1
|
Lu L, Ma Y, Tao Q, Xie J, Liu X, Wu Y, Zhang Y, Xie X, Liu M, Jin Y. Hypoxia-inducible factor-1 alpha (HIF-1α) inhibitor AMSP-30 m attenuates CCl 4-induced liver fibrosis in mice by inhibiting the sonic hedgehog pathway. Chem Biol Interact 2025; 413:111480. [PMID: 40113123 DOI: 10.1016/j.cbi.2025.111480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Liver fibrosis is a passive and irreversible wound healing process caused by chronic liver injury. Research has shown that the upregulation of hypoxia inducible factor-1 alpha (HIF-1α) is closely related to the occurrence and development of liver fibrosis and HIF-1 α may be a promising target for the treatment of liver fibrosis. AMSP-30 m is a newly developed novel HIF-1α inhibitor by our group, which has strong anti-tumor and anti-inflammatory effects. In this study, we described the therapeutic effect and specific mechanism of AMSP-30 m on carbon tetrachloride (CCl4) induced liver fibrosis in mice. Liver fibrosis induced by CCl4 in mice and liver fibrosis induced by cobalt dichloride (CoCl2) in LX-2 cells (human hepatic stellate cell (HSC) line) were studied. Hematoxylin & eosin (H&E)and Masson's trichrome staining were used to observe pathological conditions. Western Blot, immunofluorescence and immunohistochemistry were used to detect protein expression and localization in cells, and quantitative real-time PCR analysis (qRT-PCR) was used to detect mRNA expression. Biochemical detection kits were used to detect alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. The results demonstrated that AMSP-30 m significantly alleviated pathological symptoms, reduced ALT and AST levels, and inhibited the expression of alpha-smooth muscle actin (α-SMA) and collagen type I (COL1α1) in CCl4-induced liver fibrosis in mice. AMSP-30 m could significantly reduce the expression of HIF-1α and sonic hedgehog (Shh) pathway related proteins (Smoothened (Smo), Shh, and glioma-associated oncogene-1 (Gli-1)) in CCl4 induced liver fibrosis mice. AMSP-30 m also played a similar role in the CoCl2-induced anoxic liver fibrosis model of LX-2 cells. Further experiments showed that Cyclopamine (a Shh inhibitor) could significantly inhibit the increase of α-SMA and COL1α1 resulting from HIF-1α but not significantly inhibit HIF-1α induced by CoCl2 in LX-2 cells. And the combination of Cyclopamine and AMSP-30 m further reduced the expression of α-SMA and COL1α1 induced by HIF-1α. In summary, this study demonstrates that the HIF-1α inhibitor AMSP-30 m exerts a robust anti-fibrotic effect by inhibiting the Shh pathway, which is identified as a critical underlying mechanism. These findings suggest a promising therapeutic strategy for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Lili Lu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yuchen Ma
- Pharmacy Department, Fuyang Cancer Hospital, Fuyang, Anhui, China
| | - Qing Tao
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Jing Xie
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xiao Liu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yongkang Wu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yang Zhang
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xiuli Xie
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Mingming Liu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| | - Yong Jin
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
2
|
Chen HF, Chang YY, Chen P, Shen XH, Chang CH, Hsu WL. Risks of liver cirrhosis, hepatocellular carcinoma, hepatic-related complications, and mortality in patients with type 2 diabetes in Taiwan. World J Diabetes 2025; 16:104576. [DOI: 10.4239/wjd.v16.i5.104576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/25/2025] [Accepted: 03/21/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Hepatitis B and C and alcoholic liver disease are the principal causes of hepatic-related morbidity and mortality. However, evidence of the associations between diabetes without the above risk factors and hepatic-related study endpoints is not well understood. In addition, the effects of associated metabolic dysfunction and exercise on hepatic outcomes are still not clear.
AIM To investigate the incidence and relative hazards of cirrhosis of the liver, hepatocellular carcinoma (HCC), hepatic-related complications and mortality in patients with type 2 diabetes (T2D) who were nonalcoholic and serologically negative for hepatitis B and C in Taiwan.
METHODS A total of 33184 T2D patients and 648746 nondiabetic subjects selected from Taiwan’s adult preventive health care service were linked to various National Health Insurance databases, cancer registry, and death registry to identify cirrhosis of the liver, HCC, hepatic-related complications, and mortality. The Poisson assumption and Cox proportional hazard regression model were used to estimate the incidences and relative hazards of all hepatic-related study endpoints, respectively. We also compared the risk of hepatic outcomes stratified by age, sex, associated metabolic dysfunctions, and regular exercise between T2D patients and nondiabetic subjects.
RESULTS Compared with nondiabetic subjects, T2D patients had a significantly greater incidence (6.32 vs 17.20 per 10000 person-years) and greater risk of cirrhosis of the liver [adjusted hazard ratio (aHR) 1.45; 95%CI: 1.30-1.62]. The aHRs for HCC, hepatic complications, and mortality were 1.81, 1.87, and 2.08, respectively. An older age, male sex, obesity, hypertension, and dyslipidemia further increased the risks of all hepatic-related study endpoints, and regular exercise decreased the risk, irrespective of diabetes status.
CONCLUSION Patients with T2D are at increased risk of cirrhosis of the liver, HCC, hepatic-related complications, and mortality, and associated metabolic dysfunctions provide additional hazard. Coordinated interprofessional care for high-risk T2D patients and diabetes education, with an emphasis on the importance of physical activity, are crucial for minimizing hepatic outcomes.
Collapse
Affiliation(s)
- Hua-Fen Chen
- Department of Endocrinology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Yung-Yueh Chang
- Department of Endocrinology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei City 100, Taiwan
| | - Peter Chen
- Department of Gastroenterology, Choninn Hospital, Choninn Medical Group, New Taipei City 220, Taiwan
| | - Xiao-Han Shen
- Department of Endocrinology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- Master Program of Big Data in Medical Healthcare Industry, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Data Science Center, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Chin-Huan Chang
- Department of Endocrinology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Wan-Lun Hsu
- Master Program of Big Data in Medical Healthcare Industry, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Data Science Center, Fu Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|
3
|
Hu S, Ai Y, Hu C, Cassim Bawa FN, Xu Y. Transcription factors, metabolic dysfunction-associated fatty liver disease, and therapeutic implications. Genes Dis 2025; 12:101372. [PMID: 39911797 PMCID: PMC11795806 DOI: 10.1016/j.gendis.2024.101372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/27/2024] [Accepted: 06/21/2024] [Indexed: 02/07/2025] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) encompasses a spectrum of liver diseases ranging from metabolic dysfunction-associated fatty liver to metabolic dysfunction-associated steatohepatitis, which may progress to liver cirrhosis and hepatocellular carcinoma. Several mechanisms, including obesity, insulin resistance, dyslipidemia, inflammation, apoptosis, mitochondrial dysfunction, and reactive oxygen species, have been proposed to underlie the progression of MAFLD. Transcription factors are proteins that specifically bind to DNA sequences to regulate the transcription of target genes. Numerous transcription factors regulate MAFLD by modulating the transcription of genes involved in steatosis, inflammation, apoptosis, and fibrosis. Here, we review the pathological factors associated with MAFLD, with a particular emphasis on the transcription factors that contribute to the progression of MAFLD and their therapeutic implications.
Collapse
Affiliation(s)
- Shuwei Hu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yingjie Ai
- Department of Pathology of School of Basic Medical Sciences, Department of Gastroenterology and Hepatology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chencheng Hu
- Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Fathima N. Cassim Bawa
- Institute of Diabetes, Obesity and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yanyong Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Frontier Innovation Center, Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Zhang X, Ge Y, Ye M, Wang X, Tong Y, Liu C, Xu S, Zhao Z, You Q, Guo X, Jiang Z. A Keap1-recruiting BRD4 degrader offers a single-molecular polypharmacology approach for the treatment of metabolic dysfunction-associated steatohepatitis. Free Radic Biol Med 2025; 232:15-27. [PMID: 40023298 DOI: 10.1016/j.freeradbiomed.2025.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
The pathogenesis of metabolic dysfunction-associated steatohepatitis (MASH) involves multiple pathophysiological processes, including abnormal lipid metabolism, insulin resistance, oxidative stress, endoplasmic reticulum stress, inflammatory response, and fibrosis. These factors interact to form a complex network and the development of synergistic and pleiotropic drug modalities targeting multiple pathogenesis of MASH may have a better therapeutic effect. Herein, the bifunctional proteolytic targeting chimeras (PROTAC) technology was utilized for developing pleiotropic drugs for MASH treatment. We constructed a Keap1-recruiting degrader KB-3 which stabilizes the natural Keap1 target Nrf2 and degrades BRD4 synergistically, exhibiting combined therapeutic advantages against MASH-related pathologies. Experimental results confirmed that KB-3 could effectively alleviate MASH in mice by improving lipid metabolic disorder, enhancing the defense against oxidative stress, reducing inflammation, and delaying the progression of liver fibrosis. Such Keap1-recruiting degrader offering a single-molecular approach with polypharmacology effects may be an attractive strategy for the treatment of multifactorial disease.
Collapse
Affiliation(s)
- Xian Zhang
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuxin Ge
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mengjie Ye
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaolu Wang
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuanyuan Tong
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Chihong Liu
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Shicheng Xu
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ziquan Zhao
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaoke Guo
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
5
|
Wang Z, Ojogun N, Liu Y, Gan L, Xiao Z, Feng J, Jiang W, Chen Y, Zou B, Yu C, Li C, Ashuo A, Li X, Fu M, Wu J, Chu Y, Munford RS, Lu M. A host enzyme reduces metabolic dysfunction-associated steatotic liver disease (MASLD) by inactivating intestinal lipopolysaccharide. eLife 2025; 13:RP100731. [PMID: 40271687 DOI: 10.7554/elife.100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) has been increasing worldwide. Since gut-derived bacterial lipopolysaccharides (LPS) can travel via the portal vein to the liver and play an important role in producing hepatic pathology, it seemed possible that (1) LPS stimulates hepatic cells to accumulate lipid, and (2) inactivating LPS can be preventive. Acyloxyacyl hydrolase (AOAH), the eukaryotic lipase that inactivates LPS and oxidized phospholipids, is produced in the intestine, liver, and other organs. We fed mice either normal chow or a high-fat diet for 28 weeks and found that Aoah-/- mice accumulated more hepatic lipid than did Aoah+/+ mice. In young mice, before increased hepatic fat accumulation was observed, Aoah-/- mouse livers increased their abundance of sterol regulatory element-binding protein 1, and the expression of its target genes that promote fatty acid synthesis. Aoah-/- mice also increased hepatic expression of Cd36 and Fabp3, which mediate fatty acid uptake, and decreased expression of fatty acid-oxidation-related genes Acot2 and Ppara. Our results provide evidence that increasing AOAH abundance in the gut, bloodstream, and/or liver may be an effective strategy for preventing or treating MASLD.
Collapse
Affiliation(s)
- Zhiyan Wang
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Nore Ojogun
- Infectious Disease Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Yiling Liu
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Lu Gan
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Zeling Xiao
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jintao Feng
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Wei Jiang
- Department of Rheumatology and Immunology, the Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Yeying Chen
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Benkun Zou
- BeiGene Institute, BeiGene (Shanghai) Research and Development Co., Ltd, Shanghai, China
| | - ChengYun Yu
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Changshun Li
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Asha Ashuo
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaobo Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mingsheng Fu
- Department of Gastroenterology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jian Wu
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Robert S Munford
- Infectious Disease Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
- Antibacterial Host Defense Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, United States
| | - Mingfang Lu
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection and Immunity, Shanghai, China
| |
Collapse
|
6
|
Davidson JA, Brewer HR, Rice CT, Carvalho SJ, Kim Y. Estimating the clinical and healthcare burden of metabolic dysfunction-associated steatohepatitis in England: a retrospective cohort study using routinely collected healthcare data from 2011 to 2020. BMJ Open 2025; 15:e095761. [PMID: 40268491 DOI: 10.1136/bmjopen-2024-095761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
OBJECTIVE To characterise patients with metabolic dysfunction-associated steatohepatitis (MASH) in England and to estimate its associated healthcare resource use (HCRU) and costs, both overall and by progression status and comorbidities. DESIGN This was a retrospective observational study of adults with a MASH-coded primary and/or secondary care recorded diagnosis in England (2011-2020). The analysis used data from the Clinical Practice Research Datalink linked to the Hospital Episode Statistics and death registrations. Annualised all-cause and MASH-related (ie, coded as MASH, end-stage liver disease or major adverse cardiovascular event) HCRU and costs were calculated for patients with incident MASH. Subgroup analyses were conducted for patients with type 2 diabetes, overweight/obesity, cardiovascular disease or progression to cirrhosis. Comparative cost analysis was conducted between those with progressed MASH and those who did not progress. RESULTS A total of 2696 patients were included (mean follow-up: 4 years). Incidence of MASH was estimated at 4.7 per 100 000 person-years overall and increased among patients with key comorbidities. Patients who had type 2 diabetes had greater HCRU and costs than those who did not (eg, mean 1.8 vs 1.0 all-cause inpatient admissions and £2227 vs £1151 all-cause inpatient costs per-patient per-year). Some patients with MASH progressed to compensated (8.6%) or decompensated cirrhosis (6.5%) during the study. HCRU and costs were substantially higher among patients who progressed than among those who did not (eg, mean 2.4 vs 1.1 all-cause inpatient admissions and £3620 vs £1290 all-cause inpatient costs per-patient per-year). CONCLUSION HCRU and costs associated with MASH are higher among patients who have cardiometabolic comorbidities or who progress to advanced disease stages. Therefore, efforts to detect cases early and prevent disease progression could reduce healthcare burden.
Collapse
Affiliation(s)
| | | | | | | | - Yestle Kim
- Madrigal Pharmaceuticals Inc, West Conshohocken, Pennsylvania, USA
| |
Collapse
|
7
|
Haag M, Winter S, Kemas AM, Tevini J, Feldman A, Eder SK, Felder TK, Datz C, Paulweber B, Liebisch G, Burk O, Lauschke VM, Aigner E, Schwab M. Circulating metabolite signatures indicate differential gut-liver crosstalk in lean and obese MASLD. JCI Insight 2025; 10:e180943. [PMID: 40100312 DOI: 10.1172/jci.insight.180943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/07/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUNDAlterations in circulating metabolites have been described in obese metabolic dysfunction-associated steatotic liver disease (MASLD), but data on lean MASLD are lacking. We investigated serum metabolites, including microbial bile acids and short-chain fatty acids (SCFAs), and their association with lean and obese MASLD.METHODSSerum samples from 204 people of European descent were allocated to groups: lean healthy, lean MASLD, obese healthy, and obese MASLD (n = 47). Liquid chromatography-mass spectrometry-based metabolomics and linear model analysis were performed. MASLD prediction was assessed based on least absolute shrinkage and selection operator regression. Functional effects of altered molecules were verified in organotypic 3D primary human liver cultures.RESULTSLean MASLD was characterized by elevated isobutyrate, methionine sulfoxide, propionate, and phosphatidylcholines. Patients with obese MASLD had increased sarcosine and decreased lysine and asymmetric dimethylarginine. Using metabolites, sex, and BMI, MASLD versus healthy could be predicted with a median AUC of 86.5% and 85.6% in the lean and obese subgroups, respectively. Functional experiments in organotypic 3D primary human liver cultures showed propionate and isobutyrate induced lipid accumulation and altered expression of genes involved in lipid and glucose metabolism.CONCLUSIONLean MASLD is characterized by a distinct metabolite pattern related to amino acid metabolism, lipids, and SCFAs, while metabolic pathways of lipid accumulation are differentially activated by microbial metabolites. We highlight an important role of microbial metabolites in MASLD, with implications for predictive and mechanistic assessment of liver disease across weight categories.FUNDINGRobert Bosch Stiftung, Swedish Research Council (2021-02801, 2023-03015, 2024-03401), ERC Consolidator Grant 3DMASH (101170408), Ruth and Richard Julin Foundation for Gastroenterology (2021-00158), SciLifeLab and Wallenberg National Program for Data-Driven Life Science (WASPDDLS22:006), Novo Nordisk Foundation (NNF23OC0085944, NNF23OC0084420), PMU-FFF (E-18/28/148-FEL).
Collapse
Affiliation(s)
- Mathias Haag
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Aurino M Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Alexandra Feldman
- Obesity Research Unit, and
- Department of Internal Medicine I, Paracelsus Medical University, Salzburg, Austria
| | - Sebastian K Eder
- Obesity Research Unit, and
- Department of Internal Medicine I, Paracelsus Medical University, Salzburg, Austria
| | | | - Christian Datz
- Obesity Research Unit, and
- Department of Internal Medicine, Hospital Oberndorf, Oberndorf, Austria
| | - Bernhard Paulweber
- Obesity Research Unit, and
- Department of Internal Medicine I, Paracelsus Medical University, Salzburg, Austria
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Oliver Burk
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Volker M Lauschke
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Elmar Aigner
- Obesity Research Unit, and
- Department of Internal Medicine I, Paracelsus Medical University, Salzburg, Austria
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Departments of Clinical Pharmacology and of Biochemistry and Pharmacy, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Yang CY, Guan W, Liu Y, Zhang P. Correlation between serum thyroid hormone level and metabolic steatohepatitis: A retrospective study. Dig Liver Dis 2025:S1590-8658(25)00285-3. [PMID: 40253225 DOI: 10.1016/j.dld.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/05/2025] [Accepted: 03/06/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Metabolic steatohepatitis (MASH) is a common liver disease, and its association with serum thyroid hormone levels is unclear. This study aimed to analyze the association between MASH and serum levels of thyroid hormones in patients with normal thyroid function. METHODS 638 non-alcoholic fatty liver disease patients hospitalized in our hospital from March 2021 to March 2024 were retrospectively selected and divided into MASH (n = 262) and non-MASH (n = 376) groups based on the diagnosis made by expert pathologists. The clinical data of the patients were collected, and multivariate logistic regression analysis was utilized to investigate the association between MASH and serum thyroid hormone levels. RESULTS Serum levels of thyroid-stimulating hormone (TSH) and free triiodothyronine (FT3) in the MASH group were significantly higher compared to the non-MASH group, and serum free thyroxine (FT4) levels were lower than those in non-MASH group. The FT3/FT4 ratio in MASH group was higher than that in non-MASH group (P < 0.05). Logistic regression analysis showed that serum levels of TSH, FT3 and FT4 were independent influencing factors for MASH. The area under receiver operating characteristic (ROC) curve of TSH, FT3, FT4 and FT3/FT4 for predicting the occurrence of MASH were 0.944, 0.973, 0.753 and 0.959, respectively. CONCLUSIONS Elevated serum levels of TSH, FT3, and the FT3/FT4 ratio, along with decreased serum FT4 levels, were independently associated with an increased risk of MASH.
Collapse
Affiliation(s)
- Chun-Yan Yang
- Department of Gastroenterology, The Eighth Hospital of Wuhan, Wuhan, 430012, Hubei, China
| | - Wei Guan
- Department of Endocrinology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430014, Hubei, China
| | - Yan Liu
- Department of Gastroenterology, The Eighth Hospital of Wuhan, Wuhan, 430012, Hubei, China
| | - Peng Zhang
- Department of Gastroenterology, Qianjiang Central Hospital of Hubei Province, Qianjiang, 433100, Hubei, China.
| |
Collapse
|
9
|
Park SW, Ning H, Carnethon MR, VanWagner LB. Cardiovascular Health Trajectories and Prevalent Metabolic Dysfunction-Associated Steatotic Liver Disease in Midlife: The CARDIA Study. J Am Heart Assoc 2025; 14:e037948. [PMID: 40194968 DOI: 10.1161/jaha.124.037948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 02/19/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND Metabolic-dysfunction associated steatotic liver disease (MASLD) is associated with prevalent cardiovascular disease. More favorable cardiovascular health (CVH) profiles are associated with a lower prevalence of MASLD in cross-sectional studies. The relationship between long-term CVH patterns and MASLD prevalence in midlife remains unknown. METHODS AND RESULTS Participants (aged 18-30 years at baseline) of the CARDIA (Coronary Artery Risk Development in Young Adults) study who had individual CVH components measured at 7 examinations over 20 years and liver fat assessed by noncontrast computed tomography at year 25 follow-up were included. CVH score was defined using published American Heart Association definitions. Group-based trajectory modeling was used to identify CVH trajectories. MASLD was defined as liver attenuation of ≤51 Hounsfield units with at least 1 metabolic risk factor after excluding other causes of liver fat. Logistic regression was used to examine associations of CVH trajectory groups and MASLD prevalence. At baseline, 39% of 2529 participants had high and 5% had low CVH, respectively. MASLD prevalence at year 25 was 23% (n=587). Five distinct CVH trajectories were identified. Between the 2 groups that started at similar CVH scores, those whose CVH declined over time had a higher prevalence of MASLD at year 25 (7.0% in high-stable versus 23.0% high-decreasing; 24.4% in moderate-stable versus 35.7% in moderate-decreasing). Lower and decreasing trajectories were associated with higher year-25 MASLD prevalence compared with the high-stable trajectory. CONCLUSIONS Achieving and maintaining high CVH scores starting in young adulthood lowers the risk of prevalent MASLD in midlife.
Collapse
Affiliation(s)
- Seong W Park
- Department of Preventive Medicine Northwestern University Feinberg School of Medicine Chicago IL USA
| | - Hongyan Ning
- Department of Preventive Medicine Northwestern University Feinberg School of Medicine Chicago IL USA
| | - Mercedes R Carnethon
- Department of Preventive Medicine Northwestern University Feinberg School of Medicine Chicago IL USA
| | - Lisa B VanWagner
- Department of Medicine, Division of Digestive and Liver Diseases University of Texas Southwestern Medical Center Dallas TX USA
| |
Collapse
|
10
|
Zhou Y, Lin H, Weng X, Dai H, Xu J. Correlation between hs-CRP-triglyceride glucose index and NAFLD and liver fibrosis. BMC Gastroenterol 2025; 25:252. [PMID: 40221654 PMCID: PMC11994022 DOI: 10.1186/s12876-025-03870-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND The novel serum high-sensitivity C-reactive protein-triglyceride glucose index (CTI) has been recognized as an optimal parameter encompassing both insulin resistance (IR) and inflammation, which are potential mechanisms contributing to non-alcoholic fatty liver disease (NAFLD). This study aims to examine the correlation between CTI and NAFLD/liver fibrosis in American adults. METHODS This is a cross-sectional study utilizing data from NHANES during the period from 2017 to 2020. The composite CTI was calculated through the formula: 0.412×Ln [(high-sensitivity C-reactive protein(hs-CRP)] + Ln(triglycerides × fasting plasma glucose/2). To explore the correlation between CTI and NAFLD/liver fibrosis, multivariate logistic regression analyses, subgroup analyses, restricted cubic spline (RCS) regression, and receiver operating characteristic (ROC) analysis were employed. RESULTS Among 3,488 participants, 42.7% (n = 1,488) were diagnosed as NAFLD, while 9.4% (n = 329) exhibited liver fibrosis. Logistic regression and RCS regression analyses demonstrated a significant positive linear correlation between CTI and the prevalence of NAFLD (OR = 1.94, 95% CI: 1.70, 2.22) as well as liver fibrosis (OR = 1.38, 95% CI: 1.14, 1.67), even after being adjusted for potential confounding variables. Furthermore, a significant correlation between CTI and the prevalence of NAFLD/liver fibrosis was observed across various subgroups. ROC analysis revealed that CTI can serve as a more robust identify for the prevalence of NAFLD (AUC = 0.756) and liver fibrosis (AUC = 0.702) compared to triglyceride glucose index (TyG) and hs-CRP alone. CONCLUSION Elevated levels of CTI are directly associated with significant liver fibrosis and the presence of NAFLD, indicating its potential utility as a biomarker for liver fibrosis and NAFLD.
Collapse
Affiliation(s)
- Yuhui Zhou
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hao Lin
- Department of Gastroenterology, Pingyang Hospital of Wenzhou Medical University, Pingyang county, Wenzhou city, Zhejiang Province, China
| | - Xiaochun Weng
- Department of Ultrasound, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huifang Dai
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou, Zhejiang Province, China
| | - Jing Xu
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
11
|
Li Q, Niu X, Cai Y, Li L, Xia Z. Exposure to submicroplastics promotes the progression of nonalcoholic fatty liver disease in ApoE-deficient mice. Toxicology 2025; 515:154137. [PMID: 40222581 DOI: 10.1016/j.tox.2025.154137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/19/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025]
Abstract
Microplastics (MPs) pose emerging threats to human health, with growing concerns about liver toxicity and other harmful effects from plastic particles. While aquatic species exhibit hepatic vulnerability to micro/nanoplastics, the role of submicroplastics (100 nm-1 μm) in mammalian non-alcoholic fatty liver disease (NAFLD) progression remains unclear. We investigated the effects of a 12-week exposure to 0.5 μm polystyrene MPs (submicroplastics) in drinking water, administering this to ApoE-deficient mice fed either a chow diet (CD) or a Western diet (WD). Submicroplastics accumulated predominantly in the liver and were excreted in the feces. Histologically, submicroplastics significantly increased NAFLD activity scores, hepatic steatosis (Oil Red O-positive area), and fibrosis (Masson-positive area), with maximal severity in the WD+MPs group. Also, the MPs exposure group had increases in positive areas for F4/80 and inflammatory markers TNF-α, IL-1β and IL-6 expression under both diets. Concurrently, submicroplastics inhibited antioxidant defenses by lowering levels of superoxide dismutase and glutathione, while also increasing the lipid peroxidation marker malondialdehyde. WD-fed mice exhibited pronounced MPs-induced lipid dysregulation, including elevated hepatic triglycerides, total cholesterol, and free fatty acids (FAs). Mechanistically, submicroplastics upregulated FA synthesis regulators (ACC, FASN, SREBP1) while downregulating FA oxidation mediators (CPT1A, ACOX1, PPARα) in the livers under a WD. Our findings demonstrate that chronic submicroplastics-exposure exacerbates the progression of NAFLD in ApoE-deficient mice by disturbing lipid metabolism, enhancing oxidative stress, and amplifying inflammatory responses. This study provides experimental evidence linking environmental plastic pollution to accelerated metabolic liver disease, thereby highlighting the urgent need for plastic exposure control strategies.
Collapse
Affiliation(s)
- Qingwen Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuli Cai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
12
|
Yang L, Peng T, Yan X, Lin P. Effect of midlife exercise on lipid metabolism in aging mice: comparable to lifelong exercise, better than ceasing midlife exercise. Sci Rep 2025; 15:12531. [PMID: 40216894 PMCID: PMC11992076 DOI: 10.1038/s41598-025-97140-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
This study examines the effects of continuous versus interrupted lifelong exercise on lipid metabolism in naturally aging male BALB/c mice. Five-week-old male BALB/c mice were randomly assigned to five groups: young control group (YC), natural ageing control group (AC), exercise cessation group (DE), middle-aged commencing exercise group (ME), and lifelong exercise group (LE). Moderate Intensity Continuous Training exercise sessions were conducted three times per week, with each session lasting 50 min; after exercise interventions until 72 weeks of age, the following parameters were measured: body morphology, exercise capacity, blood lipid, liver fat content, liver function, expression of liver lipid metabolism-related genes and endoplasmic reticulum stress-related genes, and activities of liver metabolism enzymes. The results suggest that advancing age leads to disrupted lipid processing, reduced hepatic performance, and increased endoplasmic reticular tension. Compared with the AC group, the ME and LE cohorts showed reduced serum lipids, whereas the LE group exhibited elevated high-density lipoprotein cholesterol (HDL-C) levels (P < 0.05). Post-exercise reductions were observed in hepatic total cholesterol and free fatty acid (FFA). Moreover, the exercises mitigated age-related hepatic impairments and diminished susceptibility towards cirrhosis despite higher aspartate aminotransferase (AST) and lower albumin (ALB) levels being evident within the DE cohort (P < 0.05). Exercise demonstrates the potential to mitigate age-related abnormalities in lipid metabolism. Middle-aged commencing and lifelong exercise interventions are more effective in alleviating lipid abnormalities than exercise cessation in middle age. This disparity in efficacy can be attributed to differences in regulating endoplasmic reticulum stress, enhancing liver lipid oxidation capacity, and reducing lipid synthesis ability. Notably, middle-aged individuals commencing exercise yield similar outcomes in regulating aging-associated abnormal lipid metabolism compared to the lifelong exercise group. This highlights the importance of initiating exercise in middle age, as it remains beneficial even if lifelong commitment is unfeasible, so exercise initiation in midlife is still beneficial. However, to prevent liver lipid metabolism disorders later in life, the earlier exercise initiation, the better.
Collapse
Affiliation(s)
- Ling Yang
- School of Physical Education, Shaoguan University, Shaoguan, 512000, Guangdong, China
- Institute for Health and Sport, Victoria University, Melbourne, VIC, 8001, Australia
| | - Tuanhui Peng
- Luohe Institute of Technology, Henan University of Technology, Luohe, 462000, Henan, China
| | - Xu Yan
- Institute for Health and Sport, Victoria University, Melbourne, VIC, 8001, Australia
| | - Pengjie Lin
- Guang Dong Polytechnic of Industry and Commerce, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
13
|
Gao Z, Cao S, Yuan H, Wu JZ, Zou G. Broad antifibrotic activities of AK3280 in pulmonary, hepatic, cardiac, and skin fibrosis animal models. Int Immunopharmacol 2025; 151:114337. [PMID: 40015207 DOI: 10.1016/j.intimp.2025.114337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/06/2025] [Accepted: 02/16/2025] [Indexed: 03/01/2025]
Abstract
Fibrosis is the pathological outcome of many chronic inflammatory diseases, affecting various human organs. It is a significant contributor to global morbidity and mortality that affects nearly half of the elderly population. Pirfenidone (PFD) and nintedanib are approved by the FDA for treating pulmonary fibrosis, but these treatments are associated with poor tolerability and limited efficacy. Moreover, no antifibrotic drugs are approved for other fibrosis-related diseases, highlighting an urgent unmet medical need for more effective therapies. Here we report the in vivo pharmacological activities of AK3280, a novel, orally bioavailable small molecule designed to enhance pharmacokinetics, antifibrotic activity, and tolerability over PFD. AK3280 demonstrated antifibrotic effects across multiple organs, including the lungs, liver, heart, and skin, in various animal models. These results suggest that AK3280 holds promise as a clinically beneficial antifibrotic therapy for a range of fibrotic diseases, especially pulmonary, hepatic, cardiac, and skin fibrosis.
Collapse
Affiliation(s)
- Zhao Gao
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai 201203, China
| | - Sushan Cao
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai 201203, China
| | - Haiqing Yuan
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai 201203, China
| | - Jim Zhen Wu
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai 201203, China
| | - Gang Zou
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai 201203, China.
| |
Collapse
|
14
|
Liu L, Deng Y, Yang L, Wang M, Lai Y. Comparison of efficacy and safety of pioglitazone and SGLT2 inhibitors in treating Asian patients in MASLD associated with type 2 diabetes: A meta-analysis. J Diabetes Complications 2025; 39:108998. [PMID: 40043473 DOI: 10.1016/j.jdiacomp.2025.108998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/09/2025] [Accepted: 03/02/2025] [Indexed: 03/26/2025]
Abstract
OBJECTIVE To comprehensively evaluate the therapeutic efficacy of pioglitazone and SGLT2 inhibitors (SGLT2i) in patients with MASLD and Type 2 Diabetes(T2DM). METHODS Electronic databases, including Web of Science, PubMed, the Cochrane Library, China National Knowledge Internet (CNKI), Wan-Fang Digital Database, and China Science and Technology Journal Database (VIP) were searched from inception to December 2024. Two reviewers independently assessed study eligibility, performed continuous data extraction, and independently evaluated bias risks. Liver ultrasonography, computed tomography (CT), and biochemical indices were utilized to determine the impact of treatment in both groups. Improvement in liver biomarkers and fibrosis as primary outcome indicators; Improvement in body composition, metabolic parameters, glucose parameters, and incidence of adverse effects as a secondary outcome indicator. For continuous variables, mean and standard deviation (SD) were extracted. RevMan 5.4 software was used to systematically analyze the literature, including heterogeneity testing, odds ratios (OR) calculation, and 95 % confidence intervals (CI) for each influencing factor. RESULTS Nine randomly controlled trials with 755 Asian participants were included. Our research showed that SGLT2i was more effective than pioglitazone in improving fibrosis-4 score (SMD 0.41 [95%CI 0.18,0.64] p = 0.005), visceral fat area (SMD 0.34 [95%CI 0.14,0.54] p = 0.0007), BMI (SMD 0.29 [95%CI 0.03,0.56] p = 0.03), and low-density lipoprotein levels (SMD 0.21 [95%CI 0.04,0.38] p = 0.01). In contrast, no statistically significant differences were observed in other outcomes. CONCLUSIONS Our study demonstrated that in patients with MASLD and T2DM, SGLT2i was more effective overall in improving liver fibrosis, blood lipids, liver fat, and body composition in the short term. These findings establish a theoretical basis for safe and rational drug use in clinical practice. Additionally, they may contribute to new insights into the pathogenesis of MASLD and type 2 diabetes and drug discovery and development efforts.
Collapse
Affiliation(s)
- Lingyan Liu
- College of Pharmacy Dali University, Dali 671000, Yunnan Province, China
| | - Yongkun Deng
- Department of Medical Protection Center, The 926th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kaiyuan 661600, Yunnan Province, China.
| | - Lijuan Yang
- College of Pharmacy Dali University, Dali 671000, Yunnan Province, China
| | - Miaojiao Wang
- College of Pharmacy Dali University, Dali 671000, Yunnan Province, China
| | - Yong Lai
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali 671000, Yunnan Province, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, Yunnan Province, China; College of Pharmacy Dali University, Dali 671000, Yunnan Province, China.
| |
Collapse
|
15
|
Kuo CC, Chuang MH, Li CH, Tsai YW, Huang PY, Kuo HT, Lai CC. Glucagon-Like Peptide-1 Receptor Agonists and Liver Outcomes in Patients With MASLD and Type 2 Diabetes. Aliment Pharmacol Ther 2025; 61:1163-1174. [PMID: 39791391 DOI: 10.1111/apt.18502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/20/2024] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
BACKGROUND AND AIMS Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and sodium-glucose cotransporter-2 inhibitors (SGLT2is) have demonstrated long-term liver benefits in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) and type 2 diabetes (T2D). However, no direct comparison between these therapies has been conducted. This study aimed to compare major adverse liver outcomes (MALOs) between GLP-1 RAs and SGLT2is in patients with MASLD and T2D. METHODS Using the TriNetX Research Network, a multinational and multi-institutional database, we identified adults with MASLD and T2D who received their first prescription for either a GLP-1 RA or an SGLT2i between January 2010 and June 2023. We conducted a propensity score-matched (PSM) cohort study comparing new users of GLP-1 RAs and SGLT2is. The primary outcome was the risk of MALOs, a composite endpoint consisting of decompensated cirrhosis events, hepatocellular carcinoma, and liver transplantation. Secondary outcomes included all-cause mortality and individual components of the primary outcome. RESULTS This study included 15,176 pairs of patients treated with either a GLP-1 RA or a SGLT2i. The adjusted hazard ratio (HR) for MALO associated with GLP-1 RAs relative to SGLT2is was 0.84 (95% confidence interval [CI]: 0.73-0.97; incidence rate: 88.9 versus 105.3 events per 10,000 person-years), primarily driven by reduction in decompensated cirrhosis events (adjusted HR: 0.83, 95% CI: 0.71-0.96). GLP-1 RAs were associated with lower all-cause mortality (adjusted HR: 0.84, 95% CI: 0.75-0.94). CONCLUSION GLP-1 RAs are associated with better long-term liver outcomes compared to SGLT2is in patients with MASLD and T2D.
Collapse
Affiliation(s)
- Chia-Chih Kuo
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Min-Hsiang Chuang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chun-Hsien Li
- Department of Physical Medicine and Rehabilitation, Chi Mei Hospital, Tainan, Taiwan
| | - Ya-Wen Tsai
- Center for Integrative Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Po-Yu Huang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Hsing-Tao Kuo
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chih-Cheng Lai
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
16
|
Blok NB, Myronovych A, McMahon G, Bozadjieva-Kramer N, Seeley RJ. The evolution of steatosis and fibrosis in mice on a MASH-inducing diet and the effects of housing temperature. Am J Physiol Endocrinol Metab 2025; 328:E513-E523. [PMID: 39998384 DOI: 10.1152/ajpendo.00401.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/05/2024] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Obesity induction in mice requires high-fat diet exposure. Although hepatic steatosis develops, progression to inflammation and fibrosis, as in humans, requires prolonged exposure and additional dietary factors. Immunosuppression at room temperature may slow this progression. We evaluated thermoneutrality's effect on metabolic dysfunction-associated steatohepatitis (MASH) development using a fibrosis-inducing MASH [Gubra-Amylin NASH (GAN)] diet. Mice were fed either a MASH or chow diet and housed at room temperature or thermoneutrality. MASH diet groups were euthanized monthly from 4 to 7 mo. Serum markers of hepatic function were analyzed, and liver histology assessed steatosis, inflammation, ballooning [nonalcoholic fatty liver disease activity score (NAS) score], and fibrosis via Picrosirius Red staining. MASH diet increased body weight, liver-to-body mass ratio, and hepatic fat, with no difference between housing conditions. Housing temperature had minimal effects on MASH. Serum markers and hepatic fibrosis were similar across groups. NAS score was lower at 4 mo in thermoneutral MASH mice but not by 7 mo. Thermoneutrality did not significantly impact MASH development. These findings, alongside existing literature, suggest thermoneutral housing does not consistently enhance MASH progression in GAN MASH-fed mice.NEW & NOTEWORTHY The development of MASH in mice-does housing temperature make a real difference?
Collapse
Affiliation(s)
- Neil B Blok
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Andriy Myronovych
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Garrett McMahon
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Nadejda Bozadjieva-Kramer
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, United States
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
17
|
Liu Y, Zhou R, Guo Y, Hu B, Xie L, An Y, Wen J, Liu Z, Zhou M, Kuang W, Xiao Y, Wang M, Xie G, Zhou H, Lu R, Peng H, Huang Y. Muscle-derived small extracellular vesicles induce liver fibrosis during overtraining. Cell Metab 2025; 37:824-841.e8. [PMID: 39879982 DOI: 10.1016/j.cmet.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/24/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025]
Abstract
The benefits of exercise for metabolic health occur in a dose-dependent manner. However, the adverse effects of overtraining and their underlying mechanisms remain unclear. Here, we show that overtraining induces hepatic fibrosis. Mechanistically, we find that excessive lactate accumulation in skeletal muscle leads to the lactylation of SH3 domain-containing 3 (SORBS3), triggering its liquid-liquid phase separation (LLPS). LLPS of SORBS3 enhances its interaction with flotillin 1 and selectively facilitates the sorting of F-box protein 2 (FBXO2) into small extracellular vesicles, referred to as "lactate bodies." Lactate bodies induce hepatocyte apoptosis followed by hepatic stellate cell activation via myeloid cell leukemia sequence 1 (MCL1)-BAX/BAK signaling. Inhibition of SORBS3 lactylation or FBXO2 disrupts lactate bodies formation and alleviates overtraining-triggered liver fibrosis. Likewise, reduction of muscle lactate bodies formation by salidroside attenuates overtraining-induced liver fibrosis. Collectively, we identify a process by which overtraining induces hepatic fibrosis, highlighting a potential therapeutic target for liver health.
Collapse
Affiliation(s)
- Ya Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China
| | - Rui Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China
| | - Yifan Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China
| | - Biao Hu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China
| | - Lingqi Xie
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China
| | - Yuze An
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China
| | - Jie Wen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China
| | - Zheyu Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China
| | - Weihong Kuang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China
| | - Yao Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China
| | - Min Wang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China
| | - Genqing Xie
- Department of Endocrinology, The First People's Hospital of Xiangtan City, 411100 Xiangtan, Hunan, China
| | - Haiyan Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China
| | - Renbin Lu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China.
| | - Hui Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China.
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 410008 Changsha, Hunan, China; FuRong Laboratory, 410078 Changsha, Hunan, China.
| |
Collapse
|
18
|
Qin ZX, Zuo L, Zeng Z, Ma R, Xie W, Zhu X, Zhou X. GalNac-siRNA conjugate delivery technology promotes the treatment of typical chronic liver diseases. Expert Opin Drug Deliv 2025; 22:455-469. [PMID: 39939158 DOI: 10.1080/17425247.2025.2466767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/26/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
INTRODUCTION Nucleic acid-based therapeutics have become a key pillar of the 'third wave' of modern medicine, following the eras of small molecule inhibitors and antibody drugs. Their rapid progress is heavily dependent on delivery technologies, with the development of N-acetylgalactosamine (GalNAc) conjugates marking a breakthrough in targeting liver diseases. This technology has gained significant attention for its role in addressing chronic conditions like chronic hepatitis B (CHB) and nonalcoholic steatohepatitis (NASH), which are challenging to treat with conventional methods. AREAS COVERED This review explores the origins, mechanisms, and advantages of GalNAc-siRNA delivery systems, highlighting their ability to target hepatocytes via the asialoglycoprotein receptor (ASGPR). The literature reviewed covers preclinical and clinical advancements, particularly in CHB and NASH. Key developments in stabilization chemistry and conjugation technologies are examined, emphasizing their impact on enhancing therapeutic efficacy and patient compliance. EXPERT OPINION GalNAc-siRNA technology represents a transformative advancement in RNA interference (RNAi) therapies, addressing unmet needs in liver-targeted diseases. While significant progress has been made, challenges remain, including restricted targeting scope and scalability concerns. Continued innovation is expected to expand applications, improve delivery efficiency, and overcome limitations, establishing GalNAc-siRNA as a cornerstone for future nucleic acid-based treatments.
Collapse
Affiliation(s)
- Zhen-Xin Qin
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Ling Zuo
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Ziran Zeng
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Rongguan Ma
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Wenyan Xie
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
19
|
Li Z, Guo H, He H, Wang S, Pei S, Xie L. The relationship between smoking cessation history and significant liver fibrosis among the population with metabolic dysfunction-associated steatotic liver disease in the United States. PLoS One 2025; 20:e0320573. [PMID: 40168280 PMCID: PMC11960941 DOI: 10.1371/journal.pone.0320573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/19/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Smoking was identified as a risk factor for the development of liver fibrosis in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). However, the association between smoking cessation history and the development of liver fibrosis remains unclear. This study was intended to analyze the association between smoking cessation history and significant liver fibrosis in adult MASLD participants in the United States. METHODS This study utilized data from 2643 patients with MASLD from the National Health and Nutrition Examination Survey (NHANES). Significant liver fibrosis was detected based on transient elastography measurements. According to the smoking questionnaire data, patients were categorized as non-smokers, ex-smokers and current smokers. A multivariate logistic regression analysis, adjusted for weights, was performed to investigate the relationship between smoking cessation history and the presence of significant liver fibrosis in participants with MASLD. RESULTS A total of 2643 patients with MASLD were included in this study. Compared with non-smokers, ex-smokers had a slightly elevated risk of developing significant liver fibrosis (OR: 1.07, 95% CI: 1.02-1.13). Specifically, a positive correlation was observed between patients who quit smoking for < 20 years and significant liver fibrosis (OR: 1.07, 95% CI: 1.01-1.15). Furthermore, MASLD patients who started regularly smoking at an age of ≤ 20 years (OR: 1.09, 95% CI: 1.02-1.16) and had a smoking duration of ≥ 10 years before quitting (OR: 1.10, 95% CI: 1.02-1.18) were also highly correlated with an increased likelihood of developing significant liver fibrosis. CONCLUSIONS This study revealed that individuals with MASLD who have ceased smoking exhibit an elevated risk for significant liver fibrosis when compared to those who never smoked. It is highly emphasized that MASLD patients who quit smoking for < 20 years, started regularly smoking at an age of ≤ 20 years, and had a smoking duration of ≥ 10 years before quitting should be extremely vigilant regarding the risk of significant liver fibrosis.
Collapse
Affiliation(s)
- Zhongtao Li
- Department of General Surgery (Wenhua Road Campus), The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Hepatobiliary Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong, China
| | - Hao Guo
- Department of General Surgery (Wenhua Road Campus), The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Hepatobiliary Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong, China
| | - Hongyu He
- Department of General Surgery (Wenhua Road Campus), The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Hepatobiliary Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong, China
| | - Shu Wang
- Department of Urology Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Shufen Pei
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Liang Xie
- Department of General Surgery (Wenhua Road Campus), The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Hepatobiliary Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
20
|
Li L, Gao W, Yao F, Li J, Sang W, Zhang R. Innovative nanomedicine approaches for the management of nonalcoholic fatty liver disease. J Control Release 2025; 382:113680. [PMID: 40180250 DOI: 10.1016/j.jconrel.2025.113680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/17/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver disorder globally. The prevalence of NAFLD in the general population is estimated to be 25-30 %, making it the most common chronic liver condition in China as well as worldwide. Given the escalating disease burden and the scarcity of effective therapeutic interventions, there is a pressing unmet clinical need. Consequently, the development of novel pharmaceuticals has emerged as a pivotal research focus in recent years. Moreover, the advent of nano-delivery technology offers innovative solutions for NAFLD drug therapy. This paper presents a comprehensive examination of the pathogenesis and therapeutic targets of NAFLD. It critically reviews the latest advancements in nanomedicine research pertinent to NAFLD treatment. The review synthesizes a broad range of research findings to bridge the gap between current knowledge and emerging therapeutic strategies, and aims to inform and guide future research directions in NAFLD management.
Collapse
Affiliation(s)
- Limeng Li
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Weiqi Gao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China; Shanxi Academy of Advanced Research and Innovation (SAARl), Taiyuan, 030032, China
| | - Fengyang Yao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Jiayi Li
- School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Wei Sang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China; Institute of Medical Technology, Shanxi Medical University, Taiyuan 030001, China.
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
21
|
Gu P, Chen J, Xin J, Chen H, Zhang R, Chen D, Zhang Y, Shao S. Network pharmacology-based investigation of the pharmacological mechanisms of diosgenin in nonalcoholic steatohepatitis. Sci Rep 2025; 15:10351. [PMID: 40133701 PMCID: PMC11937522 DOI: 10.1038/s41598-025-95154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/19/2025] [Indexed: 03/27/2025] Open
Abstract
The prevalence of nonalcoholic steatohepatitis (NASH) is rising annually, posing health and economic challenges, with limited treatments available. Diosgenin, a natural steroidal compound found in various plants, holds potential as a therapeutic candidate. Recent studies have confirmed diosgenin's anti-inflammatory and metabolism-modulating properties. However, its therapeutic effects on NASH and the underlying mechanisms are still unclear. This study aims to explore diosgenin's protective effects and pharmacological mechanisms against NASH using network pharmacology, molecular docking, and experimental validation. We gathered potential targets of diosgenin and NASH from various databases to generate protein-protein interaction (PPI) networks. GO and KEGG pathway enrichment analyses identified key targets and mechanisms. Molecular docking confirmed the binding capacity between diosgenin and core target proteins. Additionally, a NASH cell model was developed to validate the pharmacological effects of diosgenin. Our investigation identified nine key targets (ALB, AKT1, TP53, VEGFA, MAPK3, EGFR, STAT3, CASP3, IGF1) that interact with diosgenin. Molecular docking indicated potential bindings interactions, while enrichment analyses revealed that diosgenin may enhance fatty acid metabolism via the PI3K-Akt pathway. Cellular experiments confirmed that diosgenin activates this pathway, reduces SCD1 expression, and decreases triglyceride and IL-6 levels. Our study elucidates that diosgenin may ameliorate triglyceride deposition and inflammation through the PI3K-Akt pathway.
Collapse
Affiliation(s)
- Peiyuan Gu
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrine Metabolism and Aging, Jinan, Shandong, China
| | - Juan Chen
- Department of Endocrinology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jingxin Xin
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrine Metabolism and Aging, Jinan, Shandong, China
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Huiqi Chen
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrine Metabolism and Aging, Jinan, Shandong, China
| | - Ran Zhang
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrine Metabolism and Aging, Jinan, Shandong, China
| | - Dan Chen
- Department of Electrocardiographic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuhan Zhang
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong Key Laboratory of Endocrine Metabolism and Aging, Jinan, Shandong, China.
| | - Shanshan Shao
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong Key Laboratory of Endocrine Metabolism and Aging, Jinan, Shandong, China.
| |
Collapse
|
22
|
Mun D, Ryu S, Lee DJ, Kwak MJ, Choi H, Kang AN, Lim DH, Oh S, Kim Y. Bovine colostrum-derived extracellular vesicles protect against non-alcoholic steatohepatitis by modulating gut microbiota and enhancing gut barrier function. Curr Res Food Sci 2025; 10:101039. [PMID: 40231313 PMCID: PMC11995039 DOI: 10.1016/j.crfs.2025.101039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/05/2025] [Accepted: 03/22/2025] [Indexed: 04/16/2025] Open
Abstract
Non-alcoholic steatohepatitis (NASH), characterized by severe fatty liver-associated inflammation and hepatocellular damage, is a major precursor to cirrhosis and hepatocellular carcinoma. While the exact pathogenesis of NASH remains unclear, gut microbiota dysbiosis has been implicated as a key factor contributing to endotoxin translocation and chronic liver inflammation. Recent studies have highlighted the therapeutic potential of bovine colostrum-derived extracellular vesicles (BCEVs) in modulating gut microbiota and enhancing gut barrier function, but their effects on NASH remain largely unexplored. To investigate the potential protective effects of BCEVs against NASH, 8-wk-old mice were fed a NASH-inducing diet for 3 wks while concurrently receiving oral BCEV administration. BCEV treatment markedly ameliorated hepatic steatosis, fibrosis, and inflammation. Transcriptomic analyses demonstrated a notable reduction in lipid metabolism, bacterial response, and inflammatory pathways in the intestine, as well as reduced expression of inflammation- and fibrosis-related pathways in the liver. Gut microbiota profiling revealed an increased abundance of Akkermansia, accompanied by enhanced cholesterol excretion. Furthermore, BCEV treatment promoted the production of tight junction proteins and mucin in the gut, reinforcing intestinal barrier integrity. These findings suggest that BCEVs promote the proliferation of Akkermansia, which in turn prevents endotoxin translocation to the liver. This reduction in endotoxin leakage alleviates hepatic inflammation and fibrosis. Overall, this study highlights the therapeutic potential of BCEVs as a novel strategy for managing NASH by targeting the gut-liver axis through the modulation of gut microbiota and barrier function.
Collapse
Affiliation(s)
- Daye Mun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangdon Ryu
- Honam National Institute of Biological Resources, Mokpo, 58762, Republic of Korea
| | - Daniel Junpyo Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min-Jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyejin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - An Na Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Hyun Lim
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, South Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, 55069, Republic of Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
23
|
Khalil SM, de Souza MHG, de Oliveira FD, Sato EDBDS, Meine GC. Efficacy and safety of aldafermin for the treatment of metabolic dysfunction-associated steatohepatitis: A systematic review and meta-analysis. Clin Res Hepatol Gastroenterol 2025; 49:102579. [PMID: 40147589 DOI: 10.1016/j.clinre.2025.102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND We aimed to assess the efficacy and safety of Aldafermin in treating patients with biopsy-confirmed metabolic dysfunction-associated steatohepatitis (MASH). METHODS We searched PubMed, Embase, and Cochrane Library for randomized controlled trials (RCTs) comparing Aldafermin to placebo for treating patients with MASH up to December 8, 2024. The risk ratios (RR) with 95 % confidence intervals (CI) were pooled for binary outcomes using a random-effects model. Additionally, we conducted subgroup analysis by fibrosis stage and Aldafermin dosage, and meta-regression analysis assuming the dosage of Aldafermin as a covariate. RESULTS We included 4 RCTs, encompassing 491 patients. Compared to placebo, Aldafermin had a higher probability of MASH resolution without worsening of fibrosis (RR 3.04; 95 %CI 1.12-8.28), composite of fibrosis improvement and MASH resolution (RR 5.86; 95 %CI 1.15-29.94), and reduction ≥30 % in hepatic fat fraction by MRI-PDFF (RR 3.14; 95 %CI 1.44-6.85). There were no significant differences in fibrosis improvement ≥1 stage without worsening of MASH (RR 1.48; 95 %CI 0.93-2.35), and overall AEs (RR 1.02; 95 %CI 0.95-1.11) between the groups. Subgroup analysis by fibrosis stage and Aldafermin dosage showed consistent results, and meta-regression analysis by dosage showed a dose-dependent improvement for the outcome of ≥30 % reduction in hepatic fat fraction by MRI-PDFF. CONCLUSION In conclusion, Aldafermin improved MASH resolution without worsening fibrosis, enhanced the composite of fibrosis improvement and MASH resolution, reduced hepatic fat fraction by MRI-PDFF, and was safe for treating patients with biopsy-confirmed MASH compared to placebo.
Collapse
Affiliation(s)
| | | | | | | | - Gilmara Coelho Meine
- Division of Gastroenterology, Internal Medicine Department, Feevale University, Novo Hamburgo, Brazil.
| |
Collapse
|
24
|
Perumal SK, Arumugam MK, Osna NA, Rasineni K, Kharbanda KK. Betaine regulates the gut-liver axis: a therapeutic approach for chronic liver diseases. Front Nutr 2025; 12:1478542. [PMID: 40196019 PMCID: PMC11973089 DOI: 10.3389/fnut.2025.1478542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Chronic liver disease is defined by persistent harm to the liver that might result in decreased liver function. The two prevalent chronic liver diseases are alcohol-associated liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD). There is ample evidence that the pathogenesis of these two chronic liver diseases is closely linked to gastrointestinal dysfunctions that alters the gut-liver crosstalk. These alterations are mediated through the imbalances in the gut microbiota composition/function that combined with disruption in the gut barrier integrity allows for harmful gut microbes and their toxins to enter the portal circulation and reach the liver to elicit an inflammatory response. This leads to further recruitment of systemic inflammatory cells, such as neutrophils, T-cells, and monocytes into the liver, which perpetuate additional inflammation and the development of progressive liver damage. Many therapeutic modalities, currently used to prevent, attenuate, or treat chronic liver diseases are aimed at modulating gut dysbiosis and improving intestinal barrier function. Betaine is a choline-derived metabolite and a methyl group donor with antioxidant, anti-inflammatory and osmoprotectant properties. Studies have shown that low betaine levels are associated with higher levels of organ damage. There have been several publications demonstrating the role of betaine supplementation in preventing the development of ALD and MASLD. This review explores the protective effects of betaine through its role as a methyl donor and its capacity to regulate the protective gut microbiota and maintain intestinal barrier integrity to prevent the development of these chronic liver diseases. Further studies are needed to enhance our understanding of its therapeutic potential that could pave the way for targeted interventions in the management of not only chronic liver diseases, but other inflammatory bowel diseases or systemic inflammatory conditions.
Collapse
Affiliation(s)
- Sathish Kumar Perumal
- Research Service, Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Madan Kumar Arumugam
- Research Service, Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Natalia A. Osna
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Karuna Rasineni
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kusum K. Kharbanda
- Research Service, Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
25
|
Zhang J, Wang Q, Zhou N, Liu J, Tao L, Peng Z, Hu G, Wang H, Fu L, Peng S. Fluorofenidone attenuates choline-deficient, l-amino acid-defined, high-fat diet-induced metabolic dysfunction-associated steatohepatitis in mice. Sci Rep 2025; 15:9863. [PMID: 40118958 PMCID: PMC11928590 DOI: 10.1038/s41598-025-94401-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/13/2025] [Indexed: 03/24/2025] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH), a severe form of metabolic dysfunction-associated steatotic liver disease (MASLD), involves hepatic lipid accumulation, inflammation, and fibrosis. It can progress to cirrhosis or hepatocellular carcinoma without timely treatment. Current treatment options for MASH are limited. This study explores the therapeutic effects of fluorofenidone (AKF-PD), a novel small-molecule compound with antifibrotic and anti-inflammatory properties, on MASH in mouse model. Mice fed a choline-deficient, l-amino acid-defined, high-fat diet (CDAHFD) were treated with AKF-PD, resulting in reduced serum ALT, AST, hepatic lipid accumulation, liver inflammation, and fibrosis. Network pharmacology and RNA-sequencing analyses suggested that AKF-PD influenced multiple metabolic, inflammatory, and fibrosis-related pathways. Further experiments verified that AKF-PD activated hepatic AMPK signaling, leading to the inhibition of the downstream SREBF1/SCD1 pathway and the activation of autophagy. Additionally, AKF-PD suppressed the expression of various inflammatory factors, reduced macrophage infiltration, and inhibited NLRP3 inflammasome activation. Moreover, AKF-PD attenuated liver fibrosis by inhibiting TGFβ1/SMAD signaling. In conclusion, this study reveals that AKF-PD effectively decreases hepatic lipid accumulation, liver inflammation and fibrosis in a CDAHFD-induced MASH model, positioning AKF-PD as a promising candidate for the treatment of MASH.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qianbing Wang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Nianqi Zhou
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jinqing Liu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Gaoyun Hu
- Faculty of Pharmaceutical Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Huiwen Wang
- Department of Infection Control Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Lei Fu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Shifang Peng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
26
|
Sun L, Yuan J, Wang T, Ning B, Yuan Q. Association between Hemoglobin Glycation Index and In-Hospital all-cause mortality of patients with Congestive Heart Failure: a retrospective study utilizing the MIMIC-IV database. Front Endocrinol (Lausanne) 2025; 16:1475063. [PMID: 40225324 PMCID: PMC11986639 DOI: 10.3389/fendo.2025.1475063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/03/2025] [Indexed: 04/15/2025] Open
Abstract
Background The aim of this study was to explore the relationship between the hemoglobin glycation index (HGI) of Congestive Heart Failure (CHF) patients and their risk of mortality within 365 days. Patients and methods The Medical Information Mart for Intensive Care (MIMIC-IV) database supplied the patient data for this study, which was categorized into quartiles based on the HGI. The primary endpoint was all-cause mortality within a 365-day period. Kaplan-Meier (K-M) analysis was utilized to compare this primary endpoint across the four aforementioned groups. The relationship between the HGI and the endpoint was examined using restricted cubic splines (RCS) and a Cox proportional hazards analysis. Results A total of 985 patients were included in this study. HGI was significantly associated with 30 days mortality (15.9%; HR, 0.79; 95% CI, (0.67~0.92); P=0.003) and 60 days mortality (19.3%; HR, 0.83; 95% CI, (0.72~0.96); P=0.011) and 90 days mortality (22.1%; HR, 0.86; 95% CI, (0.75~0.99); P=0.031) and 365 days mortality (30.7%; HR, 0.97; 95% CI, (0.86~1.09); P=0.611) in patients with critical CHF in the completely adjusted Cox proportional risk model. RCS analysis revealed a U-shaped relationship between HGI and outcome events. KM curves survival analysis suggests a correlation between 30 days and 365 days mortality in HGI and CHF patients. Conclusions A higher HGI has a more protective effect than a low HGI for patients with CHF and was directly associated with short-term mortality rates. These findings may be helpful in the management of patients with CHF.
Collapse
Affiliation(s)
- Ling Sun
- Department of Cardiology, Fuyang Tumor Hospital, Fuyang, China
- Department of Cardiology, Fuyang People’s Hospital Affiliated to Anhui Medical University, Fuyang, China
| | - Jie Yuan
- Consultancy Department, Hanyi Data Technology (Shenzhen) Co., Ltd, Shenzhen, China
| | - Tao Wang
- Department of Cardiology, Fuyang Tumor Hospital, Fuyang, China
| | - Bin Ning
- Department of Cardiology, Fuyang People’s Hospital Affiliated to Anhui Medical University, Fuyang, China
| | - Qinghua Yuan
- Department of Cardiology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
27
|
Chida J, Ichimura-Shimizu M, Batchuluun B, Bolorchimeg K, Tsuneyama K, Sakaguchi S. Anti-prion Antibody Ameliorates Metabolic Dysfunction-associated Steatohepatitis in Mice. Cell Mol Gastroenterol Hepatol 2025:101499. [PMID: 40118272 DOI: 10.1016/j.jcmgh.2025.101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Affiliation(s)
- Junji Chida
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, Tokushima, Japan
| | - Batzaya Batchuluun
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Khurelbaatar Bolorchimeg
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, Tokushima, Japan
| | - Suehiro Sakaguchi
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan.
| |
Collapse
|
28
|
Zhang J, Zhou J, He Z, Xia Z, Liu H, Wu Y, Chen S, Wu B, Li H. Salidroside attenuates NASH through regulating bile acid-FXR/TGR5 signaling pathway via targeting gut microbiota. Int J Biol Macromol 2025; 307:142276. [PMID: 40118401 DOI: 10.1016/j.ijbiomac.2025.142276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/15/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
Nonalcoholic steatohepatitis (NASH) is a significant threat to human health. Our previous study revealed that salidroside attenuated NASH and regulated the gut microbiota. However, whether the therapeutic effect of salidroside depends on gut microbiota remains to be determined. Therefore, we conducted further experiments to elucidate the essential functions of gut microbiota-associated metabolic pathways in the anti-NASH effects of salidroside. Our results showed that salidroside effectively alleviated lipid accumulation and inflammatory injury in NASH mice. 16S rRNA sequencing revealed that salidroside increased the abundance of Bacteroides. Mice receiving fecal microbiota transplantation (FMT) from salidroside-treated also presented less hepatic steatosis and higher abundance of Bacteroides. Antibiotics eliminated the effects of salidroside on hepatic steatosis and the gut microbiota. Mechanistically, salidroside and FMT from salidroside-treated altered the bile acid (BA) profile by decreasing the levels of conjugated BAs and tauro-α/β-muricholic acid and activated downstream farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5). Furthermore, we found that inhibitors of bile salt hydrolase (BSH) and FXR/TGR5 abolished the effects of salidroside and reduced downstream carnitine palmitoyltransferase 1α and lipoprotein lipase expression. These data demonstrate that salidroside attenuated NASH via gut microbiota-BA-FXR/TGR5 signaling pathway and reveal the underlying mechanism of salidroside on NASH.
Collapse
Affiliation(s)
- Jun Zhang
- Liver Disease Department of Integrative Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang 315000, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang 315300, China
| | - Jing Zhou
- Liver Disease Department of Integrative Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang 315000, China
| | - Zheyun He
- Liver Diseases Institute, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315000, China
| | - Zhanyang Xia
- Liver Disease Department of Integrative Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang 315000, China
| | - Hongliang Liu
- Liver Disease Department of Integrative Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang 315000, China
| | - Yuan Wu
- Liver Disease Department of Integrative Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang 315000, China
| | - Si Chen
- Liver Disease Department of Integrative Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang 315000, China
| | - Boming Wu
- Liver Disease Department of Integrative Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang 315000, China
| | - Hongshan Li
- Liver Disease Department of Integrative Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang 315000, China; Medical Experimental Department of Ningbo No.2 Hospital, Ningbo, Zhejiang 315000, China.
| |
Collapse
|
29
|
Fan X, Wang Y, Wang Y, Duan H, Du Y, Pan T, Zhong X. Dapagliflozin attenuates metabolic dysfunction-associated steatotic liver disease by inhibiting lipid accumulation, inflammation and liver fibrosis. BMC Pharmacol Toxicol 2025; 26:59. [PMID: 40075451 PMCID: PMC11905655 DOI: 10.1186/s40360-025-00898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/07/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as a globally prevalent liver disease, closely linked to the rising incidence of obesity, diabetes, and metabolic syndrome. Dapagliflozin (DaPa), a sodium-glucose cotransporter-2 inhibitor, is primarily prescribed for diabetes management. It has shown potential efficacy in managing MASLD in clinical settings. However, the molecular mechanisms underlying the effects of DaPa on MASLD remain poorly understood. Hence, we aimed to investigate the role of and mechanisms underlying DaPa in MASLD. METHODS Male diet-induced obese (DIO) C57BL/6J mice were injected with streptozotocin (STZ), followed by a high-fat diet regimen to stimulate metabolic dysfunction. Subsequently, they received DaPa via gavage for 5 weeks. Hepatic lipid accumulation, pathological alterations, inflammatory markers, and liver fibrosis were assessed. RESULTS DaPa administration reduced liver fat accumulation in DIO mice. Additionally, it decreased oxidative stress and lipid peroxide levels, which was attributed to the upregulation of glutathione and the downregulation of malondialdehyde and reactive oxygen species levels. Notably, DaPa downregulated the inflammatory response and reduced liver fibrosis. CONCLUSIONS DaPa protects against MASLD by inhibiting lipid accumulation, inflammation, oxidative stress, and liver fibrosis.
Collapse
Affiliation(s)
- Xingyu Fan
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei, Anhui Province, 230601, China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei, Anhui Province, 230601, China
| | - Yueyue Wang
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei, Anhui Province, 230601, China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei, Anhui Province, 230601, China
| | - Yue Wang
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei, Anhui Province, 230601, China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei, Anhui Province, 230601, China
| | - Hao Duan
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei, Anhui Province, 230601, China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei, Anhui Province, 230601, China
| | - Yijun Du
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei, Anhui Province, 230601, China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei, Anhui Province, 230601, China
| | - Tianrong Pan
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei, Anhui Province, 230601, China.
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei, Anhui Province, 230601, China.
| | - Xing Zhong
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei, Anhui Province, 230601, China.
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei, Anhui Province, 230601, China.
| |
Collapse
|
30
|
Li S, Zhu H, Zhai Q, Hou Y, Yang Y, Lan H, Jiang M, Xuan J. Exploring Mechanisms of Lang Qing Ata in Non-Alcoholic Steatohepatitis Based on Metabolomics, Network Pharmacological Analysis, and Experimental Validation. Drug Des Devel Ther 2025; 19:1681-1701. [PMID: 40098906 PMCID: PMC11911237 DOI: 10.2147/dddt.s503757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
Background Non-alcoholic steatohepatitis (NASH), as a progressive form of Non-alcoholic fatty liver disease (NAFLD), poses a significant threat to human health as a prevalent and common condition, with a lack of safe and effective therapeutic options. However, the therapeutic effects and potential mechanisms of Lang Qing Ata (LQAtta) against NASH remain elusive. Materials and Methods The components of LQAtta were identified using Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-MS/MS). Subsequently, we employed network construction and analysis approaches within the field of network pharmacology. By integrating known databases and target prediction algorithms, which encompassed database-based target prediction, protein-protein interaction networks, as well as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, we unveiled the potential key targets and signaling pathways that these bioactive components might engage with. These discoveries were further validated in subsequent mouse models. An HFHC-induced NASH mouse model was used to validate the therapeutic effects and potential mechanisms of LQAtta on NASH. Results From the UHPLC-MS/MS analysis of LQAtta, a total of 1518 chemical components were identified, with 106 of them being absorbed into the bloodstream. Additionally, based on the acquisition of targets from both LQAtta and the NASH database, a total of 160 common targets were screened. KEGG enrichment analysis indicated that LQAtta may alleviate NASH by modulating pathways such as the Toll-like receptor signaling pathway, the NF-κB signaling pathway, and inflammation-related pathways. In vivo experimental results demonstrated that LQAtta could alleviate liver injury, steatosis, and inflammation induced by NASH, thereby slowing down the disease process. Additionally, LQAtta inhibited the expression and phosphorylation of NF-κB protein, playing a role in preventing NASH. Conclusion In this study, the combination of mass spectrometry analysis, network pharmacology, and animal experiments preliminarily elucidated the potential of LQAtta to treat NASH through NF-κB pathways.
Collapse
Affiliation(s)
- Shupei Li
- Department of Gastroenterology, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Hanlong Zhu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| | - Qi Zhai
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| | - Yu Hou
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| | - Ya Yang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| | - Haifeng Lan
- Department of Gastroenterology, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Mingzuo Jiang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| | - Ji Xuan
- Department of Gastroenterology, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
31
|
Kim S, Yoo HY. Sex differences in predicting dyslipidemia using polygenic risk score with fatty liver index and fibrotic nonalcoholic steatohepatitis index. Sci Rep 2025; 15:7849. [PMID: 40050666 PMCID: PMC11885555 DOI: 10.1038/s41598-025-92766-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/03/2025] [Indexed: 03/09/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are recognized risk factors for dyslipidemia. Current prediction models that rely solely on dyslipidemia polygenic risk score (PRS) have certain limitations. We aimed to validate simple indexes for NAFLD and NASH as predictors of dyslipidemia using the PRS. This study utilized cohort data from an urban population-based dataset comprising 48,263 South Koreans. The incidence of dyslipidemia was higher in men than in women (32.4% and 27.8%; p < 0.001). The PRS model predicted dyslipidemia more accurately in men (AUROC [95% confidence intervals]: 0.645 [0.636-0.754]). Notably, integrating the fatty liver index (FLI) and fibrotic NASH index (FNI) with the PRS model resulted in the highest accuracy in diagnosing dyslipidemia, particularly in men (AUROC [95% confidence intervals]: 0.704 [0.698-0.711]). In conclusion, a predictive model combining the PRS with FLI and FNI was validated. This model offers more accurate predictive value for diagnosing dyslipidemia, particularly in East Asian men. Thus, our study has the clinical potential for identifying high-risk individuals and determining preventive measures for dyslipidemia in a sex-specific manner.
Collapse
Affiliation(s)
- Sei Kim
- Department of Nursing, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hae Young Yoo
- Department of Nursing, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
32
|
Lv K, Zhou R, Gu Y, Kong T, Chen Y, Shao Y, Shi J, Zhang W. Status and factors influencing health-related quality of life in patients with non-alcoholic fatty liver disease in Hangzhou: a cross-sectional study. BMJ Open 2025; 15:e088357. [PMID: 40044211 PMCID: PMC11883542 DOI: 10.1136/bmjopen-2024-088357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025] Open
Abstract
OBJECTIVE Due to rapid economic development and the unique lifestyles, cultures and customs of Hangzhou, non-alcoholic fatty liver disease (NAFLD) has attracted widespread attention, with a prevalence rate of 35-45%. In this study, we used the Chinese version of the Chronic Liver Disease Questionnaire for NAFLD (CLDQ-NAFLD) to investigate the current health-related quality of life (HRQL) among patients with NAFLD and analyse the influencing factors, which provides a reference for improving the patients' HRQL. DESIGN A cross-sectional design. SETTING This study was conducted from March 2022 to March 2023 at a tertiary hospital in Hangzhou. PARTICIPANTS All patients with NAFLD included in this study were diagnosed using FibroScan, with a controlled attenuation parameter ≥248 dB/m. PRIMARY OUTCOME MEASURES The primary outcome of the study was the HRQL score, which was assessed using the Chinese version of the CLDQ-NAFLD. RESULTS A total of 502 patients with NAFLD were enrolled in this study (mean age 1.79±13.49 years; 69.7% male). The overall HRQL score was 5.89 (5.33, 6.36), and the fatigue dimension score was the lowest at 5.17 (4.33, 6.00). Multiple linear regression analyses revealed that poor HRQL score was correlated with other marital status (β=-0.096, p=0.036), liver stiffness ≥10.3 (kPa) (β=-0.110, p=0.017), regular exercise (β=-0.121, p=0.006), sex (β=-0.114, p=0.012) and alanine transaminase (ALT) levels (β=-0.139, p=0.002). A monthly income >10 000 (renminbi) was associated with a significantly higher HRQL score. CONCLUSIONS This cross-sectional survey conducted in Hangzhou, China, revealed that HRQL is impaired among patients with NAFLD. This study revealed a significant association between HRQL and sociodemographic factors, including sex, monthly income and marital status, alongside clinical factors such as liver stiffness, regular exercise and ALT level. Emphasising optimal care management is essential to improve HRQL in patients with NAFLD.
Collapse
Affiliation(s)
- Kexin Lv
- College of Nursing, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Run Zhou
- College of Nursing, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yunpeng Gu
- College of Nursing, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Tingting Kong
- College of Nursing, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yutong Chen
- College of Nursing, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yuna Shao
- School of Public Health, The University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong, Hong Kong
| | - Junping Shi
- Department of Infectious Disease and Hepatology, Hangzhou Normal University Affiliated Hospital, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou, Zhejiang, China
| | - Wei Zhang
- Teaching Department, Hangzhou Normal University Affiliated Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
33
|
Gholamrezayi A, Hosseinpour-Niazi S, Mirmiran P, Hekmatdoost A. The effect of replacing grains with quinoa on cardiometabolic risk factors and liver function in patients with non-alcoholic fatty liver: a randomized-controlled clinical trial. Front Nutr 2025; 12:1505183. [PMID: 40098740 PMCID: PMC11911194 DOI: 10.3389/fnut.2025.1505183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/14/2025] [Indexed: 03/19/2025] Open
Abstract
Purpose Quinoa is a food containing dietary fiber and various phytochemicals with high nutritional value, which has a structure similar to whole grains. This randomized controlled trial aimed to assess the effect of substituting grains with quinoa on cardiovascular risk factors and liver function in individuals with Non-alcoholic fatty liver disease (NAFLD). Methods Forty-six participants were randomly assigned to either a control group, which maintained their regular grain-based diet, or an intervention group, where grains were replaced with quinoa for 12 weeks. Participants in the quinoa group were instructed to substitute grains with quinoa during lunch for 12 weeks. The primary outcome was to assess the changes in the Controlled Attenuation Parameter (CAP) score between the intervention and control groups. Secondary outcomes included the difference in cardiometabolic risk factors and liver function between the two groups. Results Following 12 weeks of intervention with quinoa, a significant reduction in weight, and waist circumferences (WC) were observed compared to the control group (p value < 0.05). Furthermore, even after adjustment for weight change, there was a significant reduction in CAP score, serum levels of low-density lipoprotein cholesterol (LDL-C), and an improvement in homeostatic model assessment for insulin resistance (HOMA-IR) in the quinoa group compared to the control group after the 12 weeks (p value < 0.05). However, no significant changes were observed in other measured parameters, including liver enzymes, fibroscan, fasting plasma glucose, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and inflammatory factors. Conclusion This study demonstrated that replacing grains with quinoa led to a significant improvement in the CAP score, HOMA-IR, and LDL-C in individuals with NAFLD, regardless of any weight changes. Thus, incorporating quinoa-a plentiful and low-cost source of bioactive compounds-into the diets of NAFLS patients as a staple food could improve several cardiometabolic risk factors in these individuals. Clinical Trial Registration IRCT20100524004010N37.
Collapse
Affiliation(s)
- Afsane Gholamrezayi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Hosseinpour-Niazi
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Jin M, Wei L, Wang J, Shen Y, Gao L, Zhao F, Gao Q, Ma Y, Sun Y, Lin Y, Ji G, Cai P, Yan R. Formononetin: a review of its source, pharmacology, drug combination, toxicity, derivatives, and drug delivery systems. Front Pharmacol 2025; 16:1534798. [PMID: 40098623 PMCID: PMC11911920 DOI: 10.3389/fphar.2025.1534798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/31/2025] [Indexed: 03/19/2025] Open
Abstract
Formononetin (FMN) is a common natural metabolite that can be extracted and isolated from some common botanical drugs. In recent years, FMN has garnered increasing attention due to its beneficial biological activities. In this paper, we systematically summarize the sources of FMN and provide a comprehensive review of its pharmacological activities and molecular mechanisms, co-administration, toxicity, derivatives, and drug delivery systems in the last 5 years. The study results found that FMN has a wide range of pharmacological activities in neurological disorders, organ damage and cancer, showing great potential for clinical application and broad prospects. Researchers are exploring various types of delivery systems, including nanoparticle carriers, ligand modifications and polymer microspheres. These advanced delivery systems can enhance the stability of FMN, prolong its release time in vivo, and improve targeting, thereby optimizing its therapeutic efficacy and reducing side effects, and greatly improving its bioavailability. In conclusion, FMN is a natural metabolite with considerable research value, and its diverse biological activities make it a promising candidate for drug development and medical research.
Collapse
Affiliation(s)
- Min Jin
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Linfang Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianhua Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuehong Shen
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Gao
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fan Zhao
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qianying Gao
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yifei Ma
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yongyan Sun
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Lin
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guanjie Ji
- Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Pingping Cai
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Rugen Yan
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
35
|
Chen Y, Zhang T, Qin B, Zhang R, Liu M, Guo R, Zhu Y, Zeng J, Chen Y. Comprehensive assessment of distinct abdominal fat compartments beyond liver content in overweight/obese patients using MRI and ultrasound imaging. Abdom Radiol (NY) 2025; 50:1457-1466. [PMID: 39305293 DOI: 10.1007/s00261-024-04591-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 01/03/2025]
Abstract
BACKGROUND Ectopic fat deposition, involving lipid infiltration within organs and fat accumulating surrounding organs, plays a crucial role in the development of metabolic abnormalities in obesity. Current imaging measurements of obesity primarily focus on lipid infiltration within liver, neglecting fat deposition in other areas. This study aims to explore the methods of measuring and correlating different types of abdominal ectopic fat deposition in obese patients using magnetic resonance imaging (MRI) and ultrasound techniques, and to investigate the relationship between these fat parameters and obesity-related metabolic markers. METHODS Abdominal ectopic fat deposition including liver fat content, mesenteric fat thickness (MFT), perirenal fat thickness (PrFT) and preperitoneal fat thickness (PFT) were measured in 220 overweight/obese patients using both MRI and ultrasound techniques. Correlation analysis validated the concordance of fat parameters at specific sites between the two imaging methods and identified the cutoff values of hepatic attenuation coefficient (AC) for diagnosis of liver steatosis. Additionally, we investigated the correlation between fat parameters by both methods and obesity-related metabolic markers. RESULTS Ultrasonic measurement of PrFT and hepatic AC both had high correlation with PrFT (r = 0.829, p < 0.001) and hepatic Proton-density fat fraction (PDFF, r = 0.822, p < 0.001) measured via MR. Hepatic AC cutoff values for diagnosing mild, moderate, and severe fatty liver were 0.705 dB/cm/MHz (AUC = 0.922), 0.755 dB/cm/MHz (AUC = 0.923), and 0.875 dB/cm/MHz (AUC = 0.890) respectively. Hepatic AC correlated significantly with AST and ALT (r = 0.477 ~ 0.533, p < 0.001). MFT measured by ultrasound were positively associated with glycated hemoglobin (r = 0.324 ~ 0.371, p < 0.001) and serum triglyceride levels (r = 0.303 ~ 0.353, p < 0.001). PrFT measured by both methods showed significant positive correlations with serum creatinine levels (r = 0.305 ~ 0.308, p < 0.001). CONCLUSIONS Both MRI and ultrasound demonstrate metabolic correlations in quantifying mesenteric, hepatic, and perirenal fat. In addition to assessment of liver fat content, the measurements of ectopic fat deposition by MRI or ultrasound are a simple and crucial way for comprehensive fat evaluation in individuals with overweight/obesity.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ting Zhang
- Department of Medical Ultrasound, Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Baoding Qin
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rui Zhang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Minting Liu
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruomi Guo
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yanhua Zhu
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jie Zeng
- Department of Medical Ultrasound, Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Yanming Chen
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
36
|
Zhang J, Wang H, Wang Q, Mo J, Fu L, Peng S. EEF1A2 identified as a hub gene associated with the severity of metabolic dysfunction-associated steatotic liver disease. Mamm Genome 2025; 36:93-105. [PMID: 39414652 DOI: 10.1007/s00335-024-10078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver disease that ranges from metabolic dysfunction-associated steatotic liver (MASL) to metabolic dysfunction-associated steatohepatitis (MASH), and may eventually progress to cirrhosis and hepatocellular carcinoma (HCC). The underlying mechanism of MASLD remains incompletely understood. This study aimed to identify key gene implicated in MASLD pathogenesis and validate its correlation with disease severity through an integration of bioinformatics and experimental approaches. Liver transcriptome data from MASLD patients were obtained from the Gene Expression Omnibus (GEO) database. A diet-induced MASLD mouse model was developed, and liver RNA-sequencing was performed. Liver specimens and clinical data from patients were collected for further analysis. A total of 120 differentially expressed genes (DEGs) were shared between datasets GSE89632 and GSE213621, with functional enrichment in inflammatory, metabolic, and cell cycle-related pathways. Protein-protein interaction (PPI) network analysis identified three modules associated with MASLD, with the cell cycle-related module being the most notable. EEF1A2 was identified as a novel hub gene and revealed to be elevated with MASLD progression through dataset analysis. EEF1A2 was confirmed to be highly expressed in the livers of both MASLD mouse models and patients. Moreover, the increased expression of EEF1A2 in MASH was positively correlated with higher serum alanine aminotransferase (ALT), alanine aminotransferase (AST), total cholesterol (TC), and body mass index (BMI). In conclusion, EEF1A2 is a novel hub gene significantly associated with MASLD severity and is a promising biomarker and therapeutic target for MASLD.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huiwen Wang
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianbing Wang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Mo
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Fu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Shifang Peng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
37
|
Shahzil M, Hasan F, Kazmi SK, Gangwani MK, Shabbar U, Chaudhary AJ, Khaqan MA, Faisal MS, Williams KN, Mohan BP, Tofani C. Evaluating the Effectiveness of Pegbelfermin in MASH-Associated Hepatic Fibrosis A Meta-Analysis and Systematic Review of Randomized Controlled Trials. JGH Open 2025; 9:e70131. [PMID: 40104016 PMCID: PMC11913888 DOI: 10.1002/jgh3.70131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 02/18/2025] [Accepted: 03/02/2025] [Indexed: 03/20/2025]
Abstract
Introduction Metabolic dysfunction-associated steatohepatitis (MASH), an advanced form of fatty liver disease, is characterized by liver inflammation and fibrosis, with an emerging interest in fibroblast growth factor (FGF)-21 analogs, particularly pegbelfermin (PGBF). This study evaluates the efficacy and safety of PGBF in treating MASH-associated hepatic fibrosis. Methods This meta-analysis followed Cochrane guidelines and PRISMA standards. A comprehensive search of databases up to January 2023 focused on randomized controlled trials (RCTs) comparing PGBF to placebo for MASH. Meta-analyses were performed with RevMan 5.4 using a random-effects model. Results Data from 452 participants across three RCTs were analyzed. Significant improvements in adiponectin concentration were observed in both the 10 mg [MD = 18.23, 95% CI (6.35, 30.11), p = 0.003] and 20 mg [MD = 18.09, 95% CI (5.88, 30.31), p = 0.004] PGBF groups compared to placebo. Significant reductions in PRO-C3 concentration were noted in both the 10 mg [MD = -25.50, 95% CI (-43.95, -7.05), p = 0.007] and 20 mg [MD = -19.54, 95% CI (-33.33, -5.76), p = 0.005] groups. Significant improvement in MASH was seen in the 10 mg group [RR = 2.84, 95% CI (1.18, 6.78), p = 0.02] but not in the 20 mg group. No significant improvements in liver stiffness, Modified Ishak scores, collagen proportionate area, ALT and AST levels, or treatment-emergent adverse events (TEAEs) were observed in either dosage group. Conclusions Pegbelfermin, a promising therapy for MASH fibrosis, has demonstrated effectiveness at 10 mg, significantly improving MASH and biomarkers including adiponectin and PRO-C3, while maintaining a generally safe profile.
Collapse
Affiliation(s)
- Muhammad Shahzil
- Department of Internal Medicine Penn State Health Milton S Hershey Medical Center Hershey Pennsylvania USA
| | - Fariha Hasan
- Department of Internal Medicine Cooper University Hospital Camden New Jersey USA
| | - Syeda Kanza Kazmi
- Department of Internal Medicine Penn State Health Milton S Hershey Medical Center Hershey Pennsylvania USA
| | | | | | | | - Muhammad Ali Khaqan
- Department of Internal Medicine John H. Stroger, Jr. Hospital of Cook County Chicago Illinois USA
| | | | - Kathy N Williams
- Department of Gastroenterology Cooper University Hospital Camden New Jersey USA
| | - Babu P Mohan
- Gastroenterology and Hepatology Orlando Gastroenterology PA Orlando Florida USA
| | - Christina Tofani
- Department of Gastroenterology Cooper University Hospital Camden New Jersey USA
| |
Collapse
|
38
|
Shi R, Chai K, Wang H, Zhou J, Yang S, Li J, Qiao C, Sheng X, Zhang X, Wu J. Clinical Assessment of Common Medications for Nonalcoholic Fatty Liver Disease: A Systematic Review and Bayesian Network Meta-Analysis. J Evid Based Med 2025; 18:e70002. [PMID: 39963857 PMCID: PMC11833758 DOI: 10.1111/jebm.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
OBJECTIVE With a steadily rising prevalence, nonalcoholic fatty liver disease (NAFLD) was a leading global cause of liver-related health problems. In the clinical management of NAFLD, various western pharmaceuticals were widely utilized. This network meta-analysis aimed to evaluate the effectiveness of common western medications for NAFLD patients. METHODS We systematically reviewed and screened articles based on predesigned criterion about western medications for NAFLD, which were from Embase, Cochrane Library, PubMed, CNKI, WanFang, and China Science and Technology Journal Database until August 1, 2024. Eligible studies included randomized controlled trials of patients aged 18 or older with NAFLD, comparing Western medicines to placebos or other Western medicine treatments. The risk of bias assessment tool 2.0 from the Cochrane system was used to assess the quality of the included articles. A Bayesian network meta-analysis was conducted using WinBUGS 1.4.3 with a random-effects model and Markov Chain Monte Carlo methods. Treatment rankings were based on Surface Under the Cumulative Ranking Curve (SUCRA) values, and heterogeneity was assessed with I2 and Q statistics. The outcomes were analyzed in WinBUGS and visualized using Stata 14.0, generating network plots and cumulative probability rankings to compare treatment effects. The systematic review was registered in PROSPERO (CRD42024509176). RESULTS Based on 37 included articles involving 7673 patients, pioglitazone demonstrated the most significant effects in resolving nonalcoholic steatohepatitis without worsening fibrosis, increasing high-density lipoprotein cholesterol levels, and achieving a ≥ 2-point reduction in NAFLD activity scores (odds ratio [OR] = 0.09, 95% confidence interval [CI]: 0.01 to 0.81), with a SUCRA probability of 91.4%. Aldafermin showed remarkable effects in improving liver function markers, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), and γ-glutamyl transpeptidase, with cumulative probabilities of 90% for ALT and 69.8% for AST. Cluster analysis revealed that Resmetirom and Aldafermin were superior options for enhancing liver function, while pioglitazone emerged as the best treatment for the comprehensive improvement of NAFLD. CONCLUSIONS Pioglitazone outperformed other western medicines in terms of overall efficacy when treating NAFLD, but Aldafermin and Resmetirom showed superior improvement in liver function. This study provided a certain level of support for the use of specific clinical medications.
Collapse
Affiliation(s)
- Rui Shi
- Department of Clinical Chinese PharmacySchool of Chinese MateriaBeijing University of Chinese MedicineBeijingChina
| | - Keyan Chai
- Department of Clinical Chinese PharmacySchool of Chinese MateriaBeijing University of Chinese MedicineBeijingChina
| | - Haojia Wang
- Department of Clinical Chinese PharmacySchool of Chinese MateriaBeijing University of Chinese MedicineBeijingChina
| | - Jiying Zhou
- Department of Clinical Chinese PharmacySchool of Chinese MateriaBeijing University of Chinese MedicineBeijingChina
| | - Siyun Yang
- Department of Clinical Chinese PharmacySchool of Chinese MateriaBeijing University of Chinese MedicineBeijingChina
| | - Jiaqi Li
- Department of Clinical Chinese PharmacySchool of Chinese MateriaBeijing University of Chinese MedicineBeijingChina
| | - Chuanqi Qiao
- Department of Clinical Chinese PharmacySchool of Chinese MateriaBeijing University of Chinese MedicineBeijingChina
| | - Xiaoguang Sheng
- Department of Clinical Chinese PharmacySchool of Chinese MateriaBeijing University of Chinese MedicineBeijingChina
| | - Xiaomeng Zhang
- Department of Clinical Chinese PharmacySchool of Chinese MateriaBeijing University of Chinese MedicineBeijingChina
| | - Jiarui Wu
- Department of Clinical Chinese PharmacySchool of Chinese MateriaBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
39
|
Wang CX, Hou JJ, Lin SY, Wang JH, Ding JJ, Liu C, Jiang ZX, Bao N. Association between liver fibrosis's noninvasive scores and retinal imaging changes: insights from NHANES. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2025; 44:56. [PMID: 40022221 PMCID: PMC11871793 DOI: 10.1186/s41043-025-00805-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND There is a known association between liver disease and retinopathy. However, the relationship between non-invasive fibrosis scores and retinal image changes remains unknown. The research sought to explore the link between Fibrosis-4 score (FIB-4) and Fibrosis-8 score (FIB-8) and retinal image changes. METHODS This cross-sectional study included participants with complete information on FIB-4/FIB-8, retinal images and covariates from two cycles of the National Health and Nutrition Examination Surveys (NHANES) 2005-2008. We converted FIB-4 to the categorical variable according to its correlation with liver fibrosis staging (< 1.3, 1.3-2.67, ≥ 2.67; <1.45, 1.45-3.25, > 3.25). Weighted multifactorial logistic regression was used to assess the association between FIB-4、 FIB-8 and retinal image changes, and Restricted Cubic Spline (RCS) and smoothed curve fitting were used to examine the dose-response relationship between FIB-4, FIB-8 and retinal image changes. RESULTS The cross-sectional study included a total of 3399 participants (1715 men; 1684 women) with a mean age of 62.27 (9.49) years. Following comprehensive adjustments, a positive correlation was identified between FIB-4, FIB-8, and retinal image changes. When FIB-4 was converted to a categorical variable, there was a 62% increased risk of retinal image changes in higher FIB-4 group compared to the control group [OR:1.62,95% CI (1.01,2.59)]. Additionally, the relationship between FIB-4 and retinal image changes was found to be non-linear, while the association between FIB-8 and retinal image changes presented a linear pattern. Subgroup analyses and interactions showed that there was a significant interaction between economic situation and educational level and FIB-4, whereas there was no interaction between the variables of interest and FIB-8. CONCLUSION Among individuals aged fifty years and older, FIB-4 and FIB-8 are linked to a higher risk of retinal image changes, particularly among those with advanced liver fibrosis. Our findings suggest that patients with severe fibrosis should also be monitored for retinal health.
Collapse
Affiliation(s)
- Chuan-Xi Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing-Jing Hou
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Si-Yu Lin
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiang-Hui Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing-Jing Ding
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chang Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zheng-Xuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Ning Bao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
40
|
Yang J, Gui Y, Zheng Y, He H, Chen L, Li T, Liu H, Wang D, Yuan D, Yuan C. Total saponins from Panax japonicus reduced lipid deposition and inflammation in hepatocyte via PHD2 and hepatic macrophage-derived exosomal miR-463-5p. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119376. [PMID: 39842748 DOI: 10.1016/j.jep.2025.119376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/21/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax japonicus (T. Nees) C.A. Mey. (PJ) is a traditional Chinese herbal medicine revered as the "King of Herbs" in Tujia and Hmong medical practices. Clinically, it is primarily used to treat weakness and fatigue, wound bleeding, arthritis, hyperlipidemia, and fatty liver. It is rich in saponins, and the total saponins from PJ (TSPJ), possess immunomodulatory, antioxidant, and lipid-lowering effects. These properties hold significant potential in managing liver-related metabolic diseases such as non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). AIM OF STUDY Evaluate the therapeutic effects of TSPJ on lipid metabolism disorders in a NASH model and explore the possible underlying mechanisms. MATERIALS AND METHODS To model NASH, C57BL/6J mice were fed a high-fat diet (HFD) and RAW264.7 cells were stimulated with lipopolysaccharide (LPS) and palmitic acid (PA). The animal and cell models were also treated with TSPJ, and the changes in inflammation and lipid metabolism were measured. Additional models were created by transfecting lentiviral vectors to cause miR-463-5p knockdown in the C57BL/6J mouse and the RAW264.7 cells. RESULTS In the HFD-induced mice, TSPJ reduced the body weight and liver weight, lowered the serum levels of TG, T-CHO, ALT, and AST, and reduced the hepatic lipid droplet formation and vacuolization. In the RAW264.7 cells, TSPJ upregulated the M2 markers and downregulated the M1 markers. TSPJ also significantly increased the expression of miR-463-5p in the exosomes derived from the RAW264.7 cells or the primary mouse hepatic macrophages, and miR-463-5p suppressed the expression of PHD2 in hepatocytes to improve lipid metabolism. However, when the exosome secretion inhibitor GW4869 was applied, TSPJ became less effective in alleviating the lipid deposition and inflammation in hepatocytes. CONCLUSIONS TSPJ significantly upregulated the expression of miR-463-5p in the exosomes of hepatic macrophages to thus downregulate PHD2 expression in hepatocytes and improve hepatic lipid metabolism.
Collapse
Affiliation(s)
- Jingjie Yang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Yibei Gui
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Ying Zheng
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Haodong He
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Lihan Chen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Tongtong Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Haoran Liu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Dongshuo Wang
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Ding Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China.
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
41
|
Nilghaz M, Sadeghi A, Koochakpoor G, Poustchi H, Khodadadi N, Narimani B, Ghods M, Shafiee M, Shahparvari MR, Hekmatdoost A. The efficacy of DASH combined with time-restricted feeding (16/8) on metabolic associated fatty liver disease management: a randomized controlled trial. Sci Rep 2025; 15:7020. [PMID: 40016311 PMCID: PMC11868424 DOI: 10.1038/s41598-025-88393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 01/28/2025] [Indexed: 03/01/2025] Open
Abstract
Recent studies have utilized time-restricted feeding (16/8) (TRF) and dietary approaches to stop hypertension separately to manage metabolic-associated fatty liver disease (MAFLD); however, the effectiveness of combining these two approaches has not been investigated. The objective of this study was to examine the impact of TRF in conjunction with a DASH diet on various factors related to MAFLD. A 12-week randomized controlled trial was conducted to assess the impact of TRF (16/8), along with a DASH diet, compared with a control diet based on standard meal distribution, in patients with MAFLD. An investigation was conducted to examine alterations in anthropometric indices, as well as liver parameters, serum metabolic indices, and an inflammatory marker. The TRF plus DASH diet reduced body mass index (p = 0.03), abdominal circumference (p = 0.005), controlled attenuation parameter (CAP) (p < 0.001), alanine aminotransferase (p = 0.039), and aspartate aminotransferase (0.047) compared to the control group. The levels of insulin and homeostasis model assessment of insulin resistance reduced in both groups significantly (P < 0.05). In MAFLD patients, TRF (16/8) in combination with a DASH diet is superior to a low-calorie diet in promoting obesity indices, and hepatic steatosis and fibrosis. Further long-term investigations are needed to draw definitive conclusions.
Collapse
Affiliation(s)
- Maryam Nilghaz
- Department of Clinical Nutrition, School of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Hossein Poustchi
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Navideh Khodadadi
- Department of Clinical Nutrition, School of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnaz Narimani
- Department of Clinical Nutrition, School of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Ghods
- Department of Clinical Nutrition, School of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahshad Shafiee
- Department of Clinical Nutrition, School of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Shahparvari
- Department of Clinical Nutrition, School of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition, School of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Zhou L, Lu Y, Qiu X, Chen Z, Tang Y, Meng Z, Yan C, Du H, Li S, Lin JD. Lipid droplet efferocytosis attenuates proinflammatory signaling in macrophages via TREM2- and MS4A7-dependent mechanisms. Cell Rep 2025; 44:115310. [PMID: 39954254 PMCID: PMC11973828 DOI: 10.1016/j.celrep.2025.115310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/02/2024] [Accepted: 01/23/2025] [Indexed: 02/17/2025] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is characterized by injury to steatotic hepatocytes that triggers the release of endogenous danger-associated molecular patterns. Recent work demonstrated that exposed lipid droplets (LDs) serve as a pathogenic signal that promotes monocyte infiltration and its maturation into triggering receptor expressed in myeloid cells 2 (TREM2+) macrophages in MASH liver. Here we explore the role of LD exposure in modulating inflammatory signaling in macrophages. We found that LD efferocytosis triggers a global transcriptional response and dampens pro-inflammatory signaling in macrophages. LD treatment attenuated NLRP3 inflammasome activation via mechanisms independent of lysosomal LD hydrolysis. While TREM2 was dispensable for LD efferocytosis by macrophages, it was required for the attenuation of proinflammatory signaling upon LD exposure. Additionally, MS4A7 downregulation contributes to LD efferocytosis-mediated dampening of inflammatory response. These results underscore the dual role of LD exposure in MASH liver by promoting monocyte infiltration and TREM2+ macrophage induction, while restraining proinflammatory response in macrophages.
Collapse
Affiliation(s)
- Linkang Zhou
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| | - You Lu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Xiaoxue Qiu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Zhimin Chen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yuwei Tang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Ziyi Meng
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Cong Yan
- Department of Pathology and Laboratory Medicine, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hong Du
- Department of Pathology and Laboratory Medicine, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Siming Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jiandie D Lin
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
43
|
Liu YY, Xu YF, Li XR, Fan QP, Liu JH, Zhou SY, Qian YQ, Li MD. Design, synthesis, and inhibition of novel ferulic acid derivatives on free fatty acid induced cellular lipid accumulation. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-16. [PMID: 39987552 DOI: 10.1080/10286020.2025.2459600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/17/2025] [Accepted: 01/24/2025] [Indexed: 02/25/2025]
Abstract
Abnormal accumulation of hepatocyte lipids is a hallmark feature of NAFLD. Ferulic acid (FA), an ingredient with antioxidant activity in Chinese herbs, can be used to treat NAFLD by activating AMPK phosphorylation. In this study, we synthesized ten acrylic acid derivatives A1-A10. The inhibition of lipid accumulation showed that most target compounds could inhibit lipid accumulation at 400 μM; compound A3 showed a better inhibitory effect than other compounds. Molecular docking results proved that A3 could bind to PPARγ, and multiple binding sites existed in both the ferulic acid cohort and the substituted benzene cohort.
Collapse
Affiliation(s)
- Ying-Ying Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Yi-Fan Xu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Xin-Ru Li
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Qi-Pan Fan
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Jia-Hao Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Si-Yu Zhou
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Yu-Qing Qian
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Ming-Dong Li
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| |
Collapse
|
44
|
He Q, Liu X, Ding G, Wang Y, Luo X, Cao W, Xing W. The relationship between serum uric acid level and non-alcoholic fatty liver disease in northern China: a retrospective cohort study. BMC Public Health 2025; 25:718. [PMID: 39984884 PMCID: PMC11843771 DOI: 10.1186/s12889-025-21943-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/13/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) has become the most prevalent chronic liver disease among adults. High uric acid (UA) increases the incidence of NAFLD in the general population. However, further exploration is warranted to determine the relationship between UA levels and NAFLD in various populations. We conducted a historical cohort study to investigate the causality between UA and NAFLD across different weight categories. METHODS A historical cohort was established from the Jidong community cohort. All participants were enrolled and followed up from July 1st, 2013 to August 1st, 2018. The study participants were retrospectively assigned to four groups according to their UA levels (Q1, 69-210 μmol/L; Q2, 211-255 μmol/L; Q3, 256-310 μmol/L; Q4, 311-593 μmol/L). The NAFLD incidence was investigated in each group. We used the UA level determined by an automatic analyzer. NAFLD was diagnosed with abdominal ultrasonography examination. Demographic information, lifestyle history, clinical anthropometric data, and blood samples of participants were collected. Univariate analysis and multivariable Cox regression were applied to analyze the relationship between UA and NAFLD by stratification of participants' body mass index (BMI) categories (underweight, normal weight, overweight, and obese). RESULTS Two thousand nine hundred eighty four participants were enrolled. 740 (24.8%) were assigned to UA Q1 group, 755 (25.3%) to UA Q2, 743 (24.9%) to UA Q3, and 746 (25.0%) to UA Q4. The global incidence of NAFLD was 26.0% (777/2984). The risk of NAFLD significantly increased with elevated UA levels in underweight and normal-weight participants (HR = 3.498, 95% CI: 2.413-5.072, P < 0.05). In multivariable analysis, UA showed a positive association with NAFLD, independent of other risk factors in underweight and normal-weight participants (UA Q2: 1.152 (0.761-1.743), UA Q3: 2.168 (1.489-3.157), UA Q4: 3.075 (2.103-4.196), P < 0.05). In the absence of other risk factors, high UA levels independently explained 17% of NAFLD risk in underweight and normal-weight participants. CONCLUSIONS High UA levels serve as an independent risk factor for NAFLD in underweight and normal-weight individuals, highlighting the necessity of early NAFLD screening through monitoring liver function and UA levels, and personalized treatment plans for NAFLD patients with higher UA levels, which may include uric acid-lowering therapy and lifestyle modifications. However, the relationship between UA levels and NAFLD in overweight and obese individuals remains inconclusive.
Collapse
Affiliation(s)
- Qian He
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xinyue Liu
- Tai'an City Center for Disease Control and Prevention, Taian, China
| | - Guoyong Ding
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yiying Wang
- Department of Medical, Rizhao Mental Health Center, Rizhao, China
| | - Xiaoting Luo
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenyuan Cao
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Weijia Xing
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, 271000, China.
| |
Collapse
|
45
|
Jiang J, Gao Y, Wang J, Huang Y, Yang R, Zhang Y, Ma Y, Wen Y, Luo G, Zhang S, Cao Y, Yu M, Wang Q, Hu S, Wang K, Guo X, Gonzalez FJ, Liu Y, Liu H, Xie Q, Xie C. Hepatic sphingomyelin phosphodiesterase 3 promotes steatohepatitis by disrupting membrane sphingolipid metabolism. Cell Metab 2025:S1550-4131(25)00016-6. [PMID: 40015281 DOI: 10.1016/j.cmet.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/16/2024] [Accepted: 01/17/2025] [Indexed: 03/01/2025]
Abstract
Metabolic-dysfunction-associated steatohepatitis (MASH) remains a major health challenge. Herein, we identify sphingomyelin phosphodiesterase 3 (SMPD3) as a key driver of hepatic ceramide accumulation through increasing sphingomyelin hydrolysis at the cell membrane. Hepatocyte-specific Smpd3 gene disruption or pharmacological inhibition of SMPD3 alleviates MASH, whereas reintroducing SMPD3 reverses the resolution of MASH. Although healthy livers express low-level SMPD3, lipotoxicity-induced DNA damage suppresses sirtuin 1 (SIRT1), triggering an upregulation of SMPD3 during MASH. This disrupts membrane sphingomyelin-ceramide balance and promotes disease progression by enhancing caveolae-dependent lipid uptake and extracellular vesicle secretion from steatotic hepatocytes to exacerbate inflammation and fibrosis. Consequently, SMPD3 acts as a central hub integrating key MASH hallmarks. Notably, we discovered a bifunctional agent that simultaneously activates SIRT1 and inhibits SMPD3, which shows significant therapeutic potential in MASH treatment. These findings suggest that inhibition of hepatic SMPD3 restores membrane sphingolipid metabolism and holds great promise for developing novel MASH therapies.
Collapse
Affiliation(s)
- Jie Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yuqing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Lingang Laboratory, Shanghai 200444, China
| | - Yan Huang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Rong Yang
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yongxin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuandi Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingquan Wen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Gongkai Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shurui Zhang
- Lingang Laboratory, Shanghai 200444, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yutang Cao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Minjun Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinxue Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Shulei Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kanglong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Frank J Gonzalez
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yameng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China.
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China.
| |
Collapse
|
46
|
Saunders RA, Allen WE, Pan X, Sandhu J, Lu J, Lau TK, Smolyar K, Sullivan ZA, Dulac C, Weissman JS, Zhuang X. A platform for multimodal in vivo pooled genetic screens reveals regulators of liver function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.18.624217. [PMID: 39605605 PMCID: PMC11601512 DOI: 10.1101/2024.11.18.624217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Organ function requires coordinated activities of thousands of genes in distinct, spatially organized cell types. Understanding the basis of emergent tissue function requires approaches to dissect the genetic control of diverse cellular and tissue phenotypes in vivo. Here, we develop paired imaging and sequencing methods to construct large-scale, multi-modal genotype-phenotypes maps in tissue with pooled genetic perturbations. Using imaging, we identify genetic perturbations in individual cells while simultaneously measuring their gene expression and subcellular morphology. Using single-cell sequencing, we measure transcriptomic responses to the same genetic perturbations. We apply this approach to study hundreds of genetic perturbations in the mouse liver. Our study reveals regulators of hepatocyte zonation and liver unfolded protein response, as well as distinct pathways that cause hepatocyte steatosis. Our approach enables new ways of interrogating the genetic basis of complex cellular and organismal physiology and provides crucial training data for emerging machine-learning models of cellular function.
Collapse
Affiliation(s)
- Reuben A. Saunders
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Whitehead Institute, Cambridge, MA 02139, USA
- University of California, San Francisco, San Francisco, CA 94158, USA
- Present address: Society of Fellows, Harvard University, MA 02138, USA
- These authors contributed equally
| | - William E. Allen
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Society of Fellows, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Present address: Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305; Arc Institute, Palo Alto, CA 94304
- These authors contributed equally
- Lead contact
| | - Xingjie Pan
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Lead AI Scientist
| | - Jaspreet Sandhu
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Whitehead Institute, Cambridge, MA 02139, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jiaqi Lu
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Thomas K. Lau
- Department of Statistics, Stanford University, Stanford, CA 94305
| | - Karina Smolyar
- Whitehead Institute, Cambridge, MA 02139, USA
- Department of Biology, MIT, Cambridge, MA 02139 USA
| | - Zuri A. Sullivan
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Catherine Dulac
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jonathan S. Weissman
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Whitehead Institute, Cambridge, MA 02139, USA
- Department of Biology, MIT, Cambridge, MA 02139 USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
47
|
Wang FX, Mu G, Yu ZH, Qin ZS, Zhao X, Shi ZA, Fan X, Liu L, Chen Y, Zhou J. MiR-451 in Inflammatory Diseases: Molecular Mechanisms, Biomarkers, and Therapeutic Applications-A Comprehensive Review Beyond Oncology. Curr Issues Mol Biol 2025; 47:127. [PMID: 39996848 PMCID: PMC11854642 DOI: 10.3390/cimb47020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
MicroRNAs play crucial roles in regulating inflammatory responses and disease progression. Since its identification on chromosome 17q11.2 in 2005, miR-451 has emerged as a key regulator of multiple physiological and pathological processes. While its role in cancer has been extensively documented, accumulating evidence reveals miR-451's broader significance in inflammatory conditions through the regulation of NF-κB, AMPK, and PI3K signaling pathways. This comprehensive review systematically analyzes miR-451's multifaceted functions in inflammatory diseases, with particular focus on ischemia-reperfusion injury, arthritis, and acute organ injuries. We present compelling evidence for miR-451's potential as a diagnostic biomarker, demonstrating its distinctive expression patterns across various biological specimens and disease states. Furthermore, we elucidate how miR-451 modulates inflammatory responses through the regulation of immune cell populations, including microglia activation, macrophage polarization, and neutrophil chemotaxis. By integrating current evidence and bioinformatic analyses, we establish a theoretical framework linking miR-451's molecular mechanisms to its therapeutic applications. This review not only synthesizes the current understanding of miR-451 in inflammatory diseases but also provides critical insights for developing novel diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Fei-Xiang Wang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Guo Mu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Zi-Hang Yu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Zhen-Shan Qin
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Xing Zhao
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Zu-An Shi
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Xin Fan
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Ye Chen
- Department of Traditional Chinese Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China;
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
48
|
Li P, Zhang R, Hu P, Wang T, Wang J. Cepharanthine relieves nonalcoholic steatohepatitis through inhibiting STAT1/CXCL10 axis-mediated lipogenesis and inflammatory responses. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119358. [PMID: 39805479 DOI: 10.1016/j.jep.2025.119358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/24/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Stephania rotunda Lour., a medicinal herb, has been utilized in both Traditional Chinese Medicine (TCM) and Traditional Indian Medicine to treat conditions such as fever, dysentery, and inflammation. Cepharanthine (CEP), a primary active ingredient of Stephania rotunda Lour., has demonstrated a range of pharmacological activities, including anti-oxidative, anti-inflammatory, anti-cancer, anti-viral and anti-parasitic properties. However, the effects and underlying mechanisms of CEP on improving nonalcoholic steatohepatitis (NASH) remain unclear. AIM OF THE STUDY This study aimed to investigate the effects of CEP on mitigating diet-induced NASH and explore its underlying mechanisms. MATERIALS AND METHODS A High-Fat Diet (HFD) and the high levels of free fatty acids (FFA) were used to establish in vivo and in vitro NASH models to evaluate the intervention effect of CEP. Subsequently, RNA-sequencing, western blotting, quantitative real-time PCR (qRT-PCR) and siRNA transfection were employed to investigate its underlying mechanisms. RESULTS Our findings indicated that CEP significantly reduced lipogenesis and inflammatory responses in both HFD-fed rats and FFA-induced hepatic cells (including HepG2, L02 and AML12 cell lines), as is evidenced by the reduction of triglyceride (TG), lipid accumulation, and the release of inflammatory cytokines such as TNF-α, IL-6 and IL-1β. Mechanistically, CEP significantly inhibits CXC motif chemokine ligand 10 (CXCL10) expression both in vivo and in vitro. It also regulates sterol regulatory element binding protein-1c (SREBP1c)-induced lipogenic gene expression and CXCL10-mediated nuclear factor kappa B (NFκB) activation. Notably, knockdown of CXCL10 mimics the ability of CEP to reduce lipid accumulation and inflammatory responses, which is also observed following the blockade of signal transducer and activator of transcription 1 (STAT1) in HepG2 cells. CONCLUSION CEP alleviates NASH by inhibiting lipogenesis and inflammatory responses in a STAT1/CXCL10 axis-dependent manner.
Collapse
Affiliation(s)
- Pan Li
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Ruoyu Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, 999077, PR China
| | - Pingping Hu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Medical University, Chongqing, 400016, PR China
| | - Tingting Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
49
|
Xia F, Wei W, Wang J, Wang Y, Wang K, Zhang C, Zhu Q. Ultrasound radiomics-based logistic regression model for fibrotic NASH. BMC Gastroenterol 2025; 25:66. [PMID: 39920586 PMCID: PMC11806536 DOI: 10.1186/s12876-025-03605-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/10/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Those who have severe fibrosis (F2 ≥ 2 stage) are at the greatest risk for the advancement of the illness among non-alcoholic fatty liver patients. To forecast the non-alcoholic steatohepatitis (NASH) probability accompanied by significant fibrosis, we propose to develop and validate a nomogram liver imaging reporting and data system, providing robust evidence for preventing and treating clinical liver diseases. METHODS The study used SD rats to create a model of hepatic steatosis and fibrosis by feeding them a high-fat diet and injecting Ccl4 subcutaneously. Radiomics characteristics were derived from two-dimensional liver ultrasound images of the rats, and a radiomics model was constructed, with rad-scores calculated accordingly. Univariate and multivariate logistic regression was employed to ascertain the clinical characteristics of rats and liver elasticity values, aiming to establish a clinical model. Ultimately, a clinical radiomics model was created by integrating the rad-score from the radiomics model with independent clinical characteristics from the clinical model. A forest plot was generated to depict this integration. The forest plot's performance was assessed by the use of the area under the receiver operating characteristic (ROC) curve (AUC), decision curve analysis, and calibration curve. RESULTS The areas under the receiver operating characteristic curve (AUC) for the training set and validation set of the clinical radiomics model were 0.986 and 0.971, respectively. Decision curve analysis showed that the clinical radiomics model had the highest net benefit across most threshold probability ranges. CONCLUSION The nomogram and clinical radiomics model, which consists of clinical characteristics, real-time shear wave elastography, and radiomics, provide excellent predictive capability in assessing the likelihood of fibrotic NASH.
Collapse
Affiliation(s)
- Fei Xia
- Department of Ultrasound, WuHu Hospital, East China Normal University, (The Second People's Hospital, WuHu), No.259 Jiuhuashan Road, Jinghu District, Wuhu, 241001, Anhui, China
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Shushan District, No.218 Jixi Road, Hefei, 230022, Anhui, China
| | - Wei Wei
- Department of Ultrasound, The First Affiliated Hospital of Wannan Medical College(Yijishan Hospital), NO.2 Zheshan West Road, Wuhu, 241000, China
| | - Junli Wang
- Department of Ultrasound, WuHu Hospital, East China Normal University, (The Second People's Hospital, WuHu), No.259 Jiuhuashan Road, Jinghu District, Wuhu, 241001, Anhui, China
| | - Yuhe Wang
- Department of Ultrasound, WuHu Hospital, East China Normal University, (The Second People's Hospital, WuHu), No.259 Jiuhuashan Road, Jinghu District, Wuhu, 241001, Anhui, China
| | - Kun Wang
- Department of Ultrasound, WuHu Hospital, East China Normal University, (The Second People's Hospital, WuHu), No.259 Jiuhuashan Road, Jinghu District, Wuhu, 241001, Anhui, China
| | - Chaoxue Zhang
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Shushan District, No.218 Jixi Road, Hefei, 230022, Anhui, China.
| | - Qiwei Zhu
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Shushan District, No.218 Jixi Road, Hefei, 230022, Anhui, China
| |
Collapse
|
50
|
Zou Y, Tian L, Pei L, Hao J, Chen T, Qi J, Qiu J, Xu Y, Hu X, Chen L, Dou X. SFAs facilitates ceramide's de novo synthesis via TLR4 and intensifies hepatocyte lipotoxicity. Int Immunopharmacol 2025; 147:114020. [PMID: 39793229 DOI: 10.1016/j.intimp.2025.114020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH), an advanced manifestation of non-alcoholic fatty liver disease (NAFLD), is characterized by hepatocyte injury, inflammation, and fibrosis. Saturated fatty acids (SFAs) have emerged as key contributors to hepatocyte lipotoxicity and disease progression. Toll-like receptor 4 (TLR4) acts as a sentinel for diverse ligands, including lipopolysaccharide (LPS) and endogenous molecules like palmitic acid (PA)-induced ceramide (CER) accumulation, promoting hepatocyte demise. However, the intricate mechanisms underlying TLR4's modulation of ceramide metabolism and their concerted effect on SFA-mediated hepatotoxicity remain elusive. METHODS A NASH mouse model with liver-specific TLR4 knockdown was established through palm oil feeding and AAV2/8 tail vein injection. Histological and biochemical assessments were conducted to evaluate the mice's condition and liver damage extent. Liquid chromatography-mass spectrometry (LC-MS) was employed to quantify ceramide levels in liver tissues, offering insights into NASH mechanisms. RESULTS The PO-fed model exhibited elevated serum ALT, AST, and liver TG levels, enhancing lipid accumulation and hepatocellular damage. TLR4 knock-down reduced liver mass and the liver-to-body weight ratio, signifying a decreased hepatic burden. Histopathological evaluations revealed substantial improvement in hepatic steatosis in TLR4-silenced PO-fed mice, with diminished lipid droplets and inflammatory infiltrates. LC-MS analysis showed a marked decrease in long-chain ceramides (C14, C16, C20) in TLR4-knockdown PO-fed mice. Furthermore, expression of MyD88, SPTLC1, SPTLC2, and inflammatory markers IL-1β, IL-6, TNF-α were significantly attenuated. CONCLUSION SFAs activate the TLR4 signaling pathway via MyD88, fostering ceramide de novo synthesis, which exacerbates hepatocyte lipotoxicity and accelerates NASH progression.
Collapse
Affiliation(s)
- Yuchao Zou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Lulu Tian
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Liuhua Pei
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Jie Hao
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Tianhang Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Jiayu Qi
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Jiannan Qiu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Yinuo Xu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Xiaokai Hu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Lin Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| |
Collapse
|