Retrospective Cohort Study
Copyright ©The Author(s) 2025.
World J Gastrointest Oncol. Jun 15, 2025; 17(6): 106608
Published online Jun 15, 2025. doi: 10.4251/wjgo.v17.i6.106608
Table 1 Clinical characteristics of patients included in three sets, n (%)

Training set (n = 155)
Internal validation set (n = 67)
External validation set (n = 66)
P value
Sex 0.386
Female30 (19.4)13 (19.4)18 (27.3)
Male125 (80.6)54 (80.6)48 (72.7)
Age (years)57.9 ± 11.758.9 ± 11.361.8 ± 9.070.06
≤ 5038 (24.5)20 (29.9)12 (18.2)0.290
> 50117 (75.5)47 (70.1)54 (81.8)
History of hepatitis0.110
Negative57 (36.8)30 (44.8)18 (27.3)
Positive98 (63.2)37 (55.2)48 (72.7)
Cirrhosis0.424
Negative28 (18.1)17 (25.4)12 (18.2)
Positive127 (81.9)50 (74.6)54 (81.8)
Platelets (× 109/L)0.236
> 10062 (40.0)35 (52.2)28 (42.4)
≤ 10093 (60.0)32 (47.8)38 (57.6)
Alanine transferase (U/L)0.806
≤ 50115 (74.2)47 (70.1)49 (74.2)
> 5040 (25.8)20 (29.9)17 (25.8)
Aspartate transferase (U/L)0.784
> 4068 (43.9)27 (40.3)26 (39.4)
≤ 4087 (56.1)40 (59.7)40 (60.6)
Gammaglutamyl transferase (U/L)0.606
≤ 6085 (54.8)38 (56.7)41 (62.1)
> 6070 (45.2)29 (43.3)25 (37.9)
Total bilirubin (umol/L)0.07
≤ 2188 (56.8)47 (70.1)46 (69.7)
> 2167 (43.2)20 (29.9)20 (30.3)
Activated partial thromboplastin time (second)0.207
< 42130 (83.9)62 (92.5)58 (87.9)
≥ 4225 (16.1)5 (7.46)8 (12.1)
Fibrinogen (g/L)0.075
≥ 290 (58.1)42 (62.7)49 (74.2)
< 265 (41.9)25 (37.3)17 (25.8)
International normalized ratio0.265
≤ 1.2101 (65.2)51 (76.1)44 (66.7)
> 1.254 (34.8)16 (23.9)22 (33.3)
Hepatitis B surface antigen0.313
Negative28 (18.1)13 (19.4)7 (10.6)
Positive127 (81.9)54 (80.6)59 (89.4)
Alpha fetoprotein (ng/mL)0.374
≤ 400131 (84.5)53 (79.1)58 (87.9)
> 40024 (15.5)14 (20.9)8 (12.1)
Size (cm)2.7 ± 1.052.70 ± 1.102.57 ± 0.900.586
Early recurrence0.642
No93 (60.0)41 (61.2)44 (66.7)
Yes62 (40.0)26 (38.8)22 (33.3)
Table 2 The six best models with optimal machine learning approach and their performance in training and internal validation set
ModelTraining set
Internal-Validation set
Accuracy
AUC (95%CI)
NPV
PPV
Accuracy
AUC (95%CI)
NPV
PPV
The tumor-only model (KNN)0.6900.757 (0.724-0.789)0.5320.7960.7310.750 (0.700-0.801)0.6540.780
The 5 mm peri-tumor model (LightGBM)0.7680.857 (0.824-0.891)0.6290.8600.7460.713 (0.665-0.761)0.5770.854
The 10 mm peri-tumor model (KNN)0.7230.802 (0.776-0.829)0.5480.8390.7760.803 (0.763-0.842)0.5770.902
The tumor-peri-tumor 5 mm model (extreme gradient boosting)0.9350.987 (0.934-1.000)0.8870.9680.7010.774 (0.696-0.853)0.6540.732
The tumor-peri-tumor 10 mm model (logistic regression)0.7810.862 (0.821-0.904)0.7740.7850.7610.841 (0.777-0.904)0.6920.805
The model that incorporates features from all regions—tumor, 5 mm, and 10 mm (LightGBM)0.8320.924 (0.890-0.958)0.7260.9030.7760.899 (0.850-0.948)0.6150.878
Table 3 Comparative analysis of models in internal validation set
Model 1
Model 2
Net reclassification improvement
P value
Integrated discrimination improvement
P value
The tumor-only modelCombined0.2610.0210.493< 0.0001
The 5 mm peri-tumor modelCombined0.3210.0020.353< 0.0001
The 10 mm peri-tumor modelCombined0.29200.1660.00033
The tumor-peri-tumor 5 mm modelCombined0.1890.0490.1660.00052
The tumor-peri-tumor 10 mm modelCombined0.2200.020.2310.00311