870.
Collapse
Affiliation(s)
- Carlos Gómez-Martínez
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari San Joan de Reus, Reus, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Nancy Babio
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari San Joan de Reus, Reus, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, Reus, Spain
| | - Jordi Júlvez
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari San Joan de Reus, Reus, Spain
| | - Nerea Becerra-Tomás
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari San Joan de Reus, Reus, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Miguel Á. Martínez-González
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Preventive Medicine and Public Health, Instituto de Investigación Sanitaria de Navarra (IdISNA), University of Navarra, Pamplona, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Dolores Corella
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Olga Castañer
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Dora Romaguera
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases, Palma, Spain
| | - Jesús Vioque
- CIBER de Epidemiología y Salud Pública (CIBERESP), ISCIII, Madrid, Spain
- Nutritional Epidemiology Unit, Miguel Hernandez University, Alicante, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante-Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
| | - Ángel M. Alonso-Gómez
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, University of the Basque Country Universidad del País Vasco / Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Julia Wärnberg
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- EpiPHAAN Research Group, School of Health Sciences, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Malaga, Spain
| | - José A. Martínez
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Nutrition, Food Science and Physiology, Instituto de Investigación Sanitaria de Navarra (IdISNA), University of Navarra, Pamplona, Spain
- Cardiometabolic Nutrition Group, Precision Nutrition and Cardiometabolic Health Program, IMDEA Food, Campus de Excelencia Internacional Universidad Autónoma de Madrid + Consejo Superior de Investigaciones Científicas (CEI UAM + CSIC), Madrid, Spain
| | - Luís Serra-Majem
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), Preventive Medicine Service, Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Canarian Health Service, University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Ramón Estruch
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Internal Medicine, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Francisco J. Tinahones
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Endocrinology, Instituto de Investigación Biomédica de Málaga (IBIMA), Virgen de la Victoria Hospital, University of Malaga, Malaga, Spain
| | - José Lapetra
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Research Unit, Department of Family Medicine, Distrito Sanitario Atención Primaria Sevilla, Sevilla, Spain
| | - Xavier Pintó
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Lipids and Vascular Risk Unit, Internal Medicine, Hospital Universitario de Bellvitge-IBIDELL, Hospitalet de Llobregat, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Josep A. Tur
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands-Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS) & Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - José López-Miranda
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Aurora Bueno-Cavanillas
- CIBER de Epidemiología y Salud Pública (CIBERESP), ISCIII, Madrid, Spain
- Department of Preventive Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - José J. Gaforio
- CIBER de Epidemiología y Salud Pública (CIBERESP), ISCIII, Madrid, Spain
- Departamento de Ciencias de la Salud, Instituto Universitario de Investigación en Olivar y Aceites de Oliva, Universidad de Jaén, Jaén, Spain
| | - Pilar Matía-Martín
- Department of Endocrinology and Nutrition, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Lidia Daimiel
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
| | - Vicente Martín-Sánchez
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - Josep Vidal
- CIBER Diabetes y Enfermedades Metabólicas (CIBERDEM), ISCIII, Madrid, Spain
- Departament of Endocrinology, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Clotilde Vázquez
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Endocrinology, Fundación Jiménez-Díaz, Madrid, Spain
| | - Emilio Ros
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Lipid Clinic, Department of Endocrinology and Nutrition, IDIBAPS, Hospital Clínic, Barcelona, Spain
| | - Søren Dalsgaard
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Carmen Sayón-Orea
- Department of Preventive Medicine and Public Health, Instituto de Investigación Sanitaria de Navarra (IdISNA), University of Navarra, Pamplona, Spain
| | - José V. Sorlí
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Rafael de la Torre
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Integrated Pharmacology and Systems Neurosciences Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Departamento de Ciencias Experimentales y de la Salud (CEXS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Itziar Abete
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Nutrition, Food Science and Physiology, Instituto de Investigación Sanitaria de Navarra (IdISNA), University of Navarra, Pamplona, Spain
| | - Lucas Tojal-Sierra
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, University of the Basque Country Universidad del País Vasco / Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Francisco J. Barón-López
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- EpiPHAAN Research Group, School of Health Sciences, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Malaga, Spain
| | | | - Jadwiga Konieczna
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases, Palma, Spain
| | - Antonio García-Ríos
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Emilio Sacanella
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Internal Medicine, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - M. Rosa Bernal-López
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Internal Medicine, Regional University Hospital of Malaga, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Malaga, Spain
| | - José M. Santos-Lozano
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Research Unit, Department of Family Medicine, Distrito Sanitario Atención Primaria Sevilla, Sevilla, Spain
| | - Cristina Razquin
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Preventive Medicine and Public Health, Instituto de Investigación Sanitaria de Navarra (IdISNA), University of Navarra, Pamplona, Spain
| | - Andrea Alvarez-Sala
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Albert Goday
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - M. Angeles Zulet
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Nutrition, Food Science and Physiology, Instituto de Investigación Sanitaria de Navarra (IdISNA), University of Navarra, Pamplona, Spain
| | - Jessica Vaquero-Luna
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, University of the Basque Country Universidad del País Vasco / Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Javier Diez-Espino
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Preventive Medicine and Public Health, Instituto de Investigación Sanitaria de Navarra (IdISNA), University of Navarra, Pamplona, Spain
- Gerencia de Atención Primaria Servicio Navarro de Salud-Osasunbidea, Navarra, Spain
| | - Aida Cuenca-Royo
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Fernando Fernández-Aranda
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Psychiatry, University Hospital of Bellvitge-Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Mònica Bulló
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari San Joan de Reus, Reus, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jordi Salas-Salvadó
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari San Joan de Reus, Reus, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, Reus, Spain
| |
Collapse
|
48
|
Yassine HN, Solomon V, Thakral A, Sheikh-Bahaei N, Chui HC, Braskie MN, Schneider LS, Talbot K. Brain energy failure in dementia syndromes: Opportunities and challenges for glucagon-like peptide-1 receptor agonists. Alzheimers Dement 2021; 18:478-497. [PMID: 34647685 PMCID: PMC8940606 DOI: 10.1002/alz.12474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/11/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022]
Abstract
Medications for type 2 diabetes (T2DM) offer a promising path for discovery and development of effective interventions for dementia syndromes. A common feature of dementia syndromes is an energy failure due to reduced energy supply to neurons and is associated with synaptic loss and results in cognitive decline and behavioral changes. Among diabetes medications, glucagon‐like peptide‐1 (GLP‐1) receptor agonists (RAs) promote protective effects on vascular, microglial, and neuronal functions. In this review, we present evidence from animal models, imaging studies, and clinical trials that support developing GLP‐1 RAs for dementia syndromes. The review examines how changes in brain energy metabolism differ in conditions of insulin resistance and T2DM from dementia and underscores the challenges that arise from the heterogeneity of dementia syndromes. The development of GLP‐1 RAs as dementia therapies requires a deeper understanding of the regional changes in brain energy homeostasis guided by novel imaging biomarkers.
Collapse
Affiliation(s)
- Hussein N Yassine
- Department of Medicine, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA.,Department of Neurology, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA
| | - Victoria Solomon
- Department of Medicine, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA
| | - Angad Thakral
- Department of Medicine, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA
| | - Nasim Sheikh-Bahaei
- Department of Radiology, Keck School of Medicine USC, Los Angeles, California, USA
| | - Helena C Chui
- Department of Neurology, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA
| | - Meredith N Braskie
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, USC, Los Angeles, California, USA
| | - Lon S Schneider
- Department of Neurology, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA.,Department of Psychiatry and Behavioral Sciences, Keck School of Medicine USC, Los Angeles, California, USA
| | - Konrad Talbot
- Departments of Neurosurgery, Pathology and Human Anatomy, and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
49
|
Zhang X, Wang P, Shi L, Li N. Study on caspase-1 and partial cognitive impairment in the comorbidity of type 2 diabetes and MDD. J Affect Disord 2021; 290:387-392. [PMID: 34087627 DOI: 10.1016/j.jad.2021.04.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/05/2021] [Accepted: 04/25/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is a major mood disorder characterized by chronic low mood with cognitive impairment. Diabetes mellitus is a group of chronic metabolic diseases, Type 2 diabetes (T2DM) will obviously increase the risk of dementia. People with the the comorbidity of T2DM and MDD have a higher risk of dementia. In this study, we aim to investigate partial cognitive impairment in the comorbidity of T2DM and MDD, and to determine the relationship between changes in caspase-1 expression and cognitive impairment. To further explore the role of caspase-1 in the partial cognitive impairment in the comorbidity of T2DM and MDD. METHODS A total of 162 people were enrolled, there were 49 patients in the comorbidity of T2DM and MDD group, 54 patients in the MDD group, and 45 patients in the T2DM group. Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) was used to assess the cognitive function of these three groups. Serum level of caspase-1 was determined by ELISA, and the level of caspase-1, as well as partial cognitive function, was compared in the three groups. RESULTS The cognitive impairment of patients of the comorbidity of T2DM and MDD group was worse than the MDD group and the T2DM group, and the immediate memory, attention, and delayed memory in the comorbidity of T2DM and MDD group were lower than those in the other two groups, and the caspase-1 of the comorbidity of T2DM and MDD is higher than the caspase-1 of the MDD group, all the difference was statistically significant (P < 0.05). Caspase-1 protein was negatively correlated with immediate memory, attention, and delayed memory (r=-0.332, r=-0.182, r=-0.313, P<0.05). CONCLUSION The cognitive impairment of patients of the comorbidity of T2DM and MDD group was worse than the MDD group and the T2DM group, and the immediate memory, attention, and delayed memory in the comorbidity of T2DM and MDD group were lower than those in the other two groups. The differences of the caspase-1 in the comorbidity of T2DM and MDD group, the MDD group and the T2DM group were significant, the level of the caspase-1 is higher than the other two groups, the cognitive impairment of three groups is associated with caspase-1, suggesting caspase-1 protein may be involved in the cognitive impairment aggravation mechanism of the comorbidity of T2DM and MDD group.
Collapse
Affiliation(s)
- Xiuyue Zhang
- Psychiatric Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ping Wang
- Psychiatric Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Li Shi
- Department of Endocrinology, First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Na Li
- Psychiatric Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
50
|
Zhang D, Wang M, Gao J, Huang Y, Qi F, Lei Y, Ai K, Yan X, Cheng M, Su Y, Lei X, Zhang X. Altered Functional Connectivity of Insular Subregions in Type 2 Diabetes Mellitus. Front Neurosci 2021; 15:676624. [PMID: 34220433 PMCID: PMC8242202 DOI: 10.3389/fnins.2021.676624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
Diabetes-related brain damage can lead to cognitive decline and increase the risk of depression, but the neuropathological mechanism of this phenomenon remains unclear. Different insular subregions have obvious functional heterogeneity, which is related to many aspects of type 2 diabetes mellitus (T2DM)-related brain damage. However, little is known about changes in functional connectivity (FC) in insular subregions in patients with T2DM. Therefore, we aimed to investigate FC between different insular subregions and clinical/cognitive variables in patients with T2DM. Fifty-seven patients with T2DM and 55 healthy controls (HCs) underwent a neuropsychological assessment and resting-state FC examination. We defined three insular subregions, including the bilateral dorsal anterior insula (dAI), bilateral ventral anterior insula (vAI), and bilateral posterior insula (PI). We examined differences in FC between insular subregions and the whole brain in patients with T2DM compared with HCs. A correlation analysis was performed to examine the relationship between FC and clinical/cognitive variables. Compared with HCs, patients with T2DM showed significantly decreased FC between the dAI and the right inferior frontal gyrus, right superior/middle temporal gyrus, right hippocampus, and right precentral gyrus. FC between the vAI and the right supramarginal gyrus, as well as the PI and the right precentral/postcentral gyrus, was reduced in the T2DM group compared with the control group. In the T2DM group, we showed a significant negative correlation between glycated hemoglobin concentration and FC in the dAI and right hippocampus (r = −0.428, P = 0.001) after Bonferroni correction. We conclude that different insular subregions present distinct FC patterns with functional regions and that abnormal FC in these insular subregions may affect cognitive, emotional, and sensorimotor functions in patients with T2DM.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Man Wang
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Jie Gao
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yang Huang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Fei Qi
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Yumeng Lei
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Kai Ai
- Department of Clinical Science, Philips Healthcare, Xi'an, China
| | - Xuejiao Yan
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Miao Cheng
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yu Su
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Xiaoyan Lei
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoling Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|